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Abstract

Signal processing techniques such as multi user detection (MUD) have the capability of greatly

enhancing the performance and capacity of future generation wireless communications systems.

Blind adaptive MUD's have many favourable qualities and their application to OS-COMA

systems has attracted a lot of attention. The constant modulus algorithm is widely deployed in

blind channel equalizations applications. The central premise of this thesis is that the constant

modulus cost function is very suitable for the purposes of blind adaptive MUD for future

generation wireless communications systems. To prove this point, the adaptive performance of

blind (and non-blind) adaptive MUD's is derived analytically for all the schemes that can be

made to fit the same generic structure as the constant modulus scheme. For the first time, both

the relative and absolute performance levels of the different adaptive algorithms are computed,

which gives insights into the performance levels of the different blind adaptive MUD schemes,

and demonstrates the merit of the constant modulus based schemes. The adaptive performance

of the blind adaptive MUD's is quantified using the excess mean square error (EMSE) as a

metric, and is derived for the steady-state, tracking, and transient stages of the adaptive

algorithms.

If constant modulus based MUD's are suitable for future generation wireless communications

systems, then they should also be capable of suppressing multi-rate DS-COMA interference and

also demonstrate the ability to suppress narrow band interference (NBI) that arises in overlay

systems. Multi-rate DS-COMA provides the capability of transmitting at various bit rates and

quality of service levels over the same air interface. Limited spectrum availability may lead to

the implementation of overlay systems whereby wide-band COMA signal are collocated with

existing narrow band services. Both overlay systems and multi-rate DS-COMA are important

features of future generation wireless communications systems. The interference patterns

generated by both multi-rate OS-COMA and digital NBI are cyclostationary (or periodically

time varying) and traditional MUD techniques do not take this into account and are thus

suboptimal. Cyclic MUD's, although suboptimal, do however take the cyclostationarity of the

interference into account, but to date there have been no cyclic MUD's based on the constant

modulus cost function proposed.

This thesis thus derives novel, blind adaptive, cyclic MUD's based on the constant modulus cost

function, for direct implementation on the FREquency SHift (FRESH) filter architecture. The

FRESH architecture provides a modular and thus flexible implementation (in terms of

computational complexity) of a periodically time varying filter. The operation of the blind

adaptive MUD on these reduced complexity architectures is also explored.· The robustness of

the new cyclic MUD is proven via a rigorous mathematical proof. An alternate architecture to
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the FRESH filter is the filter bank. Using the previously derived analytical framework for the

adaptive performance of MUD's, the relative performance of the adaptive algorithms on the

FRESH and filter bank architectures is examined. Prior to this thesis, no conclusions could be

drawn as to which architecture would yield superior performance. The performance analysis of

the adaptive algorithms is also extended in this thesis in order to consider the effects of timing

jitrer at the receiver, signature waveform mismatch, and other pertinent issues that arise in

realistic implementation scenarios. Thus, through a careful analytical approach, which is verfied

by computer simulation results, the suitability of constant modulus based MUD's is established

in th is thesis.
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Chapter 1

Introduction

Future generation wireless personal communications systems requIre advanced signal

processing techniques to fully exploit the limited radio resources. The central premise of this

thesis is that constant modulus based blind adaptive multi user detectors provide low complexity,

robust and reliable signal processing techniques for the enhancement of future generation

personal communications systems that are based on DS-CDMA. These properties and

capabilities are proved and expounded in this thesis via the derivation of novel algorithms as

well as performance analyses which consider the constraints of realistic operating conditions.

The rest of this chapter details some of the relevant characteristics of future generation wireless

personal communications systems to better illustrate why such signal processing techniques are

required, and why the analyses and algorithms presented in this thesis are significant.

1.1 Wireless personal communications systems

1.1.1 An evolution in performance, a revolution in uptake

First generation mobile cellular telephony systems were first introduced In the 1980's. The

cellular concept breaks the coverage area into smaller cells and reuses frequency spectrum that

is not used in adjacent cells. The cellular concept greatly enhanced system capacity and thereby

made a cost effective use of available spectrum which in turn made wireless personal

communications viable for the first time. First generation systems were based on analogue

technology such as frequency division multiple access (FDMA) and predominantly only

supported voice services. The most popular first generation standards were Advanced Mobile

Phone Service (AMPS), Total Access Communications System (TACS), and Nordic Mobile

Telephone (NMT). Each standard found favour in different parts of the world, a break down of

which may be found in [I]. Without the dominance of a single standard, as well as a lack of

interoperability between first generation standards, international roaming was not feasible

during the era of first generation networks. First generation standards are still in use around the

world but are being phased out as they offer relatively low spectral efficiencies and a poorer

quality of service relative to modern standards, and are thus no longer in favour.

The move to second generation (2G) wireless personal communications systems is marked by

the occurrence of digital technology. This move to digital technology enabled such techniques

as forward error correction (FEC) to improve performance as well as the implementation of the

multiple access techniques: time division multiple access (TDMA) and code division multiple

access (CDMA), to greatly improve the spectral efficiency of 2G systems relative to the first
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generation systems. The most popular 2G standard by far is the Global System for Mobile

Communications (GSM), as it has captured 73% of the digital market and 72% of the wireless

market, as shown in Table 1.1 and Table 1.2. Other 2G standards that exist are: digital AMPS

(D-AMPS), COMA IS-95, and Personal Digital Cellular (PDC). GSM arose out of the

requirement to provide international roaming across Europe, but has been rapidly adopted all

over the world. 2G standards are also marked by the emergence of data services, for example:

the GSM network offers the short message service (SMS) and the ability to make data

connections at either 9.6 or 14.4kbs.

The inception of GSM technology in 1992 saw the start of the global wave of the uptake of

mobile telephony. In 2003 mobile subscribers outnumbered the number of fixed line

connections in the world [2]. The steady refinement of this technology along with the size of the

market for cellular telephony has made wireless personal communications almost ubiquitous. In

February this year (2004) the total number of GSM subscribers exceeded 1 billion [3]. This is

most impressive considering that the world's population is estimated at roughly 6 billion people.

The GSM standard has also been adopted by more than 200 countries and territories [3].

Table 1.1. Wireless subscriber statistics (all figures in millions). Source: EMC world cellular database.

Jul-03 I Gct-03 I Jan-04 I Feb-04 I Mar-04Jan-03 I Apr-03 I
Total digital subscribers 1123.7 I 1177.7 1232.8 1278.8 1388.0 141\.6 1440.0

Total analogue subscribers 28.1 25.1 23.2 20.7 19.0 18.3 16.5

Total wireless subscribers 1151.8 1202.8 1256.0 1299.5 1407.0 1429.9 1456.5

Table 1.2. Breakdown of Digital subscribers (all figures in millions). Source: EMC world cellular database.

Jan-03 Apr-03 Jul-03 Gct-03 .Jan-04 I Feb-04 Mar-04

GSM 805.8 847.3 895.2 935.2 1006.5 I 1024.3 1046.8

W-CDMA 0.2 0.4 \.4 \.9 3.0 I 3.4 4.3

CDMA 148.3 157.9 162.3 174.1 190.2 194.4 199.1

PDC 60.3 61.7 62.3 62.5 I 62.0 I 62.2 62.4
I

USTDMA 108.4 110.4 112.2 109.2 109.4 I 110.2 111.2

As the market for mobile voice calls becomes saturated, growth is expected to come from

mobile data applications which require broadband access [4]. In the future, it is expected that

the most common method that will be used to access the internet will be wireless

communications devices like the so called "smart phone". In fact, approximately half a billion

GSM cellular telephones were manufactured in 2003 [5], and of those 10 million were "smart

phones". Various additions to the 2G standards have been implemented to satisfY the growing

wireless data market. These include high-speed circuit switched data (HSCSD), General Packet

Radio Services (GPRS) and Enhanced Data Rates for Global Evolution (EDGE), and are

generally referred to as 2.5G services.
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This drive towards broadband wireless data has largely determined the characteristics of third

generation (3G) systems that are either in development or are now being deployed around the

world [6], [7]. Third generation wireless communications systems are therefore characterised by

high data rates: typically 144-384kbps, and up to 2Mbps under ideal conditions. These high data

rates lead to the requirement that 3G systems have even higher spectral efficiencies compared to

2G technologies. The air-interface for 3G systems is predominantly based on wideband code

division multiple access (W-CDMA) [8], the steady uptake of which can be seen in Table 1.2,

but still constitutes less than 0.3% of the number of total wireless subscribers. W-COMA is

therefore still just a niche market. Various other standards have been proposed that fall under

the ITU's IMT-2000 umbrella of 3G standards, but the differences are largely determined by the

state of a particular country's spectrum allocation and the requirement for backward

compatibility to standards other than GSM, for example: COMA2000 in the USA. This thesis is

primarily concerned with technologies applicable to the OS-COMA multiple access technique,

such as W-COMA. Further technological advances in this regard will advance the capabilities

of 3G services making them even more cost effective and therefore enabling their widespread

uptake.

Research has already begun on fourth generation (4G) wireless communications systems [9],

[10]. These systems are characterised by even higher data rates, as can be seen in Table 1.3

where a comparison between the key parameters of 3G and 4G systems is made. 4G systems are

expected to make use of multicarrier techniques such as orthogonal frequency division

multiplexing (OFOM) or multicarrier (MC-) COMA in the air interface to provide these high

data rates. OFOM type signalling however suffers from a high peak-to-average power ratio and

therefore does not make efficient use of the non-linear power amplifiers that are typically used

in the RF stages of the mobile handsets. W-CDMA may thus still be used for quite some time in

the uplink of future personal wireless communications systems. To achieve such high

bandwidths economically, massive increases in spectral efficiencies are required. Some services

may also have to be offered, or operate in, unregulated spectrum like the ISM band. These

overlay systems thus need to combat the effects of narrow band interference (NBJ).

Table 1.3. Key Parameters of3G and 4 G Systems. Source: [11].

3G 4G

Frequency band 1.8 - 2.5 GHz 2 - 8 GHz

Bandwidth 5-20MHz 20MHz

Data rate Up to 2 Mbps (384 kbps deployed) Up to 20 Mbps

Access W-CDMA MC-CDMA or OFDM (TDMA)

Forward error correction Convolutional rate 1/2, 1/3 Concatenated coding scheme

Switching Circuit/packet Packet

Mobile top speeds 200 km/h 200 km/h
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1.1.2 Enabling technologies for 3G and future generation systems

The characteristics of the communications channel and multiple access system need to be taken

into account and exploited to the full to achieve the high spectral efficiencies necessary to

ensure the viability of 3G and future generation wireless communications systems. There are

many ways to improve the spectral efficiency, for example:

• Modulation format

• Coding

• Diversity techniques

o Time (RAKE receiver)

o Space (antenna array)

o Frequency (multicarrier communications)

Advanced combinations of diversity and coding have already been proposed such as space-time

trellis codes [12] that offer exceptional spectral efficiencies in terms of bps/Hz. Diversity

techniques are chiefly employed to counteract the negative phenomena associated with the

propagation medium, such as fading. Fading selectivity in the time, frequency, or space

dimensions is actually a source of diversity that may be exploited.

The fundamental limitation, however, of COMA communications systems is the amount of

multiple access interference (MAl) that arises from the presence of other co-users. The near-far

problem, whereby a single strong transmitter close to the receiver swamps out all the other

weaker COMA signals, is a serious design issue in OS-COMA networks. NB! that arises in

overlay systems similarly inhibits system performance. Suppressing these types of interference

is the focus of this thesis. Two categories of techniques that exist for the suppression of MAl

and NBI are:

• Adaptive antenna arrays (AAA)

• Multiuser detection (MUD)

AAA's have the capability to vary their sensitivity as a function of the angle of arrival of

impinging signals. They suppress interference via various adaptive beamforming techniques

which create nulls in the AAA response that correspond to the angle of arrival of interference

sources. Multiuser detectors attempt to directly suppress the interference via exploiting the

structure of the interference. Various combinations of AAA's and MUD's have also been

proposed [13], [14], and these are referred to as space-time multiuser detectors (ST-MUD's).

MUD is the core topic of this thesis, as MUD has been identified as one of the enabling

technologies for 3G and future generation personal wireless communications systems.
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"Multiuser detection techniques are essential for achieving near-optimal performance in

communications systems where signals conveying the desired information are received in the

presence ofambient noise plus multiple-access interference. With the exploding interest from both

the research community and industry in wireless code-division multiple-access (CDMA) systems,

the application of multiuser detection techniques to wireless systems is becoming increasingly

important. "

-H. Vincent Poor
Guest Editorial for IEEE JSAC, Aug. 200 I, Special Issue on:

"Multiuser detection techniques with application to wired and wireless communications systems"

5

1.2 The argument for constant modulus signal restoration

There is consensus within the research community that MUD is one of the enabling

technologies for future generation wireless communications systems. However, any device,

especially those situated in the mobile terminal, employed to enhance the performance or

capacity of the radio link has to operate under constraints as there is: finite processing power,

finite memory, and a finite power supply. If such a device is to be implemented then its

performance levels should be both predictable and robust. The benefits of implementation must

exceed the cost, and therefore high performance is expected from as Iowa complexity level as

possible.

When considering the choice of interference suppression/MUD technique, the fundamental

trade-off between performance and cost must thus be made. In this context, performance is

defined as the gain in the number of users that can be accommodated simultaneously or the

improvement of the bit error rate (BER) of the air interface. The cost is measured in terms of the

system and algorithm complexity which directly translates to the cost of the hardware required.

The plethora of MUD's that have been explicitly developed for DS-CDMA systems by

numerous researches over the last 18 years span the full dynamic range of complexity: from the

optimal detector of complexity order 2K to the linear detector of complexity order N, where K is

the number of users and N is the processing gain.

The performance margin between the optimal (in terms of BER) MUD and mll111TIUm mean

square error (MMSE) linear MUD is not large in most systems of interest; however, the

difference in complexity is so large that optimal MUD is not practical in all but the simplest of

systems. Many non-linear MUD's that attempt to approach the optimal MUD performance level

have been suggested. Non-linear MUD's have been proposed based on the following

techniques: genetic algorithms [IS], neural networks [16], probabilistic data association [17],

and evolutionary programming [18] to name a few. These schemes generally still have a very

high computational complexity compared to linear MUD and it is yet to be determined if the

higher cost is worth the extra performance gain. The lack of analytical tools available to fully

analyse their performance levels does not work in their favour either, as it is hard to prove the

robustness of non-linear MUD schemes in general.
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The parallel and successive interference cancelling structures (PlC and SIC) show promise [19]

as they have a relatively lower computational complexity than the other non-linear techniques

mentioned; however, they are true MUD's in the sense that all the interfering users need to be

decoded in order for the algorithms to work. This is appropriate for base station receivers where

all the users need to be received but is not desirable for single user receivers. Also, if there were

significant intercellular interferers present (whose spreading codes were not known at the

receiver) then the interference cancellation systems would fail. This phenomenon has been

recognised and has prompted the development of group blind MUD's [20], where it is

understood that at the receiver some interferers' spreading codes are known and other are not.

Due to the non-linear nature of the algorithms involved in PlC and SIC, their analysis is difficult

and thus performance and robustness is difficult to prove. Performance levels are generally

explored via simulation.

The performance characteristics of linear MUD's have been extensively studied [21). The two

most widely studied linear MUD's are the MMSE and decorrelating detectors. These two

detectors are related as they become equivalent at high signal to noise ratios (SNR's), but the

MMSE detector avoids the noise enhancement problem of the decorrelating detector at lower

SNR's, so the MMSE detector is always preferable. In addition to the MMSE and decorrelating

detectors, there has recently been interest in linear minimum bit error rate (MBER) detectors

[22). The performance gain versus the extra system complexity is not clear at this point.

Another advantage of linear MUD is that it may be implemented using a (linear transversal)

adaptive filter, thus incurring a particularly low computational complexity. The convergence of

most adaptive schemes can also be analysed to ensure some measures of robustness and

stability. The MMSE receiver also has the ability to be implemented blindly, which is a very

desirable quality, as it circumvents the need for pilot channels, thereby increasing the spectral

efficiency, and also provides for procedural convenience. In this thesis, blind indicates that only

the timing and spreading code information of the desired user is known at the receiver. It is

concluded then, that linear blind adaptive multiuser detectors offer some of the best cost to

performance ratios, and are therefore the focus of this thesis.

Blind adaptive MUD has rightly been extensively studied by numerous researchers (see [23]

and [24] for a review). Seminal work in the field of blind adaptive MUD was presented in [25]

where it was shown that by minimising the output energy of the adaptive filter subject to a

linear constraint, the filter will always converge towards the MMSE receiver. This linear

constraint is the spreading code, or signature sequence of the desired user, and is used to prevent

the receiver from suppressing energy associated with the desired user, which would of course

result in the failure of the receiver. This use of only the knowledge of the timing and spreading

code of the desired user to perform blind adaptive MUD has led to the use of the terminology:

code-aided or code-constrained blind adaptive MUD's.
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This thesis's central premise is that the constant modulus algorithm (CMA) provides a very

suitable cost function to perform code-aided blind adaptive MUD. The CMA was developed in

the late 1970s and disclosed in 1980 in [26] as a technique to perform blind channel

equalization. The CMA is now in widespread use:

"Just as the LMS algorithm has established itself as the workhorse for supervised linear adaptive

filtering, the CMA has become the workhorse for blind channel equalization. "

-So Haykin
Unsupervised Adaptive Filtering, vo/. /1

Such widespread use of the CMA is in no doubt due to the impressive performance of the

algorithm relative to its computational complexity. The research community has recognized that

the task of suppressing MAL is sufficiently similar to that of suppressing intersymbol

interference (the task of blind channel equalization) that there has been a multitude of schemes

proposed whereby the CMA is adapted to perform the task of blind adaptive MUD [27]-[48].

Such widespread use of the CMA in actual blind channel equalizer implementations also lends

the algorithm much credibility as it has a proven implementation track record. The basic theory

behind the operation of the CMA in the context of blind fractionally spaced equalizers (FSE)

has been developed extensively over the last 20 years, and its operation in this context is now

well understood. The most comprehensive and significant treatment of this theory is contained

in [49].

The CMA falls into the Bussgang family of unsupervised (or blind) adaptive filters. Other

algorithms that also fall into this category include the decision-directed least mean squares (00­

LMS) [50], and the Sato algorithm [51]. The CMA employs a stochastic gradient descent

algorithm (SGD) to minimize a cost function that penalises any deviation of the received signal

away from a constant modulus (CM). Any deviation in the received signal away from a CM is

deemed to have come from intersymbol interference and thus restoring the CM property of the

received signal removes the intersymbol interference and thus performs channel equalization. In

the case of MUD, deviation from a CM is brought about by MAl, and so restoring the CM

property is tantamount to suppressing MAl. The CMA only makes use of the higher order

statistics of the received signal implicitly, as opposed to higher order statistical methods which

do so explicitly and which also have a significantly higher computational complexity as a result.

For the reasons outlined above, it is concluded that blind adaptive MUD based on the constant

modulus algorithm provides an excellent performance versus complexity trade off and is thus

the focus of this thesis.

1.3 Problem formulation

The first problem that this thesis tackles is the performance of the SGD algorithm associated

with constant modulus based blind adaptive MUD. The adaptive performance of the CMA has

only been analysed in the context of the FSE application and under the limiting assumption of
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the complete absence of additive noise. The analysis performed in this thesis, of the linearly

constrained (LC-) CMA [27]-[30], [48] applied to blind adaptive MUD in a DS-CDMA

communications system, is significantly different. DS-CDMA specific issues, such as the near­

far problem and the (not insignificant) additive noise, are taken into account in this thesis. The

task then is to quantify the adaptive performance of LCCMA in the steady-state, tracking, and

transient phases of the adaptive algorithm. This is a worthwhile research problem as this

information is vital for the effective implementation of the MUD. The analysis also enables the

computation of the exact reduction in performance that the adaptive algorithm incurs relative to

the optimal MMSE detector. No similar analyses exist for other blind adaptive MUD cost

functions either, to the best of the author's knowledge. This thesis, therefore, also analyses the

adaptive performance of alternate cost functions, yielding new results, and also enabling a

comparative study between the cost functions. This comparative study is crucial to enable

conclusions to be drawn about the suitability of the CMA applied to blind adaptive MUD.

It is put forward by this thesis that MUD's based on the constant modulus cost function are

suitable for future generation PCS. They should therefore also be suitable for the suppression of

periodically time varying (PTV) interference. There are, however, no schemes in existence that

are based on the CMA that have been designed explicitly for the suppression of PTV

interference. The problem therefore is to derive such schemes and quantify their performance.

The good performance-versus-complexity characteristic of the new algorithms should be

demonstrated via direct comparisons to existing blind adaptive MUD's that have been explicitly

developed to suppress PTV interference sources. The reliability of these new algorithms needs

to be ensured through a rigorous analytical proof of their convergence. The adaptive

performance of these new algorithms may also be quantified using the analytical framework that

was devised for the analysis of the LCCMA, as described above. PTV interference arises in 3G

and future generation communications systems due to the heterogeneous nature of the services

that will be offered over the same air-interface (e.g. voice or video). These different services

require different data rates that are in turn made possible by multi-rate DS-CDMA [8]. The

resulting MAL is PTV (or cyclostationary) and the effective suppression of this type of MAl is

therefore a very important element necessary for the successful implementation of 3G and

future generation personal communications systems. PTV interference suppression is also very

important for the effective implementation of DS-CDMA overlay systems. Overlay systems

have been proposed for situations where large contiguous blocks of free spectrum are not

available, and therefore DS-CDMA communications systems are collocated with pre-existing

narrow band services. The resulting narrow band interference (NB!) can be effectively

suppressed if the PTV nature of the NBl is taken into account at the design stage of the MUD

algorithm.

This thesis is concerned with the derivation of the adaptive performance of certain types of

blind adaptive MUD's as this information is vital to their effective implementation. Aligned to
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that research question is: what impact will channel effects and implementation issues have on

the adaptive performance of these algorithms? Thus the effects of mismatch at the receiver

between the nominal and received spreading code of the desired user, receiver timing jitter,

asynchronous OS-COMA transmissions, Rayleigh fading and other implementation issues are

studied in the context of the adaptive algorithm performance. There exists no prior analytical

work that takes into account the effects mentioned above, on the adaptive performance of the

algorithms, and such work thus provides greater insight into the performance of blind adaptive

MUD's.

1.4 Outline of thesis

In Chapter I a brief overview of the evolution of personal wireless communications systems

was presented to illustrate what technological solutions will be required for the successful

implementation of 3G and future generation communications systems. In this context, it was

shown why blind adaptive MUD, based on the CMA, is an appropriate research topic. This led

on to a discussion of the unsolved problems associated with CMA based MUD which this thesis

tackles as well as the relevance and importance of solving these problems.

The performance analysis of the LCCMA is given in Chapter 2. The adaptive performance is

quantified in the steady-state, tracking, and transient stages of the adaptive algorithm using the

excess mean square error (EMSE) as a metric. This is achieved by using the feedback approach

[52]-[54], and related technique given in [57], [58]. The feedback approach provides a unified

approach to studying the performance of a class of adaptive algorithms. After a preliminary

review of how the performance of adaptive filters is quantified, and the necessary elements of

the feedback theory, the rest of the chapter is comprised of original work. The steady-state

analysis of LCCMA is derived first and constitutes the first major original contribution of the

thesis. Computer simulations are used to verify the accuracy of the analysis. The tracking and

transient analyses are then carried out, the results of which also constitute an original

contribution. The accuracy of these analyses is again demonstrated via computer simulation.

Original formulas for the computation of the adaptive performance of the minimum output

energy (MOE) [25], DD-LMS [50], LCCMA (CMAl-2), Sato [59], and LCDCMA [45] blind

adaptive MUD's are also derived in this chapter. These new formulas are subsequently used in a

study of the relative adaptive performance of these different MUD's. Using this study, Chapter

2 demonstrates the suitability of the CMA based MUD's.

The focus of Chapter 3 is the development and analysis of new cyclic MUD's based on the

CMA. A preliminary discussion on cyclostationarity and then the link between two competing

PTY filter implementations, the filter bank and the FREquency SHift (FRESH) filter, is shown.

Multi-rate DS-CDMA systems are briefly reviewed and a model is presented based on a

variable spread length scheme (YSL). The model has the added utility of being able to represent

NBL The optimal cyclic MMSE MUD's on the filter bank and FRESH architectures for such
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systems are then presented. After this foundation has been established, the rest of the chapter is

concerned with original work, starting with a novel investigation into the different suboptimal

FRESH filtering schemes that are possible. The modifications to the LCCMA are then made in

order for it to operate directly on the FRESH architecture. This new algorithm is referred to as

FRESH-LCCMA. The proof of the global convergence of FRESH-LCCMA and suboptimal

FRESH-LCCMA is then carried out. The adaptive performance of these algorithms is then

analysed by making use of the methodology given in Chapter 2. For the first time, a direct

comparison between the performance levels of the filter bank implementation and the FRESH

filter implementation is possible. Following said comparison, the performance of the newly

proposed algorithms is compared to existing cyclic MUD schemes. A new higher performance

FRESH-LCCMA option is then presented which makes use of the recursive least squares (RLS)

procedure instead of stochastic gradient techniques. Its higher performance comes with a higher

computational complexity. However, this new algorithm vastly outperforms the recently

proposed cyclic RLS-MOE algorithm [60] to which it has an equivalent computational

complexity level.

In Chapter 4 the impact of realistic implementation and channel effects on the adaptive

performance on the blind adaptive MUD's are considered. The effects of amplitude estimation

error, mismatch, timing jitter at the receiver, Rayleigh fading, operation in an asynchronous DS­

COMA system, and the ability to suppress NBI with non-PTV techniques, are analysed. The

accuracy of these analyses are confirmed via computer simulation and are once again used to

show the applicability ofthe constant modulus cost function to blind adaptive MUD.

Concluding remarks are made in Chapter 5 together with a summary of the thesis, and several

ideas for future work.

1.5 Original contribution

The major original contributions made by this thesis may be summarised as follows:-

•

•

•

•

The steady-state, tracking and transient performance of code-constrained blind adaptive

MUD's.

The derivation of the optimal and suboptimal FRESH-LCCMA algorithms for PTV

interference suppression and the associated proof of convergence.

The performance analysis of blind adaptive MUD's considering mismatch and timing

jitter at the receiver.

The analytical performance comparison between the filter bank and FRESH

implementations of PTV filters.

The following six publications have resulted from the work done in this thesis (with another two

under review):
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Conference proceedings

J. Whitehead, F. Takawira, "Tracking and transient performance of code-constrained blind

adaptive MUD's," Proceedings of IEEE International Conference on Communications (iCC) ,

Paris, France, vol. 5, pp. 2600-2605, June 2004.
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J. Whitehead, F. Takawira, "Blind adaptive multiuser detection for periodically time varying
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Chapter 2

Performance Analysis of the LCCMA

2.1 Introduction

It was established in Chapter I that the performance of personal wireless communications

systems using direct sequence code division multiple access (DS-CDMA) can be greatly

enhanced through the use of signal processing techniques, such as multiuser detection (MUD)

[21]. This chapter's primary focus is on the performance analysis of blind adaptive MUD's that

employ stochastic gradient descent (SGD) algorithms, and in particular the linearly constrained

constant modulus algorithm (LCCMA), as it is an important blind adaptive MUD which is

based on the constant modulus algorithm (CMA).

The performance of blind adaptive MUD's has to date mostly been quantified via the

performance of their optimum tap weight vectors and through computer simulations, such as in

[61] and [44]. The reduction in performance incurred by the adaptive algorithm measured in

terms of convergence speed, tracking ability and steady-state performance has not (in general)

been studied analytically in the open literature due to the difficulties associated with the

analysis. The adaptive performance is quantified using the excess mean square error (EMSE) as

a metric and it should be defined for the steady-state, tracking and transient modes of the

adaptive algorithm. These aspects of adaptive algorithm performance are dealt with in more

detail in Section 2.2.

The constant modulus algorithm (CMA) [26] has recently been applied to the blind adaptive

MUD problem, where the various versions: linearly constrained (LC-) CMA [27], [30],

ll1ultiuser (MU-) CMA [42], cross correlation (CC-) CMA [43], and linearly constrained

differential (LCD-) CMA [45] have modified the CMA cost function to ensure that the desired

user is captured. The CMA was originally intended for blind equalization applications that

consider the problem of suppressing the intersymbol interference (ISI) associated with the

reception of a single digital source. DS-CDMA communications systems, however, are

characterised by the presence of multiple digital sources as there are generally multiple users

transmitting at anyone time. The conventional CMA could potentially lock onto anyone of

these digital sources and thus a mechanism is required to ensure the capture of a particular user,

who is referred to as the desired user.

The performance analysis of LCCMA is the primary focus of this chapter because of its relative

simplicity and proven resilience under mismatch conditions [27]. The LCCMA ensures the

capture of the desired user through its knowledge of the spreading code of the desired user, and

thus is a member of the code-aided or code-constrained family of blind adaptive MUD's. To

12
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properly evaluate the performance of LCCMA, the other members of this family of MUD are

also computed to enable a comparative study. These other algorithms include the LCDCMA,

minimum output energy (MOE), and Sato cost functions. Other adaptive MUD's included for

comparison are the least mean squares (LMS) and decision-directed (DD-) LMS. Global

convergence in the mean of the LCCMA was proven in [30], but the adaptive performance was

not considered therein. The actual tracking and steady-state performance analyses have largely

been left undone due to the complexity of analyzing the time evolution of the weight error

covariance matrix that arises from the non-linear update steps of the adaptive algorithms.

The theory of the operation of fractionally spaced equalizers (FSE's) based on the CMA IS

comprehensively treated in [49]. The adaptive performance of the CMA is dealt with in [49] in

terms of convergence and the location of stationary points on the cost surface, the EMSE, and

transient behaviour of the SGD algorithm when nearby a local minimum on the cost surface.

Originally published in [62], the relationship between the minima of the CMA and those of the

MMSE cost function is derived using the "exact analysis" which employs the Weierstrass

maximum theorem [63] to define a region around the MMSE minimum in which a CMA

minimum will be found. In so doing Godard's conjecture about the proximity of the CMA and

MMSE minima is confirmed. This is an important point as noise is a significant issue in

wireless communications systems, and the presence of noise violates one of the perfectly blind

equalizability (PBE) conditions laid out in [49]. When one of the PBE conditions are violated,

the constant modulus minima no longer correspond to the MMSE minimum, which in turn

indicates that the constant modulus receiver no longer corresponds to the MMSE receiver. The

"exact analysis" is thus important in the context of this thesis as it lends credibility to the

approximation that the proximity of the CM and MMSE minima are such that they may be

assumed to be the same.

The theory outlined to quantify the steady-state EMSE in [49], which was first published in

[64], only considers the EMSE that arises from a non-CM source. This was achieved using an

approximation of the weight error covariance matrix. The effects of noise and other PBE

violations are not considered, as the authors of [49] conclude that a method of quantifYing the

EMSE of the CMA under arbitrary violations of the PBE conditions remains an open problem.

Few studies exist on the transient behaviour of the CMA. In [65] (also outlined in [49]) the

convergence behaviour of the CMA was analysed in the absence of noise and only applies for

the close vicinity around a CMA minimum. The analysis approximates the operation of the

SGD algorithm with an ordinary differential equation (ODE). Solutions to the ODE describe the

trajectory of the adaptive algorithm. Mean convergence times were then computed using the

gradient along the trajectory, where the exact gradient was approximated by the first term of its

Taylor series expansion.
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The feedback approach [52]-[56] is a relatively new technique to study the steady-state and

tracking performance of adaptive algorithms. The feedback approach was explicitly applied to

the steady-state analysis of FSE using CMA in [53] where it was shown to produce a far more

accurate estimate of the steady-state EMSE compared to the technique published in [64]. The

feedback approach also enables an extension of the steady-state analysis to include a non­

stationary system, thereby computing the tracking performance. References [52]-[56] make

some crucial approximations and assumptions: zero noise and that the EMSE is very small, in

order to simplifY the process of deriving the steady-state EMSE for the CMA. They therefore

only consider the EMSE that arises from a non-CM source when using the CMA.

This chapter makes two major contributions, the first of which is the derivation of the steady­

state and tracking performance of the LCCMA, using the feedback approach [52]-[56]. This

chapter quantifies the actual performance with closed form expressions for both the EMSE and

output signal to interference plus noise ratio (SINR) in the steady-state and tracking phases of

the adaptive algorithm. Similar expressions for the EMSE of other blind adaptive MUD's do not

exist in the literature to the best of the author's knowledge, with the exception of the steady­

state EMSE of the MOE detector derived in [25]. This chapter derives a new more accurate

expression of the EMSE of the MOE detector, and in a much simpler manner than was done in

[25], through the use of the feedback approach. The emphasis of this chapter is on DS-CDMA

specific issues which affect the adaptive performance of LCCMA. These issues are specifically

the effect of multiple users and thus multiple access interference (MAl), as well as additive

noise which can also be significant in wireless communications systems. Since only constant

modulus signals are considered in this chapter, the results of [52]-[56] are not useful for

comparative purposes, as they predict zero steady-state EMSE under these conditions.

The second major contribution is the transient analysis of the LCCMA. The transient behaviour

is usually described in terms of a performance metric which makes use of the eigen-spread of

the input covariance matrix [49], [65], [66]. This chapter shows that the exact time evolution of

the output SINR can be predicted for the LCCMA and other SGD based blind adaptive MUD's,

from initialization to steady-state. The transient analysis is performed using the technique

presented in [58], where non-linear cost functions are explicitly considered. The transient

analysis technique is based on the same energy conservation arguments first developed in [52]­

[56], and is therefore related to the preceding steady-state and tracking analysis. The

computation of the reduction in performance that the adaptive algorithm incurs relative to the

optimal minimum mean square error (MMSE) receiver is thus possible, which this chapter

shows may be significant.

This chapter is organized as follows: Section 2.2 explains the rationale behind the adaptive filter

performance metrics, Section 2.3 outlines important energy conservation concepts from the

feedback theory, and Section 2.4 presents the system model and the operation of the LCCMA.
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The steady-state, tracking, and transient analyses of LCCMA are performed in Sections 2.5, 2.6,

and 2.7 respectively. The steady-state, tracking and transient performance of various other blind

adaptive MUD's are derived in Section 2.8 for comparative purposes. Results of the analyses

are given in Section 2.9 where the suitability of constant modulus based blind adaptive MUD's

is shown. A summary of the chapter as well as important contributions are highlighted in

Section 2.10.

2.2 Quantifying the performance of adaptive filters

Digital filters with fixed coefficients are not suitable for situations when either the desired

response of the filter is unknown or the desired response of the filter is time-varying. Adaptive

filters, which are self designing, are necessary for these situations. Adaptive filters have been

exploited for many diverse applications such as: echo cancellation, equalization of dispersive

channels, system identification, signal enhancement, adaptive beamforming, noise cancelling,

and control [67]-[69].

The basic operation of an adaptive filter is to adjust its filter coefficients such that its output

tries to minimize some objective function. The objective function is chosen such that its

minimum coincides with the optimal choice of filter coefficients. The objective function (also

known as the cost function) may make use of a known reference signal (e.g. training symbols)

or some known property of the received signal (e.g. constant modulus), in order to penalize any

deviation in the output ofthe filter away from its optimal value. The technique used to minimize

the cost function affects the computational complexity and speed of convergence of the adaptive

filter. An adaptive filter is then essentially characterised by its cost function, the associated

input arguments to the cost function, and the technique used to minimise the cost function.

This thesis is primarily concerned with the use of stochastic gradient descent (SGD) techniques

for the minimisation of the cost functions and computing the relative effect that the different

cost functions have on system performance. Reliability is an important aspect of an adaptive

filter's performance. The reliability of an adaptive filter is guaranteed by an assurance that the

adaptive filter will always converge towards the optimal choice of filter coefficients. This

assurance is usually garnered from a rigorous mathematical proof of the convergence in the

mean and the mean square sense of the adaptive filter. A robust adaptive filter should also

remain stable for all possible inputs.

The performance of an adaptive filter may be quantified using numerous metrics or qualities

which encompass various aspects of its operation, but they generally involve quantifying the

inevitable trade-off between the speed and quality of adaptation. The accuracy of the adaptation

can be measured by noting the deviation of the adaptive filter's coefficients from that of the

optimal filter. A quantity, referred to as the mean square deviation (MSD), performs this task,

however MSD is not measurable in practice, and other performance metrics are therefore
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normally used. The most common objective function in adaptive filtering is the mean square

error (MSE) where the error is defined as the difference between the desired response of the

filter and the adaptive filter's output. The minimum mean square error (MMSE) would be

observed if the optimal filter was used. When the adaptive filter is used the difference between

the MMSE and the measured MSE is referred to as the excess MSE (EMSE). The ratio between

the EMSE and the MMSE is referred to as the misadjustment. Since the MSE is more easily

measured in real systems, the EMSE is the most common metric employed to quantify the

quality of adaptation.

The three general modes of operation that an adaptive filter can find itself in are the steady­

state, tracking, and transient modes. It is important to quantify the performance of the adaptive

filter in all three ofthese modes:

Steady-state performance

A non-vanishing step size is usually employed in adaptive filters to enable it to track a time­

varying channel, and also for stability reasons. This finite step size will usually cause a small

jitter in the filter coefficients around their optimal value even after convergence has been

achieved and the filter is operating in the steady-state mode. This usually small but not

insignificant amount ofjitter in the values of the adaptive filter's coefficients is quantified using

the EMSE.

Tracking performance

In a non-stationary channel the adaptive filter must track a constantly time-varying set of

optimal filter coefficients. The step size determines the tracking ability of the adaptive filter and

trades-off tracking error with gradient approximation error (misadjustment). The EMSE is once

again the most useful metric for quantifying the tracking performance of an adaptive filter as

every cost function will have a unique minimum EMSE value attainable when using its optimal

step size value. The algorithm with the lowest EMSE attainable in a non-stationary channel

could be said to offer the best adaptive performance.

Transient performance

The transient performance of an adaptive algorithm is measured in terms of the convergence

speed and final misadjustment level. Faster convergence is attainable by using a larger step size,

however this is at the cost of higher misadjustment or EMSE at steady-state. The speed with

which a particular adaptive algorithm can drive the EMSE below a particular threshold is a

measure of the quality of that adaptive algorithm. Speed of convergence is usually predicted

using a function of the eigen-spread of the covariance matrix of the input signal [67]. Recently

however, techniques have been derived to quantify the exact time evolution of the EMSE from

initialization through to steady-state [57], [58].
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In the context of MUD, the computation of the EMSE is important as it enables the computation

in the reduction in SINR that the adaptive filter incurs relative to the optimal MMSE filter using

the relation,

S
desired user's power

INR =---------'------
(interference + noise power) + EMSE

(2.1 )

The SINR is in turn a very important metric, especially in the case of linear MMSE MUD's, as

it enables a very accurate estimate of the BER that a particular user is Iikely to experience [21].

The reduction in SINR and subsequent increase in the BER that the adaptive algorithm incurs

relative to the MMSE receiver may not be insignificant as this thesis will show, and thus the

derivation of the adaptive performance is very important to fully quantify the MUD's

performance.

Other important metrics used to quantify the performance of MUD's are asymptotic multiuser

efficiency, and near-far resistance. The asymptotic multi user efficiency and near-far resistance

of the adaptive filter will be the same as that of its optimal set of filter coefficients, for example

the MMSE filter. These metrics have already been defined for the linear MMSE detector [21].

2.3 Feedback theory

2.3.1 Steady-state and tracking analysis

The feedback approach [52]-[56] provides a unified approach to studying the steady-state and

tracking performance of any adaptive algorithm whose update step takes the form,

W ( i + 1) =W ( i) + flU ( i) F;, (i ) (2.2)

where w(i) is the vector of filter coefficients at time step i,fl is a small constant referred to as

the step size, u(i) is the regression or input vector, and Fe (i) is the instantaneous error

characteristic of the particular cost function under consideration. The EMSE is related to the

error in the filter coefficients, Llw (i), via the a priori estimation error, defined as

(2.3)

where Llw (i) =wo!', - W (i), and WO!" is the optimum filter tap vector of the adaptive algorithm.

The steady-state EMSE is then defined as

(2.4)

The feedback approach is based on an energy conservation relationship that holds exactly for

any adaptive algorithm of the form (2.2). This relationship is given by,

(2.5)

where,
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(2.6)

and is the a posteriori estimation error. It is shown [52]-[54] that el' (i) is related to ea (i) via

the relation,

(2.7)

The feedback approach derives its name from the feedback loop which may be used to describe

the loss less mapping from the left hand side of (2.5) to the right hand side of (2.5). This

feedback loop is reproduced in Fig. 2.1 where T represents the mapping function, and the

relationship in (2.7) has been used to relate ea (i)/llu (i)11 to el' (i)/llu (i)11 (this can be seen if one

divides both sides of(2.7) by Ilu(i)II). The feedback loop was first studied in [70]-[74] to enable

a robustness and lrstability analysis of adaptive filters within a deterministic framework.

I -I I
I z I

Llw(i) l-..+

r 'f" (i)/llu (i)11 IITII=I
\.. ,/

w(i+I)

Fig. 2.1. The feedback loop relating left and right hand side of (2.5) by making use of (2.7), where Z-I denotes the

unit delay operator. (Similar figures have appeared in [52] and [53].)

By taking the expectation of both sides of (2.5), expressing e
p
(i) using the right hand side of

(2.7), and exploiting the fact that at steady-state,

(2.8)

it is possible (as shown 111 to [52]-[54]) to arrive at the fundamental energy preserving

equation, given by

(2.9)

where Jl =1//lu I1
2

. Equation (2.9) is the major result of the feedback approach as it relates the a

priori estimation error to the error function F;, (i), and the driving vector, u, once the algorithm

has reached the steady-state. The steady-state EMSE is thus computed by directly solving (2.9)

for E {e: (i)} . This task is easier than conventional methods of computing the EMSE since the

effect of the weight error vector has been removed.

The extension of the steady-state analysis presented above to include the effects of a non­

stationary channel, in other words, to perform the tracking analysis, is detailed in [52] and [54].
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2.3.2 Transient analysis

The transient analysis as described 111 [57], [58] computes the dynamical behaviour of the

weight error vector by exploiting the weighted energy conservation relationship,

(2.10)

which corresponds to the same relationship as (2.5) if 1; =I. In the above equation the weighted

norm notation has been used where Ilwll~ is used to indicate the weighted squared Euclidian

norm w H 1;w, where 1: is some symmetric positive definite weighting matrix. In a similar

fashion to [52]-[54], the expected value of both sides of(2.10) is taken, where the substitution,

(2.11 )

(2.12)

is made. It is then shown in [58] how the resulting expression may be simplified to arrive at the

recursive formula that describes the time evolution of the weighted weight error variance

E{llllW(i)II:} :
E{llllw( i)II:} =E{llllw( i-I )II:} -2)1hG (E {llllw (i -1)II:})(E{llllw( i -1 )II:R})

+)12E {llu (i)II:} hu(E {llllw( i-I )II:})
where

and

h ~ E{eu(i)F:(i)}
c E{e~ (i)}

(2.13)

(2.14)

It is noted at this point that in both [57] and [58] the function F: (i) was constrained to be a

scalar function of u (i) and the error e (i) term where

e(i) ~ d(i) _wT (i)u(i) (2.15)

and d(i) is the desired output of the filter. This constraint is relaxed in this thesis since blind

algorithms are the focus, and blind indicates that d(i) is not available at the receiver, and

therefore e(i) is not computable at the receiver either.

Equation (2.12) together with the recursive technique that is used to solve it, are the major

contributions of [58]. The steady-state performance is also computed in [58] by noting that in

steady-state,

!~~E{lIllw(i+ 1)~11} = !~~ E{/lllW(i)~II} (2.16)

and so (2.12) may be simplified by removing the effect of weight error vector from each side. It

is then shown in [58] that the steady-state EMSE, denoted by (, is a fixed point ofthe function
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(2.17)

It is shown below that this formula is the same result arrived at in [52]-[54] through simplifying

(2.9):

E{.u(i)e; (i)j ~E{.u(;{e" (i) - .u(/; (i)J}
T'(R) E{e; (i)} ~ T'(R )E{e; (i)}- 2E{.u(i)e" (i) .u(i) F. (i)} + 1" T'(R)E {F.' (i)} (2.18)

E{ea (i)Fe (in =~Tr(R)E{Fe
2 (i)}

and then manipulating (2.17):

(2.19)

It was not detailed in [57] and [58] how the relation in (2.12) is extended to include the effects

of a non-stationary channel.

2.4 System model

2.4.1 Transmitter and receiver models
Receive
Antenna

Z-1 •••~

W, /_W'.,
Ef/ Y(i). [fj- b,

Fig. 2.2. Receiver Model.

A synchronous OS-COMA transmitter model for the uplink of a mobile radio network IS

considered. The synchronous system provides ease of notation and applies without loss of

generality for an asynchronous system [21].

The received signal is passed through a chip-matched filter and sampled at the chip-rate. These

samples are concatenated into a length N vector of received samples:

r(i) =SAb(i) + nU) (2.20)
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where

Sk =[ck(I), ... ,ck(N)r,

b ( i) =[bl (i), ... ,bK (i)r'
S=[Sp""SKr,

A =diag([ Ap ... ,AK ]),

21

and Ak, Sk denote the amplitude and normalised spreading waveform of the kth user

respectively. The transmitted symbols bk (i), at time index i, take on the values {+l,-l} with

equal probability and have a constant modulus; diag(.) constructs a diagonal matrix. The

additive white Gaussian noise (AWGN) vector n (i) has covariance matrix o-2I N • The vector

r(i) is filtered by a finite impulse response (FIR) filter structure, whose coefficients form the

vector w(i) =[wl (i), ... ,wN (i)J. Without loss of generality, the desired user from here on will

be user I. The output of the filter, which constitutes the decision statistic, is given by

y(i) =W(i)T r(i). (2.21 )

This receiver structure is depicted in Fig. 2.2 where bl (i) =sign (y( i)) and represents the output

of the hard decision device which is the receiver's guess at the value of the desired user's

transmitted bit.

2.4.2 LCCMA

The canonically constrained LCCMA is based on the CMA2-2 algorithm [26], and attempts to

minimize the cost function,

(2.22)

subject to the linear (canonical) constraint WTS I = I, where ~ is the dispersion factor defined

as E{(A,b,t}jE{(A,bl )2} which is equal to AI
2 in this case. The LCCMA uses its estimate of

the desired user's signature sequence, SI' to prevent the capture of unwanted Llsers. The cost

function, as it stands, is not amenable to conventional stochastic gradient techniques due to the

constraint, but by making use of the canonical representation of the MMSE filter [25] it is

possible to split the filter coefficients into two orthogonal components: a fixed (or non-adaptive)

part, and an adaptive part, given by

(2.23)

The filter component orthogonal to the spreading code, w.l' is adapted without constraint. The

update step ofthe adaptive algorithm is given by,

W.l (i + 1) =w.l (i) + j..lY (i) (R2 -Iy (i )1
2

) r.l (i) (2.24)
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Table 2.t.Outline of LCCMA Algorithm.

Parameters:

22

r(i)

w(i)

Initialisation:

i = t

For n = 1,2,3 ... , compute:

received (input) signal

filter coefficients

signature sequence of desired user

dispersion factor

time index

adaptive part of filter coefficients

W = SI + W 1- (i) filter coefficients

y(I) = w1 (I) r(i) output of filter

F;.(i) = Y(i)(R2 -IY(i)n error term

YMF = srr(i) (bit-) matched filter output

r1- (i) = r (i) - YMFSI component of r (i) -l s,

W 1- (i + t) = W 1- (i) + ,LJ F;, (i) r1- (i) new adaptive component of filter coefficients

where j..l is a small positive constant (step size). The orthogonal projection of the received

vector,

(2.25)

is used in (2.24) to ensure that w.l remains orthogonal to sI' this in turn ensures that the

constraint, W)SI = I is always met. An outline of LCCMA is given in Table 2.1.

The non-canonically constrained LCCMA was proposed in [31] and further analysed 111 [30).

This variation sets Rz =I and the filter coefficients are decomposed into

(2.26)

subject to the linear constraint W)SI = d , and has the stability constraint 3d2A,2 -I ~ O. It is

important to note that the cost functions of the non-canonically constrained LCCMA and

canonically constrained LCCMA are equivalent when d =1/AI' [37). Stability garnered by

varying d in the non-canonically constrained case can equivalently be achieved by varying Rz
in the canonically constrained case.

The EMSE analysis performed in this thesis relies on the assumption that the LCCMA

converges to within a positive scalar multiple ofthe actual MMSE filter. This assumption makes

the analysis tractable, as well as enables the assumption that the residual MAl at the output of

the LCCMA receiver has a Gaussian distribution [75). rt is reasonable to assume convergence to

the (scaled) MMSE receiver as is further explained in this section. It was conjectured (with

strong arguments) in [30] that by properly selecting d, the LCCMA cost function is convex in
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the presence of AWGN. Godard conjectured in [26] that the optimal CMA minima roughly

correspond to the MMSE minima; this has been thoroughly scrutinized in [62], and shown to

hold well under the constraint imposed on d, AI' As only one LCCMA minimum exists, then

that minimum very closely approximates the actual MMSE solution (simulation results to date

support this conjecture). Since the LCCMA filter is anchored by SI' and thus assuming

convergence to the (scaled) MMSE receiver, the LCCMA solution is the same as the MOE

receiver [25], and is given by:

(2.27)

(2.28)

The optimal non-canonically constrained LCCMA filter W"j1I,N is related to optimal canonical

filter via

W"j1I.N =(1/A)W"j1I' (2.29)

The canonical and non-canonical formulations have different tracking performances, as will be

investigated in Section 2.6.2, and thus their distinction is made.

2.5 Steady-state analysis

EMSE arises due to the presence of MAl and AWGN, as the MMSE receIver can never

completely suppress MAl when there is additive noise present. The adaptive algorithm's finite

step size thus continuously perturbs the filter coefficients around their mean, even when

convergence has been achieved. If the AWGN was discounted in this thesis, then the LCCMA

would converge towards the decorrelating detector. There would then be zero residual MAl at

the output of the receiver, and thus the EMSE would be zero as predicted in [54] and [53], as

only constant modulus data is considered in this thesis. The zero noise assumption made by

previous researchers is stressed here, as AWGN is not insignificant in wireless communications

systems and the resulting EMSE can be very significant, which this section proves,

2.5.1 Solving the energy preserving equation

The first contribution of this thesis is the derivation of steady-state EMSE expressions for the

canonically constrained LCCMA using the fundamental energy preserving equation in (2,9).

This derivation differs from the work done in [53] and [54] as those papers did not consider the

effects of AWGN on the constant modulus cost function. The system model also differs from

that in this thesis as a DS-CDMA system model that has multiple users is introduced in this

thesis, and thus MAl affects the dynamics of the adaptive algorithm. The orthogonal projection

operation and the combination of adaptive and non-adaptive filter components also differentiate

LCCMA from CMA.
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The first step is to compare the update step of the LCCMA in (2.24) to the general formula in

(2.2). Clearly the LCCMA has the correct general structure. Its error function is given by

(2.30)

and the driving vector is r.l' so P=1/llr.l112. The next step is to express Fe (i) in terms of the a

priori estimation error, ea (i). This is achieved by expressing the output of the filter in terms of

the optimal filter output w"f't (given in (2.27)) and the definition of ea (i) (see section 2.3):

y(i) =(w"Pt - ~W(i))7 r(i)

=W;'Pt r ( i) - ea (i)

=A1b, +M (i) + v(i) - ea (i)

(2.31 )

where M(i) =2::=2 W;'Pt (Akbk(i)Sk) is the residual MAl at the output of the optimum filter,

and v(i) =w;,;,t" (i) is the filtered AWGN. This expression for y(i) can now be substituted into

(2.30), which can in turn be substituted into the fundamental energy preserving equation (2.9),

which can be directly solved for the steady-state EMSE, (. This task can be greatly simplified

by making use of some of the properties, assumptions, and simplifications of the random

variables {bl (i),M(i), V(i),ea (in. From here onwards, time index (i) will be dropped for ease

of notation.

Properties:

Firstly, {bI'M,v,eJ are zero-mean random variables, and {bI'M,v} are mutually independent.

It is also known that ea and bl are independent, since the adaptive algorithm is adapted in the

space orthogonal to SI' which is the space that contains the energy from b
l

, also E{b;/II} = I,

for any positive integer m.

The filtered noise term v is a Gaussian random variable.

Approximations:

The residual MAl, M, is Gaussian. This is a well studied approximation, and has been shown

to hold well [21], [75].

The a priori estimation error is Gaussian. This is confirmed via simulation; its Gaussianity is

understandable considering central limit theorem arguments: there are a number of independent

random sources that constitute the MAl, there is AWGN present, and the filter length is long (of

the order of the spreading code).

Assumptions:

I. In steady-state IIr.lll2 and F;,2 are uncorrelated. This assumption was made in [54], and

becomes more accurate as the length of the filter increases, and thus applies in this case.
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(2.32)

11. The noise sequence v is independent of regressor sequence r.1 [54]. This assumption

forces ea and v to be independent since: E{eav}=E{tlwTrJE{v}=O and v is a zero

mean random variable. This, often realistic, assumption that the noise sequence IS

independent ofthe regressor sequence has been well studied (see e.g. [67]).

Ill. M is independent of ea in the steady-state. This is analogous to the assumption that a

blind equalizer operates independently of the transmitted signals [53]; it may not hold in

general, but leads to a good fit between the theoretical and simulation results.

2.5.2 Simplifying the energy preserving equation

Expanding the right hand side of (2.9), the energy preserving equation may be simplified to

2flE{eaF;,} =fl2E{;}.
Using assumption (i) this may be further simplified to,

(2.33)

where T =f Tr(C.1)' and E{J/.ll} =E{llr.1 (i)ln =Tr(C.1)' and C.1 is the covariance matrix of

the driving vector, r.1' Equation (2.33) may now be expanded using (2.30) and the new

definition of y given in (2.31). As a direct result of assumptions (ii) and (iii), the random

variables {bl,M,v,ea } are now mutually independent, which in turn causes any term with an

odd power of {b l ,M, v, ea} to drop out of this new expression, after applying the expectation

operation. This new expression for the energy preserving equation is given in (2.34),

where the Gaussian approximation for ea has been used. The coefficients

{J2 ,JI'K3 ,K2 ,KI'Ko} are given in Table 2.2. (The Gaussian approximation for ea relates the

higher order moments of ea to the second moment of ea via the Gaussian moment generating

function.) The energy preserving equation is now a third order polynomial function of E {en,
or equivalently r This new function has deterministic coefficients (Table 2.2), and is thus now

trivial to solve for the EMSE, (.

The noise term at the output of the filter is a Gaussian random variable of type v - N (0, ern)

where (In =Ilwol"11 er. When the power levels of all the interfering users are equal then a valid

approximation is that M - N (0,77) where 77 =.JK -1 w;,;" (Aksk) for k:;t 1. Also,

K

Tr (C.1) =L Af ( I - PI~ )+ er2
( N - I)

k=2
(2.35)



Chapter 2. Performance Analysis ofthe LCCMA

Table 2.2. Coefficients for LCCMA EMSE Expressions.

Coefficient Value

J, 3

J] 30-,; + 377' + 3A]' - R,

K3 15

K, 450-~ + 4577' + 45A]' - 6R,

K] 90A]'77' + 45774 - 12R,77' + 9077'0-,; + 90A]'o-,; - 12R,A]' + 450-,~ + 15A4- 12R,o-~ + R;

K II 90A]'77'o-~ -12A2 R/7' +15776 + 150-~ -12A]2R,o-~ +15A]477 ' + 15A40-~ + A]'R; + 45A]'774
+45A]'o-,~

-2A]4R, -1277'R,0-~ +A]6 +457740-~ + 77'R; -6776R, +4577'o-,~ +o-~R; -6o-,~R,

Filtered noise variance: o-~ = E{v'} , Residual MAl variance: 77' = E{M'}.

26

(2.36)

2.5.3 Further simplifications

The higher powers of ( may be neglected in (2.34), if it is assumed that ( is very small. A

first order approximation for (2.34) then describes the EMSE, and is given by

/I.CCMA = T.Ko
~ I .

J1-TKI

This expression is expanded fully in (2.37), where the substitution AI =IS =1 has been made.

(LCCMA =T[ 150-: + 4517
2
0-: + 390-: + 781720-,~ + 40-,~ + 451740-,~ + 417

2
+ 3917

4
+ 1517

6 J(2.37)
I 30-,~ + 2 + 3172- T (4+780-,; +78172 +45 0-1~ +45174 +90 1720-n

In OS-CDMA communications systems the combination of MAl, and the possibility of lower

SNR's could cause a significant level of EMSE. Employing a large step-size to increase

tracking and convergence performance also increases the EMSE level. These conditions limit

the accuracy of the first order solution and therefore the full (third order) solution is also

considered in this chapter. It is the Gaussian assumption for ea' that enables the higher order

moments of ea to be considered in this thesis, in contrast to [52]-[54] which do not consider

them when analysing CMA. These higher moments are considered by [58], although in a non­

CMA context. The roots of the higher order polynomial of ( are trivial to compute using Table

2.2 and are omitted for brevity. Simulations show that when more than one root exists, only the

smallest positive root is of interest. Also note, that studying the steady-state behaviour of the

non-canonically constrained LCCMA as a function d can be equivalently studied by the

canonical case by varying IS.

The coefficients of Table 2.2 can be greatly simplified if the substitution is made: AI =1, and

IS =1. In most cases the residual MAl power 17 2 at the output is significantly lower than the

output noise power 0-; ,and thus an even simpler expression can be derived if all the terms that

contain 17 are removed. The simplified first order solution is then given by
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(LCCMA = T (4(J',~ + 39(J',~ + 15(J',~) .

I 2 + 3(J',~ - T (4 + 78(J',~ + 45(J',~ )
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(2.38)

5

The accuracy of this approximation is analysed via simulation. This is not to say that the MAl is

not important, as the amount of MAl determines the exact value of the filter coefficients which

in turn affect (J'II .

2.5.4 Validation of steady-state analysis

A computer simulation is used to validate the accuracy of the preceding steady-state analysis.

A11 the results were generated using length 31 Gold codes. The MAl ratio is defined as Ak / AI ,

k ",I, where all the interfering users transmit at the same amplitude. The EMSE was obtained

from Monte Carlo simulations of the received vector of samples in (2.20) and implementing the

LCCMA as given in (2.24). Once the algorithm had reached steady-state the EMSE was

calculated as the mean square value of ea ~ ~w7'r over 100000 transmitted bits. The third order,

or full solution, in the steady-state results is computed as the smallest positive root of (2.34).

The first aspect of the analysis that is tested is the Gaussian approximation that is used for the a

priori estimation error. A histogram of ea from a simulation of the LCCMA operating in the

steady-state, is plotted in Fig. 2.3. A sample size of 60000 was used. A situation is considered

where there is a 20dB SNR, MAl level of OdB's, and there are 20 users in the system (66%

loading). The Gaussian probability distribution function (PDF), having the same variance as the

histogram data, is superimposed. The validity of the Gaussian approximation of ea is clearly

evident.

4or;======;-r------,---.----,------,--,---,--------,
11- Gaussian PDF I
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Fig. 2.3. Histogram of ell (i) for the LCCMA algorithm in steady-state, with 20 lIsers, 20dB SNR, OdB MAl ratio,

and Jl = 10-4
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Fig. 2.4-Fig. 2.7 compare the LCCMA steady-state analysis (2.34) with simulation results,

which concur, and thus validate the analytical formulas and the assumptions used to attain them.

In all the results, it is observed that the first order analytical solution only starts losing accuracy

(compared to the higher order solutions) when the EMSE becomes large. It otherwise correctly

captures the steady-state behaviour of the adaptive algorithm over a very wide range of

operating conditions. Fig. 2.4 shows the effect that SNR has on the EMSE in a 25 user system,

10dB MAl ratio, and J.l = 3x 10-5
. The simulation confirms the analysis result that the EMSE

decreases monotonically with SNR. This is because as the SNR increases the MUD approaches

the decorrelating detector and the amount of residual MAl approaches zero. As this occurs the

cost function approaches zero at convergence, and thus the steady-state EMSE approaches zero.

It is observed that both the first order and simplified first order solutions hold closely when the

SNR is above 5dB as the EMSE is small in this region. Below this point (which is possible in a

wireless communications system) it becomes necessary to consider the higher order solutions.

The effects of increasing the step size in a 15 user system with a 20dB SNR and MAl ratio of

5dB are illustrated in Fig. 2.5. As the step size increases, the filter coefficients oscillate with

greater amplitude around the optimum solution because of the increased value of each filter

update, and thus the misadjustment increases with step size. It is noted that the analysis

correctly predicts the rapid rise in EMSE when J.l increases above 10-3
.

The accuracy of the steady-state analysis is explored over a wide dynamic range of MAl ratio of

Fig. 2.6. Each data point is the average of 2 xl 05 iterations. A small step size of 10-5 was used

to ensure stability as the low SNR of 5dB combined high MAl ratios creates large EMSE

values. It is evident in Fig. 2.6 that as the EMSE level increases the first order approximation

looses accuracy compared to the second and third order solutions which accurately predict the

EMSE level.

The importance of including the higher order solutions is most evident in Fig. 2.7 where the first

order solution tends to underestimate the EMSE. The higher order solutions are observed to

accurately predict the EMSE. Each data point is once again the average of 2 xl 05 iterations.

The trend in the increase in EMSE as a function of the number of users is also evident this,

relationship is important as it enables the scaling of the network to be computed.
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Fig. 2.4. Theoretical and simulated steady-state EMSE values for LCCMA as a function of SNR for a 25 user system.

A 10dB MAl ratio and a step size of 3x I 0-5 was considered.
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Fig. 2.5. Theoretical and simulated steady-state EMSE values for LCCMA as a function of step size for a 15 user

system. A 20dB S R and a MAl ratio of 5dB was considered.
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Fig. 2.7. Theoretical and simulated steady-state EMSE values for LCCMA as a function of the number of users in the

system. A MAl ratio of 3dB and SNR of 15dB was considered. The step size was fixed at 5x 10-3
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Fig. 2.9. Relative error between the (full) 3'd order solution and the simplified expressions for the EMSE of the

LCCMA as a function of step size.

The difference between the different order solutions in Fig. 2.4 and Fig. 2.5 is examined more

closely in Fig. 2.8 and Fig. 2.9 respectively. The exact difference I'J.( is given by 1(3 - si
where S3 is the full 3'd order solution to (2.34) and S represents the lower order

approximations. This value is then normalised with respect to S3 to measure the relative error.
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The preceding validation of the steady-state analysis showed that the 3rd order solution most

accurately captures the behaviour of the adaptive algorithm and is thus used as the reference

point. The curves in Fig. 2.8 and Fig. 2.9 illustrate that the 2nd order solution is more accurate

than the IsI order solutions since the error is lower. Fig. 2.8 and Fig. 2.9 also reflect the

decreasing accuracy of the lower order approximations as the EMSE increases. This is expected

since the lower order approximations arise through the assumption that the EMSE is small.

These curves are thus also useful as they show over which range the simplified EMSE

expressions are valid.

2.6 Tracking analysis

2.6.1 Canonical LCCMA

The feedback approach provides a convenient mechanism to extend the steady-state analysis to

the tracking analysis, as shown in [52] and [54]. EMSE expressions for the tracking

performance of the CMA were published in [52] and [54]. The derivation of EMSE in this

section has not been done in the literature for any other blind adaptive MUD. It requires further

assumptions and yields different results to [52] and [54]; this is due again to the different system

model, application, and the difference between LCCMA and CMA.

In the time varying channel, the optimum filter coefficients are assumed to vary according to the

model wo!,, (i + I) =wo!,, (i) + q (i) , where q (i) denotes a random perturbation. This is typical in

the context of tracking analyses of adaptive filters [54]. This perturbation is brought about by

the random perturbation of all the users' spreading codes, where it is assumed that variations in

the desired user's spreading code are tracked perfectly (no mismatch). The model for the non­

stationary component of the optimal filter coefficients tracked by the LCCMA therefore

simplifies to,

o!"('+l)= o!',(.)+ (.)w 1- I W 1- I q1- I . (2.39)

The weight error vector is redefined as <1w (i) =wo!,, (i) - w (i) . The feedback approach theory

derived the modification to the fundamental energy preserving equation to take into account a

time varying (non-stationary) channel. The fundamental steady-state energy preserving equation

in the non-stationary channel, as shown in [52] and [54], is

(2.40)

and relies on the following assumptions:

IV. Sequence {q1- (i)} is stationary, independent, zero mean, with positive definite covariance

matrix, Q1-'
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v. The sequences {q.L (i)}, {r.L (i)}, and {v(i)} are mutually independent.
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These assumptions are reasonable under the given conditions, as the accuracy of the simulations

illustrate. Expanding the right hand side of (2.40), the fundamental energy preserving equation

can be simplified to

Ek,F;,} =G+T.E{Fn (2.41)

where T = /l Tr(C ) and G = Tr(Q.L) . Equation (2.41) is then expanded using the same set
2 .L' 2

of assumptions and approximations~before in Section 2.5 to obtain:

(2.42)

where it is assumed that q.L (i) is independent of {b l ,M,v,eJ and the higher moments of

{bI'M,v,ea } are not affected by the non-stationary channel. Neglecting the terms with the

higher order powers of ea' the first order solution for the EMSE in a non-stationary channel is

given by

_ G + TKo
SLCCMA- J -TK .

I I

(2.43)

The EMSE expression in a non-stationary channel may be derived using the assumption from

[54] that there is no AWGN, for comparative purposes. Constant modulus data symbols are

assumed, and thus the EMSE in the resulting expression is solely derived from the system non­

stationarity Tr(Q.L) . This expression is given by,

r' = Tr(Q.L)
~ LCCMA 4/l' (2.44)

and is computed by simplifying (2.43) using the fact that (J"II =TJ =0, by assuming TK
1

is

negligibly small compared to J I , and that IS =A,
2 =I . This new expression is a monotonically

decreasing function of step size and as such is clearly inaccurate.

Optimump:

For simplicity consider a simplified expression for the first order approximation of the EMSE,

where it is assumed that the optimum choice for /l is small and thus TK, «J
I

• The TK, term

can then be removed from the denominator of (2.43), and then the optimum value for /l IS

/la = (2.45)

Substituting this value into (2.43), the lowest attainable EMSE in a non-stationary channel can

be computed.
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2.6.2 Non-canonical LCCMA

34

The non-canonically constrained receiver converges to a scaled set of filter coefficients related

to the canonically constrained detector in (2.29). If one considers the operation of both receivers

in the same fading channel, it becomes apparent that the value of Tr(QJ will be higher for the

non-canonically constrained LCCMA compared to canonical LCCMA. This will lead to

differing values of f1" as shown in (2.45) which will in turn lead to differing optimal EMSE

levels, in the same channel. This can be explained by noting that the majority of the energy of

the MMSE filter coefficients lies in the SI direction [25], which is fixed in the canonically

constrained case. The non-canonically constrained detector is anchored by ds
"

where d is a

function of the desired user's amplitude, which varies due to fading. It can be seen then that the

magnitude of the orthogonal (adaptive) component for the non-canonically constrained detector

requires a much larger dynamic range than the canonically constrained detector, which increases

the tracking requirements of the adaptive algorithm. With the increase in tracking requirements,

the non-canonically constrained detector will have inferior performance in a fading channel.

2.6.3 Validation of tracking analysis

The time varying channel was induced by perturbing each users' spreading code at each bit

epoch by a small Gaussian random vector H, (i) (with covariance matrix ~;I) and then

normalizing the new spreading codes to give,

(2.46)

This models the time varyll1g channel distortions inherent to a wireless communications

channel. The average value of Tr(Q-l) was calculated from the simulation using the definition

q-l (i) ~ w't' (i + 1) - w't' (i) .
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Fig. 2. 10. Theoretical and simulated EMSE values for LCCMA as a function of step size, in a non-stationary channel.

The EMSE of canonically constrained LCCMA is plotted in Fig. 2.10 as a function of step size.

A 10 user system with 20dB SNR and MAl level of 3dB's was considered, where

Tr (Q.L) =2.4 xl 0-6
• It is immediately evident that the EMSE is no longer a monotonically

increasing function of step size, but rather an optimum value exists that trades off lag error and

misadjustment. The optimum value for j.1 is correctly predicted by the analysis.

2.7 Transient analysis

2.7.1 LCCMA

The transient analysis is performed using the generic analysis technique proposed in [58] which

is conveniently based on energy arguments, much like the preceding steady-state and tracking

analyses. This is convenient as the formulas derived for the steady-state and tracking analysis

are exploited in this section to derive the transient performance of the LCCMA. The transient

analysis computes the expected value of the EMSE of the adaptive filter at each time instant

from initialization to steady-state. The EMSE at time instant i is defined as,

E {e~ (i)} =E {lIflW.L (i)II~~}

=S;·
(2.47)

The recursion data is in this case the projected received vector r.L' which has the covariance

matrix,

K

C1. = 2:: A; (SkS~ +P1k (PtkSIS; - SIS~ - SkS;)) + (J"2 (I - SI S;)
k=2

(2.48)
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where P1k = Si'Sk . This covariance matrix is not diagonal, and thus a state space model, using

the first N -1 weighted norms of the weight error vector t.w.l (i) is required to compute the

time evolution of the EMSE, as shown in [58]. The transient analysis assumes ea (i) is

Gaussian (which has already been assumed in Section 2.5), and that the weighted norm of the

input regressor r.l is uncorrelated with F;,2 (i), which is similar to assumption (i). These

assumptions are realistic during the early stages of adaptation [58]. The methodology which this

thesis utilises for computing the transient analysis is presented in [58]. The state-space recursion

used to compute ( is given in [58] as,

J1{+1 =AJ1{+ j..L 2y

where the state-space recursion is defined using,

(2.49)

w=I

E {IIW.l (i)ln

E{llw.l (i)II~J
, Y=hu ·

E{llr.l (i)ln
E{lh (i)II~J

(2.50)

E {llw .1 (i )II~~_I } E{llr.l (i)ll~tl}
1 -2j..Lh" ° ° °° 1 -2 j..L h(; ° °A=

° ° ° -2j..Lh"
2Poj..Lhr; 2p,j..Lhe 2P2j..Lh" 2PN_2j..Lh(j 1+2PN_Ij..Lhe

The elements of Y may be computed using the relation,

(2.51 )

(2.52)

where XE {O, .. .,N -I}. The elements of J16 may be similarly computed. The characteristic

polynomial of C.l is p(x)~det(xI-C.l)=po+PI+ ... +PM_lxM-I+xM. The entries of

matrices A and Y are functions of {hu,he;} which are in turn functions of S;, given by

h =E{F,2(i)} h, = E{ea (i)F;, (i)}
{/ , , (J E { e,~ (i)} (2.53)

Section 2.5.2 showed how to express F;, (i) in terms of ea (i) and other deterministic quantities

for the LCCMA. It is possible to simplify {hu,he } using the same set of assumptions and

simplifications given in Section 2.5, which gives,

hu =K3s;3 +K2s;2 +K,S; +Ko

ht, =3S; +J
1

(2.54)

(2.55)

and the coefficients {K3,K2,KI'Ko,Jl} are given in Table 2.2. Note that hu is contained in the

right hand side of(2.34), and the numerator of he is given in the left hand side of(2.34).
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Closed form expressions have been given for {C1.' h (;' hu } , and thus the transient performance

may be computed using (2.49). The first entry of the vector J/f1 characterizes the mean square

deviation (MSD) of the filter coefficients, and the second entry characterizes the EMSE, which

may then be used to plot the time evolution (or learning curve) of the EMSE. The EMSE is

assumed to be Gaussian and thus the learning curve for the output SINR may be constructed

uSlllg

(2.56)

rt is assumed that the receiver is correctly initialised to the single user matched filter, and so the

starting point of the state-space recursion is deterministic, with J1i computed using

~wJ.(O)=W(JPI-SI·

2.7.2 Validation of transient analysis

The accuracy of the transient analysis is verified in Fig. 2.11 using the ensemble average of 100

independent simulation runs of the LCCMA using different choices of step size. A 15 user

system was considered where the MAl ratio was OdB's, SNR was 20dB's, and all the users

transmitted synchronously using length 31 Gold codes. The learning curves, or time evolution,

of the EMSE is plotted in Fig. 2.11, where the receiver is initialised to the single user matched

filter and converges towards the MMSE MUD. For the set of different step sizes in the figure

sequence, the transient analysis is observed to hold closely. The effects of reducing the step size

are illustrated in the sequence Fig. 2.1 I (a)-(c), where the step size sequence 1x I 0-2
, 5x 10-3

,

and I x 10-3 is used. These effects are: the slower convergence rate as the step size decreases,

and the lowering of the steady-state EMSE levels as the step size decreases. This is due to the

higher accuracy of gradient approximation associated with a smaller step size. The steady-state

EMSE level, as predicted by the preceding steady-state analysis, is also superimposed in each

plot in Fig. 2.11. This level is observed to correspond to the steady-state EMSE level predicted

by the transient analysis, which is expected since the equivalence between the theoretical levels

predicted by both theories was shown in Section 2.3.2. The theoretical steady-state EMSE levels

are (again) observed to correspond closely with the simulation data.

The EMSE levels in isolation do not provide a direct measure of the performance cost incurred

by the adaptive algorithm relative to the exact MMSE MUD. A more useful metric is the SlNR

of the desired user at the output of the adaptive filter. It is shown in Fig. 2.12 how the transient

analysis may be used to compute the learning curves of the output SrNR as the adaptive

algorithm converges towards the MMSE MUD, after being initialized with the single user

matched filter. The same set of operating conditions as per Fig. 2.11 (a)-(c) are used in Fig.

2.12 (a)-(c) where the theoretical SINR learning curves are computed using (2.56) and the

SINR level at time step i of the simulation are computed using,
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(2.57)

The simulation results are again the average of 100 independent simulation runs. The simulation

and theoretical results are observed to tie-up closely. The trade-off between misadjustment

levels and rate of convergence is clearly evident in the sequence Fig. 2.12 (a)-(c). The

difference in dB's between the MMSE and adaptive algorithm in steady-state is accurately

predicted as well as the transient curve taken to reach steady-state. This is vital information as

the time it takes to reach steady-state as well as the subsequent drop in SINR incurred by the

adaptive algorithm is significant. The optimization of the step size parameter is now possible as

the exact adaptive performance of LCCMA has now been computed.
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Fig. 2.11. Comparison between EMSE learning curves predicted by theory and from simulation, for various choices

of step size (figs. (a), (b) and (c) correspond to step sizes of 10-2 , 5xI0-3 , and 10-3 respectively).



Chapter 2. Performance Analysis ofthe LCCMA 40

21 .---,----,------,-----,---------,--------,-----,----,---,--,

___~ ._MMSE:

- - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ MatclJe Fjlter..

160 100 200 300 400 500 600 700 800 900 1000
Iterations

(a)

21 .---.,------.----,----,---,-----.,------.----,-----,-~

20 ._. _. _.:.:. _. :.:.:.:. -, _:.: _. __ ._. _-,:.::.:.:.:. __ ._. _._.:.:. _. :.:_. __ ._.:':.:.:. _:.:.:.:MMSE::
.Stead}!:-:-stateSINR _..:. _. _:..;..:=-_.",,_~._~._-:----....:.__-,-_-:.__~_~

19

- - - - - - - - - - - - - - - - - - - - - Matc[ Eilter.
160 100 200 300 400 500 600 700 800 900 1000

Iterations
(b)

21 ,----,-----,-----,--.,-----,-----,--.,---,------,----,

20 .:.:_. _ i.:.:.:.:. _ i:.:_. _ i._. __ ..: -, __ ._-, --, __ .__' :.:MMSE::.SteadY-'-stateSiNR _. -, -. _. _. -, _. _. _. - _. _. _. - _. _. _. -'. _. _. _. _. _. _. _. - _. _. _.-

19

17

160 _. - -10;-· -20~-·-30~--40~--50~--60~- -70~ --8~~atc~:Eilt~~00
Iterations

(c)

Fig. 2.12. Comparison between SINR learning curves predicted by theory and from simulation, for various choices of

step size (figs. (a), (b) and (c) correspond to step sizes of 10-2 , 5x 10-3 , and 10-3 respectively).
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2.8 Derivation of alternate blind adaptive MUD's

The steady-state and tracking analyses are derived below for various adaptive MUD's where the

general technique is to start with the simplified energy preserving equation for a non-stationary

channel, given in Section 2.6, and repeated here for convenience:

(2.58)

The driving vector is then identified in order to specify T = ~Tr (R). Fe is then expressed in

terms ofy using,

y(i) = (WO", (i)-t1W(i))l r(i)

=Bb l (i) + M (i) +v( i) -ea (i)
(2.59)

where B is the receiver gain defined by B~ W;'/II (A1s 1) which specifies the scaling of w O/ JI (the

optimal filter coefficients in terms of the adaptive algorithm's cost function) relative to the

biased MMSE filter coefficients. The biased MMSE filter coefficients are given by,

where,

C=E{r(i)rT(i)}

p =E{hi (i) r (i )} .

C-1
W MMSH = P (2.60)

The simplification of E{FeeJ and E{Fn, as performed in Section 2.5, enables the derivation

of the steady-state and tracking performance, as well directly leads on to {hIJ ,h(J which is used

to quantify the transient performance.

In the derivations given below, the MOE, Sato, LCCMA based on CMA1-2, and LCDCMA are

all examples of code constrained blind adaptive MUD's that exploit the canonical

decomposition of the optimal filter coefficients,

(2.61 )

Note: G = 2~ Tr(Q-l) and T = ~Tr(CJ for these algorithms.

The DD-LMS algorithm is not code-constrained, but still qualifies as a blind adaptive MUD

algorithm. For the DD-LMS algorithm, G=LTr(Q) and T=~Tr(C). The DD-LMS

algorithm also converges towards the biased MMSE filter, and this needs to be taken into

account when computing the statistics of the output MAl and AWGN ofthe optimum filter.

2.8.1 MOE

Steady-state Analysis

A new expression for the EMSE of the MOE detector is now derived. It acts to further illustrate

the feedback approach to analysing the steady-state behaviour of blind adaptive MUD's. The

update step ofthe stochastic gradient algorithm of the MOE detector is given in [25] as
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W 1- ( i + I) =W 1- (i) - jJ.r1- ( i) Y ( i) .

42

(2.62)

Comparing this to the general formula in (2.2), the driving vector in this case is r1- and Fe =-y.

The receiver gain of the optimal filter coefficients corresponding to the MOE cost function is

AI ' so the same expression for y holds:

(2.63)

Starting from the simplified expression for the energy preservll1g equation (2.33), and

substituting y:

E{-yeJ =T.E{l}

E{-(Albl+M +v-ea)e,,}=T.E{(A1bl+M +v-ea)2}.
(2.64)

This expression can be further simplified using the same set of assumptions and approximations

given in Section 2.5.1,

E {e~} = T.( E {e,:} + AI
2

+ 172
+ O",~)

T (AI
2 + 172 + 0",:)

=
l-T

The expression for the EMSE derived in [25] was given as

E{e~}=~.
I-T

(2.65)

(2.66)

Comparing (2.66) to the new expression given in (2.65), it is obvious that they are the same

except for the correction factor (A1
2 + 172 + 0";), in the new expression. It can be reasoned then,

that this new expression more accurately takes into account the effects of the residual MAl and

AWGN at the output of the MUD.

Tracking analysis

The tracking performance of the MOE detector is derived by starting with the simplified

equation (2.41), and making the same substitution, F: =-y, where y is given in (2.63) above.

Then using the same set of simplifications as before,

E{ e,~} = G +T.( E{e~}+ AI
2

+7]2 +(J,;).

Solving for S, the EMSE of the MOE detector in a non-stationary channel is given by,

G +T ( AI
2 + 7]2 + (J,~ )

(MOH = I-T .

The optimum step size of the MOE detector is given by

(2.67)

(2.68)

(2.69)



Chapter 2. Performance Analysis ofthe LCCMA 43

Substituting this value into (2.68), the lowest attainable EMSE of the MOE detector may be

computed for a non-stationary channel.

Transient analysis

Expressions for {hu ' he;} can be similarly derived for the MOE cost function using the results of

Section 2.5, and are

hu =E{F;,2(i)}

=A2+77 2 +(J"2 + /.I 11 ,="

h _ E{e" (i)F;, (i)}
e;- E{e;(i)}

=1

2.8.2 Sato

The update step of the Sato cost function is given in [59] as,

W.L (i +]) = W .L (i) - Jlr.L ( i) (Y ( i) - sign (y (i))).

The driving vector is therefore r.L (i), Fe (i) = sign (y (i)) - y (i) , and e= AI . Then,

E{eaF;,} = E{ea(sign (y) - y)}

=E{ea(sign(y)-A,b,-M-v+ea)}

=E{ea sign(y) -e"Ab, - eaM -eav+ en.

(2.70)

(2.7] )

(2.72)

(2.73)

(2.74)

Using the independence assumptions and the assumption that E {ea sign (y)} = 0 [53], we have

that E{eaF;,} = E{en. The E{Fn expression may be written as 3 separate terms,

E{F;,2} =E{(sign(y)- yf}

=E{(sign(y)f -2ysign(y)+ l}
where E{sign (y)2} = 1, and E{sign (y) y} = E{Iyl}. Assuming that the output of the receiver is

distributed symmetrically around the transmitted signal, we have that E {Iyl} = E {IA1bll} = AI .
Using the independence assumptions, we have that E{y2} = A2+ 77 2 + (J"2 + ( as before, since

e= AI for the Sato cost function. Combining these 3 results,

The steady-state and tracking EMSE is then given by,

E{ eaF;,} =G+ T.E{ F;,2}

( =G + T. ((AI - I) 2 + 77 2 + (J"2 + ()

(=G+~((1-A,)2+77 2 +(J"2)
l-T

(2.75)

(2.76)
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The transient analysis may be computed using,

hu =E{f;,2 (i)}

=(AI _1)2 +.,,2 +(),~ +(.

h = E{ea(i)f;, (in

G E{e~(i)}

=1.

2.8.3 LCCMA (CMAl-2)
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(2.77)

(2.78)

It is possible to employ the CMAI-2 cost function, as opposed to the CMA2-2 cost function in

the LCCMA. The CMA 1-2 cost function is given by,

(2.79)

where the dispersion factor is defined as E{IAlbJ}/E{IAlbll} which is equal to AI in this case.

The update step ofthe adaptive algorithm is given by,

(2.80)

The driving vector is therefore r1 (i), f;, (i) =RI sign (y( i)) - y(i), and e=AI' In a similar

fashion to the Sato cost function,

E {eaf;,} =E {ea (RI sign (y) - y)}

=E{ea(RI sign(y)-(Albj +M +v-ea))}

= E {eaRl sign (y) - ea AI bJ - eaM - ea V + en

=(.

E {f;,2} =E{( RI sign (y) - y f}
=E{(RI

2
sign(y)r -2Rlysign(y)+ l}

= R2_ 2R A + A2+ 172+ (}2 + rI I I 1 '( ~

= (RI - Ay +.,,2 + (}2 + S

This leads on to the steady-state and tracking analysis being quantified with,

Ek,f;,} =G + T.E{f;,2}

S=G + T. ((RI - AI )
2

+.,,2 + (}2 + s).
and the transient performance computed using,

hu =E{f;,2(i)}

=(R - A )2 + 172+ (}2 + rI I '1 n ~ ,0

(2.81)

(2.82)

(2.83)

(2.84)
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h = E{ea(i)F: (i))
G E{e~ (in

=1.

2.8.4 LCDCMA

The update step of the LCDCMA cost function is given by,
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(2.85)

W 1- (i + 1) =W 1- (i) + Jlr1- (i)(y(i -1) - y(i) )(IY(i)1
2
-Iy(i -I)n· (2.86)

The driving vector is therefore r1- (i), F: (i) =(y(i -1) - y( i)) (Iy (i)1
2

-Iy( i-I)n ' and B=AI .

Fe is firstly expanded using,

y(i) =Atbl (i) + M(i) + v(i) - ea (i)

y (i-I) = AI bl(i - 1) + M(i - I) + V ( i-I) - ea (i - 1)

(2.87)

(2.88)

and then substituted into the fundamental equations, which are subsequently simplified to yield,

E{eaF:} =E{ ea (y(i -1) - y(i) )(IY(i)\2 -Iy(i -1 )n}
=J2C +Jl

E{F:2}=E{((y(i-I)- y(i))(ly(i)!2 -jY(i-l)nf}

=KJC + K2S2 + KtS + Ko·

(2.89)

(2.90)

The coefficients {KJ,K2,KI'Ko,Jl} are summarized in Table 2.3. The following additional

assumption was used to simplify (2.89) and (2.90):

I. E{ea(i)ea(i-l)}=O, this in turn yields E{y(i)y(i-l)}=O, since the data bits and the

AWGN are uncorrelated between successive bit epochs.

The coefficients {K3,K2,KI,Ko,JJ were simplified using similar rules as before, as the

random variables {bt(i),M(i),v(i),ea(i),bl(i-I),M(i-I),v(i-I),ea(i-I)} are mutually

independent, which in turn causes any of those variables with an odd power to drop out of

{K3 ,K2 ,KI'Ko,J\} , after applying the expectation operation. Also, the statistics of the MAl and

AWGN do not change between successive bit epochs, and therefore simplifications of the form:

E{M2(i)} = E{M2(i-I)} =77 2

E{M2(i) M2(i - I)} =7l

E {M
4 (in =377

4

were made.
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Table 2.3. Coefficients for LCDCMA EMSE Expressions.

Coefficient Value

J 2 2

J, 2(A,2 +77 2 +0"2)

K3 24

K2 72( A,2 + 77 2 + 0"2)

K, 16A,4 + 144A,277 2+ I44A,20"2 +72774 + 43277 20"2 +720"4

Ko 16A,477 2+16A,40"2 + 72A,2774+ 432A,277 20"2 + 72A,20"4 +2477" + 3607740"2 +3607720"4 +240"6

Filtered noise variance: 0",; = E{ v2
}

Residual MAl variance: 77 2
= E{ M 2

}
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The steady-state and tracking performance is then computed as the smallest positive root of the

third order polynomial,

E{eaFJ =G + T.E{;:Z}

J/;z + J, S=G +T.( K3S
3 + KzSz+ K, S+ Ko)

(2.9] )

where reduced order solutions may also be considered as per the LCCMA case. The transient

analysis may be computed using,

hu =E{;:2(i)}

=K3Si3 + K2 Si2 + K,Si + Ko

h _ E{ea(i);:(i)}
G - E{e~(i)}

=2Si +J,

2.8.5 DD-LMS

The DD-LMS cost function is given by,

and the update step of the adaptive algorithm is given by,

W (i + 1) =w (i) + ,lJ (sign (y(i)) - y(i)) r (i).

(2.92)

(2.93)

(2.94)

(2.95)

The driving vector is therefore r(i), F;,(i)=sign(y(i))-y(i) , and the receiver gain

corresponds to the receiver gain of the biased MMSE fi Iter denoted by eM .The necessary terms

to perform the steady-state and tracking analysis are derived in a similar fashion to the Sato cost

function,
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E{eaF,,} =E{ea (sign (y) - y)}

=s.
E{Fe

2}=E{(sign (y) _ y)2}

=(1-AY +7]2 +(j2 + S.

The steady-state and tracking EMSE is thus given by,

E{eaFJ =G+T.E{Fn

(= G + T.( (1- A
I

)2 + 7]2 + (j2 + ().

where G = 2~' Tr (Q) and T =ifTr (C) . The transient performance is computed using,

hu =E{F,,2(i)}

=(1_A\)2 +7]2 +(j~.

h _ E{ell(i)F;,(i)}
r;- E{e~(i)}

=1.
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(2.96)

(2.97)

(2.98)

(2.99)

(2.100)

2.8.6 Normalised algorithms

It is possible to derive normalised versions of the above algorithms (if they have not already

been defined) ifthe substitution is made,

(2.101)

(2.102)

These types of algorithms could be particularly useful considering the fading nature of the

wireless communications systems that causes the signal levels to fluctuate over a large dynamic

range. Normalised algorithms are inherently more stable in such scenarios since the step size is

dynamically adjusted as per (2.101). This modification can easily be incorporated into the

steady-state and tracking analysis if F" is expressed in terms of the original (non-normalised)

cost function F: and 1/llu (i)11 via the relationship,

F'F= e

e Ilu(i)112

The simplified energy preserving equation (2.41) can then be further simplified:
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E{eaF:} = G + E{ifllu(i)112 F:2}

+. Ilu ~~II' }= G +f E {IIU (i)II' [llu ~~II' J}
E{,ll} E{eaF:1 =G + if E{,ll} E{(F;)2}

E{eaFJ =Tr(R)G +ifE{(F;)2}
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(2.103)

where Tr(R)=I/E{,ll} and the expressions E{eaF:'}, and E{(F;)2}have already been

simplified in the non-normalised case. The steady-state performance of the normalised version

of the adaptive algorithm therefore corresponds to the conventional algorithm (non-normalised)

when T =if is used. Similarly, the tracking performance of the normalised version of an

adaptive algorithm can be calculated via the formula for the conventional algorithm if the

additional substitution G = 2~ Tr(R)Tr(Q) is made.

2.8.7 Summary

A summary of the EMSE expressions derived for the various blind adaptive MUD's in this

chapter is given in Table 2.4.



Table 2.4. Summary of expressions quantifying the adaptive performance of various blind adaptive MUD's.

Algorithm Cost Function F, EMSE (() expression hu hG Ellu (i)II' B

LCCMA
E{(IY(i)I' -R,n J,S'+Jl=

(CMA2-2, y(i)(y'(i)-R,)
K,S/ + K,s,' + Kl; + Ko 3S;+JI Tr(C.L) Al

Canonical) G+T.(KJsJ +K,S' +Kl + Ko)

LCCMA
E{(IY(it -In(CMA2-2, y(i)(y' (i) -I) J,S' +Jl= K3S/ + K,S;' + Kl; + Ko 3(;+JI Tr(C.L) I

Non-canonical) G+T.(KJs
J+K,S' +Kl +Ko)

LCCMA
E1(iY(iJl RI)'} Tr(C.L)

(CMAI-2) RIsign(y(i))- y(i) G + I~T (( RI - AI)' + 77' + er.;) (RI - AI)' + '7' + er; + S; I Al

Sato
E{(y(;) - sign (y(;))n sign(y(i)) - y(i) G+ I TT((1-AI)'+77'+er,;) (1- AI)' + 77' + er; + S; I Tr(C.L) Al

MOE
E{/y(i)n -y(i) G + I TT (AI' + 77' + ern AI' + 77' + er,; + S; I Tr(C.L) Al

LCDCMA
E{(IY(i)I' -IY(i-I)I'n (y(i-I)- y(i))(ly(i)I' -IY(i-I)I')

J,S' +Jl = K,t;/ + K,t;,' + Kl, + Ko 2S;+JI Tr(C.L) Al

G+ T.(KJsJ +K,S' +Kl +Ko)

DD-LMS
EHlsign(y)- YI'} sign(y(i)) - y(i) G + T.( (1- AI)' + 77' + er') (I-AI)' +'7' + er; +t;; I Tr(C) BM

Notes:

T=(,u/2)Tr(R), R =E{u(i)u ll (i)}

G = Tr(Q) 12,u , for the code constrained algorithms the adaptive algorithm only tracks w~".

'7' = E{M' (i)} = W op'C+w 01"

er' =E{ v' (i)} =w lI (er'I)wopI

For Normalised versions of the above algorithms use T=(,u/2) and G=(I/2,u)Tr(R)Tr(Q).
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2.9 Results

2.9.1 Steady-state performance
10-1r;:=====,-------.---------~

o LCCMA
o MOE
o Sato
>I< DD-LMS
v LCDCMA

- Analysis

10-3

>J'

ui
CI1

2
t.Ll

10-4

10-(l-------------L;--------------'
I~ I~ I~

Step size, ~

50

Fig. 2.13. Steady-state performance for various adaptive MUD's as a function of step size. A 10 users system with

25dB SNR for all users is considered.

A comparison between the steady-state EMSE of the LCCMA, MOE, Sato, DD-LMS, and

LCDCMA cost functions for a range of step size values, is made in Fig. 2.13. A 10 user system

is considered where the SNR of all the users is 25dB. The solid lines represent the theoretical

steady-state EMSE of the different cost functions. The data markers correspond to the EMSE

calculated from the simulation where the EMSE at each data point is taken from the average of

106 iterations. The different algorithms have different rates of convergence for a given step size

and therefore it is better to compare speeds with which two adaptive algorithms reach the same

EMSE level (as is done in the transient analysis section). The steady-state EMSE study

presented in this section is still of use because the rate of convergence between algorithms does

not generally differ by orders of magnitude. The fact that the EMSE of the MOE cost function is

nearly 3 orders of magnitude higher than the DD-LMS and Sato cost functions for a given step

size it is possible to conclude that the MOE cost function suffers from poor steady-state

performance in comparison. Lt also appears as though the LCCMA has better steady-state

performance compared to the LCDCMA. The Sato cost function has a slight edge over the DD­

LMS algorithm as the Sato cost function is an orthogonally anchored algorithm, and thus only

the smaller adaptive component ofthe filter coefficients contributes to the steady-state EMSE of

the Sato cost function. The steady-state analysis is also of use as certain characteristics of a

particular cost function may also be identified, and these in turn can hint at the appropriateness
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or inappropriateness of a particular algorithm. One such characteristic of the MOE cost function

is identified in Fig. 2.14 below.

10- 1r-----,--------,------,------,----i

--Er- Old Result
-e- New Result
--*- Simulation

10-2L ---'- -'- --'-__----'=====~

o 5 10 15 20 25
SNR (dB)

Fig. 2.14. Theoretical and simulated steady-state EMSE values for the MOE detector as a function of SNR for a 10

user system. "Old result" refers to the EMSE predicted by [25].

Fig. 2.14 demonstrates the inaccuracy of the expression for the MOE detector's EMSE given in

[25], compared to the new expression (2.65) derived in this thesis. The EMSE is expressed as a

function ofSNR for a 25 user system with a MAl ratio of 10dB's, and ,u=3xIO-5
• Fig. 2.14

also illustrates that the previous EMSE analysis underestimates the EMSE as the SNR

decreases. The simulation results concur with the new expression closely which indicates the

higher accuracy of the new expression. The old expression for the EMSE only becomes accurate

as the SNR becomes very high (>20dB's in this example), due to the types of assumptions made

in [25] to arrive at the EMSE expression therein. It is observed that unlike the LCCMA, the

MOE's steady-state EMSE does not go to zero as the SNR increases; this is a severe

disadvantage that is characteristic ofthe MOE cost function.

2.9.2 Tracking performance

The time varying channel was simulated in the same manner as described in Section 2.6.3. The

average value of Tr(Q.L) was calculated from the simulation using the definition

q.L (i) ~ wi' (i + I) - wi" (i) , and was used in the analysis.
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10° .-------- ---,-------------r---------,

.'

--e- IsI Order LCCMA
-*- LCCMA Simulation
--e- MOE Analysis
-+- MOE Simulation
-+ 0 noise assumption

10-4L':============e:::------------'-:--------J;L-------l
10-4 10-3 10-2

Step size, ~

Fig. 2.15. Theoretical and simulated EMSE values for LCCMA and MOE as a function of step size, in a non-

stationary channel. The "no noise" assumption was made in [54].
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The MOE and canonically constrained LCCMA are plotted together in Fig. 2.15. A 10 user

system with 20dB SNR and MAl level of3dB's was considered, where Tr(Ql.)=2.4xlO~.

The optimum value for f1 is correctly predicted by the analysis for both the MOE and LCCMA

receivers. The superior performance of the LCCMA MUD is clearly evident under these

operating conditions, as it achieves a lower minimum EMSE level. The inapplicability of the

assumption in [54], for this system, that AWGN may be neglected, is also illustrated in this

figure as the EMSE analysis using this assumption, given in (2.44), is plotted along side the

correct analysis.
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Fig. 2.16. The highest attainable SINR at the output of the LCCMA and MOE detector, relative to the single user

matched filter, as a function of SNR, expressed in decibels.

Under different operating conditions it is possible that some blind adaptive MUD algorithms

may perform better than others. This phenomenon can be investigated by comparing the output

SJNR at the lowest attainable EMSE for the adaptive algorithms, which occurs when the

optimum choice of JL is used in each algorithm. For example, when the SNR decreases it is

possible that the MOE detector might offer better performance than the LCCMA. Fig. 2.16

shows a system with 21 equal power users and Tr(QJ = 3.5 x I 0-6
. The maximum achievable

output SJNR of the MOE and LCCMA detector, relative to the single user matched filter (MF),

is plotted. It can be seen that MOE never offers better performance than the LCCMA in the

region where the LCCMA offers an improvement over the MF. The knowledge of the location

of the MF/LCCMA crossover point is also a useful result.
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-e- e= AI

-B- e=eMMSE
10-xL__----" -'- -.L --=====:=J

\ 5 10 \5 20 25
SNR (dB)

Fig. 2.\7. Plot of trace(Q) as a function of SNR for canonically constrained filter coefficients and biased MMSE

filter. 10 user system with a 3dB MAl ratio.

The effect that the constraint has on the tracking requirements of the adaptive algorithms IS

illustrated graphically in Fig. 2.17. A 10 user system with a 3dB MAl ratio was considered for

the purposes of this study. The time varying channel model, as described in Section 2.6.3, does

not affect the value of AI' which is set to 1 for this system. The curve e=AI therefore

corresponds to both canonically and non-canonically constrained filter coefficients. The value

of Tr (Q) is observed to decrease as the SNR decreases because as the SNR tends to zero

(minus infinity on the dB scale), the MMSE filter approaches the single user matched filter,

which is not tracked by the adaptive filter. The value of Tr(Q) for the biased MMSE filter

coefficients, as given in (2.60), decreases at a faster rate because the magnitude of the filter

coefficients, IlwMMSE 11, also tends to zero as the SNR approaches zero. The difference in tracking

requirements of the canonically and non-canonically constrained filter becomes apparent when

the amplitude of the desired user is time varying. This phenomenon is studied in more detail in

Section 4.5. The canonically and non-canonically constrained LCCMA therefore have

equivalent performance levels for the time varying channel under consideration in this section.
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0 LCCMA
0 MOE
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- Analysis
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Fig. 2.18. Theoretical and simulated EMSE values for various blind adaptive MUD schemes as a function of step

size, in a non-stationary channel. 10 users, 3dB MAl ratio, with desired user SNR=25dB.

The relative tracking ability of the LCCMA, MOE, Sato, DD-LMS, and LCDCMA cost

functions is examined in Fig. 2.18. A 10 user system with an MAl ratio of3dB's is considered

where the SNR of the desired user is 25dB. The time varying channel was configured such that

Tr(Q) =9.6xI0-8 for the DD-LMS algorithm and Tr(Q) =9.7xI0-8 for the other algorithms.

The data markers represent the EMSE computed from the simulation data where an average

from 105 iterations was used for each point. It can be seen in Fig. 2.18 that the Sato and DD­

LMS algorithms have nearly equivalent performance levels. The LCCMA achieves a nearly

identical minimum EMSE value but at a lower step size value. This clearly illustrates the

usefulness of the tracking analysis as a tool for quantifying the relative ability of the adaptive

algorithms, as it is possible to use Fig. 2.18 to show that the LCCMA has nearly the same

adaptive performance as the benchmark DD-LMS and Sato algorithms. This is something that

could not be shown using the steady-state analysis alone. Fig. 2.18 also shows that the

LCDCMA algorithm has worse performance compared to LCCMA. A phenomenon of

LCDCMA that is accurately captured by the analysis is that as the step size increases, the EMSE

of LCDCMA increases more rapidly than any of the other algorithms. The poor performance of

the MOE cost function is again evident in Fig. 2.18, lending credibility to the statement that

constant modulus based MUD's are a very suitable choice.

2.9.3 Transient performance

The relative convergence speed of the various bl ind adaptive MUD algorithms is considered in

Fig. 2.19 to Fig. 2.22. In those figures a 15 user system with a MAl ratio of OdS and SNR of
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20dB's is considered. All the MUD's are initialised to the single user matched filter. The

theoretical learning curves are represented again with "dash-dot" lines and steady-state levels as

predicted with the steady-state analysis have also been superimposed. The ensemble average of

100 independent simulation runs is used for all the simulation results. The time evolution of the

EMSE when the step size of all the algorithms is set to 10-2 is given in Fig. 2.19. The time

evolution of the output SINR of the same system is plotted in Fig. 2.20. The EMSE of MOE

cost function actually increases above the level associated with the single user matched filter.

This indicates a much smaller step size, and subsequent longer convergence time is required to

the MOE MUD to yield a performance gain relative to the single user matched filter. This is

evident in Fig. 2.20 as the steady-state SINR of the MOE MUD is approximately 5.5dB's lower

than its initialisation point. From Fig. 2.19 the LCDCMA clearly has worse performance than

the LCCMA as the LCCMA converges to a lower steady-state EMSE level and at a faster rate.

This is manifested in Fig. 2.20 as the output SINR of the LCCMA is always higher than the

LCDCMA. The situation regarding the relative performance of LCCMA, Sato and DD-LMS is

less clear. The Sato cost function and DD-LMS have equivalent performance levels, but the

LCCMA converges faster than these algorithms. The Sato and DD-LMS cost functions however

converge towards a lower steady-state EMSE.

To resolve this uncertainty, the same system is considered in Fig. 2.21 and Fig. 2.22 but the step

size of the Sato and DD-LMS cost functions is increased to 2 x I0-2
• This increase in step size

causes the adaptive algorithms to converge faster and be encumbered with a higher steady-state

EMSE. Examining Fig. 2.22 the learning curves of the output SINR of the LCCMA, Sato and

DD-LMS cost functions are nearly indistinguishable, indicating that these algorithms have

nearly equivalent adaptive performance levels. This property was also established in Fig. 2.18.

This result also reinforces the importance of evaluating the time evolution of the SINR as

opposed to just the EMSE. The absolute EMSE levels are not directly comparable because the

different adaptive algorithms converge to differently scaled optimal filter coefficients. This is

evident in Fig. 2.21 and Fig. 2.22 as both the EMSE learning curves and steady-state EMSE

levels of LCCMA, Sato and DD-LMS are much further apart in Fig. 2.21 than the

corresponding SINR learning curves and steady-state levels in Fig. 2.22.
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Fig. 2.19. Theoretical and simulated transient behaviour of the EMSE where the step size of all the algorithms is set

to 10~2 . Theoretical steady-state levels are also shown.
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Fig. 2.20 Theoretical and simulated transient behaviour of the SINR where the step size of all the algorithms is set to

10-2
. Theoretical steady-state levels are also shown.
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Fig. 2.21 Theoretical and simulated transient behaviour of the EMSE where the step size of MOE, LCDCMA and

LCCMA is 10-2
, and the DD-LMS and Sato cost functions are 2 xl 0-2

. Theoretical steady-state levels are also

shown.
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Fig. 2.22. Theoretical and simulated transient behaviour of the SINR where the step size of the MOE, LCDCMA and

LCCMA is 10-
2

, and the DD-LMS and Sato cost functions are 2 xl 0-2
• Theoretical steady-state levels are also

shown.
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2.10 Summary

This chapter considered the steady-state, tracking, and transient performance of the LCCMA

and other blind adaptive MUD's for DS-CDMA systems. New closed form expressions were

derived for these detectors using the feedback approach. The algorithms that were explicitly

analysed were: LCCMA (both canonical and non-canonical, and CMA2-2 and CMA 1-2 cost

functions), LCDCMA, Sato, MOE, and DD-LMS. The expressions that were derived accurately

predicted the transient and misadjustment performance, in terms of EMSE and SINR, for both

stationary and non-stationary channels. These results have not been previously published for

other blind adaptive MUD's. A methodology has been presented in this chapter that enables the

application of the feedback approach and energy conservation arguments to other DS-COMA

blind adaptive MUD's that can be made to fit the correct generic class of algorithm.

The accuracy of the analyses was verified using computer simulations. The equivalence

between the formulas governing steady-state performance presented in [52]-[54] and those of

[58] was also shown in this chapter. This equivalency was also borne out in the results as the

transient analysis showed convergence to the same level predicted by the steady-state analysis.

The analysis enabled a comparative study between the MOE and LCCMA cost functions, and

the results showed the superior stead-state, tracking, and convergence properties of the

LCCMA. The LCCMA also demonstrated superior performance relative to the LCDCMA

algorithm. The LCDCMA has the advantage, however, in that it does not require an estimate of

the desired user's amplitude. A popular approach is to switch over to OD-LMS after initial

convergence by more robust algorithms [25], [76] since DD-LMS closely approximates the

trained LMS performance levels. This chapter showed that the adaptive performance of

LCCMA was comparable with OD-LMS, the benchmark scheme for blind adaptive algorithms.

The OD-LMS algorithm relies on the feedback of correct bit decision, and feedback of incorrect

bit decision can lead to complete failure of the receiver, and thus its use is only recommended in

reliable communications channels. This is not an issue with LCCMA as its convergence can be

guaranteed. The performance levels of the Sato and similar LCCMA (CMAl-2) cost functions

were also comparable with DD-LMS, and they are also more robust compared to DD-LMS. It

should be noted, however, that rigorous mathematical proofs of their convergence do not exist,

and so a concern is raised over their reliability and robustness. With performance levels of

LCCMA approaching that of the fully trained systems, indications are that it is possible to omit

pilot channels and training sequences and not suffer from a perceptible drop in performance.

The applicability of constant modulus based blind adaptive MUD's is thus proved.



Chapter 3

Constant Modulus Based Cyclic MUD

3.1 Introduction

Future generation wireless communications systems based on OS-COMA will be characterized

by their flexibility to offer various services such as voice, data, and multimedia over the same

air interface [8]. These heterogeneous services are characterized by their differing quality of

service (QoS) and data rate requirements. Multi-rate OS-CDMA has been suggested to provide

such flexibility [8]. When multi-rate DS-COMA is used in combination with short spreading

codes, it is possible to exploit the cyclostationary statistics of the received signal to greatly

enhance the reliability of the communications link. Narrowband interference (NBl) sources,

which arise in overlay systems, may also be efficiently suppressed by exploiting their

cyclostationarity.

Cyclic multiuser detection (MUD) is one such technique that has been suggested to exploit the

cyclostationary signal statistics and suppress multi-rate multiple access interference (MAl) and

NBl [77] as it offers superior performance compared to conventional MUD techniques.

Recently, cyclic decorrelating and MMSE receivers were defined for synchronous variable

spread length (YSL) multi-rate DS-CDMA systems in [78] and [79] respectively. This concept

was expanded to include an asynchronous multi-rate DS-CDMA system in [60], and specialised

in [80] for the case where binary phase-shift keying (BPSK) modulation is used. Adaptive

implementations were proposed in [80] based on a decision aided (trained) recursive least

squares (RLS) procedure. A blind (non-adaptive) implementation of the receiver was also

proposed in [80] whereby an off-line estimate of the correlation properties of data was used. A

blind adaptive receiver was proposed in [60] based on a new cyclic RLS algorithm which

minimised the minimum output energy (MOE) cost function (as defined in [25]). The

convergence of this algorithm can be guaranteed, but it suffers from poor steady-state

performance compared to (for example) the decision-directed (DD) mode of operation. The

computational complexity of the algorithm in [60] was reduced by making use of the block

circulant structure of the associated covariance matrices, nevertheless the computational

complexity is still high. Noting these points, a lower complexity cyclic MUD algorithm based

on iterative cyclic subspace tracking was developed in [81]. However, as acknowledged by the

authors in [81], even this algorithm may prove to be too computationally complex for high

dimension systems, and thus there is a need to develop low complexity, cyclic MUD.

The suppression of NBI in an asynchronous DS-COMA overlay system that undergoes

frequency selective fading was addressed in [82], through the use of off-line batch processing

(i.e. non-adaptive detection). A comprehensive overview of the topic ofNBI suppression in OS-

60
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CDMA overlay systems is contained in [77], where it is shown how NB! can be modelled using

a VSL multi-rate DS-CDMA system model. The equivalence between the two problems, NB!

and multi-rate MAl suppression, is thus established.

The essential difference between cyclic MUD and conventional MUD is that cyclic MUD

employs a periodically time varying (PTV) filter to the received vector of samples. A direct

implementation of a PTV filter would consist of a bank of time invariant filters that are selected

sequentially. This architecture is referred to as the filter bank. A frequency domain

implementation of a PTV filter was proposed in [83] and is referred to as the frequency shift

(FRESH) filter implementation. FRESH filters have some desirable characteristics. Firstly, they

offer some computational efficiencies over the filter bank implementation [83]. Secondly, they

have the ability to be implemented in a flexible or suboptimal manner whereby complexity may

be reduced at the expense of performance. Exploiting this feature to enable lower complexity

cyclic MUD's has been suggested in [77], [60] and [80]. It has not, however, been established in

the literature on which architecture (filter bank or FRESH) an adaptive filter would operate best.

The first major contribution of this chapter is a new, low complexity, blind adaptive cyclic

MUD based on a FRESH filter which is adapted via a modified version of the linearly

constrained constant modulus algorithm (LCCMA) [30]. This technique offers the flexibility of

the FRESH architecture combined with the low complexity of a stochastic gradient algorithm

for adaptation, which has a significantly lower computational complexity as compared with the

previously suggested cyclic recursive least squares (RLS) and subspace tracking algorithm of

[60] and [81] respectively. The LCCMA algorithm was chosen due to its proven convergence

ability in DS-CDMA, and its superior adaptive performance compared to the MOE cost

function, as ascertained in Chapter 2. A proof of the global convergence of the new algorithm

(referred to as FRESH-LCCMA) is also given in this chapter, and constitutes a second original

contribution made in this chapter. This proof is given in order to ensure the robustness of the

new algorithm. The excellent performance of this new algorithm relative to its computational

complexity is shown via a performance comparison with the algorithms given in [60] and [81].

The third contribution of this chapter is an investigation into the relative performance of the

different suboptimal FRESH filters, in the context of cyclic MMSE MUD. Given the dimension

of a particular suboptimal FRESH filter, there exists a multitude of possible cyclic MMSE

filters that it can implement. No theory or investigation exists, to the best of the author's

knowledge, into determining the optimal MMSE filter given only the dimension of the

suboptimal FRESH filter and system statistics.

The fourth contribution of this chapter is the derivation of the steady-state, tracking and

transient performance of FRESH-LCCMA, using an extension of theory developed in Chapter

2. The performance of the new algorithm is thus fully quantified. Alternate cost functions to

LCCMA are also considered in this chapter to perform low complexity SGD based cyclic MUD
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using the FRESH architecture. The new algorithms that are proposed are based on the: MOE,

Sato, LCOCMA, and OO-LMS cost functions. The relative adaptive performance of FRESH­

LCCMA is compared to these alternate cost functions, both analytically and through computer

simulation, in order to prove the suitability of the constant modulus cost function to blind

adaptive cyclic MUO. The relative adaptive performance of the new algorithms on suboptimal

FRESH architectures is also investigated. In addition, a recursive update procedure for the

FRESH-LCCMA is given which yields an algorithm that is directly comparable (in terms of

computational complexity) to [60]; it is shown in this chapter that the resulting receiver has

superior performance owing to the superiority of the LCCMA cost function over the MOE cost

function.

Using the feedback approach, this chapter also presents the first analytical framework in which

the adaptive performance of filter bank and FRESH implementations may be directly compared.

Previously, no conclusions could be drawn as to which architecture is superior in terms of the

tracking capability and convergence speed of an adaptive algorithm, and thus this study

constitutes the fifth significant contribution of this chapter.

The rest of this chapter is organized as follows: firstly a preliminary revIew of pertinent

cyclostationary definitions is given. This is followed by an outline of the system model where

multi-rate OS-COMA systems are discussed as well as PTV filtering architectures. The

relationship between the time and frequency domain filters is then established when the outputs

of the filters are sampled at the bit rate, as opposed to the rate that samples are clocked into the

filters. The next section, 3.4, details the cyclic MMSE filter equations. A novel study of the

different suboptimal-FRESH MMSE receivers is conducted in this section. The new cyclic

MUD algorithms are devised in Section 3.5. The performance analysis of these algorithms is

carried out in Section 3.6, where a proof of the global convergence of the new FRESH-LCCMA

is given as well as the adaptive performance quantified using an extension of the theory

developed in Chapter 2. The performance of the new algorithms is investigated in the results

Section 3.7, and finally a summary of the chapter is given in Section 3.8.

3.2 Cyclostationarity

A discrete time stochastic process x(n) is said to be cyclostationary in the wide sense, if its

mean and autocorrelation are periodic with some period T , i.e.

E{x( n)} =J1x(n) =J1x (n +T)

E{x(nl)x(nJ}=Rxx(nl,n2)=Rxx(nl +T,n2+T)

(3.1 )

(3.2)

for all nl and n2 · The Fourier expansion of J1x (n) and Ra (ni' n
2

) at fixed frequency a are

denoted by
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These are the cyclic mean and cyclic autocorrelation functions ofx( n) . Formal definitions:

/1: =1i~ (/1x (n )exp(- j2Jran))N

~ lim~ IE{x(n)}exp(-j2n-an)
N--7~N /1;1

R':x (k) =1i~ (Rn (n, k) exp (- j2Jran))N

~ lim~ IE{x(n+k)x(n)}exp(-j2Jran)
N--7~ N /1;1
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(3.3)

(3.4)

where (.)N denotes time average over N samples. The set of a for which R':x $. 0 is called the

cycle spectrum, and a is called a cycle frequency. Note, the Fourier transform (as opposed to

the Fourier series representation) applies to systems that are almost cyclostationary (e.g.

measured noisy data).

3.3 System model

3.3.1 Multi-rate CDMA and overlay systems

There are four major types of multi-rate access schemes associated with OS-COMA

communications systems, these are: multi-code [84], variable spread length (VSL) [8], variable

chip-rate (VCR) [85], and variable chip-rate with frequency shift (VCRFS) [86]. The multi-code

technique enables a particular user to transmit on multiple spreading codes simultaneously,

thereby increasing the net data rate. In the VSL scheme the chip duration for all data rates is

constant but the number of chips per code differs between the high rate and low rate users, and

hence the VSL designation. In a VSL system shorter spreading codes correspond to higher data

rates. In a VCR scheme, the different data rates are assigned different chip durations or rates.

The higher data rates are assigned higher chipping rates to boost the data throughput. The

VCRFS scheme exploits the fact that in a VCR system, the low rate users occupy a smaller

bandwidth compared to the high rate users, and it is therefore possible to shift the carrier

frequency of the low rate users away from the carrier frequency of the high rate users to

improve system performance. This is performed in VCRFS, and hence the VCRFS designation.

It was found in [87] and [88] that the VSL scheme offers better performance compared to the

multi-code access scheme. It was also shown in [60] that the VSL scheme favours the low rate

users and the VCR scheme favours the high rate users, and that the VCRFS scheme outperforms

both the VSL and VCR for both high and low rate users.

The modelling of NBI as virtual-users in a VSL multi-rate OS-COMA system is dealt with

extensively in [77]. Suffice it to say then that an analysis of the ability of a blind adaptive MUD

to suppress VSL multi-rate MAL is indicative of its ability to suppress NBI arising in overlay
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systems. This is one of the motivating reasons behind considering a VSL multi-rate access

scheme in this chapter.

There is a large choice of codes to choose from when considering the implementation of a YSL

multi-rate access scheme for theoretical performance evaluations via computer simulation. The

choice includes: random codes, Gold codes, Gold codes expanded with Walsh codes, and

olthogonal Gold codes. Random codes are useful from a theoretical point of view, but would

require extensive simulations to average over possible code choices. Cross correlations are

relatively high between random codes and performance levels of the system will thus not be

indicative of realistic systems either. Different length Gold codes are not integer multiples of

one another, and thus do not provide convenient ratios of data rates. Gold codes expanded with

Walsh codes preserves the orthogonality between the multi-rate codes. This is useful for real

systems, but from a simulation point of view obviates the need for PTV interference

suppression. Cross correlation between multi-rate codes inevitably occurs due to propagation

through an imperfect communications channel, and is the reason why interference suppression

is required in the first place. Orthogonal Gold codes are thus chosen as the different lengths of

the codes are integer multiples of one another. Codes of the same length are orthogonal but

significant cross correlation levels occur between codes of different lengths.

3.3.2 Received vector of samples

The complex baseband representation of the received signal of an asynchronous multirate DS­

COMA system at time t may be expressed by,

K-I ~

r(t)= LAkL)k (i)Sk (t-Tk-iT",k)+n(t)
k~O ;;0

(3,5)

(3.6)

where K is the number of users, Ak is the amplitude of the kth user, and b
k

(i) E {±1} is the kth

user's ith transmitted data symbol. The unit energy signature waveform of the kth user is

denoted by sk(t ), Tk is the time offset, and T",k is the bit duration of the kth user. The add itive

white Gaussian noise (AWGN) term n(t) has power spectral density (J2.

A variable spread length (YSL) dual-rate access scheme is considered 111 this chapter to

illustrate the effectiveness of the new cyclic-algorithms. In this system the high rate user

transmit data at a rate L times faster than the low rate users, and are thus assigned spreading

sequences that are shorter by a factor I/L to ensure that spread signals of both rates occupy the

same amount of bandwidth. The signature waveforms are given by,

1 N-I

S:R (t) = r;-; Lc:R (n) rect'l; (t - nTJ
"N /1;0

1 LN-I

,U/ ( ) _ "U/ ( ) ( )Sk t - ~L.Ck n recti; t-nJ::
"LN /1;0

(3.7)

where HR and LR specifY high rate and low rate respectively, N is the number of chips in the

HR spreading sequence, c~) (n) is the nth chip of the spreading code assigned to user k, and
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rectI' (.) is the unit-height rectangular pulse supported on [0, T]. From here on let the desired

user be user I, and be assigned a HR spreading code.

The receiver samples the output of a chip-matched filter to convert the received signal into

discrete samples. The samples within processing window i are stacked to form a vector r(i),

which is used to detect bl (i), which is the ith bit of the desired user. This chapter considers the

case where processing window i spans bit interval i ofthe desired user, and the detector operates

on a symbol-by-symbol basis. For the sake of brevity only, this thesis also only considers the

case of rectangular shaped chip pulses and a sample rate equal to that ofthe chip rate.

3.3.3 PTV filtering

commutator ~T....:..h----=:y~(...!..i)+~
sampler

Fig. 3.1. Filter bank implementation of a PTV filter.

r (i)

~1_~----=:y~(...!..i)+~
sampler

Fig. 3.2. FRESH filter implementation of a PTV filter.

A time domain implementation of a PTV filter is illustrated in Fig. 3. I. The commutator selects

the individual filters {w (I), w(2), ... ,w( L)} in the bank sequentially to produce a PTV filter of

period L. The frequency domain implementation of this filter is given in Fig. 3.2. The FRESH

architecture filters L frequency shifted versions of the input signal simultaneously and combines

the output of each of these L branches. With the proper selection of the FRESH filter

coefficients {W I ,W2 , .. ·,w,.}, the two architectures are exactly equivalent. This equivalence is

established below for the case where the outputs of the filters is sampled at the bit rate. This

derivation follows along the same lines as that in [83] but is slightly modified since in [83] the

output of the filters are sampled at the same rate at which samples are clocked in, which is

equivalent to the chip-rate for the system under consideration.
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Assume there are M filters of length N each. The operation of the sampler on the mth filter is

mathematically equivalent to multiplying its output by

0,11 (n) = {~,
if n=m, m±M, m±2M,... ,
otherwise,

(3.8)

where n indexes the bit epoch. This function may in turn be represented mathematically by,

1 MN-I j2IC;(I'-mN)

5,11 (p) = MN ~ e MN

or

(3.9)

I M-I j2ICi(11-m)

o (n)=-Ie M
m M ;=0

(3.10)

where p indexes the received samples. Since the filters are sampled every p =nN samples, then

the output of the fi Iter may be written as,

M-I

Y(n)=I ({x(p )*hm(p )}.Jm (p ))
111==0

M-I

=I ({x(nN) *hm(nN)} . 5,11 (nN) )
11/::;0

(3.11 )

where x(p) is the input sequence to the filter, * denotes the convolution operator, and hm(p)

is the impulse response of the mth filter. The z-transfonn ofthis term is given by,

~

y (z)=Iy (n )Z-l1

11_00

~ M-I( I M-I j2ICi(11-m)]

=Il~ ~ {x(nN)*hm(nN)}' M~e M z-n

=,,~~({x(nN)'hm(nN)}~ ~/~"'ej::,my

Denote the z-transform of x(n) using the notation,

Z[x(n)]=X(z).

(3.12)

(3.13)

By using the modulation rule Z[exp(-an)x(n)]=X(exp(a)z)) inside the convolution rule

Z[x(n)*hm(n)]=X(z)H(z) in (3.12), and letting x(n)=x(nN), such that

Z[x(nN)] =Z[x(n)] =X(z) then the z-transform of y(n) may be expressed as,
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Y(z) ="t ~({X(nN)' hm (nN)} ~~/~'" e-J:;'l"
=_1IIe-i~;imx(ze_r:;i )Hm(ze-r:;i) (3.14)

M 1=0111=0

=I X(ze-r:;i )_1I Hm(ze-i:;i)e -iZ;im
;:;;;0 M m=O

since there is no "~1" term in ~ ( ze_i~i) it may be taken outside the inner summation in line 2

ofthe above equation. Now taklllg the lI1verse z-transform:

Let

such that,

1 M i 2"i(lI-m)
wi (nN)=-Ihm (nN)e M

Mm;o

(3.15)

(3.16)

(3.17)

which is recognised as the FRESH filter implementation, where wi (nN) is the nth filter

coefficient of the ith branch of the FRESH filter. The output of the FRESH filter is thus the sum

of M different frequency shifted version of the received vector of samples filtered by its

corresponding filter. The M different frequencies are {O, JjM, 2/M, ... , (M -1)/M}.

Equations (3.16) and (3.17) may be expressed more concisely if the following vector notation is

used,

Then,

hm (n) =[hm (1 ),hm (2), ,hill (N) J1'

wi (n) = [wi (1), wi (2), ,wj (N)J1'.

(3.18)

(3.19)

(3.20)

(3.21 )
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3.4 Cyclic linear multiuser detection
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3.4.1 Filter bank formulas

Consider the problem of detecting desired user I (a high rate user), then the well known linear

MMSE filter is given by,

C =E{r(i)r(i)T}

p =E {b1r(i)}.

C-1
w= P (3.22)

The spreading waveforms of the low-rate users are PTV in the processing window, this causes

the sequence of covariance matrices conditioned on temporal index I to also be PTV,

C(I) =E{r(l)r(lfl /}

=CHI/ + CLI/ (I) + 0-
2
1

(3.23)

sll1ce CLI/ (I), the covariance matrix of the low-rate MAl, is periodic in I with period L. (The

covariance matrix of the signal component associated with the HR users is denoted by C HII .)

The unconditioned MMSE receiver defined in (3.22) is therefore not optimal for any particular

bit epoch and would suffer worse performance compared to the PTV filter defined by,

w (I) =Cl (I) p.

3.4.2 FRESH filter coefficients

(3.24)

(3.25)

The implementation of PTV filters is a mature topic. The simplest implementation of which is

the filter bank where L parallel filters defined by (3.24) are selected sequentially. The FRESH

implementation [83] makes use of the Fourier series representation of the periodic sequence of

the filter coefficients {w(l)} , and by doing so confines the time varying component of the

PTV-filter to a bank of complex oscillators.

Define the stacked vector of L frequency shifted versions of the received vector of samples as,

r(i) =[rT (i),rT (i)ei21ri/L , ... ,rT (i)ei21r;(L-I)/Lr
then the stacked vector of (time invariant) FRESH filter coefficients is given by,

w=C-1p

where,

p=E{bl (i) r(i)},

(3.26)

(3.27)
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C=E {r(i) rH (i)}
e(O) e(l)

e(!--i) e(O)

=
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(3.28)

and e(i) = E {r (i) rH (i) ej2Jtli
j
L }, wh ich is the mth matrix of Fourier coefficients of the Fourier

series representation (FSR) of the sequence of matrices {e(l)}.

3.4.3 Suboptimal FRESH

The suboptimal FRESH filter is defined by the subset of the L frequency shifts that are

employed; denote this subset ne {o, .. .,L -1} . Let L' represent the number of elements in the

set n, where 1< L' < L, then L' represents the dimension of the suboptimal FRESH receiver

architecture, and the ratio L'IL is indicative of the complexity saving relative to the full

FRESH filter. The optimal (MMSE) filter coefficients, given n, are defined as,

Pn =E{b l (i)rn(i)}

Cn =E{ rn (i)r; (i))

(3.29)

e(O)

d n (2)-n(i))

d np )-n(2))

eta)

dn(i)-n(L'))

d n (2)-n(L'))

(3.30)

where d n
(m)-n(Il)) =e(i) and l=mod(n(m)-n(n),L).

There have been no studies to date to indicate the relationship between C and the choice of n
that maximizes the output SINR, for a particular dimension L'. As a preliminary to this

investigation (which is beyond the scope of this thesis) one particular choice, .Q, is compared

to the optimal choice n"pl' and the worst possible choice nll''''''' for a particular system setup.

Let .Q indicate the set {O, .. .,L' -I}. The SINR is employed as a metric as the SINR enables an

accurate estimate of the bit error rate (BER) [21] or quality of service that a network subscriber

experiences. The SINR of the FRESH and filter bank receivers are defined over one complete

period of the system (8 data symbols in this case) and is computed using,

wH UWSINR - "1" 01'1

FRESH - -H (- -)_
WO!'f C - U w opt

I.-I

Lw:'pl (L-/)Uw 01" (L-I)
SINRj -., B ,. = -;-;_----'-'=..::...0----------_

'1Ier unl{ L I

Lw:';" (L -I)(e(L -I) - U)WOpl (L-/)
'=0

(3.3 I)
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for the FRESH and filter bank receivers respectively. In (3.30) and (3.3 I) iJ and U represent

the covariance matrix of the desired user's signal at the input to the FRESH filter and filter bank

respectively, therefore U = A,\s;' , and iJ is the block diagonal matrix with U along its main

block diagonal.

The situation that is considered comprises 3 HR users and 3 LR users with orthogonal Gold

codes of length 16 and 128 respectively. The desired user has a signal to noise ratio (SNR) of

25dB, and all the other users transmit with an amplitude 3dB higher than the desired user. The

SINR levels corresponding to n, no!',' and nll'o", are plotted in Fig. 3.3 as a function of L
f

,

where no!', and nll'o", are found through an exhaustive search. L
f =1 and L

f =8 correspond to

the conventional non-PTV MMSE MUD and full/optimal dimension PTV MMSE MUD

respectively. For the filter bank implementation, L f

indicates the number of parallel filters

present. From Fig. 3.3 it can be seen that the filter bank receiver is obviously only effective

when the number of parallel filters is a submultiple of L (for this example when Lf =2 or

L f =4 ) as it is only under these conditions that the individual filters in the bank are exposed to a

subset of the interference patterns. For the FRESH filter, Fig. 3.3 shows that the output SINR is

more sensitive to the value of L f
than it is to the choice of n, also as L f increases towards the

full receiver the particular n selection becomes less significant. These are both desirable

characteristics that vindicate the use of n in systems with little or no channel state information,

which is generally the case in blind MUD.
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Fig. 3.3. SINR of increasing dimension MMSE filters on FRESH and filter bank architectures. Optimum, worst and

Q frequency selections are shown for the FRESH architecture. For the filter bank receiver L f indicates the number

of parallel filters present.
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3.5 Cyclic adaptive algorithms

71

3.5.1 Filter bank LCCMA

The filter bank implementation merely runs independent versions of the LCCMA on each filter

branch. Each algorithm is only activated when its branch is selected.

3.5.2 FRESH-LCCMA

r (i)

Fig. 3.4. The operation of FRESH-LCCMA on the FRESH architecture.

The FRESH-LCCMA operates directly on the stacked frequency shifted vectorr(i), and thus

jointly optimizes each filter bank. Based on LCCMA, FRESH-LCCMA exploits the canonical

representation of the optimum FRESH filter coefficients,

(3.32)

and thereby splits the filter coefficients into the two orthogonal components above. The s;

component is fixed or non-adaptive and can be computed a priori, the w"t component is

unknown by the receiver at start-up and is found adaptively. The s; component is given by,

T

O(L_I)NJ (3.33)

where ON is the zero vector of length N , and is the optimum choice at start-up when there is no

channel state information: it is the single user matched filter since it corresponds to the stacked

FSR of the sequence of vectors {SP ... ,SI}' It is also used as a linear constraint on the cost

function to ensure that the desired user is captured by the receiver, as is proved in Section 3.6.1.

The FRESH-LCCMA cost function is then given by,

(3.34)

where y( i) =wH (i) r (i), and the dispersion factor IS is set to A1
2

• The update step of the

stochastic gradient algorithm used to minimize this cost function is given by,

(3.35)
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where

w(i)=s; +Wl.(i),

and il.(i) =Bi(i) , B=I-s;s;1', such that i:(i)s;=O, which ensures that Wl.(i) remall1s

olthogonal to s;, which in turn ensures the linear constraint wH (i)s; = I is always met. The

operation of this algorithm on the FRESH architecture is depicted in Fig. 3.4.

The FRESH-LCCMA adaptive algorithm on the suboptimal structure is similarly defined using,

(3.36)

and,

- (.) _ [ l' (.) j2Jri(n(I))/L l' (.) j2Jri(n(L'))/L J1'
f n I - fie , ... ,f I e (3.37)

3.5.3 Alternate cost functions

It is possible to employ alternate code-aided adaptive algorithms that exploit the canonical

representation of the optimum FRESH filter coefficients given in (3.32). The algorithms and

their associated cost functions that are considered in this chapter are summarised in Table 3.1.

Table 3.1. Adaptive cyclic-MUD Cost Functions

I Fe(i)I Cost FunctionAlgorithm

LCCMA minJ(\v(i)) = E{(IY(i)1
2

- RS}, wHs; = I F,,(i) =y(i)( Rz -Iy(i)n

LCDCMA minJ(w(i)) = E{(IY(i)I
Z
-Iy(i -I)nl wHs; =I F, (i) =(y(i -I) - y( i) )(IY(i)I

Z
-Iy(i -I)n

MOE minJ(w(i)) =E{ly(i)n, wHs; = I F,,(i) =-y(i)

Sato minJ(\v(i)) = E{(sign(y(i)) -ly(i)l)l wHs; = I F,(i) =y(i)(sign(y(i))-l)

DD-LMS minJ(w) = EHlsign(y)- YIZ} F,,(i)=sign(y(i))- y(i)

LMS (data aided) minJ(w(i)) = E{(y(i)-b l (i)n F" (i) =bl ( i) - Y(i)

3.5.4 RLS implementation

The adaptive performance of the blind adaptive cyclic MUD under consideration may be

boosted if a higher computational complexity is acceptable. The RLS procedure is one such

technique that could then be considered. A cyclic RLS procedure was developed in [60] for

blind adaptive cyclic MUD based on the MOE cost function which exploits the block circulant

structure of covariance matrix C. A new algorithm can similarly be developed based on the

LCCMA algorithm which has an equivalent computational complexity. Using the same

derivation as in [39], a recursive update procedure for solving (3.34) is given by



Chapter 3. Constant Modulus Based Cyclic MUD

y(i) =w(i)r(i)

C(i) = /LC (i - I) + r (i) rH (i)

(
.) 1 (. I) _(.)y*(i)

g 1 =/l.g 1- +r 1 ly(i)1

e(i) =C(i)w(i) - ~g(i)

. eH (i)Be(i)
k(/)= eH (i)BC(i)Be(i)

W(i) =B (w (i - I) - k(i) e (i)) +SI'
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The "forget factor" /L is set slightly smaller than unity to enable the tracking of a time-varying

channel. It is also possible to minimize the suboptimal FRESH-LCCMA cost function using the

above procedure.

3.5.5 Comments on complexity

The relative complexity of various blind adaptive MUD schemes is presented in Table 3.2.

These algorithms are representative of three categories of blind adaptive MUD algorithm:

stochastic gradient (LCCMA [30]), recursive least squares (MOE-RLS [60]), and subspace

tracking (PASTd [81]). Cyclic MOE-RLS and FRESH-LCCMA (RLS) scale linearly in

complexity with the periodicity of the system (which is desirable), but it can be seen that their

overall complexity is far higher than the stochastic gradient based FRESH-LCCMA. Reference

[81] argues that usually L < (NM) and r« NM (where M is the number of samples per chip, and

r is the dimension of the signal subspace), and therefore the cyclic PASTd algorithm has a lower

computational complexity than the cyclic MOE-RLS algorithm. It can be seen that the

complexity of FRESH-LCCMA is lower than cyclic PASTd, and that as the periodicity of the

system increases so the relative complexity of cyclic PASTd increases over FRESH LCCMA.

The suboptimal FRESH schemes enable a complete scaling in complexity from the non-cyclic

Table 3.2. Complexity Comparison of Cyclic- and Non-cyclic MUD's

Algorithm Complexity

LCCMA O(NM)

MOE-RLS O((NM)')

PASTd O(NMr)

FRESH-LCCMA O(LMN)

Cyclic MOE-RLS O(L(MN)')

Suboptimal FRESH-LCCMA O(L'MN)

Cyclic PASTd O(rL')+O(LMNr)

FRESH-LCCMA (RLS) O( L(MN)')

Where: r - dimension of signal subspace, N - number of chips in

processing window, M - samples per chip, L - period of system, L'
- suboptimal FRESH dimension. Source: [67], [60], [81].



Chapter 3. Constant Modulus Based Cyclic MUD

up to the full cyclic receiver.

3.6 Performance analysis
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3.6.1 Proof of convergence

Convergence is proved for the case where there is no AWGN, as is customary [40], [30].

Firstly, a unique stationary point is shown to exist using the first derivative of the cost function

with respect to the filter coefficients. This stationary point is then shown to coincide with the

decorrelating detector. On inspection of the associated Hessian matrix, it is shown that this

stationary point on the cost surface is a global minimum, which completes the analysis. The

minimum condition required for convergence is then given.

The signal associated with user k at the input to FRESH filter w(i) is given by Akbk(i)Sk (i)
where,

- (.) _ [ I' (.) I' (.) j2"i/L I' (.) j2"i(L-I)/L JrSk I - Sk I ,Sk le, ... ,Sk le. (3.38)

In a similar fashion to [40] and [30], define the (PTV) signal from user k at the output of the

filter as,

(3.39)

This sequence only takes on L distinct values, denote this sequence by {u
k
(l), ... ,u

k
(L)). By

making use of the property of the periodic sequence:

the expanded cost function (3.34),

D)};~1 J( w(i)) =E{(Iy( i)/2 - ~ r}
=Iy(i)r _2/y(i)1

2

~ +~

=lwH(i)r(i)1
4

-21wH (i)r(i)1
2
~ +~,

may be expressed in terms of uk (I) using the terms,

E{lw" (;)f(i)I') =E{1t.A,b, (i)w" (i)i, (in
=E{It.b, (i)u, (in
=E{~Uk(i)U;(i)}

1 K L

=-L2>k (I)u; (I),
L k=1 1=1

(3.40)

(3.41 )

(3.42)
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E{I",H W(i)I'} =E{Itb, (i)", (i)1'}

= E{~(uk(i)u; (i)t +6~tUIII (i)u:, (i)u" (i)u: (i)} (3.43)

11'#111

KI. 6KKL

=~LL(uk (l)u; (l)t +-LLLulII (l)u:, (I)u" (l)u: (l).
L k=1 1=1 L 111=1 ,,=1 1=1

n:#m

Define the vector,

[
TT J1'U = U1, ... ,U K

l'
where U k =[uk (1), ... ,uk ( L )J ,then the cost function may now be expressed as 1/1 (U ) ,

KL 6KKL

min I/I(u) =~LL(uk (l)u; (l)t +-LLLulII (l)u:, (l)u" (I)u: (l)
h (!)I~AI L k=1 1=1 L 111=1 n=1 1=1

Proposition: The linear constraint wH s; =1 ensures Iu,(l)12 AI .

Proof

jUI (1)1
2

=AI21WH (i)sJ (l)1
2

=AI
2

1WH (i)(s; + SI' (l) )1
2

then s; -l sI' (I) , and therefore,

IU1 (1)1
2

=AI
2 (lwH (i)s;1

2 +lwH (i)sr (I)n

=AI
2

+18 (1)1
2

(3.44)

(3.45)

(3.46)

•
The uk (l) terms are complex and therefore the first partial derivative of the cost function is

given with respect to the real and imaginary components of u
k

(I) , where

uk (l) =xk (I) + jYk (I) , using the block vector notation,

dl/l(U)
=dU

dl/l(U)
dX

dl/l(U)
dy

(3.47)



Chapter 3. Constant Modulus Based Cyclic MUD 76

where x=[x~·,... ,x~r and x
k
=[xr(I), ... ,x;·(L)T, and y is similarly defined. The above

expression can then be further expanded into the terms,

OqJ(u)

OqJ(u) =
oXI

(3.48)
ox

oqJ( u)
oXK

where,

oqJ( u)

oqJ( u)
oXk(1)

(3.49)---
oXk oqJ(u)

oXk(L)

and oqJ(u)/oy,oqJ(U)/OYk are similarly defined. The partial derivatives that constitute (3.49)

are in turn given by,

OqJ(u) 4 ( ) 12 ~( 2 2()) 4 ()oX
k

(I) = Lxk(I) x~ (I) + y~ (I) +L xk(I) f.:: XIII (I) + YIII I - L~Xk I
11/'#k

~x, (I) ~l (xi (1)+ yi (I))+3~(xi, (1)+ y~ (1))- R,J (350)

=x, (I) ~l(3u, (I)u: (I) - R,) +(xi (I) +y; (I)) +3~(xi' (I) + y,; (I))J

and similarly,

From (3.50) and (3.51), when (3u
1
(I) u; (I) - ~) > 0 the on Iy stationary point of the cost

function is when uk =0, which corresponds to the decorrelating detector. It was proved above

thatlul (1)1
2
~ A1

2
, and therefore a sufficient condition for the existence of the decorrelating

stationary point on the cost surface is 3AI
2

- R2 > O. This is the same condition arrived at in [40]

and [30).

The Hessian matrix, or second partial derivative, of the cost function is given in the block

matrix form,
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a2t;6(u) a2t;6(u)
a2t;6(u) a2x axy

au2 a2t;6(u) a2t;6(u)
ayx a2y

where

a2t;6(u) a2t;6(u)
a2x ax1xKa2t;6(u) _ I

a2x
a2t;6(u) a2t;6(u)
axKx1 a2xK

a2t;6(u) a2t;6(u)

a2t;6(u) _
aXS1 aX\YK

axy
a2t;6(u) a2t;6(u)
axKy, aXKYk

and a2t;6(u)/ayx, a2t;6(u)/a2y are similarly defined. Then

a2t;6(u) a2t;6(u)

a2t;6(u)
a2xk(l) aXk(I) Xk(L)

=a2xk a2t;6(u) a2t;6(u)
aXk(L)xk(1) a2xk(L)

a2t;6(u) a2t;6(u)

a2t;6(u)
axk(l)Ye(I) aXk(I) Ye (L )

=
aXkYk'

a2t;6(u) a2t;6(u)
aXk(L )Yk' (I) axk(L)Yk,(L)
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(3.52)

(3.53)

(3.54)

(3.55)

(3.56)

and the other sub-matrices associated with a2t;6(u)/a2Yk and a2t;6(U)/aYkXk' are similarly

defined. The elements of the Hessian matrix are then given by,

k' =k,l' =I

(3.57)

k' *- k,l' =I

otherwise.
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8
L Yk (I),

a~(u) = 24
aXk(I)aYk' (I') -LYk' (I),

o

8
-xk (I),

a~(u) = ~4
aYk (I)axk,(I') -L xk' (I),

o
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k' =k,l' =I

k'",k,I'=1
(3.58)

otherwise.

k'=k,I'=1

k' '" k,l' =I
(3.59)

otherwise.

k' =k,l' = I

(3.60)

k' '" k,l' =I

otherwise.

from (3.57)-(3.60), it can be seen that the off-diagonal elements of the Hessian matrix at the

stationary point are zero. The main diagonal of the Hessian matrix is fully determined by

a~(u)/a 2xk(I), a~( u)/a 2Yk (I), a~( u)/a2 XI (I) , and a~(u)/a2Y\ (I) . These terms are in turn

guaranteed to be positive if the following corresponding constraints are met,

3u j (I)u; (I) - ~ ~ 0

3u j (I)u; (I) - ~ ~ 0

3x~ (I) + yj2 (I) - ~ ~ 0

X I
2 (I) +3y\2 (I)-~ ~ o.

(3.61 )

(3.62)

(3.63)

(3.64)

Constraints (3.61) and (3.62) are the same and are automatically satisfied when the stricter

constraints (3.63) and (3.64) are met. It has already been proved that X\2 (I) + Y12 (I) ~ A1
2

, and

therefore a sufficient condition to ensure constraints (3.63) and (3.64) are satified is

(3.65)

thus ensuring that the Hessian matrix is positive definite. Under this condition the stationary

point is a minimum point on the cost surface, thus completing the convergence proof of the

FRESH-LCCMA algorithm.

It is worth noting at this point that XI
2(I) » l (I), since the vast majority of the energy at the

output of the filter associated with the desired user lies in the real domain as BPSK signalling

and phase synchronisation is assumed. This leads to the conclusion that X I
2 (I) + 3y~ (I) == AI

2
, and

therefore the constraint imposed in (3.65) is not overly loose, which indicates that the constraint

for convergence of the FRESH-LCCMA is in fact more sensitive to A1
2 overestimation than the

LCCMA is, where it was proved in [40] that a sufficient condition for LCCMA convergence is

3A I
2
-~ ~o.
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The same conjectures made in [30] with regard to the convergence of the LCCMA in an AWGN

channel apply in this case, and it is thus assumed that by properly selecting the value of ~ the

FRESH-LCCMA cost function is strictly convex in an AWGN channel. With Regard to the

convergence analysis for the suboptimal LCCMA-FRESH algorithm, it follows in the same

manner as above where (3.38) is replaced by,

(3.66)

3.6.2 Adaptive performance

Th is section extends the theory developed in Chapter 2 to the study of the relative performance

of an adaptive algorithm implemented on either the filter bank or FRESH filter architecture.

This section therefore details: how the output of the filters may be described in terms of

deterministic quantities, new assumptions, and the definitions of the optimum filters in a non­

stationary channel.

The steady-state, tracking and transient analyses derive closed form expressions of the excess

mean square error (EMSE), defined in this section as

(FRESH =E {( (w ap! -w(i)t r(i) f}
(FillerlJank (!) =E { ((wal'l (!) - W ( i)f r ( i)f0, (i)}

(3.67)

(3.68)

for the FRESH filter and (lth filter of) the filter bank respectively. The EMSE of the FRESH

filter is compared to the filter bank architecture by comparing the EMSE defined in (3.67) with

the average EMSE of all the filters in the filter bank architecture. The analysis of the filter bank

architecture thus amounts to the analysis ofL independent adaptive algorithms.

The steady-state analysis requires the output of the filters to be written in terms of deterministic

quantities. The same approach as used in Section 2.5 is applied here where the output of the

filters is described in terms of the optimal filter coefficients and the a priori estimation error.

The a priori estimation error is defined as, ea(i)=(wap,-W(i)fr(i) and

ea (i) = (Wal'l - W(i))H r(i) for the filter bank and FRESH architectures respectively. The output

of the lth filter in the filter bank receiver may then be expressed using,

y(i) = w T
(i)r(i)~ (i)

=[(w ap! (I) - flw 1- (i))7 r (i) ] ~ (i)

=[(W ~;,! (I) u (i))+ v(i) - ea.1- (i)] 0, (i) .

(3.69)

where flw1- is the error in the adaptive component of the filter coefficients, u(i) is the

component of the received vector of samples, within processing window i, containing energy

from bl (i), and v is the MAl plus filtered AWGN lumped into a single term. The a priori
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error is denoted by ea,l. (as opposed to ea) because only error in the adaptive component of the

filter coefficients is present. The signal associated with the desired user's bit at the input to one

of the filters in the bank is given by,

The output ofthe FRESH filter may be similarly expressed,

y(i) =wH (i)i(i)

=(w~)/u (i)) + v(i) - ea,l. (i)

where

- (.) _ [ (.) (.) j2ICi/l. (.) j2ICi(L-I)/L J1U I - U I ,U I e , ... ,u I e

(3.70)

(3.71 )

(3.72)

The w1' (I) U (i) and wH U(i) terms are zero mean and due to the orthogonal projection
opl opt

operation are uncorrelated with the associated {v,ea,l.} terms, as shown in Section 2.5.1. It can

also be easily shown that,

where,

U=E{u(i)uT(i)}

(3.73)

(3.74)

(3.75)

and ir is the block diagonal matrix with U along the main block-diagonal. The filtered MAl

plus AWGN associated with the optimum filter is assumed to have a Gaussian distribution,

which was assumed previously in Section 2.5.1, the variance of which is given by,

77i.i1lerBank (l) =W;';JI (I) (C (I) - U)w "I" (I).

2 -H(- -)-
77FRESH =Wal" C- U W"l't'

(3.76)

(3.77)

for the Ith filter in the bank and the FRESH architecture respectively. The required elements

have been presented and the rest of the steady-state analysis follows as per the procedure laid

out in Section 2.5.

The transient analysis for both architectures may now also be performed as per Section 2.7,

where the time evolution of SFRESH (i) is compared to the time evolution of the average EMSE

in a sliding window of length L, which is given by,

1.-1

(FlllerBank (i) =L SFilterBank (i -I).
1;0

The time evolution of the output SfNR may then be computed via,

(3.78)
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- H iJ-
(

.) W OP1 W OfJ1

SINRFllESH I = _H (- - ) _ ( .)
W(JPI C - U W(JPI + SFllESH I

1,-1

LW;';,I (L -I)Uw (Jpl (L-I)
SINRFillerHank (i) = L-I 1 0 _

LW;';,I ( L-I) (C (L-I) - U) W (Jpl (L -I) +SFH ( i)
1;0

for the FRESH and filter bank architectures respectively.
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(3.79)

(3.80)

The relative tracking capabilities of the filter bank and FRESH architecture are compared by

assuming that the FRESH filter tracks the PTV optimal filter defined in a length L sliding

window given by,

(3.81 )

where C(i) is defined in (3.28) and {CV) (i)} is the FSR of the matrix sequence,

(3.82)

at time step i. The point definition of the covariance matrices, as given in (3.23), are used in

(3.82). As an example, ifL = 4, then sets of covariance matrices for time steps 1...6 is given by,

{C(I),C (2), C (3), C (4)}

2 {C(S),C(2),C(3),C(4)}

3 {C(S),C(6),C(3),C(4)}

4 {C(S),C(6),C(7),C(4)}

5 {C(S),C(6),C(7),C(8)}

6 {C(9),C(6),C(7),C(8)}.

The relationship between tracking requirements of the FRESH and filter bank implementations,

in terms of trace (Q) where Q is the covariance matrix of (w (Jpl (i) - W apl (i -I) ), is given in the

following section. The tracking performance of the non-PTV filter in a PTY system is

performed using the assumption that it tracks the optimal filter defined over a length L sliding

window,

(
1 L-I )-1

w apl ,n"n-I'TV (i) = - L C (i -I) p.
L 1;0

(3.83)

3.6.3 Comparative tracking requirements imposed on PTV filters

This section relates the tracking requirements imposed by a time varying channel on an adaptive

algorithm implemented on the FRESH and filter bank architectures. In a single rate DS-CDMA
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system with a non-stationary chr-nnel, it is assumed that the channel varies according to the

model,

The val ue of trace (Q) , where

WO{'! (i + I) =wo!'! (i) + q (i). (3.84)

(3.85)

is used in the tracking analysis and is a measure of the non-stationarity of the channel. For a

PTV system that becomes non-stationary it is assumed that the channel seen by each filter in the

bank varies according to the model,

L-I

W O!,I (i + L) =WO!" (i) + Lq (i -I)
1=0

(3.86)

where L is the periodicity of the stationary PTV system. The measure of the time variability for

each ofthe filters in the bank is then given by,

Q FB =E { t q (l)t qH (I)}
=LQ.

(3.87)

By using the linearity property of the FSR, the time-variability of the FRESH filter may be

expressed in terms of Q:

q=WO{'I (i + I) -wo!,! (i)

= FSR{wo!'! (i + L), WO!'I (i +2), ,wo!'! (i + L -I),} - FSR{wo!'! (i), ... ,wo!'! (i + L -I)}

=FSR {wo!,! (i + L) - WO!" (i), 0, ,O} (3.88)

= FSR{~q (i -1),0, .. .,o}
where WO!,! (i+L)-wo!" (i) is given in (3.86), and the notation FSR{w(I), ... ,w(L)} denotes

the vertically stacked Fourier series representation of the vector sequence {w(I), ... ,w(L)}.

The FSR{.} is formally defined as,

{Co,C1,·· .'CN _1} =FSR {x(O),x(I), ... ,x(N -1)}

where,

1 N-I ( '2 kn)ck =-Lx(n)exp L!!..-.. .
NII=o N

From the definition of the FSR, it can then easily be shown that,

Q=E{q(i)qH (i)}

[

LQ ... LQl1 . . .
= L2 : •• :

LQ ... LQ

(3.89)

(3.90)

(3.91)
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and therefore trace (Q)=trace (Q FB ) / L .

For a non-PTY filter that tracks a sliding window version of the filter, its tracking requirements

are quantified by,

q110/l (i) =w(i) -w(i -I)

where,

( )

-11 I-I

w(i)= -LC(i-l) p.
L 1=0

The relationship between Q and Q ={q (i)qH (i)}, is not obvious as,non non non

( )

-11 1-1 1 1.-1

- LC(i -I) ;to - Lel (i-I)
L 1=0 L 1=0

and thus expressing Q in terms of Q is not tractable.non

3.7 Results

(3.92)

(3.93)

(3.94)

To demonstrate the performance of the new algorithms derived in this chapter, a YSL dual-rate

access scheme is considered. Unless otherwise stated, orthogonal Gold codes of length 16 and

64 were assigned to the high-rate and low-rate users respectively. Orthogonal Gold codes

enabled the LR code to be an integer multiple of the HR code; they are constructed from

conventional Gold codes (length 15 and 63 respectively) by adding a "-1" to the end of each

conventional Gold code. The MAl ratio is defined again as Ak / AI' k;to I, where all the

interfering users transmit at the same amplitude. Unless otherwise stated, there are 3 LR users

and 3 HR users present in all simulations. A synchronous COMA system is considered in order

to reduce the simulation time.

Extensive use is made of plots of the output SfNR versus iteration number in this section to

compare the relative performance of the different architectures and algorithms. The output

SINR at bit epoch i of the FRESH filter is defined as,

(3.95)

The SfNR value given above is equivalent to the mean SfNR over one complete period of the

system, and is a more useful metric to quantify the performance of a PTY filter. This is because

the output SINR at each bit epoch of a PTY filter is cyclic in nature, and thus plots of the SINR

versus time would yield a broad area instead of a line, which is unsatisfactory. A length L

sliding window is thus used to equivalently define the SfNR of the filter bank receiver at bit

epoch i,
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L-I

LwT (i-/)Uw(i-l)
SINRFillcrHank (i) =--;L--,_I,--------C::/-~O---------

L wT (i -/)(C(i -I) - U)w(i -I)
1;0

and thus enables a direct comparison between the two realisations of the PTV filter.
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(3.96)

Fig. 3.5 shows the convergence dynamics of the SINR for the different MUD architectures all

updated with the LCCMA. The curves are an average of 100 independent simulation runs, and

the step size was set to 10-2
, except for the filter bank implementation where it was set to

4 x 10-2
. A MAl ratio of OdB was considered and the SNR was 25dB. Visual inspection of Fig.

3.5 reveals that the full dimension FRESH filter is observed to have identical performance to the

filter bank implementation. The operation of two suboptimal FRESH filters of differing

computational complexity (L
r =2 and L' =3) are observed to offer substantially better

performance than the non-PTV filter, as they converge towards their respective MMSE SINR

levels.

The performance of the new FRESH-LCCMA is compared to existing cyclic-MUD algorithms:

the cyclic-RLS algorithm [60], and the cyclic subspace tracking algorithm [81], in Fig. 3.6. In

[81] the performance of the cyclic subspace tracking algorithm, referred to as "cyclic-PASTd",

was directly compared to the algorithm presented in [60] by comparing the convergence

dynamic of the output SINR for both algorithms via simulation. The same system configuration

as used in [81] is considered in Fig. 3.6 in order to make a direct comparison of the new

algorithm with the results of[81]. The system that is considered then consists of 2 LR users and

1 HR user, using random spreading codes of length 45 and 15 respectively. The SNR of the

desired user is 20dB's and the MAl ratio is 2.5dB's. The forget factor for both the cyclic­

PASTd and cyclic-RLS algorithms is 0.995. The step size of the FRESH-LCCMA is set to

5 X 10-
3

, and the conventional LCCMA's is 10-3
. The initial estimates of the dominant

eigenvalues, used by the cyclic PASTd algorithm, were obtained through batch

eigendecomposition of the first 60 data vectors, in keeping with [81]. The results shown are the

average of 100 independent simulation runs.

In Fig. 3.6 the cyclic-PASTd algorithm is observed to offer nearly a 6dB improvement in the

steady-state SINR over the cyclic-RLS algorithm. The new FRESH-LCCMA is observed to

offer a further 3dB improvement over the cyclic-PASTd algorithm. This is a significant margin,

especially considering that it comes with a reduction in computational complexity over the

cyclic-PASTd and cyclic-RLS algorithms, as discussed in Section 3.5.5. The superior

performance of the FRESH-LCCMA may be attributed to the poor steady-state characteristics

of the MOE cost function relative to the CMA cost function. This point was highlighted in Fig.

2.14 and Section 2.8.1, where it was shown analytically that the EMSE associated with the

MOE cost function does not tend to zero as the SNR increases, whereas it does for the CMA

cost function. It is also important to note that the FRESH-LCCMA achieves this higher steady-
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state SINR level without penalty in convergence rate compared to the RLS procedure, and in

fact reaches its steady-state of operation before the cyclic-PASTd algorithm too. The non-PTV

LCCMA is superimposed in this figure, where it too is observed to reach a higher steady-state

SINR than the existing cyclic algorithms of [60] and [81], but at a slower convergence rate.

The convergence dynamics of the new FRESH-LCCMA relative to the cyclic algorithms of

[60], [81] are further investigated in the sequence Fig. 3.7 (a)-(c), for other system

configurations of greater interest. The simulation results shown are again the average of 100

independent simulation runs. This sequence of figures is intended to illustrate the performance

of the new FRESH-LCCMA algorithm relative to the recently proposed cyclic-RLS algorithm

[60], the cyclic subspace tracking algorithm [81], and the conventional non-cyclic LCCMA

[30], as a function of MAl level. The sequence of figures thus models an increasing level of

severity of the near-far problem which is one of the fundamental problems or limitations ofDS­

CDMA systems, and which signal processing schemes such as MUD hope to circumvent. The

MAl ratio is OdB, 3dB, and 10dB for Fig. 3.7 (a), (b), and (c) respectively. The cyclic MOE­

RLS forget factor was set to 0.9995, and the cyclic PASTd forget factor was set to 0.99 for Fig.

3.7 (a)-(c). The step sizes for the other adaptive algorithms, given in sequence for Fig. 3.7 (a)­

(c) are, FRESH-LCCMA: 5x 10-3
, 10-3

, 2 x 10-5
, LCCMA: 10-2

, 5x I0-3
, 10-5

•

In those figures the advantage that cycl ic MUD has over non-cycl ic MUD is apparent as the

optimal (MMSE) SINR that cyclic MUD gains over conventional linear MUD is 2.62dB,

5.47dB, and 9.29dB for Fig. 3.7 (a), (b), and (c) respectively. This inherent advantage is evident

when comparing the relative performance of FRESH-LCCMA and LCCMA in Fig. 3.7 (a)-(c),

where the superior performance (in terms of both convergence speed and steady-state SINR) is

evident.

The performance of FRESH-LCCMA is seen to compare favourably with the existing cyclic

MUD schemes. The cyclic MOE-RLS has the advantage of a rapid convergence rate due to the

use of the RLS update scheme, however the MOE cost function causes poor steady-state

performance as compared to FRESH-LCCMA. As the near-far problem increases, the FRESH­

LCCMA algorithm requires a smaller step size to ensure stability of the algorithm, and this in

turn reduces its convergence speed. The cyclic MOE-RLS algorithm does not suffer from this

effect; however its worse steady-state performance is clearly evident in Fig. 3.7 (c). The cyclic

subspace tracking algorithm suffers from poorer convergence speed as the near-far ratio

increases, as was found in [81]. FRESH-LCCMA appears to have superior performance to the

cyclic subspace tracking algorithm for the given scenarios.
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Fig. 3.5. Convergence dynamics of the different MUD architectures based on the LCCMA.
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Fig. 3.6. Convergence dynamics of new FRESH-LCCMA compared with existing cyclic algorithms as per simulation

setup of[81].
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Fig. 3.7. Convergence dynamics of the new FRESH-LCCMA compared with existing cyclic algorithms with

increasing MAl ratios: Figs. (a}-{c) correspond to MAl ratios ofOdB, 3dB, and IOdB respectively.

The increased convergence speed of the RLS procedure applied to the FRESH-LCCMA and

suboptimal FRESH-LCCMA cost functions is explored in Fig. 3.8, where a MAl ratio of 3dB is
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also considered. The forget factor was set to 0.9999 and 0.999 for the FRESH and suboptimal

FRESH RLS implementations. The convergence dynamics of other existing cyclic-MUD

schemes are also plotted for comparative purposes: these were the cyclic RLS-MOE [60] with

forget factor set to 0.999, and cyclic subspace tracking MUD [81] with forget factor set to 0.99

and the initial subspace estimate made after 120 iterations. Under the given operating conditions

the stochastic gradient algorithm (step size 10-2
) is once again observed to offer superior

performance to the RLS-MOE and cyclic subspace tracking algorithm at a substantially lower

computational complexity. The RLS based FRESH-LCCMA offers the fastest convergence with

very low misadjustment (EMSE) in the steady-state. The RLS based FRESH-LCCMA has the

same computational complexity as the RLS-MOE algorithm but the CMA base cost function

yields vastly superior performance compared to the MOE based algorithm of [60]. The

suboptimal FRESH filter based on the RLS update procedure for the LCCMA also exhibits

excellent convergence characteristics, albeit towards a slightly lower optimal SINR.

25 r--,.-------,----r-----,-----,---,---,--,----,------,

5 --e- FRESH-LCCMA
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201-1/·······.···

Fig. 3.8. Convergence dynamics of FRESI-I-LCCMA updated with the RLS procedure compared to other blind

adaptive cyclic MUD's.

Fig. 3.9 (a)-(d) illustrate the operation of alternate cost functions performing SGD based cyclic

MUD on differing dimension suboptimal FRESH architectures. The complexity of the receiver

is varied from the full FRESH architecture in Fig. 3.9 (a) through to the conventional non-cyclic

detector in Fig. 3.9 (d). The reduction in system performance, evident in this sequence, is

expected as this is traded-off with receiver complexity. The results presented in Fig. 3.9 (a)--{d)

are the average of 10 independent simulations for each algorithm where the SNR was set to

25dB's for all the users in the system (3 HR and 3 LR), and a common step size of 10-2 was

used for all the algorithms.
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The optimal SINR levels corresponding to the single user matched filter, and the MMSE

receiver on the conventionalnon-PTV structure (L' =1), suboptimal FRESH (L' =2), (L' =3 ),

and the full FRESH architectures (L' =4) are superimposed in the figures, as these levels

correspond to the maximum levels that the adaptive algorithms could attain. The performance

gain of the cyclic MUD strategies over the conventional MMSE MUD is once more shown to

be significant. The relative gains for this particular system configuration are summarized in

Table 3.3. It is interesting to note the diminishing returns as the complexity of the receiver is

increased up to the full FRESH architecture, this phenomenon was also evident in Fig. 3.3. This

indicates that the suboptimal FRESH architecture could provide very useful performance gains

for a moderate increase in complexity (over non-cyclic MUD) for systems where the periodicity

is very high.

Table 3.3. Optimal SINR values for different dimension PTV receivers of Fig. 3.9.

Advantage over
Receiver SINR level (dB's) conventional MMSE filter

(dB's)

Single user matched filter 11.76 -4.53

MMSE (L'= I) 16.29 0.0

MMSE Suboptimal FRESH ( L' =2 ) 21.46 5.17

MMSE Suboptimal FRESH ( L' =3 ) 22.75 6.46

MMSE FRESH ( L' =4 ) 23.49 7.2

The relative performance of the different cost functions are compared in Fig. 3.9 by analysing

the relative convergence speeds of the output SINR and the misadjustment level at steady-state.

The MOE cost function has the worst performance, as its misadjustment level is so high it

barely enhances performance beyond that of the single user matched filter. For reasonable

performance gains from the MOE cost function the step size needs to be appreciably smaller

which in turn would cause very slow convergence. The LCCMA has slightly better performance

compared to the LCDCMA. The LCCMA and LCDCMA converge faster than the data aided

LMS but suffer from slightly higher misadjustment levels. These simulation results also confirm

that the DD-LMS and Sato cost functions have very similar performance levels to the data aided

LMS algorithm.
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Fig. 3.9. Convergence dynamics of various code-aided (SaD based) blind adaptive cyclic MUD's implemented on

the FRESH architecture where L' = 4,3,2, I for Figs. (a)-(d) respectively.
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Fig. 3.10. Convergence dynamics of various code-aided (SGD based) blind adaptive cyclic MUD's showing the

similarity in performance between the FRESH:- LCCMA, Sato, DD-LMS, and data-aided LMS algorithms.

The benchmark algorithms: Sato, DD-LMS, and (data-aided) LMS are observed to converge at

a slower rate and to a higher steady-state SlNR than the constant modulus based algorithms in

Fig. 3.9 (a)-(d). To better compare the performance ofFRESH-LCCMA to these algorithms, the

step size ofFRESH-LCCMA was modified such that it had equivalent steady-state performance

to the Sato, DD-LMS, and (data-aided) LMS algorithms in Fig. 3.10. A 20db SNR system was

considered and the ensemble average of 100 independent simulation runs was taken as

indicative of the algorithm's performance. The step size ofFRESH-LCCMA was set to 5 X 10-3
,

FRESH-MOE used 2 xl 0-3
, and the other algorithms' step size was set to 10-2

. The individual

learning curves in Fig. 3.10 are nearly indistinguishable for the FRESH-: LCCMA, Sato, DD­

LMS, and (data-aided) LMS algorithms, thus indicating the excellent adaptive performance

levels ofFRESH-LCCMA relative to these benchmark algorithms.

The accuracy of the steady-state and convergence analyses applied to the FRESH-LCCMA and

filter bank implementations of LCCMA are verified via computer simulation in Fig. 3.11 and

Fig. 3.12. The ensemble average EMSE and output SINR of 100 independent simulation runs

are plotted in Fig. 3.1] and Fig. 3.12 respectively. A 20dB SNR system with 3 HR and 3 LR

users and a OdB MAl ratio was considered for the purposes of this comparison. The filter bank

implementation of LCCMA used a step size of 4xl0-2
, the FRESH-LCCMA was set to

2.5 x 10-
3

and the non-PTV conventional LCCMA used a step size of 10-2
• The sliding window

definition of the EMSE of the filter bank architecture, given in (3.78), is observed to accurately

describe the average transient behaviour of the EMSE of the filter bank from initialisation to the

steady-state region of operation. The transient behaviour of the FRESH-LCCMA and non-PTV
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LCCMA are also accurately described by the analysis. Similarly, the transient behaviour of

output SINR of the three differing architectures is accurately predicted by the analysis. The

utility of the sliding window definition of the quantities associated with PTV filtering is thus

evident in Fig. 3.11 and Fig. 3.12 as they allow a direct comparison between the performance

levels associated with the three differing architectures: FRESH, filter bank, and non-PTV.
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Fig. 3.11. Validation of theoretical time-evolution of the EMSE in a multi-rate DS-CDMA system. "Dash-dot" line

corresponds to analysis.
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Fig. 3.13. Tracking analysis showing slight advantage offilter bank architecture.

The tracking analyses of the filter bank, FRESH filter, and non-PTV implementation of the

LCCMA in a multi-rate DS-CDMA system are compared in Fig. 3.13 with EMSE values

garnered from the computer simulation for various choices of step size. The value of Tr(Q)

was 1.8x10-
7

and each simulated EMSE value was taken as the average of 4xlOs iterations. A

system with a 25dB SNR and OdB MAl ratio was considered. Fig. 3.13 demonstrates the
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accuracy of the tracking analysis and the resulting analytical framework that is developed 111

order to analyse the relative adaptive performance of algorithms on either filter bank or FRESH

architectures. From Fig. 3.13 it can also be seen that for the system under consideration the filter

bank architecture has an almost negligible performance advantage over the FRESH filter as the

minimum values of EMSE for both architectures are almost the same, although they do occur at

different step size values.

-i- Filter Bank Receiver
-e- FRESH Filter

trace(Q)

Fig. 3.14. Optimal EMSE as a function of the time-variability of the channel for the LCCMA implemented on both

the filter bank and FRESH architecture.

To gain better insight into the relative performance of the filter bank and FRESH architecture,

the tracking analysis is used to compute the minimum EMSE attainable by each algorithm, in a

non-stationary channel, for various system configurations. The minimum EMSE occurs at the

optimum choice for the step size and is found via a first order approximation for the EMSE

function, as given in (2.45). The relative performance of the two techniques is explored in Fig.

3.14 for differing dimension receivers as a function ofTr(Q). The parameter L corresponds to

the factor by which the LR spreading codes are longer than the HR codes and thus L also

corresponds to the number of parallel branches and number of frequency shifts in the filter bank

and FRESH architectures respectively. For L =2,4,8 the HR code length is 16, and for L =16

the HR code length is 8, where orthogonal Gold codes were used. In all scenarios there are 3

HR users and 3 LR users and a MAl ratio of OdB. Fig. 3.14 shows that the relationship between

the minimum EMSE for both architectures is not affected by the variability of the channel as the

filter bank architecture always yields a marginally lower minimum EMSE over a large dynamic

range ofTr(Q). It can also be seen from Fig. 3.14 that this relationship is maintained as the

period of the interference (and thus the dimension of the receivers) increases.



Chapter 3. Constant Modulus Based Cyclic MUD 95

3.8 Summary

This chapter considered the development and analysis of new blind adaptive cyclic MUD

algorithms based on the CMA. These algorithms are important for the suppression of PTV

interference sources such as MAl in multi-rate DS-CDMA systems or NB! arising in DS­

CDMA overlay systems since they exploit the cyclostationary property of the interference

sources. The system model presented in Section 3.3 covered the basics of multi-rate OS-COMA

systems and discussed relevant PTV filtering architectures. The equivalence of the filter bank

and FRESH architecture was also established in this section for completeness. The FRESH

architecture was chosen as it is a more flexible architecture for the implementation of PTV

filters (in terms of computational complexity) as suboptimal structures may be derived.

The filter bank, FRESH, and suboptimal FRESH MMSE receivers were defined in Section 3.4.

A novel study into the relative performance of the different suboptimal FRESH receivers was

performed since no theory exists to predict the optimal set of frequency shifts for a given

dimension of receiver. This novel study also served to illustrate the flexibility of the FRESH

architecture relative to the filter bank receiver, and was also useful as it corroborated the

particular choice of suboptimal FRESH receiver that was employed used in this thesis.

In Section 3.5 the problem of low complexity, robust, fast converging blind adaptive cyclic

MUD was dealt with by proposing the use of the LCCMA algorithm on the FRESH and

suboptimal FRESH receiver architectures. This section also showed how conventional code­

aided blind adaptive MUD algorithms may be modified such that they can also operate on the

FRESH architecture, thereby creating new blind adaptive cyclic MUD techniques. An RLS

update procedure for the FRESH-LCCMA was also given in this section.

The proof of the convergence of FRESH-LCCMA was given in Section 3.6 thus ensuring the

robustness of the new scheme. An extension of the adaptive performance analysis presented in

Chapter 2 was also performed in this section and it was shown how this work could be used to

analyse the relative adaptive performance of algorithms implemented on either the FRESH

architecture or the filter bank architecture. Prior to this work, no conclusions could be drawn as

to which architecture would yield superior performance.

A thorough investigation into the performance of the new algorithms was made in Section 3.7

via computer simulation and also through the adaptive performance analysis, that was

developed in this chapter. The operation of the adaptive algorithms on the different suboptimal

architectures was shown. The performance ofthe FRESH-LCCMA was evaluated by comparing

its transient and steady-state behaviour with existing blind adaptive algorithms that were also

explicitly developed for cyclic MUD. It was established that new FRESH-LCCMA has

excellent adaptive performance characteristics relative to the existing schemes and at a

substantially lower computational complexity. The performance of the different code-aided

blind adaptive cyclic algorithms was compared to non-blind adaptive schemes and it was shown
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that the constant modulus based schemes compared favourably with them in terms of

convergence speed and steady-state performance. The FRESH-LCCMA adapted via a RLS

procedure was shown to have superior performance compared with previously proposed cyclic

MUD schemes, owing to the superiority of the constant modulus cost function over the MOE

cost function. The results section also demonstrated the analytical framework in which the

relative performance of the two approaches for the implementation of PTV filters, the FRESH

filter and filter bank, may be compared. The adaptive performance of the FRESH-LCCMA and

the filter bank implementation were compared using the tracking analysis and it was shown that

the filter bank architecture has only a marginal performance advantage over the FRESH

architecture, but obviously lacks the flexibility of the FRESH architecture.



Chapter 4

Impact of Channel and Implementation Impairments

4.1 Introduction

This chapter is concerned with the performance analysis of constant modulus based blind

adaptive MUD's whilst considering the effects of realistic channel conditions, implementation

limitations, and other non-ideal aspects associated with realistic systems. This chapter therefore

extends the analytical framework developed in Chapter 2 and applies it to pertinent issues

associated with both conventional blind adaptive MUD as well as the cyclic MUD algorithms

developed in Chapter 3. The issues dealt with in this chapter have thus never previously been

considered using the aforementioned analytical approach. If they have been considered at all, it

is generally via computer simulation only.

The first set of issues is related to limitations in the estimation hardware at the receiver and the

resulting impacts they have on the adaptive performance of the receiver. The first estimation

issue that is considered is that of the estimation of the desired user's amplitude. It was shown in

[31], [40], and [30] that LCCMA is only ensured to lock onto the desired user if 3A
1
2 :2': ~.

Also, for optimum adaptive performance, ideally IS == A1
2

, and therefore a fairly accurate

estimation of the desired user's amplitude is required. The effects that amplitude estimation

error has on the adaptive performance of LCCMA are quantified in this chapter using the

steady-state and convergence analysis of Chapter 2. The second issue related to estimation error

that is dealt with in this chapter is the effects that mismatch have on the adaptive performance of

blind adaptive MUD's. Mismatch is deemed to have occurred when the desired user's signature

sequence expected at the receiver is different to that which is actually received. Multipath

propagation through the wireless communications channel (as well as other non-ideal

characteristics) results in distortions to the desired user's effective signature sequence. Optimum

reception of the desired user is only possible using the code-aided blind adaptive MUD

algorithms if this effective spreading code is accurately estimated. The effects that mismatch

have on the steady-state, tracking, and transient performance of the code-aided blind adaptive

MUD's are studied in this chapter.

The next issue associated with realistic implementations that is considered in this chapter is that

of timing jitter at the receiver. The high data rates that characterize future generation wireless

communications systems, leads to inevitable timing jitter when sampling the received baseband

signal. The question of the robustness of the cyclic MUD's to timing jitter, especially when

implemented using frequency shift (FRESH) filters, was raised in [77], as it is an important

design consideration. This chapter extends the work of Chapters 2 and 3 by considering the

impacts oftimingjitter on the adaptive algorithms, using the steady-state and transient analyses,

97
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and thus predicts the reduction in performance that the adaptive filters II1Cur, relative to the

optimal filters, as a function of jitter variance. Modifications to the LCCMA are also made in

order to improve the robustness of the algorithm to timing jitter. The analytical framework

developed in Chapter 3 is thus used to show the different sensitivities that the filter bank and

FRESH architectures have to timing jitter.

Another important issue associated with realistic implementations is the effects of fixed point

implementation. The feedback approach was explicitly applied to the analysis of fixed point

implementations in [89] and [90], and consequently these issues are not revisited in this chapter.

The relative adaptive performance of the canonically and non-canonically constrained LCCMA

in a Rayleigh fading channel is also considered in this chapter. Rayleigh fading is characteristic

of wireless communications channels. Computer simulation results are used to illustrate the

differing tracking requirements that are imposed by the differing constraints. An illustrative

example is then used to verifY the different adaptive performance levels of the two algorithms in

a Rayleigh fading channel.

The final set of issues that is dealt with in this chapter is related to particular characteristics of

DS-CDMA system implementations. These include the operation of the LCCMA in an

asynchronous DS-CDMA system. The proof of convergence of the LCCMA in an asynchronous

DS-CDMA is explicitly derived in this chapter, as previous analyses only considered

synchronous systems. The trade-off between increasing the window size and the reduction in

performance associated with the reduced tracking capability of a longer filter is examined using

the adaptive performance theory developed in Chapter 2. DS-CDMA systems overlaid with pre­

existing narrow band services can be greatly enhanced through interference suppression

techniques, as discussed in Chapter 3. It is possible to employ non-PTV techniques to

simultaneously suppress NB! and MAl [76]. However, there is a high level of correlation

between successive received samples of NBI, which are not conducive to stochastic gradient

based techniques. This phenomenon, as well as the exact adaptive performance of LCCMA in

suppressing NBI, is considered in this chapter via an extension of the theory developed in

Chapter 2.

4.2 Amplitude estimation error

Correct amplitude estimation is vital for optimum performance of the LCCMA since the steady­

state performance and convergence speed of LCCMA are both affected if AI is incorrectly

estimated. The accuracy of the steady-state and convergence analysis of the LCCMA to predict

these effects is verified in Fig. 4.1 via a comparison to the ensemble average of] 00 independent

simulation runs. A ]0 user system was considered where the MAl ratio was 3dB's, SNR was

20dB's, and all the users transmitted synchronously using length 31 Gold codes. The step size

was fixed at 10-3
.
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In Fig. 4.1, both the steady-state and the transient analysis are observed to correctly capture the

effects of incorrectly estimating the desired user's amplitude. The desired user's amplitude Al

is held constant at 1, while ~ is varied from 1 to 0, which models correct estimation to

complete underestimation respectively. As Al is increasingly underestimated, the convergence

speed slightly increases, but the steady-state EMSE also increases, resulting in a drop in output

SINR. The performance loss is thus fully quantified as a function of estimation error. The

effects of underestimation are important as it is common practice to underestimate the value of

AI to ensure stability of the LCCMA [30].

The LCDCMA has the advantage that it does not require any amplitude estimation of the

desired user. The steady-state and transient analysis are thus useful to predict how accurately the

amplitude needs to be estimated in order for the LCCMA to yield a performance gain over

LCDCMA. An illustrative example is provided in Fig. 4.2 where a 10 user system with a 20dB

SNR and 3dB MAl ratio is considered. The step size of both the LCCMA and LCDCMA is set

to 10-3 and ~ =1.4, which corresponds to an overestimation of 18% by the LCCMA (if it

normally sets ~ =A1
2

) since AI actually equals 1). For the system configuration under

consideration, the learning curves of both algorithms are nearly indistinguishable while they

converge to approximately the same steady-state STNR level. This analysis therefore shows that

it would be advantageous to employ the LCDCMA if it is known that the estimation error will

be more than 18% in such a system. The accuracy of this theoretical cross over point is verified

in Fig. 4.2 via the superimposition of the average learning curve of the SINR of 100

independent simulation runs, for both algorithms.

R
2
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R~== 0.50
...... , \ ... ,.' ...

,... : .... ~ ...... -:~, ..... _,~ .............: _-.....:...::.~.::.::-;."" ........ ,~.":'- .... ,_._.~._.~:- -: ..... :
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Fig. 4. I. Theoretical and simulated transient SINR behaviour of the LCCMA detector at different levels of the desired

user's amplitude's underestimation.
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Fig. 4.2. Theoretical and simulated learning curves for the SINR of LCCMA and LCDCMA when Rz = 1.4 and

AI = I.

The estimation of the desired user's amplitude is even more critical to the effective operation of

the FRESH-LCCMA. The sufficient condition for convergence of FRESH-LCCMA was

derived in Section 3.6.1, and it was shown there that this condition is stricter than the

conventional LCCMA. Assuming that the receiver sets,

(4.1 )

where A: is the receiver's estimate of the desired user's amplitude, then the LCCMA will

converge in the mean if the receiver overestimates AI by no more than 73.2% (since 3A
I
2

;:::: Rz
for convergence). The FRESH-LCCMA is more sensitive since AI may not be overestimated at

all. This increased sensitivity is illustrated in Fig. 4.3 where the FRESH, filter bank, and non­

PTV versions of the LCCMA are run concurrently with Rz =1.2 (for all the algorithms) and

AI = 1, which corresponds to an overestimation of approximately 10%. A 25dB SNR system,

with 3 HR and 3LR users (as per the standard system setup in Chapter 3) with a MAl ratio of

OdB was considered. A step size of ]0-2 was used for the FRESH-LCCMA and non-PTV

LCCMA, and 4x 10-
2

for the filter bank implementation of LCCMA. In Fig. 4.3 the FRESH­

LCCMA is observed to initially converge towards the MMSE receiver, but after approximately

]2000 iterations, diverges due to the presence of alternate local minima on the FRESH-LCCMA

cost surface. The non-PTV LCCMA and filter bank implementations are observed to operate

without such incident due to their greater tolerance to amplitude overestimation.
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Fig. 4.3. Increased sensitivity of FRESH-LCCMA to amplitude overestimation.

4.3 Mismatch

4.3.1 Adaptive performance analysis

In a non-stationary or multipath channel, the effective spreading code received within the

observation window of the receiver needs to be estimated. It is assumed that the spreading code

estimator produces a non-biased estimate of the desired user's spreading code with finite

precision. The finite precision causes mismatch between the actual received spreading code and

that expected at the receiver. The finite precision effects are modelled by adding a Gaussian

random vector to the actual received spreading code such that the estimate of the desired user's

spreading code is given by,

Sill (i) =SI (i) +"111 (i) (4.2)

where "Ill has covariance matrix (Tt;,I . To compute the effects of mismatch on the EMSE, the

formula for the output of the adaptive filter given in (2.59) is modified using the canonical

representation of the optimal (MMSE) filter and the receiver gain B,

( ") _ B ( ( ") "1'/ ( .))W "1'/ I - - SI I + w.l I
Al

(4.3)

where w:t is the component of the optimal fi Iter orthogonal to SI' The code constrained

adaptive receivers compute the tap weights using w (i) = Sill (i) + w.l (i) as they only adapt the

filter component orthogonal to the desired users spreading code. The output of the filter may

now be expressed as,
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y (i) = ~ (s, (i) + 011/ (i) + W 1- (i))1' r (i)

= ~ (WO!'I (i) +"11/ (i) - ~w1- (i))1' r(i)

=eb, +M(i)+v(i)+t(i)-e;(i)

102

(4.4)

where t(i) = ~ 0;'; (i)r(i) and is the mismatch energy at the output of the filter, and e; (i) is the

a priori estimation error associated with W 1- (i) . To simplify the EMSE expression, the output

MAl plus noise is lumped with the output mismatch energy to create a new term

v(i)=M(i)+v(i)+t(i). This new term has a Gaussian distribution v-N(O,ij) where

7]-2 =W1' C+w +..!L(j2Tr(C) and C+ is the covariance matrix of the received vector of
opt op! A

J
111

samples without the component from user 1. The EMSE can then be spl it into two terms:

E { e~ (i)}=E { (~W l' ( i) r ( i) )
2

}

=E { ( (~w°j" (i) - 0 11/ ( i) )l' r (i) )
2

}

=E{(e;(i)f}+(j,;, Tr(C)

(4.5)

sll1ce "II/(i) and r(i) are independent. The quantity E{(e;(i)f} is computed as before using

the feedback approach, and (j,;, Tr (C) is an irreducible term associated with the mismatch.

Under mismatch conditions (2.35) no longer closely approximates the true value ofTr(C 1-) ,

which is now computed using the expression given for C 1- in (4.6). The simplified fundamental

energy preserving equation, given in (2.41) is now expanded using the expression for y given

in (4.4) substituted into the formula for Fe as before. The resulting expression may be greatly

simplified considering the mutual independence of {bl ,M,v,l, eJ .A summary of the results of

these simplifications for various algorithms are given in Table 4.1. For all the algorithms

considered in Table 4.1 the receiver gain e=AI . For the case of the non-canonical LCCMA

[30], the results are the same as for the canonical LCCMA exceptRz =I, and the receiver gain

e is I.

The transient analysis requires the covariance matrix of the driving vector. Since the driving

vector may also be written as r, (i) =Br(i), where B=1-s S1' and B is now random it can
L 111 111 ,

be shown that,

where,

{( l' ) ( l' )1'}=E l-slI/slI/ C l-slI/slI/

-C-CE{s s1'}-E{s sr}C+E{s rC 1'}- m 111 m m mSm SmSm

(4.6)
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E {S1IIS;,:Cs1IIs;,:} = 2 (a,) + SIS;') C ( a,~,1 + sJs;')

+ s;'CsJ (a,) - SIS;') + a,~, Tr(C) ( a,~,1 + SIS;')

C =E {rrT
} =SAAST + a 2

1.

A summary of the expressions for he; and hll are given in Table 4.3. Closed form expressions

have been given for C.L' hr;, and h
ll

and thus the transient performance may be computed using

(2.49). The EMSE is assumed to be Gaussian and thus the theoretical learning curve for the

output SINR may be constructed using,

82

SINR(i) = -2 e)'77 + ( 1

(4.7)

It is assumed that the receiver is correctly initialised to the single user matched filter, and so the

starting point of the state-space recursion is deterministic, with ~ computed uSll1g

6.W.L (0) =w,,!" -SI'

Table 4.1, EMSE formulas for a non-stationary channel with mismatch,

I EMSE expressionF,.Algorithm

LCCMA* (CMA2-2, y(y2 _ R2) J2(2 +Jl=G+T.(KJ(J +K2C +Kl + Ko)
Canonical)

LCCMA (CMA 1-2) RI sign (y) - Y G+~( (RI - A1)2 +fj2)
I-T

Sato
G+~((1-Al/+fj2)sign(y)-y

I-T

MOE
G + I ~T ( AI

2+ fj2 )-y

Where T=(,l1/2)Tr(C.l) (fornormalisedversionsT=;"1/2)

G=Tr(Q)I2,lL

fj2 is the output MAL plus noise plus mismatch variance.

* See Table 4.2 for {J2,JpKJ,K2,KI,Ko}

Table 4.2, Coefficients for LCCMA EMSE expression with mismatch,

Coefficient Value

J2 3

15

K2
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Table 4.3. ha and hG for transient analysis with mismatch.

Algorithm
h = E{ea{i)F;,{i)} hu = E{F;,2 (i)}

G E{e,~(i)}

LCCMA* (CMA2-2, J2S
2 (i)+J1 KJSJ(i) + K2C (i) + Kl(i) + K"

Canonical)
LCCMA (CMA 1-2) 1 (R1_AI )2 +f/ +S(i)
Sato 1 (AI - 1)2 + il 2 +S(i)
MOE 1 AI

2 + il 2 +S(i)

4.3.2 Results

104

The accuracy of the mismatch analysis is confirmed via simulation. The EMSE for the tracking

results (Fig. 4.4-Fig. 4.6) were obtained once the algorithm had reached the tracking phase, and

calculated as the mean square value of ea (i) ~ f1w T (i) r (i) over 105 iterations.

Fig. 4.4 compares the EMSE of the LCCMA, MOE and Sato cost functions when there is no

mismatch. A 10 user system with a 20 dB SNR, and a 3 dB MAl ratio was considered. It was

found from the simulation that Tr (Q) == 2.4 xl O--{j . This figure is provided as a reference for the

situation considered below it, Fig. 4.5, where a mismatch level of (J'2 =10-4 is considered.
/11

From Fig. 4.5 it is evident that the presence of mismatch does not affect the value of the

optimum choice of Jl to a noticeable extent, but the increase in EMSE is fully accounted for by

the analysis. This phenomenon is more clearly evident in Fig. 4.6 where the tracking

performance of the LCCMA is plotted for different amounts of mismatch. The same system

configuration as Fig. 4.4 and Fig. 4.5 is used in Fig. 4.6. The accuracy of the analyses in Fig.

4.4-Fig. 4.6 validates the assumptions used therein.
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Fig. 4.4. Tracking performance of different algorithms with no mismatch present.
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Fig. 4.5. Tracking performance of different algorithms with mismatch: a,; = 10-4 .
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Fig. 4.6. Tracking performance of LCCMA for different amounts of mismatch.

The transient analysis is verified in Fig. 4.8, where the effects of mismatch are clearly evident

by comparing this figure to the case where there is no mismatch given in Fig. 4.7. The transient

simulation results were computed from the average output SINR from 100 independent

simulations. For each simulation the receiver was initialised to the single user matched filter and

then adapted at the bit rate for 1000 bits. The same system as defined for the tracking analysis

above is considered, where the mismatch is (J',~ =10-4 . The step size of each algorithm was set

to 10-3
. The time evolution of the output SINR for the three different algorithms (under

mismatch) is accurately predicted by the analysis. The LCCMA is still seen to be the fastest

converging of the three algorithms for a given step size. Comparing Fig. 4.7 and Fig. 4.8 it can

be seen that the convergence speed and steady-state SINR of the algorithms is affected by the

presence of mismatch. Mismatch causes the steady-state MOE SINR to drop by a further

0.55dB and the steady-state LCCMA and Sato SINR by approximately IAdB's. These are

significant margins thus illustrating the importance in quantifying the EMSE of the adaptive

receivers under mismatch.
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Fig. 4.7. Transient performance showing time evolution of SINR when there is no mismatch present. Receivers all
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Fig. 4.8. Transient performance showing time evolution of SINR when mismatch is present where 0',;, = 10-4.

Receivers all initialized to the single user matched filter.
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4.4 Receiver timing jitter

4.4.1 System model

108

Timing jitter at the receiver causes a misalignment between the processing window at the

receiver and the bit epoch of the desired user. The same receiver model as given in Chapters 2

and 3 is considered here: the receiver samples the output of a chip-matched filter, the samples

within processing window i are stacked to form vector r(i), which is used to detect bl (i),
which is the ith bit of the desired user. This section considers the case where processing window

i spans bit interval i of the desired user, and the detector operates on a symbol-by-symbol basis.

For the sake of brevity only, this section considers the case of rectangular shaped chip pulses

and a sample rate equal to that of the chip rate. Given timing jitter c(i), which falls in the

interval [ -T;;,I /2,T...1 /2] with a particular statistical distribution which is dealt with later, the set

of observables within processing window i may be recast as

1j(t)=r(t)rect7b" (t-iT",1 -c(i))

Under the conditions outlined above, the nth sample of r; (t) may be expressed as,

[
. ] 1 !"+I)Tc+E(i)r(l) =.p: r(t)dt for n=O,I, ... ,N-I.

11 T 117; +E(i) I,.

N of which are then concatenated into the received vector of samples,

K

r(i) = Albl (i)s~1/ (i) + :L>k (i) + n(i)
k;1

(4.8)

(4.9)

(4.10)

where SI (i),Zk (i), and n(i) are the discrete-time representations of: the desired user's

signature waveform, the MAL component attributed to user k, and the noise vector respectively.

The intersymbol interference (ISI) from user k due to jitter is modelled as another source of

MAL and hence there is a ZI (i) term in (4.1 0). The desired user's effective signature waveform

during bit epoch i is given by

(4.11 )

where SI is the discrete representation of the spreading waveform under zero-jitter conditions

and is time invariant, <PI (i) is the inter-chip interference (lCI) due to jitter given by,

ifc(i)~O

ifc(i)<O
(4.12)

where Sk [n] indicates a downward shift of the elements of vector Sk by n elements, with

replacement by zero. Let XI (i) be the ISI due to jitter given by

ifc(i)~O

if c(i) < 0,
(4.13)
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and so z\ (i) =XJi). The discrete MAl samples corresponding to the other HR users are

similarly composed oflCI corrupted signature sequences and ISI components,

(4.14)

Let SiR (i) be the effective spreading sequence of the kth LR user within processing window i

under zero-jitter conditions, then clearly SiR (i) is PTV in i with period L. Taking this into

account, the MAl from the other LR users may be similarly constructed as per (4.14).

The timing jitter (or error) E (i) of processing window i is given by

(4.15)

where 1;;1 (i) is the receiver's estimate of the start time of the desired user's ith bit. The timing

error distribution is derived from the phase error distribution of a phase locked loop (PLL)

which is modelled using a von Mises/Tikhonov distribution [91], the probability distribution

function (PDF) of which is given by,

]
p(e)= () exp(KcoS(e-a))

2Jrlo K
(4.16)

where 10 (.) is the modified Bessel function of the first kind of order 0, K is the concentration

parameter (large K corresponds to very small phase error) and a shifts the position of the peak

by a radians. It is assumed that the timing error is unbiased and thus a =0. The von

Mises/Tikhonov distribution distributes the bit timing phase e(i) error between [-Jr,Jr]

radians, which maps the timing error E(i) into the interval [-Z,I /2,~.,1 /2] . A histogram of a

von Mises/Tikhonov distribution is given in Fig. 4.9 for illustrative purposes. For the scale of

the timing jitter under consideration in this thesis, it is possible for the von Mises/Tikhonov

distribution of e to be approximated with a zero-mean Gaussian distribution with variance 1/K.
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Fig. 4.9. Sample van Mises histogram (K= I, a = 0) compared to a Gaussian PDF whose variance parameter was

set to the same variance as the sample van Mises data.

4.4.2 MMSE detection

When jitter is present, the periodicity of C(l) is destroyed, and thus the advantages of PTV

filtering are lost. To restore the periodicity, the point MMSE filter, as given in (3.23), is not

used, but rather C(l) is redefined as the time-average:

(4.17)

where,

if i =I, I ± L, I ± 2L, ...

otherwise.
(4.18)

An exponentially time-windowed version of (4.17) may also be employed in order for a slowly

time varying channel to be tracked. Also, it is not realistic to assume that a stochastic gradient

algorithm could track the uncorrelated jitter from bit epoch to bit epoch, and therefore the time­

average MMSE receiver defined using (4.17) is applicable.

This time averaged covariance matrix may be split into fixed and PTV components that

correspond to the HR users plus noise, and the LR users respectively,

(4.19)

Denote the number of HR users by K' and the number ofLR users by K" , then by defining the

matrix notation,

(4.20)
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it is possible to express C HR with,

CHR =(1- 2E{I£J} + E{£2})(SHR (O]AHRA~RS~R (0])

+~E {£2}(SHR [+ I]AHRA~RS~;11 [+ 1] +SHR [-I]AHRA~RS~R [-I])
2

+~(E{I£I} - E{£2})(SHRAHRA~RS~R [+1] +SHR (+I]AHIIA~RS~R

+SHRAHRA~RS~R [-1] +SHRAHRA~R (-I]S~R)

11 1

(4.21 )

(4.22)

+~E{£2}(SHIi [N -1]AHRA~IiS~R[N - 1] + SHIi [1- N]AHRA~IiS;-;R (1- N])
2

wh ich is made up of terms from the current bit epoch (SHR [0] ), the ICl (S HR [+1], SHIi [-1]) ,
the cross terms between the current bit epoch and ICI, and finally the ISI components

(SHIi[N-l], SHIi[I-N]), as given in (4.11)-{4.l4). The above expression is derived by

making use of the fact that 50% ofthe time £;::: 0 and the other 50% of the time £ < 0, and also

using the fact that E{bk(i)bk(i-l)}=O, and E{bk(i)bk(i+I)}=O.

For a similar expression for the PTV component C LlI (I) ofthe covariance matrix define,

SLII [n] =[s K'+I [n] ,S2 [n], ... ,sK' [n]J

ALii =diag([ AK,+I" .. ,AK,])

(4.23)

(4.24)

and define the partitioning of SLI/[n] into L blocks each having the same dimension (NxK")

with,

(4.25)

CL/I (I) is then given by a similar expression to (4.22) where SHR [n] is replaced by S~.R [n] and

A HIi is replaced by Al.R.

The values E {I£I} and E {£2} , as appears in (4.22), may be approximated by rj~2K7C3 and

1'..2/(4Klr 2
) respectively, using the Gaussian approximation for the von Mises distribution.

When the jitter becomes more severe (smaller K) the Gaussian approximation becomes less

accurate and more accurate values should be used which may be computed via numerical

integration over the von Mises PDF. Numerical integration is required as it is not possible to

express E {I£I} and E {£2} with closed form solutions.

4.4.3 Adaptive performance in the presence of jitter

The impacts of timing jitter at the receiver on the adaptive algorithms are explored in this

section. The relative effectiveness of the filter bank and FRESH architectures under jitter
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conditions is evaluated via the steady-state and transient analysis of the adaptive algorithms.

This section details the new elements required to extend the analysis of Chapters 2 and 3 to

account for the presence of timing jitter at the receiver. This section therefore details: how the

output of the filters may be described in terms of deterministic quantities, and some new

assumptions that are required to compute the EMSE.

To express the output of the filters in terms of deterministic quantities, the same approach as

used Chapters 2 and 3 is applied here where the output of the filters is described in terms of the

optimal filter coefficients and the a priori estimation error. The output of the Ith filter in the

filter bank receiver may then be expressed using,

y (i) =[( W~'I'I (I) u(i)) + v(i) - e",1- (i) ] ~ (i). (4.26)

where v is the MAl (containing ISI and ICl components) plus AWGN at the output of the

optimal filter. The signal associated with the desired user's data symbol within the current

processing window is given by,

The output ofthe FRESH filter may be similarly expressed,

y (i) =(w~" ii (i))+ v(i) - e",1- (i)

(4.27)

(4.28)

where ii(i) is given in (3,72). It is assumed that w~;" (l)u(i) and w~,ii(i) are zero mean and

uncorrelated with the associated {v,e",J terms. This may not hold in general but leads to a

good match between theoretical and simulation results. It is also assumed that the higher

moments of W~I'I (I)u(i) and w~"ii(i) are not significantly affected by the presence of jitter

and thus,

E{(W;'I'I (I)u(i)t} = (W~'I'I (I)UW"I'I (I)f
E{(wH ii(i))2k} _ (- H ir )k

01'1 - W"I'I WOI'I .

(4.29)

(4.30)

This assumption is confirmed in Table 4.4 where the approximation is observed to hold closely

even under severe jitter conditions (K= 2.3 ).The approximation is observed to hold more

closely as the amount ofj itter decreases ( K =23 ) as expected.

The covariance matrix of the component of the received vector of samples associated with the

desired user is given by,

U =E{u(i)u T (i)}

=AI
2
[(1- 2E{lcl} +E{c2})(5g) +~E{c2}(51 [+1]5: [+ I] +51 [-1]5: [-I]) + (4.31)

~(E{lcl} - E{c
2
})(5g [+1] +51 [+1]5:' +518: [-1] +8\ [-1]8:)J
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Table 4.4. Confirmation of higher order moments of w~I"u (i) not being affect by j itter.

I TheoryI Simulation1\ Parameter I Term

E{(w~;"U(i)n 0.870 0.867

2.3 E{(W:"U(i)n 0.767 0.757

E{( w~;"u(i))6} 0.685 0.658

E{(w~;"u(i)n 0.951 0.951

23 E{( w:""u(i)n 0.905 0.904

E{(w:.;"U(i))"} 0.863 0.860

Simulation setup: 25dB SNR, OdB MAl, 15 users all using

length 31 Gold codes. Average from 105 iterations.

and iJ is the block diagonal matrix with U along the main block-diagonal. The filtered MAl

(containing ISI and ICI components) plus AWGN at the output of the optimum filter is again

assumed to have a Gaussian distribution, the variance of which is given by (3.76) and (3.77) for

the lth filter in the bank and the FRESH architecture respectively.

The required elements have been presented and the rest of the steady-state and transient analysis

follows as per the procedure laid out in Chapters 2 and 3.

4.4.4 A note on the convergence of LCCMA in the presence of jitter

When there is significant timingjitter at the receiver the average effective spreading code of the

desired user may differ significantly from the non-jitter affected spreading code that is expected

at the receiver. Although the LCCMA is significantly more robust to signature sequence

mismatch compared to the MOE algorithm [27], convergence towards the MMSE filters as

defined in (3.22), (3.24), and (3.26) cannot be guaranteed. A similar situation arises in an

unknown multipath channel where the LCCMA tends to suppress multipaths as opposed to

combine them. This ill-convergence associated with timing jitter is avoided in this thesis by

modifYing the update step of the adaptive algorithm in the same way that the constrained MOE

algorithm is in [25], thereby creating a jitter resilient LCCMA. This is achieved by adding a

small proportion (VI) of the adaptive component of the filter coefficients to the projection ofthe

gradient of the cost surface orthogonal to the fixed component of the filter coefficients. The

update step of the FRESH-LCCMA (for example) now becomes,

W1. (i + I) =(I - j.L VI ) W1. ( i) + j.LY (i) F: (i) r1. (i). (4.32)

The parameter VI thus counteracts the effects ofjitter and enables convergence to a point much

closer to the true MMSE solution, as is corroborated by simulation results. The optimal filter

coefficients of the constrained MOE cost function are given in [25]. This chapter therefore
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assumes that the optimal constrained LCCMA filter coefficients are closely approximated by

the true MMSE filter coefficients.

4.4.5 Results

In Fig. 4.10 the convergence dynamics of the LCCMA on the three architectures is compared in

the presence of timing jitter at the receiver. The jitter parameter K was set to 2.3 which

corresponds to a standard deviation in the timing error E of 12% of 'Z. The constraint

parameter VI was set to 0.01. The SINR curves are the ensemble average of 100 independent

simulation runs. The same system settings as Fig. 3.5 were used: 25dB SNR, OdB MAL ratio, 3

HR and 3 LR users, a step size of 10-2 for the FRESH-LCCMA and non-PTV LCCMA, and a

step size of 4x 10-2 for the filter bank implementation ofthe LCCMA. Unlike Fig. 3.5, the filter

bank and FRESH architectures no longer have equivalent performance levels, rather the filter

bank architecture is observed to be more resilient to timing jitter, as it converges to a higher

SINR level faster. The constrained versions ofthe FRESH-LCCMA and filter bank LCCMA are

observed to enhance the SINR. This enhancement becomes more obvious (as well as for the

non-PTV filter) after more iterations as the SINR levels of the unconstrained algorithms

continue to drop. From Fig. 4.10 the reduction in the maximum attainable SINR level due to

timing jitter can also be seen as the SINR levels of the PTV and non-PTV MMSE filters are

reduced by 3.6dB and 2.1 dB respectively, relative to the non-j itter affected system. The

difference between the MMSE SINR levels and those achieved by the adaptive algorithms, as

well as the convergence curves, are readily predicted via the steady-state and transient analysis

respectively.

In order to illustrate the accuracy of the steady-state analysis, the EMSE is plotted in Fig. 4.11

as a function of the jitter parameter K. The step sizes of the adaptive algorithms were fixed at

10-3
, 8xl 0-3

, and 2 x 10-3 for the non-PTV, filter bank, and FRESH filter implementations of

the LCCMA respectively. The constraint parameter VI was set to 10-3
• The EMSE level

computed from the simulation was the average from 10000 iterations (once steady-state was

reached), then this value was averaged using 100 independent simulation runs. The analysis is

observed to correctly predict the rise in EMSE as the severity of the jitter increases (small K

values). The combination of step size values for the FRESH-LCCMA and filter bank

implementation of the LCCMA was chosen such that the algorithms would have equivalent

performance levels in the zero jitter situation, as seen in Fig. 3.5. This enables a direct

comparison between the EMSE levels of the two architectures. Fig. 4.11 shows that the FRESH­

LCCMA is more susceptible to jitter since it has a higher steady-state EMSE level for a given

amount ofj itter.
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Fig. 4.10. LCCMA Convergence dynamics of constrained and unconstrained LCCMA with timing j itter at the

receiver.
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Fig. 4.11. EMSE of LCCMA as a function ofjitter parameter K.

4.5 Rayleigh fading

Wireless communications channels are subjected to Rayleigh fading when there is no line of

sight between the transmitter and the receiver, which is often the case. The increased tracking

requirements of the non-canonically constrained LCCMA in a fading channel, was discussed in
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Section 2.6.2. This phenomenon is illustrated in Fig. 4.12 for a Rayleigh fading channel via a

plot of Tr(Q1-) as a function of SNR. The value of Tr(Q1-) was computed via simulation by

using the average from 60000 bits in a correlated Rayleigh fading channel, with correlation

function given by,

(4.33)

as defined by lakes model [91]. The normalised maximum Doppler frequency was set to 10-4
•

Such a value for the normalised Doppler frequency would, for example, translate to a vehicular

speed of 15m/s (or 54km/h, 33.5 miles/h) if a user was transmitting at a bit rate of 1Mbits/sec at

a carrier frequency of 2GHz. The number of users was set to 10, and a MAl of 3dB was used.

As the SNR decreases, the optimal LCCMA filter converges towards the MF, and hence the

value of Tr(Q1-) decreases in this direction as the single user matched filter has zero variability

as a function of MAl as the SNR tends to -00 . Over the SNR range illustrated in Fig. 4.12, the

non-canonically constrained LCCMA's Tr(Q1-) is typically 4 orders of magnitude higher than

the canonically constrained LCCMA for the same channel. This is due to the greater dynamic

range that the orthogonal component w 1- of the non-canonically constrained LCCMA uses, as

discussed in Section 2.6.2.

This massive disparity of the two algorithms in a fading channel is illustrated graphically in Fig.

4.13 by comparing the average performance of the two algorithms in a correlated Rayleigh

fading channel. The ensemble average SlNR from 500 simulation runs over the same set of

fading terms is plotted where the time correlation function is the same as that defined for Fig.

4.12. A 5 user system with a 3dB MAl level, j..L =2 x 10-3
, and mean SNR of 10dB was

considered. The average value of Tr(Q1-) over the simulation was 2.2xIO~5. It was assumed

that both algorithms have perfect knowledge of the amplitude of the desired user. The output

SINR of the canonically constrained LCCMA is lower bounded by the analytical expression,

computed at each bit epoch for the set of amplitudes at that point and the average value

ofTr(Q1-) . The inferior performance of the non-canonically constrained LCCMA is evident,

offering only a slight improvement over the single user matched filter.
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Fig. 4.12. The value of Tr (Q-L) for the canonically and the non-canonically constrained LCCMA for the same time­

correlated Rayleigh fading channel, at different SNR's.

-10

15

-5

--e- Optimal (MMSE) SINR
-B- Can. LCCMA
-+- Non-Can. LCCMA
-v-- Single user matched filter
--+- SINR predicted by theory

-IS L--L---"----i.-_-'-_-'----!===:::I:::~:::::I::::'::::::::::::::I:::====:::::::.
o 50 100 150 200 250 300 350 400 450 500

Symbols

Fig. 4.13. The ensemble average SINR showing the inferior performance of the non-canonically constrained LCCMA

compared to the canonically constrained LCCMA in a fading channel.

4.6 Operation of LCCMA in asynchronous DS-CDMA systems

This section formally presents the proof of global convergence of the LCCMA III an

asynchronous OS-COMA communications system. The technique used to prove the global

convergence property of the LCCMA in an asynchronous OS-COMA system follows the same
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technique as that presented in [40]. The derivation presented in this section differs from that

presented in [40] in the definition of the u and u vectors, as well as the block matrix notation

used for the first and second derivatives of the LCCMA cost function, in order to accommodate

the asynchronous data transmission of the various users. In an asynchronous DS-CDMA

system, a performance gain may be had if the size of the processing window at the receiver is

increased. This section also details the application of the tracking analysis to the optimization of

the processing window size in a non-stationary channel.

4.6.1 System model

An asynchronous DS-CDMA transmitter model for the uplink of a mobile radio network IS

considered. The baseband representation of the kth user's transmitted signal is given by

~

Xk(t) =Ak L bk(i)Sk (t - iT -rk)
;=-00

(4.34)

where Ak and Sk denote the amplitude and normalised spreading waveform of the kth user

respectively, and T is the data symbol duration. The relative offset of the kth user's

asynchronous signal is given by Tk , which takes on integer values in the range [ O,N). The kth

user's ith transmitted symbol bk (i) takes on the values {+I,-l} with equal probability. The

spreading waveform takes the form

N-)

Sk (t) =LCk(n)lf/(t-n'(), tE [O,T]
11=0

(4.35)

where N is the processing gain and ck is the kth user's spreading code sequence of±1 's, If/(t) is

the chip pulse shape of duration '( = T/ N. It is noted that Sk (t) only takes on values in the

interval [0, TJ.

The received signal is passed through a chip-matched filter and sampled at the chip-rate. These

samples are concatenated into a length N vector of received samples. Let

sk[rk]=[O, ... ,O,sk(O)""sk(N-rk-I)T be the down shifted (by amountr
k

) version of

discrete signature sequence vector SK , of length N. Define,

Sk =(I/)N)[ck(l), ... ,Ck(N)T

S[O] =[SI [0],S2 [T2 ]"",SK [rKJ]

S [I] =[0, S2 [ - (N - T2 ) J, ...,SK [ - ( N - r K ) JJ

(4.36)

(4.37)

(4.38)

where Sk [ -(N - rk)Jis the up shifted version ofsk , also padded with zeros. The first entry in

(4.38) is the zero vector as the receiver is bit synchronized to the desired user (r) = 0). Using

this notation, the received vector of samples from the chip-matched filter is given by,

r = S[O]Ab(i) + S[I]Ab(i + 1) + n (4.39)

b(i)=[bl (i), ... ,bK(i)T, A=diag([Ap ... ,AK ]), and n(i) is an AWGN vector with

covariance matrix o-2IN • The vector r(i) is filtered by a FIR filter structure, whose coefficients
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T
form the vector w(i) =[w1 (i), ... ,wN (i)J . The desired user, from here on, will be user I. The

output of the filter, which constitutes the decision statistic, is given by

y(i) =w(i/ r(i). (4.40)

Reference [30] showed that the LCCMA converges to a scaled version of the MMSE filter,

which is given by,

C=E{r(i)r(if}

=S[O] AATST[0] +S[I]AATST[I] + (}21.

(4.41 )

(4.42)

4.6.2 Proof of convergence

Define vectors "0 and "I whose elements correspond to the contribution at the output of the

filter of the users' current and successive transmitted bits,

(4.43)

The kth element of "0 and "I are given by respectively,

and (4.44)

The output of the chip-matched matched filter may now be written as

Expanding the cost function in (2.22), we have

(4.45)

(4.46)

Using the relationship in (4.45), the cost function J (w) may be expressed in terms of "0 and

"I USlllg,

(4.47)



Chapter 4. Impact ofChannel and Implementation Impairments

6

5

4

2

o
1

0,5

o
-0.5

-I -I

Fig. I. Surface Plot of LCCMA cost function (4.49) for a two user asynchronous system.

E{(wTrt} = E{ (b~'uob~'uo + 2u;'blb~'uo + u;'blb;u1)2}
K

= 3(u~'uof - iL:(UO,k f
k=1

K

+3( U~UIt-2I(U2,k f + 6(u~uo)(U~'UI)'
k=1

120

(4.48)

since the linear constraint in (2.22) is equivalent to UO,I = I, the cost function in (4.46) can be

written as,

. (T)2 K 4 (T)2
ml~1<b(uo,ul)=3 UoUo -2I(UO,k) +3 u 1 u 1
Un,I-1 k=1

K

-2I(U
"
kf +6(u~'uo)(u;u,)

k=1

-2(u~uo + u;'u 1 ) + Ri·

The stationary points ofthe cost function are found by defining a new column vector

(4.49)

(4,50)

T T
where Uo = [ U O,2" , " UO,K ] ,and u1 = [ U 1,2" , " U1,K ] ' A new cost function may then be defined

in terms of U, which is equivalent to (4.49),

Using block matrix notation, the first derivative takes the form,

(4,51 )



Chapter 4. Impact ofChannel and Implementation Impairments

a(j) (u)

a(j) (u) auo
--=

au a(j) (u)

where the elements of a(j) (u)/auo are given by,

and similarly fora(j) (u)/au, :

a(j) (u) [( 2) 2 ~ 2 ~ 2 J--=4U1,k 3AI-~ +U1,k +3L.u',j+3L. uO,j
~k N N, j# .

for 2 SkS K.

From (4.53) and (4.54), clearly if (3A1
2

- Rn? 0 , then the only stationary point is when

121

(4.52)

(4.53)

(4.54)

(4,55)

which corresponds to the decorrelating detector, since the MAl has been completely removed.

The global convexity of the cost function can be assured by analysing the Hessian matrix

of (j) (u) , Using block matrix notation, the Hessian matrix takes the form

a2(j) (u) a2(j) (u)

a 2(j)(u) a 2- auou,"0=
au2

a2(j) (u) a 2(j)(u)

au1uo a 2-"I
Where the elements of the sub matrices are given by

a(j) (u) ={4(3("~"o) - R; +3( "~'"I)) 1= k

auO.kaUO,l 24uo,kUO,l I*- k

and similarly for,

(4.56)

(4.57)

(4,58)

(4.59)
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(4.60)

When 3A
I
2

- R!; ;::: 0, and thus u=0, then the mam diagonal of the Hessian matrix equals

4(3A
I
2

- R!;) and the off diagonal elements equal O. Clearly under this condition the Hessian

matrix is positive definite, the decorrelating detector is the only stationary point, which is also

the global minimum, and thus global convergence is guaranteed. This is the same condition

which applies to the synchronous system, which was proved in [40].

The cost function as given in (4.49) is plotted in Fig. 1 for a two user asynchronous system. In

this case u = I and u I I =0, as it is assumed that the spreading code and timing of the desired0,1 ,

user is known perfectly. The height of the surface in Fig. 1 is equal to the cost function of the

remaining two degrees of freedom UO,2 and U 1,2' It can be seen that although the curvature of

the cost surface is not constant, there does exist a unique global minimum, corresponding to

U O,2 =U I,2 =0 , which is the decorrelating receiver.

4.6.3 Processing window size optimisation

The performance of the MMSE receiver can be greatly enhanced if the size of the processing

window is increased from one bit epoch to two [60]. However, the tracking ability of an

adaptive filter updated with a stochastic gradient algorithm is inversely proportional to the

length of the filter. The tracking analysis enables a novel study of the optimisation of the

processing window size in a non-stationary channel, since performance gained by the increasing

size of the processing window is tempered by the reduction in performance incurred due to the

reduced tracking abi lity of a longer fi Iter. Increasing the size ofthe processing window comes at

the expense of increased computational complexity, thus it is not worth increasing the

processing window size if an appreciable increase in performance is not realised.

A plot of the mean SINR attainable with a stochastic gradient algorithm as a function of

window size would not follow the same trajectory as the optimal MMSE filter's SINR. The

tracking analysis enables the computation of the optimal filter length, or point at which any

increase in the filter length yields diminishing returns. As an illustrative example of such a

study a 10 user asynchronous OS-COMA system is considered. All the users transmit using

length 31 Gold codes and the interfering users transmit at a level 3dB's higher than the desired

user. The desired user is received at a SNR ratio of 20dB's. The receiver resolves 2 multipaths

per user where the second multipath is 3dB's lower in amplitude relative to the main multipath.

The receiver estimates the effective spreading code of the desired user with a mismatch variance

of (J,;, =10-
5

. A value of 10-6 was used for Tr(Q) when the processing window is of length

3 I, and it was conservatively estimated that the value of Tr (Q) grows by 1% every time the

processing window size is increased by one extra sample. The theoretical EMSE of the LCCMA

runn ing with a step size of 10-4 is plotted as a function of window size in Fig. 4.14. The EMSE

at each choice of window size is computed as the average theoretical EMSE over 105 random
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combinations of relative timing offsets of the asynchronous users, in order to average over the

different cross-correlations between the Gold codes. As expected, the EMSE level is observed

to increase as a function of window size due to the increased tracking requirements imposed by

an increasing filter length. In Fig. 4.15 the mean SINR attainable by LCCMA in the same

system is computed using the different realisations of timing offsets and corresponding

theoretical EMSE levels. The diminishing returns are clearly evident, showing the util ity of such

a study.

4.2

4

3.8

3.4

3.2

3

35 40 45 50 55 60 62

Processing window size (no. samples)

Fig. 4.14. EMSE of the LCCMA as a function of window size in a non-stationary asynchronous multipath channel.
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4.7 Narrowband interference suppression analysis

Simultaneous MAl and NBJ suppression is an important research topic for future generation

wireless communications systems, as outlined in detail in previous sections of this thesis. There

are situations where non-PTV techniques may be considered: when they provide sufficient

levels of performance e.g. [76] and [92], or when it is not possible to employ PTV techniques

due to complexity constraints. The analysis of the LCCMA's capability to concurrently suppress

NBI and MAl is thus important if the suitability of LCCMA to future generation wireless

communications systems is to be established. The steady-state and transient analysis presented

in Chapter 2 is therefore extended in this chapter to account for the presence ofNBJ.

4.7.1 System model

The familiar received vector of samples model given in (2.20) is modified to include the NBJ

component and is given by,

r(i) =SAb(i) + i(i) + n(i) (4.61)

where i(i) is the vector of NBI samples which is assumed to be wide sense stationary, with

zero mean, and covariance matrix Ri' The narrow band nature of this interference imposes a

high level of correlation between the successive samples in i (i) .The model for these samples is

the same as that used in [76] and [92] where it is assumed that they are generated from a second

order autoregressive process with both poles at 0.99.
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The samples of i(i) are therefore generated by filtering white Gaussian noise v(n) through a

second order HR filter whose transfer function is given by,

1
h(;(Z)= 2

(1-0.99z- l
)

I
- 1-1.98z-1 + 0.980 Iz-2

.

The output of this filter is given by,

(4.62)

u (n) =v(n) - ai'u (n - 1) - a;u (n - 2) (4.63)

where a j =-1.98 and a2 = 0.9801, and E{v2 (n)} = O"\~, and E{u 2 (n)} = 0",;. The

autocorrelation function of u(n) is then given recursively by,

r(m) + alr(m -I) + a2r(m - 2) =0 (4.64)

and then Ri is given by the Toeplitz matrix,

r(O)

R = r(l),

r (I)
r(O)

r(N)

r(N-I)
(4.65)

r(N) r(N-I) r(O)

It is possible to solve for r(O) and r(l) in terms ofthe system parameters {a
l
,a2 ,0",,} using the

Yule-Walker equations [67] to yield,

and,

-ar(l) =__1 0",;
1+ a2

The NBI power level is defined in this thesis as,

PNB1 =10 10gla[ ~:; )

which is in dB's relative to the desired user's signal power.

(4.66)

(4.67)

(4.68)

4.7.2 Adaptive performance analysis

The adaptive performance analysis of Chapter 2 is extended to include the effects of NBI by

modifying the expression given in (2.31) that describes the output of the filter in terms of the

optimal filter and the a priori estimation error,

Y(i) =(WO!" - f1w(i)rr( i)

=A1bl (i) + M(i) + v(i) + t(i) + l(i) - ea (i)
(4.69)
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to include the new term l(i)=w~,>U) which represents the NB! at the output of the optimum

filter. The task of solving the simplified fundamental energy preserving equation given in (2.32)

is greatly simplified by exploiting the fact that the terms {M(i),v(i),t(i),l(i)} are mutually

independent and may be lumped into the new term,

vU) =M (i) + v(i) + tU) + IU)· (4.70)

This new term is accurately approximated by a zero mean Gaussian distribution, whose variance

is given by,

E{_(·)2}- T (C-A2 T) + 2 Tr(C)v I - W(JfI/ 1 SI SI W(JfI/ (51/1

=7]2 + (5,~, Tr(C)
(4.71 )

where (52 is the mismatch variance, and the covariance matrix of the received vector of
1/1

samples is given by,

C = SAAS T +Ri + (521,

where a closed form expression for R, was given in (4.64)-{4.67).

4.7.3 Results

(4.72)

The accuracy of the steady-state and transient analysis to capture the adaptive performance of

LCCMA when suppressing both MAl and NBI is verified using computer simulation. A 10 user

synchronous OS-COMA system based on length 31 Gold codes is considered. The desired user

is received at a SNR of 15dB, there is a 3dB MAl ratio, and the step size of LCCMA is set to

10-3
. The ensemble average SINR learning curves are plotted from 200 independent simulation

runs for various NBl power levels in Fig. 4.16. The theoretical learning curves are observed to

correspond closely with the simulation results. The matched filter and optimal MMSE SINR

levels are also displayed in Fig. 4.16 for the different NBl levels. The same simulation is plotted

over a longer time scale in Fig. 4.17 to show that the LCCMA does eventually reach the steady­

state level predicted by the analysis. Fig. 4.17 also illustrates the slowing in convergence rate as

the level ofNBI increases.

It is known that the convergence rate of stochastic gradient descent techniques (such as the

LCCMA) is very sensitive to the eigen-spread of the received vector covariance matrix C. High

eigen-spreads correspond to slow convergence rates. The higher the correlation between the

successive samples in i (i) the larger the eigen-spread in Ri which in turn increases the eigen­

spread of C. (The eigen-spread of a matrix is defined as the ratio between the highest and

lowest eigenvalues of that matrix.) As an example, the eigen-spread of C for the above system

when there is no NB! is approximately 131, with a -3dB NBI source the eigen-spread increases

to approximately 527, which is slightly more than a four fold increase. The reduced

convergence rate of LCCMA is exactly predicted by the transient analysis performed in this

section.
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theoretical steady-state levels of operation.

4.8 Summary

This chapter has examined the impact that pertinent channel and implementation issues have on

the performance of constant modulus based blind adaptive MUD's via extensions to the
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adaptive performance analysis and through performance compansons with alternate cost

functions.

The impact that the finite accuracy characteristic of the channel estimation circuitry has on the

adaptive performance on LCCMA was studied first. It was found that as the desired user's

amplitude was increasingly underestimated the steady-state analysis accurately predicted the

increase in steady-state EMSE and the transient analysis accurately predicted the new learning

curve of the output SINR. This theoretical analysis also proved to be useful in predicting how

accurately the desired user's amplitude needed to be estimated in order for the LCCMA to yield

a performance gain over the LCDCMA. The effects of signature sequence mismatch at the

receiver were also studied in this chapter. The finite accuracy of the channel estimator also

introduces mismatch. The steady-state, tracking and transient analysis was thus extended in this

chapter to include the effects of mismatch. This is important as the analysis and simulation

results show that mismatch can severely decrease the performance of the adaptive algorithms.

The impact that timing jitter at the receiver has on the adaptive algorithms' performance were

also analysed via an extension of the steady-state and transient analysis. This chapter showed

that the FRESH architecture is more susceptible to jitter than the filter bank implementation.

This is contra to the results of Chapter 3 that showed that adaptive algorithms implemented on

both architectures have equivalent performance levels, and thus an important result. A

modification to the LCCMA was also presented which increases the stability of the LCCMA in

the presence ofj itter. The value of such a modification was illustrated via computer simulations.

The operation of the LCCMA in a Rayleigh fading channel was also examined. It was found

that the canonically constrained LCCMA offers superior tracking performance in a Rayleigh

fading channel compared to the non-canonically constrained LCCMA. The operation of the

LCCMA in an asynchronous DS-CDMA system was also studied. The proof of the global

convergence of the LCCMA in an asynchronous DS-CDMA system was given, and a novel

application of the tracking analysis was applied to the optimisation of the processing window

size for an asynchronous multipath DS-CDMA system. Finally, the ability of a non-PTV

implementation of the LCCMA to NB! suppression was investigated via an extension of the

steady-state and transient analysis.
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Conclusion

The central premise of this thesis: that constant modulus based blind adaptive multiuser

detectors provide low complexity, robust, and reliable signal processing techniques for the

enhancement of future generation personal communications systems based on DS-CDMA, was

verified in this thesis. This was achieved via: novel performance analyses of blind adaptive

MUD's, the derivation of novel constant modulus based cyclic algorithms, the rigorous

mathematical analysis of the convergence of the new cyclic algorithms, and by considering the

impacts that realistic channel and implementation impairments have on the performance of

these algorithms.

5.1 Thesis summary

The argument for constant modulus based MUD was made in Chapter 1. The main argument

was that the CMA has been widely deployed in actual blind equalisation applications (and

therefore has a reputable track record in real implementations), and its theory of operation in

such applications is well established. Also, the application of MAl suppression in DS-CDMA

systems is very similar to the blind equalisation problem. Chapter 1 also showed that constant

modulus based MUD has also received much attention from the research community lately, and

that the SGD based techniques offer good performance versus complexity ratios. These schemes

also have a well established theoretical framework in which their performance may be evaluated

and are therefore an important focal point ofthis thesis. Chapter 1 then went on to show that the

adaptive performance of such schemes, such as the LCCMA, has not been dealt with formally in

the literature, and that the suitability of constant modulus based schemes can only be properly

established via a rigorous analysis of their adaptive performance. Another outstanding issue that

was highlighted in Chapter 1 was the need for new constant modulus based algorithms that are

suitable for the suppression of cyclostationary interference sources, since the presence of

cyclostationary interference sources is a trait of future generation wireless communication

systems, e.g. multi-rate MAl and NB! in DS-CDMA overlay systems. Finally, Chapter I also

discussed how the suitability of constant modulus based MUD's can only be fully evaluated if

realistic channel and implementation impairments are considered in the adaptive performance

analyses of the new and existing algorithms.

The first major contribution of this thesis was made in Chapter 2 when the steady-state,

tracking, and transient performance of the LCCMA and other code-aided blind adaptive MUD's

were derived for the first time. Closed form expression for the EMSE for these three phases

were explicitly derived for the LCCMA (based on CMA2-2 and CMA 1-2 cost functions, and for
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both canonical and non-canonical constraints), MOE, Sato, and LCDCMA using the recently

proposed feedback approach [52]-[54], and energy conservation arguments of [58]. Similar

expressions for other blind adaptive MUD's do not exist in the literature to the best of the

author's knowledge, except for the steady-state EMSE of the MOE detector in [25]. This

chapter derived a new more accurate expression of the EMSE of the MOE detector, and in a

much simpler manner than was done in [25]. It was also shown that these EMSE values may be

used to accurately describe output SINR of the MUD in all phases of the adaptive algorithms,

and thus the performance penalty incurred by the adaptive algorithms relative to the optimal

MMSE filter was fully quantified.

The results of Chapter 2 were that the LCCMA incurs very little performance penalty relative to

the benchmark DD-LMS algorithm, and that the adaptive performance of the MOE cost

function is vastly inferior to the LCCMA cost function. It was also shown that the LCCMA has

better performance than the LCDCMA when a perfect estimate of the desired user's amplitude

is known. Since convergence of the DD-LMS algorithm cannot be ensured, and the exact proof

of convergence of the Sato/LCCMA-CMA1-2 cost functions remains an open problem, it was

concluded in Chapter 2 that LCCMA (based on CMA2-2) is a very suitable algorithm for blind

adaptive MUD due to its proven convergence capability and excellent adaptive performance.

The major original contribution of Chapter 3 was the development and analysis of new blind

adaptive cyclic MUD algorithms based on the CMA suitable for the suppression of

PTV/cyclostationary interference sources. The new algorithms were the results of an original

modification that was made to the LCCMA to enable it to operate directly on the FRESH and

suboptimal FRESH filter architectures. The FRESH architecture was chosen as suboptimal

implementations are possible which enable performance and complexity to be traded-off. A

novel study was also conducted into the different MMSE receivers that are possible on the

suboptimal FRESH architectures. This study showed that suboptimal FRESH filters are in fact

suitable and flexible alternatives to the filter bank implementation. The new FRESH-LCCMA

algorithm was shown to exhibit superior performance compared to existing algorithms and at a

substantially lower computational complexity. The operation of alternate cost functions on the

suboptimal FRESH architectures was also demonstrated as well as the operation of an RLS

update procedure for the FRESH-LCCMA for a further performance increase. When updated

with the RLS procedure, the FRESH-LCCMA was shown to have vastly superior performance

when compared to the previously proposed cyclic MUD schemes.

The robustness and adaptive performance of the FRESH-LCCMA was also dealt with

analytically in this chapter. Robustness of the FRESH-LCCMA was proven via a proof of the

global convergence ofthe algorithm. The adaptive performance of this algorithm was quantified

via an extension of the theory developed in Chapter 2. Another contribution of Chapter 3 was

the analytical framework in which the relative performance of the two approaches to the
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implementation of PTV filters, the FRESH filter and filter bank, may be compared. It was

shown that the filter bank architecture has only a marginal performance advantage over the

FRESH architecture for the LCCMA. Prior to this work no conclusions could be drawn as to

which architecture would yield superior performance from the adaptive algorithm.

The main concern of Chapter 4 was the impact that realistic channel and implementation

impairments have on the adaptive performance of constant modulus based blind adaptive

MUD's. The main original contributions of Chapter 4 were thus the study of: the sensitivity of

LCCMA to the error in the estimation of the desired user's amplitude, the effects of signature

waveform mismatch, timing jitter at the receiver, operation in a Rayleigh fading channel,

operation in an asynchronous DS-CDMA system, and the ability of a non-PTV implementation

of LCCMA to suppress NB!.

The study of the sensitivity of LCCMA to the error in the estimation of the desired user's

amplitude was performed using the steady-state and transient analysis. It was found that the

analysis was useful for predicting when it would be more advantageous to switch to LCDCMA

(which does not require knowledge of the desired user's amplitude). The analysis of the effects

of signature waveform mismatch was achieved via an extension of the steady-state, tracking,

and transient analysis. It was shown that even moderate amounts of mismatch may severely

effect the adaptive performance of the algorithms. An aligned problem with FRESH filters is the

performance of the adaptive algorithm under jitter conditions. An extension of the steady-state

analysis of FRESH-LCCMA, to account for timing jitter at the receiver, was performed to this

end. It quantified the performance reduction as a function of the jitter variance accurately. A

useful result of this analysis was the proof that the FRESH filter is indeed more sensitive to

timingjitter than the filter bank implementation. The convergence of the LCCMA under severe

jitter conditions was also improved via a modification to the algorithm which made it more jitter

resilient.

5.2 Future work

Some interesting extensions ofthe work performed in this thesis are possible:

•

•

The application of the feedback approach to schemes that have been proposed to

enhance the speed of convergence of SGD algorithms, e.g. adaptive step size

algorithms [93], and stochastic gradient averaging schemes [94]. The actual benefit of

these schemes could then be quantified.

No theory exists which will predict the optimal set of the frequency shifts for a given

dimension of suboptimal FRESH filter. Reference [60] did mention that this was an

object under current investigation but no papers, to the best of the author's knowledge,

have been published in this regard.
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• The application of constant modulus based MUD to OFDM signalling schemes could

also be considered. Such schemes have been proposed to offer data rates of up to

lOOMb/s for 4G systems. Practical MUD/interference suppression at such high data

rates is challenging due to the processing power requirements. Thus new ideas for

interference suppression on these systems could be developed.
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