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                                                       Abstract 

  

Water scarcity and declining levels of soil fertility are the major causes of low crop productivity 

under smallholder farmers in Southern Africa. A field experiment was conducted in 2015/16 

season at  Fountainhill Estate, Wartburg to evaluate water use, water use efficiency, 

productivity and Land Equivalent ratio in Zea-mays (maize) intercropped with either Cajanus 

cajan (L) Millsp (pigeonpea) or Sesbania bispinosa (Jacq) A. Wright var. bispinosa (S. 

bispinosa).The experiment had 5 treatments: sole maize; sole pigeon pea; sole S. bispinosa; 

maize + S. bispinosa and maize + pigeonpea laid out in a randomized complete block design 

(RCBD) replicated three times. Time domain reflectometry (TDR) probes were placed at 20 

cm, 50 cm and 120 cm below ground level at each treatment component to measure soil water 

content. Sole treatments of maize and pigeonpea had significant (P<0.05) higher WUE of 6.28 

kg/ha mm and 5.77 kg/ha mm respectively. Pigeonpea + maize recorded a significantly 

(P<0.05) higher WUE of 5.47 kg/ha mm. The lowest was recorded on S. bispinosa + maize 

(0.292 kg/ha mm) and sole S. bispinosa (0.425 kg/ha mm) subject to the provision that the 

calculations were based on changes in soil water content rather than actual measurements of 

water uptake by the trees and crops. Sole maize had significant (P<0.05) higher grain yields of 

1867 kg/ha while maize + pigeonpea yielded 604 kg/ha and the lowest maize yield was 538 

kg/ha from maize + S. bispinosa. Pigeonpea had significant (P<0.05) higher seed yield of 1073 

kg/ha for monoculture and 1029 kg/ha for intercrop as compared to 207 kg/ha for sole S. 

bispinosa and 58.3 kg/ha in intercrop. Land Equivalent ratio (LER) was higher in maize + 

pigeonpea (1.23), as compared to maize + S. bispinosa (0.6). Overall sole maize outperformed 

maize + tree intercrops in terms of grain yield. The least grain yield was recorded on maize + 

S. bispinosa which again recorded lowest WUE. Sole pigeonpea had higher seed yield although 

statistically there were no difference with pigeonpea + maize intercrop. In terms of WUE 

similar results were recorded among sole pigeonpea and pigeonpea + maize. It is beneficial to 

have a combination of pigeonpea + maize in smallholder farming systems because pigeonpea 

can act as a ‘risk crop’ during drought years. This combination is also supported by higher LER 

values. Despite low yields of maize which can be compensated by the yield, the practice of 

agroforestry involving pigeonpea saves a substantial (23%) land which can be subsequently be 

used for other production crops.  
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CHAPTER ONE 

1.0 INRODUCTION 

Global climate changes have negatively affected the provision of water to agriculture; however, 

it is one of the major agricultural challenge facing smallholder farmers in sub-Saharan Africa 

(Gregory and Ingram 2000, Fischer et al., 2005, AGRA 2014). It is projected that by 2050 two 

thirds of the World`s population will experience water shortages (Rosenzweig et al., 2004). 

Water is one of the natural resources which will be impacted in an already water-scarce country 

such as South Africa. Natural resources like water need to be used efficiently to increase food 

production among smallholder farmers in South Africa. With increasing populations and more 

pressure on land, increasing outputs per hectare and per unit of water is crucial to improving 

rural livelihoods.   

  

Climate smart agriculture (CSA) is one of the sustainable options which seek to promote 

efficient use of natural resources like water. CSA focusses on proven practical technologies 

such as agroforestry. Agroforestry (AF) is the deliberate incorporation of trees and other woody 

species of plants with agricultural components (Cornell 2014). Unlike monoculture, 

agroforestry fosters an agro-ecosystem that is like that of a natural system while improving the 

productivity and fertility of the agricultural land (Zerihun et al., 2014). The integration of trees 

and shrubs into cropping systems has the potential to improve the use of available water by 

intercepting water that has percolated through the root zone of the agronomic crop. Tree roots 

that access groundwater can increase water use above the levels of rainwater input (Asbjornsen 

et al., 2011). Agroforestry systems may be used to cope with climate change, which is expected 

to have a major impact in sub-Saharan Africa where three-quarters of the countries are 
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predicted to experience unstable water supplies and increased exposure to high temperature 

stress (De Wit and Stankiewicz 2006). Agroforestry systems can improve water productivity 

mainly by two forms. The availability of trees may increase the quantity of water used for crop 

or tree transpiration and may also improve the productivity of the water that is transpired by 

increasing the biomass of trees and crops produced per unit of water used.  

  

Tree species have deeper rooting system as compared to companion crops which have shallow 

rooting system hence trees theoretically utilize water at soil depths beyond the rooting depths 

of crops. Studies by Sekiya and Yono (2004) revealed that deeper-rooting species can lift water 

hydraulically, and providing this water to adjacent crops through a "sprinkler-like" distribution. 

Hydraulic lift is a process by which deep-rooted plants take in water from lower soil layers and 

exude that water into upper, drier soil layers hence it is beneficial to the plant transporting the 

water, and may be an important water source for neighboring plants (Horton and Hart 1998). 

Hydraulically lifted water can promote greater plant growth, and could have essential 

implications for net primary productivity, as well as ecosystem nutrient cycling and water 

balance (Horton and Hart 1998).   

Three studies discovered downward transfer of water to deep soil layers which other authors 

refer it as either “inverse hydraulic lift” (Schulze et al., 1998) or “downward siphoning” (Smith 

et al., 1999). “Inverse hydraulic lift” was demonstrated in dry sand soil over short measurement 

period (~3 days), the results showed that it allows the roots of plants growing in water-scarce 

environments to penetrate dry soil layers and reach deep sources of moisture (Schulze et al., 

1998). Simultaneous cropping has been recommended to improve water use efficiency and soil 

nutrient status in semi-arid regions. Improvement of water use through simultaneous 

agroforestry systems in semi-arid areas is based on assumed root synergistic effect between 
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crops and trees (Ong et al., 1996). Successful agroforestry systems depend on trees capturing 

resources that crops cannot. Crop synergistic effect requires that annual and perennial crops 

should have roots that utilize different soil zones, usually with annual crops exploiting the 

shallow rooting depths, and perennial crops exploiting the deeper zones (Rethman et al., 2007). 

Intercropping trees and crops complement each other in terms of root distributions, with tree 

roots exploiting subsoil and crop roots exploiting topsoil. One of the principal biophysical 

premises of agroforestry in dryland systems is to conserve and maximize the use of limited 

water supplies (Broadhead et al., 2003a, Ong et al., 2006). The logic underpinning agroforestry 

systems is that trees grown in mixtures with crops should either have a beneficial influence, 

whereby crop performance is enhanced, or should exert minimal competitive effects on 

associated crops (Ong et al., 2006). Research carried out by Siriri (2013) suggests that Sesbania 

sesban can be planted on smallholdings without compromising water supply to adjacent crops.  

 

Pigeonpea (Cajanus cajan (L) Millsp) is a multipurpose legume has a potential to improve soil 

fertility. In terms of its ecological services, pigeonpea is useful as an intercrop, in agroforestry 

systems. Thus, it is an important pulse legume grown due to its wide range of products (Dasbak 

and Asiegbu 2009). Pigeonpea is an excellent source of organic nitrogen and nutrient recycling. 

It increases organic matter and improves the soil structure and the soil quality.  

In South Africa, pigeonpea is not widely grown as a field crop. However, pigeonpea can also 

serve as an important grain legume crop that can be used in rural areas for human consumption 

and supplements the range of food crops available. In addition, pigeonpea is usually grown 

singly or as a hedge plant in home gardens or around the sugarcane (Saccharum officinarum) 

fields (Saxena et al., 2001). Mathews (2001) reported that maize can be intercropped with 

pigeonpea. Therefore, maize (Zea mays (L.) is a major cereal crop grown in South Africa for 
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human consumption, for livestock feed and for industrial purposes. Soil moisture stress is a 

problem for many farmers who continue cultivating maize under rainfed conditions. The erratic 

nature of rainfall, including distribution leads maize to severe soil moisture stress; reducing 

yields significantly. Poor soil fertility is also one of the challenges for small-scale farmers 

(AGRA, 2014).   

  

1.1 PROBLEM STATEMENT  

In South Africa, less than 15% of the land is arable. Beside the limited arable land; water 

scarcity and declining levels of soil fertility is another challenges threatening agricultural 

productivity among smallholder farmers. The rainfall is below the world-average, and its 

distribution is unreable. This challenge is persisting each year as evidenced during the 2015-

16 season when significant rainfall events were limited to most of the central regions of the 

country (DWA 2013, RSA Food Security Bulletin - January 2016).   

  

Research conducted on rural small-scale farmers in KwaZulu-Natal has revealed shortage of 

water and expensive chemical fertilizers as major limitations of agricultural productivity 

(Everson et al., 2011). These factors have led to low land productivity. One way to abate this 

problem is to improve land and water productivity through intensification of agroforestry 

systems. Agroforestry systems, (whereby trees are intentionally combined or planted with 

food/forage crops for the benefit of humans and the environment) have been reported to be 

potentially productive in degraded and marginal soils. Simultaneous agroforestry systems 

involving legume trees such Cajanus cajan (L) Millsp (pigeonpea) and Sesbania bispinosa 

(Jacq) A. Wright var. bispinosa (S. bispinosa). intercropped with Zea-mays (maize) can 
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increase productivity through soil nitrogen fixation and improve water use efficiency (AGRA 

2014).   

 

1.2 MAIN OBJECTIVE   

To evaluate simultaneous agroforestry system (maize + legume tree) as compared to sole 

cropping in terms of productivity, land equivalent ratio (LER), water use (WU) and water use 

efficiency (WUE).  

 

1.2.1 Specific objectives 

i. To evaluate water, use and water use efficiency in maize intercropped with either 

pigeonpea or S. bispinosa.  

ii. To evaluate productivity and Land Equivalent ratio of maize intercropped with either 

pigeonpea or S. bispinosa 

 

1.2.2 Hypothesis  

i Intercropping maize with either pigeonpea or S. bispinosa would result in low water 

use and high water use efficiency (WUE) as compared to sole cropping.  

ii Intercropping maize with either pigeonpea or S. bispinosa would result higher land 

productivity and Land Equivalent ratio as compared to sole cropping.  

  

  

 

 



16  

  

REFERENCES  

Alliance for a Green Revolution in Africa (AGRA). 2014. Africa agriculture status report: 

Climate change and smallholder agriculture in sub-Saharan Africa. Nairobi, Kenya.  

Asbjornsen H, Goldsmith GR, Alvarado-Barrientos MS, Rebel K, Van Osch FP, Rietkerk M, 

Chen J, Gotsch S, Tobo’n C, Geisert DR, Gomez-Tagle A, Vache K, Dawson TE. 2011. 

Ecohydrological advances and applications in plant-water relations research: a review. 

Journal of Plant Ecology 4:  1-2: 3–22.  

Broadhead JS, Ong CK, Black CR. 2003a. Tree phenology and soil water in semi-arid 

agroforestry systems. Forest Ecology and Management 180: 61-73.  

Cornell J .2014. Agroforestry. Retrieved fromhttp://www.eoearth.org/view/article/149916.  

Dasbak MAD, Asiegbu JE. 2009. Performance of pigeonpea genotypes intercropped with 

maize under humid tropical ultisol conditions. Journal of Animal and Plant Sciences 4 

(2): 329-340.  

De Wit M, Stankiewicz J. 2006. Changes in surface water supply across Africa with predicted 

climate change. Science Express, 2 March 2006. pp. 1-10. www.sciencexpress.org. 

Everson C, Ghehezi S, Everson TM, Annandale J. 2011. Agroforestry systems for improved 

food production through the efficient use of water. Final report for WRC Project No. 

K5/1480, presented at WRC Reference Group Meeting, 16 November 2011. Water 

Research Commission, Pretoria, South Africa.   



17  

  

Fischer G, Shah M, Tubiello FN, van Velthuizen H. 2005. Socio-economic and climate change 

impacts on agriculture: an integrated assessment, 1990-2080. Philosophical 

Transactions of the Royal Society B360:2067-2083.  

Gregory PJ, Ingram JSI. 2000. Global change and food and forest production: Future Scientific 

challenges. Agriculture Ecosystems Environment 82:3-14.  

Hargrove T. 2008. World fertilizer prices soar as food and fuel economies merge. 

(www.ifdc.org/i-wfp021908. pdf).   

Horton J, Hart S. 1998. Hydraulic lift: a potentially important ecosystem process. Tree 13.    

Kwesiga FR, Franzel S, Place F, Phiri D, Simwanza CP. 1999. Sesbania sesban improved 

fallows in eastern Zambia: their inception, development, and farmer enthusiasm. 

Agroforestry Systems 47: 49–66.  

Monthly Food Security Bulletin of South Africa: January 2016.  

Ong CK, Black CR, Muthuri CW. 2006. Modifying forests and agroforestry for improved water 

productivity in the semi-arid tropics. CAB Reviews: Perspectives in Agriculture, 

Veterinary Science, Nutrition and Natural Resources 65: 1-19.  

Rethman NFG, Annandale JG, Keen CS, Botha CC. 2007.  Water-use efficiency of multi-crop 

agroforestry systems, regarding small-scale farmers in semi-arid areas. WRC Report 

No. 1047/1/07. ISBN No 978-1-77005-579-7.  



18  

  

Rosenzweig C, Strzepek KM, Major DC, Iglesias A, Yates DN, McCluskey A, Hillel D. 2004. 

Water resources for agriculture in a changing climate: International case studies. Global 

Environmental Change 14:345-360 

Saxena KB, Mathews C, Silim SN. 2001. Evaluation of short-, medium-, and long- duration 

ICRISAT pigeonpea cultivars in Mpumalanga, South Africa. International Chickpea 

and Pigeonpea Newsletter 8:37-38 

Sekiya N, Yano K. 2004. Do pigeon pea and Sesbania supply groundwater to intercropped 

maize through hydraulic lift? - Hydrogen stable isotope investigation of xylem waters. 

Field Crops Research 86 167-173.   

Schulze ED, Caldwell MM, Canadell Mooney HA, Jackson RB, Parson D, Scholes R, Sala OE, 

Trimborn P. 1998. Downward flux of water through roots (i.e. inverse hydraulic lift) in 

dry Kalahari sands. Oecologia, 115:460-462.   

Siriri D, Wilson J Coe R, Tenywa MM, Bekunda MA, Ong CK, Black CR. 2013. Trees improve 

water storage and reduce soil evaporation in agroforestry systems on bench terraces in 

SW Uganda. Agroforestry Systems, 87 (1).  

South African Department of Water Affairs (DWA). Strategic overview of the water sector in 

South Africa. Pretoria: DWA; 2013.  

Zerihun MF, Muchie M, Worku Z. 2014. Determinants of agroforestry technology adoption in 

Eastern Cape Province, South Africa. Development Studies Research: An Open Access 

Journal 1(1): 382-394. 



19  

  

CHAPTER TWO 

LITERATURE REVIEW 

2.0 INTRODUCTION  

Rainfall is decreasing across sub-Saharan Africa which implies food shortages if the current 

farming practices do not `shift` to cope with these changes. Low rainfall is a serious challenge 

as most of the agricultural systems of southern Africa rely on rain-fed agriculture as irrigation 

systems are not well developed (Camberlin et al., 2009). In Sub-Saharan Africa agriculture 

represents the main water-consuming sector. Measures to increase water use efficiency and 

enhance resilience of the agricultural system are particularly relevant in coping with future 

climate variability developments (AGRA 2014).   

  

Agroforestry practices is one of the sustainable agricultural systems which improve water use 

efficiency. There are several agroforestry mechanisms which use available water more 

effectively than the annual monocropping systems where land is bare for longer periods. 

Agroforestry systems with perennial tree component make use of the remaining water in the 

soil after harvest and the rainfall received outside the crop season. Agroforestry increase 

productivity of rain water by reducing runoff and by using the water stored in deep layers. The 

changes in microclimate (lower temperature, wind speed and saturation deficit of crops) reduce 

the evaporative demand and make more water available for transpiration. The tree canopies in 

agroforestry systems intercept the rain and reduce runoff (Khan et al., 1995). Annual crop 

systems use 30 to 35% of rain water, and the remaining is wasted through soil evaporation, 

surface runoff, or is lost in residual humidity at the end of harvest (Ong et al., 2006). 

Agroforestry system presents the opportunity of complementing water use both spatially and 
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temporally, which can result in better water use in comparison with single crops (Ong et al., 

1996).  

  

The success of agroforestry systems in semi-arid areas depends on efficient use of available 

water and maximum productivity. Water use efficiency (WUE) is the biomass produced per 

unit of water transpired (Everson et al., 2011), while water productivity refers to the ratio of 

the net benefits from rainfed cropping or other agricultural production systems, to the amount 

of water required to produce those benefits (Molden et al., 2010). Unlike water use efficiency, 

which calculates crop yield per unit water used, water use productivity considers broader 

objectives of producing more food, income, livelihoods, and ecological benefits at less social 

and environmental cost per unit of water used (Green et al., 2011, Molden et al., 2007: 2010, 

Igbadun et al., 2005). Limited water supplies usually affect biomass production, mostly in 

annual cropping systems, as residual water in the soil profile following harvest of annual crops 

and off-season rainfall is not used (Ong et al., 2006). A major question in agroforestry water 

use systems is, does intercropping trees and crops increase total harvestable produce by making 

effective use of rainfall water? In theory, it is possible in a situation where rainfall is not 

completely used, that the inclusion of trees may improve rainfall water use efficiency in two 

ways. More rain used as transpiration, or indirectly as by improved transpiration efficiency 

which translates to more dry matter produced per unit of water transpired.  

  

2. 1 Definition of Agroforestry  

Agroforestry is an integrated land use management system where trees or shrubs are 

deliberately cultivated on the same piece of land as crops and / or livestock (Killough et al., 

2002). Agroforestry has gained attention in recent years due to its potential to increase food 

production among smallholder farmers in Sub-Saharan Africa (Garrity et al., 2010)   
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2.2 Highlights of Agroforestry Systems/Technologies in Southern Africa 

Agroforestry (AF) was introduced in South Africa around 1887 (Nair 1993), However, it was 

lagging behind in terms of agroforestry research and development as compared to other 

southern African countries which include Malawi, Namibia, Tanzania, Zambia, and Zimbabwe 

who have benefited from the Southern African Development Community (SADC)-

International Center for Research in Agroforestry (ICRAF) now called World Agroforestry 

Centre Zambezi Basin AF Project since the mid-1990s. Since then agroforestry technologies 

have increasingly become available to smallholder farmers in Southern Africa (Mafongoya et 

al., 2000, Sileshi et al., 2011). Most promising low cost agroforestry practices for soil fertility 

replenishment are the use of improved tree fallows, biomass transfer, relay cropping and mixed 

inter- cropping (Ajayi et al., 2008, Ajayi and Catacutun 2012, Kuntashula et al., 2004). Other 

technologies that have been developed include fodder (Angima et al., 2002, Guto et al., 2011), 

domestication of indigenous fruit trees (Akinnifesi et al., 2004) and fuelwood provision (Liyama 

et al., 2014). 

     

2.3 Tree Crop Interactions 

Agroforestry is a method of farming in which trees are grown as part of an agricultural system. 

Integrating agroforestry with traditional agricultural systems has the potential to provide the 

ecosystem management benefits of trees while maintaining profitable growth of traditional 

crops (Ong et al., 2002). There are several mechanisms in which the components of an 

agroforestry system can be integrated spatial or temporal. In some systems, trees are grown in 

association with field crops (maize grown with pigeonpea). Examples include isolated trees in 

fields (Faidherbia albida) trees in West Africa), trees grown as windbreaks and trees providing 

http://www.tandfonline.com/doi/full/10.1080/21665095.2014.977454
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cover for a shade tolerant crops such as coffee arabica. In other systems, spatial arrangement 

changes with time: for example, taungya systems of southeast Asia, high-value timber trees are 

grown amongst annual crops and is allowed overshadow the crop. And in other systems, such 

as improved fallows, the trees and the annual crop are not grown together at the same time. The 

central biophysical hypothesis of agroforestry (Cannell 1996), is that for the system to 

outperform a monoculture, the trees must acquire nutrients, water or sunlight that would not 

have been acquired by the crop.  The basic sequence which explains the effect of agroforestry 

trees on crop yield can be described as follows:   

  

                        I = F − C                                Equation 2-1  

   

Where   I = increase in crop yield  

F = soil fertility −  enhancing effect of trees             

C = competitive effect of trees    

  

This can be further refined as:   

           I = Fnoncomp − Ccomp, nonrecyc                                              Equation 2-2   

   

Fnoncomp = fertility − enhancing effect of trees that does not depend on 

resources obtained competitively from the crop                                           Equation 2-3 

Ccomp, nonrecyc = competition effect of trees due to the appropriation  

of resources that are not ultimately recycled back to the crop 

 

Agroforestry trees can benefit the crop indirectly through effects on microclimate, water, and 

soil conservation.  

 

These biophysical explanations of complementarity do not involve the more complicated issue 

of economic complementarity. Beside from their direct impact on crop yields, agroforestry 
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trees also provide the farmer with other essential benefits such as fodder, fruit, fuelwood, 

timber, nuts, honey, and medicine which can generate cash income, as well as biodiversity 

conservation and carbon sequestration. Depending on the timing and the value of these other 

outputs, this economic complementarity can also justify the use of an agroforestry system even 

when the crop does not directly benefit.  

 

Despite all the benefits associated with agroforestry, competition between the crops and trees 

remains a challenge (Ong et al., 2007, Sun et al., 2008, Siriri et al., 2010). In the agroforestry 

system, there should be a better utilization of resources such as light, water and nutrients, 

however, this can only happen if trees are complementary rather competitive with the 

associated crops (Ong et al., 2007).  Spatial complementarity means the trees and crops would 

exploit different resource pools and temporal complementarity means trees and crops impose 

demands on available resources at different times (Black and Ong 2000, Broadhead et al., 

2003a, Ong et al., 2006).   

  

The main aim of simultaneous agroforestry system is to create positive interactions between 

woody perennials, herbaceous crops and pastures and their biotic and abiotic environments 

which improve the overall performance of the land use system and its sustainability (Schroth 

et al., 1995). These interactions are classified into two categories which include aboveground 

and below ground interactions.  

  

2.3.1 Above ground interactions   

Combining trees and agricultural cropping systems have multiple ecological effects. The tree 

canopy intercepts rainfall and reduces impact of raindrop. In South Africa measurement of 
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below different types of canopies showed the importance of water interception by the canopy 

(average of 15%) and by the litter (>7%) before infiltration (Bulcock and Jewit 2012).  

 

 In Kenya, Acacia tortilis and Adansonia digitata trees in savanna systems have been found to 

improve the microclimatic conditions of the understorey component. The thermal environment 

was moderated and incident radiation and atmospheric saturation vapour deficit was reduced 

and ultimately growth was improved (Ong et al., 2007). Tree canopy of Acacia. tortilis reduced 

the availability of photosynthetically active radiation (PAR) under the canopy, which lowered 

the temperature and raised the relative humidity (Mishra et al., 2010). In combination, these 

factors led to reduced evapo-transpiration, which resulted in increased soil moisture content. 

The canopy also resulted in an increase in height of the grass below, but was also associated 

with a decrease in the number of leaves and tillers per tuft, which reduced the leaf area index 

under the tree canopies. There was also an increase in the quantity of chlorophyll b, which is 

normally associated with shade-tolerant grasses (Mishra et al., 2010).  In another study 

gliricidia + cacao agroforests in Indonesia had 12% higher relative humidity than sole cacao 

(Steffan-Dewenter et al., 2007), shaded coffee arabica agroforests in Mexico had 32% lower 

evaporative demand than unshaded systems (Lin 2010).   

  

The presence of trees can reduce evaporative demand in crop canopies not only by affecting 

air and soil temperature, but also by increasing local humidity via transpiration and by reducing 

wind speed. Some studies have shown that size of the tree crown rather than the density of the 

crown has a negative impact on above-ground net primary production of grass in an 

agroforestry system. Shading also resulted in a change in composition of the grassland, leading 
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to a higher biomass of forbs, which are more tolerant of low levels of irradiance, having C3 

metabolism (Rusch et al.,  

2014).  

  

2.3.2 Below ground interactions   

Below ground interactions can be facilitative, complementary or competitive. An example of a 

facilitative relationship is soil physical improvement or supply of hydraulically lifted water. 

Complementarity would be the case of trees using water that is below the rooting zone of the 

crop, while competitive interactions would be the case of trees using limited resources from 

the same pool as the crop (Fernandez et al., 2008).   

  

Soil water content shows temporal and spatial variation because of the variability of soil 

properties and the existence of soil water sinks/sources (Beff et al., 2013). Ecohydrological 

processes in watersheds are tightly coupled with soil properties. For example, soil texture and 

soil depth control the available soil water, which in turn controls leaf area index (LAI), which 

increases under abundant soil moisture availability. The interactions between the spatial 

patterns of plant communities and soil patterns is recognized since plants are affected by soil 

moisture as well as nutrient availability and soil properties affect resource pools (Robinson et 

al., 2008).   

  

Where subsoil conditions affect root penetration of the tree crop, there is greater competition 

with the crop for soil water. Furthermore, water balance simulations demonstrated that during 

dry periods when deeper soil layers are not recharged, there is more competition with the crop 

(Rethman et al., 2012). Competition for moisture, which generally is a problem close to the 
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hedgerow of an alley cropping system, can result in severe reductions in crop yield. In fact, 

yield reductions are mainly due to competition for water and under these conditions it is 

necessary to reduce the population of the tree species.  Smith et al., (1999) argued that if the 

population is reduced to reduce their demand for water then this will diminish their benefits for 

nutrient cycling as well as their social and economic benefits. It is necessary to determine the 

optimum spacing where the benefits exceed the costs of competition.  

  

Studies on soil-water competition in South Africa involving a hedgerow system using four tree 

species (Acacia karoo, Leucaena leucocephala, Morus alba and Gleditsia triacanthos). The 

area received good rainfall for the duration of the trial and the plants were not stressed (under 

these conditions the trees did not compete with the crop for water). Across all tree species, the 

soil water content in the upper 0.3 m did not differ significantly between the maize and tree 

rows so competition for water in the upper horizon was not responsible for the reduced maize 

yields. (Everson et al., 2009).  At greater soil depth, the trees with narrow spacing used more 

water than those at wider spacing. Light interception was also responsible for reducing maize 

yields in the line closest to the tree row – this might call for a wider gap between the tree and 

row and the first line of the crop. Everson et al., (2009) also mentioned that other authors are 

suggesting that in water-limited environments spatial complementarity may be limited to 

situations where the tree crop has access to deeper ground water reserves.  

 

Generally, it is understood that trees with few superficial lateral roots are more suited to 

agroforestry as they will compete less with the crop, but a study of a Grevillea robusta + maize 

system in a semiarid region (with annual rainfall 782 mm) in Kenya revealed that there was no 

spatial separation of the two root systems and therefore there was still competition for water. 

In short there needs to be sufficient rainfall to allow for recharge of the soil below the rooting 
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zone of the crop if complementary water use is to occur (Smith et al., 1999). Smith et al., (1999) 

found that when low rainfall was experienced, the inclusion of trees reduced the length of maize 

roots, but was not affected by proximity to the trees. When the rains were good and the trees 

were severely pruned then the tree roots did not have this effect. Complementarity between 

trees and crops in the AF system is most likely to be achieved when the trees have access to an 

alternative source of water (Smith et al., 1999). Alternatively, there needs to be sufficient 

drainage for large quantities of water to be stored beyond the root zone of the crop, but this is 

potentially not likely in semi-arid areas (Smith et al., 1999).  

  

Lehmann et al., (1998) investigated the effects of intercropping Acacia saligna and sorghum 

(4 m alley width) in a part of Kenya with an annual rainfall of 318 mm. The authors explored 

the effect on root distribution of the two components. Comparing alley cropping with sole 

cropping, it was found that the sorghum had more roots in the topsoil while the trees had more 

roots in the subsoil. Soil water depletion was higher under the tree row than in the alley. It was 

concluded that the alley cropping arrangement made more efficient use of the soil water 

between the hedgerows because the trees’ roots could reach deeper while the sorghum could 

use topsoil water better (i.e. the trees made use of different root zones). Lehmann et al., (1998) 

found that the sorghum roots invaded into the main root zone of the trees. They suggested that 

this was due to greater N availability under the trees which may have stimulated root production 

of the sorghum or the trees could have provided hydraulic lift and supplied water to the annual 

crop. The phenomenon of hydraulic lift was proposed as a possibility by Fernandez et al., 

(2008) considering an agroforestry system combining ponderosa pine trees and a patagonian 

grass in a temperate semi-arid area. Evidence of hydraulic lift is the detection of reverse fluxes 

in roots during the night (Fernandez et al., 2008, Ludwig et al., 2003). 
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2. 4 Agroforestry system improves water use (WU) and water use efficiency (WUE)  

Water use efficiency (WUE) is defined as the biomass produced per unit of water transpired 

(Everson et al., 2011), while water use productivity refers to the ratio of the net benefits from 

rainfed cropping (or other agricultural production systems), to the amount of water required to 

produce those benefits (Molden et al., 2010). Unlike water use efficiency, which calculates 

crop yield per unit water used, water use productivity considers broader objectives of producing 

more food, income, livelihoods, and ecological benefits at less social and environmental cost 

per unit of water used (Green et al., 2011, Molden et al., 2007, 2010, Igbadun et al., 2005).  

Ong et al., (2007) concluded that agroforestry can potentially improve water use productivity 

by either (1) increasing the quantity of water used for tree or crop transpiration or (2) improving 

the productivity of water transpired by increasing the biomass of trees and crops produced per 

unit of water used.  

 

Intercropping has been recommended to improve water use efficiency and soil nutrient status 

in semi-arid regions (Ong et al., 2006). Successful agroforestry systems depend on trees 

capturing resources that crops cannot access. Crop cooperation requires that annual and 

perennial crops should have roots that use different soil zones, usually with annual crops 

exploiting the shallow rooting depths, and perennial crops using the deeper zones (Rethman et 

al., 2007). Lehmann et al., (1998) concluded that root length density decreased more with depth 

in wet seasons than in dry seasons, which means that intercropped trees tend to penetrate deeper 

during dry periods scavenging for soil water. Lehmann et al., (1998) argued that intercropping 

resulted in the spatial separation of the root systems of trees and crops between the hedgerows, 

with more crop roots in the topsoil and tree roots in the subsoil as compared to monocultures. 
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Soil water depletion was higher for hedgerow soils than for monocultures, and higher under 

the tree row than in the intercrop. Lehmann et al., (1998) argued that agroforestry system used 

the water between the intercropped more efficiently than the sole-cropped trees or crops. 

 

Cropping systems in semi-arid regions often use less than half of rainfall water due to 

significant losses of water through evaporation, runoff and drainage (Ong et al., 2006). Studies 

showed that annual cropping systems do not make use of available rainfall to its full potential 

(Ong et al., 2006). Substantial losses from runoff (26%), deep drainage (33-40%) and soil 

surface evaporation (up to 40%) were reported by Ong et al., (2007). Simultaneous agroforestry 

systems provide an opportunity to improve water use both spatially and temporally (Ong et al., 

1996). Tree roots that access groundwater can increase water use above the levels of rainwater 

input (Asbjornsen et al., 2011). Tree roots can use water accumulated deeper in the soil profile, 

which can benefit crop growth, resulting in water deficit for shallow rooted crops 

(Nyamadzawo et al., 2012) and can use residual available water outside the crop growing 

season (Ong et al., 2002, Barrios and Ong 2004).   

  

A study on investigation of water use in a grevillea + maize agroforestry system in semi-arid 

regions of Kenya found that the agroforestry system used water more efficiently that annual 

cropping systems (Lott et al., 2003). Tree species have deeper rooting system as compared to 

companion crops which have shallow-rooting system hence trees theoretically they make use 

of water at soil depths beyond the rooting depths of crops. Gebrekirstos et al., (2011) 

investigated the relationships between annual wood stable carbon isotope composition (δ13C), 

dry season midday plant water potential, and annual growth rate to assess the water use 

efficiency of agroforestry species. The results of the study revealed that species with lower 
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mean δ13C values showed high plant water potential and hence better growth during moist 

years. Thus, indicating low water use efficiency. On the other hand, species with lower water 

potentials showed relatively better growth performance and less increase in δ13C in drought 

years, reflecting their high WUE and conservative water use strategy (Gebrekirstos et al., 

2011).  

 

 2.5 Hydraulic lift a mechanism for facilitating water movement in agroforestry 

Hydraulic lift is a process by which deep-rooted plants take in water from lower soil layers and 

release that water into upper, drier soil layers. This is beneficial to the plant transporting the 

water, and may be an essential water source for neighbouring plants (Horton and Hart 1998).    

Trees can bring water up from depth and release it into the surface layers of the soil in a process 

called hydraulic lift (Caldwell et al., 1998). This effect has been demonstrated in the 

agroforestry species Cajanus cajan, though no such effect could be found for Sesbania sesban 

(Sekiya and Yano, 2004). In this process water movement is from relatively moist to dry soil 

layers using plant root systems as a conduit. At night when transpiration ceases and water is 

not used for photosynthesis, it is released from the roots into the upper soil layers then absorbed 

the next day and transpired. (Ludwig et al., 2003, Ward et al., 2013). Under dry conditions, a 

tree is unlikely to release water into surface soils, thus its net effect on nearby shallow-rooted 

species will likely still be neutral or negative (Ludwig et al., 2003). Part of the process involves 

reverse flow, i.e., passive movement of water from roots to soil when reduced transpiration 

allows xylem water potential to rise above water potential in drier soil layers. Studies by Sekiya 

and Yono (2004) proved that deeper-rooting species can lift water hydraulically, and providing 

this water to companion crops through a "sprinkler-like" distribution.  
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 Hydraulically lifted water can promote greater plant growth, and could have important 

implications for net primary productivity, as well as ecosystem nutrient cycling and water 

balance (Horton and Hart 1998). The opposite of hydraulic lift has been reported in Machakos 

and elsewhere, where water is taken from the topsoil and transported by roots into the subsoil  

(Smith et al., 1999). This mechanism, termed ‘downward siphoning’ by Smith et al., (1999), 

other authors have termed either ‘inverse hydraulic lift’ (Schulze et al., 1998), would lead to 

the opposite effect of hydraulic lift and would enhance the competitiveness of deep-rooted trees 

and shrubs. An “inverse hydraulic lift” was proved by Schulze et al., (1998) in very dry sand 

over a short measurement period (~3 days) and he interpreted the importance of this process as 

mainly allowing the roots of plants growing in water scarce environments to penetrate dry soil 

layers and reach deep sources of moisture. Deeper-rooting tree species have been proven not 

only lifting water hydraulically for their own use, but to also transfer lifted water to surrounding 

plants (Sekiya and Yono (2004) using deuterium isotopes to observe hydraulic lift by 

leguminous companion crops, pigeonpea and sesbania in a study in semi-arid Zambia, noted 

that through hydraulic lift, water was made available not only to the legume, but also to the 

accompanying intercrop, maize. Sekiya and Yono (2004) also noted that the "sprinkler" effect 

of distribution to accompanying crops occurred only with pigeonpea, and not with Sesbania. 

Liste and White (2008) discussed the implications of hydraulic lift for crop production and land 

restoration. They argued that hydraulic lift acts as a biological subsurface sprinkler and 

provides additional water to the roots exposed to soil drying. Additionally, hydraulic lift has a 

beneficial effect on nutrient uptake and rhizosphere biology.  

 

 2.6 Agroforestry systems improves infiltration and reduce runoff  

Agroforestry (AF) system enhances water infiltration, improves soil water storage capacity, 

reduces runoff, and changes the macro porosity and mesoporosity of the soil (Anderson et al., 
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2009). Increase in soil infiltration rates through several ways: improves soil structure and 

porosity, channels left by dead tree roots (Chirwa et al., 2003b), and changes in small-scale soil 

topography (Lin and Richards 2007). Many studies found that above ground stems and roots 

can reduce the runoff flow rate and enhance sedimentation and water infiltration (Seobi et al., 

2005). Bharati et al., (2002) found that infiltration rates were five times greater in multi-species 

riparian buffer than that of cultivated and grazed fields.  Many AF trees have large and deep 

roots, that when they grow and decay, result in a greater proportion of larger pores in the soil. 

Thus, soil hydraulic properties are improved (Anderson et al., 2009). This benefit is very 

important in clay pan soils since these soils have low hydraulic conductivity.  

  

Wang et al., (2015) investigated the effect of agroforestry systems on soil infiltration over a 

period of 11 years. The study determined the regularity of infiltration and its relationship with 

rainfall temporal distribution. The results of the study showed that the temporal distribution of 

infiltration rate in alley cropping systems had a strong relationship with temporal distribution 

of rainfall when compared with monoculture systems. However, it was also realized that the 

alley cropping effect on infiltration capacity was only significant in shallow soil layers (Wang 

et al., 2015). Besides improving grain yields of maize in rotation, sesbania fallows have the 

potential to recharge the subsoil water through increased subsurface drainage and increase 

nitrate leaching below the crop root zone in excess rainfall seasons in depleted soils of eastern 

Zambia (Phiri et al., 2003).  

 

2.7 Maize Production in South Africa  

Maize (Zea mays L.) is the most essential grain crop in South Africa and is produced 

throughout the country under diverse environments (ARC-Grain Crops Institute 2003).   



33  

  

Nearly all resource produces maize - poor farmers in South Africa from within the semi-arid 

regions to the high rainfall provinces. Dryland production of maize takes place mainly in the 

Free State (34%), North West (32%), Mpumalanga (24%), Limpopo (17%) and KwaZulu-Natal 

(3%) provinces (RSA Food Security Bulletin -January 2016). The main growing season under 

rainfed conditions is between October and March. Maize is very sensitive to drought and the 

optimal rainfall requirement is between 500-1000 mm. Smallholder farmers grow maize during 

the rainy season and very little is grown during the dry season.   

The main limitations to crop growth and production in African soils are nitrogen and 

phosphorus which must be supplied in large quantities. The escalating prices of inorganic 

fertilizers on the world market have threatened African farmers’ hopes of improving their farm 

productivity (Hargrove 2008). Inorganic fertilizers are an important means of restoring soil 

fertility, but the prices are escalating, putting fertilizer use further out of reach by most 

smallholder farmers.   

Research conducted on rural small-scale farmers in KwaZulu-Natal, South Africa has revealed 

many challenges which include expensive inorganic fertilizer and shortage of water (Everson. 

et al., 2011). Maize can therefore benefit from nitrogen fixing tree species in agroforestry 

systems. Frequent drought periods during the rainy season or delays in the start of the rains 

often reduce crop yields (Sanchez, 1995). Mulch from tree species can retain moisture and 

increase crop yields.  

  

2.8 Competition indices  

Various indices such as land equivalent ratio, competitive ratio, relative crowding coefficient, 

actual yield loss have been established to explain competition within advantages of 
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intercropping systems (Agegnehu et al., 2006, Banik et al., 2006, Dhima et al., 2007). These 

indices may be equally used in agroforestry systems. The beneficial effect of the trees 

intercropped with crops, can be justified by the land equivalence ratio (LER). LER verifies the 

effectiveness of the intercropping for using resources of the environment compared to sole 

cropping (Workayehu 2014):   

 

 The Land Equivalent ratio (LER) can be used to determine land productivity in 

agroforestry systems involving fertilizer trees and cereal (Ijoyah et al., 2013, 

Workayehu 2014).  

 When LER is greater than one (LER>1), the intercropping favours the growth and yield 

of species. In contrast, when LER is lower than one (LER<1) intercropping negatively 

affects the growth and yield grown in mixtures (Dhima et al., 2007).  

 Aggressivity (A), which is often used to determine the competitive relationship between 

two crops used in mixed cropping (Dhima et al., 2007).  

 The third coefficient is the Relative Crowding coefficient (K) which is a measure of the 

relative dominance of one species over the other in association (Banik et al., 2006).  

 Competition ratio (CR) is another way to assess competition between different species. 

 CR gives more desirable competitive ability for the crops and is also advantageous as 

an index over K and Actual Yield Loss (AYL) (Dhima et al., 2007).  

 The CR represents simply the ratio of individual LER of the two components and 

considers the proportion of the crops in which they are initially sown.  

 Actual yield loss (AYL) index, which gave more accurate information about the 

competition than the other indices between and within the component species and the 
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behaviour of each species in the intercropping system, as it is based on yield per plant 

(Banik et al., 2000).  

 The AYL is the proportionate yield loss or gain of intercrops in comparison to the 

respective sole crop for example it considers the actual sown proportion of the 

component crops and with sole crop stand.  
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CHAPTER THREE 

Evaluation of agroforestry systems for Maize (Zea mays L.) productivity in South Africa  

 

Abstract  

Maize (Zea mays L) is the staple food crop grown by most smallholder farmers in South Africa. 

Low inherent soil fertility is one of the identified limitations in maize production under 

smallholder farming systems. A field experiment was established in 2015/16 season at 

Fountainhill, Wartburg where maize was intercropped with pigeonpea or S. bispinosa to test 

the hypothesis that pigeonpea or S. bispinosa trees may be used to support maize production in 

subsistence farming systems where inorganic fertilizers are either unavailable or expensive and 

to evaluate competition between trees and maize crop using different competition indices. The 

experiment had 5 treatments: sole maize; sole Cajanus cajan (L) Millsp (pigeonpea) and 

Sesbania bispinosa (Jacq) A. Wright var. bispinosa (S. bispinosa); maize + S. bispinosa; and 

maize + pigeonpea laid out in a randomized complete block design replicated three times. Sole 

maize had significant (P>0.05) higher grain yields of 1867 kg/ha while maize + pigeonpea 

yielded 604 kg/ha and maize + S. bispinosa being the least with 538 kg/ha. Land equivalent 

ratio (LER) were higher in maize-pigeonpea (1.23), as compared to maize + S. bispinosa (0.6). 

Pigeonpea is recommended in agroforestry systems with maize due to its higher land equivalent 

ratio and combined production of grain for human and livestock consumption, soil fertility 

replenishments and firewood.  

Key words: land equivalent ratio, pigeonpea, soil fertility    
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3.0 INTRODUCTION  

Maize (Zea mays L) is the dominant staple food crop grown by most smallholder farmers in 

South Africa (Mashingaidze 2006). Low inherent soil fertility is one of the identified 

limitations in maize production in the smallholder farming systems (Swift et al., 2007). 

Agroforestry soil fertility replenishment systems have been adopted by smallholder farmers in 

southern Africa to solve the problem of inherent low soil fertility. Agroforestry fertilizer tree 

systems were developed as a technological innovation to help smallholder farmers build soil 

organic matter and fertility in their fields (Mafongoya et al., 2006, Oluyede et al., 2011). The 

escalating prices of inorganic fertilizers on the world market have threatened African farmers’ 

hopes of improving their productivity (Hargrove 2008). Research conducted in KwaZulu-

Natal, South Africa, has revealed expensive chemical fertilizer as one of the challenges faced 

by small-scale farmers (Everson et al., 2011). Chemical fertilizers are an essential means of 

restoring soil fertility, but the prices are escalating, putting fertilizer use out of reach by most 

smallholder farmers. Fertilizer use alone is not enough to address the biological and physical 

degradation of soils. Fertilizer response is also very low on already degraded soils (Sileshi et 

al., 2009). Even if inorganic fertilizers are readily available for use, if the field is not managed 

well (through incorporation of organic inputs and conservation practices), fertilizers will not 

be utilized by the crop more efficiently as much of it will be lost though leaching and soil 

erosion (Sileshi et al., 2009).   

 

In simultaneous agroforestry systems, the crops and trees co-exist at the same time on the same 

piece of land. It is a recognized practice for economizing the use of growth resources and 

increasing the productivity per unit area and time. In maize intercropping system, selection of 

an appropriate intercrop having a desirable crop type and growth pattern assumes greater 

http://www.tandfonline.com/doi/full/10.1080/21665095.2014.977454#CIT0023
http://www.tandfonline.com/doi/full/10.1080/21665095.2014.977454#CIT0023
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importance (Mucheru-Muna et al., 2010). One of the main aim of the agroforestry systems is 

to maximize use of production resources such as nutrients, light, water and space (Ong et al., 

2006).  

Competition among intercrops is believed to be the main factor affecting yield as compared to 

sole cropping (Banik et al., 2000). In fact, yield benefit occurs when intercrop components 

compete only partly for the same crop growth resources when interspecific competition is less 

than intraspecific competition (Andersen et al., 2009). Ideally, species suitable for 

intercropping should enhance synergistic effects of intercropping. In this case, yield of one 

species surpasses the other and makes up for the inferior performance of the component crop 

(Hauggaard-Nielsen and Jensen 2001). Smallholder farmers in the semi-arid tropics intercrop 

cereals with grain legumes, especially pigeonpea (Cajanus cajan L. Millsp.), as a strategy for 

diversifying food production and household income since the legumes are both cash and food 

crops (Rao and Mathuva, 2000, Mafongoya et al., 2006).  

Several indices such as Land Equivalent ratio (LER), Relative crowding coefficient (K), 

Competitive ratio, Aggressivity (A), Actual yield loss (AYL) have been developed to describe 

competition (Banik et al. 2006, Dhima et al., 2007). However, such indices have not been used 

in simultaneous agroforestry systems involving maize intercropped with legume trees in South 

Africa.  

In the present study, maize was intercropped with pigeonpea or S. bispinosa to test the 

hypothesis that pigeonpea or S. bispinosa trees may be used to support maize production in 

subsistence farming systems where inorganic fertilizers are either unavailable or expensive. 

Specific objectives were to evaluate grain yields and productivity in cropping systems 
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containing maize, pigeonpea and S. bispinosa to evaluate competition between trees and maize 

crop using different competition indices. 

 

  

 

  

 

  

  

  

 

 

   

 

  

  

  

 

 

 

 



53  

  

3.1 MATERIALS AND METHODS   

3.1.1Study site 

The experiment was established at Fountainhill Estate (latitude 29°27'2" S; longitude 30°32'42" 

E and altitude 853 m above sea level) in the uMshwathi Local Municipality, near Wartburg 

approximately 30km northeast of Pietermaritzburg in KwaZulu-Natal, South Africa. The 

vegetation type of the area is Ngongoni veld, with an annual precipitation of 805 mm. The 

minimum temperature is 3.3 °C and the maximum is 37.4°C,  

 

3.1.2 Agroforestry system to be tested   

Research conducted on rural small-scale farmers in KwaZulu-Natal, South Africa have 

revealed many challenges which include expensive inorganic fertilizer, a shortage of water and 

a lack of suitable crops (Everson et al., 2011). In response to the declining soil fertility in 

southern Africa and the negative effects that it has brought, such as food insecurity, fertilizer 

tree systems were developed as technological innovation to help smallholder farmers to build 

soil organic matter and fertility in a sustainable manner (Oluyede et al., 2011). Studies by 

Mafongoya et al., (2006) revealed that simultaneous agroforestry (AF) is one of the options 

appropriate and available to smallholder farmers to replenish soil fertility in Southern Africa.   

  

3.1.3 General information on legume trees in simultaneous agroforestry system  

Pigeonpea (Cajanus cajan (L) Millsp) is a multipurpose legume tree. It is grown for its wide 

range of products (Dasbak and Asiegbu, 2009). Biological Nitrogen Fixation and nutrient 

recycling is one the most important trait. The tree exhibits biological ploughing due to deep 

rooting systems-breaking hard pans thereby improves soil structure (Mafongoya et al., 2006). 
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In South Africa, pigeonpea is usually grown singly or as a hedge plant in home gardens or 

around sugarcane (Saccharum officinarum) fields (Mathews and Saxena 2005). Being one of the 

most drought tolerant legumes, pigeonpea has a great potential to increase the sustainability of 

cropping systems in the arid and semi-arid regions  

  

Sesbania bispinosa (Jacq) A. Wright var. bispinosa (S. bispinosa) is a legume plant which fixes 

atmospheric nitrogen can grow in alkaline or saline soils of low fertility. It is recommended for 

nutrient cycling. S. bispinosa has been incorporated in agroforestry practices in mixed-farming 

systems (Orwa et al., 2009). 

 

3.1.5 Experimental design and treatments 

The experiment had five treatments (1) sole maize, (2) sole pigeonpea, (3) sole S. bispinosa (4) 

maize + S. bispinosa, (5) maize + pigeonpea. The experiment was laid out in a randomized 

complete block design (RCBD) replicated three times as shown in table 3.1.  

Table 3.1 Plot layout at Fountainhill Estate 

Rep I 1. Mz + Sb 2. Mz + Pp 3. Pp 4. Sb  5. Mz 

Rep II 6. Mz + Pp 7. Mz 8. Pp 9. Mz + Sb 10.Sb 

Rep III 11. Mz + Sb 12. Pp 13. Mz 14. Mz + Pp 15. Sb 

Where Mz=maize, Sb=S. bispinosa, Pp=pigeonpea 
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3.1.6 Soil sampling 

Soil samples were taken from the study site using a soil auger at 0-20 cm soil depths across 8 

points within the experimental field before planting. Laboratory analyses were done at Cedara 

where the following pH, N, P, K, Mg, Ca and organic carbon percentage were determined.  

 

3.1.7 Trial establishment and management 

The field was then ploughed using a disc plough in December 2015. Planting was done in 

January 2016. Raised seedlings of S. bispinosa were watered after transplanting. During 

planting Pigeonpea was direct seeded and an open pollinated maize variety, Okavango, which 

was selected on the basis that smallholder farmers usually retain seed. Two legume tree species 

(pigeonpea and S. bispinosa) were planted at spacing of 1 m inter-row and 1 m intra-row 

spacing, while the mixed crop of trees and maize had 1 m inter-row and 0.4 m intra row spacing. 

Sole maize had 0.8 m inter-row and 0.5 m intra-row spacing with 120 plants per plot but the 

same maize plant population was maintained of 25 000 plants/hectare. Each treatment was 

replicated three times consisting 15 plots (6 m x 8 m) representing five treatment. 576 trees 

were planted for the whole trial while each replication had 192 trees, which translate to 48 trees 

per plot. The trial area was sprayed with 3 L/ha of glyphosate prior to ploughing. Weeds were 

controlled twice during the entire growing season using hand-hoes.  

 

3.1.8 Maize growth, development and yield measurement procedures   

Data were recorded for various agronomic traits on a plot basis, as described by Magorokosho 

et al., (2009). A phonological event was deemed to have occurred if it was observed in at least 

50% of plants. Days to maturity was defined in terms of physiological maturity when at least 

50% of leaves in at least 50% of plants had senesced. Maize at physiological maturity was 
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harvested from all replicate plots of each treatment and subjected to 80 °C for 48 hours in an 

oven at the end of cropping season. A net plot area of (5m x 7 m = 35m2) was harvested from 

each plot. Plants harvested from the net plot area were pooled before separating them into 

stover and cobs. A subsample of 50 plants in the net plot of maize stover was oven dried at 80 

°C for 48 hours to determine stover yield on a dry mass basis. All the cob and grain from the 

net plot was weighed and recorded. This was used to extrapolate yield on a hectare basis. 

 

3.1.9 Tree growth rate data measurements procedures 

The data on growth rate which was collected on trees include days to emergence or 

establishment, days to 50% flowering, days to 50% pod formation and days to 50% 

physiological maturity. This was done by visual counting on the number of trees if it reached 

50% on the parameter mentioned above.  Tree productivity was determined by measuring 

height from ground level to tip of the youngest leaf and measuring basal stem diameter 5cm 

from the ground using Vernier callipers at 110 days after establishment (Muthuri et al., 2005). 

Tree biomass was determined by weighing fresh biomass and then oven drying samples at 

80oC. A representative tree was sampled from the net plot (5m x 7 m = 35m2.) This was used 

to extrapolate yield on a hectare basis.  

 

3.1.10 Data analysis  

Data were analyzed using GenStat version 17 (VSN International Ltd, UK). Analysis of 

variance was carried out using general analysis of variance. Where significant differences were 

found, the multiple comparisons were made by Least Significant Differences (LSD) test 

(P<0.05).  
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The Land Equivalent ratio (LER) values were calculated as:  

i) 𝐿𝐸𝑅 = 𝐿𝐸𝑅𝑚𝑎𝑖𝑧𝑒 + 𝐿𝐸𝑅𝑡𝑟𝑒𝑒                                 Equation 3-1 

ii) 𝑊ℎ𝑒𝑟𝑒 𝐿𝐸𝑅𝑚𝑎𝑖𝑧𝑒 =
𝑌𝑚𝑖

𝑌𝑚
 𝑎𝑛𝑑 𝐿𝐸𝑅𝑡𝑟𝑒𝑒 =

𝑌𝑡𝑖

𝑌𝑡
         Equation 3-2 

 

Where Ymi = maize yields as intercrop Ym = sole maize yields 

Yti = seed yield of tree as intercrop  Yt = sole seed yield of tree,   

 

The Aggressivity (A) was formulated as follows:  

iii) A𝑡ree = (
Yti

Yt
x Zti) − (

Ymi

Ym
xZmi)                                          Equation 3-3 

Amaize = (
Ymi

Ym
xZmi) − (

Yti

Yt
xZti)                                              Equation 3-4         

Zmi and Zti were proportions of maize and tree yields in a mixture respectively for example if  

Amaize = 0 both crop yield and tree seed yield are equally competitive 

If Amaize = positive then the maize species is dominant 

If Amaize is negative then maize is weak  

The Relative crowding coefficient (K) was calculated as:  

  

iv) K = (Kmaize x Ktree)                                                              Equation 3-5 

Where Kmaize = Ymi x
Zti

/((Ym − Ymi)xZmi)                             Equation 3-6 
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                                                Ktree = Yti x
Zmi

((Yt − Yti) x Zti)         Equation 3-7 

 

Then, the Competition Ratio (CR) index was calculated using the formula:   

v) CRmaize = (
LERmaize

LERtree
) x (

Zti

Zmi
)   CRtree = (

LERtree

LERmaize
) x (

Zmi

Zti
)       Equation 3-

8 

                   

In addition, partial Actual Yield Loss (AYL) represent proportionate yield loss or gain of each 

species when grown as intercrops, relative to their yield in sole planting (Dhima et al. 2007). 

The AYL (Banik, 2000) was calculated as.  

 

vi) AYL = AYLmaize + AYLtree:                                

vii) Where AYLmaize = (
Ymi

Xmi
Ymi

Xm

) − 1     AYLtree = (
Yti

Xti
Yt

Xt

) − 1             Equation 3-9 
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 3.3 RESULTS  

The results of the chemical analysis indicated that the soil had 20% 

clay content and the soil pH (KCl) of 4.37. Soil chemical results 

showed that Nitrogen (%) was 0.06. Phosphorus and Potassium levels 

were 20.4 mg/L and 114.2 mg/L respectively while Organic carbon 

(%) was 0.65  

(Table 3.2). 

 

Table 3.2 Chemical soil characteristics for the study site  

Parameter                                      Value  

Nitrogen (%)  0.06  

Phosphorus mg/L  20.4  

Potassium mg/L  114.2  

Calcium mg/L  488  

Magnesium mg/L  95.6  

Copper mg/L  2.98  

Total Cations cmol/L  3.594  

Organic Carbon (%)   60.65  

pH (KCL)  4.37  

Clay (%)  16  

Source: Cedara soil laboratory 2016  
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3.3.1 Maize growth and development  

 Figure 3.1 shows the number of days to 90% to emergence, 50% flowering and 50% 

physiological maturity of sole maize and maize + tree intercrops.  

  

  

Figure 3.1 Growth stages of sole maize and intercrops at Fountainhill Estate in 2015/2016 

growing season  

 

The results showed that they were no differences on 90% establishment, 50% days to flowering 

and 50% days to physiological maturity on both sole maize and maize + tree intercrop Fig 3.1. 
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3.3.2 Tree growth and development  

Figure 3.2 shows the number of days to 50% flowering, pod formation and physiological 

maturity. There were no marked differences noted on the following parameters: days to 90% 

establishment, days to 50% flowering, pod formation and physiological maturity between sole 

pigeonpea and pigeonpea + maize intercrop. Fig 3.2  

 

Figure 3.2 Growth rate of sole S. bispinosa and intercrop at Fountainhill in 2015/2016  
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The results indicate that there were no differences in terms of number of days to 90% 

establishment, days to 50% flowering, pod formation and physiological maturity on sole 

pigeon and intercrop (Fig 3.3). 

 

 

Figure 3.3 Growth rate of sole pigeonpea and intercrop at Fountainhill Estate in 2015/16 

season  

 

Results indicated that sole S. bispinosa canopy diameter, tree height and root collar differed 

significantly (P < 0.05: Table 3.3) between S. bispinosa intercrop and either sole pigeonpea or 

intercrop. Based on the results in Table 3.3. Sole S. bispinosa outperformed all treatments in 

all parameters which include canopy diameter (1.375 cm), height (1.89 cm) and root collar 

diameter of 22.17 mm whilst the least was observed on sole pigeonpea with canopy of 0.463 

cm, height of 0.913 mm and root collar diameter of 9.65 mm.    
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Table 3.3 Canopy diameter, tree height and root collar at 110 days at Fountainhill Estate in 

2015/16  

Treatments  Canopy         Tree height   Root collar  

 diameter (m)              (m)  diameter (mm)  

Sole pigeonpea             0.6437a 0.913a  9.65a  

Pigeonpea + maize  0.6293a  0.990a  10.14a  

S. bispinosa + maize  0.9946ab  1.60bc  15.16a  

Sole S. bispinosa  1.375b 1.89c  22.17b  

LSD (0.05)  0.524 0.4272  5.941  

Numbers followed by same letters are not significantly different at P<0.05 according to Fisher`s 

Protected LSD  
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Data for aboveground dry cumulative biomass at 110 days after establishment of S. bispinosa, 

pigeonpea are present in Figure 3.4. There were significant differences (P<0.05) in relation to 

dry cumulative biomass, sole S. bispinosa outperformed all treatments which had 378 kg/ha. 

The least was attained on sole pigeonpea which had 82.3 kg/ha.   

 

Figure 3.4 Cumulative aboveground dry biomass of trees at 110 days for different tree 

treatments during the 2015/16 season at Fountainhill   
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3.3.4 Tree seed yields  

Results indicated that there was no significant (P<0.05) difference in the pigeonpea yield 

obtained in the sole and the yield obtained in the intercrop system (Table 3.4). The two cropping 

systems involving sole pigeonpea (1073 kg/ha) and pigeonpea- maize intercrop (1029 kg/ha) 

had very close yield but differed significantly (P<0.05) with sole S. bispinosa and S. bispinosa 

maize intercrop which yielded 207.3 kg/ha and 58 kg/ha, respectively.  

 

Table 3.4 Seed yields of S. bispinosa and pigeonpea at Fountainhill in 2015/2016 season  

Treatments                                                       Yield (kg)  

S. bispinosa + Maize  58.3a  

S. bispinosa  207.3a  

Pigeonpea + Maize  1029.3b  

Pigeonpea  1073.3b  

LSD (0.05)  206.9  

Numbers followed by same letters are not significantly different at P<0.05 according to Fisher`s 

Protected LSD  
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3.3.5 Maize grain, cob and stover yields  

Maize grain, cob mass and stover yields in both intercropping systems had lower values when 

compared with the monoculture configuration (P>0.05; Table 3.5). There were significant 

differences (P>0.05) in terms of maize grain, cob mass and stover yields across all treatments. 

Grain yield, cob mass and stover mass were significantly higher in sole maize treatment as 

compared with the intercrop counterparts. The three parameters were statistically similar for 

maize intercropped with S. bispinosa and maize intercropped with pigeonpea.  

 

Table 3.5 Maize grain, cob mass and stover yields at Fountainhill Estate in 2015/16 summer 

season  

Treatments  Grain yield  

(kg/ha)  

Cob mass  

(kg/ha)  

Stover mass  

(kg/ha)  

Maize + S. bispinosa  538a  742a  101.7a  

Maize + Pigeonpea  604a  762a  107.9a  

Sole Maize  1867b  2753b  314.2b  

LSD (0.05)  446.6  543.7  72.5  

Numbers followed by same letters are not significantly different at P>0.05 according to Fisher`s 

Protected Lsd  
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3.3.6 Competition indices 

Differences among intercropping systems and monocrops were significant P< 0.001 for LER. 

Pigeonpea + maize had higher LER value (1.23) as compared to S. bispinosa intercropped with 

maize (0.63). Combined LER for maize and S. bispinosa was even lower than sole pigeonpea 

although it had less than 1 LER. Partial LERs were generally lower in all monocultures. (Figure 

3.5). Sole maize had the least LER followed by sole S. bispinosa.   

 

  

Figure 3.5 Land Equivalent ratio for different cropping systems at Fountainhill in 2015/16 

season  

  

  

 

 

 

 

Lsd  (0.05)   =  0.241   P<0.001 
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Table 3.6 Shows competition indices which were used to determine competition in the 

simultaneous agroforestry system involving maize, pigeonpea and S. bispinosa. In terms of 

aggressivity in maize + pigeonpea intercrop positive value was noted on pigeonpea while maize 

had negative value. In maize + S. bispinosa intercrop positive value was recorded S. bispinosa 

while maize had negative.  Higher relative crowding coefficient values were recorded on maize 

(1.4) intercropped with pigeonpea (4.8) as compared to low values on both maize (0.046) and 

S. bispinosa (0.228). S. bispinosa had a higher competition ratio of 9.42 while maize had 0.31, 

while pigeonpea had (1.71) and 0.61 for maize (Table 3.6). 

 

Table 3.6 Competition indices for the intercropping cropping systems at Fountainhill Estate  
 

Aggresivity (A) Relative Crowding 

coefficient (K) 

Competition ratio (C) 

Treatment Mz Pp S. b Mz Pp S. b Mz Pp S. b 

Mz + Pp -0.44 0.44 
 

1.4 4.8 
 

0.61 1.71 
 

Mz + S. b 0.23 
 

-0.23 0.046 
 

0.228 0.31 
 

9.42 

Lsd (0.05) 0.78

9 

0.38

7 

 
8.88 0.504

0 

  
1.467 7.55

2 

Mz=maize Pp=pigeonpea, S. b=Sesbania bispinosa 
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Actual Yield Loss (AYL) maize had positive value in maize + pigeonpea intercropping whilst 

negative value was observed in maize + S. bispinosa intercrop. Both pigeonpea and S. bispinosa 

trees had positive values when intercropped with maize (Table 3.7).  

 

Table 3.7 Actual yield gain (+) or loss (-) in an agroforestry system at Fountainhill Estate in 

2015/2016  

Intercrop Combinations Actual yield gain (+) or loss (-)  

Maize + Pigeonpea             +0.09  

Maize + S. bispinosa              -0.01  

Pigeonpea + Maize              +0.02  

S. bispinosa + Maize              +0.04  

Lsd (0.05)                0.24  
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 3.4 DISCUSSION  

3.4.1 Soil chemical properties on the study site 

The analysis shows that the experimental site has a relatively low pH (KCH). Plant growth and 

most soil processes, including nutrient availability and microbial activity, are favored by a soil 

pH range of 5.5 – 8. Acid soil, particularly in the subsurface, will also restrict root access to 

water and nutrients. The optimum pH (KCl) for maize is 5 - 5.5 (ARC-Grain Crops Institute 

2003), pigeonpea is 5-7 (Valenzuela and Smith 2002) and S. bispinosa is 5.8 - 7.5 (Orwa et al., 

2009). The results of analysis clearly indicate that the pH was not within the range which 

supports the growth of both tree species (pigeonpea and S. bispinosa) and maize.  

 

3.4.2 Maize growth, development and grain yield  

Overall, higher numbers of days to 90% establishment across all maize treatments was observed 

due to replanting, which was done to counteract poor emergence. Erratic rainfall that was 

received during the early growing season might have contributed to poor emergence.  

 

Maize grain, cob mass and stover yields were significantly higher in sole maize plots as 

compared to intercrops. This might have been caused by competition for available resources 

like water, light, space, and nutrients. This was for both S. bispinosa as well as pigeonpea 

although other studies have shown that pigeonpea grow slowly initially and do not compete for 

resources with the associate crop (Valenzuela and Smith 2002). These findings are in line with 

Mathews et al., (2001) who found that yields of both maize and pigeonpea in intercropping 

systems were generally lower than in monocropping systems in Mpumalanga. Singh and Sinha 

(1962) also found that maize intercropped with S. bispinosa has generally lower yields 
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compared with sole maize. In another study in India sole crop of maize recorded significantly 

higher yield as compared to the intercropping (Lingaraju and Chandrasekhar 2008). Singh and 

Sinha (1962) also found that maize intercropped with S. bispinosa has generally lower yields 

as compared to sole maize. However, yield of maize intercropped with pigeonpea in semi-arid 

conditions is often less than that of sole cropped maize (Rao and Mathuva, 2000, Snapp et al., 

2002, Chikowo et al., 2004, Myaka et al., 2006), indicating probable yield suppression due to 

competition for soil nutrients and/or moisture. This study also concurs with the results of 

Kwesiga et al., (1999) who found that intercropping maize with trees during the first year of 

the 2-year fallow has a negative effect on both maize yields. According to Ledgard and Giller 

(1995), the benefits of an intercrop system between a legume and cereal crop are more likely 

to occur to subsequent crops as the main transfer path-way is due to root and nodule senescence 

and fallen leaves. Although benefits may occur on subsequent crop a farmer, may have 

additional second crop which in this study was pigeonpea.  

  

3.4.3 Tree growth, development and seed yield 

The results from the study are consistent with results from a study by Kwesiga et al., (1994) 

who found that pigeonpea was slow in terms of growth as compared to Sesbania sesban in 

establishment. S. bispinosa growth was very rapid at initial establishment of the experiment 

that is why tree heights, root collar and canopy diameter was greater than for pigeonpea. 

Significant differences were noted on sole S. bispinosa, which had higher canopy diameter as 

compared to sole pigeonpea this is probably because of the erectile (upward) growth pattern of 

pigeonpea as compared to planophile (branching) growth pattern of S. bispinosa.   
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Highest total aboveground biomass yield was recorded from sole S. bispinosa and lowest on 

sole pigeonpea. The probable causes for getting higher dry biomass yield might be due to more 

vigorous growth and higher branching of S. bispinosa as compared to pigeonpea. This study 

concurs with Kamanga et al., (1998) who found that significantly high biomass was recorded 

from S. sesbania while pigeonpea produced low biomass.  

 

No significant difference in terms seed yield was noted between intercropped pigeonpea and 

sole crop. In another similar study by Kumar et al., (2013) they found non-significant variation 

in yield between sole pigeonpea and pigeonpea + mungbean cropping system. This probably 

explained that pigeonpea can be grown in association for maximum utilization of resources.  

   

Sole S. bispinosa produced higher seed yield as compared to S. bispinosa + maize plots, 

although statistically there was no difference. The adverse effect on yield of the tree seed due 

to intercropping occurred mainly due to competition among companion plants for light, space, 

nutrients, and water. In another similar study by Rana et al., (2013) it was discovered that sole 

Sesbania rostrata plots produced higher seed yield as compared to intercropping S. rostrata 

with rice.   
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3.4.4 Competition indices 

The productivity of agroforestry system involving maize with pigeonpea or S. bispinosa in the 

present study was determined using LER and related attributes described in previous sections. 

The results of the study indicate high percent of partial Land Equivalent ratio of pigeonpea, 

maize and S. bispinosa but pigeonpea (90%) outperformed the S. bispinosa (38.1%) and maize 

(32.1%). Maize grown in association with pigeonpea had land equivalent ratio greater than 1, 

which indicated that agroforestry system was more beneficial than monocropping. Maize + 

pigeonpea intercrop was highly productive despite low yields of the main crop (maize).  

 

The poor productivity of maize meant that there was reduced competition to the companion 

pigeonpea crop thus the high LER values were driven more by pigeonpea productivity. These 

results concur with Edje (2014), who found that intercropping maize with pigeonpea was more 

productive than either crop in monoculture in Swaziland. Egbe et al., (2010) have reported 

similar results in pigeonpea/sorghum intercrop. When maize was intercropped with S. 

bispinosa the ratio was less than 1, which means intercropping negatively affected the growth 

and yield of maize and S. bispinosa (Dhima et al., 2007; Workayehu 2014). The LER of 1.23 

indicates 23% greater yield for maize + pigeonpea intercrop or 23% greater area required for 

monocropping system. These results concur with Ijoyah and Usman (2013) and Ijoyah et al., 

(2012), who found that LER of 1.25 can be interpreted as 25% greater yield for intercropping 

or as a 25% greater area requirement for the sole cropping system.  

 

Combined LER values were higher than one indicating the advantage of intercropping over 

sole stands in relation to use of environmental sources for plant growth (Dhima et al., 2007). 

Similar results were reported for the pea + barley intercrop (Chen et al., (2004). The 
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competition ratio values for maize and pigeonpea increased (0.61-1.71) indicating an absolute 

yield advantage of both maize and pigeonpea in intercropping systems. In a similar study, Egbe 

(2010) found that the competitive ratio of soybean in sorghum intercrop increased (0.76-1.15) 

indicating higher competitiveness of soybean than the sorghum component. The same author 

also found that the competitive ratio of sorghum had the opposite response (1.23-0.76). This 

suggests that cereal crops are less competitive than legumes when the two-crop species are 

grown in intercrop systems. In addition, (K) values for maize and S. bispinosa intercrop 

systems were generally very low, less than one, indicating yield disadvantage when grown in 

association.  

 

Aggressivity values were negative on maize when intercropped with pigeonpea, which means 

pigeonpea was dominant species. While in maize S. bispinosa intercrop, maize had a positive 

value, which means maize was dominant species in that system. Matusso et al., (2014), argued 

that the main reasons for intercropping is to ensure that an increased and diverse productivity 

per unit area is realized as compared to monocropping. According to Muoneke et al., (2007), 

LER of 1.02-1.63 means efficient utilization of land resource. Most studies which involved 

different intercropping systems, none of them reported LER values less than one and this is 

evidenced in the studies conducted by Addo-Quaye et al., (2011) and Osman et al., (2011). 

These findings concur with maize + pigeonpea intercrop in the present study although different 

results were observed in maize + S. bispinosa intercrop.  

 

 

A review carried out by Matusso et al., 2014 found that intercropping of cereal and legumes is 

widespread among small-scale farmers due to the ability of the legume to cope with declining 
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levels of soil fertility and soil erosion. There is an incentive for the small-scale farmers to 

continue with integrating legume trees into their cropping systems because of improvement of 

soil fertility status, risk minimization against total crop failure, soil conservation, weed 

suppression and balanced human and livestock diet. Matusso et al., (2014) reviewed that 

several researchers have been working with cereal legume intercropping systems in sub-

Saharan Africa and proved its combined success compared to the monocropping systems. 

Tsubo and Walker (2003) reported that intercropping technique is common for smallholder 

farmers worldwide. Gathumbi et al., (2003) suggested that mixing of leguminous plants with 

cereal crops helps to enhance subsoil nitrogen retrieval for the growing crops.  

 

Banik et al., (2000) argued that, AYL index gave more accurate information than the other 

indices on inter and intraspecific competitions in intercropping systems. Thus, there was 9% 

(AYLmaize = + 0.09) increase in maize and 2% (AYLpigeonpea = + 0.02) increase in 

pigeonpea in the maize + pigeonpea intercropping system. However, there was 1% (AYLmaize 

= - 0.01) decrease of maize and 4% (AYLS.bispinosa + 0.04) increase in S. bispinosa in 

intercropping involving maize and S. bispinosa when compared to their sole crop yields when 

evaluating on plant basis. The magnitude of AYLmaize that is greater than AYLpigeonpea 

indicated that maize was resistant to yield loss than pigeonpea in maize + pigeonpea 

agroforestry system. AYLmaize had negative values when grown with S. bispinosa which 

means maize was prone to yield loss when intercropped with S. bispinosa.  

 

3.5 CONCLUSION 

Sole maize had higher grain yield, cob mass and stover as compared to intercrops. Maize + 

pigeonpea intercropping system increased the LER despite decreasing yield of the main 
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component crop (maize), which can be compensated by yield of pigeonpea. The competition 

ratio values for maize and pigeonpea increased (0.61-1.71) and AYL had 9% maize and 2% 

pigeonpea increase indicating an absolute yield advantage of both maize and pigeonpea in 

intercropping systems. Although, pigeonpea was a dominant species as compared to maize in 

an intercropping system. Therefore, incorporation of pigeonpea into the sole-maize based 

cropping systems could boost overall productivity of the system in this environment of 

Wartburg, South Africa.  

 

3.6 RECOMMENDATION 

From the study, it follows that when smallholder farmers plan on cultivating both maize and 

legume tree, planting maize associated with pigeonpea is more beneficial than S. bispinosa 

with maize or sole cropping in terms of saving the shortage of arable land and promote the 

sustainable development of natural resources.  Pigeonpea can thus be recommended in 

simultaneous agroforestry systems with maize due to its higher LER ratio and production of 

grain for human and livestock consumption. To minimize competition in the pigeonpea/maize 

intercropping and enhance profitability, reduction of the densities may be considered for 

investigation.  
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CHAPTER FOUR 

Water use and water use efficiency in simultaneous agroforestry systems in South Africa  

Abstract  

Due to global warming, there is a need to increase the water use efficiency of crops under 

rainfed agriculture, particularly under smallholder farming systems. Therefore, water use 

efficiency in agroforestry systems was determined at Fountainhill Estate in 2015/16 summer 

season. The hypothesis was that agroforestry systems have low water use, high water use 

efficiency compared to monocropping. The experiment had 5 treatments: sole maize; sole 

pigeon pea; sole S. bispinosa; maize + S. bispinosa; and maize + pigeonpea laid out in a 

randomized complete block design (RCBD) replicated three times. Time domain reflectometry 

(TDR) probes were placed at 20cm, 50 cm and 120 cm below ground level under maize or tree 

to measure volumetric soil water content. Significant (P<0.001) differences were observed 

among the treatments. Sole maize ≥ sole pigeonpea ≥ pigeonpea + maize > maize + pigeonpea 

≥ maize + S. bispinosa > sole S. bispinosa ≥ S. bispinosa + maize. Sole treatments of maize 

and pigeonpea had significant (P<0.001) higher Water Use Efficiency of 6.28 kg/ha mm and 

5.77 kg/ha mm respectively. While pigeonpea + maize recorded a significantly (P<0.001) 

higher WUE of 5.47 kg/ha mm. The lowest was recorded on S. bispinosa + maize (0.292 kg/ha 

mm) and sole S. bispinosa (0.425 kg/ha mm) subject to the provision that the calculations were 

based on changes in soil water content rather than actual measurements of water uptake by the 

trees and crops. A combination of pigeonpea + maize proved to be better agroforestry system 

since it has higher WUE efficiency although, there was no evidence of outcompeting the sole 

crops.   

Key words: maize, monocropping system, pigeonpea, water use efficiency  
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4.1 INTRODUCTION  

Agriculture is the major water user in most countries. Agriculture is facing enormous challenge 

of producing almost 50% more food by 2030 and doubling production by 2050 (Ingram 2000; 

Fischer et al. 2005). This will likely need to be achieved with less water, mainly because of 

growing pressures from climate change. In this context, it will be vital in future for farmers to 

receive the right information on how to increase water use efficiency and productivity to attain 

food security (AGRA; 2016: El Chami and El Moujabber 2016). The impacts from climate 

change have been hard on the South African agricultural sector, which is extremely sensitive 

to heat and uses over 60% of the total water resources of the country (DWA; 2013).   

Traditional monocropping systems cannot fully utilize available rainfall due to losses by 

evaporation from the soil surface (Es), drainage and runoff (Ong et al.  2006, 2007). Es 

comprises 20–40 % of rainfall in sub-Saharan Africa (Wallace et al. 1999; Jackson and Wallace 

1999; Wallace and Gregory 2002). This has major consequences for crop production. Black 

and Ong (2000) suggested that the benefits of intercropping in such environments may result 

primarily from improvements in water use efficiency (WUE). Several factors influence WUE. 

Morris and Garrity (1993) suggested that a key factor contributing to improvements in WUE 

in intercropping systems relative to sole crops is that their more rapid canopy expansion and 

greater groundcover reduces soil evaporation, with the result that transpiration forms a larger 

proportion of evapotranspiration. Secondly, the modified microclimatic conditions provided by 

the presence of two or more system components which differ in their above-ground canopy 

structure and growth dynamics may create an atmospheric environment which enhances WUE; 

for example, relative humidity may be increased and wind speed reduced within the canopy, 

thereby reducing evaporative demand (Wallace and Gregory 2002, Lin 2010). Significant 
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complementarity of water use is obtained when the component species have different rooting 

patterns or exhibit contrasting temporal characteristics (Ong et al. 2000).    

  

 Developing cropping systems that use scarce resources such as water efficiently is important 

to improve food security as future climate change scenarios predict reduction or more erratic 

rainfall in sub-Saharan Africa (Wallace and Gregory 2002). Agroforestry systems were found 

to have greater WUE as compared to monocropping systems, although the estimates of water 

consumption used in the calculations were based on changes in soil water content rather than 

direct measurements of water uptake by the tree and crop components (Chirwa et al., 2007). A 

central biophysical agroforestry hypothesis is that trees and crops can efficiently grow together 

on the same area of land and at the same time. The spatial and/or temporal complementary 

exploitation of soil resources may optimize water use efficiency. In a situation of water scarcity, 

studies on the water use efficiency (WUE) are relevant. Therefore, understanding the water use 

processes that give rise to the observed levels of available soil water would provide suggestions 

for improved technologies for sustainable crop production in KwaZulu-Natal.   

  

A study in KwaZulu-Natal was initiated to test a hypothesis that agroforestry systems have low 

water use, high water use efficiency compared to monocropping. The main objective was to 

evaluate seasonal water use and water use efficiency of Sesbania bispinosa, pigeon pea and 

maize as sole crops and in simultaneous agroforestry systems.  
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4.2 MATERIALS AND METHODS  

4.2.1 Study site  

The experiment was established at Fountainhill Estate (latitude 29°27'2" S; longitude 

30°32'42" E and altitude 853 m above sea level) in the uMshwathi Local Municipality, near 

Wartburg approximately 30 km northeast of Pietermaritzburg in KwaZulu-Natal, South 

Africa. The site has an annual precipitation of 805 mm per annum. The mean minimum 

temperature is 3.3 °C and the maximum is 37.4°C,   

4.2.2 Experimental design and treatments  

The experiment was established during the 2015/16 summer season. The experiment had five 

treatments (1) sole maize, (2) sole pigeon pea, (3) sole S. bispinosa (4) maize + S. bispinosa, 

(5) maize + pigeon pea. The experiment was laid out in a randomized complete block design 

(RCBD) replicated three times.  

4.2.3 Land preparation and establishment of the experiment  

Two legume tree species (pigeon pea and S. bispinosa) were planted at s 1 m inter-row and 1 

m intra-row spacing, while the mixed crop of trees and maize had 1 m inter-row and 0.4 m intra 

row spacing for the maize. Sole maize had 0.8 m inter-row and 0.5 m intra-row spacing with 

120 plants per plot such that the same maize plant population as the mixed plots was maintained 

(i.e. 25 000 plants/hectare). Maize and pigeon pea seed were planted simultaneously on the 

second week of January, while the S. bispinosa plants were transplanted from trays. Maize was 

replanted again on third week January 2016 as the initial sowing failed due to the late arrival 

of the rains.   
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4.2.4 Soil water content measuring methods  

 Time domain reflectometry (TDR) probes at depth intervals of 20cm, 50cm and 120 cm below 

ground level were used to measure volumetric soil water content. Three depths (20, 50 & 120 

cm) were chosen since they provide good indication of soil water status (and changes thereof) 

within the crop root zone for most agronomic crops. Gravimetric soil water content was 

evaluated each of the plots that had instruments for calibration purposes. The TDR probes were 

read on site, on weekly basis. To avoid crop damage, installations of instruments were done 

when trees and maize plants were small, early in the season. This also allowed time for the 

TDRs and sensors to acclimatize with the surrounding soil.  

  

4.2.5 Calibration of the TDR probes  

To enable volumetric water content (VWC) to be calculated from the TDR probe readings, soil 

samples were collected from undisturbed soil cores at each depth near the instruments. The 

samples were weighed and dried in an oven at 105 oC for 24 hours and then reweighed. 

Gravimetric values were converted to VWC using bulk density values determined for 

undisturbed soil cores of known volume sampled. This procedure was repeated several times 

during the 2015/2016 cropping season to span the range between extreme soil wetness and 

dryness. The figures were used to establish the relationship between VWC and probe reading 

or all sampling depths.  

4.2.6 Statistical analysis  

Data were analyzed using GenStat version 17 (VSN International Ltd, UK). ANOVA was 

carried out using general analysis of variance. Where significant differences were found, the 

multiple comparisons were made by Least Significant Differences (LSD) test (p<0.05).  
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4.3 RESULTS   

4.3.1 Soil characteristics within the rooting depth 

The results of the soil texture analysis are presented in Table 4.1. Generally, the top 20 cm of 

the soils at the experimental site comprised of loamy sand. A notable difference is on the 50cm 

and 120cm depth were the soil horizon is characterized by sandy clay loam.   

Table 4.1 Soil physical characteristics within the rooting depth on the study site  

Depth (cm)  Clay %  Silt %  Sand %       Texture  

 

20  

 

14.2  

          

          2.4                  83  

 

Loamy sand  

50  24.3  3.6                    72.2  Sandy clay loam  

120  28.1            30                   67.3  Sandy clay loam  

 
  

4.3.2 Weather data  

The following climatic variables were recorded from an automatic weather station in the 

immediate vicinity (1km radius) of the experimental plots: dry and wet bulb temperature, 

potential evaporation and rainfall. Measurements were taken at as hourly means. These values 

were used to compute daily values of potential evapotranspiration using FAO Penman’s 

Monteith formula. The trend of weather during the period of the trial (Fig 4.1) indicates 

adequate moisture for crop growth. However, rainfall was slightly below the long-term mean 

of the area. Temperatures were also within the ranges necessary for adequate plant growth 

(Downes 1972).  
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. 

  
 

Fig 4.1 Climatic data recorded for the 2015/2016 at Fountainhill Estate.  

  

4.3.3 Seasonal water use  

Water use (WU) or evapotranspiration (ET) was calculated by solving the soil-water balance 

equation as follows. Water use (WU) in the various cropping systems was estimated for the 

period from maize planting until maturation of pigeonpea and S. bispinosa  

WU was calculated as follows: 𝑊𝑈 = 𝑅 + 𝑆𝑊𝐶ℎ  𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 4 − 1   

Where R denotes rainfall and SWCh represents the change in soil water content within the 0–

120 cm soil profile between TDR probe measurements. Estimated total seasonal water use did 

not differ between treatments, ranging between 186.17mm and 487.79 mm (Table 4.2)  
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Table 4.2 Yield, water use and water use efficiency of the various cropping systems    

Cropping systems  Yield (kg/ha)  Water Use  

(mm)  

WUE (kg/ha mm)  

Sole S. bispinosa  207.3a 487.79  0.42a 

Sole Maize  1867d 297.19  6.28c  

Maize + Pigeonpea  604b  203.75  2.96b  

S. bispinosa + Maize  58.3a 199.88  0.29a 

Pigeonpea + Maize  1029.3c  188.08  5.47c  

Maize + S. bispinosa  538b  188.02  2.86b  

Sole Pigeonpea  

Lsd (0.05) 

1073.3c  

 308.89 

186.17  

 

5.77c 

   1.293  

Numbers followed by same letters are not significantly different at P>0.05 according to Fisher`s 

Protected Lsd.   

  

 

4.3.4 Water use efficiency (WUE)  

Water-use efficiency (WUE) is simply grain yield (kg/ha) divided by water-use                             

WUEg =
Yg

ETt
  𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 4 − 2    

𝑊ℎ𝑒𝑟𝑒 𝑊𝑈𝐸𝑔 𝑖𝑠 𝑡ℎ𝑒 𝑊𝑈𝐸 𝑓𝑜𝑟 𝑔𝑟𝑎𝑖𝑛 𝑦𝑖𝑒𝑙𝑑 𝑌𝑔 = 𝑔𝑟𝑎𝑖𝑛 𝑦𝑖𝑒𝑙𝑑 

𝐸𝑇𝑡 𝑖𝑠 𝑡ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑒𝑣𝑎𝑝𝑜𝑡𝑟𝑎𝑛𝑠𝑝𝑖𝑟𝑎𝑡𝑖𝑜𝑛 (𝑚𝑚)𝑜𝑣𝑒𝑟 𝑡ℎ𝑒 𝑔𝑟𝑜𝑤𝑖𝑛𝑔 𝑠𝑒𝑎𝑠𝑜𝑛 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 𝑓𝑟𝑜𝑚  

𝑆𝑜𝑖𝑙 𝑤𝑎𝑡𝑒𝑟 𝑏𝑎𝑙𝑎𝑛𝑐𝑒(𝐸𝑡) = 𝑅𝑎𝑖𝑛𝑓𝑎𝑙𝑙 − 𝑐ℎ𝑎𝑛𝑔𝑒𝑠 𝑖𝑛 𝑠𝑜𝑖𝑙 𝑤𝑎𝑡𝑒𝑟 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 4 − 3  

 

This was the method employed by French & Schultz, who deliberately chose sites that were 

not prone to run-off, drainage, or lateral water movement so for this experiment runoff and 

drainage was assumed negligible and was not measured. This assumption was validated by the 
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slope which was less than 2% and field was relatively flat. The final values of WUE (Table 

4.2), derived as described by CSIRO in its WUE Benchmarking guide (Hunt and Kirkegaard, 

2012) shows the various water use and corresponding use efficiencies of the various cropping 

systems. 

 

 

 

Figure 4.2 Water use efficiency of the various agroforestry systems  

  

The effect of simultaneous agroforestry systems water use and water use efficiency is shown 

in Table 4.2. The results indicate significant differences (P< 0.001) in terms of water use 

efficiency, the sole maize cropping system outperformed all other treatments with 6.28 kg/ha 

mm while S. bispinosa + maize (0.292 kg/ha mm) had the least WUE. In terms of intercrops 

pigeonpea + maize (5.47 kg/ha mm) outperformed all other cropping systems while the least 

combination was S. bispinosa + maize. There were no differences noted on the maize 

intercropped with both trees (maize + pigeonpea = 2.97 kg/ha mm and maize + S. bispinosa = 

2.86 kg/ha mm). Among the intercropping systems, highest value of WUE was recorded in 

pigeonpea + maize. Minimum WUE was recorded on S. bispinosa grown in association with 
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maize (0.292 kg/ha mm) and sole S. bispinosa (0.425 kg/ha mm). In generally the results can 

be explained by the following sequence in terms of WUE in agroforestry systems which were 

evaluated. Sole maize ≥ sole pigeonpea ≥ pigeonpea + maize > maize + pigeonpea ≥ maize + 

S. bispinosa > sole S. bispinosa ≥ S. bispinosa + maize.  

   

4.4 DISCUSSION  

4.4.1 Water use (WU) 

In the review of previous studies by Morris and Garrity (1993) they noted the differences in 

water use between intercrops and sole crops often range between (-6) % and + (7) % although 

these cropping systems did not have trees. The absence of notable treatment effects on seasonal 

soil water indicates that maize + pigeonpea/or S. bisponsa and sole treatments used similar 

quantities of water, this view is supported by estimates of seasonal water use (Table 4.2). The 

study agrees with Chirwa et al., (2007) who found no significant differences in WU on 

agroforestry systems involving maize, pigeonpea and Gliricidia sepium. Droppelmann et al., 

(2000) reported similar findings for an agroforestry trial in Northern Kenya involving Acacia 

saligna and Sorghum bicolor. However, this conclusion may not be valid for the present 

study in view of the fundamental differences in productivity between the tree-based and sole 

cropping systems; for example, grain yield of sole maize was 3-fold greater than in maize + 

tree (pigeonpea/S.bispinosa) intercrop (Table 4.2). A possible explanation is that, in areas of 

relatively high rainfall or poor drainage, the water table may remain close to or within the 

rooting zone for much of the cropping season, particularly during periods when significant 

deep percolation occurs. Under such condition, treatment differences in water use, and hence 

in calculated water use efficiency values, may be masked if significant quantities of water 

https://link.springer.com/article/10.1007/s10457-006-9016-7#CR11
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are extracted from the water table by deep rooting species. In such occurrences, 

measurements of water abstraction from profile above the water table, as in the present study, 

cannot give reliable estimates of total water use. However, this difficulty may be avoided in 

future studies by using sap flow gauges to determine water uptake by individual system 

components (Lott et al., 2003); this method provides direct, non-destructive measurements 

of the quantity of water used during the production of dry matter. Thereby providing 

undisputable estimates of WUE for individual system components.   

4.4.2 Water use efficiency (WUE) 

Morris and Garrity (1993) and Ong et al., (1996) concluded that, although total water use may 

not differ between sole and intercropping systems, the latter often use more water efficiently. 

Their studies partly agree with the present study where pigeonpea grown in association with 

maize proved to have higher WUE (Table 4.2). The values of WUE on sole cropping systems 

(maize and pigeonpea) and pigeonpea intercropped with maize were higher. These results 

corroborated with reports that season-long WUE values range between 2.1 kg/ha mm and 5.2 

kg/ha mm in millet, a C4 species and 6.4 kg/ha mm in groundnut, C3 species, depending on 

the prevailing atmospheric saturation deficit (Black and Ong 2000). Lower values have been 

reported for castor bean grown in semi-arid conditions (0.88-1.31 kg/ha mm, Vijaya Kumar et 

al., 1996). These values are greater than those obtained for sole S. bispinosa and maize 

intercropped with maize in the present study. Meena et al., 2013 concluded that a crop with 

higher yield must also have higher WUE which might have contributed to higher WUE which 

might have contributed to the higher WUE values of sole maize, sole pigeonpea and pigeonpea 

intercropped with maize (Table 4.2). More transpiration due to good crop stand and soil 

evaporation may have contributed to high WUE in the sole maize as evaporative losses may 

be large in annual cropping systems (Wallace 1996). The high WUE value obtained from 

https://link.springer.com/article/10.1007/s10457-006-9016-7#CR17
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pigeonpea + maize reflects the intense shade provided by its dense canopy and the associated 

microclimatic changes which might have greatly reduced soil evaporation, ensuring that 

transpiration dominated evapotranspiration losses 

 

4.5 CONCLUSIONS  

The study provided no evidence that WUE was greater in the tree-based systems than sole 

maize only pigeonpea proved to have higher WUE when grown in association with maize due 

to its comparatively higher yields while maize had low WUE in that combination which was 

attributed to relatively low yields. The results can be explained by the following sequence sole 

maize ≥ sole pigeonpea ≥ pigeonpea + maize > maize + pigeonpea ≥ maize + S. bispinosa > 

sole S. bispinosa ≥ S. bispinosa + maize subject to the provision that the estimates of water 

consumption used in the calculation were based on changes in soil water content rather than 

direct measurements of water uptake by the tree and crop constituents.  

 

The observed changes in soil water content may also have been influenced by evaporation from 

the soil surface. In future, it will be important to measure soil evaporation and water uptake by 

the component species of agroforestry system to provide the actual measurements of the 

quantity of water utilized in the production of yield and dry matter and thereby provide rigorous 

reliably estimates of the WUE for each system component. Under water scarce environment, 

the results suggest that the pigeonpea + maize agroforestry system may be beneficial among 

smallholder farmers since it proved to have higher water use efficiency. Although the maize 

yields may be compromised in that system but it is system which is more sustainably because 

there is soil water conservation and provision of other benefits to farmers like food and feed 

for consumption, improve soil fertility and firewood  
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CHAPTER FIVE 

5.0 GENERAL DISCUSSION  

Agroforestry has been widely practiced in Sub-Saharan Africa because of its prominent effects 

in soil fertility improvement, reducing soil and water losses and improving land-use efficiency. 

The main reasons for higher yields in agroforestry system is that the component crop and tree 

can use natural resources differently and make better overall use of natural resources than 

grown separately. This was not the case in the present study as sole maize had higher yields as 

compared to agroforestry systems. This might have been caused by competition for resources. 

Similar studies conducted by Mathew et al., (2001) in Mpumalanga, South Africa found that 

sole maize had higher yields as compared to intercrops. Kwesiga et al., (1999) argued that 

intercropping maize with trees during the first year of the 2-year fallow has a negative on maize 

yield.  

 

The yield obtained in the sole pigeonpea was numerically close to that of an intercrop. The 

close yield similarity obtained between the cropping systems would suggest that maize yield 

might be increased in the following season as a subsequent crop in the same field because of 

residual nutrients which would have been enhanced and set free for plant uptake during 

previous season. Giller et al., (1991) argued that the evidence of substantial benefits of N-

transfer from grain legumes to the associated cereal crops is limited. Ledgard and Giller (1995) 

argued that the benefits of an intercrop between legume and cereal crop are more likely to occur 

to subsequent crops as the main transfer pathway is due to root and nodule senescence and 

fallen leaves. 
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The efficient use of basic resources in the cropping system depends partly on the inherent 

efficiency of the individual plants that make up the system and partly on complimentary effects 

between the crops. Availability of water in cropping system is vital to determine the growth of 

plant. Improvement of water use efficiency in agroforestry systems leads to increase in the use 

of other resources. Agroforestry systems have been identified to conserve water largely because 

of early high leaf area index and higher leaf area. The study indicated that sole maize, sole 

pigeonpea and pigeonpea + maize had greater WUE more than other treatments. The reason 

behind these higher WUE is the yield which was comparatively higher.  

 

A combination of maize + pigeonpea was better in terms of WUE efficiency as compared to S. 

bispinosa + maize although there were similar values for maize in either tree legume but 

pigeonpea proved to have higher WUE when grown in association with maize which was 

different with S. bispinosa. In terms of land equivalent ratio maize + pigeonpea had higher 

values which clearly indicated benefits of intercropping. Although the maize yields were low 

in that system there are more benefits which can be accrued by smallholder farmers.  

5.1CONCLUSIONS    

Sole maize outperformed maize + tree intercrops in terms of grain yield. The maize grain yield 

among the treatments explained by the following sequence sole maize > maize + pigeonpea ≥ 

maize +S. bispinosa. The tree seed yield by the following order Sole pigeon ≥ pigeon + maize 

> Sole S. bispinosa ≥ S. bispinosa + maize. In generally the results can be explained by the 

following sequence in terms of WUE in agroforestry systems which were evaluated. Sole maize 

≥ sole pigeonpea ≥ pigeonpea + maize > maize + pigeonpea ≥ maize + S. bispinosa > sole S. 

bispinosa ≥ S. bispinosa + maize.  
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5.2 RECOMMENDATIONS  

Small-scale farmers may adopt a maize cropping system involving pigeonpea if they want to 

practice simultaneous agroforestry system, although the system produced low maize yields, 

these low yields may be compensated by pigeonpea yields. This combination is also supported 

by higher Land Equivalent ratio (LER) values which were recorded. The practice of 

agroforestry system involving pigeonpea saves a substantial (23%) land which can be 

subsequently be used for other crop production. Pigeonpea is recommended in agroforestry 

systems with maize due to its higher LER and combined production of grain for human and 

livestock consumption, soil fertility improvement and firewood. This cropping system proved 

to have higher WUE as compared to maize intercropped with S. bispinosa. In future studies sap 

flow gauges or lysimeters may be used to determine water uptake by individual system 

components this method provides direct, non-destructive measurements of the quantity of water 

used in the production of dry matter, thereby providing undisputable estimates of WUE for 

individual system components. Future more experiments should be established with the very 

first planting rains around mid-November and more testing sites should be used. 

 

 

 

 

.  
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APPENDIX  

 GenStat 64-bit Release 14.1 (PC/Windows 7) 14 August 2016 06:05:49 

Copyright 2011, VSN International Ltd.   

Registered to:  University of KwaZulu-Natal 

  

  ________________________________________ 

  

  GenStat Fourteenth Edition 

  GenStat Procedure Library Release PL22.1 

  ________________________________________ 

    

Analysis of variance 

  

Variate: Grain_yield_kg_ha 

  

Source of variation d.f. s.s. m.s. v.r. F pr. 

  

Block stratum 2  212948.  106474.  2.74   

  

Block. *Units* stratum 

Treatments 2  3366115.  1683058.  43.35  0.002 

Residual 4  155288.  38822.     

  

Total 8  3734351.       

  

  

Tables of means 

  

Variate: Grain_yield_kg_ha 

  

Grand mean 1003.  

  

 Treatments Maize + Pigeonpea   Maize + S. bispinosa Sole Maize 

        604     538.  1867. 

  

Least significant differences of means (5% level) 

Table Treatments   

rep.  3   

d.f.  4   

l.s.d.  446.6   

  

Stratum standard errors and coefficients of variation 

Variate: Grain_yield_kg_ha 

  

Stratum d.f. s.e. cv% 

Block  2  188.4  18.8 

Block.*Units*  4  197.0  19. 
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Analysis of variance 

  

Variate: Mass_of_stover_kg_ha 

  

Source of variation d.f. s.s. m.s. v.r. F pr. 

  

Block stratum 2  285.  142.  0.14   

  

Block. *Units* stratum 

Treatments 2  87776.  43888.  42.85  0.002 

Residual 4  4097.  1024.     

  

Total 8  92158.       

  

  

Tables of means 

  

Variate: Mass_of_stover_kg_ha 

  

Grand mean 175.  

  

 Treatments Maize + Pigeonpea Maize + S. bispinosa Sole Maize 

   108.  102.  314. 

  

  

 

  

Least significant differences of means (5% level) 

  

Table Treatments   

rep.  3   

d.f.  4   

l.s.d.  72.5   

  

  

 

 

 

 

 

 

 

Analysis of variance 

Variate: Mass_of_cob_kg_ha 

  

Source of variation d.f. s.s. m.s. v.r. F pr. 
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Block stratum 2  334223.  167112.  2.90   

  

Block. *Units* stratum 

Treatments 2  8010355.  4005177.  69.62 <.001 

Residual 4  230118.  57529.     

  

Total 8  8574696.       

  

  

Tables of means 

Variate: Mass_of_cob_kg_ha 

  

Grand mean 1419.  

  

 Treatments Maize + Pigeonpea   Maize + S. bispinosa       Sole Maize 

   762.    742.               2753. 

  

  

Least significant differences of means (5% level) 

  

Table Treatments   

rep.  3   

d.f.  4   

l.s.d.  543.7   

  

 

Stratum standard errors and coefficients of variation 

  

Variate: Mass_of_cob_kg_ha 

  

Stratum d.f. s.e. cv% 

Block  2  236.0  16.6 

Block.*Units*  4  239.9  16.9 

  

 

 

 

 

 

 

 

Analysis of variance 

  

Variate: Canopy_diameter_m 

  

Source of variation d.f. s.s. m.s. v.r. F pr. 

  

Block stratum 2  0.19236  0.09618  1.40   
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Block. *Units* stratum 

treatments 3  1.11934  0.37311  5.43  0.038 

Residual 6  0.41214  0.06869     

  

Total 11  1.72384       

  

Tables of means 

  

Variate: Canopy_diameter_m 

  

Grand mean 0.91  

  

 treatments Pp  Pp + Mz  S. b       Sb + Mz 

   0.64  0.63  1.37  0.99 

  

Least significant differences of means (5% level) 

  

Table treatments   

rep.  3   

d.f.  6   

l.s.d.  0.524   

   

Stratum standard errors and coefficients of variation  

  

Variate: Canopy_diameter_m 

  

Stratum d.f. s.e. cv% 

Block  2  0.155  17.0 

Block. *Units*  6  0.262  28.8 

  

  Fisher's protected least significant difference test 

treatments 

                                                               Mean   

PP + MZ                                      0.6293  a 

Pp                                               0.6437  a 

S.b + MZ                                    0.9946  ab 

S. b                                           1.3750  b 

 

Analysis of variance 

  

Variate: LER 

  

Source of variation d.f. s.s. m.s. v.r. F pr. 

  

Block stratum 2  0.051667  0.025833  4.43   

  

Block.*Units* stratum 
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Treatment 3  0.782500  0.260833  44.71 <.001 

Residual 6  0.035000  0.005833     

  

Total 11  0.869167       

  

  

Tables of means 

  

Variate: LER 

  

Grand mean 0.458  

  

 Treatment   Sole maize   Maize + Pigeonpea      Maize + S. bispinosa   

                  0.3      1.23  0.63   

   

 Sole Pigeonpea  Sole S. bispinosa     

      0.9                0.4     

  

 

  

Least significant differences of means (5% level) 

  

Table Treatment   

rep.  3   

d.f.  6   

l.s.d.   0.241   

  

  

  

Stratum standard errors and coefficients of variation 

  

Variate: LER 

  

Stratum d.f. s.e. cv% 

Block  2  0.0804  17.5 

Block.*Units*  6  0.0764  16.7 

Combined anova of maize, pigeonpea and S. bispinosa yield 

Analysis of variance 

  

Variate: Grain_yield_kg_ha 

  

Source of variation d.f. s.s. m.s. v.r. F pr. 

  

Block stratum 2  68193.  34097.  1.13   

  

Block.*Units* stratum 

Treatments 6  6818550.  1136425.  37.70 <.001 

Residual 12  361773.  30148.     
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Total 20  7248516.       

  

Tables of means 

  

Variate: Grain_yield_kg_ha 

  

Grand mean 768.32  

  

 Treatments Maize + Pigeonpea Maize + S. bispinosa Pigeonpea + Maize 

   604.17  538.40  996.00 

   

 Treatments S. bispinosa + Maize Sole Maize  Sole Pigeonpea 

   58.33  1867.36  1106.67 

   

 Sole S. bispinosa     

       207.29     

 

 

Least significant differences of means (5% level) 

  

Table Treatments   

rep.  3   

d.f.  12   

l.s.d.  308.888   

  

  

Stratum standard errors and coefficients of variation 

  

Variate: Grain_yield_kg_ha 

  

Stratum d.f. s.e. cv% 

Block  2  69.792  9.1 

Block. *Units*  12  173.631  22.6 

Analysis of variance 

  

Variate: WUE 

  

Source of variation d.f. s.s. m.s. v.r. F pr. 

  

Block stratum 2  1.7147  0.8574  1.75   

  

Block.*Units* stratum 

Treatments 6  112.0776  18.6796  38.06 <.001 

Residual 12  5.8889  0.4907     

  

Total 20  119.6813       
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Tables of means 

  

Variate: WUE 

  

Grand mean 3.44  

  

 Treatments Maize + Pigeonpea Maize + S. bispinosa Pigeonpea + Maize 

   2.97  2.86  5.47 

   

 Treatments S. bispinosa + Maize Sole Maize  Sole Pigeonpea 

   0.29  6.28  5.77 

   

 Treatments Sole S. bispinosa     

   0.42     

  

 

Least significant differences of means (5% level) 

  

Table Treatments   

rep.  3   

d.f.  12   

l.s.d.  1.293   

  

  

Stratum standard errors and coefficients of variation 

  

Variate: WUE 

  

Stratum d.f. s.e. cv% 

Block  2  0.350  10.2 

Block.*Units*  12  0.701  20.4 
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Fig 1 Average soil water content at 20cm depth 

Fig 2 Average soil water content at 50cm depth 
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Fig 3 Average soil water content at 120cm depth 
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