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ABSTRACT 

The research aimed at analyzing the efficiency of biosurfactant-producing Paenibacillus sp. D9, 

characterization, stability studies, optimization of process conditions, biodegradative enzymes induction, 

biotechnological applications, and molecular studies. Paenibacillus sp. D9 displayed higher hydrophobicity to 

the long chain hydrocarbons mixtures tested such as 71.50% diesel fuel, 70.0% engine oil and 76.0% n-paraffin. 

The Paenibacillus sp. D9 strain could tolerate a high diesel concentration and a wide range of utilization on 

different hydrocarbons substrates such as n-hexadecane, n-dodecane, n-tetradecane, 1-nonene, n-tetracosane, 

and n-toluene respectively. Paenibacillus sp. D9 produced a low molecular weight lipopeptide biosurfactant 

with critical micelle concentration of 200 mg/L, and high surface tension activity. The optimum condition for 

biosurfactant synthesis was obtained in a medium containing 10% (v/v) diesel fuel with a production yield of 

4.7 g/L. The resultant biosurfactant reduced surface tension from 71.4 mN/m to 30.1 mN/m against carbon 

source utilized. Paenibacillus sp. D9 lipopeptide biosurfactant was capable to withstand and survive in toxic 

hydrophobic compounds. The obtained lipopeptide can proficiently emulsify different hydrophobic 

compounds inclusive of engine oil, diesel fuel, motor oil, and n-paraffin, hydrocarbon substrates such as n-

hexadecane, n-dodecane, n-tetradecane, n-hexane, chloroform, m-xylene, 1-nonene, n-tetracosane, and toluene 

respectively. 

The enzyme activities of alkane hydroxylase (82 U), alcohol dehydrogenase (23 U), and esterase (0.220 U) 

were assessed, with enhanced biosurfactant activity during the biodegradation of diesel fuel and n-hexadecane. 

The production of enzymes and biosurfactant by Paenibacillus sp. D9 were shown to be involved in the 

biodegradative mechanism and pathways. Thus, 98.4% n-hexadecane (C16) and 80.2% diesel fuel (C9-C25) 

were utilized as source of carbon and energy by Paenibacillus sp. D9. Hence, Paenibacillus sp. D9 was more 

vigorous in degradation, and pseudo-solubilization of n-hexadecane. 

The lipopeptide biosurfactant retained surface-active properties under extreme conditions: temperature (≥ 

50oC), acidic (pH 2-6), alkaline (pH ≥ 8.0), and salt concentration (0-20 %). Paenibacillus sp. D9 was evaluated 

for optimal conditions and improved production yield. The maximum yield of 4.11 g/L occurred at a C/N ratio 

of 3:1, at pH 7.0, 30°C, 4.0 mM MgSO4 and 1.5% inoculum size. The potential of Paenibacillus sp. D9, to 

utilize different cheap waste frying oils for maximum biosurfactant production resulted in improvement of 

surface tension reduction and yield of 31.2 mN/m and 5.31 g/L, respectively using response surface 

methodology. The Paenibacillus sp. D9 biosurfactant was effective in the solubilization and removing 49.1% 
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to 65.1% diesel fuel including n-hexadecane, and n-dodecane. The application of biosurfactant further resulted 

in the bioremediation of motor oil and diesel fuel in both shaking and static conditions from contaminated 

sands and aqueous environment respectively.  

Further biotechnological application revealed the removal of 85.90%, 98.68%, 99.97%, 63.28%, 99.93%, and 

94.22% for Ca2+, Cu2+, Fe2+, Mg2+, Ni2+, and Zn2+ respectively from contaminated acid mine effluents. The 

biosurfactant produced a better performance in heavy metals removal from vegetables, as well as improved oil 

dispersing activity when compared to acid precipitated supernatant, Triton X-100, and sodium deocyl sulfate. 

There was high removal of heavy metal from both synthetic wastewater, and contaminated sands. A 

comparative study of different formulations for the removal of tomato sauce and coffee stains proved that the 

biosurfactant was more effective (>60%) in terms of the stain removal than chemical surfactants (<50%). 

Paenibacillus sp. D9 lipopeptide biosurfactant synergistically enhanced the removal of tomato sauce and coffee 

stain from 64.0% to 76.7% and 60.5% to 71.5% respectively.  

The sfp gene encoding a phosphopantetheinyl transferase was cloned and over-expressed in Escherichia coli 

BL21 (DE3) pLysS and purified to homogeneity using cobalt affinity chromatography. The enzyme was 

recovered efficiently and had specific activity of 87.14 U/mg against 4-nitrophenyl acetate, at an optimal pH 

of 8.0 and temperature of 30oC. The enzyme exhibited stability under a wide range of pH and temperature. 

Kinetic parameters were obtained having values of 4.52 mg/mL, 35.33 U/mg, 3.64 s-1, and 0.104 mM−1 s−1 for 

Km, Vmax, kcat, and kcat/Km respectively. Biosurfactant produced by the recombinant E. coli strain was found to 

be surface active, reducing the surface tension to 35.7 mN/m and enhancement in biosurfactant yield (1.11 g/L) 

as compared to 0.52 g/L from Paenibacillus sp. D9 utilizing 2 g/L glucose substrate. Therefore, these results 

demonstrated that lipopeptide biosurfactant are green biomolecules to replace synthetic surfactants and 

detergents, thus reducing hazards, and contaminations caused to the environment. The non-toxic effect of 

Paenibacillus sp. D9 BioS suggests its usefulness in different applications relatable to soil and aquatic 

environments, as the biomolecule was confirmed to be ecological safe and environmentally-friendly. For future 

use, this biosurfactant is highly promising in environmental biotechnology.  
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Chapter 1  

Introduction 

1.1 Background 

In the present economy, advancement in science and biotechnology have progressively aided mankind in the 

probe and exploration of natural resources. Different activities such as excavation of fossil fuels, crude oil 

exploration, crude-oil related products (kerosene, diesel, petrol) usage, arrival of agricultural chemicals and 

pharmaceutical products have eased the lifestyle of people worldwide. Unfortunately, a few of these 

interventions have a downside as the chemicals, solvents, and materials required for those developments may 

instigate health effects on the environment, humans, including the aquatic habitat (Valentín et al., 2013). 

Numerous human activities have led to deliberate or accidental discharge of pollutants into the Earth’s 

ecological system as these contaminants pose a vast risk to human life, wellbeing and normal biological system 

(Chen et al., 2015). Any unwanted substances released into the environment are termed pollutants or 

contaminants. Pollutants are in existence for a while now, and life on Earth has always progressed amongst 

them (Korjus, 2014). The Earth is incessantly a polluted planet with pollutant similarities from, global 

warming, comets, space dust, organic dust, volcanic activities, smoke, comets, space dust, and acid rain 

(Korjus, 2014). 

Poisonous chemicals contained in different materials in the Earth’s atmosphere can be absorbed on human 

skin, accumulate in the dust we inhale, or subsequently end up in the surrounding natural environment. 

Substances that leach into the soil and water environment can indirectly affect humans, by absorption on 

different vegetables, fruits, fish, and other food products that end up on our eating table. The exhaustive 

utilization of substances, for example, oil hydrocarbons (such as saturated, unsaturated, polyaromatic, 

polycyclic aromatic hydrocarbons, and cycloalkanes), heavy metals (such as thallium, copper, zinc mercury, 

arsenic, iron, titanium, cadmium, nickel), pesticides, herbicides, air contaminants (carbon monoxide, ozone, 

acid rain, particulate matter), volatile organics (such as benzene, toluene, chloroform, ethylbenzene, xylenes), 

nitroaromatic compounds, organophosphorus compounds, trichloroethylene, perchloroethylene, solvents, and 

chlorinated hydrocarbons can be intensely noxious thus inflicting extensive damage such as corrosive injuries, 

toxicity, and overall illness (Chen et al., 2015; Korjus, 2014; Megharaj et al., 2011). In some cases, some 
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compounds are synthesized purposely to suit environmental requirements whereas in most cases, the burning 

of some chemicals such as polyvinylchloride, plastic, radioactive substances, inorganic substances, and organic 

compounds  generate undesired toxic by-products. The destination of the above-listed pollutants is often the 

soil, lakes, river, and sea leading to bioaccumulation, and biomagnification effects over time. This, however, 

leads to deleterious and hazardous effect to both aquatic and terrestrial life (Liu et al., 2017; Valentín et al., 

2013). 

The discharge of crude oil, petroleum, hydrocarbons, heavy metals, and other various pollutants into the 

environment is a proportional range of approximately 2.0–8.8×106 metric tonnes annually (Hassanshahian and 

Cappello, 2013). Many pollutants introduced into the soil environment are degraded biologically while other 

pollutants have been toxic and not degradable to a number of the soil microbial community. Due to the 

detrimental consequences of hydrophobic pollutants, it is imperative to propose procedures to annihilate these 

environmental problems. Several conventional techniques such as alteration, volatilization, photo-oxidation, 

chemical oxidation, adsorption, landfilling, burning, and chemical treatments are extensively used in polluted 

sites clean-up, but these methods highlighted above are exceedingly costly, toxic, non-biodegradable and pose 

additional risks to the environment (Guntupalli et al., 2016; Patowary et al., 2018).  

Anionic, non-ionic, cationic and mixed surfactants are different types of surfactants are able to remove 

concentrated hydrophobic compounds from liquid medium, groundwater, surface water and contaminated soil 

(Chaprão et al., 2015; Lai et al., 2009; Urum et al., 2006). Surfactants are standout amongst the profitable 

synthetic products and huge amounts are expended throughout the world for various purposes (Chakraborty et 

al., 2015). Be that as it may, the remaining surfactants in soil surroundings and receiving water bodies constitute 

probable danger to environmental conditions and human wellbeing (Chaprão et al., 2015).  

One of the promising techniques to restore contaminated environments is the utilization of bioremediation 

innovations, which is an eco-accommodating, financially productive, and supportable method. Bioremediation 

is an ecologically-sound technique encompassing the usage of natural biological processes to cleanse or remove 

pollutants through biochemical solubilization or mineralization. It is the most interesting strategy by which 

microbes, microalgae, green plants and/or their enzymes use for hydrocarbon biodegradation and 

bioremediation (Korjus, 2014; Mani and Kumar, 2014; Mnif et al., 2015). They have been recognized as 

extensive substitutes for regular strategies in settling natural ecological issues (Mnif et al., 2015). Likewise, 

biodegradation by natural microbial population characterizes one of the significant mechanisms by which 

hydrophobic contaminants can be expelled or diminished from nature. Biodegradation is a natural process that 

https://en.wikipedia.org/wiki/Radioactive
https://en.wikipedia.org/wiki/Inorganic
https://en.wikipedia.org/wiki/Organic_compound
https://en.wikipedia.org/wiki/Organic_compound
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involves the transformation and breakdown of organic contaminants principally by microbial organisms into 

simpler substances. The microbial organisms transform the contaminants through their metabolic or enzymatic 

processes (Katyal and Morrison, 2007; Thomson, 2012). Some physicochemical, just as biological parameters 

determine the extent of hydrocarbons biodegradation. Due to the exceedingly hydrophobic nature of 

hydrophobic pollutants, different factors such as low water solubility, strong soil particles attachment, and low 

biological availability of oil pollutants have constrained the mass transfer proportion to biodegradation and 

bioremediation. Also, oil and petroleum contaminants are often adsorbed and absorbed onto soil particles, 

might be available as a liquid or a solid phase (Bezza and Nkhalambayausi Chirwa, 2015; Chaprão et al., 2015; 

Paria, 2008). 

Both eco-friendly techniques highlighted above involves the production of surface-active molecules of 

microbial origin termed “biosurfactant” which aid in the solubilization and remediation of hydrophobic 

pollutants, petroleum hydrocarbons, oil-related products, and not limited to heavy metals. Biosurfactants 

(BioSs) are amphiphilic compounds, produced by specific microorganisms (Parthipan et al., 2017; Sharma et 

al., 2015). BioS synthesis by microorganisms is either secreted intracellularly by being partly attached to the 

cell membrane or as an extracellular release to the medium. The former mechanism arises commonly when the 

microorganism is grown in substrates that are insoluble in water. BioSs produced intracellularly assist in 

nutrient uptake, neutralization of toxic elements, and further ease carbon molecule storage (Ndlovu, 2017). 

Furthermore, BioSs enable microorganisms to have a surface activity which assists in lowering the surface 

tension between multiple interphases (liquid-liquid, liquid-air, liquid-gas, and liquid-solid), thus rendering the 

substrate and aid the mobility of microorganisms in unfriendly environments (Van Hamme et al., 2006). 

The BioS molecules which contain the hydrophobic group (water repelling such as unsaturated or saturated 

hydrocarbon chains or fatty acids) and hydrophilic ends (water-loving, such as, acid, cations, or anions, peptide, 

mono-, di- or polysaccharides) mediates the surface interactions at the interface (Sharma et al., 2015).  The 

dual nature of BioSs permits the dissolution of both polar and non-polar solvents (Smyth et al., 2010a; Smyth 

et al., 2010b). Depending on the chemical structure and microorganisms that produce these compounds, BioS 

are biological-chemical complexes that consist of an extensive kind of biomolecules such as fatty acids, 

dicarboxylic acids, fatty acid amides, lactones, alkyl glycosides, and sugar molecules (Ndlovu, 2017; Youssef 

et al., 2005). The main classes include polymeric compounds, lipopeptides, phospholipids, particulate 

surfactants, and glycolipids. BioSs have several advantages when compared to chemically produced 

counterparts. Such advantages involve non-toxicity, extensive foaming activities, biodegradability, ecological 
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acceptability, high selectivity, environmentally friendliness, and effectiveness at extreme environments (Bezza 

and Nkhalambayausi Chirwa, 2015; Chrzanowski et al., 2012; Hirata et al., 2009). As such, BioSs are well-

thought-out as a preeminent option to synthetic surfactants in augmenting solubilization, bioavailability, 

biodegradation, and bioremediation of hydrophobic pollutants (Mnif et al., 2015). These favorable properties 

make BioSs suitable in scope of applications, for example, food, agriculture, oil industries, cosmetics, 

environmental, pharmaceutics, and biotechnological processes (Bezza and Nkhalambayausi Chirwa, 2015; 

Mnif et al., 2014; Pacwa-Płociniczak et al., 2011).  

1.2 Statement of problem 

Major environmental problems and human health effects have ensued from long-standing contamination 

arising from different activities such as extensive usage, inappropriate dumping, accidental leakages of  

aliphatic and aromatic hydrocarbons, organic solvents, heavy metals, and crude oil and other related products 

such as paraffin, motor oil, diesel fuel, motor oil, and other hydrophobic pollutants (Chen et al., 2015). Due to 

the recalcitrant nature of these hydrophobic pollutants in contaminated soils or sediments, these contaminants 

present one of the most demanding problems that require an urgent solution about their solubilization and bio-

treatment. BioS-enhanced biodegradation and bioremediation has presented a cost-effective option to 

conventional techniques, though, bioremediation of petroleum hydrocarbons is limited by the pollutants’ low 

bioavailability, insolubility, hydrophobicity, and strong adsorption to soil particle in the environment (Bezza 

and Chirwa, 2015; Bezza and Nkhalambayausi Chirwa, 2015; Malik et al., 2011).  

Despite several advantages and good properties over chemical surfactants, the drawback still lies in the high 

production cost, low production yield, expensive downstream and recovery process. In addition, difficulties in 

synthesizing huge quantities of BioSs for environmental applications is the main limitation to date. Novel 

discoveries, improvement of fermentation conditions and new recovery processes may allow BioSs usage in a 

wide range of biotechnological applications. At present, commercial production of BioSs in bulk quantities is 

restricted (except for rhamnolipids obtainable at http://www.rhamnolipid.com) as the wholesale total 

production cost is still very high (Al-Wahaibi et al., 2014). Syldatk and Hausmann (2010) discovered that the 

utilization of expensive substrates gave low production yields, build-up of detrimental mixtures instead of 

advanced BioS products, and such constrictions clarify why there exists limited production industrially. To 

address this problem, large-scale production of BioS is dependent on numerous strategies, which involves the 
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advancement of in-expensive scaled-up methods, isolation of novel BioS group, microbial strain improvement, 

media components optimization, improved statistical techniques, the use of cheap raw materials, and 

development of hyper-producing genetic microorganisms (Al-Bahry et al., 2013). 

1.3 Scope of present study 

In the current research, different sequences of BioS enhanced solubilization, biodegradation, optimization, and 

bioremediation research were analyzed. This study is made from five main parts 

• Production, physiochemical, structural, and molecular characterization of lipopeptide BioS by diesel 

fuel and hydrocarbon-degrading Paenibacillus sp. D9. 

• Explore BioS synthetic-degradative enzymes, and mechanism as mediated by biodegradation and 

solubilization of hydrocarbons. 

• Optimization of different growth conditions, factors, and parameters for improved BioS production 

yield. 

• Stimulation of BioS production for enhanced solubilization, biodegradation, and bioremediation of 

hydrocarbons and hydrophobic compounds. 

• Development of a genetically hyper-producing recombinant strain for improved synthesis of BioS. 

1.4 Hypothesis 

• It was hypothesized that Paenibacillus sp. D9 will produce a novel, low molecular weight lipopeptide 

BioS with diverse biotechnological applications.  

• It was hypothesized that improved production parameters will significantly increase BioS yield thus 

resolving the associated high production cost associated and its wide usage in environmental, and 

biotechnological applications via physico-chemical and molecular approaches.  

1.5 Aims and objectives 

• To determine the functions, and structural characterization of novel lipopeptide BioS produced by 

Paenibacillus sp. D9, thus contributing valuable information on the genus Paenibacillus with new 

properties and attributes. 
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o To produce, characterize, and determine the structural composition of the newly isolated 

lipopeptide BioS. 

o To evaluate the utilization, and degradative ability of Paenibacillus sp. D9 on different 

hydrocarbons, hydrophobic mixtures and survive high toxic concentration of diesel. 

o To recover, purify, and determine the physicochemical classification, and stability studies of 

the BioS synthesized. 

• To determine biodegradative mechanism, and activities of BioS-mediated degradative enzymes and 

role played in improving the biodegradative ability of Paenibacillus sp. D9. 

o To explore the correlation between BioS production and biodegradative-mediated enzymes 

in hydrophobic pollutants. 

o To determine the role of important degradative and metabolic enzymes during degradation 

of diesel fuel and n-hexadecane. 

o To accomplish Paenibacillus sp. D9 improved pseudo-solubilization and desorption on 

hydrocarbon substrates.  

• To explore different conditions for maximum production yield and assess Paenibacillus sp. D9 BioS 

capability in improving the bioavailability, solubilization, and biodegradation of hydrophobic 

pollutants. 

o To determine the optimum conditions required for improved lipopeptide BioS yield when 

grown on diesel fuel through the utilization of one variable at a time (OVAT) classical 

design. 

o To assess the stability of the Paenibacillus sp. D9 BioS in extreme environmental conditions. 

o To design a medium incorporating a novel cheap carbon substrate with the potentiality of 

using low cost substrates. 

o To present new, improved production process parameters and conditions of lipopeptide BioS 

produced by Paenibacillus sp. D9 using a combination of Box Behnken Design and response 

surface methodology. 

o To explore the impact of exogenously included synthetic surfactant, BioS in single or/and 

combination with Paenibacillus sp. D9 on the degradation abilities of high toxic hydrophobic 

compounds. 
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• To build up a powerful bioremediation technique through exogenous BioS introduction synthesized 

from a competent hydrocarbon degrader for advanced biodegradation of hydrophobic polluted sands 

and liquefied media. 

o To perform experimental design tests by examining the utilization of  BioS produced from 

Paenibacillus sp. D9 in enhancing bioremediation of hydrophobic pollutants from 

contaminated sand and water media using different conditions. 

• To present novel biotechnological applications inclusive of oil dispersion, heavy metal removal from 

contaminated environments, and formulation of detergents on the produced lipopeptide BioS.  

• To develop a hyper-producing recombinant strain for improved esterase and BioS production through 

cloning, and expression, thus making it a commercially practicable bio-process.  

o To clone, and determine the heterologous expression of BioS biosynthetic gene, and its 

molecular characterization in terms of amino acid-make up and homology. 

o To purify and characterize cloned BioS product and thereby contrast BioS activity of the 

hyperproducing strain to the parent strain 

1.6 Thesis organization 

This thesis is a production of nine different chapters. Chapter one, and chapter two is made up of the 

introduction and literature review respectively. The manuscripts (Chapters Four, Six, Seven, and Eight) have 

been submitted to peer-review international journals. The manuscripts (Chapter Three and Chapter Five) have 

been published in peer-reviewed international journal. Chapter Nine comprise of the conclusions made from 

this research as well as future perspectives. 

Chapter 1. This chapter contains thesis introduction, foundation, problem statement, the scope of research, 

aims and objectives as well as the thesis layout or organization. 

Chapter 2. Advances in production, characterization, and application of biosurfactants. 

The second chapter examines past reports and ongoing advancements in the area of BioS, different types, 

properties, advantages, structural composition, the physiology, pathways, and kinetics of BioSs production, 

factors and strategies for improvement of BioS production, purification and recovery process, characterization, 

recombinant DNA advancements, as well as the recent environmental, industrial, and biotechnological 

applications. Part of this chapter has been published in Ecotoxicology and Environmental Safety. 



8 

 

Chapter 3. Production and characterization of lipopeptide biosurfactant-producing Paenibacillus sp. D9 

and its biodegradation of diesel fuel.  

This chapter focuses on the functions, structures, and characterization of novel lipopeptide BioS produced by 

hydrocarbon-degrading bacterium Paenibacillus sp. D9 capable of withstanding high toxic hydrophobic 

compounds. The synthesized lipopeptide in the current study can emulsify a number of hydrophobic 

compounds inclusive of engine oil, motor oil, n-parrafin, and diesel fuel, other hydrocarbon substrates such as 

n-hexadecane, n-dodecane, n-tetradecane, 1-nonene, tetracosane, toluene and intermediary metabolites of 

polycyclic aromatic hydrocarbon degradation such as benzoic acid, salicylic acid, and phthalic acid. This 

chapter also contributes valuable information on this species of Paenibacillus with novel BioS properties and 

attributes. This chapter has been published in International Journal of Environmental Science and Technology 

(2019). 

Chapter 4. Diesel fuel and n-hexadecane biotransformation by Paenibacillus sp. D9: Degradative 

enzymes and biosurfactant mediation. 

This chapter exhaustively discusses the role of key metabolic biosynthetic degradative enzymes (such as alkane 

hydroxylase, alcohol dehydrogenase, and esterase) in the degradation of diesel fuel and n-hexadecane. Also, 

pseudo-solubilization and accumulation of intracellular n-hexadecane hydrocarbon were also presented in 

relation to biodegradation. The chapter examined significant relationship between surface tension, emulsifying 

activity, and cell surface hydrophobicity as regards lipopeptide BioS synthesis and activity. This chapter has 

been submitted to Biocatalysis and Biotransformation. 

Chapter 5. Enhancement of Paenibacillus sp. D9 lipopeptide biosurfactant production through the 

optimization of medium composition and its application for biodegradation of hydrophobic pollutants. 

This chapter features the optimal culture parameters advancement and their impact on lipopeptide BioS 

synthesis, high stability, enhanced desorption and solubilization of hydrophobic contaminants (namely diesel 

fuel, n-hexadecane, and n-dodecane). The chapter further highlighted some interesting findings as discussed 

therein. The study showed significant positive effects on lipopeptide production on the following proportional 

parameters; diesel fuel (carbon source), ammonium sulfate (nitrogen source) and magnesium sulfate (metal 

supplementation) with the optimal pH, temperature, and inoculum size found to be 7.0, 30oC, and 1.5 mL 

respectively. The synthesized Paenibacillus sp. D9 BioS revealed reliable stabilities in a wide range of pH, 

temperature and salt concentrations. In addition, the lipopeptide BioS was more efficient in the solubilization 
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of hydrophobic pollutants than the commercially available chemical surfactant. This chapter is published in 

Applied Biochemistry and Biotechnology (2018): 1-20. 

Chapter 6. Bioremediation of diesel and motor oil through the optimization of biosurfactant produced 

by Paenibacillus sp. D9 on waste canola oil.  

This chapter reports a new, improved production process parameters and conditions of lipopeptide BioS 

produced by Paenibacillus sp. D9 using a combination of Box Behnken Design and response surface 

methodology on low-cost substrates. The significant lipopeptide BioS ability and feasibility in the 

bioremediation from contaminated sands using both the shaking and static conditions were also evaluated and 

reported. This chapter has been submitted to Bioremediation Journal. 

Chapter 7. Biotechnological applications of Paenibacillus sp. D9 lipopeptide biosurfactant produced in 

low-cost substrates  

The chapter reports the effects of low-cost substrate-produced BioS and its novel environmental, and 

biotechnological applications such as oil dispersion, heavy metal removal from contaminated effluents, sands, 

wastewater, vegetables as well as washing performance and detergent formulations. The non-toxic effect of 

Paenibacillus sp. D9 BioS proffers its usefulness in different applications relatable to soil and aquatic 

environments, as the biomolecule was confirmed to be ecologically safe and environmentally-friendly. This 

chapter has been submitted to Applied Biochemistry and Biotechnology. 

Chapter 8. Heterologous expression of Sfp-type phosphopantetheinyl transferase is indispensable in the 

biosynthesis of lipopeptide biosurfactant.  

This chapter identifies and characterizes the sfp gene encoding phosphopantetheinyl transferase from 

Paenibacillus sp. D9 at the molecular level, which provides more insight into the structure and function of sfp 

gene involved in the BioS biosynthesis. This chapter presents, exhaustively the characterization, improved 

production yield, structural prediction, biochemical characterization, and enzyme kinetics of 

phosphopantetheinyl transferase enzyme. The recombinant strain (BioSp) was also implicated in the synthesis 

of BioS as reported in this thesis. This chapter has been submitted to Journal of Biotechnology. 

Chapter 9. Conclusions and Future Perspectives. This chapter integrates and provides conclusions and 

documentation of the contributions of this research. Future research possibilities and recommendations are 

included. 
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Abstract    

Petroleum hydrocarbons, oil, and heavy metals pollution is becoming an additional severe problem due to the 

growing call for crude oil and crude oil related products in several fields of application. Such pollution leads 

to ecological damages in both marine, aquatic and terrestrial ecosystems. Thus, different techniques including 

chemical surfactants and complex technologies have been proposed for their clean up from the environment, 

which in turn has potential detrimental effects on the environment. As of late, biosurfactant compounds have 

added much deliberation since they are considered as a reasonable option and eco-accommodating materials 

for remediation technology. Biosurfactants hold the special property of minimizing and reducing the interfacial 

tension of liquids. Such features sustain biosurfactants to play a major part in emulsification, de-emulsification, 

biodegradability, foam formation, washing performance, surface activity, and detergent formulation in diverse 

industrial set-ups. Conversations on cost-effective technologies, renewable materials, novel synthesis, 

downstream, upstream, emerging characterization techniques, molecular, and genetical engineering are 

substantial to produce biosurfactant of quality and quantity. Be that as it may, the extravagant cost drew in with 

biosurfactants biotechnological synthesis and recovery can hamper their application in those areas. 

Notwithstanding these costs, biosurfactants can be used as these parts shows outstandingly high benefits that 

can at present beat the expenses incurred in the initial purification and downstream processes. The production 

of biosurfactant by microorganisms is relatively considered one of the crucial know-how for improvement, 

growth, advancement, and environmental sustainability of the 21st century. This review emphasizes 

exhaustively the key and recent areas to be considered during biosurfactants production by microorganisms. 

 

Keywords Applications; Bioremediation; Biosurfactants; Characterisation; Environmental pollution; 

Microorganisms; Production. 
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2.1 Introduction  

Different activities such as oil spillage, leakage and indiscriminate disposal/exposure of petroleum hydrocarbon 

and petroleum products (fuel oils, hydraulic oil, automotive oil, and lubricating oils) occurs either due to human 

activities or accidental discharge. This poses a severe threat to ecosystems, thereby leading to severe ecological 

and environmental pollution effects (Bayoumi et al., 2010; Lima et al., 2011). Also, rudimentary activities 

encompassing cosmetic products, toothpaste formulations, personal hygiene, detergent formulations, oil paints, 

bio-commercial detergents, and other pharmaceutical by-products are mostly dependent on the use of 

surfactants either of chemical, biological origin or biological-chemical complexes. Surfactants are amphiphilic 

surface-active agents that have both polar and non-polar group that decrease surface tension at the interface 

between two liquids incapable of forming a homogeneous substance, similar to water and oil. They are either 

of synthetic or of biological origin which are termed biosurfactant (BioS). BioSs synthesized by 

microorganisms is garnering a noticeable interest owing to their prospective benefits such as environmental 

compatibility, biodegradability, non-toxicity, effectiveness at extreme environmental conditions, and higher 

foaming capacity over their synthetic counterparts (Gudina et al., 2015a; Pereira et al., 2013).  

These properties assume BioSs significance in different areas like pharmaceutics, health, cosmetics, oil 

recovery, bioremediation, biodegradation, food industry, and numerous uses in various modern industrial 

sectors (Banat et al., 2010; Fracchia et al., 2014). Microorganisms are proficient in producing different kinds 

of BioSs which range from the low molecular weight BioS to the high molecular weight. They belong to genera 

such as Pseudomonas, Acinetobacter, Bacillus, Brevibacterium, Clostridium, Arthrobacter, Gordonia, 

Rhodococcus, Halomonas, Serratia, Aeromonas, Thiobacillus, Leuconostoc, Citrobacter, Candida, 

Corynebacterium, Penicillium, Yarrowia, Ustilago, Aspergillus, Torulopsis, Ochrobactrum, Pseudozyma, 

Saccharomyces, Enterobacter, and Lactobacillus (Li et al., 2016; Shekhar et al., 2015). The world markets are 

engrossed with several entrepreneurs who have shown interest in exploiting the BioSs industry since there is 

increasing responsiveness among consumers for environmentally-friendly compounds. BioSs can substitute 

man-made surfactants such as Polysorbate 80, Dowfax 8390, Triton X-100, Tween 80, sodium dodecyl sulfate, 

sorbitan trioleate, Tergitol NP-10, Tergiitol NPX in numerous environmental and industrial applications 

(Gudina et al., 2015a). ZONIX, a biofungicide, technical grade active ingredient made from rhamnolipid BioSs 

is currently being sold by a company named Jeneil BioSs, USA. Paradigm Biomedical Inc (USA) is dedicated 

to the research of pharmaceutical products derived from rhamnolipids BioSs. R95, an anionic amphiphilic 
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molecule (hydrophilic and lipophilic) which is a high performance-liquid chromatography grade rhamnolipid 

has been introduced recently by AGAE technologies Ltd, USA. R95 consists of mono- or di-rhamnose sugar 

heads and ß-hydroxyl alkanoic acid tails of variable lengths (Sekhon et al., 2012). Other prominent and major 

BioS manufacturers include Ecover Belgium (Belgium), Cognis (Germany and USA), Groupe Soliance 

(France) and MG Intobio (South Korea). Fraunhofer IGB (Germany) is involved in the distribution glycolipid 

BioS, mannosylerythritol lipids, and cellobiose lipids. Additionally, Saraya (Japan), have been implicated in 

the large-scale sale of sophorolipid BioS products. Cognis (China) announced the sale of a green BioS termed 

APG®, produced from starch or vegetable oil (Sekhon et al., 2012; Sekhon Randhawa and Rahman, 2014).  

While different researchers are ardent in substituting synthetic surfactants, the exorbitant cost of synthesizing 

BioSs is of major concern (Al-Wahaibi et al., 2014). Subsequently, further research needs to be done in 

increasing production yields together with the exploration for novel kinds of BioSs and application roles in 

hydrophobic bioremediation processes, antimicrobial agents, microbial enhanced oil recovery, 

biotechnological, environmental, and industrial applications (Dalili et al., 2015; de França et al., 2015; Ferreira 

et al., 2017). Likewise, exploring the structural, functional composition, novelty, and applications of BioSs is 

appealing to several scientists all over the world. Reduction in the cost of BioSs production making them 

economically attractive mainly hinge on the improvement of inexpensive procedures, utilization of inexpensive 

raw resources and improved production yields through genetically engineered bacteria and superlative mutants. 

In this way, investigations on human and environmental sustainability to improve the proficiency of feasible 

innovations on environmental safety and greener technology are also being explored. The review demonstrates 

the recent development in BioSs production by microorganisms, with a description of their properties, 

strategies for the improvement in BioS production, and BioS production economics as well as the new 

characterization, recombinant DNA technology for enhanced BioS production, application for its usage in the 

most diverse environmental, industrial and biotechnological industries with major focus on greener technology 

and environmental sustainability. 

2.2 Biosurfactant classification 

BioSs are produced by an extensive diversity of microorganisms and possess structures of different chemical 

and surface properties (Martins and Martins, 2018). Microorganisms can make different types of BioSs, which 

includes glycolipids (mannosylerythritol, rhamnolipids, sophorolipids, xylolipid, cellobiose lipids trehalose 
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lipids), lipopeptides (subtilisin, vixcosin, serrawetin, surfactin, polymyxin, iturin), polysaccharide-protein 

complexes, flavolipid, phospholipids, fatty acids, polymeric surfactants (liposan, alasan, emulsan) and lipids 

(de França et al., 2015; Martins and Martins, 2018). The most frequently produced low molecular weight 

surface active compounds are glycolipids and lipopeptides. The other group which have often been used 

substitutively with BioSs to represent biomolecules that are surface active are referred to as bioemulsifiers 

(Uzoigwe et al., 2015). Bioemulsifiers are surface-active but do not essentially decrease surface tension, 

however, provide steady emulsions between water mixtures and hydrocarbons (liquids). BioSs in most cases 

are commonly referred to as bioemulsifiers (Franzetti et al., 2012; Smyth et al., 2010b). Bioemulsifiers are 

high-molecular-weight as they are combinations of protein, heteropolysaccharides, lipopolysaccharides, and 

lipoproteins (Bezza and Nkhalambayausi Chirwa, 2015; Perfumo et al., 2010; Smyth et al., 2010b). They are 

also referred to as high molecular weight biopolymers or exopolysaccharides. The different types of BioSs, 

and the structural compositions are discussed and provided below.  

2.2.1 Glycolipids 

Numerous glycolipids, encompassing simple fatty acids esterified to a carbohydrate moiety have been defined 

varying from different microorganisms (de Jesus Cortes-Sanchez et al., 2013). Their structural composition 

differs from simple sugars with fatty acyl substituents to complex carbohydrates, that can successively be 

connected to aromatic compounds, nucleosides, or terpenoids, in addition to having different connection points 

to “un”, “mono”, “poly”, unsaturated fatty acids by means of glycosidic or ester linkages. Glycolipid BioS 

structures include rhamnolipids, sophorolipids, mannosylerythritol, trehalose lipids, and xylolipids (Santos et 

al., 2016; Shekhar et al., 2015). 

2.2.1.1 Rhamnolipids 

Rhamnolipids are recognized as glycolipid BioS, synthesized by Pseudomonas aeruginosa as metabolites 

during secondary metabolism (Bodour et al., 2003). An oily glycolipid BioS synthesized formerly by 

Pseudomonas pyocyanea was first discovered in 1946. Edwards and Hayashi (1965) additionally explained the 

rhamnolipid chemical structure as glycosides comprising of one (mono-rhamnolipids) (Figure 2.1a) or two (di-

rhamnolipids) (Figure 2.1b) rhamnose sugars connected by an O-glycosidic bond to lipid moieties. The 

hydrophobic component consists basically of one or two but in uncommon cases, three β-hydroxy unsaturated 

fatty chains that might be single, double or triple bonded and possess different lengths of C8 to C16. The 
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hydrophilic component of rhamnolipid comprises of single or twofold rhamnose sugars connected to each other 

by an α-1, 2-glycosidic bond (Abdel-Mawgoud et al., 2011). Abdel-Mawgoud et al. (2011) indicated the 

structural composition of more than 60 rhamnolipid congeners have been designated. 

2.2.1.2 Sophorolipid 

Sophorolipid is a glycolipid complex that are synthesized by a couple of non-pathogenic yeast species. 

Sophorolipid comprises of hydrophilic sugar head called sophorose and a hydrophobic unsaturated fat of 16 or 

18 carbon chain length. Sophorose encloses glucose of disaccharide group connected by an irregular β-1, 2 

bonds acetylated on the 6′-as well as 6′′-positions (Van Bogaert et al., 2007). The carboxylic end of 

sophorolipid could either be lactonized (Figure 2.1c) or an acidic form of sophorolipid (Figure 2.1d). 

2.2.1.3 Mannosylerythritol and cellobiose lipids 

Mannosylerythritol lipids are functional glycolipids also synthesized abundantly by yeast strains. They 

comprise of fatty acids joined to 4-O-β-D-manno-pyranosyl erythritol or 1-O-β-D-manno-pyranosyl erythritol 

as the hydrophilic head group (Figure 2.1e) (Morita et al., 2006). Cellobiose lipids is another glycolipid BioSs 

with the major product recognized as 16-O-(2",3",4",6'-tetra-O-acetyl-β-cellobiosyl)-2-hydroxyhexadecanoic 

acid (Figure 2.1f). Yeasts and mycelia organisms are shown to produce a few extracellular glycolipids, 

including cellobiose, and mannosylerythritol lipids (Morita et al., 2011). 

2.2.1.4 Trehalolipids 

Trehalolipids are made from unsaturated fatty acids group length (hydrophobic components) in a blend with 

carbohydrate group (hydrophilic component) (Figure 2.1g). The hydrophobic components of trehalolipids are 

vastly different, comprising of hydroxylated branched fatty acids of varying chain lengths and aliphatic acids. 

The amounts of the hydrophobic chain in every molecule of trehalose lipids are normally mono-, di-, and tetra-

esters, separately connected to long-chain unsaturated fats by an ester bond (de Jesus Cortes-Sanchez et al., 

2013). 

2.2.1.5 Xylolipids  

Xylolipid is another class of BioS discovered recently with molecular composition of methyl-2-O-methyl--d-

xylopyranoside, which is a hydrophilic component connected to hydrophobic parts of the octadecanoic acid 

(Figure 2.1h) (Saravanakumari and Mani, 2010).  

 

https://en.wikipedia.org/wiki/Yeast


20 

 

 

 

 

 

 

 

 

(a) (b) 

(c) 
(d) 



21 

 

 

 

 

 

 

(e) 

(f) 



22 

 

 

 

 

Figure 2.1 Main glycolipid biosurfactants produced by microorganisms namely (a) monorhamnolipid (b) 

dirhamnolipid (c) lactonic sophorolipid (d) acid sophorolipid (e) mannosylerythritol lipid (f) cellobiose lipid (g) 

trehalolipid and (h) xylolpid (Bodour et al., 2004; de Jesus Cortes-Sanchez et al., 2013; Morita et al., 2013; 

Santos et al., 2016). 

(g) 

(h) 



23 

 

2.2.2 Lipopeptides                                                                                                                                                                          

Lipopeptides are biomolecules comprising of a lipid connected to a peptide, that are small chains of amino acid 

monomers joined by peptide (amide) bonds. Lipopeptides are synthesized by various bacterial genera such as 

Bacillus, Streptomyces, Pseudomonas and including fungi such as Aspergillus (Adetunji, 2012). Lipopeptides 

have received substantial consideration for their antimicrobial and surfactant properties. Bacillus subtilis 

produced acyclic lipopeptide surfactin which is one of the most recognized BioS (Adetunji, 2012). The major 

lipopeptide group of BioS is further discussed below. 

2.2.2.1 Surfactin  

Surfactin group is the most prominent lipopeptide (Figure 2.2a) which is made up of a peptide loop of seven 

different amino acids (L-valine, two L-leucine, L-aspartic acid, glutamic acid, and two D-leucines), and a 

hydrophobic fatty acid chain, of 13 to 15 carbons length. Surfactin have shown potent antibacterial, 

antitumoral, antibiofilm, and antiviral activities as well as bioremediation process and environmental 

applications in recent studies (Ndlovu et al., 2017; Ohadi et al., 2018).     

2.2.2.2 Iturin 

Another lipopeptide group with a hydrophobic fatty acid joined by an amide bond to a peptide moiety 

(constituent amino acid residual constituent) is iturin (Mnif and Ghribi, 2015). They possess a typical 

arrangement and show variability at four different positions (Figure 2.2b) (Jacques, 2011). The different groups 

associated with iturin includes bacillopeptin, and mycosubtilin, iturin A, C, D, and E, bacillomycin D, F, and 

L, respectively. Iturin as a lipopeptide group has also been implicated to be useful in antimicrobial, 

pharmaceutical and biotechnological applications (Jacques, 2011).  

https://en.wikipedia.org/wiki/Peptide
https://en.wikipedia.org/wiki/Amino_acids
https://en.wikipedia.org/wiki/Valine
https://en.wikipedia.org/wiki/Leucine
https://en.wikipedia.org/wiki/Aspartic_acid
https://en.wikipedia.org/wiki/Glutamic_acid
https://en.wikipedia.org/wiki/Fatty_acid
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Figure 2.2 The chemical structures of (a) surfactin, (b) iturin, and (c) fengycin biosurfactant. The cyclic 

lipopeptide contain fatty acid chain linked with amino acids. The compound subordinate in each group 

originates from a various amino acid constituent (Mnif and Ghribi, 2015). 

2.2.2.3 Fengycin 

Fengycin is another set of lipopeptide group that possesses a lipidic fraction and 10 different amino acids 

connected to biomolecule N-terminal end. Iturin and surfactin contrast from this group due to the incidence of 

uncommon amino acids such as allo-threonine and ornithine (Mnif and Ghribi, 2015). Like iturin group, 

fengycin possess solid antifungal action, inhibit the development of an extensive variety of plant pathogens 

and application in improved diesel biodegradation. The diverse variety of the peptide component (variations 

with trademark Alanine-Valine di morphy positioned at 6 in the peptide ring) also authorizes the 

characterization of a new fengycin B into fengycin family (Figure 2.2c) (Mnif and Ghribi, 2015). 

(c) 
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2.2.3 Fatty acids and phospholipid 

They are immersed unsaturated BioS of C12 to C14 lengths and complex unsaturated fatty acids comprising of 

hydroxyl groups and alkyl branches. Different bacteria produce huge numbers of fatty acids and phospholipid 

surfactants as the fatty acids are suitable as BioSs due to their surface activity (Adetunji, 2012). 

2.2.4 Polymeric biosurfactants 

Polymeric BioSs are generally high atomic weight biopolymers, with characteristics, for example, rigidity, 

high thickness, and shear resistance. Emulsan and liposan, synthesized by Acinetobacter calcoaceticus and 

Candida lipolytica respectively are the best studied polymeric BioS (Adetunji, 2012). Different cases of 

particulate BioS are extracellular vesicles of microbial cells, which aid hydrocarbon emulsification (Shekhar 

et al., 2015). Emulsan holds a backbone comprising a 2-amino-2-deoxy-hexuronic acid, amino sugars, glucose, 

fatty acids, and galactosamine (2-amino-2-deoxy-galactose) connected to the main chain by means of amide 

and ester bonds (Figure 2.3) (Park et al., 2017). 

                        

Figure 2.3 The structural composition of emulsan, a major microbial surface-active compound with high 

molecular weight (Park et al., 2017; Shekhar et al., 2015). 
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2.2.5 Flavolipid 

A new class of BioS with solid interfacial activity and emulsifying capacity is represented as flavolipids. The 

polar end of this group (Figure 2.4) possess two cadaverine molecules and citric acid, which is rather dissimilar 

to the polar groups in other reported BioSs. Flavolipid BioS is of interest for their potentiality in environmental, 

biotechnology, industrial applications (Bodour et al., 2004).  

 

 

               

Figure 2.4 Structures of flavolipid biosurfactant isolated from Flavobacterium sp. strain MTN11 (Bodour et 

al., 2004).
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2.3 General properties of biosurfactant 

BioSs possess some properties, which are peculiar to them and therefore have advantages over conventional 

surfactants. Microbial surfactants are distinct, they are tolerable to extreme pH and temperature, biodegradable, 

and have high ionic strength (de França et al., 2015). They have low toxicity as compared to chemical 

surfactants, high emulsifying and demulsifying ability, and act as antimicrobial, and surface activity 

(Chakraborty et al., 2015). The remarkable properties of BioSs in comparison with their synthetically produced 

counterparts make them appropriate for large-scale commercial applications (Ferreira et al., 2017; Martins and 

Martins, 2018).  

The vital present movement for industrial, and environmental sustainability has led to increased interest in 

BioSs. Aside from being produced from renewable raw-materials, BioSs also possess features that are termed 

‘environmental and ecologically-friendly. Similarly, they are considerably less detrimental to the environment 

as related to more recalcitrant compounds termed chemical surfactants (Dalili et al., 2015). Also, their ability 

to endure extreme environmental conditions makes them striking components for many industrial products 

formulation (Martins and Martins, 2018). The special properties of BioSs are further illustrated below. 

2.3.1 Temperature, pH and salt tolerance 

The use of BioS in a comprehensive series of applications requires its stability in a range of high temperatures 

(around 50 –100oC), high salt concentrations, and extensive range of pH (2-12) (Al-Wahaibi et al., 2014). This 

ability is massively vital implicating the importance of BioS in beauty care products, food, pharmaceutical and 

where heating to accomplish sterility is of significance (Khopade et al., 2012). Since, industrial, environmental 

and biotechnological processes encompass exposure to temperature, pH and pressure extremity, hence the need 

to identify innovative microbial products that can work under these conditions (Darvishi et al., 2011). 

Researchers recently have supported the production of stable BioSs under an extensive array of conditions to 

support valuable properties highlighted above (Al-Wahaibi et al., 2014; Elazzazy et al., 2015; Jha et al., 2016). 

In that capacity, the exploitation of such steady and consistent BioS is also profitable in petroleum oil industry 

oil-sludge cleaning, microbial enhanced oil recovery, storage tanks, and oil immobilization (Jha et al., 2016).  
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2.3.2 Biodegradability and low toxicity 

The increasing environmental concern has necessitated the relative exploration of alternative products as 

chemical surfactants have been shown to be toxic to the environment (Lima et al., 2011). Therefore, an 

important advantage to consider is the biodegradable nature and non-toxicity of the BioS as this is needed for 

any product formulation. BioSs are largely low or non-toxic products making them suitable in pharmaceutics, 

food uses, detergent formulation, cosmetic, ornamentals, and other applications of human, and health concern. 

Studies had confirmed that anionic and cationic BioSs have significantly lower toxicity than that of the 

synthetic surfactants (Ferreira et al., 2017; Freitas et al., 2016; Lima et al., 2011). Therefore, the 

biodegradability property makes BioSs appropriate for environmental applications such as bioremediation, 

biosorption, and bio-solubilization.  

2.3.3 Emulsifying and demulsifying property 

BioSs may act as either emulsifiers or de-emulsifiers (Santos et al., 2016). An emulsion can be characterized 

as a heterogeneous system (with diameter, greater than 0.1 mm), which comprises of an immiscible liquid 

distributed in droplet forms. Two types of emulsions namely oil-in-water (o/w) or water-in-oil (w/o) emulsions 

have been largely defined as reported quite recently (Santos et al., 2016). BioSs, and additionally 

bioemulsifiers, when contrasted with synthetic surfactants show better or comparative emulsifying activities, 

and in view of their microbial origin, thus suggesting a more prominent ecological compatibility (Gudina et 

al., 2015b). 

2.3.4 Antiadhesive agents 

One of another important advantage of BioS is the ability to act as an anti-adhesive and anti-biofilm agent. 

Adhesion of microorganisms to different pollutants is enhanced by modification of the surface hydrophobicity. 

Microbial-surface interactions are intrinsically influenced by the development of surface-active BioS (Sharma 

and Saharan, 2016). During adherence to the solid surface, the microbial biofilm is formed as a specific group 

of microorganisms (Sharma and Saharan, 2016). Streptococcus thermophilus BioS reduced the colonization of 

other thermophilic Streptococcus strains which is liable for fouling during steel processing (Chakrabarti, 2012). 

BioS produced by various microorganisms have been accounted for their powerful anti-biofilm properties 

against different pathogens (Peele Karlapudi et al., 2018; Sharma and Saharan, 2016). 
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2.3.5 Surface and interface activity 

Another advantage of BioSs is the capability to decrease interfacial and surface tension at different interphase. 

For maximal decline in surface activity, less measure of BioS is required. This is possible as BioS possess 

effective critical micelle concentration (CMC) which is 10 to 40-fold lower than synthetic surfactants (Al-

Wahaibi et al., 2014; Uzoigwe et al., 2015). BioSs have outstanding qualities such as foaming, emulsifying, 

washing, and dispersing agents due to their surface and interface activity. In addition, BioSs owing to their 

amphiphilic nature intensify the surface area of water-insoluble hydrophobic pollutants and thus improves the 

bioavailability and solubilization of contaminated substances (Bezza and Nkhalambayausi Chirwa, 2015; 

Gudina et al., 2015b). 

2.3.6 Availability of cheap raw materials 

Unlike chemical surfactants for which the substrates for production are relatively expensive, BioS molecules 

can be synthesized from different fermentation processes using cheap, renewable substrates, waste products, 

and waste materials. An extensive variety of cheap raw materials such as oil refinery wastes, potato process 

effluents, cassava waste water, waste frying oils, curd whey, distillery wastes, sludge palm oil, plant-derived 

oils, and corn steep liquor has been implicated in the synthesis of BioS (Mukherjee et al., 2006).  

2.4 Biosurfactant production 

During growth and metabolism, different microbes such as bacteria, yeasts, and fungi can synthesize surface-

active biomolecules. BioS synthesis often occurs by resting microbial cell systems, in addition to growth 

dependent production. BioSs are produced biologically from various substrates ranging from hydrocarbons, 

hydrophobic mixtures, chemicals, solvents, hydrophobic mixtures, vegetable oils, waste products oil wastes, 

dairy products, and so on. The commercial production of these BioSs is quite limited and costly, as the recovery 

processes account for 60% of the total cost of production. So, the use of low-cost raw materials is highlighted 

to overcome expensive costs made from BioS production. It is imperative that the proper management and 

utilization of harmful and non-harmful waste materials generated in the world entirely is needed desperately 

(Jimoh and Lin, 2019a). Discussed below are some of the substrates that have been implicated in the production 

of BioS. 
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2.4.1 Industrial wastes 

Several industrial wastes such as starch waste, molasses, corn steep liquor, soap stock, animal fat are low-cost 

materials generated from industrial set-ups concerned with the production of BioS. A lot of the waste products 

are released into the environment sometimes as co-product thus their utilization by the natural population of 

microorganisms. For the large-scale commercial production of BioS compounds, industrial waste products are 

available for use as cheap raw materials or substrates making them an alternate option. There was the utilization 

of soybean oil waste, as well as, cassava flour, molasses, and whey for producing rhamnolipid BioS by 

Pseudomonas aeruginosa LBI strain (Nitschke et al., 2010).  

2.4.2 Oil processing industries 

Of the readily accessible, inexpensive renewable sources for the synthesis of surface-active biomolecules are 

the wastes generated from oil processing industries. Also olive oil, sunflower, canola, coconut oil made from 

oil industries has been discovered as promising carbon and energy substrates for BioS synthesis. Olive oil, a 

product of oil processing industries was utilized as a carbon source for BioS synthesis coupled with a nitrogen 

source (ammonium nitrate) by Pseudomonas fluorescens 1895-DSMZ (Abouseoud et al., 2008). The utilization 

of canola oil refinery waste augmented with sodium nitrate gave maximum rhamnolipid BioS production yield 

of 8.50 g/L at the end of 10 days incubation by Pseudomonas aeruginosa mutant (Raza et al., 2007b). Palm 

oil, another product of the oil industry has additionally been utilized effectively to produce BioS using 

Pseudomonas aeruginosa SP4 (Pansiripat et al., 2010). There was also a report on the synthesis of 1.0 g/L BioS 

from palm oil mill effluent, as a novel substrate, by Nevskia ramosa NA3, a new BioS-producing strain 

(Chooklin et al., 2013). Lactobacillus delbrueckii, a probiotic bacterial system utilized peanut oil for the 

synthesis of BioS (Thavasi et al., 2011). Soybean oil was also reported to have been used in the production of 

BioS. In another research conducted, BioS was produced by Bacillus pseudomycoides BS6 through the 

utilization of soybean oil waste (Li et al., 2016). 

Furthermore, different vegetable oils have been implicated as consistent substrates for the production of BioS 

(Khopade et al., 2012; Saravanan and Subramaniyan, 2014). Also, olive oil, as well as phenylalanine as a 

nitrogen source, was used for the BioS production by marine strain Nocardiopsis sp. B4 (Khopade et al., 2012). 

Saravanan and Subramaniyan (2014) confirmed BioS production on several cheap renewable and vegetable oil 

substrates as a replacement for routine carbon sources by Pseudomonas aeruginosa PB3A. The summary of 

renewable and inexpensive substrates used to produce BioSs are provided in Table 2. 
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Table 2.1 Different renewable substrates used to produce biosurfactants  (Sekhon Randhawa and Rahman, 

2014; Shekhar et al., 2015). 

Biosurfactant Producing Microorganisms Raw Materials 

Glycolipids Candida ntarctica, Candida 

apicola 

Oil refinery wastes 

Lipopeptides Bacillus subtilis, B. subtilis ATCC 

21332, B subtilis LB5a, B. subtilis 

SK320,  

Potato process effluents; cassava 

flour wastewater; olive oil; 

sunflower oil 

Phospholipid Klebsiella pneumoniae WMF02 Sludge Palm oil 

Rhamnolipid 

 

Pseudomonas aeruginosa 47T2 

40044  

Pseudomonas sp. DSM 2874 

Pseudomonas aeruginosa DS10-

129 

Pseudomonas aeruginosa BS2 

      

Waste frying oils (olive and 

sunflower oil) 

Soybean soap stock waste 

Rapeseed oil 

 

Sunflower and soybean oil 

Curd whey and distillery wastes 

Sophorolipid Candida lipolytica IA 1055 

Candida bombicola ATCC 22214 

Babassu oil 

Turkish corn oil 

 

2.4.3 Dairy products 

Large amounts of raw substrates such as cheese whey, curd whey, whey, whey waste, lactic whey are readily 

generated from dairy industries, which are accessible for microbial production of BioS (Dubey et al., 2005; 

González-Siso et al., 2008). In a report, there was a method to utilize valued by-products (soybean oil and 

sugarcane molasses) for sophorolipids production using Candida bombicola. In the experimental medium 

containing dairy wastewaters, 50 g/L each of soybean oil and sugarcane, a BioS production yield of 38.76 g/L 

was achieved (Daverey and Pakshirajan, 2009). Trichosporon mycotoxinivorans CLA2, a bio-emulsifier 

producing yeast strain isolated from dairy industrial effluents, grew on a mineral salt medium comprising 

refinery waste (de Souza Monteiro et al., 2012).  
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2.4.4 Hydrocarbons and hydrophobic mixtures 

Microorganisms utilize an extensive variety of hydrocarbons, organic compounds, hydrophobic mixtures, and 

chemicals as carbon and energy source. Thus, BioSs increase the solubilization of these compounds at a 

concentration which enhances their bioavailability, microbial uptake, and utilization (Patowary et al., 2017). 

Pseudomonas sp. strain LP1 was analyzed for its BioS production prospect while utilizing pyrene, diesel fuel, 

crude oil, and engine oil (Obayori et al., 2009). Recently, Paenibacillus dendritiformis CN5 strain could 

produce lipopeptide BioS by enhancing polycyclic aromatic hydrocarbon (PAH), motor oil and pyrene 

biodegradation (Bezza and Chirwa, 2017; Bezza and Nkhalambayausi Chirwa, 2015). Crude oil is another 

hydrophobic pollutant that has been utilized by different microorganisms through the production of BioS 

(Gudina et al., 2015b; Ibrahim et al., 2013; Patowary et al., 2017). 

2.4.5 Agro-industrial waste and residues  

Different agricultural products, for example, straw of sugar cane, molasses, wheat, straw of rice, bran, beet 

molasses, rice, bagasse of sugarcane, hull of soy, corn, cassava flour, and its wastewater have been discovered 

by researchers as candidates of agro-industrial waste which are very good substrates for BioS production. Many 

carbohydrates and lipids can be obtained from agro-industrial waste residues and hence, necessary for the 

growth of microbial life and BioS production. Some waste material like corn steep liquor and processed cereals 

wastewater, and rice water (gotten from rice processing industry, domestic, and restaurant cooking), have also 

been implicated in the production of BioS (Joshi et al., 2008; Makkar et al., 2011; Nitschke et al., 2010; Onbasli 

and Aslim, 2009; Rashedi et al., 2005; Raza et al., 2007a).  

2.5 Physiology, pathways, and kinetics of biosurfactant production 

2.5.1 Biosurfactant physiology and metabolic pathways 

BioSs are synthesized through intracellular or extracellular adhesion to microbial cells when cultured on 

insoluble substrates. Microbial cell function associated with BioS is not understood fully, as speculations have 

been made about their implication in the emulsifying of insoluble pollutants (Santos et al., 2016). The foremost 

physiological role of BioSs is enhanced microbial toleration and capacity to synthesize insoluble substrates. 

This is enabled via reducing the surface tension between the interphase, thus, increasing the availability of 

substrate for metabolism and uptake (Bezza and Nkhalambayausi Chirwa, 2015). Cell surface hydrophobicity 
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is conferred on microbes that synthesize BioSs in growth associated manner. This property is needed for 

successive uptake of hydrophobic substrates by microorganisms (Perfumo et al., 2010; Satpute et al., 2010a; 

Uzoigwe et al., 2015).   

The different pathways for the biosynthesis of BioSs are discussed below ranging from glycolipids 

(rhamnolipids, sophorolipids, phospholipids, mannosylerythritol, trehalose lipids), lipopeptide (surfactin) 

including polymeric BioSs (emulsan). BioSs are amphiphilic in nature comprising both hydrophilic polar and 

hydrophobic non-polar joined ends. Microorganisms exploit the hydrophilic polar moieties for cell metabolism 

whereas the utilization of hydrocarbon portion is entirely dependent on the hydrophobic moieties (Joshi-

Navare, 2013; Santos et al., 2016). The synthesis of precursors for BioS production involves different metabolic 

pathways which are dependent on carbon substrates utilized in the production culture medium. In the synthesis 

of glycolipids, the flow of the major carbon source (carbohydrates) is regulated by the lipogenic pathways, 

while glycolytic pathway, on the other hand, enabled the formation of the hydrophilic moiety (Figure 2.5) 

(Santos et al., 2016). A major precursor of carbohydrates (glucose 6-phosphate) present in the hydrophilic 

component of glycolipid BioS is made from the degradation of carbohydrates substrates such as glucose or 

glycerol. Subsequently, acetyl-CoA is produced from pyruvate, which in turns gives malonyl-CoA in addition 

with oxaloacetate. This process is thus followed by conversion into an important precursor for the synthesis of 

lipids namely fatty acids (Joshi-Navare, 2013). 
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Figure 2.5 The intermediate metabolism identified with the synthesis of glycolipid biosurfactant precursors 

with different carbohydrate substrates. The enzymes (a) phosphofructokinase; (b) pyruvate kinase; and (c) 

isocitrate dehydrogenase are responsible for the flow of carbon (Santos et al., 2016) 

In a situation where hydrocarbon is utilized as the substrate source, the mode of action is principally engaged 

to both the gluconeogenesis and lipolytic pathways thereby allowing its usage to produce sugars or fatty acids 

(Figure 2.6). The gluconeogenesis pathway is activated to produce sugars which involve fatty acids oxidation 

to acetyl-CoA or propionyl-CoA. The steps required the production of complex sugars precursors such as 

glucose 6-phosphate involves the initiation of acetyl-CoA formation, which is the reverse of those steps 

associated with glycolysis. Conversely, some reactions exclusive to gluconeogenesis processes are irreversible 

and are catalyzed by pyruvate kinase and phosphofructokinase-1 (Santos et al., 2016; Tokumoto et al., 2009).  
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Figure 2.6 The intermediate metabolism identified with the synthesis of glycolipid biosurfactant precursors 

utilizing hydrocarbons substrates. The enzymes (a) isocitrate lyase; (b) malate synthase; and (c) 

phosphoenolpyruvate carboxykinase; (d) fructose-1-phosphatase are responsible for the flow of carbon (Santos 

et al., 2016). 

The formation of several polysaccharide species highlights the cross-linkage of the rhamnolipid BioS 

biosynthesis pathway (Figure 2.7) (Ma et al., 2009). In rhamnolipid biosynthesis, the β-oxidation mechanism 

is suggested as the key provider of lipid precursors (Abdel-Mawgoud et al., 2014). The β-oxidation confirmed 

a significant role in rhamnolipids production which is a constituent and should not only occur when the fatty 

acid is provided as carbon and energy sources. The biosynthesis of rhamnolipid is involved by three main 

enzymatic reactions (Abdel-Mawgoud et al., 2014). The substrate needed for both mono- and di-rhamnolipids 

is utilized and activated by rhamnose moiety, which is dependent on the RmlBCAD pathway. This process is 

further encoded by the catalytic activity of the enzyme AlgC, and RmlBCAD operon. In the synthesis of the 

rhamnose sugar precursor, the normal D-glucose molecule is converted to D-glucose-1-phosphate which is 

then catalyzed by the enzyme AlgC. The process then follows the synthesis of dTDP-D-glucose by enzyme, 
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RmIA. The RmIB further converts the dTDP-D-glucose to dTDP-4-oxo-6-deoxyl-D-glucose by RmIB and 

subsequent conversion to dTDP-6-deoxyl-L-deoxyl-4-hexulose by enzyme RmIC. The RmID enzymes to end 

with convert dTDP-6-deoxy-L-lyso-4-hexulose to dTDP-L-rhamnose. The dTDP-D-glucose and dTDP-

6deoxyl-L-deoxyl-4-hexulose are rhamnosyl-transferases RhIB and RhIC substrates, needed for the mono- and 

di-rhamnolipids biosynthesis. Hypothetically, RhIG enzyme functions by relaying intermediates of fatty acid 

synthesis into the rhamnolipid pathway (Abdel-Mawgoud et al., 2014; Ndlovu, 2017).  

 

Figure 2.7 Biosynthesis pathway of mono-rhamnolipid and di-rhamnolipid biosurfactant (Abdel-Mawgoud et 

al., 2014; Ndlovu, 2017). 
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In the case of mannosylerythritol biosynthesis, the genes required were formerly described on smut fungi 

named Ustilago maydis, which yields mannosylerythritol inclusive of cellobiose lipids (Morita et al., 2010). 

Mannosylerythritol BioS is synthesized through different enzymatic reactions. The enzyme 

mannosyltransferase required in the synthesis of mannosylerythritol is encoded by emt1, while mat1 translates 

an acetyltransferase catalyzing the mannosylerythritol acetylation at both the C-4′ and C-6′ hydroxyl groups of 

mannoses. Also, an acyltransferase is required for the acylation of mannosylerythritol is encoded by mac1 

(Hewald et al., 2006; Morita et al., 2010).  

Trehalose (trehalolipids) biosynthesis, on the other hand, encompasses glucose transfer from UDP-glucose to 

glucose-6-phosphate to synthesize trehalose-6-P-UDP. This is synthesized through the catalytic capability of 

trehalose-6-phosphate synthase. Subsequently, a free disaccharide catalyzed by trehalose-6-phosphate 

phosphatase is generated by de-phosphorylation (Rao et al., 2006).  

The synthesis of phospholipid occurs in the cytosol corresponding to the membrane that is coupled with 

proteins that act in allocation (flippase and floppase) and synthesis (acyl transferases, phosphatase, and choline 

phosphotransferase). Ultimately, the phospholipids containing vesicle destined for the cytoplasmic cellular 

sprout out on its exterior. Also, on the other hand, the exoplasmic cellular membrane generates the release of 

phospholipids BioS on its inner leaflet (Lodish, 2008). 

Biosynthesis of surfactin, which is one of the prominent lipopeptide BioS ensues through a non-ribosomal 

peptide synthetase mechanism. The step includes multi-enzyme peptide synthase complex which comprises 

four enzymatic subunits SrfA, SrfB, SrfC, and SrfD. These enzymes are called surfactin synthetases needed 

for surfactin biosynthesis and are coded by srf operon (Vater et al., 2009). The joining of seven amino acids 

into the peptide component of surfactin is catalyzed by surfactin synthase through a thiotemplate mechanism. 

This includes amino acids activation by ATP and assemblage of amino acids into a peptides chain. Using an 

acyltransferase enzyme, lipopeptide is then formed by linking the hydroxyl fatty acid to a peptide group 

(Eyéghé-Bickong, 2011). 
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2.5.2 Kinetics of biosurfactant production 

The BioS production kinetics has substantial variance amongst diverse systems. The different kinetic 

parameters to be considered are assembled below, 

(a) growth-dependent;  

(b) growth-limiting;  

(c) synthesis by immobilized or resting cells; and  

(d) synthesis with precursor supplements (Desai and Banat, 1997). 

In production related to growth, there exists a parallel correlation between cellular growth, substrate usage, and 

increased BioS production. A heightened increase in BioSs concentration due to the restraint of one or more 

medium constituents characterize the synthesis under growth-limiting conditions. The synthesis by 

immobilized or resting cells is a type where the cells use carbon substrates continuously for BioS synthesis, 

with relatively no cell multiplication. The last kinetic parameter as listed above involves the addition of BioS 

precursors to the production medium. As revealed by researchers, precursor addition often results in qualitative 

and quantitative variations in BioS product yield (Santos et al., 2016). 

2.6 Factors and strategies for improvement of biosurfactant production 

BioSs are produced by a diversity of microorganisms, which are either attached intracellularly or extracellularly 

predominantly during growth (Desai and Banat, 1997). The BioS synthesis by microorganisms occurs during 

the exponential or stationary growth phase when the nutrient restricting conditions predominate the production 

medium. Production of BioS might be attributed to certain biosynthetic genes that are stimulated by the 

incidence of hydrophobic mixtures, hydrocarbons and other different carbon substrates (Sekhon et al., 2012).  

The current BioSs industry is aiming at the important factors affecting the production of microbial surfactants 

relative to production costs and products yield. The significant process to attain these goals include obtaining 

via screening of the novel microorganisms, usage of inexpensive substrates, media optimization, improved 

production yield, cost-effective downstream processes, and purification of the end products (Sekhon et al., 

2012). The synthesis of BioSs can either be natural or induced by the presence of different compounds, varying 

pH, temperature, inoculum size, aeration, stress, and also agitation speed (Desai and Banat, 1997). In general, 

the yield of BioS has been reported to be affected by elements such as carbon, nitrogen, iron, sulfur, 
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phosphorus, and manganese. (Darvishi et al., 2011; Gudina et al., 2015a). Different elements ratio such as 

carbon: nitrogen, carbon: phosphorus, carbon: iron or carbon: magnesium and optimization of these rates 

should be achieved to increase the BioS production yield (Darvishi et al., 2011; Gudina et al., 2015a). The 

various factors and strategies needed for improved BioS production are further discussed below 

2.6.1 Carbon Sources 

Carbon sources of different types are hugely important and have been described to largely influence the BioS 

production yield both in quality and quantity. Such sources range from cheap substrates such as starchy 

substrates, animal fat, oils, petroleum effluents, plant-derived oils, lactic whey, olive oil mill effluent, distillery 

wastes, soapstock, molasses, vegetable oils and oil wastes, hydrocarbons (n-hexadecane, n-dodecane, n-

tetradecane, pyrene), hydrophobic mixtures (such as motor oil, diesel, crude oil, paraffin, kerosene) with great 

potential in enhancing and improving BioSs production (Abouseoud et al., 2008; Bezza and Chirwa, 2017; 

Bezza and Nkhalambayausi Chirwa, 2015; Patowary et al., 2017).  

The probable usage of low substrates for improved BioS yield is of great significance to the BioS world market 

to defeat the high cost of production. There have been reports on rhamnolipid BioS utilizing waste cooking oil 

with major emphasis on Pseudomonas aeruginosa (Lan et al., 2015; Xia et al., 2012) and optimization of 

production conditions (Lan et al., 2015; Xia et al., 2012). As well, a maximum rhamnolipid BioSs yield of 

13.93 g/L by a non-pathogenic microorganism Pseudomonas sp. SWP-4 utilizing waste cooking oil as a sole 

source of carbon (Lan et al., 2015). There was an increase in production of lipopeptide BioS by Bacillus subtilis 

SK320 utilizing olive oil as an unconventional carbon source (Sekhon et al., 2011) and BioS produced by 

marine Nocardiopsis B4 (Khopade et al., 2012). In another study, there was improved production yield of 2.13, 

2.20 and 2.45 g/L by bioengineered recombinant strains BioSa, BioSb, and BioSc when cultured with olive oil 

as a sole source of carbon and energy. The parent strain Bacillus subtilis SK320, on the other hand, produced 

a lower yield of 1.2 g/L, which was considerably lower than to the recombinant strains. However, an enriched 

BioS production was not only presented by the recombinant strains but also increase in the esterase activity 

(Sekhon et al., 2011). Correspondingly, Pseudomonas aeruginosa and Corynebacterium kutscheri on oil from 

peanut cake and vehicle lubricant oil exhibited lipopeptide BioS production yield of 8.6 mg/mL, and 6.4 mg/mL 

respectively (Thavasi et al., 2011).  

Hydrophobic carbon sources such as insoluble substrates, hydrocarbons (aliphatic and aromatic), oils, and so 

on have also been implicated in the improvement of BioS by different research report discussed below. The 
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use of hydrophobic carbon sources was accompanied by high BioS productivity (Abdel-Mawgoud et al., 2011). 

In an observation similar to the above stated, parameter optimization on different hydrocarbon substrates 

yielded a 3.6-fold increase in BioS production by Sphingobacterium detergens (Burgos-Diaz et al., 2013). 

There was also high induction of BioS on all the hydrocarbons tested on Pseudomonas aeruginosa PBSC1 

with the best yield of 4.99 g/L utilized on motor oil produced on par statistically with the n-hexadecane (4.76 

g/L) (Joice and Parthasarathi, 2014). Obayori et al. (2009) also reported the utilization of Pseudomonas sp. 

strain LP1 on engine oil with poor performance on diesel fuel and crude oil. 

The use of low molecular weight carbohydrates has been used to further enhance the production of BioS. 

Glycerol is a C3 compound and precursor of fatty acid with high solubility in BioS production medium. 

Pseudomonas aeruginosa UKMP14T produced optimum levels of BioS when developed in a mineral salt 

medium comprising 1% (v/v) glycerol (Hamzah et al., 2013). In fact, the greatest quantity of lipid-based BioS 

synthesis was achieved in a medium containing glycerol (Chakraborty et al., 2015). Different raw materials 

utilized in surfactin (lipopeptide) BioS synthesis are pure cottonseed oil and paraffin oil (Joshi et al., 2008). In 

the synthesis of BioS by different Bacillus isolates, the production was improved by utilizing the best carbon 

source, glucose coupled with molasses, and palm oil (Al-Wahaibi et al., 2014; Pornsunthorntawee et al., 2008). 

In addition, there was report on the utilization of glycerol and sucrose as the sole carbon sources with an 

increase in BioS synthesis by different Bacillus strains (Pereira et al., 2013; Sousa et al., 2012). In a different 

study, 2.11 g/L lipopeptide yield after 96 h was observed in a medium encompassing 1% (w/v) glucose as 

carbon source by Bacillus clausii 5B (Aparna et al., 2012), while Pseudomonas aeruginosa BS-P and Kocuria 

turfanesis BS-J when cultured on distillery waste in combination with industrial wastes displayed production 

yields 1.976 g/L, and 0.967 g/L, respectively (Dubey et al., 2012).  

2.6.2 Nitrogen sources 

Nitrogen is the second most significant nutrient needed to produce BioS by microorganisms. Composite 

nitrogenous sources are essential for microbial growth, cell constituents’ development, and synthesis of 

bioactive metabolites. Different inorganic and organic nitrogen sources have been described to influence BioS 

synthesis (Jimoh and Lin, 2019 a; b).   

In a past report, there was utilization of nitrates, ammonium, and amino acids by Pseudomonas aeruginosa as 

nitrogen sources. For use, there was a reduction of nitrates to nitrite and thereafter ammonium. Subsequently, 

ammonium is integrated either by glutamine synthetase to form glutamine or glutamate dehydrogenase to form 
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glutamate. KNO3 (0.3%) was the optimum preferred nitrogen source to produce 2.8 g/L rhamnolipid BioS by 

Pseudomonas aeruginosa (Patil et al., 2014). Similar outcomes were achieved by Pseudomonas aeruginosa 

R2 with ammonium nitrate (0.4%) as the optimum nitrogen source (Komal et al., 2012). Also, the nitrate form 

(NH4NO3 or NaNO3) was observed to be the best source of nitrogen for various methods of BioSs production 

by different Pseudomonas strains (Joice and Parthasarathi, 2014; Kannahi and Sherley, 2012; Patil et al., 2014; 

Xia et al., 2012). Influence of 0.6% (w/v) sodium nitrate was observed on rhamnolipid BioS activity by 

Pseudomonas aeruginosa UCP0092 in a production medium enclosing 3% (v/v) glycerol (Silva et al., 2010). 

There was also improved BioS activity in a different report with ammonium nitrate and sodium nitrate as 

nitrogen sources respectively (Meyer, 2010). 

Some elevated BioS production was observed utilizing urea, NaNO3, NH4NO3 or KNO3 except ammonium 

sulfate by some Bacillus isolates. The variant in choosing inorganic over organic nitrogen source or the inverse 

may be medium composition or microbial strain dependent (Elazzazy et al., 2015; Ghribi and Ellouze-

Chaabouni, 2011). Thus, organic sources of nitrogen possess a strong influence on the increase in BioS activity. 

The usage, however, becomes significant due to their availability and low cost. Elazzazy et al. (2015) reported 

the greatest emulsifying activity (82%), and least surface activity (29.5 mN/m) while utilizing urea as an 

organic nitrogen source by Virgibacillus salarius KSA-T. Vibrio sp. strain 3B-2 used organic nitrogen sources 

for microbial growth and improved BioS yield with lower synthesis developed from inorganic nitrogen sources. 

Also, yeast extract as a nitrogen source was involved in the maximum production of BioS from strain 3B-2 

(Hu et al., 2015). The greatest BioS activity was realized when utilizing yeast extract as an organic nitrogen 

source by Azotobacter chrococcum while (NH4)2SO4 was the best inorganic nitrogen source (Auhim and 

Mohamed, 2013). There was a significant drop of surface tension to 29.7 mN/m, with yeast extract as an appropriate 

nitrogen source for anaerobic lipopeptide synthesis by Bacillus mojavensis JF-2 (Liang et al., 2017). Abbasi et al. 

(2012) during the synthesis of BioS by Pseudomonas aeruginosa, they revealed a synergistic association 

between sodium nitrate and yeast extract positively affected BioS production. In another report, a mixture of 

yeast extract-NaNO3 showed great influence on bacterial BioS biosynthesis and activity better than the single 

addition of yeast extract or sodium nitrate (Martínez-Trujillo et al., 2015). 
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2.6.3 Carbon/nitrogen ratio 

In fermentative processes, carbon to nitrogen ratio is one of the utmost significant features affecting the 

microbial influence and the build-up of metabolites in BioS production (Xia et al., 2012). Lower nitrogen 

concentrations (i.e., high C/N ratios) inhibits bacterial growth thus supporting cellular metabolism towards the 

synthesis of these biomolecules. The comparative quantities of multiple elements to carbon, such as C/N affects 

BioS productivity in the medium compositions (Xia et al., 2012).  

Different research has shown the high production of BioS when nitrogen is in limiting condition. Illustratively, 

optimized carbon: nitrogen at ratio 7:1 was the optimal condition for improved BioS yield by Pseudomonas 

aeruginosa strain F23. Pseudomonas aeruginosa also produces rhamnolipid BioS when the amount of nitrogen 

sources is limiting (Patil et al., 2014; Xia et al., 2012). Similarly, Pseudomonas aeruginosa produced the 

highest activity at the carbon to nitrogen ratio of 10:1 (Abouseoud et al., 2007). In contrast, at the C/N ratio of 

22:1 with glucose and sodium nitrate respectively, there was maximum BioS production by Pseudomonas 

nitroreducens (Onwosi and Odibo, 2013). Elazzazy et al. (2015) revealed that the lowest surface tension (29 

mN/m), and most extreme emulsifying activity (85%), were accomplished at a C/N ratio of 30:1, while any 

abundance in proportion has no noticeable impact on BioS synthesis of Virgibacillus salaries KSA-T. 

Additionally, it was discovered that the perfect C/N ratio (waste cooking oil and NaNO3) was 10:1, which gave 

a most elevated decrease in surface tension to 27.5 mN/m and 5 g/L BioS yield (Lan et al., 2015). From the 

reports illustrated above, nitrogen is very important to BioS production but needs to be in minimal supply to 

the medium. 

2.6.4 Growth conditions 

Different growth conditions such as temperature, pH, incubation time, agitation speed and aeration also affect 

the BioS production output. It was discovered that the production of BioS was directly influenced by pH 

(Seghal Kiran et al., 2010). The strong dependence of numerous organisms on pH for cell growth and secondary 

metabolites production is an important characteristic. Some researches discussed the improved production 

within the alkaline condition range particularly pH ≥ 8.0. Patil et al. (2014) demonstrated optimum yield of 

glycolipid BioS at pH 8 by Pseudomonas aeruginosa strain F23. Comparative outcomes were obtained from 

Pseudomonas aeruginosa RS29 and WJ-1 which delivered high BioSs at pH range of 7– 8 and 6.0– 8.0 

individually (Saikia et al., 2012; Xia et al., 2012). A maximum of 2.5 g/L of lipopeptide BioS was produced 
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at pH 8.0 by Pseudomonas putida MTCC (Kanna et al., 2014). In another research conducted, pH of the 

medium was at maximum by pH 9.0. Thus, the BioS synthesis increased from pH range 6.0 to 9.0, and pH 10 

after which the BioS production started to decrease (Hamzah et al., 2013).  

Relatively neutral (pH 7.0) and acidic pH conditions (pH ≤ 6.0) have been tentatively discussed to improve 

BioS production to sustain its competitiveness on a large scale. For instance, production of rhamnolipid was at 

its greatest at a pH range of 6 to 6.5 and with a sharp reduction above pH 7 by Pseudomonas sp (Kannahi and 

Sherley, 2012). Paenibacillus alvei was able to produce lipopeptide BioS within a pH range of 6–8 and the 

greatest BioS yield was attained at pH 6.89 (Najafi et al., 2011).  

There have also been some studies on the greatest yield of BioS achieved at a neutral pH 7 (Abouseoud et al., 

2008; Chakraborty et al., 2015; Kiran et al., 2009). However, the BioSs synthesis from strain Actinomycetes 

nocardiopsis A17 as observed to be the greatest at pH 6.8 though BioSs activity was still maintained at higher 

and lower pH (Chakraborty et al., 2015).  

A slight variation in temperature is another critical factor that affects different BioS production processes. 

Optimum yield of rhamnolipid BioSs in  Pseudomonas aeruginosa strain F23 was demonstrated at 30oC (Patil 

et al., 2014). In another research conducted by Chakraborty et al. (2015) on Actinomycetes nocardiopsis A17, 

the optimum temperature 28oC was highly effective for BioS production. However, most of the strains like 

Bacillus subtilis MTCC441 (Chander et al., 2012), Pseudomonas aeruginosa RS29 (Saikia et al., 2012), 

Pseudomonas aeruginosa WJ-1 (Xia et al., 2012), and Pseudomonas putida (Kannahi and Sherley, 2012), 

synthesized maximum BioS at 37°C. Another study carried out by Soniyamby et al. (2011) showed that the 

bacterium Pseudomonas aeruginosa at 35°C produced the maximum rhamnolipid BioS and the growth of 

bacteria and production of BioS was inhibited at 40°C. In addition, BioS from Brevibacillus brevis was 

thermally stable in a range of 30–80oC. Similar behavior was observed with other Bacillus strains (Gudiña et 

al., 2012; Saimmai et al., 2012).  

Agitation speed and aeration are also major factors that affect the production of BioSs by different 

microorganisms.  Production of BioS is influenced by these two factors as both encourage the exchange of 

oxygen from gaseous to the aqueous phase. Fontes et al. (2010) investigated the influence of aeration and 

agitation speed on BioS production by Yarrowia. The results obtained from the batch fermentation indicated 

BS activity was influenced as the agitation speed increases from 160 rpm to a speed of 250 rpm. It was pointed 

out that the changes in agitation speed aid the build-up of BioS by Pseudomonas aeruginosa UCP 0992 

synthesized in glycerol containing medium (Silva et al., 2010). It was also established that varying agitation 
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speed from 50 to 200 rpm has a significant effect on the BioS produced by Pseudomonas alcaligenes cultured 

in oil palm (Oliveira et al., 2009). The authors discovered that an increase in the velocity of rotation favor 

surface tension reduction to 27.6 mN/m in the cell-free broth. The maximum concentration of the rhamnolipid 

BioS by Pseudomonas aeruginosa was detected when the agitation speed remained at the limit of 140-160 rpm 

with different revolutions of 100-200 rpm (Jamal et al., 2014).  

de Kronemberger et al. (2007) have also shown that rhamnolipid production by Pseudomonas aeruginosa 

depends on specific oxygen uptake rate. The mass transfer efficiency of the medium components and oxygen 

molecules affected by the agitation speed. Similarly, after 21 h in a fed-batch culture with an agitation rate of 

150 rpm and 1 vvm aeration rate, the greatest surfactin concentration of 4.7 g/L was achieved (Yao et al., 

2015).   

The size of inoculum is also another critical factor that has significant consequence on BioS synthesis (Waqas 

et al., 2013). The size of an inoculum also plays a significant part in the biomass yield and product development 

since many physiological processes are dependent on cell density. The direct relationship between biomass 

growth rate and product formation is observed in the case of many bacterial products. In a research carried out 

on Bacillus subtilis SPB1, it was observed that density and the age of inoculum can influence to a large extent 

the yield and the overall cost of the production process. After optimizing the conditions of the inoculum, there 

was enhanced lipopeptide BioS yield of 3.4 g/L by Bacillus subtilis SPB1 (Mnif et al., 2013). Pseudomonas 

aeruginosa RS29 gave a rhamnolipid BioS after an incubation period of 48 h at 37oC and pH 7-8 and high 

yield was achieved after optimization of the few environmental factors in comparison to other conditions used 

in the research conducted (Saikia et al., 2012). At 2.4 mL inoculum of strain SNAU02, the maximum BioS 

production was obtained, with the size of the inoculum showing a substantial influence on BioS synthesis 

(Nalini and Parthasarathi, 2017).  

In another instance, increase in the size of the inoculum upsurges microbial growth and to a certain extent, any 

further increase will lead to a reduction in microbial activity due to nutrient limitation (Nalini and Parthasarathi, 

2017). The limitation of nutrient constituents and oxygen could arise due to high inoculum ratio while lower 

inoculum size could give rise to a noteworthy decline in the cell number in the production medium. The lower 

size of inoculum calls for an extensive period to attain optimum growth and utilize substrates to yield the 

needed product. For instance using 1 mL inoculum size, a reduced BioS yield of 2.74 g/L BioS was synthesized 

(Waqas et al., 2013). The above-stated reports show a different variation in the BioS yield under different 

conditions of bacterial growth and inoculum densities.        

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/strain
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2.6.5 Response surface methodology 

The improved BioS production yield has been further explored through the introduction of a more innovative 

statistical approach that takes in cognizance the interaction between different factors responsible in the 

bioprocess. Response surface methodology (RSM) comprises of a group of statistical methods for experimental 

designs, models building, simultaneously examining the special effects on the factors and to establish optimum 

conditions. It is vital for examining the impacts of a few independent factors on the system reaction without 

the requirement for a foreordained connection between the variables and the objective function (Najafi et al., 

2011). RSM utilized various regression investigation by utilizing quantitative information obtained from 

appropriately composed examinations to understand multivalent conditions concurrently (Kiran et al., 2010; 

Najafi et al., 2011). RSM has been effectively employed to increase BioS yield by reducing the cost of 

production of BioSs through selecting a balanced proportions of culture medium compositions and culture 

conditions optimization (de Cássia FS da Silva et al., 2013; Kumar et al., 2015; Najafi et al., 2011). 

2.7 Recovery and purification of biosurfactant 

There is high budget associated with recovery, purification, and downstream processing as it accounts for about 

60% - 80% of the total manufacturing costs for several biotechnological products (Sarachat et al., 2010). The 

production of low-cost BioS is comparatively improbable because of the intricate recovery process. The 

procedure improvement is in this way coordinated to achieve BioS that can be integrated economically and 

effortlessly (Satpute et al., 2010a). Different factors such as location (intracellular, extracellular, cell bound), 

ionic charge (chromatography), and solubility (water/organic solvents) significantly influence the purification 

procedure and techniques for the desired BioS extraction. The commonly used and cheap methods for the 

recovery of BioS from fermentation broths are solvent extraction (Salleh et al., 2011), acid precipitation, foam 

precipitation (Sarachat et al., 2010). 

Crude BioSs such as phospholipids, flavolipid and glycolipids have been recovered using the acid precipitation 

method which is promptly accessible, readily stress-free, and inexpensive. This method has also been used to 

purify lipopeptide and rhamnolipid BioS from microbial process cultivated in simple or complex growth 

conditions. This technique ensues the acid hydrolysis of the culture supernatant to pH 2.0 by HCl or H2SO4, to 

allow precipitation of proteins, lipid-containing BioS. This process is thus followed by centrifugation and 

solvent extraction, after standing overnight at refrigerated temperature 4°C (Gudiña et al., 2012). Conversely, 
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diverse solvents like chloroform, dichloromethane, diethyl ether, methanol, n-hexane, and ethyl acetate are 

also largely used in centrifugation, pellet extraction and purification of BioSs (Satpute et al., 2010a). Filtration 

is processed for removal of residues from extracted materials which is thus evaporated to dryness using a rotary 

evaporator (Satpute et al., 2010a). BioS purification by acid precipitation was also reported by a few 

publications (Bezza and Nkhalambayausi Chirwa, 2015; Gudina et al., 2015a; Gudiña et al., 2012; Najafi et 

al., 2011).  

Also, extraction process with other solvents, for example, butanol, chloroform-methanol, dichloromethane-

methanol, hexane-ethyl acetate, pentane, acetic acid, chloroform, isopropanol, methanol, and ether 

establishes the technique most frequently used in BioS downstream recovery which are used either singly 

or in combination. BioS hydrophobic ends are dissolvable in a few solvents which help in removal and 

separation of crude product. Solvent extraction methods have used to successfully purify different types of 

BioS namely sophorolipids, cellobiolipids, rhamnolipid, liposan, and trehalose lipids synthesized by different 

microorganisms (Desai and Banat, 1997; Satpute et al., 2010a; Smyth et al., 2010a; Smyth et al., 2010b). 

Organic solvents are not widely used for BioS recovery because of the huge amount of solvent required 

and the exclusive price of the solvent which increase the cost of production. In any case, chloroform as an 

organic dissolvable solvent, is a destructive chloro-organic compound that is damaging to human wellbeing 

and the ecosystem at large. It is, therefore, necessary to obtain solvents that are cheap and possess low 

toxicity for extracting BioS that can serve industrial purposes. Additionally, other cheap techniques such 

as ammonium sulfate precipitation, centrifugation, and adsorption have been reported for their usage 

(Helmy et al., 2011; Satpute et al., 2010a).  Extraction of BioS with conventional procedures such as 

crystallization, centrifugation, solvent extraction, precipitation, foam fractionation imparts color to BioS when 

wastewater from the distillery is used as a medium for synthesis (Satpute et al., 2010a).  

Often, a multi-step recovery strategy that employs a series of absorption and purification steps for product 

recovery is more active than a single downstream processing technique to obtain any degree of purified product 

(Alcantara et al., 2014). During the recovery process, there should be alternate care as contamination risk with 

undesired product always occur. Though, a great deal of financial input is essential for the recovery and 

purification processes, as such, cheap techniques as described above is highly proposed (Satpute et al., 2010a).  
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2.8 Characterization of biosurfactant compounds 

New emerging techniques for identifying and characterizing of BioS molecules have been introduced in recent 

decades due to advancement in science and technology. So, a range of techniques such as thin layer 

chromatography (TLC), high performance-liquid chromatography (HP-LC), gas chromatography-mass 

spectrometry (GC-MS), liquid chromatography-mass spectrometry (LC-MS), matrix-assisted laser 

desorption/ionization-time of flight mass spectroscopy (MALDI-TOF), and nuclear magnetic resonance 

(NMR) spectrometry are introduced to categorise and depict the different BioS compounds produced by a 

diverse microorganisms (Bezza and Nkhalambayausi Chirwa, 2015; Jimoh and Lin, 2019a).  

In context, TLC is the most widely utilized, basic, inexpensive strategy for the detection of groups present in 

an unknown BioS sample. This technique is carried out on a sheet of aluminum foil, glass, or plastic covered 

with a thin layer of adsorbent materials, normally aluminum oxide (alumina), silica gel, or cellulose. This 

technique gives the first clue on the presence or absence of either protein, lipids, carbohydrate group in either 

a crude or purified sample (Jimoh and Lin, 2019a; c). High-performance thin layer chromatography (HPTLC) 

on other hand is the sophisticated or a more precise quantitative version with a similar approach. BioS 

synthesized from Bacillus subtilis B30 was isolated and examined utilizing a totally automated HPTLC 

framework (Al-Wahaibi et al., 2014). Different researchers have used this technique including HPTLC for the 

separation, purification of a crude extract as through a well-developed system of different solvents used, 

relatively dependent or polar or the non-polar group of a BioS compound (Al-Wahaibi et al., 2014; Bezza and 

Chirwa, 2017; Bezza and Nkhalambayausi Chirwa, 2015; Chakraborty et al., 2015; Ibrahim et al., 2013; Jha et 

al., 2016).  

In a bid to improve the performance, separation, and purification of crude BioS samples, HPLC technique has 

been further used by different researchers to achieve this purpose. HPLC; called high-pressure liquid 

chromatography, is a method in analytical chemistry required for the separation, identification, and 

quantification of each component present in a mixture. HPLC allows separation in large volume and 

inexplicably saves time in the downstream process. HPLC technique was initially used for purification during 

the structural classification of novel cyclic lipopeptide BioS from Corynebacterium xerosis NS5 termed as 

“coryxin” (Dalili et al., 2015). Also, other studies have reported the use of HPLC in a similar capacity (Ibrahim 

et al., 2013; Janek et al., 2010; Patowary et al., 2017). However, in some cases, HPLC and TLC are both used 

interchangeably to determine the purity of the separated components. For BioS synthesized in harsh 

https://en.wikipedia.org/wiki/Matrix-assisted_laser_desorption/ionization
https://en.wikipedia.org/wiki/Matrix-assisted_laser_desorption/ionization
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environmental conditions by an effective combination of microorganisms, ERCPPI-2, TLC was used to 

confirm the fractions that displayed high surface activity as separated by HPLC technique (Darvishi et al., 

2011).  

Mass spectrometry which is coupled with either gas or liquid chromatography, on the other hand, recognizes 

the chemical bonds and structures of BioS compounds. The process also gives an account of the qualitative 

and quantitative analysis of the BioS compound which differentiates its usage to HPLC as it gives the molecular 

mass determination in Daltons (Sharma et al., 2014). Three significant parameters namely ion source, a 

molecular mass analyzer, and a detector make up the mass spectrometers. So, samples that are volatile are 

directly introduced into the apparatus, while, on the other hand, non-volatile samples must be dissolved in 

volatile solvents. Then, the ionization of the sample takes place as it passes through the electromagnetic field. 

The ionized particles separation occurs based on the charge and mass before finally getting to the detector. The 

automated signal is then amplified and relayed to a computer system where it is reported as different 

chromatograms peaks. As a result, assessment of the overall quantity and quality of the compounds and each 

ion is given (Sharma et al., 2014). In most cases, a hydrophobic portion (water repelling) of the BioS compound 

is revealed by GC-MS while LC-MS identifies hydrophilic moiety structural composition (water-loving). There 

were revelation of free fatty acid methyl esters of various chain length with the GC-MS chromatogram 

generated from purified BioS by crude oil degrading bacteria (Ibrahim et al., 2013).  

Electrospray ionization has also been employed for the ionization of several BioS-based compounds before the 

molecular mass analysis (Monteiro et al., 2007). Reports have shown the usage of tandem mass spectrometry 

as a great tool in analyzing complex BioS compounds. This allows efficient differentiation among different 

homologs and isoforms existing within a mixture of compounds. Liquid chromatography coupled with 

electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) is an exceedingly delicate method for the 

identification of biomolecule with low concentrations, secondary metabolites, and a crude extract of natural 

origin. These procedures are presently utilized by different research centers for identifying BioS biomolecules 

and has been accounted to be valuable in lessening the possibility of inaccurate characterization. The technique 

is cost-effective, reduces time, and energy required for identifying innovative BioS compounds. There have 

been previous reports on the utilization of this technique in distinguishing between dissimilar homologs 

synthesized by Paenibacillus strains. A novel lipopeptide of molecular weight (1240Da) synthesized by 

Paenibacillus dendritiformis CN5 was characterized using LC-MS-MS (Bezza and Nkhalambayausi Chirwa, 

2015). Similarly, Qian et al. (2011) stated the synthesis of lipopeptide BioS with 8 amino acid constituents 



50 

 

from Paenibacillus tianmuensis, using electrospray ionization recorded in the positive-ion mode on a mass 

spectrometer. In a different context, high-performance liquid chromatography-electrospray ionization mass 

spectra revealed the chemical constituents a rhamnolipid BioS produced by Pseudomonas aeruginosa S6 as 

RhaRhaC10C12:1, RhaC12:1C10, RhaC10C10 and RhaC8C10 (Yin et al., 2009). 

MALDI-TOF joined with mass spectrometry as well allows the documentation of integral BioS compounds 

due to its ability for soft ionization (Smyth et al., 2010a). Despite the fact that the MALDI-TOF examinations 

are costly, previous reports demonstrated that it is quick and delicate, giving high-resolution data for the basic 

characterization of BioS compounds (Sharma et al., 2015; Singh et al., 2014). A cyclic lipopeptide was isolated 

from the genus Paenibacillus, consisting of a cyclic lipopeptide with 13 amino acid residues using a MALDI-

TOF analysis (Guo et al., 2012). 

Furthermore, scientists have also used NMR to further clarify, identify the molecular structure of the BioS 

compounds that contain hydrogen and proton component. This technique is equally efficient and requires a 

more sophisticated approach, which further reveals the chemical identity of an unknown BioS compound. It 

also detects the composition and purity of the sample as well as its structural composition. This is a 

spectroscopic technique in quality control and research to observe local magnetic fields around atomic 

biomolecule (Chakraborty and Das, 2017). The different chemical composition of BioS dissolved initially in 

most commonly used deuterated solvents have been reported quite recently using the NMR spectroscopic 

technique (Dalili et al., 2015; Li et al., 2016). 

Lastly, Fourier transform infra-red (FT-IR) spectroscopy is a quick and cheap strategy for describing the 

chemical composition of BioS and to distinguish the various useful groups present. This procedure gives a 

basic elucidation of the compound of interest and resolves the functional groups of gases, fluids, and solids. 

During the FT-IR analysis of BioS, the analysis of spectra and peak tasks are of vital steps. The infra-red 

spectrophotometer is utilized in the range between around 4000 and 400 cm-1, in spite of a few contrasts in FT-

IR spectra among BioS or experimental conditions (Kong and Yu, 2007). FTIR techniques are comparatively 

quick, simple to utilize, inexpensive, and IR spectroscopy is non-destructive, i.e. the structural composition of 

BioS stays exactly as the same. In identifying the different types of BioS, FT-IR has been utilized in studies 

reported by different researchers and had closely displayed their structural composition using the interpretation 

of the absorption spectra (Al-Wahaibi et al., 2014; Bezza and Nkhalambayausi Chirwa, 2015; Ibrahim et al., 

2013; Patowary et al., 2018).  
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2.9 Applications of biosurfactants 

BioS possesses the exceptional quality of decreasing the surface tension between two miscible or immiscible 

liquids, block hydrogen bonding and increasing hydrophilic/hydrophobic interactions owing to cell surface 

hydrophobicity (Anyanwu et al., 2011; Darvishi et al., 2011). Attributable to their potential focal points, BioSs 

are broadly utilized in a few industrial set ups, for example, horticulture, agriculture, chemistry, cosmetics, 

food production, food processing industries, and pharmaceutics. By virtue of biodegradation properties, 

substrate specificity, diversity in chemistry and function, and rapid/ controlled inactivation; these biological 

products are gaining importance in various industries have potential uses in hydrocarbon bioremediation, 

microbial enhanced oil recovery, nanotechnology (mediated biosynthesis of metallic nanoparticles), 

pharmaceutical, medicine, commercial laundry detergent, food, textiles, petrochemicals, paper and paint 

industries, pollution control, nanotechnology (Janek et al., 2010; Lima et al., 2011). A list of wide range of 

BioSs types and applications is presented in Table 2.2.  
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Table 2.2 Biosurfactant types and applications 

Biosurfactants Applications References 

Glycolipids   

Rhamnolipids Pharmaceuticals and cosmetic formulations, environmental 

remediation of hydrocarbons, heavy metals, pesticides in soil and 

water, antibacterial, antifungal, biosynthesis of silver nanoparticles, 

organic nanoparticles synthesis. 

 

(Gustafsson et al., 2009; Vatsa et al., 2010; 

Xie et al., 2006) 

 

Sophorolipid 

 

Agriculture, phytopathogens control, antifungal properties, 

antimicrobial/germicidal agent, anti-microbial, antitumor, antiviral 

and immune-modulator, anticancer activity, cosmetic production, 

hygienic and pharmacological–dermatological products, contact lens 

and antimicrobial wound dressings. 

(Banat et al., 2010; de Oliveira et al., 2015)  

 

Mannosylerythritol 

and cellobiose lipids 

Moisturization activity, repair of damaged air, activation of fibroblasts 

and papilla cells leading to hair growth, antioxidative effects. 

(Morita et al., 2013; Morita et al., 2010) 

Trehalolipids 

 

Remediation, solubilization, and biodegradation of different 

hydrophobic organic compounds, oil recovery, de-emulsifying 

(Franzetti et al., 2010) 
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property, antitumor activity, production of cytokines and enhancement 

of angiogenic activity, antiviral and antimicrobial properties  

 

Lipopeptide   

Surfactin 

 

Biocontrol agent, enhancement of biodegradation, Antimicrobial, 

antiviral, antiadhesive, and insecticidal, heavy oil washing efficiency 

 

(Hwang et al., 2008; Snook et al., 2009) 

 

Iturin 

 

Antifungal activity, heavy oil washing efficiency 

 

(Pathak and Keharia, 2014; Xia et al., 

2014) 

 

Lichenysin 

 

Surface activity, oil displacement and enhancement of oil recovery 

 

(Anuradha S, 2010) 

 

Fengycin 

 

Antifungal activity, removal of petroleum hydrocarbons 

 

(Singh and Cameotra, 2013; Zhao et al., 

2014) 

 

Fatty acids and 

Phospholipid 

 

Efficiency of drug delivery system, good emulsifying property, 

surface-active wetting agents, pharmaceutical excipients. 

 

(Li et al., 2015; van Hoogevest and 

Wendel, 2014) 
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2.10 Recombinant DNA technology for enhanced production of biosurfactant 

In recent years, there has been call for genetic enhancement of BioS production. This is due to relatively low 

production yields which subsequently limits biotechnological applications of these BioSs (Willenbacher et al., 

2016). It is imperative to note that, microorganisms are capable of degrading and utilizing different substrates 

while producing BioSs. However, fairly little is known about the molecular characteristics, cloning and 

functional characterization of their degradative, and BioS systems (Aliakbari et al., 2014; Piccolo et al., 2011). 

In the presence of hydrocarbons and other carbon sources, production of BioSs by some microorganisms might 

be ascribed to the induction of certain genes (Sekhon et al., 2012). For industrial and biotechnological 

significance, new or enhanced BioS capabilities by modifying the genetic material of microorganisms through 

recombinant DNA technology is proposed. One of the general aims to decrease cost and promote BioS activity 

is enabled by the construction of hyper-producing microorganisms (De Almeida et al., 2016). It is important to 

develop recombinant or mutant microbial strains with enhanced BioS production yields to further reduce 

production cost or with the capability to produce effective congeners which are a combination of closely 

associated bio-products (Bachmann et al., 2014). In different applications such as petroleum and 

biotechnological industry, BioS producers need to be engineered for resistance to extreme process conditions. 

An option is to discover new genetic modifications from extreme conditions, for example, high salt 

concentration, high temperatures, and pH (De Almeida et al., 2016). However, modern and biotechnological 

utilizations of cloned hyper-producing strains have not been appropriately tried, though hyper-BioS producers 

have been described (Satpute et al., 2010b). The genetic composition of microorganisms is an essential factor 

influencing the yield of all biotechnological products (Calvo et al., 2009). What's more, the area of cloning, 

expression, utilization of novel BioS genes/enzymes and improved BioS synthesis is still in its earliest stages. 

For any bioproduct, for example, BioS, when new monetarily focused and ecologically-friendly procedures are 

requested, viable up-to-date engineering strategies must be utilized to fulfill this demand (Kuhn et al., 2010). 

Hence, it is of extraordinary importance to examine the enhanced roles played by these BioSs biosynthetic 

genes and enzymes. Khanna et al. (2009) proposed recombinant Escherichia coli pSKA clones containing 

BioS gene srfA demonstrated higher esterase and BioS activity with olive oil when contrasted to parent 

Bacillus sp. SK320 strain. In another study, there was overexpression of BioS genes in BioSa, BioSb and BioSc 

displaying a twofold increase in BioS activity than the parent strain. Also, enhanced esterase production was 
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conferred on the recombinant cells as compared to Bacillus substilis SK320 (Sekhon et al., 2011). In another 

case, a mutant defective Acinetobacter calcoaceticus A2 produced a higher level of biodispersan. The reduction 

of secreted proteins reduced difficulties related to purification, recovery, and application of biodispersan. 

Moreover, recombinant strains gave rise to improved product characteristics (Calvo et al., 2009).  Additionally, 

Anburajan et al. (2015) described the heterologous expression of surfactin synthetase genes from Bacillus 

licheniformis NIOT-06. The engineered strain has potential application since it synthesizes BioS at high rates 

and can maintain a strategic distance from the complex recovery process related to the regular bioprocess 

(Anburajan et al., 2015). In another report, phosphopantetheinyl transferases are responsible for the activation 

of polyketide synthases, non-ribosomal peptide synthases, and fatty acid synthases involved in the synthesis of 

fatty acids, and antibiotics (Bunet et al., 2014). Jung et al. (2012) reported the surfactin synthesis was 

effectively expanded both separately, and consolidated expression of ComX and PhrC. The overexpression of 

both extracellular peptides, ComX, and PhrC, is a vital factor for the enhancement of lipopeptide synthesis. 

The potential utilization and improved application of these hyper-producing strains notwithstanding novel 

inexpensive bioprocesses minimize difficulties and offer tremendous opportunities for making enhanced BioS 

production a success story. 

2.11 Conclusion 

Nature has provided tremendous possibilities for the isolation of novel bioemulsifiers or BioSs-producing 

microbial communities and products that are useful in a various industrial application such as petroleum 

industry, detergents, pharmaceutical companies, agriculture, and personal health care products. Since the 

discovery of BioSs, the production cost and selecting suitable inexpensive raw material are the important 

factors and concern for manufacturing industries. However, with the recent discoveries in this field and 

increased global awareness among consumers for these biologically synthesized products, it appears inevitable 

that in years to come chemical emulsifiers will be replaced completely by high-quality BioSs produced by 

microorganisms in many industrial applications. Owing to their environmentally-friendly nature and increased 

global awareness among the populace for products obtained from nature, the market today now has a niche for 

BioSs. Manufacturing industries are staking money on BioSs due to their potential and prospective 

characteristics and properties. With the use of mutants and hyper-active microorganisms with high producing 
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capacities and inexpensive renewable substrates as raw material, BioSs production has been ameliorated at the 

industrial level.  
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Abstract  

The current research aimed at analyzing the biodegradation efficiency of a potent biosurfactant producing 

Paenibacillus sp. D9, along with the characterization of the surface-active compound produced during diesel 

fuel biodegradation. The biosurfactant production by Paenibacillus sp. D9 was evaluated using diesel fuel as 

a culture medium, subsequently analyzed for its structural characteristics using different methods and 

determining the biodegradation utilization. This strain showed wide cell surface hydrophobicity against 

varieties of hydrocarbon substrate tested. Paenibacillus sp. D9 displayed higher hydrophobicity to the long 

chain hydrocarbons mixtures tested such as 71.50% diesel fuel, 70.0% engine oil and 76.0% n-paraffin. The 

optimum condition for biosurfactant synthesis was obtained in a medium containing 10% (v/v) diesel fuel with 

a production yield of 4.7 g/L. The resultant biosurfactant reduced surface tension from 71.4 mN/m to 30.1 mN/m 

against carbon source utilized. The critical micelle concentration value of the biosurfactant was 200 mg/L with 

emulsification efficiencies against a wide range of hydrophobic pollutants. With different physiochemical and 

analytical methods, the study demonstrated that the genus Paenibacillus produced a low molecular weight 

lipopeptide biosurfactant. Its emulsifying ability further supports its potential use in environmental and 

biotechnological applications. 
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3.1 Introduction 

Different forms of ecological and environmental pollution, due to the improper or inherent usage of 

hydrocarbons (such as aliphatic and aromatic, including polycyclic aromatic hydrocarbons), heavy metals, 

sulfur, hydrophobic pollutants, solvents, and chemicals affect fauna and flora significantly and continuously 

(Al Disi et al., 2017; Ismail et al., 2013). Exposure to the afore-mentioned pollutants contribute indirectly to 

significant economic losses in developing countries, pose a threat to the environment and living organisms 

including human beings, plants, and other organisms (Durval et al., 2018; Ismail et al., 2013). Conventional 

remediation such as mechanical, physical, and chemical treatments have been used to contain these 

contaminations and polluted extreme environments (Ahmad et al., 2014; Al Disi et al., 2017). However, 

bioremediation has attracted increasing interest in recent years because it is cost-efficient, effective, and 

environmentally-friendly in contrast to physicochemical treatments (Al Disi et al., 2017). 

Toxic compounds, inclusive of xenobiotics and pollutants such as crude oil, diesel fuel, engine oil, motor oil, 

aromatic hydrocarbons, and other hydrocarbon mixtures are degraded to a certain extent through natural 

processes initiated by indigenous microorganisms (Bezza and Chirwa, 2017; Durval et al., 2018). Petroleum-

derived diesel, one of the main environmental and ecological pollutants is composed of about 25% aromatic 

hydrocarbons (alkylbenzenes and naphthalene) with 75% saturated hydrocarbons (primarily paraffin including 

n-, iso-, and cycloparaffins) (Ahmad et al., 2014; Dahalan et al., 2014). Advances in biotechnology have 

allowed the use of pollutant-degrading microbes effectively to remove the identified contaminants and 

pollutants under measured conditions to yield biomolecules or bio-products such as biosurfactants (BioSs) 

(Datta et al., 2018). As such, the growing environmental awareness, sustainability, and concern, surfactants 

obtained from biological-based resources are of increased demand in the green ecological market.  

BioSs are compounds of surface active origin produced by specific groups of microorganisms that utilize 

diverse substrates like oils, hydrocarbons, hydrophobic mixtures, carbohydrates, fats, dairy products, vegetable 

frying oil, and heavy metals from polluted environments (Parthipan et al., 2017; Reddy et al., 2018). BioSs are 

classified into two different groups: which are low molecular-weight compounds, which effectively reduce 

interfacial and surface tension (ST); and high molecular-weight compounds frequently mentioned as 

bioemulsifiers effective as emulsifying agents. The first group which is of interest display an extensive 

variation of chemical structures, including phospholipids, glycolipids (rhamnolipids, sophorolipids, trehalose 
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lipids, mannosylerythritol, cellobiose lipids), lipopeptides, fatty acids, or neutral lipids lipopeptides, 

polysaccharide-complexes, flavolipid, lipids, and polymeric surfactants (Datta et al., 2018). 

The features of BioSs over chemically produced counterparts which includes, functional diversity, reliability 

at extreme ecological conditions, low toxicity, better surface activity, biodegradability, bioremediation, 

substrate specificity, environmental compatibility, and biocompatibility have expanded its potential use in 

different applications (Al-Wahaibi et al., 2014; Bezza and Chirwa, 2017; Reddy et al., 2018; Wang et al., 2014). 

These applications include hydrocarbon bioremediation, microbially enhanced oil recovery, nanotechnology 

(mediated biosynthesis of metallic nanoparticles), pharmaceutical, medicine, commercial laundry detergent, 

food, textiles, petrochemicals, and pollution control (Deng et al., 2016; Guo et al., 2012; Wang et al., 2014). 

The degradation and bio-utilization of hydrocarbons by microorganisms is enhanced by the production of BioS. 

In fact, hydrocarbon degraders have the potential to produce BioSs in situ thus stimulating their growth and 

survival in environments dominated with hydrophobic compounds (Mesbaiah et al., 2016). 

BioSs of different kinds have been synthesized from microorganisms belonging to diverse genera, such as 

Bacillus, Acinetobacter, Pseudomonas, Rhodococcus, and Achromobacter (Deng et al., 2016; Durval et al., 

2018; Parthipan et al., 2017; Patowary et al., 2017; Pirog et al., 2015). However, few researchers have identified 

genus Paenibacillus as having the potential of producing BioS, for its wider usage in biodegradation purposes 

and bioremediation (Bezza and Chirwa, 2017; Govarthanan et al., 2016; Gudina et al., 2015; Mesbaiah et al., 

2016; Najafi et al., 2011; Reddy et al., 2018). The discovery of new environmentally-friendly BioS and finding 

the optimum conditions for improved production yield is pivotal especially for biotechnological applications 

and effective bioremediation of soils and groundwater polluted with hydrocarbons. 

In this research paper, the functions, structures, and characterization of novel lipopeptide BioS produced by 

hydrocarbon-degrading bacterium Paenibacillus sp. D9 was reported. This study will contribute to valuable 

information on this species of Paenibacillus with novel BioS properties and attributes.  
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3.2 Materials and methods 

3.2.1 Chemicals and reagents  

All reagents, hydrocarbons, chemicals, and media used in this study were purchased from Sigma-Aldrich (St 

Louis, MO, USA). Hydrocarbon substrates were at least 99% pure, and of analytical grade. 

3.2.1.1 Strain growth, media, and culture conditions 

Paenibacillus sp. D9 GC368737 was identified in a previous study (Ganesh and Lin, 2009) and the whole 

genome sequence has been deposited at DDBJ/EMBL/GenBank under the accession number JZEJ00000000. 

The microorganism culture for future use was stored at -80°C in nutrient broth (NB) medium supplemented 

with 40% (v/v) of glycerol. The composition of the NB medium was (g/L): sodium chloride 5.0; yeast extract 

2.0; beef extract 1.0; peptone 5.0, respectively. The culture stocks were streaked on nutrient agar plates, 

incubated at 30°C for 24 h, and subsequently stored at 4°C for no longer than 3 weeks. For the degradation and 

BioS production medium, a Bushnell Haas medium (BH); pH 7.4 with the following composition in g/L (NH4) 

NO3 1.00, FeCl3 0.05, K2HPO4 1.00, KH2PO4 1.00, MgSO4 0.20, CaCl2 0.02 were used. The pH was adjusted 

when required to 7.0 using 1M HCl or NaOH. The media were sterilized at 121°C for 15 min using an autoclave 

(HL-340 Vertical Type Steam Sterilizer). The Paenibacillus sp. D9 strain was grown at 30°C in NB medium 

for 24 h, followed by centrifugation (13,500 × g, for 20 min at 4oC). The inoculum obtained was washed twice 

in phosphate buffer saline (PBS) (1×) and further suspended in BH medium until OD600 was equivalent to 1.00 

(Ganesh and Lin, 2009). 

3.2.2 Microbial adhesion to different hydrocarbons 

The bacterium cell surface hydrophobicity (CSH) was evaluated by microbial adhesion to hydrocarbon assay. 

Paenibacillus sp. D9 cells were harvested from 24 h grown culture by centrifugation at 13,500 × g at 4ºC for 

10 mins and washed twice with phosphate urea magnesium sulfate buffer composition (g/L, pH 7.0) containing 

K2HPO4 19.7, KH2PO4 7.26, MgSO4. 7H2O 0.2, and Urea 1.8). The cells were suspended in the buffer to an 

optical density of 1.0 (A0) at 600 nm wavelength. Five mL inoculum was added to different hydrocarbons (500 

μL) and the different test-tubes subsequently vortexed for 2-5 min. The final growth of aqueous phase was 

measured (A1) inclusive of initial optical density (A0) after 1 h (Dahalan et al., 2014). The spectrophotometer 

was blanked with the medium containing the different substrates during measurement of OD600 value. 

The CSH was calculated using the formula [1-(A0-A1)/A0 × 100%]  
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3.2.3 Hydrocarbon utilization by strain Paenibacillus sp. D9 

The capability of Paenibacillus sp. D9 to grow on various aliphatic hydrocarbons, aromatic hydrocarbons, 

hydrocarbon mixtures, and intermediary metabolites of polycyclic aromatic hydrocarbon (PAH) degradation 

was assessed. The different substrates were added to the BH medium at final concentration of 2% (v/v) or 2% 

(m/v). Uninoculated control flasks with the same quantity of different substrates were incubated in parallel to 

monitor abiotic losses (Mesbaiah et al., 2016). The production medium allowed for clear separation of 

hydrophobic layer containing the substrates and hydrophilic layer containing the bacterial cells. Bacterial cell 

growth was subsequently monitored by measuring the growth density (OD600) at two-day intervals using an 

ultra-violet (UV) spectrophotometer for 14-day period. The spectrophotometer was blanked with the medium 

containing the different substrates during the measurement of OD600 value. 

3.2.4 Diesel fuel degradation and gas chromatography-flame ionization detector analysis 

One hundred millilitres of BH medium containing different concentrations of diesel fuel, viz 1%, 2%, 5%, and 

10% (v/v), in 250 mL Erlenmeyer flask (pH 7.0), were inoculated with 1 mL of inoculum (OD600 = 1.00). The 

flasks were incubated aerobically at 30°C on an orbital shaker (MRC polychem supplies, China) operated at 

30°C, 150 rpm for 21 days to determine the biodegradation efficiency of Paenibacillus sp. D9. The 

spectrophotometer was blanked with the medium containing the diesel fuel during the measurement of OD600 

value. Uninoculated control flasks with the same amount of diesel fuel were included and incubated in parallel 

to monitor abiotic losses. The samples were measured at three-day intervals for 21 days to monitor the bacterial 

growth at OD600. The remaining diesel fuel was extracted at the end of the experiment by shaking vigorously 

with 20 mL of n-hexane solvent. The diesel fuel degraded was determined using gas chromatography (GC) 

equipped with a flame ionization detector (FID). In brief, hexane extracts (1.0 µL) were analyzed with the 

Shimadzu AOC-201 gas chromatograph (GC-2010) equipped with 30 m HP-5 column (internal diameter, 0.25 

mm; film thickness, 0.25 µm). The injector and detector temperatures were maintained at 250°C and 350°C, 

respectively. The column was automated to hold for 2 min at an initial temperature of 70°C; then ramped at 

10°C min-1 to 320°C and subsequently held for 10 min. Nitrogen was used as the carrier gas. Diesel fuel 

biodegradation was expressed as the percentage of diesel fuel degraded relative to the residual diesel fuel 

fractions in the control samples (external standard method). Thus, the biodegradation efficiency (BE), centered 

on the reduction in the total hydrocarbon concentration, was determined as described,  
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BE (%) =    100 - (As x 100/Abc)   

Where Abc = total peak area identified in the abiotic control,        

     As = total peak area in each appropriate sample. 

3.2.5 Biosurfactant production, recovery, and purification 

To study the BioS production and activity, the bacterium Paenibacillus sp. D9 cultivation was performed as 

per the diesel fuel degradation experiments above, for an incubation period of 15 days. Uninoculated BH 

medium was supplemented with different concentrations of diesel fuel and utilized as control samples. The 

culture broth was checked at three-day intervals for the analysis of bacterial growth, surface tension (ST), and 

BioS production yield. The growth of Paenibacillus sp. D9 bacterium in BH media was determined by 

measuring the increase or decrease in OD at 600 nm. The production medium was allowed for clear separation 

of hydrophobic layer containing the substrates and hydrophilic layer containing the bacterial cells. The 

spectrophotometer was blanked with the medium containing the different substrates during the measurement 

of OD600 value. The samples were centrifuged (13,500 × g, for 20 min at 4oC), for BioS production yield and 

ST determination as defined below. The residual oil was extracted through double extraction using an 

approximate 40 mL volume of n-hexane At the end of the production, the crude BioS was obtained by 

centrifugation and acid precipitation (Al-Bahry et al., 2013). Acidification of the cell-free supernatant to pH 2 

was carried out with 6 M HCl, consequently incubated at 4°C overnight to stimulate the precipitation of BioS. 

Thereafter, the precipitated crude BioS were collected by centrifugation (10,000 × g, 20 min, and 4°C). The 

BioS produced was liquefied in a marginal quantity of demineralized water with the pH adjusted to 7 using 1 

M NaOH. The BioS solutions were lyophilized, and the products were weighed and stored at –20°C until 

further usage. To determine and confirm the surface activity of the BioS as either extracellular (cell-free 

supernatant) or intracellular (cell bound), cell-bound BioS was harvested by centrifugation (10,000 x g, 10 min, 

4°C), washed twice and resuspended in 100 mL of PBS. The cell-free suspension was incubated at room 

temperature overnight for the release of cell-bound BioS and filtered through a 0.22 μm pore size sterile filter 

(GVS, USA). Dialysis of filtered cell-bound BioS was carried out against distilled water at 4°C in a dialysis 

membrane (6,000-8,000 Dalton) Sigma-Aldrich (St Louis, MO, USA) and freeze-dried for subsequent analysis. 

The product collected through the above-listed methods was reflected as partially purified BioS. In this case, 

the partially purified BioS was subsequently confirmed for surface activity before its further usage. 
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3.2.6 Surface active properties of biosurfactant 

3.2.6.1 Surface tension  

ST determination of supernatant and cell-bound supernatants were achieved at 25°C according to the Ring 

method (Burgos-Diaz et al., 2011). Approximately 40 mL cell-free supernatant and cell-bound supernatants 

was placed in the measuring cylinder and ST readings were actualized. An average of triplicate samples was 

determined to improve the precision of the ST measurements. Sterile BH medium added with diesel fuel at a 

final concentration of 1%, 2%, 5%, 10% (v/v) were used as a control to ascertain the effectiveness of the BioS 

synthesized.  

3.2.6.2 Emulsifying activity determination 

The emulsification activity index (E24) was determined according to Burgos-Diaz et al. (2011). Cell-free 

supernatants (2 mL) were added to the same volume of diesel fuel in test tubes. The tubes were vortexed with 

a vortex machine (V-220, Germany) for 2-5 min and left standing at 25°C for 24 h.  

The E24 index was estimated as the percentage of the height of the emulsified layer (mm) divided by the total 

height of the liquid column (mm). The E24 indexes were performed in triplicate. To detect the capability of 

the BioS molecules to form stable emulsions, diesel fuel was substituted with different hydrocarbons and 

hydrophobic mixtures. 

3.2.6.3 Drop collapse assay 

Drop collapse assay was carried out to detect the surface-active compound. Diesel fuel (10 μL) was added to 

96 well microtiter plates. The plates were equilibrated for 1 h at 30ºC and 5-10 μL of BioS containing solution 

was added. The solution that made the oil drop collapse after 1 min was taken as a positive result and the 

solution that remained as flat was scored as negative when compared with sterile demineralized water (control) 

(Thavasi et al., 2013). 

3.2.6.4 Oil displacement assay 

This assay measures the diameter of the clear zone that occurs after dipping a BioS-induced solution on oil-

water interphase. The oil displacement test was analyzed by adding 50 mL of distilled water to a Petri dish of 

diameter 15 cm. Diesel fuel (20 μL) was dropped onto the surface of the water, followed by the addition of 10 

μL of BioS containing solution. The diameter of the clear halo zone visualized was measured after 1 min. The 

diameter allows validation on ST reduction effectiveness of the BioS produced (Thavasi et al., 2013). 
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3.2.6.5 Critical micelle concentration 

Critical micelle concentration (CMC) was analyzed by measuring the ST sequences of a series of dilutions of 

BioS concentrations using Tris-HCl buffer solution, pH 8 (Sharma et al., 2015). CMC is explained as the lowest 

BioS concentration to achieve maximum ST and all additional BioS added to the biological system goes into micelles 

formation. A stock solution of the crude BioS (1 g/L) was prepared and various dilutions made to obtain a range 

of the concentrations from 10 to 1000 mg/L. The CMC was investigated by plotting the ST as a function against 

the BioS concentration logarithmic scale. The common experimental procedure is to determine the intersection 

point of two straight lines that best through the CMC (pre- and post-) data and BS concentration. ST of the 

different concentrations was measured in triplicate against water as a blank.  

3.2.7 Structural characterization  

3.2.7.1 Purification of biosurfactant 

The crude BioS was partially purified initially according to the procedures defined above. The sample was then 

liquefied in methanol, mixed with silica gel (230 – 400 mesh) and subsequently oven-dried at 50°C. The silica 

gel was further mixed with chloroform and then loaded onto a chromatography column (50 cm × 2.8 cm). A 

mixture of ethyl acetate/chloroform in different proportions (100% to 0% with 10% interval), was used in the 

sequential washing of the loaded column at a flow rate of 0.5 mL/min.  A UV spectrophotometer with a range 

of 200–800 nm was used to monitor the absorption wavelength of the mixtures. The eluents (20 mL) were 

collected and the fractions showing oil-displacement activity were thoroughly mixed, followed by evaporation 

at 80oC to acquire purified sample (Deng et al., 2016). The purified BioS was confirmed subsequently for 

surface activity and properties before its further usage. 

3.2.7.2 Compound analysis of purified biosurfactant 

The protein content of the purified BioS was estimated by using the total protein kit (Micro-Lowry, Onishi & 

Barr Modification) from Sigma-Aldrich (St Louis, MO, USA). The phenol-sulphuric acid method was used to 

determine the total carbohydrate content. Gravimetric method was used to estimate the total lipid content. The 

purified BioS (1 g) was extracted with chloroform: methanol in different proportions (1:1 and 1:2, v/v), and 

the lipid content estimated by gravimetric analysis (Ismail et al., 2013). The fatty acids content of the BioS 

hydrophobic portion was determined by converting and derivatizing it to methyl esters. The methyl esters of 

fatty acids were suspended in n-hexane and analyzed by gas chromatography-mass spectroscopy. The peaks 
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and spectra generated were analyzed for its molecular weight characterization from obtainable library data 

(NIST MS library search). 

3.2.7.3 Thin layer chromatography analysis 

BioS obtained was dissolved in chloroform: methanol (1:1 v/v), and a 50 µL sample was introduced on a thin 

layer chromatography (TLC) silica plate (Sil 60 F254, 0.2 mm, Macherey-Nagel, GmbH & Co, Germany). A 

solvent system containing methanol: chloroform: acetic acid (15:65:2 v/v/v) was used in developing the 

samples. BioS constituents were then spotted after spewing the TLC plate with different visualizing stains 

including anthrone, ninhydrin, and rhodamine spray reagents. The anthrone reagent (1 g in 5 mL of H2SO4 

mixed with 95% ethanol) was used to detect the incidence of yellow spots which are indicative of carbohydrate. 

Amino acids present in the BioS solution were detected using ninhydrin reagent 0.05 % w/v (methanol and 

water 1:1 v/v) heated at 100°C for 10 min, while the presence of lipids was detected using rhodamine reagent 

(0.25 w/v in 70% ethanol). The bands conforming to BioS constituents were visualized in ultraviolet light. 

3.2.7.4 Liquid chromatography and mass spectroscopy analysis 

The purified BioS sample was dissolved in methanol-water to obtain 1 mg/mL solution. An ultra-performance 

liquid chromatography system equipped with a photo diode detector, gradient pump, and auto sampler was 

utilized in the current study. A C18 column (2.1 μm× 1.7 μm× 100 mm) was used for separation at an oven 

temperature of 40°C. A multistep linear gradient composed of eluent A (water + 0.1% trifluoracetic acid), and 

eluent B (acetonitrile + 0.1% trifluoracetic acid) were applied with the temperature, continued at 10°C. The 

sample solution (10 µL) was injected, and a linear gradient (from 0–13 min) from the mixture A: B (70:30, 

v/v) to A: B (0: 100 v/v) was applied. A plateau of 100% eluent B from 13 min to 15 min was initialized, then 

completed with 70% eluent A for 15 min to 16 min. The mobile phase flow rate was 0.3 mL/min. The liquid 

chromatography system was joined with a Water’s mass-spectrometer and an electroscopic interface. The 

electrospray ionization source was set in positive and negative ionization mode. Helium was used as a collision 

gas while nitrogen gas was used as a nebulizer. 

3.2.7.5 Gas chromatography and mass spectroscopy analysis 

The BioS was hydrolyzed with 6 M HCl at 100°C for 24 h. The fatty acids were extracted from the hydrolysate 

using diethyl ether, followed by vacuum evaporation. The fatty acids derivative was prepared by mixing 5% 

HCl-methanol (1 mL) with the BioS (10 mg). The reaction was quenched with water (1 mL), thereafter the 
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methyl ester derivatives were extracted with n-hexane. One µL was injected into a Shimadzu gas 

chromatograph model QP2010 SE equipped with a capillary GC column Rtx-5MS (0.25 µm × 30.0 m × 

0.25mm) and a Shimadzu Mass Selective Detector model set to scan from 45 m/z to 600 m/z at a scan rate of 

1.2 scans per second. The capillary column used was a column Rtx-5MS (0.25 µm × 30.0 m × 0.25 mm) 

(Bellefonte, PA 16823, USA). The oven temperature was set from 130ºC to 230ºC at 2ºC/min. The temperature 

of the injector port was 230ºC and the detector transfer line temperature was 240ºC. The carrier gas was helium 

at a flow rate of 1 mL/min and a split ratio of 50:1. 

3.2.7.6 Fourier transform infrared spectroscopy 

For identifying types of chemical bonds (functional groups), Fourier transform infrared spectroscopy (FTIR) 

was used to elucidate the components of the mixture. One mg of purified lyophilized BioS was grounded with 

100 mg potassium bromide salt and pressed for 1 min to obtain translucent pellets. The pellets were analyzed 

in an FTIR (PerkinElmer Spectrum 100 Series, PerkinElmer, Shelton, CT, USA), in the range of 450 – 4000 

cm-1 at a resolution of 4 cm-1. All data were corrected for the background spectra. 

 3.2.8 Statistical analysis 

All the experimental data analyzed were expressed in terms of arithmetic averages obtained from at least three 

independent replicates, with standard deviation (±). 

3.3 Results and discussion 

3.3.1 Cell surface hydrophobicity  

CSH of Paenibacillus sp. D9 against varieties of hydrocarbon substrate and mixtures is shown in Table 3.1. 

There was an increasing CSH as the carbon length of liquid aliphatic hydrocarbons increased (63.20%, 64.90% 

and 65.50% of n-dodecane, n-tetradecane, and n-hexadecane respectively) (Table 3.1). Paenibacillus sp. D9 

further displayed higher hydrophobicity to the long chain hydrocarbons mixtures tested (motor oil - 62.70%, 

diesel fuel - 71.50% and engine oil - 70.00%) with the highest CSH toward n-paraffin (76.00%). 1-Nonene, a 

cyclic unsaturated aliphatic hydrocarbon produced an average hydrophobicity of 50.70%. A relatively fair 

hydrophobicity to n-hexane, a volatile aliphatic hydrocarbon of 49.10% was also observed. In contrast, there 

was a weak hydrophobicity toward liquid aromatic hydrocarbons such as toluene and phenol with the 
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hydrophobicity of 42.20% and 41.60%, respectively. Positive CSH is proportional to a solid indication for the 

determination and production of BioS (Thavasi et al., 2013). The dual cell-surface hydrophilicity, ranging from 

hydrophilic (remained in the aqueous phase with no interaction with the organic solvent, despite multiple 

contacts) to very hydrophobic phase (fractionated with the initial addition of solvent) was established for 

Paenibacillus sp. D9.  

 

Table 3.1 The cell surface hydrophobicity of Paenibacillus sp. D9 grown on various hydrocarbon substrates 

Hydrocarbons Hydrophobicity Hydrocarbons Hydrophobicity 

n-Paraffin 

n-Dodecane 

n-Hexane 

76.00% ± 0.08 

63.20% ± 0.01 

49.10% ± 0.24 

1-Nonene 

Phenol 

Motor oil 

50.70% ± 0.02 

41.60% ± 0.01 

62.70% ± 0.01 

n-Hexadecane 65.50% ± 0.01 Engine oil 70.00% ± 0.01 

n-Tetradecane 64.90% ± 0.01 Toluene 42.20% ± 0.00 

Diesel fuel 71.50% ± 0.07   

All data points are means ± standard deviation (S.D.) of three independent experiments 

 

Thus, Paenibacillus sp. D9 showed heterogeneity in the hydrophobic surface characteristics that affect the 

ability of cells to use various hydrocarbon substrates. The result above were supported by BioS-producing 

strain Dietzia maris As-13-3 with high CSH towards n-hexadecane, n-tetradecane, and n-paraffin and 

hydrophilicity to n-dodecane and pristine (Wang et al., 2014). In another report, Acinetobacter sp. DRY12 

showed high CSH towards n-hexadecane (Dahalan et al., 2014). Cell adherence with hydrophobic compounds 

like diesel fuel, n-hexadecane, n-dodecane, n-tetradecane, engine oil, and several hydrocarbon mixtures are a 

well-thought-out method to screen bacteria for its production of BioS. Microorganisms produce surface active 

compounds by cell adherence to the oil droplets thus enabling effective solubilization and degradation (Thavasi 

et al., 2013). 

The feat of biological remediation is reliant on the intrinsic biodegradability of the contaminants, availability 

to pollutant-degrading microbes and microbiological optimization. Considering this, the ability of 

Paenibacillus sp. D9 to utilize several pollutants and contaminants such as hydrocarbons (short and long chain), 

hydrocarbon mixture, chemicals, and PAH intermediates was investigated. The aim of the experiment was to 
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ascertain the carbon source preference of Paenibacillus sp. D9 to several hydrocarbon constituents and 

relatively determine the correlation between CSH and substrate specificity. Table S1 showed the ability of 

Paenibacillus sp. D9 to utilize some hydrocarbons as source carbon and energy source inclusive of short and 

middle chain aliphatic hydrocarbons (from C8 to C20). Paenibacillus sp. D9 used n-dodecane (OD600 max = 

1.08), n-hexadecane (OD600 max = 1.56), n-tetradecane (OD600 max = 0.65), 1-nonene (OD600 max = 1.01), 

tetracosane (OD600 max = 0.99) as carbon and energy sources at the end of the incubation. In addition, the 

organism grew on hydrocarbon mixtures such as diesel fuel (OD600 max = 1.86), n-paraffin (OD600 max = 0.51), 

motor oil (OD600 max = 0.62), and engine oil (OD600 max = 1.20). However, Paenibacillus sp. D9 was unable 

to utilize n-hexane (OD600 max = 0.003) and cyclohexane (OD600 max = 0.10) which are representative of 

carbon chain C6. Aromatic compounds are difficult to degrade in oil-polluted environments. Taking this into 

consideration, there was the utilization to certain degree of toluene (OD600 max = 0.32) despite its weak 

hydrophobicity and Paenibacillus sp. D9 grew poorly in phenol (OD600 max = 0.03). Owing to its vast potential 

and diversity, Paenibacillus sp. D9 showed growth and/or utilization on PAH biodegradation metabolites 

(benzoic acid, salicylic acid, phthalic acid) as a sole source of carbon and energy. This further explains its 

suitability and capability in biodegradation, bioremediation, and environmental application.  

Previous report showed Paenibacillus dendritiformis CN5 could utilize several hydrophobic mixtures as well 

as polycyclic aromatic hydrocarbons as carbon and energy source (Bezza and Nkhalambayausi Chirwa, 2015). 

Paenibacillus sp. #510, and Paenibacillus sp. 1C were stated to have the capability to use-up straight chain 

hydrocarbons and hydrocarbon mixtures (Gudina et al., 2015; Mesbaiah et al., 2016).  

3.3.2 Diesel degradation analysis 

The optimum diesel fuel concentration for Paenibacillus sp. D9 was assessed in this research. Figures 3.1 and 

3.2 indicated that the optimum concentration for growth was 2% (v/v) with an increase in optical density and 

cell growth in the containing medium. There was a significant change in color and turbidity of the medium 

after 3 days of incubation which was due to the diesel dispersion in the basal medium coupled with the 

disintegration of hydrocarbons present. However, the increase in viscosity of the medium in proportion with 

the density also indicates biodegradation of diesel fuel. At a much higher concentration of 5% (v/v) and 10% 

(v/v), a reduction in the growth of the Paenibacillus sp. D9 was observed evident of an increasing diesel 

concentration. Although the bacterial growth started to decline, Paenibacillus sp. D9 bacterium was still able 

to grow on 5%, and 10% (v/v) diesel fuel despite a decrease in the optimal growth. The bacterial growth, in 
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this case, dropped abruptly due to an increase in the concentration of hydrophobic mixtures to the basal 

medium. Diesel fuel as a carbon source is fundamental; however, it can inflict pressure on microorganisms at 

high concentrations. Solvent effect destroys bacterial cells by altering the nutrient transfer and literally damages 

the biological membrane leading to an outflow of macromolecules, and later cell death (Shukor et al., 2009). 

 

Figure 3.1 Growth profile of Paenibacillus sp. D9 at various concentrations of diesel fuel grown at 30°C, pH 7 in an 

orbital shaker (150 rpm). 

The biodegradation of diesel fuel is usually analyzed using lower diesel fuel concentrations (Ahmad et al., 

2014; Shukor et al., 2009). This highlights the significance of this research, where high diesel concentrations 

were utilized. The optimum carbon source (diesel fuel) concentration for the growth of Burkholderia sp. strain 

DRY27 was 3% (v/v) and it showed tolerance to 4% (v/v) and 5% (v/v) of diesel fuel with a declining bacterial 

growth (Ahmad et al., 2014). It has been found that biodegradation is usually slow at concentrations higher 

than 2% (v/v). A diesel fuel-degrading bacterium Acinetobacter sp. strain DRY12 was also able to tolerate 

10% (v/v) diesel concentration as sole carbon and energy source (Dahalan et al., 2014). Another author recently 
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reported the degradation and utilization of diesel fuel at a much higher concentration (> 2%) (Al Disi et al., 

2017). The fact that Paenibacillus sp. D9 could tolerate higher diesel concentrations together with its potential 

toxicity (5% v/v, 10% v/v), and ability to withstand the hydrocarbon stress and selective pressure makes it a 

good bioremediation agent (Figure 3.2). The high tolerance level is not unanticipated since the soil pollution 

with diesel fuel had happened for some years with the acclimatization process favoring higher tolerant 

microbial strains. Soil microbiologists had proposed that the abundance of carbon and energy materials in soil 

is relative to the microbes’ capability of utilizing such constituents (Dharni et al., 2012). However, diesel 

concentration affects biodegradation itself as microorganisms can only grow well when their growth rate is 

slower than the dissolution rate of hydrocarbons present. Excessive diesel fuel concentration may reduce the 

biodegradation rate due to its toxic effect and selective pressure. On the other hand, low diesel concentrations 

may also reduce overall degradation rates because contact between microorganism and diesel is limited 

(Shukor et al., 2009). The activities of wide varieties of microorganisms in a polluted environment enable the 

biodegradation of hydrophobic mixtures with individual organisms only able to degrade a limited range of 

aliphatic and aromatic hydrocarbons. However, Paenibacillus sp. D9 utilized and grew well on different 

straight chain hydrocarbons and hydrophobic substrates (Table S1) in all cases with significant disappearance 

of diesel fuel and biomass accumulation. 

 

Figure 3.2 The effect of diesel concentrations on the growth of Paenibacillus sp.  D9 after 21days of 

incubation. 
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The hydrocarbon component changes in optimum concentration of diesel were detected by GC-FID (Figure 3.3a, and 

3.3b). The control sample when analyzed comprised of n-alkanes (C3-C26), naphthalene derivatives, and branched 

alkanes. The chromatogram results showed a decrease in the concentration of the hydrocarbon peaks of the 

sample with Paenibacillus sp. D9 when compared to chromatograms of the control diesel fuel (Figure 3.3a). 

High and sharp chromatographic peaks represent the major components of the control sample (Figure 3.3b).  

The abundance of each n-alkane in the inoculated flask was remarkably lower as compared with that of the control as 

many peaks decreased significantly showing the capability of degrading a wide range of alkane hydrocarbons.  

          

 

Figure 3.3 GC-FID profiles of diesel fuel extracted from the aqueous phase of the medium after 21 days of incubation 

with 2 % (v/v) diesel (a) inoculated with Paenibacillus sp. D9 (b), abiotic control (uninoculated).  
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Paenibacillus sp. D9 could utilize and degrade n-alkanes ranging from C7 to C30 and important aromatics were 

removed from the medium as revealed by the gas chromatograph fingerprint. The degradation ability of 

Paenibacillus sp. D9 was estimated as 85-95% efficiency rate and near total removal of the different component 

mixtures present in diesel fuel. The GC-FID profile outlined showed a total disappearance of different hydrocarbons 

peak intensity depicting the optimum condition (Figure 3.3a). Other concentrations profile (data not shown) expressed 

good disappearance and degradation of the hydrocarbons present including the low molecular and high molecular 

weight compounds. It further demonstrated the ability and availability of Paenibacillus sp. D9 for petroleum-derived 

diesel fuel degradation with the enormous potential of the strain in biodegradation and oil pollution remediation. 

3.3.3 Biosurfactant production of Paenibacillus sp. D9  

To determine the optimum condition for BioS production by Paenibacillus sp. D9, culture media were prepared at 

different diesel concentrations (Figure 3.4a and 3.4b). The results obtained show the ability to utilize various diesel 

concentrations for BioS production due to a sharp reduction in ST in the first 3 days of incubation (Table 3.2). Ten 

percent (v/v) diesel was discovered to be the best inducer of BioS production with ST activity (ST decreased from 

71.4 mN/m to 30.1 mN/m). The STs achieved in this research showed high influence of the BioS synthesized as the 

control sample containing the diesel fuel reduced from 71.4 mN/m to 67.1 mN/m). As shown above, higher 

concentrations of diesel were toxic to Paenibacillus sp. D9, but the optimal BioS production allowed the reduction in 

toxicity effect for its survival, utilization, and growth. The culture media using lower concentrations of diesel [1, 2, 5 

% (v/v)] showed increasing high reduction in ST activity (ST decreased from 71.4 mN/m to 32.0 mN/m, 32.1 mN/m, 

31.8 mN/m) with increasing incubation time giving a clue that the increase in production of BioSs is directly 

proportional to the volume of substrate added. The ST values showed some level of consistency after the third day of 

incubation until the extinction of the experimental procedures for both intracellular and extracellular production. The 

consistency in ST results explained the effectiveness and stability of BioS produced. The ST values obtained at the 

end of the extracellular production experiments include 43.3, 30.3, 31.4 and 30.0 (mN/m). The high value of 43.3 

mN/m obtained for 1% diesel fuel concentration was due to complete disappearance and utilization of diesel present. 
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Figure 3.4 Biosurfactant production profile of Paenibacillus sp. D9 with reference to production yield and surface 

tension reduction (a) extracellular (b) intracellular. 

BioSs are generally a combination of complex molecules like polysaccharide, peptides, and fatty acids. BioSs possess 

the ability to reduce ST through solubilization, leading to exploitation of hydrocarbons (Patowary et al., 2017). 

According to the data obtained from this study, there is a direct relationship between bacterial cell growth and BioS 
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production. This indicates that the BioS production was consistent with cell growth which occurred at the exponential 

growth phase so that a decisive decrease in the ST occurred (Figure 3.1). A study revealed that the growth-associated 

lipopeptide BioS production by Bacillus mojavensis was maximum at the exponential growth phase (Ghojavand et 

al., 2011). A reduction in the ST of genus Paenibacillus due to BioS production was observed by different authors. 

Paenibacillus alvei ARN63 isolated from an oil field reduced ST to 35mN/m, after 17 h of incubation (Najafi et al., 

2011). Paenibacillus dendritiformis on the other-hand produced BioS activity with ST reduction from 71 mN/m to 

34 mN/m, in the first 3 days of incubation (Bezza and Nkhalambayausi Chirwa, 2015).  

Figure 3.4a showed changes in the ST readings of Paenibacillus sp. D9 supernatant with the minimal value achieved 

after about 3 days of growth (43.3 mN/m, 32.1 mN/m, 31.8 mN/m, 31.1 mN/m). A slight reduction in ST was observed 

on the sixth day by the end of the exponential phase. This may be due to the formation of micelle ascribed to the CMC 

obtained, in which the ST remained stable (30 mN/m). The increase or decrease in extra-cellular BioS concentration 

results from the interchangeable release of cell-bound BioS molecules into the culture medium (Elazzazy et al., 

2015).  

This research was also intended to determine if the production of BioS by Paenibacillus sp. D9 is extracellular (cell-

free supernatant) or intracellular (cell-bound) as shown in Figure 3.4a-b. The low ST readings of the cell-free 

supernatants and high BioS yields (g/L) showed production by Paenibacillus sp. D9 was extracellular as compared to 

low yield products and high ST readings associated with the cell-bound BioSs. Elazzazy et al. (2015) argued that the 

increase or decrease in extracellular BioS molecules could result in an alternate release of intracellular BioS molecules 

into the culture broth medium. The BioS yield of 3.82 g/L was obtained with 10% (v/v) diesel concentration with 

significant low ST readings (30.1 ± 0.1 mN/m) after the third day of incubation. BioS production reached its maximum 

(4.70 g/L) at the end of the exponential growth phase with 10% diesel fuel with BioS yield decreasing slightly 

afterward. The other concentrations of diesel fuel (1%, 2%, 5% v/v) also produced different BioS yields and ST 

readings of 0.42, 0.62, 1.60 g/L after the third day of incubation. However, optimum yields of 0.51, 1.20, 2.80 g/L 

were observed at the end of the exponential phase (Figure 3.4a). The outcomes showed significance in relative to 

control samples with no production of BioS yield. This however, rules out any possibilities of the substrates co-

precipitating with the isolated BioS. Al-Bahry et al. (2013) reported an extracellular BioS production yield of 2.29 

g/L by Bacillus subtilis B20 strain while Al-Wahaibi et al. (2014) reported a low BioS production yield of 0.50 g/L 

by Bacillus subtilis B30. BioS produced by the strain Paenibacillus sp. D9 was measured as 4.70 g/L found to be 

maximum in comparison to another literature report (Parthipan et al., 2017). The high yield of BioS produced at a 



92 

 

higher diesel fuel concentration further confirms the direct correlation between the production of BioS and cellular 

growth in this study.  

The cell-bound production at different concentration of diesel fuel showed a minimal BioS yield at different phases of 

incubation and production (Figure 3.4b). The yield of Paenibacillus sp. D9 cell bound BioS at the end of the 

experiment were 0.46, 0.38, 0.74, and 0.78 (g/L) for 1%, 2%, 5%, and 10% diesel fuel concentration respectively. 

Sharma et al. (2015) achieved the production of BioS intracellularly (cell bound) using Enterococcus faecium. The 

data from this research proved that biomolecules produced by Paenibacillus sp. D9 were dual in nature (extracellular 

and intracellular). The biomolecule comes out of the fermentation medium along with the cellular component 

interchangeably. However, it is imperative to note that the intracellular production of BioSs achieved in this research 

was relatively low in yield as compared to extracellular production. Future research aims to improve production yield 

by optimizing low-cost substrates, thus increasing the importance of this BioS in biotechnological and environmental 

application. 

The results in Tables 3.2 and 3.3 showed important ST reduction and E24 activity (32.0 mN/m and 74.60%) by 

Paenibacillus sp. D9 BioS after three days of incubation. The partially purified extracellular BioS thereafter 

appeared as a crystalline white powder. The physiochemical characterization of the Paenibacillus sp. D9 BioS 

revealed the drop collapsing and oil spreading activities which were both positive, indicating the presence of a surface-

active agent (Table 3.2). The analysis confirms the presence of the surface-active agent in the experiments as shown 

with the cell-bound extract showing negativity in the physiochemical assays. In this study, there was a direct 

correlation between drop collapse, oil spreading, E24 and ST reduction assays confirming the production of BioS. The 

physiochemical parameters tested above always give a strong positivity and indication of BioS production (Thavasi 

et al., 2013). 
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Table 3.2 Physiochemical characterization of the biosurfactant produced by Paenibacillus sp. D9 after 3 days 

Materials Surface tension 

(mN/m) 

Emulsification Index               

(E24) % 

Drop collapse Oil spreading (cm)  

DH2O 

BioSs supernatant 

Cell Bound BioSs 

71.80 ± 0.05 

30.10 ± 0.07 

35.50 ± 0.71 

          0.00 ± 0.00 

       72.50 ± 0.10 

       44.50 ± 0.10 

             - 

            +                                        

             - 

           - 

          8.60 

          - 

Partially purified 

BioSs 

32.00 ± 0.08        74.60± 0.10             ++          10.50 

Tween 80 35.00 ± 0.49        61.70 ± 0.10             +          8.10 

All data points are means ± standard deviation (S.D.) of three independent experiments 

DH2O distilled water (- negative control)                     10% SDS Sodium dodecyl sulphate (+ positive control) 

 + + indicate highly positive drop collapse test                 + indicate moderate positive drop collapse test 

Table 3.3 Percentage emulsification indexes obtained against different hydrocarbon substrates by biosurfactant 

produced from Paenibacillus sp. D9 

Hydrocarbon substrates                                 % Emulsification index (E24) 

Diesel fuel 

Engine oil 

Motor oil 

n-Hexadecane 

n-Dodecane 

n-Paraffin 

n-Tetradecane 

n-Hexane 

n-Toluene 

Chloroform 

m-Xylene 

1-Nonene 

                                   70.80 ± 0.14 

                                   76.70 ± 0.06 

                                   61.72 ± 0.08 

                                   59.24 ± 0.12 

                                   56.75 ± 0.14 

                                   60.82 ± 0.10    

                                   61.74 ± 0.18 

                                   26.72 ± 0.10 

                                   62.50 ± 0.06 

                                   56.70 ± 0.10     

                                   66.72 ± 0.12  

                                   35.06 ± 0.04                            

All data points are means ± standard deviation (S.D.) of three independent experiments 
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3.3.3.1 Critical micelle concentration  

The CMC of the BioS produced as determined by ST reduction continued until micelle was formed in the system 

(Figure S1).  The crude BioS reduced the ST of buffer solution from 65.9 ± 0.5 to 32.0 ± 0.3 mN/m with increasing 

BioS concentration. The BioS produced in this research has a CMC of 200 mg/L conforming to the minimum ST of 

32.0 ± 1.0 mN/m. There was no further decrease in ST with further increase in the concentration of the BioS beyond 

this point indicating that CMC had been reached due to the formation of micelle. The ability to reduce ST is a major 

property that enhances the capability of the surface-active compound (BioS). A CMC range of over 100 mg/L has 

also been reported for Paenibacillus dendritiformis CN5 (185 mg/L), and Bacillus sp. l-15 (200 mg/L) (Bezza and 

Nkhalambayausi Chirwa, 2015; Ismail et al., 2013). 

3.3.3.2 Emulsifying activity using different hydrophobic substrates 

E24 of the diesel substrate by Paenibacillus sp. D9 in this study indicates its BioS synthesis and production ability. 

The BioS obtained could stabilize emulsions and effectively emulsify with diesel fuel as well as other types of 

hydrocarbon substrates. The E24 index obtained included 63.30% ± 0.15, 67.50% ± 0.10, 69.20% ± 0.15, 73.30% ± 

0.12 with the increasing order of concentrations of carbon source tested with the result indicative of high BioS 

production (Table S2). An emulsification activity in the range of 50% with low BioS production by Bacillus subtilis 

B30 was reported (Elazzazy et al., 2015). Based on these assessments, strain Paenibacillus sp. D9 was established 

as an effective BioS producer with higher emulsification activity.  

The ability to also emulsify different hydrocarbon substrates was also investigated (Table 3.3). The capability to form 

and stabilize emulsions is also a significant factor to determine the quality of a surface-active agent. The emulsification 

ability of Paenibacillus sp. D9 BioS was found to be maximum against diesel fuel-engine oil (76.70%). The BioS 

produced also formed stable emulsions with long-chain aliphatic (n-hexadecane, chloroform, n-dodecane, n-

hexadecane, n-tetradecane) and aromatic hydrocarbons (toluene, xylene), along with hydrocarbon mixtures (motor 

oil, paraffin). The Paenibacillus sp. D9 BioS was not efficiently emulsified with short chain aliphatics such as n-

hexane, and 1-nonene. Thus, a good emulsifying activity potential is essential for the use of BioS in environmental 

and industrial applications, such as oil tank clean-ups, emulsion-based oil and/or fuel transport, biodegradation of 

polycyclic hydrocarbons, and bioremediation including heavy metals (Gudina et al., 2015). Thus, Paenibacillus sp. 

D9 BioS possesses the ability to emulsify different varieties of toxic hydrocarbon and hydrophobic compounds. 
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3.3.4 Structural characterization of the biosurfactant 

3.3.4.1 Compound analysis of purified biosurfactant 

The BioS produced was analyzed for its lipid, protein, and carbohydrate contents. There were high percentages 

of lipid (approximately 63%, w/w), protein content (approximately 40%, w/w) in addition to a minute fraction 

of carbohydrates (approximately 4%, w/w) as revealed by the biochemical analysis of the isolated BioS. The 

minor fraction of carbohydrates (4% w/w) found in the sample arises from remaining cellular fragments being 

co-precipitated during the extraction process as suggested by the structural analyses results below. However, 

the larger fractions of both protein (hydrophilic) and lipids (hydrophobic) give a strategic indication of the 

amphiphilic nature of the BioS. 

3.3.4.2 Thin layer chromatography analysis 

The results from the conventional analysis of the isolated BioS were further confirmed qualitatively using the TLC 

technique to detect the BioS constituents. TLC is the utmost broadly studied method for initial characterization of 

BioSs followed by post chromatographic detection. The purity and Rf value of BioS product was determined by the 

TLC data obtainable in this research. TLC analysis of the methanol-H2O extract displayed a Rf spot of 0.64 on a plate 

developed on a solvent system (methanol: chloroform: acetic acid (15:65: 2 v\v\v) (Figure S2). Results similar to 

other lipopeptide type BioS have also been reported (Burgos-Diaz et al., 2011). Rhodamine reagent when sprayed 

on a TLC silica plate, produced no dark red spot indicative of the absence of sugar molecule. Additional, replica silica 

plate was spewed with anthrone reagent produced a dark blue spot signifying the existence of lipid fraction. Amino 

acid fraction, on the other hand, was identified on the same spot when stained with ninhydrin reagent. The above 

results by TLC representation established the presence of the lipopeptide BioS. 

3.3.4.3 Fourier transform infrared spectroscopy  

For the identification of functional groups (chemical bonds) present in the bioactive part of an isolated BioS, 

FTIR was used as an utmost spectroscopic tool for the data analysis as shown in Figure 3.5. The extending 

vibration observed at 3200–3500 cm-1 is a representative of O–H stretching vibrations, indicative of a strong 

hydrogen bonding. The strong absorbance peak observed at 3000 – 2900 cm-1, was characteristic of aliphatic 

chains (–CH3, –CH2) stretching vibrations. The C‚ N stretch observed is a representation of the advent of a 

weak absorbance signal at 2300 – 2400 cm-1. Also, the absorbance bands observed at 1650 cm-1 showed a 

significant linkage between the amides I and II. The peak absorbance in this area was important in confirming 
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the presence of the peptide group in the biomolecule. A high-intensity peak at 1372 cm-1 was a characteristic 

of C-O (carbon-oxygen bond), an amine compound that contains a basic nitrogen atom with a lone pair. The 

high-intensity peak observed in the region of 1000–1100 cm-1 was allotted to O–C–O extend vibrations of 

aldehydes, ketones, carboxylic acids, and carboxylate ester. It is also noteworthy that the oxidation of the 

hydroxyl groups of hydrolysates originated from the peptide’s component in the medium. The absorbance 

vibrations observed at 800 – 500 cm-1 may be suggestive of methylene scissoring vibrations from the peptide 

component in the lipopeptide BS group. According to FTIR spectrum obtained, the BioS obtained is composed 

of hydrophobic aliphatic chain (lipid) and hydrophilic group mainly composed of protein. There was a 

similarity in the FT-IR profile of the Paenibacillus sp. D9 lipopeptide BS to surfactin, and other lipopeptide 

BioS like arthrofactin and lichenysin confirming its presence in the lipopeptide group (Elazzazy et al., 2015).  

 

Figure 3.5 Fourier transform-infra red spectrum of purified biosurfactant isolated from Paenibacillus sp. D9. 

3.3.4.4 Gas chromatography-mass spectroscopy 

To obtain a more accurate determination of lipopeptide BioS, fatty acid methyl esters were analyzed by gas 

chromatography-mass spectroscopy. The spectra were investigated from obtainable NIST Mass Spectral 

Library and various derivatives were recovered with their different retention times. By and large, lipopeptide 

BioS mainly comprised of aliphatic hydrophobic chains from C9 to C20 connected to a peptide group. From 

https://en.wikipedia.org/wiki/Base_%28chemistry%29
https://en.wikipedia.org/wiki/Nitrogen
https://en.wikipedia.org/wiki/Atom
https://en.wikipedia.org/wiki/Lone_pair
http://www.sisweb.com/software/ms/nist.htm
http://www.sisweb.com/software/ms/nist.htm
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this research, Paenibacillus sp. D9 BioS chiefly comprised of long chain fatty acids, of carbon length C-17. 

The fatty acid identified was hexadecanoic acid (Figure 3.6a) at retention times (RT): 15.34, 15.87, 16.52 & 

17.46, chemical formula (CF): C17H34O2), MW: 270. Hexadecanoic acid was found as the main fatty acid chain 

in studies of lipopeptide purified BioS previously (Parthipan et al., 2017).  

3.3.4.5 Liquid chromatography-mass spectroscopy analysis 

The data obtained from liquid chromatography (LC)-mass spectroscopy (MS) analysis further confirmed the 

lipopeptide type of BioS. A positive full scan LC-MS/MS chromatogram of the lipopeptide extract (eluted at 

1.09) was interpreted by means of MS technique to determine the structural composition. The amino acid 

sequence of the peptide fraction was inferred by interpreting the MS/MS spectra derived from the mass spectra 

of ions m/z 1366.7 as the base peak. 
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Figure 3.6 (a) Gas chromatography-mass spectrum of the biosurfactant isolated from Paenibacillus sp. D9 (b) 

TOF MS ES+ spectrum of the purified lipopeptide biosurfactant from Paenibacillus sp. D9 (c) The inferred 

structures of lipopeptide based on GC-MS and LC-MS analysis. 

The molecular spectra obtained for different fragmentation in the MS/MS data at m/z 994.5, 881.1, 729.3, 

613.3, 481.2, 393.2 and 261.1 display predicted lipopeptide sequence of Met-Ser-Ser-Asp-Arg-Gly-Gly 

(Figure 3.6b). The C-terminal amino acid in the peptide group is linked to an aliphatic chain of C17H34O2 with 

a total molecular mass of. 1085.85 Da. Ultimately, the molecular structure of the lipopeptide was inferred as 

CH3-(CH2)14-CHO-CH2-CO-Met-Ser-Ser-Asp-Arg-Gly-Gly as illustrated in Figure 3.6c. The current study 

reports the production of a new lipopeptide BioS by Paenibacillus sp. D9. Based on the chemical structure and 
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molecular weight (1085.85 Da), it is different from already reported lipopeptides, viz. glumamycin (1290.4 

Da), arylomycin A6 (867.4 Da), daptomycin (1620.6 Da), aspartocin (1317 Da), and tsushimycin (1304.7 Da) 

(Sharma et al., 2015). In addition, lipopeptide structure profile of different molecular mass and forms have 

been informed with minimal data on genus Paenibacillus. This research also presents the identification of 

lipopeptide of 7 amino acid fragments by Paenibacillus sp. D9 which is different from previously reported 

lipopeptides. According to published reports, lipopeptide BioS usually contain aliphatic hydrophobic chain 

from C9 to C20, and hydrophilic peptide chains composed of 4-10 amino acids (Deng et al., 2016).  In 

comparison to this research, a lipopeptide BioS named battacin was produced from Paenibacillus tianmuensis 

with 8 amino acid residues (Qian et al., 2011). Paenibacillus dendritiformis, on the other hand, produced a 

lipopeptide of 7 amino acid residues with a long chain fatty acid (Bezza and Nkhalambayausi Chirwa, 2015). 

Also, a cyclic lipopeptide was also isolated and identified from the Paenibacillus genus consisting of 13 amino 

acid residues and 15 fatty acid chains (Guo et al., 2012). The variation in the length composition, substitution 

of amino acids, and branching of the fatty acid chains show extraordinary diversities in the lipopeptide group. 

In addition to possessing a longer hydrophobic fatty acid chain (C17), the newly purified lipopeptide contains 

Met, which is a sulfur-containing amino acid in its structure (Figure S3). This is, however, different to 

previously discussed cyclic lipopeptide above. Results of TLC, FTIR, LCMS and GCMS spectra suggested 

that the Paenibacillus sp. D9 BioS consists of long-chain aliphatic compounds such as hexadecanoic acid as 

the main lipids and a peptide component as a hydrophilic part. The surface activities are facilitated by the dual 

nature of the macromolecules which comprises of hydrophobic regions (unsaturated or saturated hydrocarbon 

chains or fatty acids) and hydrophilic part (mono-, di- or polysaccharides, acid, peptide cations, or anions)  

allowing them to act as surfactants (Sharma et al., 2015). The significance and comparison of lipopeptide BioS 

produced by Paenibacillus sp. D9 to other BioS producing strains evaluating the surface-active properties and 

class of the BioSs are summarized in Table 3.4. 

The Paenibacillus sp. D9 strain could tolerate a high diesel concentration and a wide range of utilization on 

different hydrocarbons substrates. The increase in diesel concentration was accompanied by the production of 

complex biomolecules called lipopeptide BioS. A greater production yield was achieved extracellularly with 

Paenibacillus sp. D9. Paenibacillus sp. D9 thus produced a high amount of lipopeptide BioS and was capable 

to withstand and survive in high toxic hydrophobic compound. The obtained lipopeptide in the present report 

can proficiently emulsify different hydrophobic compounds inclusive of engine oil, diesel fuel, and other 
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hydrocarbon substrates. It is proposed that this lipopeptide BioS would be appropriate for highly toxic 

hydrocarbon solubility and also bioremediation of contaminated soil.  
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Table 3.4 Comparison of lipopeptide biosurfactant produced by Paenibacillus sp. D9 to other biosurfactant-producing strains evaluating the surface-active properties and 

class of the biosurfactant produced. ST; surface tension, E24; Emulsification Index, CMC; critical micelle concentration 

 

 

Microorganism Substrate 

utilized 

Surface 

properties  

ST (mN/m) E24 Index (%) CMC (mg/L) Biosurfactant 

produced 

References 

Paenibacillus sp. D9 Diesel fuel    + 30.1 76.7  200 Lipopeptide Present study 

Paenibacillus sp. 1C Olive oil    + 32.6 76.4  500 Lipopeptide (Mesbaiah et al., 

2016) 

Paenibacillus dendritiformis Oil and 

anthracene 

   + 30.0    - 185 Lipopeptide (Bezza and 

Chirwa, 2017) 

Paenibacillus alvei Iranian oil    + 35.0    -   - Lipopeptide (Najafi et al., 

2011) 

Paenibacillus sp. strain Crude oil    + 50.0 75.1   - Bioemulsifier 

(oligosaccharide-

lipid complex) 

(Gudina et al., 

2015) 

Paenibacillus sp. PRNK-6, 

Pseudoxanthomonas sp. 

PNK-04 

Fluorene 

 

 

   +  -  - 280 Rhamnolipid (Reddy et al., 

2018) 

Bacillus cereus Frying oil    + 27.0 98.0 500  Biosurfactant (Durval et al., 

2018) 

Pseudomonas aeruginosa 

PG1 

Crude oil    + 29.6 100 56 Rhamnolipid (Patowary et al., 

2017) 

Bacillus sp. I-15 Crude oil    + 42  - 200 Lipopeptide (Ismail et al., 

2013) 

Bacillus subtilis MG495086 Light-paraffin 

oil 

   + 29.85 72.5 40  Lipopeptide (Datta et al., 

2018) 
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3.4 Conclusion 

This study confirmed that Paenibacillus sp. D9 produced high amounts of new lipopeptide BioS with 

significant properties and attributes. The utilization of diesel fuel, as well as other hydrocarbon substrates, 

contributed to its dual BioS synthesis abilities thereby enabling its efficiency in biodegradation and 

bioremediation. The lipopeptide produced was found to have a good performance of emulsifying and ST 

activity. These BioS abilities enhance its potential for further application in the bioremediation of contaminated 

environments including, environmental, and biotechnological applications. Future research aims at improving 

the yield of lipopeptide BioS, development of hyperproducing strains and the use of the products in a variety 

of applications. 
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Abstract 

Elimination of long-chain hydrocarbon and hydrophobic pollutants from contaminated environments is of 

importance to diminish severe damages to the ecosystem. Degradation of 2% of n-hexadecane (C16H34), a high 

molecular weight n-alkane, and diesel fuel were studied for Paenibacillus sp. D9. During 14 days of incubation, 

n-hexadecane and diesel fuel were degraded to 98.4% and 80.2% as a source of carbon and energy, 

respectively, by Paenibacillus sp. D9. The induction of degradative enzymes such as alkane hydroxylase, 

alcohol dehydrogenase, and esterase was determined during the biodegradation process. Higher activities of 

alkane hydroxylase (82 U), alcohol dehydrogenase (23 U), and esterase (0.220 U) were differentially produced, 

with enhanced biosurfactant activity, indicating their involvement in hydrocarbons degradation. The presence 

of specific genes responsible for biodegradation and biosurfactant synthesis detected using specific polymerase 

chain reaction primers, further reinforced these results. The data revealed that the efficiency of the biosurfactant 

in accelerating the degradation and solubilization of these hydrocarbons was correlated with high cell surface 

hydrophobicity tendencies, emulsifying abilities, and reduced surface tension. Owing to enzyme production, 

Paenibacillus sp. D9 strain was more effective than other reported biosurfactant-producing bacteria in 

biodegradation efficiency of both aliphatic hydrocarbon and diesel fuel. 

 

Keywords: Biosurfactant; biodegradation; hydrocarbon; lipopeptide; Paenibacillus sp. D9 
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4.1 Introduction  

A wide cluster of studies has succeeded in the biodegradation and bioremediation of oil hydrocarbons (HCs), 

thus, explaining the complexities of degradation and knowledge of microbial, physiological, and biochemical 

reactions (Ismail et al., 2013). In this light, the isolation of probable biodegraders, identification of microbial 

systems, reactiveness to pollutants, also, unique enzymes and functional genes associated with biodegradation 

mechanisms have been liable to broad investigation (Lin and Sharma, 2013). Biodegradation is the degradation 

of pollutants such as HCs, compounds, and substances into a less or nontoxic forms mediated by different 

metabolic activities of microorganisms (Kim et al., 2017).  

The biodegradation of HCs is enhanced by the key roles played by biodegradative enzymes. These 

biodegradative enzymes include alkane hydroxylase, alcohol dehydrogenase, aldehyde dehydrogenase, 

monooxygenase, and esterase. Esterase is known as a lipolytic enzyme which catalyzes the cleavage of ester 

bonds, and plays key roles in the hydrolysis of various ester organic contaminants (Chen et al., 2019). Organic 

pollutants, such as the insecticides, pyrethroids, propoxur, and carbofuran have been initially transformed using 

genes encoding esterase (Chen et al., 2019; Kim et al., 2017). Though, esterase established much attention for 

their extensive variety of applications, to date not very many esterases has been described for the role played 

in the biodegradation of HCs. Several alkane hydroxylase genes are found in HC-degrading bacteria which are 

equipped at degrading a varied array of HCs. The oxygenation of the terminal methyl group, which is a vital 

mechanism is carried out by degradative enzymes in the removal of alkanes, and other aliphatic constituents 

during HC degradation process (Jauhari et al., 2014). Rhodococcus, Pseudomonas, and Acinetobacter have 

been reported to facilitate aliphatic HC uptake, by enhancing the cell surface hydrophobicity (CSH), enzyme 

production and changing membrane structure (Jauhari et al., 2014).  

The biodegradation of HC is initialized by alkane hydroxylases (alkB, alkM), transforming alkane to alkanols 

(Paisse et al., 2011; Singh et al., 2012).  About the initial oxidation of n-alkanes, four different pathways have 

been identified, and elucidated. Terminal oxidation pathway, found in a few bacteria, for example, Geobacillus 

thermodenitrificans NG80-2 is the first and the most common. The second pathway is bi-terminal oxidation, 

in which n-alkane end undergo oxidation to the respective unsaturated fatty acids without breakage of the 

carbon chain that is additionally changed over to a dicarboxylic acid, and in this way enters β-oxidation. In 

Pseudomonas aeruginosa, there exists another major pathway named subterminal oxidation pathway (Ji et al., 

2013). Alkane hydroxylases or alkane oxygenases are enzymes with significant roles in the first step of each 
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of the three pathways featured above. The last pathway is peculiar to Acinetobacter sp. strain HO1-N which 

oxidizes n-alkanes to n-alkyl hydroperoxides and finally fatty acids (Ji et al., 2013).  

Up until this point, the degradative mechanisms of few Gram-negative microbes have been described; for 

example, Pseudomonas, Acinetobacter, and Alkanivorax. The alk gene cluster found in Pseudomonas putida 

GPo1, which degrades n-alkanes ranging from n-pentane to n-dodecane is the most broadly described alkane 

hydroxylase system (Zampolli et al., 2014). The alkane hydroxylase system featured above involves alkane 

monooxygenase (alkB) and two dissolvable proteins, rubredoxin reductase (alkT), and rubredoxin (alkG) 

(Alonso and Roujeinikova, 2012; Zampolli et al., 2014). Alcohol and aldehyde dehydrogenase also plays a 

significant role in the solubilization of HCs which is the final step though β-oxidation in the degradation 

pathways. These two enzymes are responsible for solubilizing alcohols formed in the degradation process 

(Mishra and Singh, 2012).  

The bacterial strains such as Pseudomonas aeruginosa PSA5, Rhodococcus sp. NJ2, Bacillus subtilis A1 

(Mishra and Singh, 2012; Parthipan et al., 2017), Ochrobactrum intermedium (Mishra and Singh, 2012), 

Dietzia maris As-13-3 (Wang et al., 2014), Pseudomonas sp. BP10, Stenotrophomonas nitritireducens (Jauhari 

et al., 2014), were described to synthesize degradative enzymes during the biodegradation of HCs. To solve 

these problems associated with the release of these pollutants, microorganisms produced several types of 

biosurfactants (BioSs) with diverse structural composition, physicochemical properties, and vast applications 

(Bezza and Nkhalambayausi Chirwa, 2015; Ferhat et al., 2011). BioSs are amphiphilic compounds comprising 

both hydrophobic and hydrophilic end (Bezza and Nkhalambayausi Chirwa, 2015). BioS enables 

emulsification of HCs in solution by increasing cells adhesion to the substrate (Tebyanian et al., 2014). The 

major importance of BioSs is the ability to increase the surface area of the substrate hydrophobicity, thus 

decreasing the surface tension (ST), and surface activity, which leads to improved bioavailability and 

successive HCs biodegradation (Bezza and Nkhalambayausi Chirwa, 2015; Tebyanian et al., 2014). These 

BioSs possess several advantages such as stability at extreme temperatures, pH, and salinities, biodegradability, 

low toxicity, environmental compatibility, and huge biodegradative enzymes production (Wang et al., 2014). 

Therefore, it is imperative to understand the relationship associated with the synthesis of BioS, and degradative 

enzymes. 

With respect to Gram-positive bacteria, much less is known about the degradative systems. For instance, alkB1 

and alkB2 genes of Rhodococcus opacus B-4 expressed in E. coli recombinants could utilize n-hexadecane and 

n-pentane to their respective alcohols. Additionally, alkB gene of Gordonia sp. strain SoCg oxidized n-
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hexadecane to 1-hexadecanol through heterologous expression in E. coli and S. coelicolor (Zampolli et al., 

2014). A few bacteria have different alkane hydroxylases; for instance, the concurrence of various alkane 

hydroxylases in Amycolicicoccus subflavus DQS3-9A1T 13 while CYP153 and alkB genes were found in 

Dietzia sp. DQ12-45-1b (Nie et al., 2014).  

Paenibacillus sp. D9 is a Gram-positive bacterium isolated from a diesel fuel contaminated site (Jimoh and 

Lin, 2019b). Paenibacillus sp. D9 utilized in this examination has been shown to possess the elevated capacity 

to solubilize diesel fuel and hydrophobic pollutants such as n-dodecane, n-paraffin, engine oil, n-tetradecane, 

and polycyclic aromatic hydrocarbon intermediates by producing BioS as surface-active agent (Jimoh and Lin, 

2019b). However, the metabolism and degradative pathways of the strain are not characterized. In this research, 

the degradation of diesel fuel and n-alkane (C16) was achieved, highlighting the metabolic mechanism and 

pathway of Paenibacillus sp. D9. All things considered, the correlation between BioS productions and 

biodegradative mediated enzymes has not been explored so far in the literature. These outcomes bring new 

knowledge regarding the physiology and molecular genetics of the genus Paenibacillus. The significance of 

key metabolic, biosynthetic degradative enzymes in the degradation of diesel fuel and n-hexadecane was 

studied. Also, the role played by the BioS produced in pseudo-solubilization and build-up of intracellular n-

hexadecane HC was investigated in relation to biodegradation. 

4.2 Materials and methods 

4.2.1 Chemicals, media, and culture conditions  

All reagents, chemicals, hydrocarbons utilized were of analytical grade, purchased from Sigma-Aldrich Co. 

LLC. Diesel fuel was obtained from a garage store in Durban, South Africa. Bushnell Haas (BH), with the 

following composition (g/L); (NH4) NO3 (1.00), FeCl3 (0.05), KH2PO4 (1.00), K2HPO4 (1.00), MgSO4 (0.20), 

CaCl2 (0.02) was used for production and degradation medium (Bushnell and Haas, 1941). The pH was 

subsequently adjusted to 7.0 using 1 N NaOH or HCl. The media were sterilized at 121°C for 15 min using an 

autoclave (HL-340 Vertical Type Steam Sterilizer). The Paenibacillus sp. D9 strain was grown at 30°C in 

liquid broth medium for 24 h, followed by centrifugation (13,500 × g, for 20 min at 4oC). The inoculum 

obtained was washed twice in phosphate buffer saline (1X) and further suspended in BH medium until OD600 

was equivalent to 1.00. The washed culture was kept at 4oC until further usage. The experimental data were 
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expressed in terms of arithmetic means obtained from at least three independent replicates, with standard 

deviation. 

4.2.2 Cell surface hydrophobicity 

The CSH of Paenibacillus sp. D9 strain to n-hexadecane and diesel fuel was determined by measuring the 

bacterial adhesion to HCs according to the method of Jauhari et al. (2014). Cells were developed in nutrient 

broth, centrifuged, washed and suspended with PUM buffer (g/L) with compositions (g/L): KH2PO4 7.26, 

K2HPO4 22.1, urea 1.8 and MgSO4 0.2; pH 7.1. The initial absorbance was adjusted to 1.0 utilizing a UV–Vis 

spectrophotometer at 600 nm. The experimental tubes included 0.4 mL sterile n-hexadecane and/or diesel fuel 

and 1.0 mL of culture solution, incubated in an orbital shaker (MRC supplies, China) at 30oC, 150 rpm at 

different time intervals namely 30 min, 1 h, 12 h, and 24 h. The tubes were subsequently vortexed for 5 min 

and kept for 30 min for the separation of aqueous and hydrophobic phases. The lower aqueous phase was 

prudently removed, and optical density measured at 600 nm. The spectrophotometer was blanked with the 

medium containing the different substrates during measurement of OD600 value. 

CSH (%) was calculated using the equation below, 

% CSH = 1 - (OD600 of the cell suspension - OD600 of the aqueous phase/OD600 of the cell suspension) × 100 

4.2.3 The growth of Paenibacillus sp. D9 in diesel fuel and n-hexadecane 

Five hundred (mL) Erlenmeyer flasks comprising 98 mL BH augmented with 2% v/v (diesel fuel, n-

hexadecane) and 1 mL bacterial inoculum (1 OD600) were prepared for determination of bacterial growth. The 

flasks were inoculated with Paenibacillus sp. D9 inoculum and incubated in an orbital shaker (MRC supplies, 

China) at 30oC and 150 rpm for 14 days. Also, control flasks were inoculated with Paenibacillus sp. D9 

inoculum, but without the introduction of diesel fuel or n-hexadecane. The consecutive OD600 was taken at the 

interval of two days up to 14 days. At each interval, the growth was determined at OD600 with an UV-

spectrophotometer (Shimadzu UV Spec). The production flasks allowed for clear separation of hydrophobic 

layer containing the substrates and hydrophilic layer containing the bacterial cells (Jimoh and Lin, 2019b). The 

spectrophotometer was blanked with the medium containing the different substrates during the measurement 

of OD600 value.  

The growth rate of Paenibacillus D9 strain in both mediums was determined by the formula below; 

Specific growth rate   µ = (yt/y0) / t 
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where, yt = cell mass produced; y0 = initial cell mass; t = incubation time. 

4.2.4 Bacterial degradation of diesel fuel and n-hexadecane 

For n-hexadecane and diesel fuel degradation study, 98 mL of BH each with 2% diesel fuel or n-hexadecane 

was added in 500 mL Erlenmeyer flasks and sterilized at 121oC for 15 min. Then after, 1 mL Paenibacillus 

D9 (1 OD600) was inoculated separately in flasks and control samples were also prepared, but without a 

bacterial culture to monitor abiotic losses. The flasks were subsequently incubated on an orbital shaker (MRC 

supplies, China) at 30oC, 150 rpm for 14 days.  The cells were harvested at two-day intervals by centrifugation 

(Avanti J-26 XPI, Beckman Coulter, USA) at 13,500 × g at 4oC for 20 min to determine alkane hydrogenase 

and alcohol dehydrogenase activity. The residual substrates were extracted twice with 20 mL n-hexane. The 

degradation of diesel fuel and n-hexadecane were measured using a Shimadzu AOC-201 gas chromatograph 

(GC-2010) set with flame ionization detector and HP-5 column (30 m long) (internal diameter, 0.25 mm; film 

thickness, 0.25 µm). Both injector and detector were maintained at 280oC. A temperature of 80oC for 2 min 

was set for the initial oven temperature, subsequently increased to 300oC with a 10oC increase per min. The 

chromatogram peaks area of the HCs residues of the different samples were obtained after experimentation 

and computation. The biodegradation rate was determined as follows (Jia et al., 2018). 

Degradation rate = (AH control - AH experimental × AT control/AT experimental)/ AH control 

AH is the peak area of the HC remains, and AT is the peak area of n-hexane.  

4.2.5 Medium pH 

The increase or decrease in pH of both media containing Paenibacillus sp. D9 bacterial cell during HCs 

degradation was measured with the aid of 3510 pH meter (Lasec, Jenway). 

4.2.6 Assessment of enzyme activity 

4.2.6.1 Protein determination 

For protein determination, Paenibacillus sp. D9 strain grown in both media were extracted by centrifugation 

at 13,500 × g at 4oC for 20 min and washed twice in 20 mM Tris–HCl (pH = 7.4). The pelleted cells were 

suspended in the same buffer, sonicated (Omni International Sonic Ruptor 400 Ultrasonic homogenizer) with 

an operating frequency of 50 kHz for 5-10 min at 4oC. The samples were subjected to 30s on /30 s off pulses 

for 10 min at 50% amplitude, and followed by centrifugation at 10,000 rpm at 4oC for 20 min. The pooled 
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supernatant preserved at 4oC and utilized for protein determination and enzyme assays. The protein content 

was determined using UV–Vis spectrophotometer at 600 nm, using bovine serum albumin as standard. 

4.2.6.2 Alkane hydroxylase activity 

The activity of alkane hydroxylase during the biodegradation study was determined as described in Parthipan 

et al. (2017). The cell-free supernatant prepared above was utilized by measuring the decrease of absorbance 

with UV–Vis spectrophotometer (JASCO V-630) at 340 nm due to the conversion of NADH to NAD+. The 

testing solution contained 20 mM Tris–HCl and 0.15% CHAPS buffer (pH 7.4), 0.1 mM of NADH, 10 µL of 

n-hexadecane mixture (1% n-hexadecane diluted with 80% DMSO) and 50 µL of crude extract in final 1 mL 

quantity. The alkane hydroxylase activity was expressed as 1 mmole of NADH oxidized per minute. Control 

samples were used without the introduction of 2% n-hexadecane.  

4.2.6.3 Alcohol dehydrogenase activity 

The activity of alcohol dehydrogenase activity during the biodegradation study was determined as mentioned 

in Jauhari et al. (2014). In brief, cell-free supernatant was used in the experiment and increase in absorbance 

was measured with UV–Vis spectrophotometer at wavelength 340 nm due to the conversion of NAD+ to 

NADH. The reaction solution contained 1 M Tris–HCl buffer (pH 8.8), 4 mM of NAD+, 100 µL of hexadecan-

1-ol (99% pure) and 50 µL of crude extract in final 1 mL quantity. The activity of alcohol dehydrogenase was 

determined as 1 mmole of NAD+ formed per minute. 

4.2.6.4 Esterase activity 

Esterase activity was carried out using a 75 mM phosphate buffer containing 10 mM MgSO4 (pH 7.0) and 

100 mM para­nitrophenyl (pNP) acetate as substrate. The esterase enzyme activity was determined 

spectrophotometrically by measuring the increase in optical density at 405 nm after 30 min of incubation at 

37°C. One esterase unit was defined as the quantity of enzyme required to release 1 µmol of p-nitrophenol 

per minute with the specific esterase activity expressed as µmol/mg protein/min. 

4.2.6.5 Determination of emulsifying activity 

The change of optical density at 600 nm was used to determine emulsifying activity (Colla et al., 2010). Cell-

free supernatant was introduced into 10 mL glass tubes containing TM buffer (20 mM Tris-HCl buffer, pH 7.0; 

10 mM MgSO4) and 0.05 mL of a 1:1 (vol/vol) of diesel fuel and 2-methylnaphthalene added to a final volume 

of 1.5 mL. The tubes were vortexed at room temperature for 60 min with distilled water and BH media 
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containing diesel fuel and 2-methylnaphthalene used as blanks. The oil in water (O/W) emulsifying activity 

was obtained by Equation 1. One unit of emulsifying activity is defined as the amount of BioS that yielded an 

optical density A600 of 0.1 using a Shimadzu spectrophotometer. After 24 h, emulsion height and the total height 

were performed, being the W/O emulsifying activity as seen in equation 2  

EAO/W= (Absorbance sample – Absorbance blank) / 0.1      1 

EAW/O = (E height / E total) × 100        2 

where EA is emulsifying activity; E height is a percentage of the height of emulsified layer (mm); E total is the 

total height of the liquid column (mm); O/W, oil in water; W/O; water in oil 

4.2.7 Detection of genes involved in degradative and biosurfactant synthesis  

DNA was isolated from the Paenibacillus sp. D9 using standard protocols (Zymo Research). The DNA 

concentration was measured using Nanodrop 2000 UV-Vis Spectrophotometer (Thermo Fischer Scientific). 

Primers sequences used for detecting genes involved in BioS and degradative-mediated enzymes are described 

in Table 4.1. The genes utilized in this study were designed utilizing Snap Gene software (GSL Biotech LLC) 

according to the whole genome sequence of Paenibacillus sp. D9. PCR amplifications were carried out in 10-

µL reaction mixtures containing 1 U Phusion DNA polymerase, 25 mM TAPS-HCl (pH 9.3), 2 mM MgCl2 

(Qiagen Inc.), 1 mM β- mercaptoethanol, 0.5 µM of each forward and reverse primer, and 2 µL of template 

DNA (approximately 100 ng of bacterial genomic DNA). The amplifications were performed using a 

thermocycler with the specified cycle conditions (Table 4.1). Amplified products were separated on 1.2% (w/v) 

agarose dissolved in 1 × Tris-acetate-EDTA buffer (40 mM Tris, 20 mM acetic acid and 1 mM EDTA, pH 8.0) 

stained with 0.5 µg/mL ethidium bromide through electrophoresis. The desired products were eluted from gels 

using the gel extraction kit (Thermo Fisher Scientific)
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Table 4.1 The primers used in this study and PCR profile 

Primer Sequence Mechanism Product 

size (bp) 

PCR profile Reference 

Alkb-F 5’- CCTGCTCCCGATCCTCGA-3’ Biodegradative 660 94°C – 5 min. 30 cycles (94°C for 

45 secs, 60°C for 45 secs, 72°C for 

45 secs) and 72°C for 7 min. 

(Baek et al., 2007) 

 

 Alkb-R 5’- TCGTACCGCCCGCTGTCCAC -3’ 

Alkm-F 5’-GGATCCGAATGCGATCTTGGAACAGCCTTG-3’ 

 

Biodegradative 1062 98°C – 30 secs. 30 cycles (98°C for 

10 secs, 61°C for 30 secs, 72°C for 

30 sec) and 72°C for 5 min. 

This study 

Alkm-R 5’-CTCGAGTCAGGCAAGCCTGCCGA-3’ 

Adh-F 5’-GGATCCGGTGATTATGAAGGCTGTAAC-3’ Biodegradative 1146 98°C – 30 secs. 30 cycles (98°C for 

10 secs, 56°C for 30 secs, 72°C for 

30 secs) and 72°C for 5 min. 

This study 

Adh-R 5’-CTCGAGTTAAGGCTTCAGGACAAATT-3’ 

Aldh-F 5’-ATGGACATGGACAGGTTTAAAAAATTCTCCAT-

3’ 

Biodegradative 1632 98°C – 30 secs. 30 cycles (98°C for 

10 secs, 58°C for 30 secs, 72°C for 

30 secs) and 72°C for 5 min. 

This study 

Aldh-R 5’-GCCCCCAGGGTGATGGAGTAA-3’ 

 

Sfp-F 5’- ATGAAGATTTACGGAATTTA -3’ Biosurfactant 675 94°C – 25 secs. 30 cycles (98°C for 

10 secs, 46°C for 30 secs, 72°C for 

1.5 min) and 72°C for 10 min. 

(Porob et al., 2013) 

 

Sfp-R 5’- TTATAAAAGCTCTTCGTACG -3’ 

Nrps-F 5’-CATATGATGAACGCCACACGGATG-3’ Biosurfactant 2772 98°C – 30 secs. 30 cycles (98°C for 

10 secs, 56°C for 30 secs, 72°C for 

30 secs) and 72°C for 5 min. 

This study 

Nrps-R 5’-CTCGAGCTAGACGAGTATTTTTTTGGA-3’ 
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4.2.8 Surface activity and surface tension 

The Paenibacillus sp. D9 containing medium was tested for surface activity. ST was determined using 

precipitated supernatant obtained during the production process, at room temperature (25oC) as described in 

Gudiña et al. (2012). K6 Tensiometer (KRÜSS GmbH, Germany) equipped with a 1.9 cm De Noüy platinum 

ring was used. For proper result analysis, ST of BH medium supplemented with diesel fuel and n-hexadecane 

were initially measured as controls. The surface activity was determined as below. 

Surface activity = ST of uninoculated medium – ST of supernatant (Jimoh and Lin, 2019b). 

4.2.9 Pseudo-solubilization of n-hexadecane hydrocarbon 

In the pseudo-solubilization experiment, Paenibacillus sp. D9 bacterial strain was grown in 50 mL BH in 250 

mL conical flask with 2% (v/v) n-hexadecane, incubated at 30oC and 150 rpm for 10 days in an orbital shaker. 

The sample was taken at 2-day intervals and centrifuged at 13,500 × g, at 4oC for 10 min to determine the 

effect of BioS released on n-hexadecane solubilization. Uninoculated BH medium were also incubated as 

control in parallel utilizing the same conditions provided above. The cell-free broth was filtered through 0.45 

and 0.22 µm Millipore membrane filters. Pseudo-solubilized n-hexadecane was extracted using n-hexane as 

a solvent and analyzed by GC under the same conditions as mentioned for n-hexadecane biodegradation 

determination. The solvent was maintained 80oC for 2 min and subsequently increased to 300oC with a 10oC 

increase per min (Mishra and Singh, 2012).  

4.2.10 Statistical analysis 

One-Way ANOVA was used to analyze the data in this research, followed by Pearson's correlation coefficient 

test utilizing GraphPad Prism program. Data were conducted in three independent experiments and presented 

as mean ± SD. 
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4.3 Results 

4.3.1 Cell surface hydrophobicity and growth of Paenibacillus sp. D9 in diesel fuel and n-

hexadecane 

One of the important parameters to define the adhesion of HC to bacteria cell is CSH. In this current research, 

Paenibacillus sp. D9 presented a very high level of CSH to diesel fuel and n-hexadecane (Table 4.2). CSH 

values were documented to be 79.00% with diesel as a substrate and 71.00% with n-hexadecane contained 

medium after 30 min. The cell surface hydrophobicity to the HCs were also stable at the different time intervals 

(1 h, 12 h, and 24 h, respectively) showing a good hydrophobicity of the bacterium over an extended period 

(Table 4.2). 

Table 4.2 The cell surface hydrophobicity of Paenibacillus sp. D9 against 2% (v/v) diesel fuel and 2% (v/v) 

n-hexadecane 

Hydrocarbons Cell surface hydrophobicity 

Time 30 min 1 h 12 h 24 h 

Diesel fuel  79.00% ± 0.01 78.60% ± 0.04 78.70% ± 0.07 78.80% ± 0.06 

n-Hexadecane 71.00% ± 0.02 70.00% ± 0.05 69.20% ± 0.08 71.20% ± 0.1 

Values are the means of three replications (n=3). 

 

The bacterial growth (Paenibacillus sp. D9) in BH medium with 2% n-hexadecane and 2% diesel fuel was 

examined (Figure 4.1). There was a continued increase in bacterial growth through the 14-day incubation 

period with subsequent decrease in n-hexadecane-containing medium due to complete utilization of the n-

alkane. However, Paenibacillus sp. D9 increased faster in the n-hexadecane medium than diesel fuel induced 

medium during the incubation. In n-hexadecane-induced medium, exponential growth was observed between 

day 0 and day 2 with bacterium initializing immediately at the initialization of the experiment. The exponential 

growth phase was further attained on day 4, with the Paenibacillus sp. D9 bacterial growth almost stabilized 

for an upward to the termination of the experiment. For diesel fuel-induced medium, there was a late growth 

phase as multiplication of cells occurred between day 2 to day 6. Bacterial growth in BH supplemented with 

n-hexadecane (2%) and diesel fuel (2%) showed the utilization of both substrates for cell growth and 
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multiplication. There was a stationary phase observed between day 6 and day 10 for the diesel fuel-induced 

medium followed by a successive increase in growth until day 14 (termination of the experiment).  

Figure 4.1 Transformation of diesel fuel and n-hexadecane in a Bushnell Haas medium at 30oC (a) Growth 

pattern of Paenibacillus sp. D9 bacterial strain on 2% (v/v) diesel fuel and 2% (v/v) n-hexadecane induced 

medium (b) Percent degradation of 2% (v/v) diesel fuel and 2% (v/v) n-hexadecane. The consumption of diesel 

fuel and n-hexadecane was quantified by GC-FID. In the growth assay, stoichiometric conversion of 2% diesel 

fuel (v/v) and 2% n-hexadecane (v/v) were achieved by Paenibacillus sp. D9. The molecular mass of diesel 

fuel should be 198-202 g/mol while that of n-hexadecane was 226.41 g/mol. Values are of mean ± SD; n = 3. 
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4.3.2 Biodegradation of n-hexadecane and diesel fuel 

The degradation of n-hexadecane (aliphatic long-chain HC) and diesel fuel (consists of saturated and aromatic 

HCs) by Paenibacillus sp. D9 was analyzed for 14 days by GC-FID. Experimental GC/FID result revealed that 

Paenibacillus sp. D9 can degrade aliphatic long-chain HC fractions, with detectable HCs peaks completely 

utilized within the 14-day incubation period. The bacterial strain Paenibacillus sp. D9 was a proficient HC 

degrader because, in 2 days of incubation, it degraded n-hexadecane by 40.9%. Immediately after, there was 

an upsurge in degradation level corresponding to an increase in the period of incubation (Figure 4.1).  

The biodegradation rate was read based on the GC chromatograms of remaining diesel fuel. The identity of the 

peaks was established by the corresponding retention time of the chromatograms. There was 57.6% degradation 

of diesel fuel in 4 days of incubation by Paenibacillus sp. D9. The resolved peaks in the diesel fuel 

chromatograms were observed to be of carbon lengths ranging from C9–C26. There was further intensification 

in the biodegradation of diesel fuel proportional to an increase with the incubation period up to 6 days with 

subsequent stabilization. However, diesel fuel degradation continued to increase and was stable throughout the 

entire experimental period. All the high peaks detected from the control chromatogram disappeared in the test 

samples inoculated as the incubation period progresses. At the end of the experiment, Paenibacillus sp. D9 

degraded n-hexadecane (98.4%), and diesel fuel (80.2%), as the increase in growth was simultaneous with a 

reduction in the concentration of n-hexadecane, and diesel fuel. 

4.3.3 pH of incubation medium 

The pH was 7.0 at the beginning of the experiment in both n-hexadecane and diesel fuel-induced media. There 

was a slight decrease in pH of both media observed on the control after the completion of 14 days incubation. 

The decrease in pH tends towards the acidic range indicating the development of acidic intermediates during 

biodegradation of diesel fuel and n-hexadecane. For the control 1 (diesel fuel) and control 2 (n-hexadecane) 

experiment, no significant drop in pH was observed (Table 4.3). Results obtained from this research showed 

similarity to the reduction in pH of both HC-induced media.  
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Table 4.3 Medium pH changes during 14 days of incubation of Paenibacillus sp. D9 in a BH medium 

containing 2% (v/v) diesel fuel and 2% (v/v) n-hexadecane 

Day Control 1 Diesel fuel Control 2 n-Hexadecane 

Day 0 7.00 ± 0.01 7.00 ± 0.03 7.00 ± 0.01 7.00 ± 0.02 

Day 2 6.98 ± 0.00 6.10 ± 0.02 6.97 ± 0.02 4.40 ± 0.01 

Day 4 6.92 ± 0.01 5.60 ± 0.03 6.96 ± 0.02 4.30 ± 0.04 

Day 6 6.92 ± 0.02 5.10 ± 0.01 6.95 ± 0.00 3.70 ± 0.01 

Day 8 6.91 ± 0.04 4.90 ± 0.01 6.94 ± 0.02 3.50 ± 0.02 

Day 10 6.89 ± 0.02 3.90 ± 0.02 6.89 ± 0.01 3.40 ± 0.01 

Day 12 6.87 ± 0.00 4.00 ± 0.02 6.86 ± 0.00 3.40 ± 0.00 

Day 14 6.87 ± 0.02 3.70 ± 0.01 6.86 ± 0.00 3.40 ± 0.01 

Values are of mean ± SD; n = 3. 

4.3.4 Bacterial protein 

The total concentration of the bacterial protein increased continually with the duplication of cells in both the 

diesel fuel and n-hexadecane-induced medium. The initial protein concentration varied between 0.05 and 0.04 

mg/mL with a subsequent increase to 0.16 and 0.33 mg/mL at day 2 in both the diesel fuel and n-hexadecane 

medium respectively (Figure 4.2). The bacterial development in BH throughout the incubation period was 

successively related to improved protein content (Figure 4.2). This pattern reflects that the bacterial strain could 

have utilized the hydrophobic substance as a source of carbon and energy. However; at the end of the 

experiment (day 14), the final maximum value attained in diesel fuel induced medium was 0.69 mg/mL protein 

whereas, a maximum value (0.72 mg/mL) was detected in n-hexadecane induced medium (day 6). In the diesel 

fuel contained medium, protein concentration was enhanced by 14-fold throughout the bioproduction process 

while an 18-fold increase was observed in the n-hexadecane-induced medium. 
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Figure 4.2 Bacterial protein during the growth of Paenibacillus sp. D9 on 2 % (v/v) diesel fuel and 2% (v/v) 

n-hexadecane induced medium. Values are of mean ± SD; n = 3 

4.3.5 Degradative enzymes and biosurfactant activity 

Alkane hydroxylase, alcohol dehydrogenase, and esterase are general degradative enzymes involved in HC 

biodegradation process ( Chen et al., 2019; Jauhari et al., 2014; Singh et al., 2012). The induction of these three 

enzymes through diesel fuel and n-hexadecane degradation were studied to evaluate their significance in the 

biodegradation process. 

4.3.5.1 Alkane hydroxylase activity 

There was induction of alkane hydroxylase both in presence of n-hexadecane and diesel fuel degradation. In 

this research, more than 98.4% of n-hexadecane (C16) and 80.2% of diesel fuel were utilized by Paenibacillus 

sp. D9, due to excessive synthesis of hydroxylase enzyme during the biodegradation process. Initially, the 

induction of alkane hydroxylase was slow in diesel fuel as compared to the n-hexadecane induced medium but 

increased significantly from day 6 (50.90 μmol/mg protein) to day 8 (76.50 μmol/mg protein) of the incubation 

period. Similarly, enhanced induction and activity of alkane hydroxylase was observed in the n-hexadecane- 
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containing medium. The alkane hydroxylase activity was high, augmented with increased incubation period 

simultaneous with high protein content. In the two media, i.e., diesel fuel and n-hexadecane, the maximum 

activity of alkane hydroxylase was recorded as 76.50 μmol/mg protein after 8 days of incubation, while the 

highest was 82.33 μmol/mg protein in n-hexadecane-induced medium, following 6 days of incubation (Figure 

4.3). However, there was a preference for alkane hydroxylase enzyme in C16 HC rather than diesel fuel which 

is a representation of aliphatic and aromatic group of HCs. The enzyme subsequently decreased in both induced 

media (n-hexadecane and diesel fuel) towards the end of the incubation period.  

 

Figure 4.3 Induction of alkane hydroxylase and alcohol dehydrogenase enzyme by Paenibacillus sp. D9 during 

2% (v/v) diesel fuel and 2% (v/v) n-hexadecane degradation in a BH medium at 30oC. During the degradative 

assays, a stoichiometric conversion of diesel fuel (2% v/v) and n-hexadecane (2% v/v) were achieved by 

Paenibacillus sp. D9. The molecular mass of diesel fuel should be 198-202 g/mol while that of n-hexadecane 

is 226,41 g/mol. Values are of mean ± SD; n = 3 
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4.3.5.2 Alcohol dehydrogenase activity 

The aerobic degradation begins by the oxidation of a terminal methyl group to primary alcohol, by means of 

alcohol hydroxylase utilizing NADH rubredoxin and rubredoxin reductase. Alcohol dehydrogenase further 

dehydrogenate the aldehyde to alcohol. The increase in absorbance at 340 nm confirmed NAD+ formation and 

parallel to oxidation of the aliphatic alcohols was used to determine the alcohol dehydrogenase activity. The 

activity of alcohol dehydrogenase was lower when compared to alkane hydroxylase activity in both media. The 

level of alcohol dehydrogenase induction was in parallel to the degradation of n-hexadecane and diesel fuel, 

thus highlighting the significance of this enzyme in the biodegradation process. The alcohol dehydrogenase 

activities ranged maximum between day 8 and day 12 in both n-hexadecane and diesel fuel induced media 

(Figure 4.3). The maximum activity of alcohol dehydrogenase was observed as 23.00 µmol/mg-protein, on day 

10. Likewise, in the same period, the alcohol dehydrogenase enzyme in the presence of C16 had a maximum 

activity of 20.50 µmol/mg protein (Figure 4.3). Furthermore, there was a subsequent reduction in the alcohol 

dehydrogenase towards the termination of the experiment. 

3.5.3 Esterase activity 

All enzymes tested in both media, in triplicate, displayed detectable specific esterase activity on the synthetic 

substrate (4­nitrophenyl  acetate). There was a positive correlation (diesel fuel; r = 0.98, n-hexadecane; r = 

0.96) between esterase activity and BioS activity in Paenibacillus sp. D9 as esterase production improved 

gradually like emulsifying activity. This is due to excessive production of emulsion in the diesel fuel-containing 

medium indicating its proportionality to the release of esterase and vice versa (Table 4.4). The esterase activity 

was higher in the presence of the diesel fuel-containing medium regardless of the incubation time measured, 

as compared to n-hexadecane-containing medium. In the diesel fuel-induced medium, there was an increase in 

the esterase activity of (0.008 to 0.220) µmol/mg protein/min from the initial day of incubation till day 10 

(Table 4.4). The esterase activity was at a maximum at day 10 of the incubation (0.220 µmol/mg protein/min), 

thereafter a swift drop was observed until the climax of the experiment. There was a similar observation 

associated with n-hexadecane induced medium. In this case, the esterase activity was at its maximum at day 8 

(0.183 µmol/mg protein/min) of the incubation with slight reduction observed from day 10 towards the 

termination of the experiment (0.174 ─ 0.162 µmol/mg protein/min). There was a slow decline in esterase 

enzyme production as it reached maximum akin to decrease in bacterial growth explained in Figure 4.1.  
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4.3.5.4 Emulsifying activity 

The emulsifying activities of the BioS supernatant produced by Paenibacillus sp. D9 against 1:1 (vol/vol) 

mixture of diesel fuel and 2-methylnaphthalene were summarized in Table 4.4. Regarding the O/W emulsifying 

activity, the BioS produced by Paenibacillus sp. D9 in diesel fuel induced medium had an emulsification rate 

ranging from 0.10 to 28.10 UE using diesel fuel and 2-methylnaphthalene as substrate respectively. The best 

emulsifying activity of 29.20 and 28.40 UE were observed at day 12 and day 14 (Table 4.4). Also, in the n-

hexadecane induced medium, the BioS produced emulsification rates ranging from 0.10 to 17.30 UE. With 

respect to water in oil emulsifying activity, the BioS produced by the bacterium Paenibacillus sp. D9 induced 

in diesel fuel had an emulsification index rate of 65.70% as the lipid phase while the same organism produced 

a lower emulsification rate of 58.70% in a medium induced with n-hexadecane.  
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Table 4.4 Esterase activity (EA), water in oil (W/O), oil in water (O/W) emulsifying activities obtained using 

Paenibacillus sp. D9  

Time (days) A600 EAO/W (UE) EAW/O (%) EA 

Diesel fuel induced medium 

0 0.01 ± 0.01 0.10 ± 0.01 0.03 ± 0.05 0.008`± 0.006 

2 0.31 ± 0.23 3.10 ± 0.23 27.78 ± 0.08 0.110 ± 0.005 

4 1.20 ± 0.01 12.00 ± 0.01 40.65 ± 0.12 0.143 ± 0.009 

6 1.74 ± 0.07 17.40 ± 0.07 49.61 ± 0.09 0.174 ± 0.009 

8 2.20 ± 0.02 22.00 ± 0.02 59.55 ± 0.07 0.214 ± 0.023 

10 2.71 ± 0.01 27.10 ± 0.01 60.70 ± 0.10 0.220 ± 0.011 

12 2.92 ± 0.01 29.20 ± 0.01 65.70 ± 0.11 0.202 ± 0.091 

14 2.84 ± 0.02 28.40 ± 0.02 61.24 ± 0.08 0.173 ± 0.007 

n-Hexadecane induced medium 

0 0.01 ± 0.03 0.10 ± 0.03 0.05 ± 0.07 0.112 ± 0.002 

2 0.68 ± 0.01 6.80 ± 0.01 29.42 ± 0.09 0.120 ± 0.008 

4 1.19 ± 0.01 11.90 ± 0.01 39.10 ± 0.1 0.158 ± 0.031 

6 1.12 ± 0.01 11.20 ± 0.01 48.20 ± 0.12 0.150 ± 0.018 

8 1.73 ± 0.05 17.30 ± 0.05 58.70 ± 0.06 0.183 ± 0.003 

10 1.58 ± 0.01 15.80 ± 0.01 54.30 ± 0.13 0.174 ± 0.026 

12 1.28 ± 0.02 12.80 ± 0.02 51.35 ± 0.10 0.169 ± 0.007 

14 1.25 ± 0.01 12.50 ± 0.01 52.65 ± 0.08 0.162 ± 0.009 

EA: Esterase activity, UE: Unit emulsification EAW/O: water in oil emulsifying activity, and EAO/W: oil in 

water emulsifying activity 

Values are of mean ± SD; n = 3.  

4.3.6 Amplification of biosurfactant degradative genes 

Six pairs of primer were used for amplifying genes involved in HC biodegradation and BioS-mediated 

biosynthesis from Paenibacillus sp. D9. The primers sfp-F and sfp-R amplified a 675 bp region of the sfp gene 

(Figure 4.4) encoding 4'-phosphopantetheinyl transferase involved in lipopeptide BioS biosynthesis Also, 
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amplified using primers nrps-F and nrps-R is a 2772 bp of nrps gene which is a large multifunctional non-

ribosomal peptide synthetase. The two genes highlighted are both responsible for BioS production by the 

Paenibacillus sp. D9 strain in medium induced with hydrophobic mixtures. In this study alkB (660 bp), alkM 

(1062 bp), adH (1146 bp), and aldH (1632 bp) genes were also successfully amplified using their respective 

primers and conditions (Figure 4.4).   

         

 

Figure 4.4 Amplification of degradative and biosurfactant biosynthetic genes blank, M: DNA ladder (Thermo 

Fisher Scientific), Lane 1: alkB (660 bp), Lane 2: sfp (675 bp), Lane 3: aldH (1632 bp), Lane 4: alkM (1062 

bp), Lane 5: adh (1146 bp), and Lane 6: nrps (2772 bp) 

4.3.7 Surface tension and surface activity  

The ST was reduced in both induced media (diesel fuel and n-hexadecane). Initially, the ST of the two media 

were 63.4 mN/m and 64.1 mN/m at 0 days, and reduced to 31.6 and 32.6 mN/m, respectively after day 2 of 
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incubation (Table 4.5). High ST activities were continued in both media from day 2 of incubation till the 

termination of the experiment. ST reduction of 32.1mN/m (diesel fuel), and 32.8mN/m (n-hexadecane) was 

maintained at the end of the experiment (day 14). The ST activities were maintained in both media, thus 

showing the significant impact of BioS activity. The STs achieved in this research showed high influence of the 

BioS synthesized as the control sample containing the diesel fuel, and n-hexadecane reduced from 71.4 mN/m to 66.9 

mN/m, and 67.8 mN/m) respectively. Because of ST decrease, the surface activity extended maximally 

prompting quick solubilization of n-hexadecane and diesel fuel. This showed the BioS was produced in 

aqueous medium during the degradation process. 

Table 4.5 Change in surface tension and surface activity with 2% (v/v) diesel fuel and 2% (v/v) n-hexadecane 

incubated with Paenibacillus sp. D9 bacterial strain 

Surface tension (mN/m)   Surface activity (mN/m)  

Day Diesel fuel n-Hexadecane  Day Diesel fuel n-Hexadecane 

Day 0 63.4 ± 0.2 64.1 ± 0.4   Day 0 3.7 ± 0.2 2.5 ± 0.3  

Day 2 28.6 ± 0,3 32.6 ± 0.5   Day 2  34.5 ± 0.3 30 ± 0.1  

Day 4 28.9 ± 0.1 30.0 ± 0.1   Day 4  34.2 ± 0.1 32.6 ± 0.4  

Day 6 32.9 ± 0.2 29.8 ± 0.3   Day 6  30.2 ± 0.2 32.8 ± 0.5  

Day 8 32.2 ± 0.4 30.1 ± 0.1   Day 8  30.9 ± 0.4 32.5 ± 0.2  

Day 10 32.0 ± 0.5 30.3 ± 0.4   Day 10  31.1 ± 0.5 32.3 ± 0.3  

Day 12 31.6 ± 0.3 32.2 ± 0.3   Day 12  31.5 ± 0.3 30.4 ± 0.4  

Day 14 32.1 ± 0.1 32.8 ± 0.2    Day 14  31.0 ± 0.1 29.8 ± 0.1  

Control 63.1 ± 0.3 62.6 ± 0.1   Control 0.0 0.0  

Values are of mean ± SD; n = 3. 

4.3.8 Pseudo-solubilization of n-hexadecane 

The quantity of pseudo-solubilized n-alkane in the water phase was analyzed as shown in Figure 4.5. For the 

ST and surface activity of Paenibacillus sp. D9, concentrations of pseudo-solubilized n-hexadecane in the 

water phase increased as time went on during the 10-day incubation time. The concentration of both n-

hexadecane and BioS decreased markedly at the very beginning indicating the adsorption of n-

hexadecane/BioS to the cells (Figure 4.5). The BioS significantly enhanced the removal of 84.40% pseudo-

solubilized n-hexadecane at the end of the experiment. The increase in growth of Paenibacillus sp. D9 was 

proportional to pseudo-solubilization thus yielding maximum activity. Owing to amphiphilic property; 
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Paenibacillus sp. D9 BioS emulsified n-hexadecane hydrocarbon accordingly, improving the water solvency, 

diminishing surface activity, and intensifying the displacement of the pollutant over the cell layer. Due to the 

water insolubility of the n-hexadecane, the hydrophobic nature of Paenibacillus sp. D9 cell surface played a 

major part in the pseudo-solubilization process. The BioS stimulated the substrate uptake by the bacterial cell. 

The rate of n-hexadecane pseudo-solubilization was sufficiently high (84.40%) and uptake happened 

principally from the pseudo-solubilized substrate. Thus, leading to confirmation that mediated hydrocarbon 

transport was responsible for relatively fast utilization of n-hexadecane by Paenibacillus sp. D9. In relation to 

the control experiment (Figure 4.5), there was no observation of pseudo-solubilization due to no release of the 

bio-molecule to enable the process. 

 

 

 

Figure 4.5 Pseudo-solubilization of (2%) n-hexadecane induced by Paenibacillus sp. D9 biosurfactant. Control 

sample was made up of BH medium with no n-hexadecane. Values are of mean ± SD; n = 3. 

0

10

20

30

40

50

60

70

80

90

100

0 2 4 6 8 10

P
se

u
d

o
-s

o
lu

b
il

iz
a
ti

o
n

 (
×

1
0
0
)

Incubation period (d)

Pseudo-solubilized n-hexadecane Control



130 

 

4.4 Discussion 

The cell surface hydrophobicity (CSH) may be regarded as the most relevant parameter to assay microbes’ 

potential for biodegradation (Das, 2014). Paenibacillus sp. D9 possess high cell adherence to both n-

hexadecane and diesel fuel enabling effective solubilization and production of surface-active compounds, 

termed BioS. There was no significant difference (p < 0.05) in the CSH values of both n-hexadecane and diesel 

fuel over an extended time interval. There was a higher CSH showing better acclimatization of Paenibacillus 

sp. D9 for diesel fuel compared to n-hexadecane which could be due to long chain (C9-C26) HCs present. 

Mishra and Singh (2012) reported a higher CSH 99.86% for Pseudomonas aeruginosa sp. PSA5, 96.4% for 

Ochrobactrum sp. P2, and Rhodococcus sp. NJ2, in minimal salt medium-enriched with n-hexadecane. 

Trichosporon asahii showed high CSH to diesel fuel (Chandran and Das, 2010) and Acinetobacter sp. DRY12 

showed 75% hydrophobicity towards n-hexadecane (Dahalan et al., 2014). Tebyanian et al. (2013) also 

reported low CSH of S. maltophilia Q1, S.maltophilia M2, and T. tyrosinosolvens Q3, (24%, 6%, and 29% 

respectively) in n-hexadecane-containing medium.  

This study revealed effective biodegradation of 80.2% for diesel fuel (2% v/v), and 98.4% for n-hexadecane 

(2% v/v) after 14 days of incubation (Figure 4.1). There was difference in mechanism for hydrocarbon uptake 

and utilization by Paenibacillus sp. D9 as the degradation rate in n-hexadecane was higher than that of diesel 

fuel. This would account for the improved CSH of Paenibacillus sp. D9 throughout the growth phase. Mohanty 

and Mukherji (2008) reported similarities in the mechanism of B. cepacia for C16 and diesel fuel uptake and 

a different uptake mechanism observed for Exiguobacterium aurantiacum. The discoveries propose the ability 

to degrade n-hexadecane is greater than diesel fuel as aromatic HC components of diesel fuel are difficult to 

degrade. Diesel fuel is one of the major environmental and ecological pollutants composed of about 25% 

aromatic HCs (alkylbenzenes and naphthalene) with 75% saturated HCs (primarily paraffin including n-, iso-, 

and cycloparaffins) (Perera, 2015). The components present in the diesel fuel are more recalcitrant than n-

hexadecane which is an aliphatic long-chain HC. The observed increase in the growth values as provided by 

this data was agreeable with the other studies on HC degradation (Nwinyi, 2011; Nwinyi et al., 2014). The 

specific growth rate of Paenibacillus sp. D9 when supplemented with diesel fuel and n-hexadecane was found 

to be 0.29 d and 0.38 d in comparison to Meng et al. (2017) that the specific growth rate of Pseudomonas 

synxantha LSH-7 on 1% n-hexadecane was found to be 0.7 d. However, in both controls, the specific growth 

rate was relatively low and documented to be 0.005 d and 0.01 d. In comparison to other research, the specific 



131 

 

growth rate of the bacterial strains E9, BP10 for the aerobic degradation of hexacosane were 0.56 d and 0.48 d 

respectively (Jauhari et al., 2014). The specific growth rate of diesel fuel- containing medium value in this 

research is higher than other reported values at 0.0154 and 0.0125 (h-1), for alkane-degrading Pseudomonas 

frederiksbergensis and Rhodococcus erythropolis (Abdel Megeed and Mueller, 2009), and lower than 

Burkholderia sp. strain DRY27, Rhodococcus rubber, and Rhodococcus erythropolis grown on diesel fuel with 

maximum growth rates of 0.305, 0.086 and 0.123 h, respectively (Ahmad et al., 2014; Zhukov et al., 2007). 

During the growth of Paenibacillus sp. D9 on n-hexadecane and diesel fuel, pH of the bacterial culture reduced 

from 7.0 to 3.4, and 3.7, respectively, at the end of the experiment. This change in medium pH may have been 

induced by acidic intermediates generated from the solubilization of n-hexadecane and diesel fuel. In aerobic 

metabolic pathways, intermediates such as aldehydes, ketones, and ester, are usually synthesized for the 

duration of biodegradation. These intermediates are further degraded to simple carboxylic acids, acyl COA, 

which are readily utilized for cell exponentiation and energy requirement before entering tricarboxylic acid 

cycle through β-oxidation. There was pH reduction of the medium during hexacosane degradation by different 

bacterial cells and their consortium (Jauhari et al., 2014). In another research, pH of the bacterial culture 

reduced from 6.8 to 4.8 and 4.3 during the growth of B1 and B2 on n-hexadecane (Liu et al., 2012). Likewise, 

there was a drop in medium pH during fluoranthene degradation confirming the production of acidic 

intermediates (Kumari et al., 2012; Mishra et al., 2014). 

In general, the increase in biodegradation was in correlation (diesel fuel; r = 0.98, n-hexadecane; r = 0.96) and 

accompanied by high emulsification, resulting in a greater oil-water interface. Additional evidence specifies 

that the larger the oil-water interface, the quicker the decomposition rate by microorganisms (Liu et al., 2012). 

The ability of this bacterial strain to produce degradative enzymes make them as an effective strain among 

others. This was comparable to a higher alkane hydroxylase activity by Rhodococcus erythropolis EK-1 during 

degradation of n-hexadecane (Pirog et al., 2010). Bacteria possess few genes for alkane hydroxylases and 

alcohol dehydrogenase which can degrade an extensive range of HCs. However, alkane hydroxylases and 

alcohol dehydrogenases play a significant part in HC degradation and the individual genes that encode these 

enzymes were also documented in previous reports (Hassanshahian et al., 2012; Wang et al., 2014). High 

activities of alkane hydroxylase (82 U), alcohol dehydrogenase (23 U), and esterase (0.220 U) were 

differentially prooduced, with enhanced BioS activity, indicating their involvement in HC degradation. As 

observed in this research, there exists a difference in activities, as the alkane hydroxylase activity was higher 

in n-hexadecane-induced medium, while the alcohol dehydrogenase activity was higher in diesel fuel-induced 
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medium. The overproduction of alkane hydroxylase is possibly due to substrate specificity for n-hexadecane 

which is a straight chain aliphatic HC. In contrast, diesel fuel contains a few numbers of aromatic HCs by 

which “OH” end is released during the degradation process, hence, the intensification of alcohol 

dehydrogenase. Alkane hydroxylase enzymes played a vital role in the degradation of crude oil and n-

hexadecane by Bacillus subtilis A1, Pseudomonas aeruginosa PSA5, and Rhodococcus sp. NJ2 (Mishra and 

Singh, 2012; Parthipan et al., 2017). Similarly, peak activities of alkane hydroxylase enzyme were recorded as 

527 nmol/mg protein in BP10 and 63 nmol/mg protein in E9 during degradation of hexacosane (Jauhari et al., 

2014). There was also a higher alkane hydroxylase of 188 µmol/mg during degradation of crude oil by Bacillus 

subtilis A1 (Parthipan et al., 2017).  

Therefore, Alkb (alkane hydroxylase), AlkM (alkane monooxygenase), Adh (alcohol dehydrogenase), and 

AldH (aldehyde dehydrogenase) are multiple proteins for hydroxylases accountable for the oxidation and 

biodegradation of low, medium, and high molecular weight chain alkanes (Lin and Sharma, 2013). Thus, alkB 

genes and the biodegradative genes (alkM and adH) have been used to monitor the bioremediation capabilities 

of petroleum-contaminated environments (Paisse et al., 2011). For the synthesis of BioS, sfp gene is a vital 

member of the srfA operon that codes for a non-ribosomal peptide synthetase complex. As such, sfp gene 

translates the phosphopantetheinyl transferase enzyme, required for the non-ribosomal peptide biosynthesis of 

BioS. In comparison to this research, sfp gene found in Bacillus species was found to be responsible for BioS 

synthesis particularly antibiotic production (Porob et al., 2013). Bunet et al. (2014) on the other hand, reported 

a single sfp-type that play a major role in the biosynthesis of NRPS derived metabolites in Streptomyces 

ambofaciens ATCC23877.  

From this report, the two HC substrates (n-hexadecane and diesel fuel) served as the sole carbon source in the 

production medium, indicating lipopeptide synthesis is derived from either of the carbon source utilized. The 

whole genome sequence of Paenibacillus sp. D9 (JZEJ00000000) explained a proposed pathway for the 

biodegradation of hydrocarbons by sub-terminal oxidation associated with the synthesis of lipopeptide BioS 

(Figure 4.6). The pathway genes identified in the genome included alkane hydroxylase genes (alkB), alkane 

monooxygenase gene (alkM), alcohol dehydrogenase (adH), aldehyde dehydrogenase (aldH), as well as BioS 

synthesis-related genes, such as phosphothaenithyl transferase (sfp), and non-ribosomal peptide synthetase 

(nrps). 



133 

 

 

Figure 4.6 The proposed schematic overview of the hydrocarbon degradation and the lipopeptide biosynthesis 

pathways by Paenibacillus sp. D9 

In this investigation, the production of enzymes and BioS by Paenibacillus sp. D9 strain led to an increase in 

the effectiveness of biodegradation. Thus, 98.4% of n-hexadecane (C16) and 80.2% of diesel fuel (C9 ─ C25) 

were used as a source of carbon and energy by Paenibacillus sp. D9, which is because of alkane hydroxylase 

and alcohol dehydrogenase enzyme synthesis throughout the degradation process. Recently Parthipan et al. 

(2017) confirms that Bacillus subtilis A1 can produce BioS which displays effective uptake of HCs in crude 

oil. Similar to other research, n-hexadecane was biodegraded to 95% by Rhodococcus sp., 99% by 

Pseudomonas aeruginosa PSA5, NJ2 and 92% by Ochrobactrum intermedium P2 during 10 days of incubation 

(Mishra and Singh, 2012). Similarly, strain BP10 and E9 degraded 82% of hexacosane (50 ppm) after 7 days 

of incubation (Jauhari et al., 2014).  

One of the major enzyme groups responsible for BioS production is the esterase. Much of the esterase produced 

by Paenibacillus sp. D9 in both media were extracellular dissimilar to sonicated cells which gave very low 

esterase activity. A similar mechanism in production was reported to Bacillus subtilis SK320 on different 
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substrates produced esterase extracellularly (Sekhon et al., 2011). The translational modification of the 

different gene products involved in BioS synthesis resulted in the multiplication of the esterase enzyme. 

Increase in the multiplication of the esterase was reported in the expression of BioS gene from endosulfan- 

degrading Bacillus sp. produced on olive oil (Khanna et al., 2009).     

BioS properties over chemical surfactant mainly hinge on its capacity to reduce ST, and the formation of a 

steady emulsion (Rufino et al., 2014). From this research, the BioS produced in diesel fuel-induced medium 

showed better emulsifying activity than the n-hexadecane owing to the high CSH, impurities, and constituents. 

The emulsions formed were stable in both diesel fuel and n-hexadecane, respectively, after 24 h, with greater 

emulsifying activity of 65.7% and 58.7% being observed. Therefore, it can be resolved that good water in oil 

emulsifying activities were obtained for Paenibacillus sp. D9 BioS. Stenotrophomonas maltophilia M2, S. 

maltophilia Q2, and Tsukamurella tyrosinosolvensb Q3 degraded hexadecane faster owing to high emulsifying 

activity (Tebyanian et al., 2013). The W/O emulsifying activities achieved in other studies were comparable to 

those obtained in this study. Pinto et al. (2009) on the other hand obtained lower emulsifying activities (UE) 

of 17.9, 20.5, 23.5 and 24.8, using Corynebacterium aquaticum (experiment 1), Corynebacterium aquaticum 

and Bacillus sp. (experiment 2), Corynebacterium sp., Bacillus cereus and Bacillus mycoides (experiment 3) 

and Bacillus subtilis (experiment 4), respectively. Also, emulsification rates of 45 – 55 UE were obtained using 

sunflower oil and different HCs (diesel fuel, kerosene, heptane) as a lipidic oily layer with Pseudomonas 

fluorescens BioS (Abouseoud et al., 2008). Similarly, BioS produced by the fungus Aspergillus sp. while 

utilizing soybean oil in a submerged bio-process had an emulsification rate of 42.7% (Colla et al., 2010). 

Paenibacillus sp. D9 showed ST reduction ability indicating the production of BioS when tested on diesel fuel 

and n-hexadecane. Paenibacillus sp. D9 BioS showed a better ST value than that of another BioS from 

Paenibacillus dendritiformis (34 mN/m) (Bezza and Nkhalambayausi Chirwa, 2015), that of the BioS from 

Paenibacillus sp. 1C (32.6mN/m) (Mesbaiah et al., 2016), lipopeptide BioS from Paenibacillus alvei (35 

mN/m) (Najafi et al., 2011), and BioS from Paenibacillus macerans TKU029 (35.34 mN/m) (Liang et al., 

2014). In contrast, better ST values of 25.8 mN/m were demonstrated by Staphylococcus sp. strain 1E 

(Eddouaouda et al., 2012) and 25.42mN/m by Bacillus licheniformis TKU004 (Chen et al., 2012). 

BioS synthesis is one of the techniques used to improve and complement the solubilization of the hydrophobic 

pollutants (Mishra and Singh, 2012). The degradability of hydrophobic organic compounds can be improved 

through pseudo-solubilization to enhance bioavailability of the HC (Hmidet et al., 2017). The release of BioS 

enhanced pseudo-solubilization of n-hexadecane signifying high surface-biomolecule activity. The outcome 
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conveyed here was different from other bacteria and surfactant systems (Zhong et al., 2014). Previous research 

also proposed the enhancement in the solubilization of 10% diesel fuel by BioS produced by Paenibacillus sp. 

D9 which followed a similar mechanism with the one stated in this research (Jimoh and Lin, 2019a). The 

present study confirms that Paenibacillus sp. D9 can produce BioS of lipopeptide nature and synthesize 

degradative enzymes which exhibit efficient uptake of HCs in diesel fuel and n-hexadecane. 

4.5 Conclusion 

Paenibacillus sp. D9 synthesizes BioS and degradative enzymes in the presence of diesel fuel and n-

hexadecane. These enzymes which were produced along with enhanced n-hexadecane and diesel fuel 

biodegradation. Biodegradation efficiency of 98.4% and 80.2% associated with the high synthesis of BioS, 

alkane hydroxylase, alcohol dehydrogenase, aldehyde dehydrogenase, and esterase enzymes, and BioS. Hence, 

Paenibacillus sp. D9 was more vigorous in degradation, solubilization, and mineralization of hydrophobic 

pollutants, and could be used to successfully decontaminate aliphatic HC compounds or diesel fuel spill at 

environmental polluted sites. 
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Abstract  

Interests in biosurfactant in industrial and environmental applications have increased considerably in recent 

years, owing to their potential benefits over synthetic counterparts. The present study aimed at analyzing the 

stability, and oil removal efficiency of a new lipopeptide biosurfactant produced by Paenibacillus sp. D9 and 

the feasibility of its use in biotechnological applications. Paenibacillus sp. D9 was evaluated for optimal 

growth conditions and improved production yield of lipopeptide biosurfactant with variations in different 

substrate parameters such as carbon (C), nitrogen (N), C: N: ratio, metal supplements, pH, and temperature. 

Enhanced biosurfactant production was observed when using diesel fuel and ammonium sulfate as a carbon 

and nitrogen source, respectively. The maximum biosurfactant yield of 4.11 g/L by Paenibacillus sp. D9 

occurred at a C/N ratio of 3:1, at pH 7.0, 30°C, 4.0 mM MgSO4 and 1.5% inoculum size. The Paenibacillus 

sp. D9 biosurfactant was found to retain surface-active properties under extreme conditions such as high 

thermal, acidic, alkaline, and salt concentration. The ability to emulsify further emphasizes its potential usage 

in biotechnological application. Additionally, the lipopeptide biosurfactant exhibited good performance in the 

degradation of highly toxic substances when compared with a chemical surfactant, which proposes its probable 

application in biodegradation, microbial-enhanced oil recovery or bioremediation. Furthermore, the 

biosurfactants were effective in a test to stimulate the solubilization of hydrophobic pollutants in both liquid 

environments removing 49.1% to 65.1% diesel fuel including hydrophobic pollutants. The study highlights the 

usefulness of optimization of culture parameters and their effects on biosurfactant production, high stability, 

improved desorption and solubilization of hydrophobic pollutants. 
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5.1 Introduction 

Developments in science and technology in relation to green environment, such as biotechnological processes, 

production of peptides, bioflavours, enzymes, biosurfactants (BioSs) and the like are, of increasing importance 

worldwide (Burgos-Diaz et al., 2013). Attention to BioSs has been generated because of their probable 

applications in environmental protection, food, industrial products and processes, as well as in biomedical field 

(Burgos-Diaz et al., 2013; Ghribi and Ellouze-Chaabouni, 2011; Rufino et al., 2014). For oil spill clean-up and 

enhanced oil recovery from oil reservoirs and the environment, chemically synthesized surfactants such as 

Triton X-100, sodium dodecyl sulfate (SDS) and others, have been used, however these compounds can be 

toxic to the environment and non-biodegradable (Goel, 2014; Silva et al., 2014). Several BioSs manufacturers 

have made their way into the industrial market seeking to replace some or all chemical surfactants (Marchant 

and Banat, 2012; Sekhon et al., 2012). Consequently, the global market for BioS has been rising and it is 

expected to increase from US$ 1.7 billion in 2011 to US$ 2.2 billion by 2018 (Sekhon et al., 2012). 

BioSs are amphiphilic group of biologically surface-active molecules produced by specific group of 

microorganisms such as fungi, bacteria, and yeasts (Chakraborty et al., 2015). The chemical structures of BioSs 

include both a hydrophilic moiety, consisting of an amino acid or peptide, anions, or cations, mono-, di-, or 

poly saccharides, or a hydrophobic moiety of unsaturated, saturated, or hydrocarbon fatty acids (Zhang et al., 

2016). BioSs occurs in nature as chemical entities such as fatty acids, neutral lipids, phospholipids, glycolipids 

(rhamnolipids, mannosylerythritol  sophorolipids, cellobiose lipids, trehalolipids, and xylolipids), lipopeptides 

and lipoproteins (serrawettin, surfactin, peptide, viscosin, fengycin, subtilisin, and polymyxin), polymeric 

surfactants (liposan, carbohydrate–lipid–protein, emulsan, biodispersan), and particulate surfactants (Anjum et 

al., 2016). 

Despite their advantages, BioSs are not yet competitive with their synthetic counterparts (Burgos-Diaz et al., 

2013). The main limitation is the availability of the BioSs in bulk as compared to the chemical surfactants (Al-

Wahaibi et al., 2014). Therefore, 70 – 75% of all commercial surfactants are synthesized from the 

petrochemical industry (Campos et al., 2014). The practical application of BioSs depends on the inherent 

economical production at large-scale (Gudina et al., 2015). To achieve sufficiently great production at reduced 

costs of such biologically surface-active compound, monitoring the key fermentation parameters (such as 

biomass, substrate, aeration, pH, and temperature) is necessary. Industrial products have generated substantial 
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attention from researchers as low-cost substrates for this purpose, as it generally accounts for up to 50% of the 

final production cost (Das et al., 2009; Rufino et al., 2014). 

The production medium optimization, improvement of recovery methods, and the development of BioS-

producing microbes, can lead the way to large scale economical and efficient production process (Mukherjee 

et al., 2006). The growth and environmental factors such as pH, growth medium composition, inoculum size, 

speed, temperature, and oxygen availability also affect BioS production through their effects on cellular 

activity. Besides, it has been reported that the addition of various metal and sulfur supplements (such as copper, 

iron, magnesium, and manganese) to the culture broth medium contribute to increased production, since those 

elements are enzyme co-factors involved in the synthesis of lipopeptide BioS (Gudina et al., 2015). The 

established technique for medium optimization includes changing one variable at a time (OVAT) and keeping 

other factors as fixed levels. Thus, it is difficult to determine the major factors and to optimize them for 

biotechnological processes as several parameters have multiple effects on different categories of 

microorganism.  

Hence, the utmost important aspect of this study, as enhancement of lipopeptide BioS produced from genus 

Paenibacillus, requires further exploration for greater production yield thus enabling usage of this surfactant 

in environmental application. In the present study, BioS production by Paenibacillus sp. D9 strain was 

optimized by monitoring the different physicochemical parameters for the greatest lipopeptide production 

yield. The stability and application of Paenibacillus sp. D9 lipopeptide against a chemical surfactant to enhance 

and solubilize toxic diesel fuel and hydrophobic pollutants biodegradation was also reported. 

5.2 Materials and methods 

5.2.1 Chemicals and reagents 

All chemicals, reagents and hydrocarbons were of analytical grade. The purity of all hydrocarbons used in this 

study was a minimum of 99% as evaluated by instrumental analysis. All chemicals, reagents were purchased 

from Sigma-Aldrich USA.  

5.2.2 Strain and growth 

The BioS-producing strain Paenibacillus sp. D9 was isolated and identified in a previous study (Ganesh and 

Lin, 2009). The culture of this microorganism was stored at -80oC in Luria-Bertani (LB) medium (g/L: NaCl 
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10.0; tryptone 10.0; yeast extract 5.0) supplemented with 40% (v/v) of glycerol. When required, frozen stocks 

were streaked on nutrient agar plates (Merck) and incubated at 30oC for 24 h. The nutrient agar plates were 

stored at 4oC for less than 3 weeks. The strain used in the study was grown at 30oC in LB medium for 24 h. 

The cells were recovered by centrifugation at 13,500 × g. The cell pellets were washed twice in phosphate 

buffered saline and resuspended in Bushnell Haas (BH) medium [MgSO4, 0.2; CaCl2, 0.02; KH2PO4, 1.0; 

K2HPO4, 1.0; NH4NO3, 1.0; FeCl3, 0.05; pH 7.0 (g/L)] until OD600 was equivalent to 1.0 (Bushnell and Haas, 

1941).  

5.2.3 Optimization of cultivation medium 

5.2.3.1 Effect of carbon on biosurfactant production 

Carbon substrate plays a significant role in the production of BioS. Ten carbon sources were selected for 

optimization production purposes (Table 5.1). Paenibacillus sp. D9 (OD600 = 1.0) was inoculated and incubated 

in 100 mL BH medium containing 2% of each carbon source at 30oC,150 rpm for 7 days. Samples were 

collected daily for the determination of biosurfactant production (BP), bacterial cell growth (OD600), dry cell 

weight (DCW), and surface tension (ST) (Abouseoud et al., 2008; Lotfabad et al., 2009). At optimum 

conditions, the time course kinetic profile of growth and BioS of Paenibacillus sp. D9 was followed in a 

modified BH medium. The production medium was allowed for clear separation of hydrophobic layer 

containing the substrates and hydrophilic layer containing the bacterial cells. Bacterial cell growth was 

subsequently monitored by measuring the growth density (OD600) for the time course experiment. The 

spectrophotometer was blanked with the medium containing the diesel fuel during the measurement of OD600 

value.  
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Table 5.1 Carbon and nitrogen sources examined for their influence on biosurfactant production by 

Paenibacillus sp. D9 

A. Carbon Sources B. Nitrogen Sources 

n-paraffin Ammonium sulfate 

n-dodecane Sodium nitrate 

n-hexadecane Yeast extract 

Sunflower oil Peptone 

Canola oil Urea 

Sucrose Potassium nitrate 

Glycerol Beef extract 

Diesel fuel  

n-tetradecane  

Engine oil  

 

5.2.3.2 Effect of nitrogen on biosurfactant production 

Nitrogen is essential for microbial growth, seven nitrogen (2% N equivalent w/v) sources were selected for the 

optimization study (Table 5.1) in BH medium containing 2% of diesel fuel as a carbon source as the conditions 

stated above. BH medium containing ammonium nitrate was utilized as a control. The ammonium nitrate in 

the subsequent BH medium compositions was substituted with the different nitrogen sources listed above. The 

different nitrogen substrates were standardized to ensure uniform amount of N was added. At the end of the 

experiment, DCW, BioS yield, and ST were determined. 

5.2.3.3 Effect of the carbon and nitrogen ratio on biosurfactant production 

Both optimized carbon and nitrogen sources were added separately in the BH at different carbon: nitrogen 

ratios from 0.14 to 7.0. The experiment was performed as described above. At the end of the experiment, DCW, 

BioS yield, and ST were determined. 

5.2.3.4 Effect of sulfur sources and metal medium supplementation on biosurfactant production 

Once the carbon and nitrogen concentration that led to the greatest BioS production by Paenibacillus sp. D9 

was selected, the effect of different metals and sulfur sources (FeSO4, MnSO4, MgSO4) on Paenibacillus sp. 
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D9 BioS production were evaluated. The concentrations of compounds used were selected according to 

previous studies (Gudina et al., 2015; Sousa et al., 2012; Yeh et al., 2005). Control assays were performed 

using the culture medium without the addition of metal and sulfur supplements. The cultures were performed 

as described above, and at the end of the experiment, DCW, BioS yield, and ST were determined.  

5.2.3.5 Effect of pH and temperature on biosurfactant production 

To optimize the temperature and pH on BioS production, a range of pH (4 - 10) was selected with the optimal 

medium compositions obtained above. Once the pH was optimal, varying temperature conditions (25 ─ 60oC) 

were set for the optimization study. The experiments were accomplished at the same conditions and evaluated 

as described above. 

5.2.3.6 Effect of inoculum size on biosurfactant production 

To determine the effect of inoculum size on BioS production, a range of initial bacterial densities (OD600 0.5, 

1.0, 1.5, 2.0, 2.5, 3.0 and 3.5, respectively) was inoculated into 100 mL of BH optimized medium. At the end 

of the experiment, DCW, BioS yield, and ST were determined. 

5.2.4 Biosurfactant properties  

5.2.4.1 Determination of dry cell weight  

Bacterial cells were removed from BioS-containing medium using a refrigerated centrifuge (Avanti J-26 XPI, 

Beckman Coulter, USA) at the end of each optimization studies. Bacterial dry cell weight was obtained as 

described by Darvishi et al. (2011). DCW was determined by centrifugation of 20 mL of culture broth for 20 

min at 13,500 × g. The cell pellets were washed twice with distilled water and dried by heating at 105oC until 

constant weight was achieved. 

5.2.4.2 Biosurfactant purification and characterization 

Cell-free supernatant collected from the optimization study was used for quantifying BioS for ST and 

emulsifying activities which are described below. The residual oil remaining was extracted with an appropriate 

volume of n-hexane (Obayori et al., 2009). Crude BioS was obtained as described in Gudina et al. (2015). In 

brief, the centrifuged supernatant was acidified to pH 2.0 using 6 N HCl. The solution, which contained BioS, 

was precipitated at 4oC overnight. The precipitated BioS was further collected by centrifugation at 13,500 × g 

for 20 min. Succeeding centrifugation, the precipitated BioS was dissolved in distilled water and adjusted to 
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pH 7.0 using 1 N NaOH. The solution was lyophilized, weighed and stored at –20oC until further usage. For 

the purification of the crude BioS, the samples were partially purified primarily according to the measures 

defined above. The sample was then liquefied in methanol, mixed with silica gel (230 – 400 mesh) and 

subsequently oven-dried at 50°C. The silica gel was further mixed with methanol and then loaded onto a 

chromatography column (50 cm × 2.8 cm). A mixture of ethyl acetate/chloroform in different proportions 

(100% to 0% with 10% interval), was used in the sequential washing of the loaded column at a flow rate of 0.5 

mL/min. A UV spectrophotometer with a range of 200 – 800 nm was used to monitor the absorption wavelength 

of the mixtures to confirm surface activity. The eluents (20 mL) were collected and the fractions showing oil-

displacement activity were thoroughly mixed, followed by evaporation at 80oC to acquire purified sample. The 

purified BioS was confirmed subsequently for surface activity and properties before its further usage. 

5.2.4.3 Surface tension 

Surface tension was achieved in 40 mL cell-free supernatant obtained by centrifuging the cultures at 13,500 × 

g for 20 min. ST was determined with a KRÜSS K6 Tensiometer (KRÜSS GmbH, Germany) using 1.9 cm De 

Noüy platinum ring at room temperature. For calibration, the ST of distilled water was first measured. The ST 

of BH medium supplemented with different carbon substrates were used as controls. All readings were 

produced in triplicate and an average ST value was used. 

5.2.4.4 Emulsifying activity determination 

The emulsification index (E24) was determined according to Burgos-Diaz et al. (2011). Emulsifying activity 

was determined through the addition of cell-free supernatants (2 mL) to the same volume of n-hexadecane in 

test tubes. The tube contents were mixed with a vortex mixer (V-220, Germany) at high speed for 2 – 5 min 

and then left incubated at 25oC for 24 h. The E24 was calculated as the percentage of the emulsified layer (mm) 

divided by the total height of the liquid column (mm).  

5.2.5 Biosurfactant stability studies 

Stability was determined at a range of temperatures (50 – 121oC), pH (2 – 11) and different salinities (0 – 20% 

w/v) for a period of 30 min and then cooled to room temperature. All control tests were conducted at pH 7.0, 

0% salt concentration, and room temperature. For stability studies, cell-free samples were filled in 50 mL serum 

bottles, sealed with butyl rubber stoppers to avoid any loss from evaporation, and subsequently incubated at 

the respective temperatures, pH and salinity. The BioS broth was subjected to autoclave conditions (121oC, 15 
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psi for 30 min) to examine the influence of such environment on the surface activity. The samples were also 

adjusted to analyze different pH stability conditions as highlighted above using 1 N HCl or 1 N NaOH. To 

determine salt stability effect, different concentrations of NaCl were added to cell-free broth, liquefied 

completely and incubated at room temperature. The BioS stability under various treatments was determined by 

measuring the ST and E24 at room temperature as described above.  

5.2.6 Application in improved biodegradation test 

The degradation experiments were performed in an Erlenmeyer flask containing 100 mL of BH medium. The 

experimental samples were incubated at 30°C and shaken at 150 rpm for 7 days. A mixture of aliphatic 

hydrocarbon (n-dodecane and n-hexadecane, 2:2 v/v) and (10% diesel fuel) were used for the biodegradation 

test at different experiment sets and conditions. The total hydrocarbon concentration in the experiment was 

10% (v/v). SDS as a chemical surfactant was used to compare its effect on hydrocarbon degradation by 

Paenibacillus sp. D9 with that of lipopeptide BioS. The hydrocarbon biodegradation was determined using the 

standard method for gravimetric determination of hydrocarbon as proposed by Ganesh and Lin (2009).  

The rate of biodegradation (%) was calculated as (Y0 – Y1)/Y0 × 100, where Y0 is the initial amount of 

hydrocarbon, and Y1 is the amount of hydrocarbon after biodegradation. The residual aqueous phase was 

subjected to the double extractions with dichloromethane. The results were determined with the respect to 

blank control samples (hydrocarbon with medium, without microorganisms).  

5.2.7 Statistical analysis 

All the experimental data were expressed an arithmetic mean plus/minus standard deviation of at least three 

independent replicates.  Significance was ascribed using ANOVA at the 95% confidence level. 

5.3 Results and discussion 

5.3.1 Effect of carbon on biosurfactant production 

Paenibacillus sp. D9 was identified and characterized in a previous study as a promising lipopeptide BioS 

producer (Ganesh and Lin, 2009). The medium optimization was consequently carried-out in a series of 

experiments of changing one variable at a time (OVAT), with other parameters at fixed set of conditions. The 

optimal conditions for BioS production were determined using two factors namely ST reduction and increase 
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in production yield. To optimize physicochemical conditions, ten carbon sources were selected for BioS 

production (Figure 5.1). 

 

Figure 5.1 Effect of carbon sources on cell growth, biosurfactant production, and the surface tension values of 

Paenibacillus sp. D9 supernatant grown with different carbon sources in a BH medium. Surface tension values 

were determined at room temperature (25oC), with the cell growth calculated as dry weight (105oC, 48 h). 

Biosurfactant yield obtained by weighing freeze-dried products. All data points are means ± S.D. (standard 

deviation) of three independent experiments conducted in triplicate. BioS (Biosurfactant) yield, DCW (Dry 

cell weight), ST (Surface tension). 

Paenibacillus sp. D9 was able to produce BioS utilizing each of the carbon nutrients sources tested. Paraffin 

and sucrose were less effective carbon sources for Paenibacillus sp. D9 and the use of diesel fuel as carbon 

source to produce BioSs obtained the greatest yield and was highly active in reducing ST (Figure 5.1; 1.15 g/L; 

p < 0.05) followed by n-hexadecane and n-tetradecane. Zhang et al. (2016) reported a similar finding with 

Bacillus atrophaeus 5-2a, which was able to produce BioSs utilizing the some of the carbon sources tested in 

the present study, except paraffin. The greatest DCW were obtained using sunflower oil and diesel fuel as the 
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carbon source (0.49 and 0.39 g/L), respectively. Sunflower oil, which is a low-cost substrate, produced the 

greatest DCW, but cell growth was not accompanied by either maximum BioS production or greater surface 

ST reduction. The least ST of the culture supernatant was obtained with longer hydrocarbon chain and 

hydrocarbon mixtures as the sole carbon source [diesel, 29.4; n-hexadecane, 28.6; n-dodecane, 29.5; n-

tetradecane, 29.7 (mN/m)]. The results obtained are in good agreement with previous reports, highlighting the 

use of hydrophobic compounds such as, diesel fuel, n-hexadecane, crude oil, engine oil, and kerosene as 

effective substrates for microbial growth and BioS production (Bharali and Konwar, 2011; Ghribi and Ellouze-

Chaabouni, 2011; Khopade et al., 2012; Kiran et al., 2010; Obayori et al., 2009; Pereira et al., 2013; Wang et 

al., 2014). The outcomes showed significance in relative to control samples with no notable production of BioS yield 

revealed. This however, ruled out any possibilities of the substrates utilized in this experiment co-precipitating with 

the isolated BioS. The use of n-paraffin as the only carbon source complemented a BioS-like production, but 

with a limited ST reduction as reported by Pereira et al. (2013). The greater crude BioS yield (1.1 g/L) and a 

greater ST reduction (29.4 mN/m) when diesel fuel was used as the carbon source confirmed its selection for 

further experimental study below. 

5.3.2 Time course profile on biosurfactant production 

Growth kinetics and production of BioSs by Paenibacillus sp. D9 strain were determined using the new 

optimized parameters (BH medium with 2% diesel fuel at 30oC, 150 rpm, and pH 7.0) (Figure 5.2). The 

production of BioS started as early as 24 h, but there was sharp increase in production observed at about 72 –

96 h. However, BioS production continued up to 120 h (day 5) and after that it declined. A reduction in ST of 

32.4 mN/m was observed at the third day of incubation indicative of the survival, acclimatization, and 

adaptational contact time between the hydrocarbon substrate and the bacterium (Obayori et al., 2009). Although 

BioS production began as early as 24 h in the medium as seen from the ST reduction of 39.4 mN/m, a significant 

activity of BioS was achieved only after about 48 – 96 h of production which continued to 120 h. The greatest 

BioS yield of 1.48 g/L was achieved after 120 h of incubation using diesel fuel as the carbon source. The 

increase of the ST and the reduction in BioS yield after 120 h of culture (Figure 5.2) characterize the termination 

of BioS biosynthesis. This most likely results from the production of intermediate secondary metabolites, and 

adsorption of BioS molecules at the water-oil interface which could impede BioS formation. The present study 

revealed a similar trend for BioS production by Paenibacillus sp. D9 as that for a marine bacterium 

Nocardiopsis sp. B4 which began in early log phase with a drastic increase at late growth and early stationary 
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phase (Khopade et al., 2012). Ghojavand et al. (2008) reported the maximum production of BioS by B. subtilis 

(PTCC 1696) during the growth phase which remained constant even after the exponential phase.  

 

Figure 5.2 Time-course profile of bacterial growth, biosurfactant production by Paenibacillus sp. D9, and the 

surface tension values of its supernatant grown in a BH medium supplemented with 2% diesel fuel. Samples 

were retrieved every 24 h and growth was monitored by spectrophotometric measurement of culture turbidity 

at 600 nm (OD600). Surface tension values were determined at room temperature (25oC), with the cell growth 

calculated as dry weight (105oC, 48 h). Biosurfactant yield obtained by weighing freeze-dried products.  All 

data points are means ± S.D. (standard deviation) of three independent experiments conducted in triplicate. 

BioS (Biosurfactant) yield, DCW (Dry cell weight), ST (Surface tension). 

These results showed that the BioS production from diesel fuel ensued predominantly during the exponential 

growth phase owing to optical density and dry cell weight data, suggesting primarily produced BioS 

biomolecule, associated with cellular biomass (growth-associated kinetics). Therefore, the BioS was recovered 

at day 5 for the subsequent studies. Joshi and Desai (2013) also reported the BioS production by five bacterial 

strains for up to 72 h with ST values in the range of 28 – 30 mN/m. 
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5.3.3 Effect of nitrogen sources on Paenibacillus sp. D9 biosurfactant production 

Complex nitrogenous sources as macro nutrient is essential for growth, formation of cell components, and 

production of surface-active molecules by a variety of microorganisms (Chakraborty et al., 2015). Observation 

of these biological functions allows the introduction of different nitrogen sources which tends to affect the 

quantity of BioS produced (Figure 5.3). Organic nitrogen sources including yeast extract and beef extract had 

similar effects on the BioS production. Among the organic nitrogen sources, peptone showed the greatest effect 

on BioS production. The greatest cell weight (0.5 g/L) was achieved using yeast extract as the nitrogen source 

followed by ammonium sulfate. Paenibacillus sp. D9 was able to use the seven nitrogen sources including 

ammonium nitrate for both bacterial growth and BioS production with (yield ranging from 0.73 – 3.32 g/L) as 

well as ST reduction of 31.9 to 48.9 mN/m. In the present study, ammonium sulfate as the nitrogen source to 

produce BioS, gave a maximum yield of (3.32 g/L) and ST reduction of 32.7 mN/m (Figure 5.3). Influence of 

ammonium sulfate as a nitrogen source was noticeable and significant with the BioS yield increase of 1.48 g/L 

to 3.32 g/L.  

Thus, there was a major effect of nitrogen source on BioS production. Conversely, Bharali and Konwar, (2011) 

reported urea along with (NH4)2SO4 as the best nitrogen sources for BioS production by Pseudomonas 

aeruginosa strain OBP1. Sousa et al. (2012) established that a low BioS yield (0.44 g/L) was produced by B. 

subtilis LAMI005 utilizing a medium containing glycerol and (NH4)2SO4. In a previous study, some Bacillus 

strains could not use (NH4)2SO4 or KNO3 for growth or BioS production, but they could use NaNO3, NH4NO3 

(Zhang et al., 2016). That Paenibacillus sp. D9 could grow and produce BioS utilizing all the nitrogen sources 

tested indicates its competitiveness for environmental and industrial applications. Inorganic compounds 

previously reported to increase and improve BioS production include sodium nitrate (Abbasi et al., 2012; 

Onwosi and Odibo, 2012) ammonium nitrate (Abouseoud et al., 2008), and ammonium sulfate (Bharali and 

Konwar, 2011; Mata-Sandoval et al., 2001).  
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Figure 5.3 Effect of nitrogen source on cell growth and biosurfactant production of Paenibacillus sp. D9 and 

the surface tension value of its supernatant grown in a BH medium supplemented with 2% diesel fuel as the 

sole carbon source and energy. Surface tension values were determined at room temperature (25oC), with the 

cell growth calculated as dry weight (105oC, 48 h). Biosurfactant yield obtained by weighing freeze-dried 

products. All data points are means ± S.D. (standard deviation) of three independent experiments conducted in 

triplicate. BioS (Biosurfactant) yield, DCW (Dry cell weight), ST (Surface tension). 

5.3.4 C/N ratio 

C/N ratio is another critical factor required for the improvement of BioS productivity (Onwosi and Odibo, 

2012). The best results (ST = 32.7 mN/m, BioS yield = 3.24 g/L, DCW = 0.39 g/L) as obtained above, were 

attained using diesel fuel (2% v/v) and ammonium sulfate (2% m/v) as carbon and nitrogen source, 

respectively. The effects of various C/N ratios (0.14 – 7) on cell growth and BioS production were observed 

(Figure 5.4). The medium system with the lesser amount of ammonium sulfate (greater C/N ratio) produced a 
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greater BioS yield as compared to the medium with increasing amount of this nitrogen source (lesser C/N 

ratio).  

 

Figure 5.4 Effect of C/N ratio on cell growth and biosurfactant production of Paenibacillus sp. D9 and the 

surface tension value of its supernatant. Surface tension values were determined at room temperature (25oC), 

with the cell growth calculated as dry weight (105oC, 48 h). Biosurfactant yield obtained by weighing freeze-

dried products. All data points are means ± S.D. (standard deviation) of three independent experiments 

conducted in triplicate. BioS (Biosurfactant) yield, DCW (Dry cell weight), ST (Surface tension). 

The presence of diesel fuel: (NH4)2SO4, ratio of 3:1 resulted in the greatest Paenibacillus sp. D9 BioS 

production (3.79 g/L), ST reduction (32.0 mN/m) and greatest dry cell weight (0.35 g/L). This revealed that, 

greater C/N ratios (i.e., reduced levels of nitrogen) limit bacterial growth, and favours cellular metabolism 

toward production of metabolites. The results were supported by a previous report that increased BioS 

production occurs under the limitation of nitrogen rather than carbon source (Saimmai et al., 2013). On the 

other hand, excess of nitrogen directs substrate to the production of cellular material, thus restraining relatively 

the build-up of surface-active products (Kokare et al., 2007). A C/N ratio of 0.5 was required for the maximum 

production of BioS by Nocardiopsis lucentensis MSA04 in solid-state cultivation (Kiran et al., 2010). 
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5.3.5 Sulfur and metal supplementation 

Iron, manganese, copper and magnesium are enzymes co-factors involved in the synthesis of lipopeptide BioS 

(Gudina et al., 2015).  The medium containing 3% (v/v) diesel fuel and 1% (m/v) ammonium sulfate as 

identified by C/N ratio was the best medium for BioS production by Paenibacillus sp. D9. This optimal 

condition was supplemented further with FeSO4, MnSO4, or MgSO4 individually at different concentrations to 

study their effects on BioS production (Table 5.2). The results obtained from metal supplementation tests 

specified that the presence of metal influenced the maximum BioS produced by Paenibacillus sp. D9. 

Supplementing MgSO4 produced the greatest production yield of 3.76 g/L and the greatest DCW (0.35 

g/L). Addition of manganese as a metal supplement produced the greatest ST reduction of 30.3 mN/m and a 

yield of 3.12 g/L showing a positive interaction on BioS production as compared to the introduction of iron 

and copper. The amount of BioS produced by the inclusion of iron to the production medium was significantly 

inhibited, with the greatest ST reduction (39.5mN/m), the least cell growth (0.19 g/L), and the least BioS yield 

(0.74 g/L). The concentration of different metal elements plays a significant role in the BioS production 

(Gudina et al., 2015; Wei et al., 2007). There was increased BioS yield for all the metals tested up to 4.1, 4.4, 

and 3.5 g/L for iron, manganese, and magnesium, respectively from another report (Gudina et al., 2015). 

 

Table 5.2 The effect of iron, manganese, magnesium, and copper on cell growth, biosurfactant production by 

Paenibacillus sp. D9 and surface tension values of its supernatant. 

Metal Supplementation DCW (g/L) BioS Yield (g/L) ST(mN/m) 

Control 0.34 ± 0.03 3.60 ± 0.02 33.9 ± 1.2 

FeSO4 (2.0 mM) 0.19 ± 0.01 0.74 ± 0.03 39.5 ± 0.9 

MnSO4 (0.2 mM) 0.26 ± 0.02 3.12 ± 0.05 30.3 ± 0.4 

MgSO4 (4.0 mM) 0.35 ± 0.01 3.76 ± 0.07 33.5 ± 0.4 

CuSO4 (2.0 mM) 0.19 ± 0.01 1.76 ± 0.05 36.5 ± 0.2 

Control: Medium without supplements, DCW: Dry cell weight, BioS: Biosurfactant yield, ST: Surface tension. 

The results presented correspond to the optimum production for each medium. Surface tension values were 

determined at room temperature (25oC), with the cell growth calculated as dry weight (105oC, 48 h). 

Biosurfactant yield obtained by weighing freeze-dried products. All data points are means ± S.D. (standard 
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deviation) of three different experiments performed on different days (each experiment was conducted in 

triplicate). 

5.3.6 pH, temperature, and inoculum size 

Numerous physiochemical factors, for example, pH, temperature, growth conditions, and aeration have been 

shown to impact microbial development and metabolism (Khopade et al., 2012). The vital attributes of most 

microorganisms is their dependence on the optimal pH for cell growth and production of secondary 

biomolecules (Najafi et al., 2011). Paenibacillus sp. D9 utilized and produced BioS over a wide pH range from 

5.5 to 10.0 under the experimental conditions (Figure 5.5a). The pH 7.0 was found to be optimal for 

Paenibacillus sp. D9 BioS production as compared with media at different pH values. The BioS production 

yield of 3.83 g/L together with the greatest ST reduction at 30.2 mN/m were obtained at pH 7.0. The production 

drastically declined under more alkaline (pH > 8.0) and more acidic (pH < 6.0) conditions. The pH results in 

the present study corresponds with previous report. Paenibacillus alvei was able to produce BioS in a pH range 

of 6-8 with maximum yield obtained at pH 6.89 (Najafi et al., 2011). Other studies have reported that the 

maximum yield of the BioS was achieved at pH 7 (Abouseoud et al., 2008; Chakraborty et al., 2015; Kiran et 

al., 2009). In another report, BioS production by Nocardiopsis lucentensis MSA04 was consistent at pH 7.0 

and drastically declined at more acidic pH when compared to the alkaline pH 9.0 (Kiran et al., 2010).  

Temperature is another critical factor that is considerably controlled in biological process (Yang, 2011). 

Paenibacillus sp. D9 grown in BH medium at pH 7.0 produced optimum BioS yield and the least ST at 30.9 

mN/m when incubated at temperature 30°C, significantly different (p < 0.05) from cultures grown at 37°C and 

greater (Figure 5.5b). While the incubation temperature reached 50°C, BioS production and growth was totally 

inhibited. The optimal temperature at 30°C was anticipated since the isolated bacterium is a mesophilic 

organism (Ganesh et al., 2014). Paenibacillus alvei BioS production was optimal  at 34.76oC with a ST of 35 

mN/m (Najafi et al., 2011). 

Inoculum size is another critical factor responsible with significant effect on BioS production (Waqas et al., 

2013). It was evident that at inoculum size OD600 of 1.5 mL, 3.99 g/L of Paenibacillus sp. D9 BioS with ST of 

32.4 mN/m was obtained after 5 days (Figure 5.5c). A lesser surfactant yield of 2.74 g/L BioS production was 

observed with 1 mL OD600 inoculum size (Waqas et al., 2013). Increase in inoculum provided no further 

increase in the D9 BS lipopeptide production and activity. Roy (2017) on the other hand reported an enhanced 

and significant effect on BioS production at 2 mL inoculum size.        
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In brief, BioS production by Paenibacillus D9 increased to 4.11 g/L under these optimized conditions from 

1.15 g/L in BH medium containing 3.0% (v/v) diesel fuel and 1.0% (v/v) ammonium sulfate, 4.0 mM MgSO4, 

pH 7.0, temperature 30oC and 1.5 mL inoculum size. The result showed that the new optimized conditions 

favored increased BioS production which was shown to be a growth-associated metabolite. BioSs are valuable 

products and determining the optimal conditions for improved yield is highly significant from an economic 

standpoint. 
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Figure 5.5 Effect of (a) pH and (b) temperature (c) inoculum size (OD 600nm) on cell growth and biosurfactant 

production of Paenibacillus sp. D9 and the surface tension value of its supernatant. Surface tension values 

were determined at room temperature (25oC), with the cell growth calculated as dry weight (105oC, 48 h). 

Biosurfactant yield obtained by weighing freeze-dried products. All data points are means ± S.D. (standard 

deviation) of three independent experiments conducted in triplicate. BioS (Biosurfactant) yield, DCW (Dry 

cell weight), ST (Surface tension). 

0

10

20

30

40

50

60

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

25 30 37 42 50 60

S
T

(m
N

/m
)

B
io

S
 Y

ie
ld

, 
D

C
W

(g
/L

)

Temperature (oC)

BioS YIELD DCW ST

29

30

31

32

33

34

35

36

37

38

39

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

0,5 1 1,5 2 2,5 3 3,5

S
T

(m
N

/m
}

B
io

S
 Y

ie
ld

, 
D

C
W

(g
/L

)

Inoculum size

BioS YIELD DCW ST
(c)

(b) 



161 

 

5.3.7 Biosurfactant stability studies 

For its potential usage in environmental application, the biological agents must be stable with a wide range of 

pH, greater temperatures (≥ 50oC), and salinities (up to 20%) (Al-Wahaibi et al., 2014). Thus, the BioS 

produced by Paenibacillus sp. D9 was considered for its stability at extensive range of extreme environmental 

conditions. The BioS produced by Paenibacillus sp. D9 was found to be thermostable (Figure 5.6a). Exposing 

the Paenibacillus sp. D9 BioS to 120oC caused no significant effect on the emulsification index (E24) 

performance. At a range of temperatures from 50 to 80oC, the BioS was quite stable in the ST reduction ability 

(Figure 5.6a). As temperature increased; ST decreases, and vice versa as cohesive forces decrease with increase 

in molecular activity. The impact on the surrounding environment is the result of the adhesive action that liquid 

molecules have at the interface. Thus, movement of molecules disrupts the imbalanced forces on the water 

surface and weakens the tightly bound molecules, subsequently lowering the ST (Vega and De Miguel, 2007). 

Khopade et al. (2012) also reported the stability of BioSs under extreme conditions of temperature (50oC to 

100oC). Similarly, Joshi et al. (2008) reported BioS produced by four Bacillus strains to be stable at 80oC.  
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Figure 5.6 Effects of (a) pH and (b) Temperature (c) Salt concentration on biosurfactant stability. ST (surface 

tension values, mN/m), E24 (emulsifying indexes, %) and biosurfactant concentrations obtained in cultures 

performed with Paenibacilllus sp. D9 grown in BH medium supplemented with diesel fuel (3%) and 

ammonium sulfate (1%) at 150 rpm, 30oC, and pH 7 for 5 days. Surface tension values and emulsification 

indexes were determined at room temperature (25oC). Surface tension values (mN/m) obtained with culture 

broth supernatants with the emulsification indexes performed using n-hexadecane. The surface tension and the 

emulsifying activity of BH medium were 69.3 ± 0.3 mN/m and 0.0%, respectively. All data points are means 

± S.D. (standard deviation) of three independent experiments conducted in triplicate. 

The Paenibacillus sp. D9 BioS was also stable in pH 2 ─ 11 according to the ST activity and the E24 activity 

data (except in pH 8.0). As the pH decreased from 6.0, there was a significant increase in ST reduction due to 

the BioS precipitation. At pH ≤ 6, the ST decreases significantly and increased E24 index was observed, 

indicating adsorption of HCl from the solutions (Figure 5.6b). Interestingly, at pH 8.0 the BioS showed no E24 

capacity with the emulsification index of 35.0%. The pI value was greater at pH 8.0 from the introduction of 

extra positive charge at the basic side chain. However, at pH ≥ 8.0, the ST decreases, indicating a greater 

surface concentration of hydroxide ion than in the bulk solution. Gudiña et al. (2012) showed that BioS activity 

was retained through a pH range of 5.0 ─ 11.0 with minimum deviation in ST. The BioS solution also showed 

stability under a broad salt concentration up to 20% NaCl (Figure 5.6c). From the results in Figure 5.6c, there 

was a noticeable trend with increase in salt concentration, the ST reduction and E24 index values decrease. 

This behavior is not far-fetched, since elevated salt concentrations can substantially reduce micelle shape and 

size, then affecting the BioS chemical and functional properties. Also, the ionic strength in assay solutions 

affects the interactions between the BioS and substrate molecules (de França et al., 2015). The BioS has 

stability at high salinity and alkaline pH; such a BioS may be useful for bioremediation of oil spills, and 

contaminated soil. Several researchers also reported the stability of BioSs at elevated temperatures, at differing 

pH and salinity (Al-Wahaibi et al., 2014; Gudina et al., 2010; Jha et al., 2016; Joshi et al., 2016; Khopade et 

al., 2012; Saimmai et al., 2013; Vaz et al., 2012).  

The results highlight the application of the lipopeptide BioS produced by Paenibacillus sp. D9 at extreme 

conditions of temperature, salinity, and pH. The bioproduct exhibited great thermal stability, a positive effect 

at acid and alkaline pH, and great tolerance to varying ionic strength, which illustrates clear standpoints for its 

possible use in extreme environmental conditions such as bioremediation, improved biodegradation of 
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hydrophobic pollutants, microbial enhanced oil recovery and other industrial fields. Due to the ability to 

withstand extreme conditions, BioSs have gained attention in  environmental and industrial applications 

(Darvishi et al., 2011). 

5.3.8 Application of Paenibacillus sp. D9 lipopeptide biosurfactant in biodegradation 

studies 

Extremely toxic hydrocarbon substrates such as diesel fuel, n-dodecane and n-tetradecane were used to 

determine influence of BioS and chemical surfactant on biodegradation. The introduction of Paenibacillus sp. 

D9 only on system 1 (10% diesel fuel) and system 2 (6% diesel fuel + C12, C16) showed little biodegradation 

of 24.5% and 31.1% respectively (Table 5.3). Paenibacillus sp. D9 degraded 76% of diesel fuel in a medium 

with 1% diesel fuel after a 20 day incubation (Ganesh and Lin, 2009) and only 24.5% with 10% diesel fuel (the 

present study) confirming the effect of extreme hydrophobic mixtures on Paenibacillus sp. D9 cell growth and 

bio-utilisation potential of this bacterium. Higher concentrations of diesel and other hydrocarbon mixtures are 

often difficult to remove from the environments due to the hydrophobic end which is water-repelling. In the 

case of chemical surfactant, diesel fuel biodegradation of 42.4% was achieved using 100 mg/L of SDS. 

However, lesser diesel fuel biodegradation from 42.4% to 19.2% was observed with the introduction of high 

concentrations of SDS (Table 5.3).  The addition of natural surfactants had a great influence on diesel fuel and 

hydrocarbon substrates biodegradation (Kaczorek and Olszanowski, 2011). The mechanism proposed for 

improving degradability of hydrophobic organic compounds involves the ability of BioSs to promote the 

hydrocarbon bioavailability towards the aqueous phase by pseudo-solubilization (Hmidet et al., 2017). 
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Table 5.3 Application of Paenibacillus sp. D9 lipopeptide biosurfactant in hydrocarbon biodegradation studies                                                                                      

   System Biodegradation (%) 

Paenibacillus sp. D9 

1  Diesel fuel 24.5 ± 0.3 

2  Diesel fuel + C12 + C16 31.1 ± 1.1 

3 Diesel fuel + D9 BS (100 mg/L)  49.1 ± 0.7     

4 Diesel fuel + D9 BS (200 mg/L)  52.0 ±1.3 

5 Diesel fuel + D9 BS (300 mg/L) 54.7 ± 1.1 

6 Diesel fuel + D9 BS (400 mg/L) 60.0 ± 0.5 

7 Diesel fuel + D9 BS (500 mg/L) 65.1 ± 0.6 

8 Diesel fuel + SDS (100 mg/L) 42.4 ± 0.6 

9 Diesel fuel + SDS (200 mg/L) 38.0 ± 0.3 

10 Diesel fuel + SDS (300 mg/L) 36.5 ± 0.7 

11 Diesel fuel + SDS (400 mg/L) 27.6 ± 0.9 

12 Diesel fuel + SDS (500 mg/L) 

13 Diesel fuel + C12 + C16 + LPP (500 mg/L) 

19.2 ± 1.2 

55.3 ± 0.9 

14 Diesel fuel + C12 + C16 + SDS (100 mg/L) 
27.4 ± 0.7 

  

 Time of biodegradation; 7 days, SDS; Sodium dodecyl sulfate, C12; n- Dodecane, C16; n-Hexadecane. All 

data points are means ± S.D. (standard deviation) of three different experiments performed on different days 

(each experiment was conducted in triplicate). 

 

These surfactants cause micelle formation and the uptake of pseudo-solubilized hydrocarbon droplets by 

microorganisms. Results from this research indicated that the addition of natural surfactants could significantly 

increase the effectiveness of biodegradation of hydrocarbons and diesel fuel as compared with synthetic SDS. 

With the presence of Paenibacillus sp. D9 BioS in the system, the diesel fuel biodegradation by Paenibacillus 

sp. D9 became a positive BioS-dependent (Table 5.3). The application of Paenibacillus sp. D9 BioS augments 

the removal and solubility of these hydrophobic compounds. BioS causes these hydrophobic mixtures to be 

more susceptible to degradation. An increase in diesel fuel biodegradation rate up to 65.1% was observed under 

https://en.wikipedia.org/wiki/Sodium_dodecyl_sulfate
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the same conditions with the addition of 500 mg/L Paenibacillus sp. D9 BioS (Table 5.3; system 7). Compared 

with the lipopeptide-free inoculated culture, there was a substantial increase in the degradation efficiency of 

diesel fuel by the Paenibacillus sp. D9 strain demonstrating the potential of BioS for bioremediation. Hmidet 

et al. (2017) reported an increase of diesel fuel degradation capability of 20, 27, and 40% with a maximum of 

58% in the presence of 0.5, 1, and 2 g/L, respectively by Bacillus mojavensis A21 lipopeptide BioS. The 

method of improvement of diesel fuel biodegradation by exogenously added BioS was described previously 

(Ayed et al., 2015; Hmidet et al., 2017; Mnif et al., 2015). These natural surfactants are readily degraded and 

therefore friendlier to the natural environment. The results support that the use of Paenibacillus sp. D9 

lipopeptide BioS can provide a better biodegradation and bioremediation approach to environmental protection 

than chemical surfactants. Paenibacillus D9 BioS possesses a better diesel fuel degradation efficiency with a 

lesser concentration needed than the above-mentioned. Further supplementation of hydrocarbons (C12 and 

C16) in 10% diesel fuel medium inhibited the diesel biodegradation efficiency (systems 13 and 14). Despite a 

lesser degradation rate, significant improvement (p < 0.05) on diesel fuel degradation by D9 (55.3 %) can be 

achieved by supplemented Paenibacillus sp. D9 BioSs (Table 5.3 system 13). The strain develops as a new 

class of lipopeptide BioS producer with probable environmental applications, particularly in solubilization, and 

degradation of hydrocarbons (Jimoh and Lin 2019).  

5.4 Conclusion 

The nature of culture conditions and media composition for optimal production of Paenibacillus sp. D9 

lipopeptide BioS was developed in the present study. Diesel fuel (carbon source), ammonium sulfate (nitrogen 

source) and magnesium sulfate (metal supplementation) showed significant positive effects on lipopeptide 

production with the optimal pH and temperature found to be 7.0 and 30oC. The produced Paenibacillus sp. D9 

BioS also exhibited dependable stabilities in an extensive range of pH, temperature and salt concentrations. 

The addition of lipopeptide BioS at different concentrations increased diesel degradation by Paenibacillus sp. 

D9 strain. The lipopeptide BioS was more effective than the commercially accessible synthetic surfactant. 

Besides, Paenibacillus sp. D9 BioS has the potential to be used in bioremediation, since it is capable of 

efficiently removing highly toxic hydrophobic compounds. 
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Abstract 

Oil products pollution has serious consequences, and consideration is being given to the advancement of 

alternative innovations for the eradication of these pollutants. The potential of biosurfactant-producing 

organism, Paenibacillus sp. D9, to grow on cheap carbon sources; waste frying oils (canola, sunflower, castor, 

and coconut) were investigated as alternate substrates for synthesis of biosurfactant as this may prompt a 

decrease in the bioprocess cost. This work aimed to study optimum parameters, functional properties, and 

applicability for bioremediation. Initial lipopeptide biosurfactant yield was 2.11 g/L and a surface tension 33.7 

mN/m, which was representative of low biosurfactant production. The two quadratic models developed through 

response surface methodology were adequate with regards to biosurfactant yield (R2 = 0.9937) and surface 

tension (R2 = 0.9862). There was an improvement on maximum reduction in surface tension and biosurfactant 

yield of 31.2 mN/m and 5.31 g/L, respectively. The proficiency of biosurfactant, when contrasted to a 

frequently utilized surfactant, sodium dodecyl sulfate, brought about the degradation of 73.2% for motor oil, 

71.8% for diesel (shaking condition), 63.3% for motor oil, and 59.3% for diesel (static condition) in a solid 

environment. In contrast, using an aqueous environment, there was bio-removal of 77.6% of motor oil, 74.3% 

of diesel (shaking condition), 62.2% of motor oil, and 57.4% of diesel (static condition) respectively. Box 

Behnken design as a response surface methodology tool was suitable in identifying the optimum conditions of 

low-cost substrates and the biosurfactant is capable for bioremediation of diesel fuel and motor oil from 

contaminated environment. 
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6.1 Introduction 

The commercial importance and markets for surfactants are constantly growing as evidenced by their 

production and the number of new environmental, biotechnological, and industrial applications. Surfactants 

are amphiphilic as they possess hydrophilic and hydrophobic structural moieties, with the ability to lower 

surface tension (ST) (Banat et al., 2014). Diesel and motor oil contamination of soil and groundwater is a 

frequently stated ecological issue. These contaminants have a negative effect on soil quality due to a few factors 

such as high resistance to degradation, chemical stability, and danger to living biota. There is limitation of 

microorganisms in degrading these pollutants due to low water solubility and easy bound to soil particles 

(Vossen, 2014). There has also been a general need to replace synthesized compounds due to their inability to 

absorb chemical and toxic petroleum products in the environment, and non-biodegradability (Banat et al., 2014; 

Marchant and Banat, 2012a; Marchant and Banat, 2012b).  In resolving these problems, biosurfactant (BioS), 

due to their amphiphilic property display the propensity to bond at the oil/water interface. Thus, hydrophobic 

contaminants are enabled into the aqueous phase which occurs through definite contact ensuing in 

solubilization, emulsification, and bioavailability as facilitated by BioSs. BioS as a biomolecule has been 

explored due to several benefits and properties it possesses over chemical surfactants (Costa et al., 2010).  

The initial output of BioSs in the 2013 world market was 344,068.40 tons and is anticipated to touch 461,991.67 

tons by 2020, with an annual compound growth rate of 4.3% (Sidkey et al., 2016). BioSs are naturally 

promising due to several benefits over chemical surfactants; such as high emulsification, non-toxicity, and their 

environmental compatibility, biodegradability, and acceptability. BioSs are surface-active agents produced by 

microbes which are dual in nature (encompassing hydrophobic and hydrophilic group) (Saisa-Ard et al., 2013). 

Additionally, in contrast to chemical surfactants, BioSs possess improved interfacial and surface activity, bind 

heavy metals, have high selectivity, biological activity, and can be produced from low-cost raw materials that 

can be reused over time. BioS presence also enhances oil solubility, potentially increasing their bioavailability 

for utilization as a source of carbon and energy (Nerurkar et al., 2009).  

Currently, low productivities and the high cost of raw materials hinder probable economical BioS production 

on the large industrial scale (Henkel et al., 2012). The overall production cost, however, can be reduced or 

eradicated through the selection of efficient BioS-producing microorganisms, optimizing the medium 

components and the use of inexpensive substitute substrates. The high-quality option of low or free cost raw 

materials is of huge importance to the entire economic process with the total final production cost resulting to 
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30 ─ 50%  (Ruggeri et al., 2009; Saisa-Ard et al., 2013). One of the waste products associated with the oil 

processing industries is waste frying oil, which is a prominent low-cost fermentative waste, and readily 

available resource for BioS production (Maddikeri et al., 2015). The utilization of alternate raw resources, for 

example, waste cooking oils is one of the appealing methods for cost-effective biosynthesis. Waste cooking 

oils are vegetative carbon source, lipidic in nature (16-18 carbon atom chains) comprised majorly of saturated 

or unsaturated fatty acids. The high rich nutritional content available in these waste make them interestingly 

inexpensive raw materials for different industrial and environmental set-ups involved in resourceful secondary 

metabolite production (Makkar et al., 2011). In Africa and the world at large, 100 million liters of used frying 

oil is used up per day; while 700,000-1 million tons are estimated in European countries respectively (Owolabi 

et al., 2011) have been implicated in the synthesis of BioS.  

The improvement in strain selection, process technology, use of low-cost, and renewable substrates play a 

significant part in improving BioS production process (Banat et al., 2014; Marchant and Banat, 2012a; 

Marchant and Banat, 2012b). The synthesis of microbial surface-active agents on a huge scale is yet to reach a 

satisfactory level economically due to low yields output generated which is relatively short for environmental 

and industrial sustainability. Furthermore, the cost of recovery and purification of BioS is still relatively high  

(Banat et al., 2014). Thus, the utilization of low-cost substrates by BioS producers can overcome such 

hindrances to improve the quality and quantity of BioS. Similarly, the stage by stage cost required for BioS 

production should be kept at a minimum as much as possible.  It is imperative to discover oil-rich by-products 

that could be processed into BioS in large production amounts and substantial yields (Partovi et al., 2013). 

Residues, such as glycerol (Silva et al., 2010), soybean oil refinery residue (Luna et al., 2011), corn steep liquor 

(de Cássia FS da Silva et al., 2013), and clarified cashew apple juice (Oliveira and Garcia-Cruz, 2013).  

The utilization of vegetable oil and their by-products as a source of BioS is probable but requires a joint 

multidisciplinary energies and research for its full accomplishments. Reports on the utilization of the enormous 

capability of these frying oils for BioS production are limited to few (Makkar et al., 2011). This study further 

emphasizes the prospect of the application of waste cooking substrates and other relatable parameters for 

increased BioS production. The use of response surface methodology (RSM) as a technique for regression 

analysis using data attained from experimental design to proffer solution to quadratic equations developed in 

the bioproduction process (Kiran et al., 2010b; Najafi et al., 2011). RSM technique, in reducing cost of 

production through the selection of production medium constituents and optimization of culture conditions, 

has been employed and reported (de Cássia FS da Silva et al., 2013; Najafi et al., 2011). Yet, the use of this 
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technique is not fully explored on improving BioS production yield from the genus Paenibacillus particularly 

in the aspect waste frying oil utilization. Thus, a high product yield is needed to present its compactivity and 

compatibility in the world BioS market. The current research aimed at presenting significant BioS ability and 

feasibility in the bioremediation of diesel and motor oil from solid environment (contaminated sands) and 

liquid environments using both shaking and static conditions. The study revealed new and improved production 

process conditions of BioS produced by Paenibacillus sp. D9 using a combination of Box Behnken Design and 

RSM on low-cost substrates.  

6.2 Materials and methods 

6.2.1 Chemicals and materials 

Growth media, chemicals and salts were procured from Sigma-Aldrich (USA). Waste frying oils (canola, 

sunflower, and coconut) were acquired from different restaurants in the city of Durban, Kwazulu-Natal, 

Republic of South Africa. Waste frying oil of plant, animal, or synthetic fat were previously used in frying, 

baking, and other types of cooking. On the other hand, samples of used castor oil were obtained from a retailer 

in local neighbourhood in South Africa. They were stored in the laboratory until further usage. The waste oils 

are vegetative carbon source, lipidic in nature (16 ─ 20 carbon atom chains) comprised majorly of saturated or 

unsaturated fatty acids. South African standard sand, 100/50 mesh was used in the experimental set-up. The 

sand was saturated with motor oil or diesel, left standing for 24 ─ 48 h at 25oC until further usage.  

6.2.2 Microorganism, inoculum preparation, and production medium 

Paenibacillus sp. D9 is a significant BioS producer (Jimoh and Lin, 2019) isolated from diesel contaminated 

site, Durban, South Africa. The microorganism was preserved in nutrient broth supplemented with 40% v/v 

glycerol at –80°C. Culture transfers were made to fresh agar slants every 2 ─ 3 weeks to maintain its viability. 

From the nutrient agar slant, Paenibacillus sp. D9 single colony was inoculated into 10 mL nutrient broth 

(Sigma-Aldrich), incubated overnight in an orbital shaker (150 rpm) (MRC, Polychem Supplies) at 30oC. 

Subsequently, 1 mL of overnight culture was inoculated into 100 mL nutrient broth enclosed in a 250 mL 

Erlenmeyer flask and incubated at 30oC for 24 h. The culture was then followed by centrifugation at 10,000 

rpm for 10 min. After this period, the pellets were washed twice in phosphate buffered saline (pH 7.4) and 

further suspended in Bushnell Hass (BH) medium composition (g/L): K2HPO4 1.00, KH2PO4 1.00, 
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MgSO4·7H2O 0.20, FeCl3 0.05, CaCl2 0.05, CaCl2 0.02, NH4NO3 1.00, pH of 7.0 ± 0.2 until the OD600 was 

equivalent to 1 (Ganesh and Lin, 2009). One mL of Paenibacillus sp. D9 inoculum (1 OD600 nm equivalent) 

was introduced to 500 mL Erlenmeyer flasks encompassing 98 mL liquid BH medium supplemented with 2% 

of each waste frying oil. Uninoculated control flasks with no addition of bacterium were also incubated to 

monitor abiotic losses. Cultivations were performed at 30oC and stimulated on an orbital shaker (Polychem 

supplies, MRC, China) at 150 rpm for 5 days (Zhang et al., 2016). 

6.2.3.1 Biomass determination 

Ten mL samples were mixed with cooled distilled water in weighed falcon tubes and centrifuged at 10,000 × 

g for 20 min. The cell pellet was dried in an oven at 105oC after two washing cycles for 24 h. The samples 

were eventually weighed to determine the cell biomass. All the assays were carried out in a three set of 

independent experiments.  

6.2.3.2 Surface tension 

ST was resolved with a KRÜSS K6 Tensiometer (KRÜSS GmbH, Germany) utilizing 1.9 cm De Noüy 

platinum ring at room temperature. This was carried out by utilizing 40 mL cell-free supernatant acquired by 

centrifuging culture broth at 13,500 × g for 20 min (Gudiña et al., 2012). All readings were produced in 

triplicate and average ST values of each sample was used. For proper calibration and to avoid error in 

instrumentation, the ST of distilled water were initially measured. The ST of BH medium supplemented with 

the different waste frying oils were determined as controls (Zhang et al., 2016). 

6.2.3.3 Extraction, isolation, and purification of biosurfactant 

The centrifugation (13,500 × g at 4oC for 10 min) of the culture broth was achieved to allow the removal of the 

bacterial cell. The centrifuged supernatant was acidified to pH 2.0 using 6 N HCl to allow precipitation of the 

BioS. The precipitated BioS was successively evaporated at 4oC overnight and subsequently collected by 

centrifugation at 13,500 × g for 20 min (Gudiña et al., 2012). The pooled BioS was liquefied in distilled water 

with pH adjustment to neutrality (pH 7.0) using 1 N NaOH. The solution was freeze-dried, weighed and stored 

at –20oC until additional usage (Gudiña et al., 2012; Zhang et al., 2016). For the purification of the crude BioS, 

the samples were partially purified primarily according to the measures defined above. The sample was then 

liquefied in methanol, mixed with silica gel (230 – 400 mesh) and subsequently oven-dried at 50°C. The silica 

gel was further mixed with methanol and then loaded onto a chromatography column (50 cm × 2.8 cm). A 
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mixture of ethyl acetate/chloroform in different proportions (100% to 0% with 10% interval), was used in the 

sequential washing of the loaded column at a flow rate of 0.5 mL/min. A UV spectrophotometer with a range 

of 200 – 800 nm was used to monitor the absorption wavelength of the mixtures to confirm surface activity. 

The eluents (20 mL) were collected and the fractions showing oil displacement activity were thoroughly mixed, 

followed by evaporation at 80oC to acquire purified sample. The purified BioS was subsequently confirmed 

for surface properties before its further usage (Deng et al., 2016).  

6.2.4 One variable at a time optimization for biosurfactant production 

The improvement of BioS synthesis was directed in a progression of one variable at a time (OVAT) 

experimental conditions while keeping other variables constant. In this manner, proper test models were created 

to decide the level of associations between the diverse components set up. Different experimental components 

such as substrate sources (C), nitrogen sources (N), C/N ratio, and metal supplements affecting BioS production 

were resolved as defined below. 

6.2.4.1 Effect of carbon, nitrogen and C/N ratio on biosurfactant production 

Carbon sources (C), nitrogen sources (N) and C/N ratio were chosen to aim at higher BioS productivity. The 

carbon sources tested included the used waste product of canola oil (2% v/v), sunflower oil (2% v/v), coconut 

oil (2% v/v), and castor oil (2% v/v). The BH medium without the addition of carbon sources were used as 

control. For the evaluation of the aptest nitrogen source for improved BioS yield, ammonium sulfate 

(NH4)2SO4, potassium nitrate (KNO3), soybean meal, tryptone, casein, and yeast extract was employed at a 

concentration of 2 g/L. BH medium containing ammonium nitrate was utilized as a control. The ammonium 

nitrate in the subsequent BH medium compositions were substituted with the different nitrogen sources listed 

above. The different nitrogen substrates were standardized to ensure uniform amount of N was added in the 

experiments. Carbon (waste canola oil) and nitrogen substrate (KNO3) which were successfully utilized were 

employed further employed in C: N ratio optimization for the detection maximum production yield. Both 

carbon and nitrogen source concentration were introduced respectively in the BH production medium as: 0.25, 

0.5, 1, 2, 4, 8, and 16 [% (v/v)/g/L]. Dry cell weight (DCW), biosurfactant production (BP), and ST were 

examined at the end of the experiment.  
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6.2.4.2 Effect of metal supplementation 

The introduction of various metals (iron, manganese, and magnesium) independently or in combination were 

assessed to increase BioS synthesis by Paenibacillus sp. D9 strain. The experiment was carried out once the 

appropriate C: N ratio that resulted in the highest BioS yield was determined. The distinctive metal 

concentrations (mM) were chosen according to previous research reports (de Sousa and Bhosle, 2012; Wei et 

al., 2007). The production culture medium was kept up until the point that the maximum BioS synthesis was 

accomplished and at the end of the experiment, DCW, BP, and ST were determined. Control tests were 

additionally achieved utilizing the production medium without the option of metal enhancements. 

6.2.4.3 Effect of optimum conditions on biosurfactant production  

The impact of optimal production conditions on BioS synthesis was assessed. The synthesis of BioS was done 

in 500 mL Erlenmeyer production flasks comprising of optimum C: N proportion, metal supplements and 98 

mL BH medium. The medium was adjusted to pH 7 with utilization of 1 N NaOH or 1 N HCl followed 

autoclaving at 120°C for 15 min. To confirm the effectiveness the OVAT technique, BH medium containing 

only carbon substrate was considered as control. One mL (OD600) inoculum of Paenibacillus sp. D9 was 

introduced into the medium and kept at temperature 30oC, 150 rpm in an orbital shaker. The flasks were 

incubated for 5 days while monitoring the DCW, BP, and ST on a daily interval to the end of the experiment 

following the methods previously described. All experiments were performed in triplicates of independent 

samples and the standard deviation (±) was indicated. 

6.2.5 Optimization of biosurfactant production using response surface methodology  

The statistical program Design Expert 11.0 (Stat-Ease, Inc., Taylor Francis Productivity Press, NY, USA) was 

utilized for the regression analysis of the experimental information, and to plot the response surface graphs. A 

fractional factorial design termed Box-Behnken design (BBD) was designed by combining two-level factorial 

designs with block designs. The response was fitted by a second order model to correlate independent variables. 

The measurable importance of the model quadratic condition and the terms were assessed with Fisher's test. In 

the present investigation, the basic control factors that impacted the BP as decided in previous OVAT studies 

(waste frying oil, KNO3 and metal supplementation) were introduced into an RSM model. The autonomous 

variable was examined as low (−1), center (0) and high (+1) level (Table 6.1). Also included were runs of 

center points (control) and followed by analysis of the experimental results. Results were validated utilizing 



182 

 

the analysis of variance (ANOVA) method to elucidate the interactions that were most effective for ST 

reduction and improved BioS yield. At the end of the experiment, DCW, BP, and ST were examined as 

described above. 

Table 6.1 The scope of the parameters utilized for displaying the biosurfactant synthesis and the predetermined 

codes for individual parameter 

                 Coded values and the relative estimations of factors 

           -1         0     +1  

A: Waste frying oil (v/v)           1         3      5  

B: KNO3 (g/L)            1         2      3  

C: Metal Supplementation (mM)           1         2      3  

 

6.2.6 Bioremediation of motor oil and diesel fuel from contaminated sand under shaking 

conditions  

The possibility of BioS in removing diesel and motor oil from polluted sand was assessed. Tests of 50 g sand 

(100/50 mesh) were polluted with 10% of diesel or motor oil, subsequently transferred to 500 mL conical 

flasks. About 40 mL of the BioS (500 mg/L; ST; 30.9 mN/m), sodium dodecyl sulfate (500 mg/L; ST; 30.9 

mN/m), cell-free fermented broth (ST; 30.2 mN/m) or 40 mL of distilled water (control) were introduced 

separately to the experimental set-up. The flasks were put in an orbital shaker (Polychem supplies, MRC, 

China) at 150 rpm and 30oC for 48 h. The test samples were subsequently centrifuged at 10,000 × g for 20 min 

for the sand separation. For bioremediation analysis, there was thorough double extraction with 40 mL 

dichloromethane and solvent vaporization, with the remaining hydrocarbon estimated gravimetrically. For 

consideration, a synthetic surfactant SDS (500 mg/L) was additionally tried at similar conditions illustrated 

previously. The experimental analysis was carried out in triplicate and the outcomes are given as average values 

± standard deviation.  

Diesel or Motor oil removed (%) =   Hi - Hr/Hi × 100                                                                             

Hi, was the initial diesel or motor oil in the soil (g) before washing while Hr was the diesel or motor oil left 

over in the soil (g) after washing (Chaprão et al., 2015). 
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6.2.7 Bioremediation of motor oil and diesel fuel from sand-packed column under static 

conditions. 

Glass columns measuring 200 cm in height × 10 cm in diameter were saturated with 50 g sand mixture 

containing 10% of diesel fuel or motor oil. About 40 mL of the BioS (500 mg/mL; ST; 30.9 mN/m), sodium 

dodecyl sulfate (500 mg/mL; ST; 30.9 mN/m), cell-free fermented broth (ST; 30.2 mN/m) or 40 mL of distilled 

water (control) were introduced respectively to the experimental set-up. The flasks were left to stand alone in 

an incubator for 48 h at 30oC. The saturation of each solution was observed for 48 h until no further percolation. 

The soil samples were then washed twice with 40 mL dichloromethane for the removal of the residual oil. The 

oil removed was determined gravimetrically as described above immediately after solvent evaporation. 

6.2.8 Bioremediation of motor oil and diesel fuel from an aqueous environment 

The prospect of the BioS in eliminating motor oil and diesel fuel from an aqueous environment was evaluated. 

In the experiment, 50 mL of deionized water was contaminated with 10% of diesel fuel or motor oil and 

subsequently transferred to 500 mL Erlenmeyer flasks. Approximately 40 mL of the BioS (500 mg/L; ST; 30.9 

mN/m), sodium dodecyl sulfate (500 mg/L; ST; 30.9 mN/m), cell-free fermented broth (ST; 30.2 mN/m) or 40 

mL of distilled water (control) were added separately to the experimental set-up. The flasks were put in an 

orbital shaker (Polychem supplies, MRC, China) at 150 rpm and 30oC for 48 h. Subsequently, the liquid 

samples were then washed with 40 mL dichloromethane twice for the extraction of the residual oil. The oil 

removed was determined gravimetrically as described above immediately after solvent evaporation. 

6.2.9 Bioremediation of motor oil and diesel fuel from an aqueous environment under 

static condition 

The prospect of the Paenibacillus sp. D9 BioS in eliminating motor oil and diesel fuel from an aqueous 

environment was evaluated. Glass columns measuring 200 cm in height × 10 cm in diameter were saturated 

with the pollutants. In the experiment, 50 mL of deionized water was contaminated with 10% of diesel fuel or 

motor oil and subsequently transferred to 500 mL Erlenmeyer flasks. Approximately 40 mL of the BioS (500 

mg/L; ST; 30.9 mN/m), sodium dodecyl sulfate (500 mg/L; ST; 30.9 mN/m), cell-free fermented broth (ST; 

30.2 mN/m) or 40 mL of distilled water (control) were added separately to the experimental set-up. The flasks 

were left to stand alone in an incubator for 48 h at 30oC. The saturation of each solution was observed for 24 h 
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until no further clarification. The liquid samples were then washed twice with 40 mL dichloromethane for the 

removal of the residual oil. The oil removed was determined gravimetrically as described above immediately 

after solvent evaporation. 

6.2.10 Statistical analysis 

Investigation of difference (ANOVA) was utilized to assess the measurable parameters with a probability 

estimation of <0.05 as the rule for statistical significance. All data points are means ± standard deviation (S.D.) 

of three independent experiments. 

6.3 Results and discussion 

6.3.1 Effect of carbon sources on biosurfactant production 

The effect of the waste substrates, nitrogen source, carbon to nitrogen ratio, and metal supplementation was 

sequentially estimated in a single-factor experimentation, to determine the greatest conditions for BioS 

production. On the carbon substrate, all four-different waste cooking oil tested (sunflower oil, canola oil, castor 

oil, and coconut oil) influenced BioS concentration. Waste canola oil produced the best optimum yield of 1.32 

g/L in this research followed by coconut oil of 0.76 g/L. Castor oil and sunflower oil show improved BioS 

yield of 0.65 g/L and 0.73 g/L, respectively, as compared with the control experiment (Figure 6.1). Thus, canola 

oil as well as other substrates tested produced high ST values obtained ranging from 34.3 mN/m (canola oil) 

to 36.8mN/m (castor oil). The STs achieved in this research showed high influence of the BioS synthesized as the 

control sample containing the different waste frying oils reduced from 71.3 mN/m to 67.1 mN/m ─ 69.1 mN/m. dos 

Santos et al. (2010) produced BioS with the reduced ST of 49.5 mN/m by P. fluorescens utilizing soybean oil 

as a carbon source. The result obtained in this study proffer a better optimum condition as compared to the 

above-stated report. The outcomes showed significance (p < 0.05)  relative to control samples with no production of 

BioS yield discovered. This however, rule out any possibilities of the substrates co-precipitating with the isolated BioS. 

With respect to utilization of low-cost substrates, it is worthy to note that all the waste frying oils showed 

relatively high production yield and supported the growth of Paenibacillus sp. D9 with DCW ranging from 

0.55 g/L to 0.67 g/L.  
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Figure 6.1 Effect of carbon sources (waste frying oils) on the production of Paenibacillus sp. D9. At room 

temperature (25oC), the surface tension values were determined, with the cell growth calculated as dry weight 

(105oC, 24 h). Biosurfactant production yield achieved by weighing lyophilized products. All data points are 

means ± standard deviation (S.D.) of three independent experiments.  

Be that as it may, this study demonstrates immense capability of the usage of these wasted oils for BioS 

synthesis. Additionally, in contrast, Gudina et al. (2015) obtained 1.3 g/L BioS yield by Bacillus subtilis 573 

utilizing the corn steep liquor as a substituent inexpensive culture medium. Similarly, Saravanan and 

Subramaniyan, (2014) discovered an increase in BioS production on various low-cost substrates with corn oil 

and cassava flour found to be most efficient. Pseudomonas aeruginosa MTCC 2297 utilized coconut oil with 

a BioS yield of 2.26 g/L (George and Jayachandran, 2013). Sharafi et al. (2014) also reported BioS yield of 5 

g/L after 120 h using sunflower oil at 25% by Aneurinibacillus thermoaerophilus MK01. In addition, Noudeh 

et al. (2010) found that the greatest production yield was achieved with olive oil as a sole carbon source by 

Bacillus licheniformis PTCC. Abouseoud et al. (2007) on the other hand, achieved maximum BioS synthesis 

from Pseudomonas fluorescens 1895-DSMZ utilizing olive oil with ammonium nitrate as a nitrogen source. 
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This current study showed the enormous prospect of these wasted frying oils for enhanced BioS production 

yield, thus reducing the high cost of production, and hence the significance of this research to literature. 

6.3.2 Effect of nitrogen sources on biosurfactant production 

The addition of nitrogen is significant in the synthesis of surface-active molecules by a variety of microbes 

(Saharan et al., 2011). The most commonly used nitrogen sources (organic and inorganic) reported in the 

literature were assessed for BioS production by Paenibacillus sp. D9. It is noteworthy that the addition of 

nitrogen sources substantially increased BioS production. It was demonstrated that KNO3 and (NH4)2SO4 were 

the most resourceful nitrogen sources that produced the highest BioS concentrations (1.66 g/L and 1.55 g/L, 

respectively) as seen in Figure 6.2. 

 

Figure 6.2 Effect of nitrogen sources on the production of Paenibacillus sp. D9. At room temperature (25oC), 

the surface tension values were determined, with the cell growth calculated as dry weight (105oC, 24 h). 

Biosurfactant production yield achieved by weighing lyophilized products. All data points are means ± standard 

deviation (S.D.) of three independent experiments.  
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Although there was no significant difference (p < 0.05) between KNO3 and (NH4)2SO4 on BioS production, 

thus KNO3 was chosen for further tests, considering its accessibility as well as higher ST reduction value (32.8 

mN/m). Other nitrogen substrates produced considerable BioS yield but KNO3 selection for further 

optimization analysis was highlighted above. Yeast extract, casein, tryptone, and soybean meal which are 

representative of organic nitrogen sources showed influenced on cellular growth and BioS production. The use 

of KNO3 gave better production yields in comparison to other nitrogen sources such as (NH4)2SO4 or urea in 

the BioS produced by R. glutinis IIP30 (Johnson et al., 1992). Saharan et al. (2011) also described the use of 

KNO3 as a nitrogen source for BioS synthesis. The low DCW using of KNO3 (0.57 g/L) and (NH4)2SO4 (0.65 

g/L) had a significant influence on the high BioS yield and low ST values obtained (32.8 and 33.3 mN/m) 

respectively. From literature, some Bacillus isolates were able to utilize ammonium nitrate, sodium nitrate, or 

potassium nitrate but not (NH4)2SO4 for BioS synthesis (Abouseoud et al., 2008; Makkar and Cameotra, 1997). 

However, this research also proposed the utilization, with a better ST value and BioS yield of ammonium 

sulfate (ST; 33.3mN/m, BP; 1.55 g/L), and potassium nitrate (ST; 32.8 mN/m, BP; 1.66g/L) as a nitrogen 

source for BioS production. Other studies have shown the effects and utilization of potassium nitrate and 

ammonium sulfate on BioS production (Elazzazy et al., 2015; Zhang et al., 2016). Also, different nitrates as 

nitrogen nutrients sources were shown to have an impact on BioS synthesis as reported by past researchers 

include sodium nitrate (Abouseoud et al., 2008; Elazzazy et al., 2015; Pacheco et al., 2010). 

6.3.3 Effect of the carbon and nitrogen concentration 

C/N proportion is another complex factor, that influences metabolites accumulation in numerous fermentative 

and production processes (Silva et al., 2010). By using the best carbon source (canola oil) and the nitrogen 

source (potassium nitrate) kept at constant, the effect of carbon to nitrogen ratios on BioS synthesis was 

evaluated. These data were obtained using waste canola oil and KNO3 (C/N ratio of 2 = 4; 2) (BP = 1.77 g/L, 

DCW = 0.75 g/L) as carbon and nitrogen source (Figure 6.3). The best C/N ratio tested was 2 which gave the 

highest BioS yield of 1.77 g/L (ST = 32.3 mN/m) while the least yield was 0.28 g/L (ST = 37.8 mN/m) which 

was recorded for C/N ratio of 0.25 (Figure 6.3). The greatest BioS production yield by MSA04 was achieved 

at a lower C/N ratio of 0.5 (Kiran et al., 2010a). In this research, low level of nitrogen (high C/N ratio), favored 

the cellular uptake towards the production of BioS. Thus, low C/N ratios (0.25 and 0.5) exhibited inhibition 

and low production yield due to excess of nitrogen. There was limitation relative to the accumulation of BioS 

products arising from excess of nitrogen source which direct the substrate to the synthesis of cellular material 
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only (Silva et al., 2010). There was also an increase in BioS yield by Rhodococcus erythropolis ATCC 4277 

utilizing higher concentrations of NaNO3, glycerol, and yeast extract respectively (Pacheco et al., 2010). 

     

  

Figure 6.3 Effect of carbon to nitrogen sources on the production of Paenibacillus sp. D9. At room temperature 

(25oC), the surface tension values were determined, with the cell growth calculated as dry weight (105oC, 24 

h). Biosurfactant production yield achieved by weighing lyophilized products. All data points are means ± 

standard deviation (S.D.) of three independent experiments.  

6.3.4 Effect of metal supplementation 

ST values, BioS yields and DCW in cultures performed with different combinations of metals are shown in 

Table 6.2. The combinations magnesium-manganese (medium E) produced a better production yield (1.81 g/L) 

when compared to magnesium-iron (medium D) and manganese-iron (medium F). Medium E produce ST value 

of (33.8 mN/m), the second-best result in this research regarding interfacial and ST activity. Medium D and F 

also produced promising ST reduction values of 34.6 mN/m and 36.3 mN/m respectively. The addition of the 

metals individually (B and C), produced a higher BioS yield compared to its combination, medium F 

(manganese-iron). Medium F (combination), thus produced 1.45 g/L BioS indicating a negative interaction 
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between medium B and C. About the combination manganese-iron (medium D), the amount of BioS produced 

(1.48 g/L) was lower when paralleled to the value obtained with iron (medium C), but better than the one with 

magnesium (medium A). The combination of magnesium-manganese (medium E) resulted in higher BioS yield 

(1.81 g/L) when compared with the metals individually (medium A and B) thus indicating a positive interaction 

on BioS production. Similar to this research, optimization of the trace metals (Mg2+, K+, Mn2+, Fe2+, and Ca2+) 

increased BioS yield from (1.74 to 3.34) g/L from Bacillus subtilis ATCC 21332 (Wei et al., 2007). Finally, 

medium G (combination of the three metals) produced the best output with BioS yield (2.11 g/L) and ST 

reduction (33.7 mN/m). The results were also higher than when the metals were added independently (A-C).  

 

Table 6.2 Effect of individual metal ion or in combinations on biosurfactant production yield, surface tension 

and dry cell weight achieved in mediums implemented with Paenibacillus sp. D9  

Medium BioS Yield (g/L) DCW (g/L) ST (mN/m) 

Control 1.69 ± 0.12 0.36 ± 0.03 36.5 ± 0.28 

A 1.36 ± 0.59 0.26 ± 0.06 36.6 ± 0.28 

B 1.50 ± 0.07 0.46 ±0.09 34.8 ± 0.21 

C 1.73 ± 0.23 0.50 ± 0.04 34.1 ± 0.28 

D 1.48 ± 0.03 0.41 ± 0.04 34.3 ± 0.14 

E 1.81 ± 0.05 0.26 ± 0.05 33.8 ± 0.28 

F 1.45 ± 0.05 0.26 ± 0.07 34.6 ± 0.28 

G 2.11 ± 0.22 0.39 ± 0.05 32.7 ± 0.85 

Medium A; 2 mM MgSO4, Medium B; 0.2 mM MnSO4, Medium C; 0.3 mM FeSO4, Medium D; (MgSO4, 

FeSO4), Medium E; (MgSO4, MnSO4), Medium F; (FeSO4, MnSO4), Medium G; (MgSO4, MnSO4, FeSO4). 

 

Gudina et al. (2015) also reported a positive interaction between iron, manganese, and magnesium on BioS 

activity. In the experiments conducted with the different media A ─ G, low ST values were obtained ranging 

from 32.7 to 36.6 mN/m as observed and reported in this research (Table 6.2). However, the result led to higher 

production yield due to the interaction between manganese, magnesium, and iron. Enzyme co-factors which 

are mostly metal ions such as iron, manganese, and magnesium are directly involved in lipopeptide BioS 
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synthesis (Gudina et al., 2015). Therefore, the concentration of these elements which can be considered as 

helper molecules plays is of significant role in BioS synthesis (Gudina et al., 2015; Wei et al., 2007).  

6.3.5 Effect of optimum conditions using OVAT studies technique 

From Figure 6.4, the bacterial cell weight in production medium under optimum conditions was high in contrast 

with the control containing only waste canola oil as carbon source. The cell biomass profile increases and enter 

the exponential stage under optimum conditions. The trend recommends that Paenibacillus sp. D9 indicates 

better accomplishment when the culturing conditions comprise of waste canola oil and potassium nitrate as 

supplements at a proportion of 2/1, with a metal enhancement combination (MgSO4, MnSO4, and FeSO4). A 

combination of optimized culturing conditions enhanced production yield as well as reduction in ST. When 

waste canola oil and potassium nitrate was selected as the best carbon source and nitrogen source at a ratio of 

2/1, Paenibacillus sp. D9 synthesized a final improved BioS production yield of 2.27g/L and ST was reduced 

to 31.2 mN/m at the end of the experiment. From the result, the outputs highlighted in Figure 6.4a produced 

favourable optimal conditions in comparison to control (Figure 6.4b) where only carbon substrate was utilized. 
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Figure 6.4 Effect of (a) optimal culturing conditions and (b) control on the cell biomass, surface tension 

measurement, and biosurfactant yield during biosurfactant synthesis by Paenibacillus sp. D9. 

 

These outcomes demonstrate advancement of major parameters that influence BioS synthesis by the OVAT 

procedure which was successful to decrease production costs. However, this research was also implicated in 

further enhanced synthesis of BioS to improve their competitiveness in world market. As of now, just a minute 

quantity of BioSs are economically accessible. This is as a result of few issues such as low yields and 

production costs (Vossen, 2014). Expanding customer cognizance towards use of environmental products for 

individual consideration, and other industrial usage may drive BioSs market request. Strong and adaptable 

guidelines relating to business scale synthesis of BioSs will profit industry members in short and long term. 

This facilitated the usage of advance statistical technique towards increasing Paenibacillus sp. D9 BioS 

synthesis as described in section 6.3.5. 
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6.3.5 Response surface methodology  

From this study, RSM was utilized to increase the synthesis of BioS by enhancing operational variables. As 

opposed to basic strategies, the interaction between factors can be predicted by statistical analysis. The 

simultaneous influence of the three variables was performed using regression analysis suitable for the response 

function. From the outcome; 17 experimental designs were achieved, and additional runs were done to 

approximate for controls and error in reproducibility. (Table 6.3). Run 1 provided the best condition for 

improved BioS production for both response variables, as the highest BioS yield agreed with lowest ST value. 
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Table 6.3 Experimental Box–Behnken design runs in Design-Expert 11.0 and corresponding results (the 

response). 

  
Factor 1 Factor 2 Factor 3 Response 1 Response 2 

 Run 
A: Waste frying 

oil 

B: Potassium 

nitrate 

C: Metal 

Supplementation 

Surface 

Tension 
BP 

  
(Canola) 

  
(mN/m) (g/L) 

 1 5 2 1 31.2 5.31 

 2 3 3 1 34.8 2.13 

 3 5 2 3 32.7 4.78 

 4 3 2 2 33.6 3.21 

 5 1 1 2 36.3 1.79 

 6 3 3 3 34.1 2.81 

 7 3 1 1 33.1 3.71 

 8 3 2 2 33.6 3.23 

 9 3 2 2 33.4 3.32 

 10 1 2 1 36.4 1.76 

 11 1 2 3 36.9 1.37 

 12 1 3 2 37.1 1.33 

 13 3 1 3 34.0 2.82 

 14 5 3 2 32.8 4.75 

 15 3 2 2 34.0 3.16 

 16 3 2 2 33.9 3.17 

 17 5 1 2 31.5 5.10 

 

The F-value of 55.33 implies the significance of the model and, in this instance, A, B, BC, and A² were clear 

significant terms. From the ANOVA, the regression equation specified “Pred R-Squared” of 0.8507 was in 

practical conformity with the “Adj R-Squared” of 0.9684 (Table 6.4). There exists reproducibility of the 

experimental data, owing to outstanding low pure error (0.2400).   
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Table 6.4 ANOVA results for the produced surface tension quadratic model 

Source Sum of Squares df Mean Square F-value p-value 

Model 47.66 9 5.30 55.53 < 0.0001 

A-Waste frying oil* 42.78 1 42.78 448.64 < 0.0001 

B-Potassium nitrate* 1.90 1 1.90 19.94 0.0029 

C-Metal Supplementation* 0.6050 1 0.6050 6.34 0.0399 

AB 0.0625 1 0.0625 0.6554 0.4448 

AC 0.2500 1 0.2500 2.62 0.1494 

BC* 0.6400 1 0.6400 6.71 0.0359 

A²* 1.11 1 1.11 11.60 0.0114 

B² 0.1901 1 0.1901 1.99 0.2008 

C² 0.0322 1 0.0322 0.3381 0.5792 

Residual 0.6675 7 0.0954   

Lack of Fit 0.4275 3 0.1425 2.38 0.2110 

Pure Error 0.2400 4 0.0600   

Cor Total 48.32 16    

 

 

The predicted versus experimental plot for ST demonstrated actual values were appropriately close to the 

straight line (Figure 6.5a), which showed that actual values were near the predicted ones (R2 =0.9862). Along 

with this line, it was a suitable model to determine BioS synthesis effectiveness utilizing the previously 

mentioned test parameters. The use of RSM for the valuation of optimal conditions created an experiential 

association between ST and the process factors. The quadratic polynomial condition featured below best fit the 

data: 

X1 = 33.70 - 2.31A + 0.4875B + 0.2750C + 0.15250AB + 0.2500AC - 0.4000BC + 0.5125A2 + 0.2125B2 + 

0.0875C2 in which X1 is ST (m/Nm) and A, B, and C are coded values for waste frying oil, potassium nitrate, 

and metal supplements respectively. 
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Figure 6.5 (a) Plot of actual vs predicted surface tension accomplished utilizing biosurfactant synthesized by 

Paenibacillus sp. D9 (b) Plot of actual vs predicted biosurfactant production yield accomplished utilizing 

biosurfactant synthesized by Paenibacillus sp. D9. 

(b) 

(a) 
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Figure 6.6 shows the 3D plots for ST values (BioS production) to determine the interactions of the independent 

variables tested. Figure 6.6a indicates that potassium nitrate at the middle level with increasing waste canola 

oil produced the lowest value in ST (31.2 mN/m). Figure 6.6b shows that a decreasing ST (32.7mN/m) was 

obtained with both factors (metal supplement and waste canola oil) at a maximum level. Figure 6.6c showed 

that the combination of metal supplement and potassium nitrate at the middle level led to a decrease in ST 

reduction (33.4 mN/m). The oval nature of the 3D graphs obtainable in Figure 6.6a–b indicated a high degree 

of positive interaction amongst the factors in each response plot evaluated. Then again, the level curves in 

Figure 6.6c demonstrated a weak interaction due to parallelism amongst the factors experimented. 
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Figure 6.6 Response surface plots for minimum ST (mN/m) generated using data in Table 4. Reduction in ST 

as function of (a) potassium nitrate (g/L) and waste frying oil (%); (b) metal supplement (mM) and waste frying 

oil (%); (c) potassium nitrate (g/L) and metal supplement (mM). 

The F-value of 121.99 implies the significance of the model and, in this case, A, B, C, BC, A², B² were 

significant terms. The regression equation obtained after ANOVA (Table 6.5) indicated that the “Pred R-

Squared” of 0.9078 is in practical agreement with the “Adj R-Squared” of 0.9855. The predicted versus 

experimental plot for BP yield showed actual values were distributed near the straight line (Figure 6.5b), which 
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presented that actual values were near the predicted ones (R2 =0.9937). There also exist excellent 

reproducibility of the experimental data, owing to the outstanding low pure error (0.163). 

Table 6.5 ANOVA results for the produced biosurfactant production (BP) quadratic model 

Source Sum of Squares df Mean Square F-value p-value 

Model* 25.40 9 2.82 121.99 < 0.0001 

A-Waste frying oil* 23.43 1 23.43 1012.56 < 0.0001 

B-Potassium nitrate* 0.7200 1 0.7200 31.12 0.0008 

C-Metal Supplementation* 0.1596 1 0.1596 6.90 0.0341 

AB 0.0030 1 0.0030 0.1307 0.7283 

AC 0.0049 1 0.0049 0.2118 0.6593 

BC* 0.6162 1 0.6162 26.63 0.0013 

A²* 0.2247 1 0.2247 9.71 0.0169 

B²* 0.1795 1 0.1795 7.76 0.0271 

C² 0.0873 1 0.0873 3.77 0.0932 

Residual 0.1620 7 0.0231   

Lack of Fit* 0.1457 3 0.0486 11.93 0.0183 

Pure Error 0.0163 4 0.0041   

Cor Total 25.56 16    

 

The quadratic polynomial equation highlighted below best fit the BP data. The utilization of RSM for the 

valuation of the optimal conditions created an experimental relationship between the process factors and BioS 

yield.  

Y1 = 3.22 + 1.71A – 0.3000B – 0.1412C + 0.0275AB – 0.0350AC + 0.3925BC + 0.2310A2 – 0.2065B2 – 

0.1440C2 in which Y1 is BS production yield (g/L) and A, B, and C are coded values for waste frying oil, 

potassium nitrate, and metal supplements respectively. 
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Results revealed in Figure 6.6a–c are analogous to those found in Figure 6.7a–c for ST. The interaction between 

the three substrates (waste canola oil, KNO3, and metal supplement) should be measured successively as 

demonstrated by RSM, rather than individually. BioS yield was at a maximum (5.31 g/L) when waste canola 

oil increased at the maximum level and KNO3 remained at the middle level (Figure 6.7a). The conditions 

achieved in Run 1 proved to be the most suitable with respect to the process effectiveness and production costs. 

The oval nature of the 3D plots demonstrates a high level of interaction between the parameters. There was 

substantial parallelism with the 3D plot curve in Figure 6.7b demonstrating the weak interaction between the 

two factors (metal supplements and KNO3). However, the combination of the minimum concentration of metal 

ion supplement and maximum waste frying oil resulted in increased BioS yield with an oval 3D plot curve 

(Figure 6.7c).  
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Figure 6.7 Response surface plots for minimum BP (g/L) obtained with data in Table 4. Biosurfactant 

production as function of (a) potassium nitrate (g/L) and waste frying oil (%); (b) metal supplement (mM) and 

potassium nitrate (g/L); (c) waste frying oil (%) and metal supplement (mM). 

The result from this study produced a lower ST of 32.7 mN/m thus proposing a better BioS activity. Thus, a 

better production yield of 5.31 g/L obtainable provides a considerable process parameter in the BioS market 

enabling its availability as a low-cost alternative for future use. Batista et al. (2010) reported an ST reduction 
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of 33.66 mN/m and maximum BioS yield of 3.61 g/L utilizing waste frying oil as substrate by Candida 

tropicalis. Oliveira and Garcia-Cruz, (2013) used 5% waste frying oil as carbon substrates, obtained maximum 

BioS yield of 5.7 g/L and ST of 45 mN/m by Bacillus pumilus. The diverse features affecting the BioS synthesis 

have been considered in the most recent years, however few of these, used appropriate statistical tools for 

experimental design and modification (Franzetti et al., 2009). The orthodox method of medium optimization 

includes the OVAT studies approach. This strategy is tedious and leads to negligence in the interaction between 

factors, with no guarantee in definite determination of the best optimal conditions. In comparison to literature, 

different microorganisms have been additionally considered utilizing waste frying oil as the carbon source. de 

Cássia FS da Silva et al. (2013) described the use of RSM in the utilization of low-cost medium formulated 

with 2% waste frying oil, 3% corn steep liquor, and 0.2% NaNO3. The bacterium, Pseudomonas cepacia 

CCT6659 achieved maximal ST reduction of 26 mN/m and BioS yield of 8.0 g/L. Mnif et al. (2012) employed 

RSM to increase lipopeptide BioS yield (4.5 g/L) produced by Bacillus subtilis SPB1 with a medium made up 

of sesame peel flour (33 g/L) and diluted tuna fish cooking residue (40%). Economical processes discussed 

above employ low-cost materials and relatable process parameter. These are important towards successful BioS 

production and eventually solve the major setback regarding high production cost (e Silva et al., 2014; Rufino 

et al., 2014).  

6.3.6 Bioremediation of diesel and motor oil from contaminated sand under shaking and 

static conditions 

BioS can increase the transport of hydrophobic contaminants toward aqueous phase through some interactions, 

bringing about emulsification, micellization, pollutants removal and biodegradation (Jimoh and Lin, 2019; 

Lawniczak et al., 2013). Table 6.6 shows the number of hydrophobic compounds (%) removed from the 

contaminated sand after treatment with cell-free broth, BioS, a chemical surfactant or distilled water (used as 

a control). It is imperative that the cell-free supernatant and the isolated BioS removed a comparative measure 

of oil. The high biodegradation efficiency observed in the cell-free broth over the isolated BioS (76.3% motor 

oil and 74.4% diesel) might be due to “compounds other than the purified BioS” or during purification, some 

BioS activity has been destroyed. The use of isolated BioS produced biodegradation efficiency rate of 73.2% 

for motor oil and 71.2% for diesel from the contaminated sands. Then again, the synthetic surfactant (SDS) 

demonstrated potential for eliminating diesel and motor oil, yet these qualities were lower than obtained results 
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in sand treated with BioS. Though the synthetic surfactants present comparable productivity for this 

application, they are dangerous to the environment because of their toxicity and low biodegradability. The use 

of BioS for the bioremediation of both diesel and engine oil from polluted sand is ideal over manufactured 

synthetic surfactant. This was in concurrence with a past report (Marchant and Banat, 2012a). The 

environmental and ecological friendly BioS had a higher removal efficiency as compared to the chemical 

surfactant. This gives an inference that BioS has preferable biodegradation proficiency over its chemical 

counterpart, i.e., SDS in the bioremediation of oil-polluted sand (Table 6.6). As reported by other researchers, 

BioSs produced are more efficient at removing hydrocarbon mixtures than chemical surfactant (de França et 

al., 2015; Jimoh and Lin, 2019b). The BioS produced by Paenibacillus sp. D9 has feasible application in 

microbial enhanced microbial oil recovery (MEOR) and solubilization of contaminated sands. This report is 

also akin to two previous reports. Bacillus subtilis CN2 BioS recovered 84.6% of motor oil from contaminated 

sand and 78–81% of motor oil removal from oil-contaminated sand was achieved by Paenibacillus 

dendritiformis BioS (Bezza and Chirwa, 2015; Bezza and Nkhalambayausi Chirwa, 2015). 

 

Table 6.6 Removal of diesel and motor oil from contaminated sand by Paenibacillus sp. D9 biosurfactant, cell-

free fermentation broth, and chemical surfactant 

 Shaking Assay  

 Motor oil removal (%) Diesel oil removal (%) 

Biosurfactant 73.2 ± 0.3 71.8 ± 0.2 

Fermentation broth (Cell Free) 76.3 ± 0.3 74.4 ± 0.3 

Chemical surfactant (SDS) 58.8 ± 0.5 57.1 ± 0.5 

Distilled water 11.5 ± 0.5 11.4 ± 0.6 

 Static Assay  

Biosurfactant 63.3 ± 0.2 59.3 ± 0.1 

Fermentation broth (Cell Free) 67.3 ± 0.3 66.4 ± 0.2 

Chemical surfactant 50.3 ± 0.5                                                                                                                                                                                                                                                                                                              53.1 ± 0.5 

Distilled water  7.5 ± 0.4 7.6   ± 0.6 

The values are represented as mean, ‘±’ indicates the SD (standard deviation) 
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From this research, the effect of BioS and chemical surfactant on solubilization of oil-contaminated sands was 

also determined on static condition (packed column). Studies on microbially enhanced oil recovery provide a 

bench-scale approach for several reasons such as simultaneous set-up of the column and inexpensive model 

provision (Chaprão et al., 2015; Suthar et al., 2008). The crude and the isolated BioS synthesized by 

Paenibacillus sp. D9 could eliminate high percentages of motor oil and diesel from packed columns (Table 

6.6). In view of its surface activity, Paenibacillus sp. D9 BioS was effective in the removal of diesel and motor 

oil. It is also interesting to observe that kinetic conditions proffered higher removal percentages to static 

condition. Thus, orbital agitation increased the interaction between the BioS and the hydrophobic pollutants.  

Serratia marcescens BioS produced MEOR efficiency of 76% for crude oil from sand column compared to 

control experiment (Ibrahim et al., 2013). Water performance in both the removal of motor oil and diesel was 

negligible as it contributed to 7.5% and 7.6% efficiency of the hydrocarbons, respectively, as shown in Table 

6.6. Similarly, Khalladi et al. (2009) proposed water performance in diesel fuel removal was negligible, as it 

contributed to 24.7% hydrocarbon (n-alkanes) elimination. Rhodococcus ruber BioS removed oil from the soil 

core in 1.4–2.3 times better than a chemical surfactant. From this study, Paenibacillus sp. D9 BioS removed 

hydrophobic pollutants better than chemical surfactant tested under static experimental conditions. However, 

results differ on several factors such as surfactant type, its concentration, kind of soil and sand components 

(Chaprão et al., 2015; Suthar et al., 2008). BioS adsorbed to soil components was lower compared to a chemical 

surfactant, due to total penetration through the soil column with 65% – 82% of crude oil removal (Kuyukina 

et al., 2005).  

6.3.7 Bioremediation of motor oil and diesel fuel in an aqueous environment 

The widespread use, improper disposal, accidental spills of diesel, motor oil, engine oil, crude oil, and crude 

oil related products into different ground and surface water sources such as streams, lakes, oceans, rivers, and 

so on is jeopardizing our human health and wellbeing. Diesel fuel and motor oil pollution of ground water is 

often a natural or accidental issue (Vossen, 2014). The bioavailability of diesel fuel and motor oil can be 

increased by the addition of BioSs which will increase diesel oil mobility and solubility, enabling subsequent 

solubilization of pollutants. Table 6.7 shows the number of hydrophobic compounds (%) removed from an 

aqueous environment after treatment with cell-free broth, BioS, a chemical surfactant or distilled water (used 

as a control). This experiment tends to analyze the probable environment that is favourable to the biomolecule 

in removing the contaminant and to understand factors affecting the performance of the different variables. 
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The isolated BioS produced biodegradation efficiency rate of 77.6% for motor oil and 74.3% for diesel from 

the aqueous environment under shaking conditions. It is imperative to note that the cell-free supernatant and 

the isolated BioS eliminated a comparable amount of oil, emphasizing the efficacy of the biomolecule 

synthesized by Paenibacillus sp. D9. Thus, under shaking conditions, the lipopeptide BioS removed both diesel 

and motor oil contaminants better than the values observed above in solid environment, however, different 

results were observed under static assay.  

Table 6.7 Removal of diesel and motor oil from aqueous environment Paenibacillus sp. D9 biosurfactant, cell-

free fermentation broth, and chemical surfactant 

 Shaking Assay  

 Motor oil removal (%) Diesel oil removal (%) 

Biosurfactant 77.6 ± 0.5 74.3 ± 0.3 

Fermentation broth (Cell Free) 79.2 ± 0.6 77.6 ± 0.6 

Chemical surfactant (SDS) 59.2 ± 0.4 57.7 ± 0.3 

Distilled water 2.7 ± 0.3 2.1 ± 0.3 

 Static Assay  

Biosurfactant 62.2 ± 0.4 57.4 ± 0.4 

Fermentation broth (Cell Free) 64.1 ± 0.2 60.3 ± 0.2 

Chemical surfactant 40.8 ± 0.4                                                                                                                                                                                                                                                                                                              44.0 ± 0.7 

Distilled water  2.1 ± 0.2 1.9   ± 0.4 

The values are represented as mean, ‘±’ indicates the SD (standard deviation) 

 

The higher removal notable was due to the amphiphilic nature of the BioS, increased solubility, and mobility 

in the liquid medium as compared to solid environment. Due to the amphiphilic nature of BioS, there was 

reduction in ST and bioavailability of hydrophobic or insoluble organic compounds (Bezza and 

Nkhalambayausi Chirwa, 2015). Though, the results indicated some low removal percentages on the 

contaminants under static conditions when compared to the same experimental conditions in a solid 

environment. The variance in the output might be due to more time needed for the acclimatization of this 

amphiphilic BioS to the different contaminants. This explains that agitation increases the interaction between 

the BioS from Paenibacillus sp. D9 and the contaminants (diesel and motor oil). Also, in liquid environment, 



205 

 

both the isolated BioS and cell-free broth produced a better bioremediation removal capability in comparison 

to chemical surfactant. Surfactants of microbial origin can possibly advance the mobilization and solubilization 

on hydrocarbons. They do this by emulsification, and pseudo-solubilization which allows expansion of the 

surface area between oil and water (Vossen, 2014). Pacwa-Płociniczak et al. (2011) likewise express that 

introduction of BioSs can improve emulsification, solubilization, and subsequent degradation of hydrocarbons.  

The produced BioS produced from Paenibacillus sp. D9 are highly efficient for a sustainable environment 

devoid of pollutants. The efficacy of the BioS produced in bio-remediating different environmental conditions 

has also not been relatively tested, hence the impact of this study. As such, the BioS produced on low-cost 

substrate (waste canola oil) propose a great contribution to literature and overall importance to the world BioS 

market as the problem associated with high cost of production would become a thing of the past. 

6.4 Conclusion 

This research highlighted the success of BBD and RSM to detect the optimal conditions for increased BioS 

production yield from Paenibacillus sp. D9. The result produced a lower ST of 32.7 mN/m and improved BioS 

yield of 5.31 g/L. Furthermore, Paenibacillus sp. D9 BioS increased the solubilization of hydrophobic motor 

oil and diesel from contaminated sand and aqueous environment, thereby increasing the pollutants 

bioavailability and subsequent degradation. As observed, BioS was more effective than the manufactured 

synthetic surfactant. Thus, the BioS can be utilized as environmentally-friendly and inexpensive approach for 

bioremediation of oil components. 
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Abstract 

This study assesses Paenibacillus sp. D9 biosurfactant synthesis in cheap substrates, its functional properties, 

and applicability for varying biotechnological processes. Different experimental set-ups were made for oil 

dispersion, heavy metal removals from contaminated environments, detergent formulations, and washing 

performances. The detection of concentrated metals from the samples was performed using a multi-element, 

inductively coupled plasma-optical emission spectrometer (Perkin Elmer) with sample atomization in acetylene 

flame and compressed air. The study revealed surface tension activities of 31.7 – 32.7 mN/m, and a maximum 

biosurfactant yield of more than 8 g/L, regardless of the inoculum size used. Removal of 85.90%, 98.68%, 

99.97%, 63.28%, 99.93%, and 94.22% was obtained for Ca, Cu, Fe, Mg, Ni, and Zn, respectively from 

contaminated acid mine effluents. The biosurfactant produced a better performance in removing different metal 

components from contaminated acid mine effluents and vegetables including improved oil dispersing activity 

in comparison to chemical surfactants. There was high removal of heavy metals from synthetic wastewater and 

contaminated sands. A comparative study of different formulations showed that the biosurfactant was more 

efficient (> 60%) for the removal of tomato sauce and coffee stains than chemical surfactants (< 50%). Besides, 

Paenibacillus sp. D9 biosurfactant synergistically enhanced the removal of tomato sauce and coffee stain from 

64.0% to 76.7% and 60.5% to 71.5%, respectively. Therefore, the biosurfactants are probable green 

biomolecules to substitute chemical surfactants and detergents, thus reducing hazards, and contamination 

caused to the environment. The future use of this biosurfactant is highly promising in biotechnology.  
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7.1 Introduction 

At the present time, there has been huge emphasis positioned at the devastating effects and severity of the 

usage of synthetic surfactants on the environment (De Almeida et al., 2016). This is based on their highly toxic, 

persistent nature, and non-biodegradable properties (Sarubbo et al., 2015b). Environmental dangers associated 

with oil spills in affiliation with heavy metals have limited bio-technological advancements (De Almeida et 

al., 2016). This ultimately creates a market for alternative “greener” technology. A more sustainable 

development involving biological molecules called biosurfactants (BioSs) have been given increased 

recognition over the years (Santos et al., 2016). The desirable functional properties of BioSs have driven their 

use over the past few decades. They are highly specific, emulsify, have good biocompatibility, are suitable for 

wetting, foaming, and are overall biodegradable (Santos et al., 2016). In comparison to chemical surfactants, 

they offer a better and more eco-friendly approach due to their low toxicity as recommended by the World 

Health Organization (Anyanwu et al., 2011). The stability of a BioS under extraordinary environmental 

conditions due to surface-active properties depicted its possibility for usage in oil recovery, heavy-metals 

bioremediation, as well as, food industry (Syahriansyah and Hamzah, 2016; Zhao et al., 2017).  

Oil contaminants and petroleum hydrocarbon exists as different forms in the environment such as desorption 

in water, soil particles adsorption, absorption in soil particles, or presentation at separate phase, which could 

be a solid or liquid phase (Bezza and Nkhalambayausi Chirwa, 2015). The utilization of surfactants to improve 

solubilization is one of the viable approaches required to increase the mobilization of hydrophobic 

contaminants. Notwithstanding, exorbitant cost and toxicity of the synthetic tensioactive agents forestall far-

reaching utilization of these surfactants (Santos et al., 2016). Besides hydrocarbons, persistent soil 

contaminants are heavy metals, posing threats on the ecosystem and human wellbeing indirectly through 

regular lifestyle or by direct contact to the pollutant (Santos et al., 2016). Since heavy metals are not 

biodegradable, their removal from soil is particularly challenging, and the conventional remediation usually 

involves the excavation and transport of the soil for landfill, which is a highly costly process that poses many 

disadvantages (Usman et al., 2016). Another issue associated with heavy metal contamination is the ability to 

contaminate plants and undergo subsequent biomagnifications throughout the food chain (Anjum et al., 2016). 

The continuous ingestion of foods contaminated with heavy metals may lead to detrimental and severe health 

risks to both humans and animals, as this can lead to the successive accumulation (Singh and Kalamdhad, 

2011). In another context; chemical surfactants, household and laundry cleaning products necessitate the 

innovation of eco-friendly formulations, due to their toxicity on the environment. This need is heightened 



215 

 

further because chemical surfactants comprise almost 15─50% of detergent products composition, with the 

rest being additives such as fabric softener, enzymes, and bleaching agents (Bouassida et al., 2018).  

Despite the plethora of microorganisms producing various BioSs, showing good potential in many applications, 

there are still a few challenges to overcome in terms of cost and production yield. These problems need to be 

addressed before BioSs can be considered as commercially viable (Patowary et al., 2017). Exploitation of 

various low-cost substrates is a means of overcoming these challenges associated with combating the cost 

implication of the bioprocess (Yañez-Ocampo et al., 2017). Most microorganisms can grow and sustain 

themselves using the nutrients present in many cheap substrates and waste products, thus minimizing the cost 

involved (Santos et al., 2016). Cost-effective and renewable carbon sources like molasses, soybean oil, waste 

frying oil, palm oil, and agricultural residues are now being used for BioS production due to the excessive cost 

in producing these compounds when using glucose, glycerol, hydrocarbons and other substrates (Santos et al., 

2016).  

This finding together with the current movement towards sustainability ultimately creates a demand for new 

formulations and improvements in the environmental and biotechnological industry. Jimoh and Lin, (2019) 

demonstrated that the lipopeptide BioS produced by Paenibacillus sp. D9 exhibited good performance in the 

degradation of highly toxic substances. Having considered the different prospects of BioS in improving 

environmental, and biotechnological sustainability, this research was involved in evaluating the effects of low-

cost substrates on Paenibacillus sp. D9 BioS synthesis and its potential use in oil dispersal, detergent/washing 

formulations, heavy metals removal from vegetables and contaminated environments. Furthermore, the toxicity 

and efficiency of the BioS was evaluated in survival trials with Brassica oleracea, Lactuca sativa, and brine 

shrimps. 

7.2 Materials and methods 

7.2.1 Materials, chemicals, and reagents 

All chemicals were purchased from Sigma Aldrich, Co, USA. Sodium tripolyphosphate and sodium sulfate 

utilized as builder and filler were of analytical grade. Waste frying oils (sunflower, and coconut) were acquired 

from different restaurants in the city of Durban, Kwazulu-Natal, Republic of South Africa. Waste frying oil of 

plant, animal, or synthetic fat were previously used in frying, baking, and other types of cooking. They were 

stored in the laboratory until further usage. The waste oils are vegetative carbon source, lipidic in nature (16-
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20 carbon atom chains) comprised majorly of saturated or unsaturated fatty acids. Two available commercially 

detergent was purchased from the Durban market, South Africa. Chemical surfactants; sodium dodecyl sulfate 

(SDS), and Triton X-100 were purchased from Sigma Aldrich, USA for comparative study. The contaminated 

samples (primary effluent) used in the experiments were obtained from acid mine drainage, northern KZN, 

South Africa.  

7.2.2 Growth, and maintenance of Paenibacillus sp. D9  

A culture of Paenibacillus sp. D9 was obtained from the Microbiology Department, School of Life Sciences, 

University of Kwa-Zulu Natal, Westville Campus. A single colony of the bacterial culture was placed in a 5-

mL tube for growth overnight at 30°C. The extract was then centrifuged at 10, 000 rpm for 10 min and the 

pellet washed twice with phosphate-buffered saline of the composition: (g/L) 0.24 KH2PO4, 1.42 Na2HPO4, 8.0 

NaCl, 0.2 KCl with pH adjusted to 7.6 ± 0.2. The remaining pellet in the Bushnell Haas (BH) medium was 

then suspended and the optical density (OD) value adjusted to 1.0 at 600 nm. The Paenibacillus inoculum was 

kept at 4°C until further use.   

7.2.3 Biosurfactant production, extraction, and recovery 

BioS production was carried out in BH medium composition (g/L): K2HPO4 1.00, KH2PO4 1.00, MgSO4·7H2O 

0.20, FeCl3 0.05, CaCl2 0.05, CaCl2 0.02, NH4NO3 1.00, pH of 7.0 ± 0.2. Waste coconut (5.0%), and waste 

sunflower oil (5.0%) were utilized as low-cost substrates in a 500 mL flask, with the variation of inoculum 

sizes ranging from 1 to 3 mL. The flasks were incubated at 30°C for 7 days, the solutions were centrifuged, 

and the culture filtrates were used in the experiments. The increase or decrease in OD was determined using a 

spectrophotometer (Schimadzu, Japan) at 600nm wavelength. The production medium allowed for clear 

separation of hydrophobic layer containing the substrates and hydrophilic layer containing the bacterial cells. 

The spectrophotometer was blanked with the medium containing the waste substrate mixtures during the 

measurement of OD600 value.  

At the end of the production period, the crude BioS was obtained by centrifugation (13 500 × g, 20 min) and 

acid precipitation. The pH of 40 mL “cell-free supernatants (CFS) retrieved immediately after centrifugation” 

was adjusted to 2.0 by the addition of 6 N HCl and maintained at 4°C overnight. The extracts were then washed, 

lyophilized, weighed, and stored. The crude BioS was purified according to the procedures defined below 

(Deng et al., 2016). The sample was then liquefied in methanol, mixed with silica gel (230–400 mesh) and 
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subsequently oven-dried at 50°C. The silica gel was further mixed with chloroform and then loaded onto a 

chromatography column (50 cm × 2.8 cm). A mixture of ethyl acetate/chloroform in different proportions 

(100% to 0% with 10% interval), was used in the sequential washing of the loaded column at a flow rate of 0.5 

mL/min. A UV spectrophotometer (Cary 60, Agilent Technologies Australia) with a range of 200–800 nm was 

used to monitor the absorption wavelength of the mixtures to determine the fractions containing the BioS. The 

eluents (20 mL) were collected and the fractions showing oil-displacement activity were thoroughly mixed. 

This was followed by evaporation at 80oC to acquire purified sample (Deng et al., 2016). The purified BioS 

was confirmed for surface properties before its further usage. The CFS and the purified BioS described above 

were utilized for different application set-ups. 

7.2.3.1 Surface tension 

Surface tension (ST) was determined with a K6 Tensiometer (KRÜSS GmbH, Germany) using 1.9 cm De 

Noüy platinum ring at room temperature. The culture medium was centrifuged at 13,500 × g for 20 min to 

obtain a 40 mL CFS (Gudiña et al., 2012). For calibration, the ST of distilled water was first measured. The 

ST of BH medium supplemented with the waste frying oils (sunflower, and coconut) were analyzed and 

determined as controls. All readings were produced as three independent experiments with a mean ST value 

used. 

7.2.3.2 Critical micelle concentration 

Critical micelle concentration (CMC) was analyzed by measuring the ST sequences of a series of dilutions of 

BioS concentrations using Tris-HCl buffer solution, pH 8 (Sharma et al., 2015). A stock solution of the crude 

BioS (1 g/L) was prepared and various dilutions made to obtain a range of the concentrations from 10 to 1000 

mg/L. The common experimental procedure is to determine the intersection point of two straight lines that best 

through the CMC (pre- and post-) data and BioS concentration.  

7.2.4 Heavy metal removal from contaminated acid mine drainage effluents 

Removal of heavy metals from acid mine drainage samples were evaluated according to the methodology 

proposed by Dahrazma and Mulligan, (2007). Ten mL of each contaminated sample was transferred to different 

falcon tubes and, approximately 10 mL of the BioS (500 mg/mL; ST; 30.9 mN/m), sodium dodecyl sulfate 

(SDS) (500 mg/mL; ST; 30.9 mN/m), CFS (ST; 30.9 mN/m) added separately to the experimental set-up. The 

samples were incubated at room temperature for 24 h, and subsequently, all samples were filtered through 0.42 
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µm membrane filter. The detection of the concentrated metals was performed using a multi-element, 

Inductively Coupled Plasma-Optical Emission Spectrometer (Perkin Elmer) with sample atomization in 

acetylene flame and compressed air. The initial heavy metal effluent composition included Ca 177.88 ppm, Cu 

157.67 ppm, Fe 273.6 ppm, Mg 119.83 ppm, Ni 114.03 ppm, and Zn 315.1 ppm, respectively. The control 

experiment was achieved without the introduction of the bio-molecule treatments. The percentage of heavy 

metals removed was determined based on the metals content (control) in the aqueous solution using the 

following equation; 

 β = (HMC – HMF)/ HMC × 100  

Where; HMC; concentration of heavy metals (control, i.e. without treatment), HMF; final concentration of 

heavy metals (after treatment by lipopeptide BioS). 

7.2.4.1 Determination of physicochemical properties of contaminated effluent 

Physicochemical analysis of the contaminated acid mine drainage effluents was performed to analyze the effect 

of some factors, which plays a vital role in the heavy metal removal process. The parameters such as pH, 

electrical conductivity, salinity, and total dissolved solids were carried out according to standard procedures. 

Electrical conductivity, salinity, and total dissolved solids were measured as per the instruction manual 

supplied with the instrument Hatch HQd Portable Meter. The sample pH was analyzed with the aid of 3510 

pH meter (Lasec, Jenway). Phosphate and sulfate concentration was determined according to the American 

Public Health Association standard. Following treatment with Paenibacillus sp. D9 BioS, cell-free broth, and 

SDS, the parameters were measured as stated earlier. All readings were performed in triplicate and deionized 

water was used as control. 

7.2.5 Heavy metal removal from the different vegetables 

The different biomass (potato, cucumber, tomato, onion) were washed extensively with running tap water for 

30–40 min to remove the particulate matter and dirt. The external parts were pulverized into little pieces, and 

subsequently immersed in 1:1 HCl solution for 10 min. The different biomass were further washed with twofold 

deionized water (Anjum et al., 2016). A stock solution of cadmium chloride (1000 mg/L) was prepared in Milli 

Q for the detection of cadmium (Cd). Upon the introduction of diphenyl carbazide, a violet color was 

developed, and was measured at an absorbance of 540 nm. Vegetables were exposed to cadmium chloride 

(0.40, 0.60, and 0.80 mg/mL) for 30 min. The diphenyl carbazide was added to develop violet color and change 
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in concentration due to absorption was determined by the absorbance at 540 nm. The vegetables from the same 

stock were treated with BioS, to allow the absorption of cadmium chloride with the biomolecule. The cadmium 

ion removal percentage due to adsorption was determined as 

% Cd removal = (Ci – Cf)/Ci × 100, where  

Ci = initial concentration of cadmium (mg/mL), Cf = final concentration of cadmium (mg/mL) (Anjum et al., 

2016). 

7.2.6 Preparation of standard sand with heavy metals 

A metal solution [Pb (NO3)2 + ZnSO4. 7H2O + CuSO4. 7H2O)] was used to contaminate artificial standard 

sand. The final concentration of 1000 mg/L was achieved through the addition of separate salts dissolved 

initially in deionized water without pH adjustment. The sand with the salt solutions containing heavy metal 

was left in contact for proper mixing in an orbital shaker (200 rpm, 25°C) for 2 days. The non-adsorbed metals 

present in the solution was removed by centrifugation for 10 min at 5000 rpm. The contaminated sands were 

further dried in an oven at 55°C for 24 h while the supernatant obtained was discarded. The initial and the final 

weight of the sand was considered to confirm the adsorption of the heavy metals on the contaminated sand. 

7.2.6.1 Treatment of contaminated sand with biosurfactant 

The sequential treatment of contaminated sand was performed utilizing the purified BioS at full CMC, as well 

as, crude BioS and CFS. Chemical surfactant (SDS), and distilled water were both used as controls. The 

experiment was also tested with a 1% HCl solution which was considered both individually and in combination 

with BioS and CFS. Fifty mL of the solution was introduced at different CMC concentrations and 10 g of sand 

were subsequently transferred to make a final experimental set-up in a 500 mL Erlenmeyer flask. The samples 

were incubated in an orbital shaker for 48 h at 25°C, followed by centrifugation at 5000 × g for 10 min. The 

supernatants collected were analyzed for the residual heavy metal concentration using multi-element, 

inductively coupled plasma-optical emission Spectrometer (Perkin Elmer). The percentage of heavy metals 

removed was determined based on the metals content (control) in the aqueous solution of the contaminated 

sand as described above. 
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7.2.7 Biosurfactant treatment of synthetic wastewater contaminated with heavy metals 

The BioS produced was tested for its capability in removing heavy metals from Phoenix wastewater effluent. 

The synthetic wastewater after analysis contained a substantial amount of Pb and Zn. The concentrated 

wastewater was treated separately through the addition of BioS at ½ CMC, full CMC, 2× CMC, and crude 

BioS to test the ability of the biomolecule to bind to heavy metals present in the aqueous solution (Santos et 

al., 2017). The conductivity of the resulting solution was measured using the instrument Hatch HQd Portable 

Meter after removing the metal-BioS precipitate. The Hatch HQd Portable Meter was calibrated with de-

ionized water, prior to the measurement of each sample. The percentage of heavy metals removed was also 

determined based on the metals content (control) in the aqueous solution (synthetic wastewater) as described 

in the equation above. 

7.2.8 Oil dispersion assay 

The BioS extracted from Paenibacillus sp. D9 was used for its oil dispersing ability according to the 

methodology described by Andrade Silva et al. (2014). A thin layer of oil on the water surface was formed by 

the addition of 250 µL of engine oil to the center of 40 mL of distilled water in a petri dish (10 cm). The 

formation of a clear zone was a positive result for the presence of the BioSs oil dispersing properties. SDS and 

Triton X-100 were also tested since they are well-known chemical surfactants capable of dispersing oil. The 

supernatant from the culture was also tested for this property. The oil displacement rate (expressed in %) was 

attained by measuring the displacement diameter after 30 seconds, relative to the diameter of the petri dish. 

The rate of oil displacement was calculated as
Initial Diameter (cm)

Petri dish diameter (cm)
 x 100. Results were conducted in 

triplicate and compared relative to negative control of distilled water.  

7.2.9 Evaluation of wash performance and detergent formulation 

White dry cotton cut into 5 cm2 pieces were stained with 1.25 mL of sunflower oil-tomato sauce and coffee 

subsequently dried at 40oC overnight. Two sets of formulations were used with the composition of each set as 

shown in Table 7.1. To test the wash performance in the first set of experiments, white cloth was either was 

dipped in any one of the following flasks as stated in Table 7.1 containing (i) 50 mL of tap water (control), (ii) 

40 mL tap water and 10 mL of 1.0% (v/v) of each detergent solution, (iii) 40 mL tap water and 10 mL of 1.0% 
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(v/v) bio-commercial detergent solution, (iv) 40 mL tap water and 10 mL of 1.0% (v/v) BioS solution, or (v) 

40 mL tap water and 5 mL each of 1.0% (v/v) detergent and BioS solution.  

 

Table 7.1 The composition of the experimental set of formulations 

Surfactant/Formulation BioS DA DB BCD SDS X 

F1 (Tap only)    -  -  - - - - 

F2 10% w/v  - - - - - 

F3    - 10% v/v - - - - 

F4 - - 10% v/v - - - 

F5 - - - 10% v/v - - 

F6 5% w/v 5% v/v - - - - 

F7 5% w/v - 5% v/v - - - 

F8 5% w/v - - 5% v/v - - 

F9 - - - - 10% w/v - 

F10 - - - - - 10% v/v 

BioS; Biosurfactant, BCD; Bio-commercial detergent, DA; Detergent A, DB; Detergent B, SDS; Sodium 

dodecyl sulfate; F; Formulation, X; Triton X-100 

 

Flasks were rotated at 200 revs/min for 40 min at room temperature (25°C), followed by the removal of cloth 

pieces from the flasks, and the left-over wash solution was decanted carefully to avoid soap bubbles. This post- 

wash water was used to determine the removal of stain from the white fabric cloths. The percentage of stain 

removal from the white cotton was calculated with the following equations, 

Increase in the removal of stain = B – A/B – C      (1) 

D = B – A; and E = B – C          (2) 

Where, A = initial weight of the flask before washing, B = weight of the flask + addition of stained white 

cotton, and C= Final weight of the flask after washing. 

% stain removal = (D – E/D) × 100        (3) 



222 

 

7.2.10 Toxicity of formulated biosurfactant against Brassica oleracea, and Lactuca sativa  

The phytotoxicity of the produced BioS was assessed by a static test including the seed germination and root 

development of cabbage (Brassica oleracea) and lettuce (Lactuca sativa) (Santos et al., 2018). Distilled water 

was used to prepare isolated BioS in different concentrations of 1 mg/L to 200 mg/L (CMC). The toxicity 

experiment was determined in sterilized Petri dishes (1 cm × 10 cm) containing filter paper. Twenty-five seeds 

were inoculated in each Petri-dish containing 5 mL of the test solutions. The seed germination, root elongation 

(≥ 5 mm) and germination index (GI) were determined below after seven days of incubation (20°C). 

Relative seed germination (%) = (ns/nc) × 100      (1) 

Where ns it the number of seeds germinated in the sample and nc that in the control, 

Relative root length (%) = (Ls/Lc) × 100       (2) 

Where Ls is the sample root length (mean), and Lc that in the control, 

GI (%) = [(% seed germination) / (% root length)] x 100     (3) 

7.2.11 Biosurfactant toxicity to brine shrimp 

Brine shrimp (Artemia salina) was used as a toxicity indicator on different concentrations of isolated BioS. 

Different concentrations of BioS solutions such as, 0, 1, 10, 100 and 200 mg/L (CMC) were tested in this 

experiment. The assays were carried out using 10 brine shrimp larvae contained in 5 mL aqueous solution (33.3 

g/L marine salt solution) in a total of 10 mL glass tubes. Subsequently, 10 mL of each BioS solution at 

concentrations listed above was introduced in each tube containing the brine shrimp larvae. The tubes were 

observed for 24 h to determine the rate of mortality. The 50% lethal concentration (LC50) to kill brine shrimp 

within 24 h is defined as the toxicity threshold concentration. 

7.2.12 Statistical analysis 

All the experimental data were expressed in terms of arithmetic averages of at least three independent 

replicates, with standard deviation (±). Significance was ascribed using ANOVA at the 95% confidence level.  
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7.3 Results and discussion 

7.3.1 Biosurfactant production in combination of low-cost substrates 

The capability of Paenibacillus sp. D9 to utilize a combination of low-cost substrates for maximum production 

yield is presented in Table 7.2. However, due to high substrates used (10%), inoculum conditions were varied 

to ascertain the ability of Paenibacillus sp. D9 to withstand selective pressure and concentration. At the end of 

the experiment, there was increase in OD of the medium indicating a growth-associated BioS production. 

Results provided in Table 7.2 reveal ST activities of around 31.7–32.7 mN/m, and maximum Paenibacillus sp. 

D9 BioS yield of more than 8 g/L, regardless of the inoculum sizes used. The outcomes showed significance in 

relative to control samples with no production of BioS yield. This however, ruled out any possibilities of the substrates 

co-precipitating with the isolated BioS. High reduction in ST from the low-cost production media indicate high 

production of BioS, thus the great yield obtained. There was no significant difference between the BioS activity 

output (ST, and BioS yield), thus the differences in inoculum size are inversely proportional to the high 

concentration of the substrates used. The ST achieved in this research showed high influence of the BioS synthesized 

as the control sample containing the low cost-substrates only reduced from 71.4 mN/m to 67.8 mN/m). Conversely, 

a greater rhamnolipid BioS yield of 13.93 g/L was achieved by a non-pathogenic microorganism Pseudomonas 

sp. SWP-4 utilizing waste cooking oil (Lan et al., 2015). Also, the utilization of soybean oil refinery wastes 

which is another low-cost substrate by Pseudomonas aeruginosa MR01 led to maximum production yield of 

9.64 g/L (Partovi et al., 2013). Improvement in production procedures and use of inexpensive substrates lowers 

the initial costs and doubles the benefit of reducing the pollutants while producing useful products. The 

probable usage of low-cost substrates for improved BioS yield is of great significance to counter the high cost 

of production. The present work assesses a few residuals from food restaurants to deliver BioS by Paenibacillus 

sp. D9. The waste frying oils utilized was obtained at a relative no expense as an alternate medium. This will 

significantly diminish the costs associated with large scale production of BioS. This investigation sheds light 

on the elective usage of waste cooking oil as a high-vitality source for the synthesis of high-value products as 

lipopeptide BioS. 
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Table 7.2 Cell growth, biosurfactant yield, and the surface tension value of its supernatant grown in a BH 

medium supplemented with 10% low-cost substrates (waste coconut, and sunflower oil). The cell growth was 

measured by using UV spectrophotometer (OD600). Biosurfactant yield attained by weighing lyophilized 

products while surface tension values were examined at room temperature (25°C). 

Inoculum size OD600 Biosurfactant yield Surface Tension 

1% 1.97 ± 0.04 9.05 ± 0.31 32.1 ± 0.4 

2% 2.03 ± 0.06 9.56 ± 0.39 31.7 ± 0.5 

3% 2.05 ± 0.07 8.14 ± 0.62 32.7 ± 0.3 

Data points are means ± S.D. (standard deviation) of three independent experiments 

7.3.2 Physicochemical analysis of contaminated acid mine drainage samples 

Determination of the physicochemical properties in contaminated samples is significant because these 

properties may impact the function of biomolecules, and thus specify their ability for use in applications like 

heavy metal removal (Velioglu and Urek, 2016).  

Table 7.3 The physicochemical properties of contaminated samples from acid mine drainage before and after 

treatment with a chemical surfactant, biosurfactant, and cell-free supernatant 

  Initial  Final   

Parameters   Control SDS BioS CFS 

EC (ms/cm)  6.52 6.47 ± 0.57 6.23 ± 0.22 23.83 ± 0.84 3.43 ± 0.06 

TDS (g/L)  21.6 21.0 ± 0.26 18.16 ± 0.27 13.94 ± 0.55 1.77 ± 0.31 

Salinity (%)  3.5 3.40 ± 0.07 3.05 ± 0.02 14.34 ± 0.58 1.81 ± 0.02 

pH  1.17 1.15 ± 0.04 1.76 ± 0.05 6.03 ± 0.14 2.26 ± 0.13 

Sulfate (ppm)  1287.68 1265.33 ± 

7.07 

 

821.50 ± 6.62 

 

617.12 ± 4.08 

 

622.04 ± 

13.32 

 

Phosphate 

(ppm) 

 5.75 5.74 ± 0.03 

 

5.50 ± 0.16 

 

2.27 ± 0.25 

 

3.72 ± 0.09 

 

EC; Electrical conductivity, TDS; Total dissolved solids, SDS; Sodium dodecyl sulfate, BioS; Biosurfactant, 

CFS; Cell-free supernatant. Data points are means ± S.D. (standard deviation) of three independent 

experiments. 
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Ultimately, in recording the physicochemical parameters before and after treatment with the BioS, one may, 

therefore, determine whether treatment affected the use of these molecules as well as whether any alterations 

in the parameters that occurred (Table 7.3). The initial readings of the physiochemical parameters for the heavy 

metal effluent displayed that it was highly acidic, with a pH of 1.17 and the salinity of the effluent was rather 

low at 3%. After treatment with BioS, the pH increased significantly to 6.03 due to BioS structural composition. 

There was a further surge in salinity to 14.34%, and the electrical conductivity increased from 6.52 to 23.83 

µs/cm. In comparison to the BioS, the SDS showed a remarkable reduction in the TDS which is owed in part 

to its detergent properties. The TDS represents a measure of inorganic salts, organic matter, and various other 

dissolved material, and in lowering the TDS, the BioS was also able to clear the effluent of these particles (Kim 

and Vipulanandan, 2006). From this result (Table 7.3), the addition of deionized water which served as a 

control did not change the physiochemical properties of the contaminated wastewater. However, results 

following treatment of the effluent with CFS showed a reduction in the electrical conductivity, salinity, and 

was able to reduce TDS more effectively as compared to BioS and SDS. The pH increase ultimately depicts 

the ability of the BioS for the treatment of the heavy metal effluent, in raising the pH of the effluent, the 

conditions of the effluent have become milder and thus more suitable for the environment as opposed to the 

low pH impact it previously had. 

Still, of great concern to the environment is the high incidence of phosphate and sulfate resulting from the 

contaminated effluents. The BioS including the CFS were both efficient in the removal of both phosphate and 

sulfate rather to the chemical surfactant (Table 7.3). There was a reduction from initial high concentrations of 

sulfate and phosphate to 617.12 and 2.27 ppm (purified BioS), 622.04 and 3.72 ppm (CFS) respectively. It was 

noticed that not much difference come about on phosphate and sulfate removal by CFS and purified BioS. High 

incidence of these pollutants (sulfate and phosphate) subsequently leading to its release in the water bodies 

thus creates a long-term effect, in case of algal bloom termed “eutrophication”. Inorganic sources, for example, 

nitrates, phosphates, and sulfates are some essential contaminants, so it is important to diminish the output 

levels before releasing. The produced BioS gave great potential since there is a huge market, in removing these 

pollutants highlighting the usefulness of this biomolecule in environmental sustainability. As such, the toxic, 

and harmful contaminants present in the effluents was converted into a “less or no” toxic state owing to the 

complete removal of the different heavy metals. This approach also proffers an ecological safer and cost-

effective alternative to the conventional methods as the CFS produced similar efficiency as the purified BioS.  
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7.3.3 Removal of heavy metals from the acid mine drainage effluent 

The extraction of heavy metals by BioS is facilitated through different mechanisms, which includes dissolution, 

ion exchange, precipitation, and association. The capability in reducing heavy metals, for example, calcium, 

copper, iron, magnesium, nickel, and zinc, was additionally explored and the outcomes displayed in Figure 7.1. 

It can be detected that the most astounding potential for eliminating heavy metals occurred when BioS was 

introduced to the polluted samples. As compared to the chemically synthesized surfactant (SDS), a critical 

decrease in the grouping of metal was seen after adding the lipopeptide biosurfactant. Removals of 85.90%, 

98.68%, 99.97%, 63.28%, 99.93%, and 94.22% were obtained for Ca, Cu, Fe, Mg, Ni, and Zn, respectively, 

when the purified BioS was used. The results were comparable to the cell-free BioS-containing solution 

removing (81.18% Ca, 97.9% Cu, 99.65% Fe, 99.79% Ni, 52.15% Mg and 94.22% Zn) from acid mine 

drainage effluents respectively. These heavy metals become toxic in their ionic species making them difficult 

to dissociate from the environment (Sarubbo et al., 2015a). The high percentages observed indicated that the 

removal occurred due to the electrostatic interaction between the molecules of the BioS and the metals. The 

BioS-metal complex was absorbed from the solution due to the reduction in surface and interfacial tension. 

The BioS allowed a larger percentage reduction over a period, making the heavy metals present in the non-

toxic form. Similar to this research, there was a removal order of Cd = Cr > Pb = Cu > Ni from a multi-element 

contaminated soil by a di-rhamnolipid produced by Pseudomonas aeruginosa BS2 (Juwarkar et al., 2008). 
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Figure 7.1 Removal of heavy metals (Ca, Cu, Fe, Mg, Ni, Zn) on contaminated effluent by cell-free 

supernatant, purified biosurfactant synthesized by Paenibacillus sp. D9, and chemical surfactant (SDS) 

The addition of BioS and CFS promoted heavy metals desorption from these acid mine drainage effluents 

through complexation. Still, heavy metals are cations, and this enables their attraction to the negatively charge 

functional groups present in the biomolecule (CSF and BioS), as this explains their similarities in activity. 

Thus, the usage of CFS allows for a reduction in production costs, which needs not undergo extraction, 

recovery, and purification processes which account for 30  ̶50% of the total production cost.  

Few reports have mentioned the efficient role of BioS in removing heavy metals from polluted effluents (Elouzi 

et al., 2012; Hidayati and Surtiningsih, 2014; Sarubbo et al., 2015a). This is the first report to show the effective 

advantage of BioS in removing heavy metal from acid mine drainage contaminated effluents, and the different 

physiochemical parameters such as pH, phosphate, sulfates, and so on. This report is therefore of significance 

to maximize health and environmental benefits associated with BioS treatment. The BioS can be tested further 

in future environmental applications that involve wastewater from different sources, as the foremost synthetic 
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contaminants being heavy metals, nitrogen, phosphorus, pesticides, detergents, and hydrocarbons (Akpor, 

2011). 

Additionally in a polluted soil with Cd and Zn, rhamnolipids BioS increased metal phytoextraction without the 

conceivable increment of metal mobility in the long term (Wen et al., 2009). However, heavy metals are 

cations, and this regulates their sorption to negatively charged functional groups present in biomolecule, 

residual hydroxides (OH-), humic acid, and anionic salts, such as PO4-, SO4- (Sarubbo et al., 2015a). The result 

is novel and significant; hence, the controlled stimulation of the surface-active agent supports in the removal 

of toxic heavy metals and acid mine drainage pollutants, enabling us to have a safer and cleaner environment. 

7.3.4 Heavy metal removal from vegetables 

A few health risks in humans have come about due to the overwhelming usage of metal-polluted vegetables 

(Jimoh and Lin, 2019a). In this setting, different concentrations of cadmium were selectively removed from 

the varied vegetables like potato, tomato, cucumber, and onion by Paenibacillus sp. D9 BioS (Table 7.4). The 

BioS eliminated a substantial amount of heavy metal from polluted food samples; thus, BioS synthesized could 

be utilized economically, enabling its usefulness for human health. The concentrations of heavy metal 

(cadmium) introduced to vegetables in proportion do not have an influence on the % removal capacities of the 

BioS (Table 7.4). From this study, the BioS selectively removed cadmium from contaminated vegetables in 

the order of onion = tomato > cucumber > potato. The higher Cd removal ability observed on tomato (71.38%, 

73.46%, 74.28%), and onion (65.12%, 66.01%, 67.08%) could be due to absorption to this heavy metal. BioS 

reduced high absorbed concentrated cadmium from the two vegetables. A comparable result was obtained as 

the BioS synthesized from Bacillus sp. MTCC 5877 removed 61.03% Cd from contaminated onion (Anjum et 

al., 2016).  
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Table 7.4 The cadmium initial, final concentrations, and its percentage removal after treatment with 

biosurfactant 

S. no Vegetables  Initial Cd 

concentration 

(mg/mL) 

Final Cd 

concentration 

(mg/mL)  

Cd removal (%)  

1 Potato  0.400 0.21 47.67 ± 0.01  

2 Potato 0.600 0.31 48.12 ± 0.01  

3 Potato 0.800 0.41 48.79 ± 0.03  

4 Tomato 0.400 0.11 71.38 ± 0.01  

5 Tomato 0.600 0.16 73.46 ± 0.01  

6 Tomato 0.800 0.21 74.28 ± 0.01  

7 Onion 0.400 0.14 65.12 ± 0.02  

8 Onion 0.600 0.20 66.01 ± 0.01  

9 Onion 0.800 0.26 67.80 ± 0.02  

10 Cucumber 0.400 0.18 55.72 ± 0.01  

11 Cucumber 0.600 0.28 52.59 ± 0.02  

12 Cucumber 0.800 0.38 52.15 ± 0.02  

Data points are means ± S.D. (standard deviation) of three independent experiments 

 

The final reaction between different cadmium concentrations (0.4, 0.6, 0.8 mg/mL) and 1,5-diphenylcarbazide 

(C13H14N4O) gives a violet colour in the different vegetables set-up (Figure 7.2a). Therein, the use of a chemical 

surfactant (SDS) showed no effect on the color absorption of the heavy metals of the different vegetables tested 

(Figure 7.2b). The adherence of biomolecule to the food contact surface needs to be controlled and it is critical 

to providing healthy and safe food products to the consumers at large. Thus, the utilization of this BioS could 

be an imperative apparatus for the food industry as the excessive intake of heavy metals through food is highly 

dangerous to human health. Successively, the introduction of BioS to the experimental set-up was effective as 

there was a substantial color change from violet to colorless, confirming the BioS ability to remove the metal 

absorption from the different vegetables (Figure 7.2c). Compared to the control, a significant reduction of the 

heavy metals was observed with the introduction of the BioS. In this regard, the cautious and measured usage 

https://www.sigmaaldrich.com/catalog/product/sial/259225?lang=en&region=US


230 

 

of this surface-active compound will most likely support improved washing of the compounds from surfaces 

of vegetable and food crops present in the soil environment. Similar to this research, Anjum et al. (2016) 

reported the removal of 47%, 61.0%, 62.5%, and 73% Cd, respectively from different vegetables by a BioS 

produced from Bacillus sp. MTCC 5877. Also, the rhamnolipid BioS produced from Pseudomonas putida 

might play a great part in the removal of these toxic heavy metals, as 50% zinc and iron were both removed 

from the contaminated medium (Meenakshisundaram and Pramila, 2017). The Bacillus licheniformis VS16 

BioS likewise reduced cadmium (Cd) from contaminated vegetables namely ginger, carrot, radish, and potato 

with the highest removal being 60.98% (Giri et al., 2017). This Paenibacillus sp. D9 BioS thus demonstrate its 

capacity as a washing agent in heavy metal removal from both contaminated acid mine effluents and vegetables 

when compared to a synthetic surfactant. This enabled its usefulness in the world market as a bioremediation 

agent and important tool in biotechnological and environmental sustainability. 
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(a)                                                                         (b)                                                                                   (c) 

                              

Figure 7.2 A representative of the heavy metal removal (Cd) from vegetable stocks after the introduction of (a) control (b) chemical surfactant (c) biosurfactant. 

 



232 

 

 

7.3.5 Removal of heavy metals from contaminated sand 

There is increased interest in the discovery of novel washing procedures and bio-products, such as amphiphilic 

BioSs equipped for attaching metals and do not present dangers to nature (Santos et al., 2017). Solutions of 

purified BioS at various concentrations [1/2 × CMC (0.1%), CMC (0.2%), and 2 × CMC (0.4%)] were assessed 

for the removal of metals with and without micelle formation. From the results obtained, Paenibacillus sp. D9 

BioS was highly effective in removing copper and lead, while lower percentages were observed for zinc (Table 

7.5). As observed from this result, increase in BioS concentration was not proportional to the percentage 

removal of heavy metals namely copper, lead, and zinc. The BioS-produced possess very low affinity to zinc, 

giving a low removal efficiency of ≤ 60% at all the concentrations as compared to higher removal percentages 

(≥ 60%) of copper and lead respectively. The high removal observed for both copper and zinc is frequently 

identified with BioSs' binding to the constituents of the soil particles. The 1% HCl solution removed 50% –

55% of the metals adsorbed to the sand and the removal rate was enhanced altogether when acid solutions were 

combined with purified BioS and CFS. However, the introduction of the HCl solution showed no influence on 

the removal capabilities of the BioS with ≤ 60% zinc removal from contaminated sands achieved.  

Diverse BioS have fluctuating attractions to various metals and are constantly influenced by concentrations of 

acids or alkalines, biomolecules, charge of heavy metal, and soil properties (Ochoa-Loza et al., 2007). The 

crude BioS removed a higher percentage of copper, and lead from the sand, demonstrating its utilization, as 

well as, BioS in the decontamination of heavy metal polluted soils. The downstream procedure to purify BioS 

could account for 60% of the total cost, as such, crude BioS would be highly efficient in achieving a cost-

effective bioprocess. Santos et al. (2017) also reported ∼30% of the heavy metal removal from contaminated 

sand, with a further ≥80% removal was achieved when different additives were introduced. This is like this 

study by which increasing BioS concentrations was not proportional to the heavy metal removal capacities. 

Candida sphaerica BioS demonstrated 95%, 90%, and 79% removal rates for Fe, Zn, and Pb, respectively, 

from samples, gathered from a car battery industry. The introduction of HCl solutions increased removal rate 

when utilized with BioS at concentrations of 0.1% and 0.25% (Luna et al., 2016). 
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Table 7.5 Heavy metals removal from contaminated sands using different washing solutions (data expressed 

as mean ± standard deviation) 

Treatment              Heavy metal removal (%) 

 Cu Pb Zn 

Distilled water (control) 22.5 ± 0.3 4.1 ± 0.2 10.9 ± 0.3 

1% HCl solution 51.6 ± 0.9 54.7 ± 1.2 50.8 ± 0.6 

Sodium dodecyl sulfate 48.5 ± 0.8 28.6 ± 0.1 15.5 ± 0.2 

Cell-free supernatant 82.5 ± 0.3 96.4 ± 0.4 53.2 ± 2.1 

Cell-free supernatant + 1% HCl solution 88.6 ± 0.5 98.1 ± 0.4 56.5 ± 0.8 

0.1% biosurfactant solution (1/2 CMC)  60.1 ± 0.2 94.0 ± 0.1 53.3 ± 1.2 

0.1% biosurfactant solution (1/2 CMC) + 1% HCl 

solution 

78.8 ± 0.5 96.8 ± 0.3 57.8 ± 0.8 

0.2% biosurfactant solution (CMC) 63.8 ± 0.4 96.6 ± 0.3 43.8 ± 2.3 

0.2% biosurfactant solution (CMC) + 1% HCl 

solution 

81.4 ± 1.1 98.7 ± 0.5 51.5 ± 0.8 

0.4% biosurfactant solution (2 × CMC) 84.4 ± 0.2 96.4 ± 0.1 57.9 ± 1.9 

0.4% biosurfactant solution (2 × CMC) + 1% HCl 

solution 

86.7 ± 0.6 98.6 ± 0.4 59.1 ± 0.4 

 

7.3.6 Biosurfactant ability to bind heavy metals in aqueous solution 

The ability of the BioS to bind heavy metals (Pb, and Zn) present in the synthetic wastewater was determined 

by measuring the conductivities and heavy metal removal capabilities. The initial conductivity of the metal 

solutions containing concentrations viz, 1/2 CMC, CMC, and 2× CMC was 80 µS/cm, 92 µS/cm, and 76 µS/cm, 

respectively. Regardless, the conductivity of the solutions comprising zinc (Zn) and lead (Pb) experienced a 

highlighted decrease when BioS was introduced. The BioS was able to precipitate the positively charged metals 

from the solution, as such, leading to metal ion reduction and subsequently diminishing its conductivity (Table 

7.6). The removal capabilities were observed with CMC (58.1% Pb, 53.3% Zn) and 2× CMC (77.5% Pb, 57.7% 
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Zn), respectively. There was a very low performance observed with half CMC in terms of conductivity and 

removal capabilities in both heavy metals. It is notable that high concentration of this BioS eliminated metals 

in a large proportion. This outcome displayed more micelles incited less free particles and conductivity was 

accordingly less than in the solutions with no or little BioS. Generally, the different concentrations achieved a 

greater removal capability of Pb, and Zn in comparison to chemically synthesized surfactant (SDS), and 

distilled water (negative control). In contrast to this research, no variation in the effect of different BioS 

concentrations was exhibited on the conductivity of the metal in synthetic wastewater (Santos et al., 2017). 

Table 7.6 The conductivity as well as heavy metal removal of the metal solutions when washing with solutions 

of Paenibacillus sp. D9 biosurfactant (data expressed as mean ± standard deviation) 

Treatment   Conductivity (µS/cm) Heavy metal removal (%) 

 Pb Zn Pb Zn 

Initial metal conc. (ppm) 177.2 ± 0.6 194.5 ± 2.5   

1/2 CMC 136.7 ± 0.5 158.3 ± 2.4 32.2 ± 0.5 31.6 ± 1.0  

CMC  96.7 ± 0.6 115.0 ± 1.6 58.1 ± 1.1 53.3 ± 1.3 

2 × CMC  93.4 ± 0.8 100.7 ± 2.0 77.5 ± 0.3 57.7 ± 0.7 

Crude BioS 163.9 ± 0.2 176.0 ± 2.0 40.8 ± 0.4 37.5 ± 1.4 

Distilled water 175.0 ± 1.7 191.4 ± 1.5 7.6 ± 1.6 16.9 ± 1.1 

SDS 161.6 ± 2.5 171.2 ± 1.7 13.9 ± 1.8 19.3 ± 1.8 

 

7.3.7 Oil dispersion assay 

Oil dispersion is another technique that depicts the capability of the BioS to remove oil from surfaces using its 

surface and interfacial tension reducing properties, therefore, providing application in oil clean-up and control 

of oil spillages. The Paenibacillus sp. D9 BioS achieved a significant dispersal rate of 60% whereas the SDS, 

Triton X-100 had 25 and 20%, respectively. The dispersion rate of the CFS was 30% and the negative control 

had the smallest initial diameter of 1.5 cm, obtaining a dispersal rate of only 15% (Table 7.7). The oil dispersal 

technique represents both a means of confirming the presence and screening for BioS production by the 

microorganism as well as a measure of the surface-active properties. This is because the detection of a zone of 
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clearing indicates that oil has been displaced due to the presence of the BioS (Ibrahim et al., 2013). The 

diameter of this zone of clearing positively correlates with the concentration of BioS and depicts oil spreading 

activity (Chandran and Das, 2010). This shows the efficiency of BioS, and the larger the diameter of the 

dispersal, the greater the activity of the surfactant (Chandran and Das, 2010). The oil dispersion limit of a BioS 

is of extraordinary significance when the goal is to treat situations polluted with hydrocarbons (Freitas et al., 

2016). 

 

Table 7.7 The dispersion rate of engine oil after treatment with Paenibacillus sp. D9 biosurfactant, SDS, 

supernatant, Triton X-100, and distilled water 

Sample Initial diameter (cm) Final diameter (cm) Displacement rate (%) 

Biosurfactant    6.0 ± 0.4 10 60 ± 0.4 

SDS    2.5 ± 0.3 10 25 ± 0.3 

Cell-Free Supernatant    3.0 ± 0.6 10 30 ± 0.6 

Triton X-100    2.0 ± 0.2 10 20 ± 0.2 

Control (Distilled H2O)   1.5 ± 0.1 10 15 ± 0.1 

 

When comparing the dispersal rate of the BioS to that of the positive controls SDS, Triton-X, it was evident 

that Paenibacillus sp. D9 BioS displays the greatest dispersing ability (Figure S1). Although SDS and Triton-

X are good chemical surfactants having been used in many applications around the world, the impact of their 

use on the environment displays a major drawback (Jimoh and Lim, 2019a). Since the results obtained in Table 

7.7 involved the use of minute volumes of BioS, it demonstrates the potential of this biomolecule to withstand 

much higher concentrations such as oil spills control, and detoxification applications. Likewise, the BioS 

acquired from Bacillus licheniformis culture had the most minimal oil spreading activity (23 mm) in the crude 

oil-liquid medium while, Bacillus firmus, Bacillus lentus, Pseudomonas paucimobilis, Serratia marcescens 

and Micrococcus kristinae had 45 mm, 30 mm, 27 mm, 38 mm and 51mm, respectively (Ibrahim et al., 2013). 

7.3.8 Fabric wash performance, and formulations 

Figure 7.3 shows the illustrative detergency test representing the relative washing performances of 

Paenibacillus sp. D9 BioS, SDS, Triton X, commercial detergent, and bio-commercial detergent combination 
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against sunflower oil-tomato sauce and coffee stains. The washing efficiency of Paenibacillus sp. D9 BioS 

formulation was compared to two chemical surfactants, namely anionic surfactant (SDS) and non-ionic 

surfactant (Triton X-100). This latter, being anionic act as a detergent, and an emulsifier. In the present study, 

the synthetic surfactant displayed less washing efficacy in comparison to Paenibacillus sp. D9 BioS 

formulation. The Paenibacillus sp. D9 BioS influenced washing could eliminate more than 64.3% of tomato 

sauce and 60.4% of coffee stains while the chemical surfactants removed only 52.2% of tomato sauce, 47.1% 

of coffee (SDS), and 46.7% tomato sauce, 42.2% of coffee (Triton X-100) from the white cotton fabric 

respectively. These outcomes are as per with Pseudomonas aeruginosa BioS formulation which was effective 

in removing whiteboard marker stains as compared to chemical surfactants (Turbekar et al., 2014). Also, the 

formulation Bacillus subtilis SPB1 BioS exhibited better cleaning efficiency on oil and tea stains removal as 

compared to the conventional chemical surfactant (Bouassida et al., 2018). 
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Figure 7.3 Comparison of the effect of different formulations for stain (coffee, and tomato sauce) removal 

from fabric cotton. BioS; Paenibacillus sp. D9 biosurfactant, DA; Detergent A, DB; Detergent B, BCD; Bio-

commercial detergent, SDS; sodium dodecyl sulfate. 

The differences in stains (such as a yellow solid containing phenolic, an acrylic group in coffee stain, caffeic 

acid, and curcuminoids) makes them notorious and difficult to wash (Joshi-Navare et al., 2013). In this regard, 

there is an indication of BioS ability to remove most of these stains efficiently as well as detergent. For this, it 

will be imperative to compare to Paenibacillus sp. D9 BioS formulation efficiency with two commercial 

detergents obtainable in Durban, South Africa (Figure 7.3). In this study, the two commercial detergents 

produced a better washing and removal capability of different stains to when Paenibacillus sp. D9 BioS was 

used alone. The results obtained are not far-fetched as the two-commercial detergents have been processed 
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industrially with additional chemicals, and additives while the BioS was in its isolated pure form, which could 

have lost some of its cleaning properties during extraction, isolation, and purification processes. The stain 

removal by Paenibacillus sp. D9 BioS alone was less capable, but also comparable, and effective. As observed 

in Figure 7.3, 64.3% and 60.4% of removal of tomato sauce and coffee stains, was obtained when using 

Paenibacillus sp. D9 BioS and commercial detergent A removed 72.9% of tomato sauce and 67.7% of coffee 

stains, while 72.2% of tomato sauce, and 67% of coffee stain were removed by commercial detergent B, 

respectively.  

The bio-commercial detergent removed a percentage like the above listed for commercial detergent A and 

commercial detergent B (Figure 7.3). Quite similar to this study, Khaje Bafghi and Fazaelipoor, (2012)  

described that, in as much as commercial formulation was more effective than the natural products in stain 

removal from white cotton material, the difference was not high. Moreover, the ability of sophorolipids, a 

glycolipid BioS synthesized by Candida bombicola (ATCC22214) was about equivalent to detergent in 

removing four types of stains (espresso, turmeric, oil, and poster) from cotton and polyester fabrics (Joshi-

Navare et al., 2013). Sajna et al. (2013) revealed that stain removal by glycolipid BioS, synthesized by 

Pseudozma sp NII 08165, alone was effective and practically identical to that of the commercial cleanser.  

Finally, in this study, Paenibacillus sp. D9 BioS was supplemented with each of the two commercial detergents 

with the ratio of 1:1 (v: v) respectively. The 1:1 (v/v) BioS-commercial detergents formulation gave an increase 

in wash performance as observed in Figure 7.3. This demonstrated the Paenibacillus sp. D9 BioS had positive 

outcomes on the performance of the commercial formulated detergents rather than using commercial detergents 

alone. Similarly, Jatropha oil derived sophorolipids BioS and detergent combination lead to an improved coffee 

stain elimination from cotton fabric rather than the detergent alone (Joshi-Navare et al., 2013). There was also 

substantial synergy on wash performance between Paenibacillus sp. D9 BioS and commercial surfactants in a 

proportional ratio of 1:1 (w/w) in the role of compost humic acid-like matter in the detergent formulation 

(Savarino et al., 2010). The detergent-like properties like BioSs hold many applications with respect to laundry 

and detergent industries. Although lacking the additives present in commercial detergents, BioSs have shown 

promising results in their ability to reduce stains when compared to commercial detergents (Bouassida et al., 

2018).  

The formulation displayed in this investigation offers a favourable position in the expulsion of hydrophilic 

stains in contrast with other formulations presented. This lipopeptide BioS can be a fruitful surfactant and 
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cleanser formulations. The stain elimination potential of BioS-containing detergent is equivalent to 

manufactured ones particularly for the removal of hydrophilic and hydrophobic dangerous stains. This research 

proffers an incredible noteworthiness since microbial BioS are well-thoroughly considered as a substitute for 

chemical surfactants because of their low or non-toxicity and higher biodegradability. 

7.3.9 Paenibacillus sp. D9 biosurfactant ecotoxicity 

The germination index which joins proportions of the overall seeds’ germination and relative development of 

roots, was utilized to assess the toxic effect of Paenibacillus sp. D9 BioS to cabbage and lettuce seeds. The 

proportion of ≤ 80% GI is considered as a positive indicator, thus indicating the non-existence of phytotoxicity 

(da Rocha Junior et al., 2018). The outcomes demonstrate that the different Paenibacillus sp. D9 BioS solutions 

tested had no inhibition on germination of the seeds as well as root development (Table 7.8). From this result 

obtained, the germination index of Brassica oleracea (cabbage) was relatively higher than Lactuca sativa 

(lettuce) across all the concentrations of BioS tested. The germination index values of 103.4, 102.9, 104.9, 

117.1% were observed for the former while values of 92.6, 87.8, 89.8, and 94.7% for the latter at a BioS 

concentration of 1, 10, 100, 200 mg/L, respectively. The development of auxiliary roots and the rise of leaves 

were additionally noticed for the different experimental conditions tested on Brassica oleracea, and Lactuca 

sativa. Like this research, higher GI values of 201, 128, 113 and 113% were observed for cabbage, and values 

of 189, 110, 105, 96%, respectively for lettuce against different concentrations of Streptomyces sp. DPUA1566 

BioS (Santos et al., 2018).  
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Table 7.8 Phytotoxicity of Paenibacillus sp. D9 biosurfactant against Brassica oleracea, and Lactuca sativa 

Biosurfactant 

concentration (mg/L) 

 Phytotoxicity (%) 

Seeds Seed germination Root elongation GI 

1 Brassica oleracea 90.9 ± 2.6 87.9 ± 1.5  103.4 

Lactuca sativa 116. 3 ± 2.6 125.6 ± 3.6  92.6 

10 Brassica oleracea 109.1 ± 1.0 106.1 ± 1.5 102.9 

Lactuca sativa 98.0 ± 2.0 111.6 ± 2.0 87.8 

100 Brassica oleracea 97.0 ± 1.5 92.4 ± 1.5 104.9 

Lactuca sativa 87.8 ± 2.1 97.7 ± 1.7 89.8 

200 Brassica oleracea 72.7 ± 3.6 62.1 ± 3.1 117.1 

Lactuca sativa 83.7 ± 1.5 88.4 ± 1.5 94.7 

Experiments were processed in triplicate and the results are the mean ± standard deviation of three independent 

experiments 

The Paenibacillus sp. D9 BioS solutions (in various concentrations: 0, 1, 10, 100, 200 mg/L) on Artemia salina 

were assessed and the outcomes displayed in Table 7.9. From this study, Paenibacillus sp. D9 BioS displayed 

no toxicity at the different concentrations to brine shrimp. 

Table 7.9 Mortality of Artemia salina in different concentrations of the Paenibacillus sp. D9 biosurfactant  

Biosurfactant concentration (mg/L) The mortality rate of Artemia salina 

0 0 ± 0.0 

1 0 ± 0.0 

10 1 ± 1.0 

100 3 ± 1.0 

200 3 ± 0.2 

Experiments were processed in triplicate and the results are the mean ± standard deviation of three independent 

experiments 
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As observed, low mortality was observed for concentration close to CMC (100 mg/L), and CMC (200 mg/L). 

In the short-term bioassay, there was no sign of lethality towards the Artemia salina larvae after 24 h. Similar 

to this research, da Rocha Junior et al. (2018) showed the non-toxic potential of BioS synthesized from Candida 

tropicalis at different concentrations of 0.25% and 0.5%, respectively. Lipoprotein BioS by Streptomyces sp. 

DPUA1566 did not exhibit any form of mortality at different concentrations of BioS utilized (Santos et al., 

2018). In contrast, de França et al. (2015) discovered that the Bacillus subitillis exhibited BioS a low death rate 

(under 20%) when utilized at varying concentrations of 12.5, 25 and 50 mg/L, respectively. The non-toxic 

effect of Paenibacillus sp. D9 BioS proffer its usefulness in different applications relatable to soil and aquatic 

environments, as the biomolecule was confirmed to be ecological safe and environmentally friendly. 

7.4 Conclusion 

The investigation enhanced Paenibacillus sp. D9 BioS economics by the utilization of possible low-cost 

materials. These outcomes demonstrated the likelihood of waste frying oils (coconut and sunflower) to be 

utilized as an exceptionally viable substrate for the economic production of Paenibacillus sp. D9 BioS. The 

BioS was successful in dispersing engine oil, with further capability in removing different heavy metals from 

the environments including contaminated effluents, synthetic wastewater, contaminated sands, and food crops. 

In addition, Paenibacillus sp. D9 BioS can be successful as constituents or as a whole for commercial detergent 

formulation. The Paenibacillus sp. D9 BioS-containing detergent is equivalent to commercial products in 

removing extreme hydrophilic, and hydrophobic stains. This study confirmed the fundamental prospect of BioS 

synthesized by Paenibacillus sp. D9 in environmental, and biotechnological applications. 
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Heterologous expression of Sfp-type phosphopantetheinyl transferase is indispensable 

in the biosynthesis of lipopeptide biosurfactant. 
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Abstract 

Phosphopantetheinyl transferases are of importance due to their essential role in activating polyketide, fatty 

acid, and non-ribosomal peptide synthetase enzymes and additionally an increasing number of biotechnological 

applications. The present study reports the identification of the sfp gene from the Paenibacillus sp. D9, which 

encompasses 693 bp encoding a 230-amino acid protein with a molecular weight of 25.3 kDa. The amino acid 

sequence Paenibacillus sp. D9 Sfp revealed more than 90% sequence identity to other Sfp proteins from other 

Paenibacillus. The sfp gene was cloned and Sfp was recovered efficiently using affinity chromatography with 

maximal specific phosphopantetheinyl transferase activity at an optimal pH of 8.0 and temperature of 30℃. 

The enzyme also exhibited stability under a wide-range of pH and temperature. The presence of Zn2+, Cu2+, 

and Fe2+ ions improved the enzymatic activity, while other metals such as Ni2+, Co2+ and Mg2+ had inhibitory 

effects. The introduction of EDTA also displayed no inhibition. Kinetic parameters were obtained having 

values of 4.52 mg/mL, 35.33 U/mg, 3.64 s-1, and 0.104 mM−1 s−1 for Km, Vmax, kcat, and kcat/Km, respectively. 

The biosurfactant synthesized by the recombinant BioSp was found to be surface-active, reducing the surface 

tension to 35.7 mN/m on the glucose substrate after 5 days of incubation at 37℃. The recombinant E. coli 

strain also exhibited an improvement in biosurfactant yield (1.11 g/L) when contrasted with 0.52 g/L from 

Paenibacillus sp. D9. High esterase activity of 2.55 IU/ml using p-nitrophenyl acetate was observed for the 

recombinant strain, as the protein connected with the release of the biosurfactant was observed to be an esterase. 

The characteristics of improved biosurfactant and esterase synthesis by hyper-producing recombinant strain 

possess numerous values from biotechnology standpoint. 
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Biosurfactant; Cloned recombinant; Esterase; Paenibacillus sp. D9; Phosphopantetheinyl transferase 
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8.1 Introduction  

There is increasing enthusiasm for discovering new proteins and biosurfactant (BioS) hyper-producing strains 

for their utilization in modern bioprocess (Sekhon et al., 2011). Because of the mindfulness on the need to 

secure the biological community, an extended need for surfactants of microbial origin with high surface 

properties as alternative option to synthetically synthesized ones (Gautam et al., 2014). Due to their non-toxic 

effect, different biotechnological industries have made BioS producing bacteria important target. BioS might 

be synthesized from sustainable and less expensive raw materials and are progressively ecologically-friendly 

(Domingos et al., 2015). BioSs, specifically the ‘Lipopeptides’ are biomolecules comprising of lipids 

connected to a peptide, that are small chains of amino acid monomers joined by peptide (amide) bonds. BioSs 

advantages over synthetic surfactants includes high surface activity, non or low toxicity, biodegradability, and 

environmental compatibility (Qiu et al., 2014). Although researchers are enthused about replacing synthetic 

surfactants with BioSs, the genuine problem still lies in the cost of production. Recombinant hyper-producing 

strains are made with the use of recent genomic sequencing data. This coupled with the utilization of 

inexpensive carbon substrates enables increasing yields and reducing production costs (Sekhon et al., 2012). 

According to transparent market research, the global BioS market is presently at US$ 40 million revenues in 

2019 and is expected to increase in the next decade (Makkar et al., 2011). In any case, the large-scale industrial 

utilization of BioS still seems, by all accounts, to be constrained because of high costs of production (Banat et 

al., 2010; Makkar et al., 2011). To decrease the cost, it is critical to create hyper-producing or mutant strains 

with improved production yields or with a capacity to specifically deliver specific, successful congeners of 

BioSs which are a combination of closely related products (Bachmann et al., 2014). A decrease in BioS cost 

making them monetarily appealing will depend on the improvement of cost-effective procedures including the 

utilization of inexpensive materials, recovery and higher product yields through genetically engineered 

microorganism (Jimoh and Lin 2019a). Recombinant, non-pathogenic, and hyper-producing strains are being 

made with the utilization of most recent genome sequencing advances. The BioS present surface properties of 

huge responsiveness for biotechnological sectors and are utilized as, emulsifiers, anti-tumoral, antifungals, 

antibacterial, and antivirals agent (Gelis-Jeanvoine et al., 2016). Lipopeptide biosurfactants have expanding 

therapeutic, scientific, and biotechnological applications amongst the major classes of BioSs (Anburajan et al., 

2016; Jimoh and Lin, 2019a). The BioS biosynthesis genes of genus Bacillus have been practically, 
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functionally, and structurally characterized (Anburajan et al., 2016). However, limited report exists for the 

genus Paenibacillus, hence the need for this research. 

Paenibacillus sp. D9 is a hydrocarbon-degrading and BioS-producing bacterium that can produce biomolecule 

that are stable in an extensive array of acidic and alkaline conditions. It is well characterized physiologically, 

biochemically, but not genetically. Paenibacillus sp. D9 was revealed to synthesize biomolecules that comprise 

another class of Paenibacilli lipopeptide (Jimoh and Lin, 2019b). Reports on lipopeptide BioS synthesis by 

production fermentation focuses generally on bioprocess improvement, for instance, improvement of medium 

design and culture conditions. Notwithstanding, it ought to be noticed that studies on the microbial synthesis 

of lipopeptide BioS is still constrained by the low product yields. The general enhancement is yet insufficient 

to legitimize a business proposition of this kind of BioS. Thus, further improvement of BioS yield through 

recombinant genetic engineering is essential. Moreover, it is conceivable to build up overproducing hyper-

producing, mutant, and recombinant strains for acquiring the greatest profitability. 

Phosphopantetheinyl transferases are enzymes essential for the synthesis of numerous compounds including 

unsaturated fatty acids, polyketide, and non-ribosomal peptide metabolites (Bunet et al., 2014). In this way, sfp 

gene (phosphopantetheinyl transferase) has all the earmarks of being basic and associated with biosynthesis of 

lipopeptide BioS synthesized by Paenibacillus sp. D9. The molecular characterization of the sfp gene from 

Paenibacillus sp. D9 will give more understanding into the structural definition associated with BioS 

biosynthesis. In this scenery, research was undertaken on the characterization, improved synthesis, functional 

prediction and investigation of phosphopantetheinyl transferase gene from BioS producing Paenibacillus sp. 

D9. 

8.2 Materials and methods 

8.2.1 Bacterial strain, growth conditions, plasmids, and DNA 

The plasmid, pET47b was purchased from Sigma Aldrich, USA. E. coli DH5α and E. coli BL21 (DE3) were 

used as cloning and expression hosts, respectively. For DNA isolation, a Paenibacillus sp. D9 colony was 

inoculated into 5 mL LB broth and afterward incubated at 30℃, 150 rpm overnight. Paenibacillus sp. D9 

Genomic DNA was purified as per the manufacturer’s instruction using Gene JET genomic DNA purification 
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kit (Thermo Scientific). The concentration and purity of the DNA was determined using Nanodrop 2000 UV-

Vis Spectrophotometer (Thermo Scientific) at OD260/OD280 ratio. 

8.2.2 Polymerase chain reaction amplification  

The sfp gene primers were designed utilizing Snap Gene software according to the total genomic sequences of 

Paenibacillus sp. D9 (GenBank Accession number JZEJ00000000). The PCR mixture consisted of 2 µL of the 

DNA, 0.5 µM each of the forward and reverse primer, 0.2 U/µL iProof DNA polymerase, 1X of 5X iProof HF 

buffer, and 2.4 µL of nuclease-free water. The sfp gene was amplified utilizing the following primers 5’-GGA 

TCC AAT GGT GGA GAT TTA CGC GGT CGA GAT CCC TTC CGG-3’ (forward primer with an 

endonuclease site BamHI)  and 5’-CTC GAG CCG TCC CAG CCG CTC CTC CAG C-3’(reverse primer with 

an endonuclease site XhoI) by PCR under the following conditions: an initial denaturation at 98°C for 30 s, 30 

cycles (98°C for 10 s, 61°C for 30 s, 72°C for 30 s) and finally, 72°C for 5 min. PCR reaction was done with 

reference to iProof high fidelity DNA polymerase kit (Bio Rad) using T100™ Thermal Cycler (BIO-RAD). 

The expected amplified product (693 bp) were separated on 1.2% (w/v) agarose dissolved in 1 × Tris-acetate-

EDTA buffer (20 mM acetic acid, 40 mM Tris, and 1 mM EDTA, pH 8.0) stained with 0.5 µg/mL ethidium 

bromide through electrophoresis. The gel was visualized using a UV transilluminator (SYNGENE BioSys).  

8.2.3 Cloning, and transformation of the biosurfactant gene 

The PCR amplicon of the sfp was extracted under UV light and purified utilizing GeneJet Gel Extraction Kit 

as indicated by the manufacturer's instruction (Thermo Fisher Scientific). The PCR product was subsequently 

eluted using 50 L sterile dH2O. Both PCR amplicon (insert) and pET47b plasmid (GE Health care, USA) 

were restricted with FastDigest endonucleases, 1 µL of 10 U BamHI and XhoI each (Thermo Fisher Scientific) 

for directional cloning. The pET47b vector and double digested PCR product were both purified as per 

manufacturer’s instruction utilizing a DNA Clean & Concentrator™ kit (Zymo Research). A ratio of 2:5 of the 

digested the vector and plasmid were added to reaction mixtures. A rapid DNA Ligation kit (Thermo Fisher 

Scientific) was used to perform ligation reactions as per standard laboratory procedures and conditions. A 

successfully cloned plasmid (designated as pET47b-sfp) containing the 693 sfp gene fragment was obtained. 

E. coli DH5α (Novagen, USA) was used for the mini-preparation of the recombinant strain while E. coli BL21 

(DE3) was utilized for sfp gene expression. The heat shock procedure was used to transform the pET47b-sfp 
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plasmid into E. coli BL21 (DE3) pLysS expression system (Sambrook and Russell, 2001). The positive clones 

containing 50 mg/mL were confirmed by restriction digestion using XhoI and BamHI.  

8.2.4 Expression and purification of recombinant Sfp protein 

The positive clones were grown in LB broth and analyzed for the expression studies. In brief, 1 mL of an 

overnight culture containing pET47-sfp plasmid was transferred into 100 mL in medium containing kanamycin 

(50 mg/ml) until the OD600 reached 0.6─0.7. This was followed by the introduction of isopropyl-β-D-

thiogalactoside (IPTG) at 1 mM final concentration with continuous incubation at 37°C for 4 h. There was 

another setup for negative control using the pET47 vector following the same protocol. The cells were then 

harvested by centrifugation at 8000 × g at 4°C. A 50 mM Tris buffer, pH 8.0 containing 10 U (1 g/ml) DNase 

I, 0.1 M MgCl2, and 1 mM PMSF was used to re-suspend the cell pellet. This was followed by sonication at 

50 kHz utilizing an Omni International Sonic Ruptor 400 Ultrasonic homogenizer. The thermal impact was 

limited by placing the sample on ice. The homogenized sample was exposed to 30s on/30 s off pulses for 6 

min at amplitude of 50%. The centrifugation of the lysate was achieved at 10 000 × g for 20 min and 30 μL of 

the supernatant was evaluated for the expression of soluble proteins by SDS-PAGE. The recombinant Sfp 

protein was purified using a 5.0 mL His Pur Cobalt column (affinity chromatography), (Thermo Scientific). 

The affinity column was thoroughly washed with de-ionized water (20 mL), followed by column equilibration 

with 50 mM sodium phosphate buffer (5 × column volumes), pH 7.5 (Buffer A) containing 5 mM imidazole. 

The column was loaded with recombinant enzyme extract (25 mL), and subsequently washed with Buffer A 

containing 20 mM imidazole (5-bed volumes). The recombinant Sfp was eluted with Buffer A with 150 mM 

imidazole at a flow rate of 0.4 mL/min. The eluted active fractions were pooled and dialyzed overnight against 

Buffer A. The total protein concentration was determined utilizing BCA™ Protein Assay Kit (Thermo 

Scientific). Amicon Ultra Centrifugal Filter Devices (Millipore) were used to concentrate purified proteins and 

further characterized as described below. 

8.2.5 Enzyme assays and characterization 

8.2.5.1 In vitro phosphopantetheinyl transferase activity 

In vitro, phosphopantetheinylation experiments were performed to investigate the capacity of Sfp protein in 

the crude and purified product using coenzyme A (CoA) kit (Sigma-Aldrich, USA). The reactions contained 
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20 μM Sfp protein, 10 μL of the coenzyme A substrate mix, 2 μL of conversion enzyme mix CoA (or malonyl-

/methylmalonyl-CoA), 2 μL of acyl coenzyme A and coenzyme assay buffer (pH 7.5) in a total reaction volume 

of 60 μL. The CoA concentration proportional to the phosphopantetheinyl transferase present was determined 

by enzymatic assay, which resulted in a colorimetric (570 nm) product. The enzyme unit was calculated based 

on the spectrophotometric based assay results using control as set by the manual as standard.  Under standard 

assay conditions, one unit of phosphopantetheinyl transferase was defined as the amount of enzyme essential 

to release 1 μmol of acyl coenzyme A min−1   

8.2.5.2 Esterase activity of purified Sfp phosphopantetheinyl transferase 

The esterase activity of the purified enzyme (0.16 mg/mL) was determined using 75 mM phosphate buffer 

containing 10 mM MgSO4 (pH 7.0) and 100 mM 4­nitrophenyl (pNP) acetate as substrate (Politino et al., 

1997). The activity was examined by measuring the increase in optical density at 405 nm after incubation at 

37°C for 30 min. One esterase unit was defined as the quantity of enzyme required to release 1 µmol of p-

nitrophenol per minute with the specific esterase activity expressed as µmol/mg protein/min. The enzyme 

unit was calculated based on the spectrophotometric based assay using the formula  

A = ε l c 

Where A = absorbance (M-1 cm-1), l = cell path length (1 cm), c = absorbance concentration (M) and ε = the 

molar extinction coefficient.  

8.2.5.3 Effect of pH and temperature on the activity of crude and purified Sfp phosphopantetheinyl 

transferase  

To estimate optimal temperature and pH, the relative activity was examined at varied pH and temperature. The 

optimum pH for phosphopantetheinyl transferase in recombinant E. coli BL21 (DE3) and purified Sfp were 

observed by incubating the enzymes at different pH under the standard assay conditions at 37℃, for 30 

minutes.  The effect of pH was determined at pH ranging from 4.0 to 10.0, utilizing sodium acetate buffer (pH 

4.0-6.0), and coenzyme assay buffer (pH 7.0), and 50 mM Tris-HCl buffer (pH 8.0-10.0). All subsequent 

enzyme assays were performed at optimum pH. The optimum temperature of the phosphopantetheinyl 

transferase in recombinant E. coli BL21 (DE3) and purified Sfp enzyme were studied at temperatures ranging 

25, 30, 37, 42℃ at the optimal pH under the standard assay conditions.   
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8.2.5.4 Stability of purified Sfp phosphopantetheinyl transferase 

The enzyme thermostability was observed by incubating the purified enzyme samples for different incubation 

temperatures 35, 45, 55, and 65℃ for 30 min before the assay in the absence of substrate. The samples were 

placed on ice immediately by which the remaining activities of phosphopantetheinyl transferase were measured 

under standard condition. The enzyme pH stability was determined by maintaining the pure preparation of the 

purified enzyme samples for 30 min at pH 5-9 in the absence of substrate. Subsequently, the activity of 

phosphopantetheinyl transferase was determined under standard assay condition. The enzymatic activity 

without pre-incubation was denoted as 100%. 

8.2.5.5 The effects of heavy metals and EDTA on crude and purified Sfp phosphopantetheinyl 

transferase 

The effect of various heavy metal, i.e. Mg2+, Ca2+, Fe2+, Co2+, Ni2+, Zn2+, and Cu2+
 or EDTA (Sigma Aldrich, 

USA) at 1 mM final concentration was made for corresponding samples on Paenibacillus sp. D9 Sfp 

phosphopantetheinyl transferase. The activity under standard conditions without heavy metal as 100% was 

compared to the relative activity of Sfp phosphopantetheinyl transferase. All experiments were analysed in 

three independent biological replicates. The assays were carried out at the indicated concentration at 30oC for 

30 min 

8.2.5.6 Determination of kinetic parameters of purified Sfp phosphopantetheinyl transferase 

The kinetic studies of Paenibacillus sp. D9 Sfp phosphopantetheinyl transferase were assayed in 50 mM Tris-

HCl buffer (pH 8.0) at 30oC. Assays were performed with the increasing substrate concentrations (0-1000 µM) 

utilized at optimal conditions. The values of maximum reaction velocity (Vmax), Michaelis constant (Km) of the 

purified Sfp phosphopantetheinyl transferase were perquisite to calculate the turnover number (kcat), and 

catalytic efficiency (kcat/Km) utilizing the Lineweaver and Burk plot. The Lineweaver-Burk plot was defined 

as reciprocal reaction velocities versus reciprocal substrate concentrations. To limit substrate utilization to 

below 5%, the reaction time was restricted to 15 min. 

8.2.6 Molecular characterization and in silico sequence analysis 

The deduced Sfp amino acid sequences were utilized as inquiries in the BLASTP calculation with parameters 

set as defaults to scan for related proteins accessible from the NCBI pursued by manual changes. A 
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phylogenetic tree was additionally developed dependent on the amino acid sequences of the sfp gene utilizing 

Clustal X and Mega X software. The phylogenetic tree was developed utilizing the Neighbor-joining technique 

and bootstrapped 1000 times. Multiple sequence alignment of the sequences that indicated high comparability 

was aligned utilizing the CLUSTAL-X program. The output alignments were imported into the GeneDoc 

program (http://www.psc.edu/biomed/genedoc/). The theoretical pI value was predicted using the ProtParam 

tool (https://web.expasy.org/cgi-bin/protparam/protparam). 

8.2.7 Sfp expression of the recombinant E. coli strain on different substrates 

For determining the production of BioS, Paenibacillus sp. D9 and positive recombinant transformant, viz. 

BioSp were grown on a Bushnell Haas (BH) basal medium containing 2.0% (v/v) of each substrate, viz., waste 

canola oil, sunflower oil, diesel fuel, n-hexadecane, glucose, and glycerol at 37°C, respectively. The BH 

medium without the addition of carbon source was used as control. The medium utilized for culturing the 

positive transformant was supplemented with kanamycin. Subsequently growth, BioS activity, and esterase 

activity were assessed after 5 days of incubation. The increase or decrease in growth was determined by 

measuring the optical density at 600 nm using UV spectrophotometer (Shimadzu Cooperation, Japan). The 

production medium was allowed for clear separation of hydrophobic layer containing the substrates and 

hydrophilic layer containing the bacterial cells. The spectrophotometer was blanked with the medium 

containing the different substrates during the measurement of OD600 value.  

 The BioS activity and esterase activity were determined using the cell-free supernatant achieved by 

centrifugation (13,500 × g) of the culture fermentation broth. 

8.2.7.1 Esterase activity of the recombinant strain 

Esterase activity of the recombinant strain was carried out using the cell-free supernatant, 75 mM phosphate 

buffer containing 10 mM MgSO4 (pH 7.0), and 100 mM 4­nitrophenyl (pNP) acetate as substrate (Politino et 

al., 1997). The activity was examined by measuring the increase in optical density at 405 nm after incubation 

at 37°C for 30 min. One esterase unit was defined as the quantity of enzyme required to release 1 µmol of p-

nitrophenol per minute with the specific esterase activity expressed as µmol/mg protein/min. The enzyme 

unit was calculated based on the spectrophotometric based assay using the formula  

A = ε l c 

http://www.psc.edu/biomed/genedoc/
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Where A = absorbance (M-1 cm-1), b = cell path length (1 cm), c = absorbance concentration (M) and ε = the 

molar extinction coefficient.  

8.2.7.2 Emulsifying activity of the isolated biosurfactant  

The cell-free supernatant after IPTG induction was introduced into 10 mL glass tubes containing TM buffer 

(20 mM Tris-HCl buffer, pH 7.0; 10 mM MgSO4) and 0.04 mL of a 1:1 (vol/vol) of n-hexadecane and 2-

methylnaphthalene to a final volume of 1.5 mL (Colla et al., 2010; Toren et al., 2001). The tubes were vortexed 

and left at room temperature for 60 min. One unit of emulsifying activity is defined as the amount of BioS that 

yielded an optical density A600 of 0.1 using a Shimadzu spectrophotometer. 

EAo/w = (Absorbance sample – Absorbance blank) / 0.1 

EAo/w = Emulsifying activity of oil in water  

8.2.7.3 Surface tension 

A KRÜSS K6 Tensiometer (KRÜSS GmbH, Germany) with 1.9 cm De Noüy platinum ring at room 

temperature was used to measure ST. This was carried out using 40 mL cell-free supernatant achieved by 

centrifuging culture broth at 13,500 × g for 20 min (Gudiña et al., 2012). The experiments were produced in 

average of three independent biological replicates. For proper calibration and to avoid error in instrumentation, 

ST of distilled water were initially measured. The ST of BH medium supplemented with different substrates 

were determined as controls (Zhang et al., 2016). 

8.2.8 Recovery and purification of the recombinant biosurfactant 

The culture was harvested by centrifuging at 13,500 × g for 20 min at 4℃ when the BioS activity was observed 

to be greatest in the supernatant after five days. Acid precipitation method was utilized to partially purify and 

extract the BioS (Al-Wahaibi et al., 2014). The pH was adjusted to 2.0 using 6 M HCl to precipitate BioS. The 

solution was kept overnight at 4℃ and the precipitated BioS was collected by centrifuging the solution at 

13,500 × g for 20 min at 4℃. The collected BioS pellet was dissolved in distilled water and pH was adjusted 

to 7.0, followed by freeze-drying (VirTis BenchTop Pro, USA). The freeze-dried sample was then evaluated 

for BioS activity at 550 nm. For evaluating maximum BioS production, purified (lyophilized) powder was 

evaluated and weighed as g/L. In this case, the isolated BioS was subsequently confirmed for surface properties 

before its further usage. 
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8.2.9 Statistical analysis  

All the experimental data analyzed were expressed in terms of arithmetic averages obtained from at least three 

independent biological replicates, with standard deviation (±). The student t-test was ascribed to a 95% 

confidence level, analyzed using GraphPad Prism 6. 

 

8.3 Results  

8.3.1 Cloning and expression of sfp gene of Paenibacillus sp. D9 

The Paenibacillus sp. D9 DNA and pET47b plasmid were isolated and purified (Figure 8.1a). The purity and 

high concentration of both the DNA and pET47b plasmid were observed as shown (Figure 8.1a). From this 

result, the PCR amplicon was confirmed as sfp gene (693 bp) (Figure 8.1b). The insertion of sfp gene into 

pET47b (Figure 8.1c) was confirmed by restriction digestion using XhoI and BamHI. (Figure 8.1d). The 

amplified sfp gene was inserted into the designation vector pET 47b-sfp, further expressed in E. coli DH5α, 

and subsequently E. coli BL21 (DE3) pLysS. 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/restriction-digest
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/xhoi
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/bamhi
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Figure 8.1 Cloning of sfp gene to pET 47b (a) purified Paenibacillus sp. D9 DNA, and pET 47b plasmid 

(b) PCR amplification of sfp gene (c) pET47b-sfp with insert (d) Presence of sfp gene confirmation 

by restriction digestion using XhoI and BamHI. M: Molecular markers; 1: Purified Paenibacillus sp. D9 DNA; 

2: pET 47b plasmid; 3-6: sfp PCR products; 7-9: pET47b-sfp with insert; 10-11: restriction digest of pet 47b 

and sfp gene insert  

 

The protein expression was investigated by separation of protein samples on 10% SDS-PAGE (Figure 8.2). In 

contrast to the sample before induction, the recombinant Sfp protein was highly expressed in IPTG-induced E. 
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coli BL21 (DE3) (Figure 8.2, Lane 2). The predicted weight of the Sfp protein was 25.3 kDa, with the 6x His-

tag adding (∼2.5 kDa) for a total of ∼27.8 kDa (Figure 8.2). 

 

  

Figure 8.2 Expression of pET47b-sfp recombinant grown at 37℃ after 4h IPTG induction and soluble proteins 

were isolated from cell-free supernatant. MWM: Molecular weight marker (Thermo Fischer Scientific); 1: 

protein extracts before IPTG induction, control; 2: protein extracts after IPTG induction; 3: Unbound protein; 

4-5: Purified Sfp protein. 

8.3.2 Purification and characterization of the Sfp protein 

To describe the compound biochemically, recombinant Sfp protein was over-expressed and purified from the 

E. coli strain (DE3) pLysS for utilization in in vitro assays. Cloned Paenibacillus sp. D9 Sfp protein of 

molecular weight 27.8 kDa was purified to homogeneity using a Cobalt Affinity Chromatography (Figure 8.2, 

Lanes 4 and 5). Upon incubation of the purified Sfp protein in the presence of coenzyme A substrate, and 

conversion enzyme mix CoA (or malonyl-/methylmalonyl-CoA), there was increase in the CoA concentrations 

responsible for the transfer of acyl group (Figure S1, Table S1). As such, purified sfp protein is competent for 

carrying 4-phosphopantetheinylation of acyl-CoAs. 
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Table 8.1 Summary of purification of recombinant Sfp protein from E. coli transformant  

Purification 

steps 

Fraction 

volume 

(ml) 

Protein 

Conc. 

(mg/mL) 

Total 

protein 

(mg) 

Enzyme 

activity 

(U/ml) 

Total 

activity 

(U) 

Specific 

activity 

(U/mg) 

Yield 

(%) 

Purification 

fold 

 

Cloned extract 

 

25 

 

0.38 

 

9.50 

 

10.17 

 

254.25 

 

26.76 

 

100.0 

 

1.00 

Dialysis 25 0.30 7.50 10.49 262.25 34.97 103.1 1.31 

Affinity 

Chromatography 

2 0.16 0.32 13.94 27.88 87.13 10.6 3.26 

 

Table 8.1 outlines the enzyme activity and protein concentration of the samples for every purification step. 

Prior to column chromatography, the specific activity of the crude extract was increased by dialysis with 103% 

recovery. Subsequently, affinity chromatography was used to purify the Sfp protein to homogeneity with a 

specific activity of 87.14 U/mg and a 3.26-fold increase in purity.  

The effect of pH on recombinant Paenibacillus sp. D9 Sfp activity was conducted using a selected range of 

pH, i.e., 4-10. As represented in Figure 8.3a, the crude phosphopantetheinyl transferase showed optimal activity 

at pH 8 while the purified enzyme possessed a similar pattern with an optimal activity at pH 8. The temperature 

effects on phosphopantetheinyl transferase were also determined using diverse temperature conditions 25℃, 

30℃, 37℃ and 42℃ (Figure 8.3b). The optimal enzyme activity for both the crude and purified 

phosphopantetheinyl transferase was attained at 30℃. As such, maximum activity of phosphopantetheinyl 

transferase was attained in the temperature range of 25–42℃.  

From the pH stability studies, the purified Paenibacillus sp. D9 phosphopantetheinyl transferase was stable at 

pH 6, 7 and 8, retaining at least 90% of its relative activity after 30 min (Figure 8.3c). Furthermore, the purified 

Sfp was active optimally at 30oC (at pH 8), and furthermore, in the temperature range 35–55oC, over 80% of 

the maximum activity was retained (Figure 8.3d). Subsequently, the enzyme had retained more than 70% of 

the maximum activity after incubation at 55oC for 30 min (Figure 8.3d). The enzyme additionally had 60% 

activity when incubated at 65oC for 15 min, however expanding the treatment time to 30 min made the enzyme 

lose practically all activity. 
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Figure 8.3 Characterization of phosphopantetheinyl transferase (a) effect of different pH; (b) effect of 

Temperature on cloned crude and purified phosphopantetheinyl transferase from Paenibacillus sp. D9 (c) pH 

stability of phosphopantetheinyl transferase. The enzyme was maintained at pH 5, 6, 7, 8, or 9 for 5, 15, 30 

min before the assay (d) Thermostability of phosphopantetheinyl transferase. The enzyme was incubated at 35, 

45, 55 or 65oC for 5, 15, 30 min prior to the assay (e) Effect of metal chelator and metal ions on Sfp activity. 

Subsequently, the effect of EDTA and metal ions on Sfp phosphopantetheinyl transferase was resolved at a 

final concentration of 1 mM.  The activity of the enzyme without the introduction of the chemicals was viewed 

as 100%, while the relative activity of the rest of the estimations was determined (f) The kinetic properties 

exhibited by purified Sfp phosphopantetheinyl transferase based on the Lineweaver-Burk plot. Values are mean 

of three independent replicates. 

The heavy metals effect was likewise considered in the investigation and fused in the standard assay condition 

whereby the untreated sample was taken as a control (100%). Figure 8.3e outlines the impact of some metal 

ions on the activity of the purified Paenibacillus sp. D9 Sfp phosphopantetheinyl transferase. From Figure 

8.3e, it may be observed that 1mM Zn2+, Cu2+, and Fe2+ increased Sfp phosphopantetheinyl transferase in the 

enzymatic assay reactions. Also, under the same conditions, Ni2+, Co2+ and Mg2+ inhibited the activity of 

phosphopantetheinyl transferase, while Ca2+ and Pb2+ ions had no substantial impact. There was no obvious 

inhibitory effect of the chelating EDTA on the enzyme activity. 

The enzyme was additionally characterized to determine the kinetic parameters such as Km, Vmax, and kcat of 

the purified Sfp phosphopantetheinyl transferase. Values for Km and Vmax were determined from the double-

reciprocal plots. The Km and Vmax values were 4.52 mg/mL and 35.33 U/mg, respectively (Figure 8.3f), while 

3.64 s-1, and 0.104 mM−1 s−1 were obtained for kcat and kcat/Km respectively.  

8.3.3 Phylogenetic analysis and molecular characterization of the biosurfactant gene 

The sfp gene complete nucleotide and construed amino acid sequence achieved from Paenibacillus sp. D9 

(GenBank Accession number JZEJ00000000) was highlighted in Figure 8.4. The sfp gene sequence was 693 

bp and encoded amino acid sequence (230 AAs), including an ATG initiation codon and a TAA termination 

codon by analysis (Figure 8.4), utilizing online software available. 
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1 ATG GTG GAG ATT TAC GCG GTC GAG ATC CCT TCC GGC TTG GAA AGA 45  

1  M   V   E   I   Y   A   V   E   I   P   S   G   L   E   R  15 

46 AGC CGG CTT GAA GAG CTT GCA GCC TTG GCC GGA CCG GAA AAA CGG 90  

16  S   R   L   E   E   L   A   A   L   A   G   P   E   K   R  30    

91 AGG CGG ATT CTC CGC TAT CAT CGG CAG GAG GAC GCG CTC CGG TCG 135  

31  R   R   I   L   R   Y   H   R   Q   E   D   A   L   R   S  45  

136 CTG GTC GCC GAC CTC CTG GCG CGG ACG GTG CTC ATG GAC AAA TGC 180 

46  L   V   A   D   L   L   A   R   T   V   L   M   D   K   C 60 

181 GGC CTT GCC GCT GCG GAG ATC GAG TTC GCC TGC AGC GAA TAC GGC 225  

61  G   L   A   A   A   E   I   E   F   A   C   S   E   Y   G  75 

226 AAG CCG TAT CTG CGA AGC GGC GGG AGC TGG GCG TTC AAC GTC TCC 270  

76  K   P   Y   L   R   S   G   G   S   W   A   F   N   V   S 90 

271 CAT GCG GGG AAA TGG GCC GCA GCC GCC TTC TCG CAG CGG GCC GAG 315 

91  H   A   G   K   W   A   A   A   A   A   A   F   S   Q   R 105 

316 GTC GGC ATC GAC ATC GAG GAG ATC CGT CCC GCC GCC ATG GAA ATC 360 

106  A   E   V   G   I   D   I   E   E   I   R   P   A   A   M 120 

361 GCC GAG TCG TTT TTC GCG CCT GCG GAG GTC GGC AGC CTG CAG TCT 405 

121  E   I   A   E   S   F   F   A   P   A   E   V   G   S   L 135 

406 TGT CCG CCC GAT GAG AGG CTG GCG TTT TTC TAC GAC CTG TGG ACG 450 

136  Q   S   C   P   P   D   E   R   L   A   F   F   Y   D   L 150 

451 CTC AAG GAA AGC TAT GTC AAG TTC GTG GGC AAA GGC CTG TCG CTG 495  

151  W   T   L   K   E   S   Y   V   K   F   V   G   K   G   L 165 

496 CCG CTG GAC TCG TTT GCC ATG CGG ATG GGA ACG GAC GGC TCC ATT 540 

166  S   L   P   L   D   S   F   A   M   R   M   G   T   D   G 180 

541 GCG GTC GAC TCC GCT CTG CCC ATG GCG GCG CAT TTC CGC CAG TAC 585 

181  S   I   A   V   D   S   A   L   P   M   A   A   H   F   R 195 

586 GAG CTC GAT CCG GGC TAC AAG CTG TCC GTC TGC TCC GGC GTT CCG 630  

196  Q   Y   E   L   D   P   G   Y   K   L   S   V   C   S   G 210 

631 GAC TTT GCC GGC CAT GCG GAA GTC GTT TCG TTT GCG GAG CTG GAG 675 

211    V   P   D   F   A   G   H   A   E   V   V   S   F   A   E 225 

676 GAG CGG CTG GGA CGG TAA       693 

226  L   E   E   R   L   *       230 

Figure 8.4 The sfp gene complete nucleotide and construed amino acid sequence achieved from Paenibacillus 

sp. D9 (GenBank Accession number JZEJ00000000). The annealing sites utilized in the amplification and 

cloning of the sfp gene from Paenibacillus sp. D9 are indicated by the arrows. Start and stop codons are 

indicated by bold letters. 
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BLASTP investigation of the concluded protein sequence uncovered 99%, 93%, and 90% similarity to prior 

detailed Sfp sequences from Paenibacillus sp. P22 (Accession No. WP_048746037.1), Paenibacillus sp. RU4T 

(Accession No. SIR11239.1), and Paenibacillus sp. RUD330 (Accession No.  WP_094248422.1) respectively 

(Figure 8.5).  

Paenibacillus D9 1 MVEIYAVEIPSGLERSRLEELAALAGPEKRRRILRYHRQEDALRSLVADLLARTVLMDKC 

Paenibacillus RUD330 

                 1 ------------LERSRLEELAALAGPEKRRRILRYHRQEDALRSLVADLLARTVLMDKC 

Paenibacillus P221 ------------LERSRLEELAALAGPEKRRRILRYHRQEDALRSLVADLLARTVLMDKC 

B.thurigiensis   1 MVEIYAVEIPSGLERSRLEELAALAGPEKRRRILRYHRQEDALRSLVADLLARTVLMDKC 

B.cereus         1 MVEIYAVEIPSGLERSRLEELAALAGPEKRRRILRYHRQEDALRSLVADLLARTVLMDKC 

Brevibacillus    1 MVEIYAVEIPSGLERSRLEELAALAGPEKRRRILRYHRQEDALRSLVADLLARTVLMDKC 

B.nakamurai      1 -VEIYAVEIPSGLERSRLEELAALAGPEKRRRILRYHRQEDALRSLVADLLARTVLMDKC 

B.subtilis       1 -VEIYAVEIPSGLERSRLEELAALAGPEKRRRILRYHRQEDALRSLVADLLARTVLMDKC 

B.mobilis        1 MVEIYAVEIPSGLERSRLEELAALAGPEKRRRILRYHRQEDALRSLVADLLARTVLMDKC 

P. stellifer     1 -VEIYAVEIPSGLERSRLEELAALAGPEKRRRILRYHRQEDALRSLVADLLARTVLMDKC 

 

Paenibacillus D9 61 MVEIY-AVEIPSGLERSRLEELAALAGPEKRRRILRYHRQEDAL-RSLVADLLARTVLMD 

P. RUD330        49 GLAAA-EIEFAC---SSRLEELAALAGPEKR-RILRYHRQEDAL-RSL-ADLLARTVLMD 

P. P22           49 GLAAA-EIEFAC-SERSRLEELAALAGPEKRRRILRYHRQEDAL-RSLVADLLARTVLMD 

B.thurigiensis   61 MEYA-PL--------------------LEKR-RIR----RED-RLADL------------ 

B.cereus         61 MEYVIPE---------------------LEK-RIH----RED-RLADL-L---------- 

Brevibacillus    61 MIYA-PE---------------------EKR--------RRD-RLADL------------ 

B.nakamurai      60 GIYVL----------------------EEKR--------REDAR-LDR------------ 

B.subtilis       60 GIYLE----------------------PEK---------REDAR-LDL------------ 

B.mobilis        61 MEYP-L----------------------LKR-RIR----REDARLADL------------ 

P. stellifer     60 GIYA-VI-------------------LPEKR-RIR----REDARLADL------------ 

 

 

Paenibacillus D9 119 KCMVEIYAVEIPSGLERSRLEELAALAGPEKRRRILRYHRQEDALRSLVADLLARTVLMD 

P. RUD330        102 KCGLA-AEIEFACSMESSRLEELAALAGPEKRKRILRYHRQEDALRSLAADLLARTVLMD 

P. P22           106 KCGLAAAEIEFACSMERSRLEELAALAGPEKRRRILRYHRQEDALRSLVADLLARTVLMD 

B.thurigiensis   82 RKMLEVYALQVPDKLSHQTFLMLLNCVSNEKRERIKRFKRKEDTYRTLMADILIRSIILT 

B.cereus         83 RKMIEVYIVRIPNKIETRLFKQLLGYVSNEKRKKIENFHRKEDSYRGLIADLLVRSLIIR 

Brevibacillus    78 R-MIAIYALKCPAVMEKESFNRFLQALPEEKRERVNRFRNPADSYRALLADVLVRSLICE 

B.nakamurai      77 TVGMKIYGVYMDRPLSAEETEQMMSVVSAEKREKCRRFYHEEDAHRTLIGDVLVRTVIGH 

B.subtilis       76 -RVMKIYRIYMDRPLSQEENERFMSFISPEKREKCRRFYHKEDAHRTLLGDVLVRSVISR 

B.mobilis        81 RKMLEVYVLQVPDELPHQTFLMLLNCVSNDKRERIRRFKRKEDAYRTLMADILIRSIILT 

P.               83 R-GMKIYAVNISDAMDSEVFYSLLQQVSPEKRQRIDRFIRREDATRTLIADVLVRSIICN 

stellifer 

 

   P1a           P1b                  P2 

Paenibacillus D9 179 KCGLAAAEIEFACSEYGKPYLRSGGSWAFNVSHAGKWAAAAFSQRAEVGIDIEEIRPAAM 

P. RUD330        161 KCGLAAEEIEFACSEYGKPYLRSGGSWAFNVSHAGKWAAAAFSQRAEVGIDIEEIRPAAM 

P. P22           166 KCGLAAAEIEFACSEYGKPYLRSGGSWAFNVSHAGKWAAAAFSQRAEVGIDIEEIRPAAM 

B.thurigiensis   142 KYGLAAAEIEFACSEYGKPYLRSGGSWAFNVSHAGKWAAAAFSQRAEVGIDIEEIRPAAM 

B.cereus         143 KYGLAAAEIEFACSEYGKPYLRSGGSWAFNVSHAGKWAAAAFSQRAEVGIDIEEIRPAAM 

Brevibacillus    137 AYGLAAAEIEFACSEYGKPYLRSGGSWAFNVSHAGKWAAAAFSQRAEVGIDIEEIRPAAM 

B.nakamurai      137 ANGLAAAEIEFACSEYGKPYLRSGGSWAFNVSHAGKWAAAAFSQRAEVGIDIEEIRPAAM 

B.subtilis       135 QYQLAAAEIEFACSEYGKPYLRSGGSWAFNVSHAGKWAAAAFSQRAEVGIDIEEIRPAAM 

B.mobilis        141 KYGLAAAEIEFACSEYGKPYLRSGGSWAFNVSHAGKWAAAAFSQRAEVGIDIEEIRPAAM 

P. stellifer     142 QYGLAAAEIEFACSEYGKPYLRSGGSWAFNVSHAGKWAAAAFSQRAEVGIDIEEIRPAAM 

 

Paenibacillus D9 239 EIGLAAAEIEFACSEYGKPYLRSGGSWAFNVSHAGKWAAAAFSQRAEVGIDIEEIRPAAM 

P. RUD330        221 EIAESFFAPAEVGSEYGKPLR-SGGSWAFNVSHAGKWAA--FSQRAEVGIDEEP---AAM 

P. P22           226 EIAESFFAPAEVGSEYGKPYLRSGGSWAFNVSHAGKWAAAAFSQRAEVGIDIEEIRPAAM 

B.thurigiensis   202 EIGEIF---------YGKPL-------SFNVSHG-KWAQ-------RVGIDIEEI-P--M 

   

https://www.ncbi.nlm.nih.gov/protein/WP_048746037.1?report=genbank&log$=protalign&blast_rank=2&RID=UMWD7RB7015
https://www.ncbi.nlm.nih.gov/protein/SIR11239.1?report=genbank&log$=protalign&blast_rank=3&RID=UMWD7RB7015
https://www.ncbi.nlm.nih.gov/protein/WP_094248422.1?report=genbank&log$=protalign&blast_rank=4&RID=UMWD7RB7015
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B.cereus         203 EIEIEF---------YGKPY-------LFNVSHG--WA----------GIDEI---P--- 

Brevibacillus    197 EIEI-E---------YGKPL-------SFNVSHG--WA---------VGIDEI---P--- 

B.nakamurai      197 EIALAF--------EYGKPY-------SFN-SHG--WA---------AGIDIEP------ 

B.subtilis       195 EIALIF--------EYGKPF---------N-SHG--WA---------FGIDIEP------ 

B.mobilis        201 EIGEIF---------YGKPL-------SFNVSHG-KWA---------VGIDIE---P--M 

P. stellifer     202 EIAEIF---------YGKPRS------SFNVSHG--WAA--------VGIDIE-I-P--- 

 

 

Paenibacillus D9 299 EIGLAAAEIEFACSEYGKPYLRSGGSWAFNVSHAGKWAAAAFSQRAEVGIDIEEIRPAAM 

P. RUD330        275 EIA--SFFAPAEVGEYGKPFLRSGGSWAFNVSHAGKWAVGAFSQRAEVGIDVEEILPAAM 

P. P22           286 EIAESFFAPAEVGSEYGKPYLRSGGSWAFNVSHAGKWAAAAFSQRAEVGIDIEEIRPAAM 

B.thurigiensis   235 EIGVSNQEITFIYNSYGKPFLSWDSSFSFNVSHSGKWVVAIVGQRQLVGIDIEEIQPIGM 

B.cereus         229 EISISNEEIEFKNNLYGKPYLHNFSNFEFNVSHSGDWVVCAVD-KFSIGIDVELIKPIEF 

Brevibacillus    223 -IEISNDEIEYDYNAYGKPFLKSFPNFCFNVSHSGEWVVCATH-DSQVGIDVEQICPIEL 

B.nakamurai      224 -IALDPAAVTFSVQEYGKPYIPSLPAVHFNISHSGRWIVCAVD-SAPIGIDIEKLKPGTI 

B.subtilis       220 EIALDKSDIRFSTQEYGKPCITDLPDAHFNISHSGRWVIGAFD-SQPIGIDIEKTKPISL 

B.mobilis        230 EIGVPNREITFIYNSYGKPFLSWDSSFSFNVSHSGKWVVAIVGKQQLVGIDIEGVQPIGM 

P.stellifer      232 -MAVHNKEINFSHNDYGKPFVRSLPSLHFNVSHSGDWVVCAVD-TAFVGIDIEQIKPIDM 

 

 

 

Figure 8.5 Multiple sequence alignments Sfp protein sequences from different microorganisms. The alignment 

was achieved utilizing amino acid sequences from D9 (Paenibacillus sp. D9), this work; Paenibacillus sp. P22, 

Paenibacillus sp. RUD330; Bacillus thuringiensis; Bacillus cereus; Brevibacillus brevis; Bacillus nakamurai; 

Bacillus subtilis, Bacillus mobilis; and Paenibacillus stellifer. The shaded (black) boxes represent the sequence 

similarity. The red boxes are the conserved domains of the Sfp type PPTase family which are involved in the 

biosynthesis of non-ribosomal peptides. 

The sfp type PPTase family conserved domains were recognized in the deduced amino acid sequence from 

Paenibacillus sp. D9. The conserved domains P1a, P1b, P2, and P3 (Figure 8.5), which are associated with the 

biosynthesis of non-ribosomal peptides, were seen in the Sfp sequence. Additionally, there was revelation of 

relatedness of this gene based on the phylogenetic tree analysis to earlier reported sequences from 

Paenibacillus sp. P22 (Accession No. WP_048746037.1), and Paenibacillus sp. RUD330 (Accession 

No.  WP_094248422.1)  (Figure 8.6). 

 

https://www.ncbi.nlm.nih.gov/protein/WP_048746037.1?report=genbank&log$=protalign&blast_rank=2&RID=UMWD7RB7015
https://www.ncbi.nlm.nih.gov/protein/WP_094248422.1?report=genbank&log$=protalign&blast_rank=4&RID=UMWD7RB7015
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Figure 8.6 The Phylogenetic tree demonstrating evolutionary relationships of varied bacterial Sfp amino acid 

sequences. The tree was inferred using the neighbour-joining technique utilizing Mega X. The topology was 

tried in the bootstrap test (1000 replicates). The Sfp amino acid sequence obtained from the Paenibacillus sp. 

D9 utilized in the study is demonstrated in bond letters. All other reference sequences utilized for the tree 

development were procured from GenBank. 

8.3.4 Regulation of biosurfactant production with various substrates on the recombinant 

strain 

To confirm the significant role played by the Paenibacillus sp. D9 sfp gene in the biosynthesis of lipopeptide 

BioS, the recombinant strain was induced with different carbon substrates (Table 8.2). As such, BioS yields, 

BioS activities, and esterase activities were assessed to confirm to surface activities. From different carbon 

source tested, glucose concentration with 1.05 g/L led to the greatest BioS yield. It is also imperative to note 

that sunflower oil and canola which are both hydrophobic oily substrates produced high BioS concentrations 

of 1.03 g/L, and 0.86 g/L respectively. Hence, there was no significant difference (p > 0.05) between the 

substrates stated above namely glucose, sunflower oil, and canola oil. The outcomes showed significance  relative 
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to control samples with no production of BioS yield discovered. This however, rule out any possibilities of the 

substrates co-precipitating with the isolated BioS. From the carbon sources utilized for BioS synthesis by the 

recombinant (BioSp) organism in basal medium; glucose, glycerol, sunflower oil, and canola oil produced 

maximum BioS activity in the range of 2.147 to 1.097 (optical density at 540 nm). Very low BioS activities of 

0.122, and 0.157 were observed when grown in the presence of n-hexadecane, and diesel fuel owing to inability 

to utilize these complex hydrocarbons. There was a strong correlation (r = 0.62, p < 0.05) between BioS 

synthesis and esterase activity exhibited by recombinant BioSp strain on the different substrates. However, the 

greatest esterase inducer amongst all the substrate was glucose with esterase activity of 2.231 IU/ml followed 

by sunflower oil, canola oil, and glycerol with esterase activities of 0.238, 0.200, 0.181 IU/ml respectively 

(Table 8.2). However, there was low production of esterase activities on diesel fuel and n-hexadecane 

respectively.  

Table 8.2 Cell growth, esterase activity, biosurfactant activity, and biosurfactant yield of E. coli recombinant 

(BioSp) on different carbon substrates after 5 days of incubation at 37℃ 

Substrates Cell growth 

OD600 

Esterase activity 

(IU/ml) 

Emulsifying activity 

(OD540) 

Biosurfactant yield 

(g/L) 

Control 0.05 ± 0.01 0.021 ± 0.01 0.08 ± 0.02 0.03 ± 0.01 

Glucose 2.14 ± 0.01 2.231 ± 0.037 2.147 ± 0.012 1.05 ± 0.07 

Glycerol 1.64 ± 0.03 0.181 ± 0.026 2.011 ± 0.031 0.51 ± 0.07  

Diesel fuel 0.17 ± 0.01 0.090 ± 0.013 0.157 ± 0.004 0.13 ± 0.06 

n-Hexadecane 0.28 ± 0.03 0.089 ± 0.017 0.122 ± 0.011 0.13 ± 0.04 

Sunflower oil 0.83 ± 0.01 0.238 ± 0.014 1.181 ± 0.019 1.03 ± 0.10 

Canola oil 0.69 ± 0.01 0.200 ± 0.027  1.097 ± 0.011 0.86 ± 0.02 

All data points are means ± standard deviation (S.D.) of three independent experiments 

 

Paenibacillus sp. D9 and recombinant strain BioSp developed on a basal medium containing 2.0% (v/v) glucose 

at 37°C were assessed for their growth, esterase and BioS activities. High BioSp yield of 1.11 g/L was observed 

in BioSp recombinant strain followed by Paenibacillus sp. D9, non-induced Escherichia coli BL21 DE3 

(pLysS), and Escherichia coli DH5α. However, the recombinant strain produced esterase and BioS activities 
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of 2.55 IU/ml and 4.22 in contrast with the parent strain-produced BioS (Table 8.3). There were minimal 

esterase activities as well as BioS activities observed for both E. coli DH5α and E. coli BL21 DE3 (pLysS) 

strains indicating their inability to utilize the carbon substrate. Subsequently, the recombinant strain and parent 

Paenibacillus sp. D9 produced higher BioS and esterase activities when compared to E. coli DH5α and E. coli 

BL21 DE3 (pLysS). To further confirm the production of BioS, surface tension was reduced to 35.7 mN/m by 

the recombinant BioSp strain. There was the induction of BioS activity on Paenibacillus sp. D9 showing 36.8 

mN/m surface tension. The plasmids Escherichia coli DH5α, and Escherichia coli BL21 DE3 (pLysS), which 

were utilized as control showed no surface activities on the glucose substrate indicating their inability to 

produce BioS.  

 

Table 8.3 Cell growth, surface tension, and biosurfactant yield of Paenibacillus sp. D9 and recombinant 

organism on glucose after 5 days of incubation at 37oC.  

Strain Esterase activity 

(IU/ml) 

Biosurfactant 

activity  

Biosurfactant yield 

(g/L) 

Surface tension 

(mN/m) 

Paenibacillus sp. D9 1.72 ± 0.03 1.69 ± 0.03 0.52 ± 0.07 36.8 ± 0.4 

E. coli DH5α 0.17 ± 0.02 0.15 ± 0.01 0.05 ± 0.04 61.6 ± 0.2 

E. coli BL21 0.27 ± 0.06 0.23 ± 0.01 0.08 ± 0.02 59.6 ± 0.6 

E. coli BioSp  2.55 ± 0.02 4.22 ± 0.01 1.11 ± 0.04 35.7 ± 0.4 

All data points are means ± standard deviation (S.D.) of three independent experiments 

8.4 Discussion 

Bacillus and Paenibacillus spp. strains are among the rod-shaped bacteria which are producers of numerous 

secondary metabolites that have varied functions and structure (Porob et al., 2013). The metabolites synthesized 

by these genus have distinguished properties with great importance in the biotechnological industries (Devaraja 

et al., 2013). There has been a report that lipopeptide is produced through a non-ribosomal thiotemplate 

mechanism (Porob et al., 2013). This investigation is valuable to identify sfp presence in genus Paenibacillus 

coupled with little details on the structural synthesis of the lipopeptide group. The sfp gene, which codes for a 
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non-ribosomal peptide synthetase complex is an essential unit of the srfA operon. The sfp gene encodes 

phosphopantetheinyl transferase and is essential for the biosynthesis of lipopeptide BioS. From investigating 

the sequence of Paenibacillus sp. D9, the sfp gene was 693 bp long and encoded 230 amino acids (Figure 8.4). 

BLASTP investigation of the nucleic acid sequences uncovered 99% similarity to the Paenibacillus sp. P22 

(Accession No. WP_048746037.1) sfp sequence. The phylogenetic tree dependent on the Sfp amino acid 

sequence demonstrated arrangements from Paenibacillus sp. D9 similar to Sfp protein sequences of 

Paenibacillus sp. P22 and Paenibacillus sp. RUD330 (Figure 8.6). This is possibly due to close phylogenetic 

relatedness of Paenibacillus sp. D9 to both Paenibacillus sp. P22 and Paenibacillus sp. RUD330. 

In the lipopeptide biosynthetic gene cluster, the related substrates of Sfp protein are likely the bearer proteins 

of the lipopeptide non-ribosomal peptide synthetase. The Sfp inactivation has demonstrated that Sfp protein is 

indispensable in lipopeptide biosynthesis (Bunet et al., 2014). Sfp-type PPTases, show broader substrate 

preferences and have been associated with secondary metabolism in bacteria (Schimming et al., 2016). This 

superfamily comprises of two subtypes: the Sfp and ACPS type which is both present in Paenibacillus sp. D9 

amino acid sequence. The 4'-phosphopantetheine (4'-PP) moiety is transferred by this family from coenzyme 

A (CoA) to the invariant serine of pfam00550. This study revealed higher activities of Sfp protein 

(phosphopantetheinyl transferase) on the substrates used for confirmation (esterase and coenzyme A substrate 

mix). From this study, the sfp gene of Paenibacillus sp. D9 was successfully cloned into pet-47b vector and 

expressed in Escherichia coli BL21 DE3 (pLysS) after transformation. Interestingly, the specific activity 

(87.14 U/mg) of the purified phosphopantetheinyl transferase was 3.26-fold  than that of the cloned crude 

extract (Table 8.1).  

The results of temperature, pH and stability show the phosphopantetheinyl transferase was active in inclusive 

range of temperature and pH. These properties will enable its biotechnological applications as most industries 

usually require enzymes that are functional and stable at high temperatures and pH. The effects of pH, 

temperature, and heavy metals had similar output on the maximum activity of the purified Paenibacillus sp. 

D9 Sfp phosphopantetheinyl transferase. The S-H group of cysteine bonds reacts with heavy metals, forming 

a covalent bond with sulfur atom and dislodging the hydrogen ion. Thus, the enzymatic activity is either 

increased or disrupted (Yadav and Magadum, 2017). A few enzymes, for example, Sfp phosphopantetheinyl 

transferase require heavy metals as co-factors to be more progressively active. These co-factors are essential 

in the protein structure required for maximum activity (Gohara and Di Cera, 2016). The three metal ions Zn2+, 
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Cu2+, and Fe2+ showed a stimulatory effect on purified Sfp phosphopantetheinyl transferase activity. 

Nevertheless, other metal ions like Ca2+ and Pb2+ showed no impact on the enzyme activity. Strikingly, Sfp 

phosphopantetheinyl transferase held practically maximum activity with 1mM EDTA concentration. The 

outcomes showed that Sfp phosphopantetheinyl transferase was unequivocally impervious to the chelating 

reagent which is intriguing in that no metal ion is a fundamental requirement for maximum Sfp activity. Also, 

its stability to the chelating reagents (one of the key ingredients in detergent formulations) is of incredible 

significance from the biotechnological perspective and future works. 

To facilitate scientific research and engineering development, enzyme kinetics inclusive of Km and Vmax are 

significant coefficients, and thus needs to be considered favorably (Yadav and Magadum, 2017). This study 

discusses exhaustively the kinetic parameters of Sfp phosphopantetheinyl transferase and represents the first 

report. In this area, the kinetic parameters of the Sfp phosphopantetheinyl transferase characterized above, are 

critical to understanding the enzyme reaction in controlled metabolism. The low Km of Sfp 

phosphopantetheinyl transferase indicated high affinity of the enzyme as ½ Vmax was reached with low 

substrate concentration. 

From this study, the BioS gene (sfp) was effectively cloned and over-expressed in BioSp, demonstrating an 

increase in BioS and esterase activity than the parent strain. Similar to this research, Khanna et al. (2009) 

proposed recombinant Escherichia coli pSKA clones containing BioS gene srfA demonstrated higher esterase 

and BioS activity with olive oil when contrasted to parent Bacillus sp. SK320 strain. In another study, there 

was over-expression of BioS genes in BioSa, BioSb, and BioSc; displaying a twofold increase in BioS activity 

than the parent strain. Also, enhanced esterase production was conferred on the recombinant cells as compared 

to Bacillus substilis SK320 (Sekhon et al., 2011). There was identification of lchAA gene and significant 

amount of lichenysin produced in the 53 tested Bacillus licheniformis strains (Madslien et al., 2013). Liu et al. 

(2012) likewise reported surfactin variations from Bacillus subtilis TD7 was essentially affected by culture 

medium with various amino acid supplements. The optimization of major medium components on strain 

WX02-Psrflch synthesized 2.15 g/L lichenysin, a 16.8-overlay enhancement when contrasted with that of wild 

strain WX-02 (Qiu et al., 2014). In another report, engineered Bacillus subtilis (pHT43comXphrC) strain 

synthesized 0.14 g/L in comparison to Bacillus subtilis after 48 h of culture production while utilizing synthetic 

wastewater. As such, there was a 6.7-fold increase in surfactin production by the engineered Bacillus subtilis 
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(pHT43comXphrC) strain utilizing engineered wastewater contrasted and that in the wild strain (Jung et al., 

2012). 

This research demonstrated that the great significance as the recombinant strain could utilize simple carbon 

sources such as glucose, and glycerol, as well as hydrophobic oily carbon substrates; canola and sunflower oil, 

respectively (Table 8.2). Cheap substrates, for example, vegetable oils and oil waste have the potential for 

improving BioS synthesis. Utilizing hyper-producing microbial strains or mutants with high yielding limits 

and inexpensive low-cost substrates as raw material for the synthesis of BioS has not been improved at a 

modern level. The utilization of these in-expensive hydrophobic oily carbon substrates for cell growth and 

BioS synthesis by this recombinant organism becomes important to further reduce the cost of production on a 

large scale. The designed E. coli strain has modern application since it incorporates BioS at high rates and can 

minimize the complex downstream and purification procedures related to the regular bioprocess. Similar to 

this research, the recombinant BioS producing strains BioSa, BioSb, and BioSc were able to utilize olive oil 

which is also a hydrophobic substrate as carbon, respectively, with the highest BioS production of 2.45 g/L 

observed on BioSc (Sekhon et al., 2011). There was confirmation of BioS properties on recombinant BioSp 

strain as revealed by the surface tension activities. The recombinant organism reduced the surface tension of 

basal BH medium to 35.7 mN/m (Table 8.3) indicating significant production of this surface-active 

biomolecule. The capacity to decrease surface activity is a critical parameter to assess the nature of surface-

active compounds. To support this finding, apoemulsan recombinant-esterase in comparison with fully 

proteinated emulsan were examined. The outcomes revealed that the esterase-apoemulsan complex was 

progressively feasible in emulsifying a range of hydrophobic substrates that are usually not emulsified by crude 

emulsan itself (Sekhon et al., 2012). 

The role played by protein (or an enzyme) in the emulsifying action of BioSs is hard to discount. Genetic 

engineering, therefore, can be done to improve not only BioS surface activity but also its production yield as 

carried out extensively in this study. Genetically recombinant and engineered organisms can lead to 

achievement in the bio-production process. Identification of the sfp gene encoding 4-phosphopantetheinyl 

transferase and its crucial function in the synthesis of Paenibacillus sp. D9 lipopeptide BioS is novel. The 

information on the molecular genetics of Paenibacillus sp. D9 was utilized to produce recombinant 

microorganism. Furthermore, the hyper-producing microbial strain from this report was able to grow on cheap 

substrates producing BioS in high yield as compared to other strains. The results suggest that the successful 
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expression of the BioS gene enabled the high surface potential of the BioSp as compared to the other 

recombinant strains. As such, there is a difference in properties and advantages attributed to BioSp which 

propose its significance in bioremediation and other biotechnological applications. 

8.5 Conclusion 

A new phosphopantetheinyl transferase with N-terminal sequence was identified from Paenibacillus sp. D9. 

The cloning of the sfp gene encoding 4-phosphopantetheinyl transferase is projected to possess several 

advantages in biotechnological application. This enzyme was confirmed to regulate and play a major role in 

the biosynthesis of lipopeptide BioS. This research demonstrated a conceivable relationship between BioS and 

esterase synthesis and first to be reported of any Paenibacillus species. The recombinant strain also showed a 

positive increase in the surface, esterase activity, and BioS yield when compared to the parent strain. BioS-

esterase complex by hyper-producing recombinant strain was found to have amazing surface-active properties, 

which indicates enhanced hydrocarbon biodegradation, and bioremediation. 

Acknowledgment 

The authors would like to acknowledge Dr Sibusiso Maseko of the Department of Pharmaceutical Chemistry, 

University of KwaZulu-Natal, South Africa. 

Compliance with ethical standards  

Conflict of Interests 

The authors wish to declare no conflict of interest 

Human and animal rights and informed consent  

This article does not contain any studies with human participants performed by any of the authors. 

  



275 

 

 

References 

Al-Wahaibi, Y., Joshi, S., Al-Bahry, S., Elshafie, A., Al-Bemani, A., Shibulal, B., 2014. Biosurfactant 

production by Bacillus subtilis B30 and its application in enhancing oil recovery. Colloids and Surfaces B: 

Biointerfaces 114, 324-333. 

Anburajan, L., Meena, B., Raghavan, R.V., Joseph, T.C., Vinithkumar, N.V., Dharani, G., Kirubagaran, R., 

2016. Molecular characterization, structure prediction and insilico analysis of hydrocarbon degrading surfactin 

synthetase from marine sponge-associated Bacillus licheniformis NIOT-06. Gene Reports 5, 40-44. 

Bachmann, R.T., Johnson, A.C., Edyvean, R.G., 2014. Biotechnology in the petroleum industry: an overview. 

International Biodeterioration and Biodegradation 86, 225-237. 

Banat, I.M., Franzetti, A., Gandolfi, I., Bestetti, G., Martinotti, M.G., Fracchia, L., Smyth, T.J., Marchant, R., 

2010. Microbial biosurfactants production, applications and future potential. Applied Microbiology and 

Biotechnology 87, 427-444. 

Bunet, R., Riclea, R., Laureti, L., Hotel, L., Paris, C., Girardet, J.M., Spiteller, D., Dickschat, J.S., Leblond, P., 

Aigle, B., 2014. A single Sfp-type phosphopantetheinyl transferase plays a major role in the biosynthesis of 

PKS and NRPS derived metabolites in Streptomyces ambofaciens ATCC23877. PLoS One 9, e87607. 

Colla, L.M., Rizzardi, J., Pinto, M.H., Reinehr, C.O., Bertolin, T.E., Costa, J.A., 2010. Simultaneous 

production of lipases and biosurfactants by submerged and solid-state bioprocesses. Bioresource Technology 

101, 8308-8314. 

Devaraja, T., Banerjee, S., Yusoff, F., Shariff, M., Khatoon, H., 2013. A holistic approach for selection of 

Bacillus spp. as a bioremediator for shrimp postlarvae culture. Turkish Journal of Biology 37, 92-100. 

Domingos, D.F., de Faria, A.F., de Souza Galaverna, R., Eberlin, M.N., Greenfield, P., Zucchi, T.D., Melo, 

I.S., Tran-Dinh, N., Midgley, D., de Oliveira, V.M., 2015. Genomic and chemical insights into biosurfactant 

production by the mangrove-derived strain Bacillus safensis CCMA-560. Applied Microbiology and 

Biotechnology 99, 3155-3167. 

Gautam, G., Mishra, V., Verma, P., Pandey, A.K., Negi, S., 2014. A cost effective strategy for production of 

bio-surfactant from locally isolated Penicillium chrysogenum SNP5 and its applications. Journal of 

Bioprocessing and Biotechniques 4, 1. 



276 

 

 

Gelis-Jeanvoine, S., Canette, A., Gohar, M., Caradec, T., Lemy, C., Gominet, M., Jacques, P., Lereclus, D., 

Slamti, L., 2016. Genetic and functional analyses of krs, a locus encoding kurstakin, a lipopeptide produced 

by Bacillus thuringiensis. Research in Microbiology, 168, 356-368 

Gohara, D.W., Di Cera, E., 2016. Molecular mechanisms of enzyme activation by monovalent cations. Journal 

of Biological Chemistry 291, 20840-20848. 

Gudiña, E.J., Pereira, J.F.B., Rodrigues, L.R., Coutinho, J.A.P., Teixeira, J.A., 2012. Isolation and study of 

microorganisms from oil samples for application in microbial enhanced oil recovery. International 

Biodeterioration and Biodegradation 68, 56-64. 

Jimoh, A.A. and J. Lin. 2019a. Biosurfactant: A new frontier for greener technology and environmental 

sustainability. Ecotoxicology and Environmental Safety 184. 

Jimoh, A.A., Lin, J. 2019b. Enhancement of Paenibacillus sp. D9 lipopeptide biosurfactant production through 

the optimization of medium composition and its application for biodegradation of hydrophobic 

pollutants. Applied Biochemistry and Biotechnology, 187 (3): 724-743.   

Jimoh, A.A., Lin, J. 2019c. Production and characterization of lipopeptide biosurfactant 

producing Paenibacillus sp. D9 and its biodegradation of diesel fuel. International Journal of Environmental 

Science and Technology. 16:4143-4158  

Jung, J., Yu, K.O., Ramzi, A.B., Choe, S.H., Kim, S.W., Han, S.O., 2012. Improvement of surfactin production 

in Bacillus subtilis using synthetic wastewater by overexpression of specific extracellular signaling peptides, 

comX and phrC. Biotechnology and Bioengineering 109, 2349-2356. 

Khanna, S., Sekhon, K., Prakash, N., 2009. Cloning and expression of a biosurfactant gene from endosulfan 

degrading Bacillus sp: correlation between esterase activity and biosurfactant production. Biotechnology 8, 

235-241. 

Liu, J.-F., Yang, J., Yang, S.-Z., Ye, R.-Q., Mu, B.-Z., 2012. Effects of different amino acids in culture media 

on surfactin variants produced by Bacillus subtilis TD7. Applied Biochemistry and Biotechnology 166, 2091-

2100. 

Madslien, E., Rønning, H., Lindbäck, T., Hassel, B., Andersson, M., Granum, P., 2013. Lichenysin is produced 

by most Bacillus licheniformis strains. Journal of Applied Microbiology 115, 1068-1080. 

Makkar, R.S., Cameotra, S.S., Banat, I.M., 2011. Advances in utilization of renewable substrates for 

biosurfactant production. AMB Express 1, 5. 



277 

 

 

Politino, M., Tonzi, S.M., Burnett, W.V., Romancik, G., Usher, J.J., 1997. Purification and characterization of 

a cephalosporin esterase from Rhodosporidium toruloides. Applied and Environmental Microbiology 63, 4807-

4811. 

Porob, S., Nayak, S., Fernandes, A., Padmanabhan, P., Patil, B.A., Meena, R.M., Ramaiah, N., 2013. PCR 

screening for the surfactin (sfp) gene in marine Bacillus strains and its molecular characterization from Bacillus 

tequilensis NIOS11. Turkish Journal of Biology 37, 212-221. 

Qiu, Y., Xiao, F., Wei, X., Wen, Z., Chen, S., 2014. Improvement of lichenysin production in Bacillus 

licheniformis by replacement of native promoter of lichenysin biosynthesis operon and medium optimization. 

Applied Microbiology and Biotechnology 98, 8895-8903. 

Sambrook, J., Russell, D., 2001. Molecular cloning: A laboratory manual. 3rd Cold Spring Harbor Laboratory 

Press. New York. 

Schimming, O., Schmitt, I., Bode, H.B., 2016. Identification of the Sfp-Type PPTase EppA from the lichenized 

fungus Evernia prunastri. PLoS One 11, e0145624. 

Sekhon, K.K., Khanna, S., Cameotra, S.S., 2011. Enhanced biosurfactant production through cloning of three 

genes and role of esterase in biosurfactant release. Microbial Cell Factories 10, 49. 

Sekhon, K.K., Khanna, S., Cameotra, S.S., 2012. Biosurfactant production and potential correlation with 

esterase activity. Journal of Petroleum and Environmental Biotechnology 3, 2157-74631000133. 

Toren, A., Navon-Venezia, S., Ron, E.Z., Rosenberg, E., 2001. Emulsifying activities of purified Alasan 

proteins from Acinetobacter radioresistens KA53. Applied Environmental and Microbiology 67, 1102-1106. 

Yadav, G.D., Magadum, D.B., 2017. Kinetic modelling of enzyme catalyzed biotransformation involving 

activations and inhibitions, enzyme inhibitors and activators. IntechOpen 

Zhang, J., Xue, Q., Gao, H., Lai, H., Wang, P., 2016. Production of lipopeptide biosurfactants by Bacillus 

atrophaeus 5-2a and their potential use in microbial enhanced oil recovery. Microbial Cell Factories 15, 168. 

 

  



278 

 

 

Chapter 9. Conclusions and future perspectives 

9.1 Conclusion 

One of the significant classes of industrial chemicals in terms of production volume are surfactants (Jimoh and 

Lin, 2019a). Most of these chemically synthesized surfactants may unavoidably end up in the environment 

after synthesis, or after use. In this context, ecological toxicity, biomagnification, bioaccumulation, and 

biodegradability of surfactants have become subjects of collective concern. Lipopeptides are biomolecules 

comprising of a lipid connected to a peptide, that are small chains of amino acid monomers joined by peptide 

(amide) bonds. Due to improved environmental biocompatibility, and excellent functional properties as 

compared to chemical surfactants, the market share value of lipopeptide biosurfactant (BioS) in the last five 

years has expressively increased (Jimoh and Lin, 2019b). The current research was initiated to examine the 

basic concept associated with BioS synthesis, production optimization, its application implications, as well as 

the molecular and genetical perspectives. To accomplish these aims, a set of six different experimental 

procedures were achieved as discussed below.  

The experiments in Chapter 3 showed Paenibacillus sp. D9 produces high molecular weight lipopeptide 

compounds by using hydrophobic carbon sources. However, these substrates are quite expensive coupled with 

the costs required for post-fermentative recovery and purification processes. From this research, Paenibacillus 

sp. D9 was able to withstand toxic hydrophobic compounds, and subsequently producing a novel surface-active 

agent termed “lipopeptide.” The BioS have effective surface-active properties, and formation of an emulsion 

with a wide array of hydrocarbons and hydrophobic pollutants. The Paenibacillus sp. D9 strain could tolerate 

high diesel concentrations and a wide range of utilization on different hydrocarbons substrates. A greater 

production yield was achieved extracellularly with Paenibacillus sp. D9. Paenibacillus sp. D9 thus produced 

a high amount of lipopeptide BioS with positive potentiality in biodegradation and bioremediation.  

The biodegradation of hydrocarbon is enhanced by the key roles played by biodegradative enzymes. These 

biodegradative enzymes include alkane hydroxylase, alcohol dehydrogenase, aldehyde dehydrogenase, 

monooxygenase, and esterase (Jauhari et al., 2014; Sekhon et al., 2011). In Chapter 4, Paenibacillus sp. D9 

produced BioS and synthesized degradative enzymes in the presence of diesel fuel and n-hexadecane. These 

major factors and enzymes which were overly produced along with high cell surface hydrophobicity enhanced 

the biodegradation of n-hexadecane and diesel fuel. The production of enzymes and BioS by Paenibacillus sp. 
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D9 strain led to an increase in effectiveness of biodegradation. Thus, 98.4% of n-hexadecane (C16) and 80.2% 

of diesel fuel (C9-C25) were utilized as source of carbon and energy by Paenibacillus sp. D9, corresponding 

to the high synthesis of alkane hydroxylase, alcohol dehydrogenase, and esterase enzymes accompanied by 

high BioS activity. Hence, Paenibacillus sp. D9 was more vigorous in degradation, and mineralization of 

hydrophobic pollutants, and could be used to decontaminate HC compounds, oil spills at polluted sites. As 

such, the correlation between BioS production and biodegradative enzymes in hydrophobic pollutants was 

confirmed in this research. These outcomes provide new knowledge into the physiology, biodegradative 

mechanisms and pathways of the genus Paenibacillus. 

Research has demonstrated that the synthesis of BioS compounds is basically affected by the culture conditions 

and in addition nutrient accessibility to the microorganism incorporating the BioSs (Md, 2012). The finding of 

BioS-synthesizing microorganisms that can be purified under optimum medium conditions and at the same 

time synthesize substantial amounts of BioS. This would be a method for reducing the monetary hindrances 

related with the extensive scale production of these biomolecules. From this research, BioS production by 

Paenibacillus sp. D9 increased to 4.11 g/L under optimized conditions from 1.15 g/L in BH medium containing 

3.0 % diesel fuel and 1.0 % ammonium sulfate, 4.0mM MgSO4, pH 7.0, temperature 30oC and 1.5 mL inoculum 

size (Chapter 5). From the result, increase in BioS synthesis was favored by the new optimized condition. The 

product displayed great thermal stability, was able to withstand extreme acidic and alkaline conditions, and 

demonstrated resilience to changing salt condition, which delineates clear viewpoints for its conceivable use 

in extreme environmental conditions. These conditions include bioremediation, biodegradation of hydrophobic 

pollutants, microbial enhanced oil recovery and other biotechnological-related fields. The impact of the 

synergistic relationship between Paenibacillus sp. D9 and the introduction of exogenous Paenibacillus sp. D9 

lipopeptide BioS on the biodegradation of high molecular weight hydrocarbons and hydrophobic pollutants 

was investigated (Chapter 5). Thus, the application of introduced Paenibacillus sp. D9 BioS increase the 

removal and dissolvability of these hydrophobic mixtures as opposed to the use of the Paenibacillus sp. D9 

alone. An increase in diesel fuel biodegradation rate up to 65.1% was observed under the same conditions with 

the addition of 500 mg/L Paenibacillus sp. D9 BioS. There was an increase in biodegradation effectiveness of 

diesel fuel by the Paenibacillus sp. D9 strain when contrasted with the lipopeptide-free inoculated culture, thus 

exhibiting the potential of Paenibacillus sp. D9 BioS for biodegradation and bioremediation. 
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As the production of high molecular weight lipopeptide from unconventional substrates is not (yet) 

economically feasible, it would be advantageous if Paenibacillus sp. D9 could in some way be required to 

synthesize BioS utilizing conventional and cheaper medium-chain fatty acids, vegetable oils or even waste 

frying oils. As such, the potential of Paenibacillus sp. D9 to grow on cheap carbon sources such as waste frying 

oils (canola, sunflower, castor, and coconut) was investigated as alternate substrates as this may prompt a 

decrease in bioprocess cost (Chapter 6). Economical processes that employ low-cost materials and relatable 

process parameters are key to successful BioS production and eventually solve the major setback regarding 

high production cost (e Silva et al., 2014; Rufino et al., 2014).  There was a new contribution to knowledge, as 

the result from this Chapter 6 produced a better production yield of 5.31 g/L. This provides a substantial 

parameter in the BioS market enabling its availability as a low-cost alternative for future use. The diverse 

features affecting the BioS synthesis have been considered in recent years, however few of these, used 

appropriate statistical tools for experimental design and modification (Franzetti et al., 2009). The orthodox 

method of medium optimization includes the one variable at a time studies approach. This strategy is tedious 

and leads to negligence in the interaction between factors, with no guarantee in definite determination of the 

best optimal conditions. The ability of Paenibacillus sp. D9 BioS to biodegrade and bioremediate both solid- 

and liquid-contaminated environments under different conditions was tested. The ecologically-friendly BioS 

possess a higher removal efficiency from both environments using kinetic and static conditions as compared 

to chemical surfactant. This BioS has preferable biodegradation proficiency over its manufactured chemical 

counterpart in realizing the bioremediation of oil-polluted sands. The efficacy of the BioS produced in bio-

remediating under different environmental conditions has also not been relatively tested, hence the impact of 

this study. As such, the lipopeptide BioS produced on low-cost substrate (waste canola oil) is a great 

contribution to the world BioS market as the problem associated with high cost of production would become a 

thing of the past. 

Now, there has been huge emphasis positioned at the devastating effects and severity of the usage on synthetic 

surfactants on the environment. This is based on their highly toxic, persistent nature, and non-biodegradable 

properties (Santos et al., 2016; Sarubbo et al., 2015b). Chapter 7 assess the Paenibacillus sp. D9 lipopeptide 

BioS synthesis in a combination of cheap substrates, functional properties, applicability for varying recent and 

trending biotechnological processes. Due to high substrates used (10%), different inoculum conditions were 

varied to ascertain the ability of Paenibacillus sp. D9 to withstand selective pressure and concentrations. 
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Results provided reveal surface tension activities of around 31.7–32.7 mN/m, and maximum Paenibacillus sp. 

D9 BioS yield more than 8 g/L, regardless of the inoculum sizes used. This investigation sheds light on the 

elective usage of waste cooking oil as a high-vitality source for the synthesis of high-value products. The 

Paenibacillus sp. D9 BioS was successful in dispersing engine oil, with further capability in removing different 

heavy metals from the environments including contaminated effluents, synthetic wastewater, contaminated 

sands, and food crops. Still, of great concern to the environment is the high incidence of phosphate and sulfate 

resulting from contaminated effluents. The BioS including the cell-free supernatant were both efficient in the 

removal of both phosphate and sulfate rather to the chemical surfactant. Few reports have mentioned the 

efficient role of BioS in removing heavy metals from polluted effluents (Hidayati and Surtiningsih, 2014; 

Sarubbo et al., 2015a) This is the first report to show the effective advantage of BioS in removing heavy metal 

from acid mine drainage contaminated effluents, and different physiochemical parameters such as pH, 

phosphate, sulfates, and so on. From this study, the lipopeptide BioS also selectively removed cadmium from 

contaminated vegetables in the order of onion = tomato > cucumber > potato. The BioS eliminated a substantial 

amount of heavy metal from polluted food samples. Thus, the BioS synthesized could be utilized economically, 

enabling its usefulness for human health. Chapter 7 further shows the illustrative formulation tests representing 

the relative washing performances of Paenibacillus sp. D9 BioS, SDS, Triton X, commercial detergents, and 

bio-commercial detergent against sunflower oil-tomato sauce and coffee stains. The removal of stains by BioS-

containing detergent is equivalent to manufactured detergent particularly for the removal of hydrophilic and 

hydrophobic extreme stains. This research proffers an incredible noteworthiness since the Paenibacillus sp. 

D9 BioS considered as a substitute for chemical surfactants was non-toxic and possess higher biodegradability. 

There are relative low production yields of BioS which subsequently limits its biotechnological applications. 

As such, there has been an increasing requirement for the enhancement of BioS production through 

development of hyper-producing recombinant strains or modification by genetic engineering (Willenbacher et 

al., 2016). Chapter 8 was valuable to recognize the presence of the sfp gene in the genus Paenibacillus with 

little report on the structural synthesis of lipopeptide from this group. Interestingly, the specific activity (87.14 

U/mg) of the recombinant phosphopantetheinyl transferase was 2.49-fold higher than that of the cloned crude 

extract. The results of temperature, pH and stability show the phosphopantetheinyl transferase was active in a 

wide range of temperature and pH. These properties will enable its biotechnological applications as most 

industries usually require enzymes that are functional and stable at high temperatures and pH. From this study, 
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the BioS gene (sfp) were effectively cloned and overly expressed in BioSp, demonstrating an increment in BioS 

and esterase activity than the parent strain. This research produced great significance as the recombinant strain 

could utilize simple carbon sources such as glucose, glycerol, as well as hydrophobic oily carbon substrates; 

canola and sunflower oil respectively. The utilization of in-expensive hydrophobic oily carbon substrates for 

cell growth and BioS synthesis by this recombinant organism becomes important to further reduce the cost of 

production on a large scale. The results suggest that the engineered recombinant strain has probable 

biotechnological applications since it synthesizes BioS at high yields and can reduce the complex purification 

process related with the regular bioprocess. 

9.2 Future perspectives 

Irrespective of the different composition and applications that BioSs had shown, the large-scale industrial mass 

synthesis of these compounds is the major focus nowadays. Further researches are essential to improve the 

industrial scale applications with consideration on numerous environmental complexes and factors that limit 

BioS synthesis and utilization. To encourage field uses of these BioS enhanced innovations, substantial tests 

are foreseen to consolidate heterogeneities in topographical/hydrological features and in microbial degradation 

of polluted sites. With the new improvement in this field and spotlight on interdisciplinary research joined with 

advancements of metabolic, and genetic engineering, the prospects of BioSs will be financially effective. The 

exploration in this field is progressing quickly and it envelops fields as diverse as, textile, pharmaceutics, 

cosmetics, oral hygiene, petroleum, wastewater treatment, agriculture, surface science, natural science, and 

molecular biology. 

The invention of current strategies and disclosure of progressively innovative sources are likewise expected in 

the future. So, there would be a further decrease in costs of production, with continuous discovery of novel 

BioSs, proper knowledge and understanding of these biomolecules. Molecular methods to screen for BioS 

producers remain in vacancy, hampered by the way biosynthetic pathways and genes are rationed at species 

level. Vital bits of knowledge into the extensive variety of BioSs are expected to be accomplished dependent 

on advances in genomic and proteomic aspects of microbiology sooner rather than later. 
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Supporting Figures 

 

Figure S1 Surface tension changes of biosurfactant of Paenibacillus sp. D9 against different concentration of 

biosurfactant solution. 
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Figure S2 TLC Analysis of purified biosurfactant of Paenibacillus sp. D9. 
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Figure S3 Peptide structure generated from the purified lipopeptide biosurfactant.  
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Supporting Tables 

Table S1 Growth utilization pattern of the strain Paenibacillus sp. D9 on hydrocarbon substrates 

Compounds Growth Compounds Growth 

n-Hexadecane  

n-Hexane 

n-Dodecane 

n-Tetradecane 

Phenol 

n-Toluene 

Engine oil 

1-Nonene 

+++ 

 - 

+++ 

+++ 

 - 

 + 

+++ 

+++ 

Benzoic acid 

Salicylic acid 

Phthalic acid 

Diesel  

n-Paraffin 

Motor oil 

Cyclohexane 

Tetracosane 

    ++ 

    ++ 

    ++ 

   +++ 

    ++ 

    ++ 

        - 

        + 

+++ OD600>1.0, ++ OD600> 0.5, + OD600>0.2, − OD600<0.2  
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Table S2 Emulsification index (E24 index) on the increasing order of concentrations of carbon source tested  

System   E24 Index (%)  

1% 63.3 ± 0.3  

2% 67.5 ± 0.1  

5% 69.2 ± 0.2  

10% 73.3 ± 0.2  

Control A 0.0  ± 0.0  

Control B 61.7 ± 0.2  

Control A: Distilled water + Diesel concentration 

Control B: Tween 80 + Diesel concentration 
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Figures 

 

                     

Figure S1 The illustrations of engine oil dispersion after the addition of biosurfactant (a), chemical surfactants 

SDS (b), and Triton X-100 (c), supernatant (d), and distilled water (e). The clear zones displayed above indicate 

the ability to displace oil and are all positive results. The largest and smallest area displaced was obtained in 

illustration A and E, for biosurfactant and distilled water, respectively. 
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Figure S1 Standard plot of phosphopantetheinyl transferase activity against absorbance 
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Table S1. Coenzyme A concentration activity of purified and crude Sfp phosphopantetheinyl transferase 

OD570nm  OD 1 OD 2 OD 3 Ave Std    Concentration (U/ml)  

Purified Sfp 1.96 1.92 1.96 1.95 0.02 1097.46 

 
Crude Sfp 1.72 1.75 1.76 1.74 0.01 925.64 

 
OD = Optical density 

 


