
A Real Time, System Independent, Secure, Internet Based
Auctioning System.

Cuan Brown

Submitted in fullfillment of the academic requirements for the degree of MSc
(Information Security) in the School of Geological and Computer Sciences,

University of Natal, Durban

May 2000

Secure Internet Auctioning System Page ;;
Abstract

ABSTRACT

This thesis outlines the creation of a secure, real time, system independent,

Internet based auctioning application. The system has been developed to meet the

needs of today's stringent reqUirements on secure Internet based applications. To

attain this goal, the latest cryptographic algorithms and development platforms

have been used. The result is a JAVA based server and client auctioning application.

The client application is designed to run In any common web browser, and the

server to execute on any JAVA enabled operating system with a web server and

Internet connection. The real time system uses a relatively secure hybrid

cryptosystem for communication. This involves the use of RSA for secure key

exchange, and RC6 and MARS for secure communication.

Secure Internet Auctioning System Page ;;;
Preface

PREFACE

The work described in this dissertation was carried out in the School of Geological
and Computer Sciences, University of Natal, Durban, from February 1998 to May
2000, under the supervi sion of Dr. Hugh Murrell and co-supervision of Prof. Henda
Swart.

The studies represent the original work by the author and have not otherwise been
submitted in any form for any degree or diploma to any tertiary institution. Where
use has been made of the work of others it is duly acknowledged in the text.

Secure Internet Auctioning System Page iv
Contents

CONTENTS

1.) Introduction 6

2.) The Application Criteria 13

3 .) Java 16

4.) Auction Implementation 27

5.) Security 63

6.) RSA 87

7.) RC6 103

8.) MARS 125

9.) Conclusion 149

10.) Installation and Usage 152

11.) ReFerence & Bibliography 156

12.) Appendix 160

Secure Internet Auctioning System Page v
Acknowledgements

ACKNOWLEDGEMENTS

I would like to thank my parents and grandfather for giving me the opportunity to
study as far as I have. I would also like to thank Chantal Friart for all the

encouragement and putting up with me when I was difficult. Mark Lewis for always
pushing me that much further as well as the intellectual and moral support and

Hugh Murrell whose persistence and guidance helped me through this beast.
Thanks to Henda Swart for her financial and moral support.

TGlO!

Secure Internet Auctioning System Page 6
Introduction

1) Introduction

The Internet thus far has made a significant impact on the world we currently live
in and will undoubtedly form an integral part of the future of the entire planet. In a
day and age when information is the key to many fortunes, it is imperative to
control and distribute this commodity effectively, The Internet has provided the
basis of this information sharing, from a simple email to inter corporation co­
operation,

Over the past ten years the growth has been nothing short of astounding, with
millions of new users joining each month, This is the beginning of a borderless
global economy,

However, with the advent of the most resource intensive tool on the planet, comes
a number of problems. The Internet has been plagued by the disparity of systems
utilized. This includes the non -adherence to specifications of applications and
formats. The result is a complex integration of architectures, operating systems and
protocols. This constant state of flux is argued as one of the strengths of the
Internet, but also, its greatest inhibitor.

Another problem with this sharing of information, is not the means of
communication, but the actual information concerned. With such vast amounts of
sensitive information available, it becomes a crucial resource to protect. The
"Digital Age" has been entered; all and most forms of information have made the
conversion to some form of digital format. However there has been little
forethought to the securing and protection of this digital information. The safety
deposit box of the twentieth century needs to be replaced by the secure server of
the twenty-first century.

Currently wherever one looks, there are articles, adverts and programs expressing
the promise that the Internet holds. Over the last two years there has been a wild
rush to become net ready, opening the doors to web shoppers and commercial
success. The Internet has levelled the commercial playing fields and allowed the
average company to parade their wares on an international stage. This e-buslness
as it has come to be known, generated about two billion U.S dollars in 1999. It is
estimated that the amount spent on line will increase to twenty billion V.S dollars by
the year 2002. The ease at which business can be conducted online will push more
and more corporations into the fray, any of whom that ignore the biggest new
market in over four hundred years, do so at their own peril.

Secure Internet Auctioning System Page 7
Introduction

1.1) Proposed project

The proposed project is as follows:

To create a real time, auctioning application. The application must have no
preference to any architecture and operating system . The aim was for a single item
to be auctioned at a time, with the possibility of extending the application at a later
date for multiple items. The server application controls all aspects of the auction,
Including details, finish times and the client handling elements. This includes any
administration tasks associated with the application. The entire system is aimed at
working over a network, specifically the Internet.

The bidding on auctioned items is to be orchestrated by the client application. This
cl ient application will communicate with the auction server over the Internet. The
client application notifies the client, concerning all changes in the current auction.
The client application allows the client to place bids. Similarly no client type or
operating system has been targeted. This requires an application able to operate on
any of the wide scope of systems available on the Internet today.

The application is also designed to take advantages of the future in secure
communications and so affording the clients peace of mind when participating in
the auctions. The security of the application is not exclusive to secure
communication , but rather as an aspect of the entire application. This security
feature incorporates, design techniques, secure communication and secure
programming.

The language used to develop this application must take advantage of the Internet,
and be able to support the wide range of features available. However it must not
limit or target any platform available on the web. It should be a robust, secure and
mu ltithreaded development tool to prevent any l imitations to the application.

The project wi ll attempt to create a marketable application that wou ld match real
world demands. The application is designed to harness the power of the Internet,
without limiting the clients to any hardware or software requirements, thereby
obtaining a wider range of clients. Not only that, but the application is designed to
meet the requirements of secure Internet based communications, allowing
commercial transactions to take place without threat.

Secure Internet Auctioning System Page 8
Introduction

1.2) The Internet

A Brief History

The Internet is now over thirty years of age. Admittedly it has changed
dramatically, but its roots lie shrouded in the co ld war. In the 1960's nuclear threat
was a real possibi lity, and the American government developed a communications
scheme that would be capable of withstandi ng such a strike. The result was a
network of computers that had multiple transmission routes to anywhere else on
the network

The communication protocol that was designed to take advantage of this was
TCP/IP. This enhanced the system by adding re liability to the way in which
messages were processed. In the late sixties the defence depa rtment connected to
a number of universities around the States. This was the beginning of the ARPANET
(Advanced Research Projects Agency Network). In the early seventies the ARPANET
hosted more than fifty universities and defence departments. This network allowed
academics to quickly and easi ly share information amongst col leagues.

However in the early eighties the ARPANET has out grown itself, and the defence
department wanted to limit access to this network . This resu lted in the two
networks spl itting up. The main problem was that t here was no real support for this
network in most operating systems. This resu lted in a free operati ng system being
developed called UNIX, by the University of California. This o/s had natural support
for TCP/IP and allowed anyone to connect to the available networks. The Internet
was born.

However th is network was still primarily an academ ic tool. It was not until the late
eighties and early nineties that the Internet started to become the fo rce that we
know it today. The reason for its huge success was the development on a new
mark-up language called HTML. This was developed by the CERN (Collective of
Eu ropean high-energy physics researchers) orga nization. The result was met with
immediate support and applications were developed to support this fantastic new
medium of data. These included the likes of Mosaic, Netscape and later Internet
Explorer. However the Internet was very firmly separated, and by mid nineties no
company or operating system enforced any dominance over the Internet.

Growth and Opportunities

The Internet started out with ten hosts in the early seventies, and has now grown
to astronomical proportions. I n the earl y eighties the number of hosts was as little
as 1000, by the late eighties that figure was over 100 000 hosts. Ten years later
that figure has grown to over fifty million hosts world -wide [R.Zakon, 1999, onl ine).

This dramatic increase serves to demonstrate the popularity of the I nternet.
However it was primarily the introduction of the World Wide Web (WWW) that lead
to this huge explosion . In fact, by 1993 web traff ic had increased annua lly by over
three hundred thousand percent. As can be seen by the d iagram, the number of
sites on the I nternet is growing at an exponential rate.

Secure Internet Auctioning System
Introduction

Hobbes' Internet Timeline Copyright 6:11999 Robert H lakon
http://w.MN.isoc .org/zakonlln ternetlHist oryIHIT.html

Page 9

10,000,000,----- ---_____ - _____________ ,

9,000,000 • •
•• .­.­...

•••

8,000.000
rl 7,000,000
~ 6,000,000
~ 5,000,000
~ 4,000,000
""' 3,000,000 .• +

2,000,000 1,000,QOO
O ~~~~~~~~~~~~~~~~~~~

00 00 00
a> ~ ~
'" <>. ...
~ ~ ~

Fig 1.2.1 Growth of WWW sites . [R. ZakonJ

It is a difficult to estimate the amount of people on - l ine, and the figures have been
contentiously debated, However most statistics show that there wi l l be over one
hundred and fifty million web users in the year 2000 . The likes of such a huge
target audience have never been seen before and with this amount of potential, it
cannot be ignored as a new medium of distribution for retailers .

The Internet was widely considered as an academic and g lorified public relations
effort by most companies in the early nineties, However a few insightful people
managed to start making fortunes, and lead the charge of Internet based
companies, The likes of Amazon,com and Yahoo,com (Both been valued over one
mill ion U,S dollars) have shown what is capable of been achieved. It is not only the
public retailers that will benefit, but also business to business transactions. The
Internet has been transformed into a data network that facilitates inter business
communication [S .M.Bellovin 1998] .

Dell computers has reported earnings of over one million U.S dollars a day from its
corporate market share. The average corporate ord er in the U.S takes fifty odd u.s
dollars to process. Using the Internet as a distribution medium, that average
corporate Internet order is now below five u.s dollars. This resu lt s in cost
reduction, qu icker order processing and improved customer services.

The Players

The fight for dominance or contro l of the Internet is an ongoing struggle and will
li kely never be resolved. The two major players are Microsoft and Unix . A discuss ion
of the pros and cons has been highlighted in the media on numerous occasions.
Ultimately it will not come down to the operating system that one uses, but rather
the application that al lows people to enjoy the benefits of the Internet.

Thus far the web browser is a distinctive winner, However the war between web
browsers is an ongoing affa ir, Netscape, Internet Explorer (Microsoft) and a number
of other upstarts are what it all boils down to, As the Internet can undergo enti re
changes in a matter of months, the outcome of this battle is not yet settled.
One of the major problems associated with this battle is the complete disregard fo r
international specifications. The various players have implemented HTML, DHTML
and XML in different manners. This leads to confUSion and difficulty in the

Secure Internet Auctioning System Page .10
Introduction

maintenance of most web sites. However once standards are met, the web browser
will be nothing more than a name brand facilitating the Internet experience.

The Future

Although the Internet has been heralded as the new digital age, it will still take
awhile for all these benefits to be seen. Some of the fantastic new features that will
impact the world are the connection of personal data assistants (POA's), cellphones
and other electronic goods to the Internet. This will allow one to buy groceries, do
banking and other Internet related services, while travelling at home or sitting in an
armchair. The potential markets are enormous.

The Internet promises enormous amounts, however there are a number of issues
that need to be surmounted. The primary issue is the dominance of operating
systems and web browsers. The Internet is divided by this issue, not only on
opinion but actual usage. The result is a target market that is divided , and hence
difficult to entice. The solution is a common standard and format that will alleviate
the interoperability problems of the past.

1.3) Security

Secrets have been part of history, whenever there has been sensitive information,
secrecy follows. Since the Roman times different methods have been used to
ensure the secrecy of messages. For example placing messages on messenger's
body parts, which are then subsequently hidden from view. Fortunately these
techniques are not used in today 's digital world, however crucial information still
needs to be protected to maintain a competitive edge. The capitalists of today have
replaced the dictators of yesteryear, but both have a need for secrecy and
protection of their vital information.

The question is asked why has the Internet not taken over all monetary
transactions? If it is so useful and geared for digital communication what is the
hold-up? Thus far one of the contributing factors to slow growth of Internet based
transactions Is the security factor. The awareness of problems involved w ith
sensitive data communication has been intensive. People will happily give credit
card numbers over the telephone, or to waiters in restaurants, but very few wi ll do
so on the Internet even though there is a reasonable security set- up in place. This
psychological barrier is going to be harder to break than the actual security systems
in place.

Today, there are millions of packets of information travelling around the Internet.
Not only are the chances slim that an undesirable will obtain the information
required, but the opportunity cost of actually breaking the encoded message is
invariably not even profitable. However this opinion must not lead to an apathetic
attitude about security. Until the early nineties there was very little secure
communication, however there are a number of reasonab le frameworks In place
today. These include Secure Socket Layers (SSL) and Secure Electronic
Transactions (SET) . The problem, is really the fact that security of e-commerce is
not only based on secure communications, but trustworthy parties, applications and
procedures as well. Due to the anonymity of the Internet, a few problems are
posed:

Secure Internet Auc tioning Sys tem Page JJ
Introduction

Can I trust this party?

Is the party I am dealing with who they cla im to be. Currently the use of
digital certificates rectifies this problem. A digital certificate Is issued by a
Central Authority (CA), and wi ll certify the authenticity of the party involved,

Is our communication secure?

The like of SSL takes care of secure communication between a cl ient web
browser and a server. It is certai nly not an optima l solution as it is based on
dated algorithms and was meant to be a temporary solution.

The major problem here is a small term called "computational security". This means
that it wi ll be infeasible, in monetary and time constraints, fo r an undesi rable to
break the crypto-system with today's resources, One must bear in mi nd that
according to Moore's law, the power of comput ing doubles every eighteen months.
With such exponential growth, crypto-systems will have to adapt as quickly as the
hardware used to implement them. A brie f example of this Is the DES crypto­
system. Its inception in the seventies, and support by most banking institutions
world-wide, has lead to it being a standard . Less than thirty years later the system
has been broken on a one hundred thousand U.S dollar machine, and yet it st ill
remains a banking security standard, A little worryi ng to say the least,

These issues are the driving factor for the continuous development and modification
of new crypto-systems. Until a superior and unbreakable crypto-system is created,
if ever !, it is still a necessi ty to escalate the quality of security. Due to the vast
amount of money dealt with in e-commerce, this conti nuos re-assessment and
progress in the crypto world wi ll con ti nue. In the light of this it is important to
study, analyse and f inally approve or disapprove the new algorithms,

It must be stressed though that securi ty is not just the algorithm used to encrypt or
decrypt information. Security is also depend ent on the implementation of the
algorithm. It ta kes only one weak link in the final application to potentia lly open up
the system to an intruder. The worst must be expected to happen, and when it
does, t he product must be extended to overcome any difficu lties or weakness.

Secure Internet Auctioning System Page 12
Introduction

1.4) Conclusion

One could easily be mislead into thinking that the Internet will control all aspects of
our lives very soon. This could be a reality, but extensive amounts of integration
and development is still required. Undoubtedly though the Internet will Impact on
any digital forms of communication and transactions. The possibilities are endless,
the Infrastructure is set-u p and the cost effectiveness of this resource cannot be
ignored. Profitable business is abundant due to the huge target market afforded by
the Internet.

There are a few problems that need to be resolved to make the entire process run
more efficiently; Addressing the interoperability barriers caused by the diversity of
the Internet systems. Overcoming the security issues involved with the transferring
of sensitive Information over this medium, as well as other security issues
regarding implementation. Once these have been addressed it will allow the full
potential of the Internet and its benefits will be attained.

The following section wi ll examine the criteria laid out for the thesis.

Secure Internet Auctioning System Page 13
The Application Criteria

2) The Application Criteria

2.1) Overview

As has been previously stated the goal of this thesis is to create a "real time,
system independent, secure, Internet based auctioning application" i.e. an
application that uses the Internet, which everyone can access and ensures secrecy.
It is easiest to discuss each of these criteria and give a clear picture of what each
requirement entails.

2.2) A Real Time System

A real time system is one in which communication and action takes places
immediately. A good example of a real time system is an ATM bank teller machine.
Commands are issued and responded to almost immediately. The goal is to devise
an application that user's could use and see the results of, as the application Is
executed.

2.3) Internet Based Application

As some form of client/server real world application is to be used, a
communications type is required. There are a number of networks available,
however none have quite made the impact the Internet has. The application
therefore is required to use the most dynamic network available on the planet. The
reason for using the Internet, is that it has huge fiscal potential and an enormous
client base.

2.4) System Independent

As the application is to work over the Internet it will expose itself to the widest
range of operating systems, hardware and software. This diversity thereFore makes
It rather difficult to target a particular audience or user. Many applications are
designed and targeted For specific operating systems (Le. Microsoft, UNIX), and
insisting that the application is system independent ones target audience increases
dramatically.

2.5) Security

The importance of security has increased dramatically over the last few years,
especially with a number of incidents being profiled by the media. As there is
communication between the client and the server application, the very nature of
the information exchanged it makes it necessary to provide security.

Secure Internet Auctioning System Page 14
The Application Criteria

This security has to incorporate two aspects:

• Secure communica tion
• Applicat ion security

Each of these cannot be academically viewed, but must be practically implemented
within the confines of the application. The security model implemented must
minimise network bandwidth , and hardware resources (CPU usage, Memory Usage),
and must prevent any risks to the client. All of these are reasonable real world
application criteria.

Above all, the security must not hamper the performance or practicality of the
application. The secure communication has to be handled in such a way that it is
effective and actually workable in a real world environment. Secure communication
is not all that's required, rather it is a part of the overall security. A secu re
communications channel is useless if the applications communicating are
vulnerable. Hence the requirement that the appl ication itself must be relatively
secure, thereby ensuring a global security.

2.6) Auction Application

The application created needed to reso lve a rea l world issue, thereby giving it some
credibility. Recently, Auctioni ng sites on the Internet have come into their own
(Ebay.com and bidorbuy.co.za), but they are plagued with numerous problems. The
first is that there are large amounts of fraudulent happenings and secondly many
auctioning applications are not of a real time nature. The application needs to
adhere to the latest trends, such as object orientated programming, thereby
making it reusab le and scalable.

This thesis will attempt to resolve these problems and in dOing so create a v iable
real world auctioning application.

Secure Internet Auctioning System Page 15
The Application Criteria

2.7) Conclusion

By defining the requirements and scope of the thesis, a v iable and practical solution
can be worked on. The remainder of this thesis will examine the proposed
application and the implemented solution that meets the criteria discussed above.

The following section examines Java and explains why it was chosen as the
implementation vehicle.

Secure In ternet Auctioning System Page J6
Java

3) Java

To tackle the auctioning problem it was decided from the very outset that a unique
programming environment would be needed. It would have to be a stable,
multithreaded , networked and most importantly a cross platform environment.
Fortunately Java has all those features and more. A number of the benefits of the
language will be highlighted and discussed to enlighten the reader as to why Java
was chosen to accomplish the job.

3.1) What is Java?

"Java--an architecture-neutral and portable programming language-- provides an

attractive and simple solution to the problem of distributing your applications

across heterogeneous network-based computing platforms. In addition, the

Simplicity and robustness of the underlying Java language results in higher quality,

reliable applications In which users can have a high level of confidence"

Sun Microsystems, java. sun. com

Java is essentially a C/C++ like language, and in fact draws a lot of its strengths
from C/C++. However there are some fundamental differences, which shall be
revealed.

3.2) How does lava work?

It is important to understand how the Java system operates. As indicated earlier
Java is hardware and operating system Independent. As the creators claim, it is
architecturally neutral. However the system executing the application must have
the Java Platform , which Is known as the Java runtime environment (Jre). This is
made up of two basic parts, the Java Virtual Machine (JVM), and the Java
Application Programming Interface (Java API). The JVM is where all applications
execute, ob livious to their underlying operating system. The Java API are the core
libraries that wi ll be avai lable to any Java based application. These give the
applications their functionality. Thereafter any program developed In pu re Java wi ll
run anywhere. No special exception, and no specia l compilers.

When an application is compiled in most languages, it is usually compi led to the
machine code of the current operating system. This means that the application will
only work on that system. However Java works In a slightly different manner
compared to that of C(C++ or other languages. A program is complied Into
bytecode. Bytecode is almost an intermediate compilation step. This bytecode is
Interpreted at run-time by the Java interpreter for the current system. Alternatively
Java uses a jusHn time (JIT) compiler, that compiles the Java bytecode into native
machine code on execution. Any libraries are loaded as they are required from the
core Java API.

Secure Internet Auctioning System
Java

Source Code
(.java riles)

I
I Java Complier

I
I 8ytecode (.class files)

-

I

I
-

Java
Compile

Time

Page 17

Fig 3.2. 1 The Java Compile Time Environment

Java
Interpreter

I

JIT
Compiler

I
Runtime Classes

Operating System

-

Java
Virtual

Machine

Fig 3.2.2 The Java Runtime Environment

3.3) Object Orientated Programming (OOP)

As the digital age has matured, so have the structures used to create it. Originally
the classical programmIng techniques were sufficient to meet most requirements.
However as the computing industry progressed, it needed to simu late more
complex real world environments, which classical (procedural or Top down)
programming cou ld not support. This brought about the advent of oap.

"Object-orientated technology is a study of behaviour, how to organize or classify

behaviour, and how to assign those behaviours to groups of objects"

Ade/e Go/dBerg

OOP attempts to break the environment down into separate objects, and emu late
the Interactions between objects; as opposed to classical programming, which
attempts to Imitate the flow of an environment, from beginning to end. Each object
has characteristics and actions. These are the actual properties that each object has
in the environment. Each object is a self-contained unit of information and work.
The beauty about this modular approach is that code can be re-used. As an
example think of a torch. It is made up of the following simple objects: batteries, a

Secure Internet Auctioning System Page J8
Java

switch and light bulb. The batteries have a property determining the electrical
charge. Similarly fo r the switch, its state is either ON or OFF. If al l the separate
objects are combined and all requirements met by the light bulb object, It will
change its own state to display light. The strength of this modular approach al lows
one to divide and conquer the problem into its tiniest individual elements.

Java uses this idea not only as a programming concept but also, as the construction
of the entire language. Everything in Java is an object. To be a truly OOP language,
4 features must be supported, Encapsulation, Polymorphism, Inheritance and
Dynamic binding. Encapsu lation essentia lly hides all the inner workings of the
objects. Polymorphism is the method by which different object wi ll react d ifferently
to the same command or action. Inheritance is the way in which classes can inherit
methods and properties from other classes, thereby al lowing code reusability.
DynamiC Binding allows for object creation to be obl ivious to type and position of
the object.

3.4) Garbage Collector

The use of al l these objects would seem to be quite complicated and so wou ld any
form of memory management. However, Java has a feature cal led the Garbage
Col lector. It runs inside the Java Runtime Environment (JRE) when the program is
executing. When an object is used it will be referenced by some variable. When the
variables goes out of scope, or points to another object, the current reference to
the object is lost and the object is no longer accessible. This is where the Garbage
Collector is ca ll ed into action. It realises that an object that can no longer be
utilised is talsing up memory, so it destroys the unneeded object. The Garbage
Collector then releases the memory back to the program, which can t hen be
reallocated.

The programmer therefore need not worry about memory management and
whether it's safe or not to release objects. The Garbage col lector will not destroy
objects that still ha ve references to it. This helps eliminate the problem of memory
leaks and makes the program more efficient and robust.

3.5) Distributed Computing

Another huge advantage with Java is its seamless integration with a networked
environment. Java has integral support for Internet based applications. Not on ly
that but a natural multithreaded ability enhances these capabilities even further.

The reason that Java is splendid for distributed computing is the fact that there is
no li nking of classes at compilation. Java is dynamiC, and only at run time are the
class references resolved. The class need not reside on the local machine, but can
be pulled off of a server, as and when it 's requ ired. App lets are a special fo rm of
Java applications. They are designed to run with in other applications specifical ly
Java enabled web-browsers. These programs are down loaded from a web server
and t hen t he bytecode is executed on the client's machine, inside the web­
browsers . The ability of this fea ture is limited severely for security reasons .
However it is a powerful mechanism for running applications over the Internet.

Secure Internet Auctioning System Page 19
Java

3.6) Security

As Java is designed for a distributed computi ng environment, it was essential to
Incorporate security mechanisms into the language. This is needed to protect the
client machine from malicious applications. Most of Java's intrinsic securit ies apply
to its network and file streams.

The Java security model is made up of four levels, the Compiler, the Bytecode
verifier, the Classloader and the Security Manager.

The Compiler

The reason that Java is a secure language starts with the compiler. It has already
been shown that the user need not worry about memory management. Java does
not have pointers, which solves many memory and security related problems .

Each class and hence object has a strict access contro l associated with it. This is
Important for object creation, usage, and inheritance. The compiler checks all of
this before the Java code will be converted to bytecode.

Added to that the Java compiler is extremely strict on syntax, casting and other
features of programming. This eliminates run time bugs and makes the language
more secu re and robust .

The bytecode verifier

The bytecode verifier is the second line of defence in the security model. As the
Java runtime environment (Jre) may receive bytecode from anywhere it does not
assume that the bytecode is trustworthy. It is not beyond the realms of possibility
that a tweaked Compiler was used to produce dangerous bytecode. Therefore all
bytecode used is always verified.

The bytecode verifier follows a fourMpass process. The verification process firstly
verifies the standard format of the bytecode (Checks first four bytes which are
OxCAFEBABE) . In pass two it checks classes and objects. In pass three proper
bytecode verification takes place making sure there are no disallowed operations.
For instance it checks methods arguments to make su re they are correct. It's
interesting to note that pass four is not performed until a method is ca lled. Pass
four deals with access restrictions and member accesses. So if a method is not
called, it will never be checked.

Then the verifier checks to ensure that there is no vio lation of access restrictions,
illegal type conversions, or uncontrolled memory access and usage. An important
fact to note here is that because object linking is dynamic and the verifier confirms
memory access, no forged pointers can be created, and hence securing the
language is ensu red. Once the bytecode has been verified, it is assured to all other
parts on the Jre that the code is secure and usable. This also speeds up
Interpretation or compilation as none of these checks need to takes place at these
stages.

By default only files coming in from a network are verified, and all local files in the
classpath are ignored. However one can force the runtime environment to check
these files with the parameter -Xverify:all .

Secure Inte rnet Auctioning System Page 20
Java

The Classloader

The classloader loads classes into their own namespaces. The reason for this is
simple. Each class has a name or reference and it would not be desirable to have a
class coming in off the Internet that replaces system classes on the cl ient's
machine. For that reason, the classloader separates classes from different network
locations as wel l as the local classes. The classloader attempts to find the class
being referenced in the local system, this is specified by the classpath attribute on
the local system. If it does not exist on the local system, it will then attempt to get
the class from some network source.

The classloader essentially enforces policies and rules on class usage, preventing
any replacement of the system or Java API classes. The integrity of the system is
maintained. The Classloader w ill not load any classes over a network in the java. *
package as this wou ld comprise the securi t y model by overriding the core Java API.

Runtime checking

As Java is a late binding language (It resolves class names and object at ru ntime),
ru ntime checking Is done to validate links these files. It also checks dynamic array
bounds here, and if there are any problems at this level it will throw an error. This
on ly occurs once the program is execut ing .

The Security Manager

The previous th ree features are the intrinsic security of the Java system. The
developer has no control over it and need not worry about it. However the security
manager is a resource level security mechanism. The developer must understand
what and how it operates to be able to control the Java environment to its fullest
extent.

Once the security manger obtains the bytecode it is sti ll not guaranteed that the
bytecode is safe for use. Thus far all that is ensured is that t he bytecode conforms
to all syntax and format regulations. The security manager prevents unauthori sed
stream manipulations. The most dangerous streams that may be manipulated are
those of network and files. It determines the level of access that is allowed for t he
current runtime environment and enforces those policies on all commands issued.
If for instance the application wanted to destroy the kernel of the operating system
or any other protected fil e, the security manager would check the level of
authori sation for the current object, based on th is level the operation will succeed
or fai l.

Secure Internet Auctioning System
lava

8vtecode Verifier

Class loader

Interpreter I Complier

Security Manager

Java
Virtual

Mac::hine

Fig 3.6. I The Java Security Model

3.7) Applets and security restrictions

Page 21

An applet is a Java program that is usually dawnlaaded off a web site, and executed
within a Java enabled web browser. The ability to download and execute on the fly
is a fantastic feature . However the darker side of the Internet com munity would
have abused this open invitation had it not been for the restrictive security
mechanisms that are currently in place.

These restrictions are not placed on standalone Java applications, as one knowingly
executes the program oneself, as opposed to a Java applet that cou ld execute
unbeknownst to the user when visiting a web page.

The browser that executes the applet in imposes most of these restrictions. Due to
the fact there are a number af different web browsers available, the strictness of
these restrictions va ries as wel l. Essentially the applet is secured by the Security
Manager, which is also known as the sandbox. The applet runs within the sandbox
and has no access outside of it. The following important restrictions are placed on
applets

Network restrictions

The restrictions are quite simple. All communication with the applet may on ly be to
and from the orig inating web server. This is the server that the applet was
originally down loaded from. No other network connection whatsoever may be
created or used. This is because most cl ient systems hide behind firewal ls and It
would be a security breach to send information out to anywhere in the wor ld about
the machines behind firewall s.

File restrictions

The restri ctions on files are total. There is no reading or writing to any files
whatsoever on the client's machine. This prevents sensitive information from being

Secure Interne t Auctioning S ystem Pag e 22
Java

read and sent out into the Internet vo id. No files may be damaged or tampered
with, thereby preventi ng v irus's or mal icious attacks on the cl ients system.

Miscellaneous restrictions

There are a few other restrictions that should be discussed . For instance, only a
number of system properties are avai lable (as read only) to an Applet, and no
syst em properties may be modi f ied. However it is interesti ng to note if one
executes a local applet with " File: :/Iapplet.class" , instead of the web address it
allows one to read and write the system properties. The manipulation of these
system properties may potentially open up the system to intruders.

An Applet may not modify any threads not owned by itself, and in some web
browsers, not even manipulate its own threads.

Al1 frames that the applet opens up have a warning message at the bottom, so t he
user rea lises that it has been generated by the Applet, and is not another prog ram
or part of another application.

Appiets may not execute loca l commands on the cl ient 's machine, as th is wou ld
open a huge security hole in the system. The reason bei ng t hat an undesirable
could wreak havoc if file system cont rol was made ava i lable.

Applets my not override predefined package names, such as the
Java . <Iibraryname > or Netscape. <Iibraryname > packages, as these are the names
of the local system packages. This prevents any sort of system breach.

Opera ting System

We b Browser

Java Virtual
MachIne

Java Sandbox W eb
Internet • Ser ver

E
Fig 1.7. 1 The Java Sandbox

3 .8) Just in Time (lIT) Compiler & Java HotSpot lM

The JIT is a now a defunct feature in Java, and it is designed to increase the speed
of applications. The main reason that people find Java slow is t he fact t hat t he
bytecode is interpreted at run -time, and one is not execut ing standard nati ve code.
With the advent of JIT, Java bytecode is actually compiled into native machine
language for that operating system .

Secure Internet Auctioning System Page 23
Java

The advent of Java HotSpotTM replaces the JIT in newer versions of Java. HotSpot
uses adaptive optimisation and improved garbage collection. Adaptive optimisation
finds the code that is the most frequently used code in the application. This is then
compiled to native machine code and cached. This compi les to native machine
code, the code that is used most frequently, instead of the entire application.
Thereby speeding up code that is commonly executed. The Garbage col lector has
been improved and speeded up which assists in memory usage.

3.9) Java Vs C++

It is a well-known fact that Java's syntax is based on c++. However there are some
critical factors that differentiate the two languages.

Pointers

The are no pointers whatsoever in the Java language. As previously stated,
everything Is treated as objects, and one uses references to those objects. This
gives all the versatility of pointers without all the problems. Arrays, which are also
objects, have automatic boundary limit checks, unlike C++. Java has built in
support for objects such as strings and arrays.

Data types

Variables can only be one of two types in Java, an object or a primitive data type
(int, float, etc). C++ has many types, from primitive data types all the way through
to pOinters. All Java primitives are fixed in length, and are based on Unicode. C++
has varying sizes of data types that are based on ASCII. In Java all variables are
initialised on creation. C++ has no default initialization.

OOP

The Java language is intrinsically object orientated. C++ is a mix of OOP and
classical procedural programming. Java cannot have more than one class being
inherited by a new class. C++ can have a new class Inheriting many classes. There
is no overloading of Java operators whatsoever.

General

Java is developed to Interact with networks and has a special affinity to the
Internet. It is system independent and supports multithreading. As Java is compiled
and Interpreted it tends to be slower. C++ has no natural support for networks. It
is system dependent and is not a multithreaded language. Due to the fact that it is
compiled to native code it tends to be quicker than Java.

Secure Internet Auctioning System Page 24
Java

3.10) Java Programming Security Techniques

A language is only as secure as the programmer makes it. As has been pOinted out
{G. McGraw & E. Felten, 1999] there are a number of rules to ensure that Java
code is a secure and sa fe as possible.

Don 't depend on initialisation

This ru le ho lds true for all objects and variables. To use an object, one usual ly has
to initialise the object. However there are ways of avoiding this, which can lead to
uncontrolled resu lts and va lues in the application. Some suggestions are to firstly
make all variables private, and use get/set methods to ed it them. Secondly have a
private vari able to check that the initlalizer has been called. If It has not been called
methods and properties shou ld not respond to any requests.

Control access

Wherever possible have absolute control over the class, methods and variables.
Make sure variables are not public, and hence publicly editable. Classes and
methods should be private, unless there Is a need fo r them to be public. Anything
exposed is potentially a hole into the system.

Final everything

Using the Final cons tructor wil l prevent any fUrther inheritance of the class, and
therefore make it unavailable to prying eyes.

No Inner classes

The general consensus is that an inner class can only be accessed by the class its
enclosed by. This is incorrect, as once the classes are converted to bytecode, there
is no concept of inner and outer classes. Second ly al l variables that are private in
the outer class are treated as public to the inner class. This is a potentially serious
loophole, as by using inner class, one would have access to all the variables and
methods of the outer class.

No signing

This is a bone of contention, as most people will not run serious applications unless
they have been digitally Signed to prove that it has not been tampered with.
However a problem arises because sig ned Java applets are allowed special
privileges. These privileges can t hen be used to man ipulate files or networks.

No cloning

The cloning object allows one to make copies of class objects residing in memory.
This means that someone ca n get an instance of you r class without actua lly
initia lising the class. This is potentially dangerous. However the cloning feature can
be disabled for classes, and this shou ld be Implemented.

Secure Internet Auctioning System Page 25
Java

No serialisation

Serialisation is the abil ity of the class's Internal state to be copied. This Is a useful
feature , but it means t hat one can copy the current state of an object. Thus finding
out all the information residing in private variables and methods.

Obfuscate

Once a Java application Is compiled to bytecode, it is still possible to reverse
engineer the bytecode with a Java disassembler. That m eans any hard coded
values, such as cryptographic keys can be compromised. Rather generate values on
the fly. Using long variable names can be easy for programming, but It makes the
reverse engi neered java code easier to read. After the final version is complete it is
recommended that variab les such as, New_game_sta rting_value, be replaced with
zxxq or something similar.

Place useless code in the application, such as loops that do nothing or random
variables. This will serve to confuse and make it more difficult to unravel the
reverse engineered code.

Finally use professional obfuscating applications to make your code as difficult to
read as possible. This will make the disassembled code almost impossible to
fathom.

Secure Internet Auctioning System Page 26
Java

3 .11) Conclusion

This chapter has highlighted a few of the reasons and strengths for the use of Java
as the language of choice. It has b,een shown that Java meets the requirements of
supporting network communications, specifically the Internet, as well as setting
rigid security policies that will ensure the clients safety during network
communication,

As the Internet is made up of many different platforms it would have been
impossible to develop an Internet based application for all of them. Thus Java's
unique capability of being system independent allows any Java application to be
supported by Java enabled systems.

Added to all this, Java has proved Itself as a robust, secu re and simple language to
program. Ensuring that the development of the application would be a far simpler
process.

The next chapter will show how the Auctioning specification given in chapter two
can be implemented within this Java framework.

Secure Internet Auctioning System Page 27
Auction Implementation

4) Auction Implementation

4.1) Overview

The auction applicatton is essentially the device leading to an understanding of
Internet based security . Before one may understand the actual application it is wise
to understand the scope of the problem posed.

The aim was to create an extendable, robust, real time, system independent
auctioning application. The auction specifications and design have lead to the
following solution; using a multithreaded networked based client / server
application. The application Is divided into two halves. One is the Server
application, which contro ls the auction and all administrative features. The other is
the client application, which is in the form of a Java applet. The auction server
resides on a web server, from where the client applet is executed. The development
of a web site, completes the application as a whole and make It easier for the client
to participate in auctions.

4.2) Hardware requirements

As far as hardware requirement goes a Pentium 166 or greater shou ld suffice for
the client. The server wi ll require a Pentium 11 or greater. Both shou ld have 64Mb
Ram or more. Both the client and server must be connected to the Internet and
have valid IP addresses.

4.3) Software requirements

There are a number of requirements that have to be met before the client or server
may be executed. Firstly the web site will have to be set-up in accordance with the
structure of the servers directories. The reasons for this will be made clear later.
Secondly it must be made clear from the start that the Java Development Kit 1.22,
or what is now known as JOK 2 was used. This has a number of new features such
as the swi ng graphical user interface classes. Therefore the Server hosting the web
site and the server appl ication must have the corresponding vers ion (or greater) of
the Jre libraries. The client applet has similar demands. The Jre Plug in 1.22 or
greater will be required for the web browsers. The web browsers must also be Java
enabled. This software may be downloaded from the Sun Microsystems site
(Java.sun.com)

The server machine must be able to host a web site capable of using Active Server
Pages (ASP) or a CGI scripting language. There are no operating system
requirements.

Secure Internet Auctioning S ystem Pag e2B
Auction Imple me ntatio n

4.4) The Server

The most obvious place to start is the heart of the enti re appl ication. The server, or
more aptly named AucServer. The idea was for the server to execute and set-up all
the auctioned items Information. Then once it was prepared , to sta rt t he auction for
a single elem ent at a specified ti me . Once the cu rrent auction was complete the
rest of t he items would then proceed to be auctioned in an orderly fash ion.

As there are over seven thousand lines of code it would be foo lish to attempt to
explain every method and variable usage. The easiest m ethod for demonstrat ing
t he execution of t he server is to take it task by task.

4 .5) The Server Files

The server Is made up of t hi rteen Java files. Each has its own unique responsibilities
and dut ies. The aim from the outset was to have a mu ltithreaded application that
could be expanded if need be. A brief explanation Is required for each fi le so that it
will make t he description easier to follow.

AuctionServer .Java

ThiS f ile is the executable for the AucServer. This file starts up all the required
services and maintains stri ct control on the fo llowing steps. Start ing and Stopping
of t he server and auctions.

AucMemCheck.lava

This fi le starts a thread that monitors the amount of memory used by the
application every two and a ha lf seconds.

AuctionHandler.lava

This fi le contro ls all aspect of the auctions in progress. This includes everyth ing
from the set-up to the fina l outcome of t he auction.

Auctionlnterface.Java

This file controls the entire graphical user interface for the server application.
Anything that is seen on t he screen is contro lled here.

AuctionNotify.Java

This file monitors t he state of the auction everyone second and notifies the objects
concerned if the auction has been started, extended or stopped .

ServerLlstener .lava

This class listens for new clients attempting to join the server and starts all the
necessary threads.

Secure Internet Auctioning System Page 29
Aucti on Implementation

Bidlnfo.Java

This class is used for storing and retrieving the cl ient's information for each bid in
the current auction.

ClientHandler.Java

This class looks after each individual client's communication with the server and
auction status.

Itemlnfo .Java

This class stores and retrieves all the relevant information about the items being
auctioned.

CryptLlb.Java

ThiS is a common library of methods used for the encryption and decryption
processes.

MARSCrypt.Java

This class contains all the necessary algorithms and key schedules for the Mars
encryption algorithm.

RC6Crypt.Java

ThiS class contains all the necessary algorithms and key sched u les for t he RC6
encryption algorithm.

RSACrypt.Java

This class conta ins all the necessary algorithms and key sched ules for the RSA
encryption algorithm.

Starting the Application

The class file that starts the execution of the application is the AuctionServer .Java
file. Its main procedure proceeds as fol lows.

II AuctionServer - Main Method

Initialize AuctionServer
Initialize AuctionInterface
Setup Frame
Initialize MemCheck
Start MemCheck

I t creates an instance of itself, which is now, a t h read and w ill not stop executi ng
until instructed. An instance of the Auctionlnterface is initial ized, which controls t he
user interface. It t hen creates the application frame with all the req uired graphical
elements. An instance of the AucMemCheck class is created and started. Now that
the appl ication is started it sits dormant until t he user decides to fire up the actual
server, and get the auctions started.

Secure Internet Auctioning System Page 30
Auction Implementation

The Server State

The server has a few states of activity once the application has started. The server
is in a stopped sta te by default. Once the server is ru nning it may then start
auctions. Once the auction is started it will eventually stop (either manually or
automatically once the time runs out). From this state it may move back Into the
auction started state again, or the server may move to the server stopped state.

Seryer Server
Stopped Running

r I
Auction Auction
Stopped Running

Fig 4 .5 .1 S ta tes of the Auction Server a pplication.

The only state change that is automatically controlled by the server is that of the
Auction Started to Auction Stopped sta te. The user manipulating the program can
cause all state changes.

Server Running State

Hint: To start the server, Click on the Server I Start Server menu items.

To get into this state t he user must start the server. The AuctionServer class will
attempt to run the following code:

/ / AuctionServer - StartServerNow Method
Call StartServer method
StartListener

/ / AuctionServer - StartServer Method
Get Servers IP
Create Server Socket (Port number, Max Users, JP number)
Update User Interface

First the application obtains t he local hosts IP number. Then it attempts to create a
server socket on the cu rrent Port Number (3002 by default), with the current IP
number and a maximum limit of Users (40 by default). If any error occu rs at this
stage t he server wi ll display an error message with the problem. Otherwise the
server notifies the user that the server has been started. Once the server has been
started it then starts the Serverlistener method which then waits for clien ts. When

Secure Internet Auctioning System Page 31
Auction Implementation

the user interface is updated, this includes all information displayed as well as the
updati ng of menu items into the correct states.

It was originally decided to randomly generate a port number, but as this may lead
to problems it was changed to an initial port number of 3002. There are about sixty
five thousand port numbers available to servers over a TCPjIP network. Under a
thousand are reserved but the number is steadily growing. For that explicit reason,
if the server fails to start it will inform the AucServer administrator who can then
manually change it to another port number before attempting to restart the server.

Server Stopped State

Hint: To stop the sefYer, Click on the Server I Stop Server menu items.

This state may only be moved to if the server is in the running state (or if the
auction is not running, but to get to that state the server must be in t he running
state) . In attempting to move into the server stopped state a number of checks
must be carri ed out first.

II AuctionServer - StopServerNow Method
Calf StopServer method

II AuctionServer - StopServer Method
If (Auction Status = Auction Running) then Stop Auction
Stop Server
Update User Interface

The Auction can be in one of two states (Running or stopped). If the Auction is not
running the Server may move to the stopped state. However the only way to get
from an Auction Running state to the Server Stopped state is to first stop the
auction (Auction Stopped State), and then the server may move to a Stopped state.

The Auction status is checked prior to the stopping of the server. If it is running the
current auction is ended and the server is stopped. If any errors occur the user is
notified. The user interface is updated accordingly.

Auction Started State

Hint: To start the auction, Click on the Auction I Start Auction menu items or click
the black arrow on the menu bar.

Before one ca n start an auction It is w ise to set-up all the preliminary information,
such as the item details and the auction stop time. If item details are not entered
the user will be prevented from start ing an auction until there is an Item to auction.
Also if one ddes not set the time the auction will start and stop immediately. Once
these details are completed the auction may then be started.

IIAuctionServer StartAuctionNow method
Initialise the AuctionHandler class
Set AuctionHandler Auction Details
AuctionHandler. StartAuctionno w
Create AuctionNotify (AuctionHandler, AuctionInterface, AuctionServer)
Start AuctionNotify

Secure Internet Auctioning System Page 32
Auction Implementation

The fo llowing things occur to get the auction started. The auctionhandler class is
(re) - initialised, all the details for the current auction are then set. Once this task
has been completed, it notifies the Auctionhandler that the auction is starting, and
starts the Auctionnotify class which checks every second on the current status of
the auction. The Auctionnotify class accepts copies of the AuctionHandler ,
AuctionServer and AuctionInterface class. This is so it may communicate with these
classes.

Auction Stopped State

Hint: To stop the auction, Click on the Auction I Stop Auction menu items or click
the black square on the menu bar.

ThiS state may only be changed to if the auction is running.

//AuctionServer - StopAuctionNow method
AuctionHandler.StopAuction
AuctionNotify. Check Timer
AuctionNotify. Stop
Vpdate VserInterface

The Auctionhandler is notified that the auction has ended. Then the Auctionnotify
class is forced to check the current status of the auction (Stopped). It then notifies
all required listeners. Once this is done the Auctionnotify class is stopped . Once this
has been completed the User interface is updated accordingly.

Now that one has an understanding of what happens to the states and what classes
are invo lved it would probably be easiest to show the flow of the auction
application .

4.6) What Happens when the Server 15 started?

The server starts operating once it has obtained al l the required elements of a
server (TCPjIP and port numbers). It creates what is known as a server socket. A
socket is a channel that allows communication over a network. A server socket
waits for the in itial connection and then determines whether or not to allow further
communication. The server socket limits the number of clients that may join the
server (default is forty clients).

However before al lowing communication to proceed between the cl ient and the
server a number of serv ices are requ ired.

//AuctionServer,Java - StartListener method
RSA = New RSA object
Initialise new AuctionHandler (MAXBIDDERS, VI, PortNumber, RSA)
Initialise new ServerListener (AuctionServer, AuctionHandler, VI, RSA)
Start ServerListener

An RSA (Rivest, Shamir & Adelman encryption algorithm) object is created, this
controls public key secure commun ication and the same public key is used for all
clients. (Once keys have been shared a different key is used for communication
between the server and each cl ient.) The Auction handler object Is sta rted and
passed all the requ ired objects it will need to have access to. MAXBIDDERS is a

Secure Interne t Auctioning System Page 33
Auction Im plementatio n

variable that specifi es the number of top bids to retain. The default is set to five.
The Serverlistener takes similar objects, which it uses to pass to the client's threads
once they are created. This allows communication between the client threads and
t he auctionhandler. The serverl istener is then started.

The serverlistener is a separate thread that listens for client communication. If the
maximum limit has not been exceeded the serverlistener thread performs the
fo l lowing operation.

//ServerListener Class - StartListener Method
New Socket = Accept Client Communcition
Create New ClientHandler (Socket ~AuctionHandler~RSA)

Start C1ientHandler
Update User Interface

First it accepts the connection of the client and creates a local socket of
communication with the server to the cl ient. For each port there are sixty five
thousand sockets. As there are approximately sixty five thousand ports available, it
adds up to an enormous amount of client connections on one machine .

Internet

Server Application

Server Socket
Port 30 02

Client
Socket

o
"

Clie nt
Socke t
65000

-

Fig 4.6. 1 Server Socket accepting connections.

Once a new socket is created, it is used for exclusive communication to the client
concerned. Once the communication channel is open and there are no problems the
serverl istener starts a new ClientHandler thread fo r t he current client. The local
socket is passed to the cl ienthandler, which then dea ls wi th al l communication with
t he cl ient. What this means Is tha t each client that j oins will have Its own thread.
The reason for this Is that the server will be a ble to take advantage of a
multiprocessor environment, thereby Improving performance and scalablllty of the
application.

The Serverlistener class sits In a non- blocking loop waiting for clients. The reason
for making it a thread is quite simple. The anticipated vo lume of clients joining and
leaving makes it a busy process, which would have made It quite difficult for the
auction handler class to dea l with t his facility as well. To faci li tate t he modu lar
design the server listener was wri t ten as a thread

Secure Internet Auctioning System
Auction Impleme ntation

Server
Application

AucMem

- L_-,T-"h:.:,."a"d~_
Server
Thread -,

CllentHandler
Thread

AuctlonHandler
Thread

ServerLlstener
Thread

.J

Fig 4.6.2 Initial threads created by the Server.

Page 34

The server application starts the AucMem,AuctionHandler and ServerListener
threads. Thereafter the ServerListener thread starts the ClientHandler threads. As
w ill be shown later at anyone stage there is a minimum of four threads executing.

4.7) What happens when the Auction is started?

The auctlonhandler object is a reactive object. It responds to requests and calls
from other objects. These other objects are the AuctionNotify object, the Server
object and al l the ClientHandler objects.

However it is important to understand the make up of the AuctionHandler class, as
it is crucial to the entire program. When the AuctionHandler class Is Initialised, it
initialises the variables used to control the flow of the application.

//AuctionHandler - AuctionHandler method (Constructor)
Set local References to AuctionInterface & RSA
Stop Time :: CurrentTime
Maxltems = 10;
Client List = New Vector List
Set Root Directory string = current directory.
Open Log Files
Initialise lists

ThiS method is called when the Auctionhandler class is initiated for the first time . It
sets all required references and variables. It's interesting to note that the Client List
is a Vector List. This list keeps a list of all the clients current joined to the server.
The power of Vector is in the fact that they are a dynamic array of objects. Vectors
are synchronised objects, which means there are none of the problems associated
with a multlthreaded environment. (These are usually lock ing and sharing Issues).
In the scope of the application, the arrays of objects in the Vectors are references
to the ClientHandler objects for each client

Secure Internet Auctioning System Page 35
Auction Implementation

The Initialisation of lists incorporates the resetting of the ItemInfo lists and the
BidInfo lists, which are vectors used for storing information about each item in an
auction.

The Auctionhandler object has a Boolean variable called auction_status. This
variab le Is used to indicate the state of the current Auction. As the auction is
started it is set to True. It has another Boolean variable called values_ changed. This
variab le Is set to true if the top bid changes in the auction application. The
Auctionhandler class has a StopTime variable of type Calendar. Calendar is a high
precision date and time data type. It is set to the stop time for the current auction.
The AuctionHandler class has all the methods to set and retrieve the variables
discussed. The pro-active object that updates the state of the auction is the
AuctionNotify class. Once started it sleeps for one second and then checks to see if
the state of the Auction or its properties has changed.

One of three possible scenarios could have occurred, 1 (No change), 2 (Top bid
change) and 3 (Auction Over). To determine this, the AuctionHandler object is
queried.

One
If no change has occurred the Auctionnotify class wil l do nothing and proceed to
sleep for another second .

Two
To find out if the bids have changed the value of values_changed is returned from a
method 1, If it is true then a new bid has been placed within the last second. The
Auctionnotify class then notifies the Auctionhandler who then updates all parties
concerned.

Three
To find out if the auction is over a method called auctionStatus() in the
AuctionHandler class is executed. The method determines whether or not the
current time is greater than the finish time of the current auction. If the auction is
over, true Is returned. The AuctionNotify class then updates the user interface,
writes information to the log files and notifies the AuctionHandler that the auction is
over.

As the AuctionNotify class works once every second it was decided to utilise this
class for more than one purpose. That is to update the user interface with the
changing time . It would have been pointless and rather a waste of resources to
create a new thread for this purpose. The fl ow of the program really boils down to
interaction between the AuctionNotify class and the AuctionHandler class. One could
see the Auctionhandler class as the central repository for the entire, pertinent and
essential auction control variables. However the AuctionHandler will not do anything
until Instructed to do so. The reason for keeping everyth ing within one class is that
it is easier to control the access to these variables. Hence it is more secure. The
AuctionNotify class has no knowledge of these variab les, and has to request them
from the Auctionhandler class.

1 All variables are set or retrieved using a Get / Set method. There is no direct
access to the variables in classes.

Secure .Internet Auctioning System Page 36
Auction Implementation

4.8) How does the user interface work?

I,l' ,

. Server Auction

m - I [~jlTQ]!]ill
Security Help

The user interface was developed using the Java Foundation Class (JFC), Swing
class. Sun Microsystems has redeveloped the original Abstract Windows Toolkit
(AWT), with help from Netscape, IBM and a few other companies. The result was
the)FC. This is made up of AWT, Java 2D,Accesslbllity, Drag and Drop and Swing.
Swing determines how the GUI is presented, independent of platform. Swing
essentially extends the cu rrent AWT with a more advanced lightweight graphical
library. One of the beauties of Swing is the "Look & Feel" concept. " Look & Feel"
means the application will look like a native application to the current system. That
is the application can either have the look and feel of the current platform, or it can
be fixed to a specific platform.

The user interface for the server application is controlled entirely by the
Auctionlnterface application. On initialisation of this class the frame and everything
within it is set-up and displayed. The enti re visual interface is generated and then
placed on the frame. When everything has been prepared it is then displayed. This
technique Is used often to imitate faster program execution .

The application frame is broken up into four sections . The menu, m enu bar, tabbed
application pane and the status bar.

The Menu

The menu has four menu headings. Those are Server, Auction, Security and Help.
The Server menu deals with the starting and stopping of the server. The setting of
the port number and exiting of the application.

The Auction menu deals with the starting and stoppi ng of an auction . The demo
menu item starts the Demo Auction. The Item details menu items deal with the

Secure Internet Auctioning System Page 37
Auction Implementation

populating of auction item details. The Stop Time menu item sets the finish time for
the current auction.

The Security menu is divided into two halves. The fi rst half allows one to specify the
key length used for encryption, and the regeneration of keys. The second half of
the menu Is dynamic. It lists the available encryption algorithms. For the sake of
extensibil ity it has been designed to allow new algorithms to be incorporated.
Cu rrently the two algorithms dealt with are RC6 (defau lt) and MARS.

The Help menu has one item, which is the Help element. This opens a new window
that is linked to the default Help HTML page. The wi ndow is essentially a mini web
browser and al l help pages avai lable are in a specified directory in HTM L format.

The Menu Bar

The m enu bar is made up of five buttons. Starti ng from left to right: The Black
arrow starts an auction. The black square stops an auction. The page icon displays
the item detai ls for the current auction. The "0" button starts the demo auction.
The "CLR" button clears the Information page of all text .

The menu bar uses a usefu l utility called tool tips. These allow a short description to
pop up, when the mouse is passed over the button in question . This aids in the
overall user friend liness of the appl ication.

The Tabbed Pane

The Tabbed pane is divided into two panels: The I nformation tab and the User tab.
The Information tab dea ls with information pertaining to the server . Whenever a
new action takes place it wil l be displayed in the information tab. The User tab
displays all the users that are current joined to the server , their details and the top
bid. The User tab Is dynamic and wil l change according to amount of users and bid
values. Both tab panes are scrolled enabled. This means if the viewing area is not
sufficient to display al l of the information it will automatical ly add a scrol l faci lity to
do so.

The Status Bar

The status bar Is made up of three Items. Those are, Auction Status, Auction Time
and Memory Used. The status of the auction is updated to " running" when an
auction is in progress, otherwise It displays " inactive". The Auction Time displays
the time rema ining till the end of the auction. This is updated every second by the
AuctionNotify class. The final element on the status ba r is the Memory used feature.
This is updated every two and a ha lf seconds by the AucMem class.

User Interaction

One will rea lise that all the buttons and menu items are not always available
(greyed ou t). This Is due to the state of the current application. Elements become
unavailable or available due to the current state of the appl ication . Refer back to
4.5 The Server to understand al l t he states avai lable.

The AuctionInterface class also listens and reacts to all the events that occur with
regards to the user interface. All events are sent to a class ca lled the
AuctionHandler class . This class then deals with all user interactions and selections.
This class wi ll then call the required methods for the desired selection . For this

Secure Internet Auctioning System Page 38
Auction Implementation

reason the Auctioninterface class requ ires a reference to the AuctionHandler and
Server classes; as it allows this conveyance of state change and the execution of
the methods in the aforementioned classes.

The Auctlonlnterface class dea ls with all other graphical aspects, such as error
message dialogue boxes, selection menu boxes and the HTML Help frame. However
it must be re- iterated that this class does not contai n any information regarding the
actual auction state. It is the vessel by which the user may move from the one
state to the next.

User Information

The tabbed panes show the user descriptive information with regards to the current
state of the application. As the Auctionlnterface class has no access to this
information it would be impossible for the class to achieve this task by Itself.
Therefore the AuctionInterface class has made available methods for the classes
that control the application to display information.

To update the Information tab one executes the method dispJayResult(Message).
The message will then be displayed on the Information tab. To clear the Information
screen one simply calls the method clearScreen().

To update the User tab one simply has to execute the method updateUserScreen(
ClearScreen I Message). If the Clearscreen = one, it will clear the User screen and
start afresh, otherwise it will simply add the message to the screen.

Application Termination

Hint: To terminate the application, Click on the Server I Exit menu items.
Or

Click on the close button in the top right hand corner of the application
window.

When the application Is terminated it follows a Similar routine to that of stopping
the server. It stops any auction running, then stops the server and finally it
terminates execution. When the program terminates all references to the objects of
the application are lost and the Garbage collector cleans up the memory.

At no stage should the application terminate execution with an error. If this does
occur it is beyond the control of the application.

Known Problems

There are a few problems with the user interface. However these are due to the
actual language . It is a well -documented problem that there may be refresh
problems for the JFCjSwing classes. Another problem occurs when recreating keys.
If the key Is larger than 128 bits, the CPU workload becomes intensive . This
prevents the screen from being refreshed immediately.

However these are minor issues and will not impact on the overall performance of
the application. The benefits of using the Swing classes outweighs the few problems
that do occur.

Secure Interne t Auctioning System Page 3 9
Au ction lmplementat lon

4 .9) The Clie nt Apple t

The client's applet was designed to interact with t he servers appl ication and be as
independent as possible. The aim was to make it as simple as possible for the client
to participate in t he auction process.

Applets are Java applications embedded in web pages. They are down loaded once
one visits the web page t hey reside within. The benefit of th is is that the client does
not need to do any special downloading and installat ion. The cl ient si mply opens
the web browser and proceeds to the correct web page. The applet is down loaded
and then executes on the clients machines, assuming the client has a Java enabled
web browser and the correct Java version.

There was some design cri teria tha t had to be met. Specifical ly t he size issue. Not
all people have ISDN and satell ite connections to the Internet. Slow modems and
service providers are still prevalent around the world (and pa rt icularly South
Africa). Therefore the applet had to be as small as possible to aid in t he speed of
the download to the client's machine. The applet weighs in at thi rty- fi ve kilobytes
which is less than the average size of a web page. To st rea m li ne matters further
the applet has been placed in a Sing le JAR (Java Arch ive) f i le . Th is JAR fi le
compresses all the classes withi n it using the Zip compression algorithm. This
reduces the size of the applet even more. In fact there is about a forty-five percent
compression rate for the clien t applet . When a new class f ile is requested Java first
sea rch the local machine, JAR's included, before requesti ng f rom the origi nating
server. This tends to speed up the performance of the apple t , as no extra network
requests wil l be needed to obtain all the requi red classes.

4.10) The Applet Files

All the f iles required for the client application are place in the JAR f ile ca lled
"aucjar.jar". The f i les required by the applet are as follows:

AucClient.J a va

This is the main class for the Client applet. It starts all t he req uired obj ects and
threads .

AucUI.Java

Th is class controls the user interface for t he cl ient applet.

ClientEngine.Java

This class controls the commu nication and general program m anagement of t he
applet.

Au clrnage.Java

This class controls the process of downloading the image fi les fo r the current
auction elements.

Secure Interne t Auctioning S ystem Page 40
Auctio n Imple me nta tio n

AucTimer.Java

This class updates the time remaining field for the client.

CryptLib.Java

This is a common l ibrary of methods used for encryption and decryption processes .

MARSCrypt.Java

This class conta ins all the necessary algorithms and key schedules for t he Mars
encrypt ion algor it hm.

RC6Crypt.Java

This class contains all the necessa ry algorithms and key schedu les for the RC6
encryption algor it hm.

RSACrypt.Java

ThiS class contains all the necessary algorithms and key schedules for the RSA
encryptlon algor it hm.

HTML File

The HTML file in which the cl ient applet resides, contains em beded code to notify
the web browser what to do wi th the JAR fi le.

The Client State

The AucClient .Java class is the file that runs ini tia lly. I t executes the start method,
as this is what executes in an applet. (As opposed to the main method in an
Appl ication).

//AucClient.Java - Start method
Get parameters (itemid, port number)
I f (Auction Running) & Port number = ok)

Initialise AucImage

End if

Set Initial I mage = item
SetupConnection
Initialise AucUI (applet,AucImage)
Initialise ClientEngine(AuctionUI,codebase(},AucImage,ltemid, port number)
ClientEngine.start

The applet first attempts to get the port number and item id from the HTML page,
which are passed in as parameters . The port number tel ls the cl ient what port to
connect to the server, as t he port nu mber is dynamic. The ltemid va lue info rms t he
client applet what item the client started bidding for .

I f there were no problems, (such as corrupt pa rameters) t he item id exists and the
port number is not invalid, t hen the auction conti nues . It ini tia l ises t he AucImage
class and sets the fi rst image equal to the name of t he itemid. The fo rmat specifies

Secure Internet Auctioning Sys tem Page 41
Auctio n I mplem entatio n

that item images be named the ID of the item. (Le, Item I D = ITEMAA1, t hen Item
I mage = ITEMAA1.GIF) The AucUI and AucEngine classes are initialised and passed
the req uired references of objects . The clientengine class is then started, which
takes over contro l of the ru nning of the client applet . The codebaseO method
returns the URL (Uniform Resource Locator) of the applet code on the web site,

Clien t \ ------1 Disconnected J"

I
Auct ion
Stopped

Clie n t
Connected

I
Cli en t

Logged I n

Fig 4.10. 1 The Clients States

Client disconnected state

This is the state that the client starts in, However on the loading of the applet, the
client attempts to connect to the server immediately . If t he connection is lost at
any stage to the server t he client moves back to the disconnected state.

Client connected state

The ClientEngine class sets up the connection to the host as follows:

//ClientEngine.Java - SetupConnection method
Get Hosts address
New Socket = Socket (Host Address, Port number)
Set Buffered input/output streams

I ni tia lly the client obtains the host address of the applet. It then uses th is address
to open a communications socket to the host (Server application), using the port
number t hat is passed in as a pa rameter from the HTM L document . It may only
open a network connection to the orig inating host that the applet came from , This
security feature prevents unauthorised commu nication to ot her machines. Once t he
client is connected the application may proceed to the next state.

Client logged in State

Hint: To log into the server. Fill in all the required details in the relevant text fields
and then press the "Connect" button at the bottom of the screen.

This st ate is achieved once t he cl ient has logged into the server wi t h all the
requ ired personal details. This requires the client to type these detai ls into t he

Secure Internet Auctioning System Page 42
Auction Implementation

relevant fields on the applet screen. These include name, email etc. The client
logged in state cannot be achieved unless the client has been connected to the
server first. The details are simply forwarded to the server . Only once this state has
been achieved may the client participate in any running auctions.

Auction running state

Hint: To participate in the auction, enter a bid in the text box. To submit a bid, click
on the "Submit Bid" button.

This state is controlled entirely by the Server application. It notifies the clients
about the status of the current auction and updates frequently. In this state the
client may bid for the currently auctioned item.

Auction stopped state

Si milarly for this state, the Server is in control. It will end the clients Auction when
the Server changes its own state. The Cllenteng ine class updates these state
changes.

4.11) What happens when the Applet is started?

The Clientengine object is a reactive object. It responds to requests and cal ls from
the server and other objects.

It is important to understand the make up of the Cl ientEngine class, as it is crucial
to the applet control. When the ClientEng ine class is initialised , it initialises the
variables used to control the applet.

//ClientEngine,)ava - ClientEngine method
Set local References to itemid ,port number, Auclmage & AucUI
Initialise RSA & CryptLib
RSA ~ New RSA object
Set Key ~ 0

This method is called when the ClientEngine class is initiated for the first time. It
sets all required references and variables. The ClientEngine also keeps a copy of all
the clients' details (name, email etc).

Login page

The Login page is the first page loaded and displayed by the applet. This requires
the users details. Without completing this section first the client may not proceed to
the Bidding Page,

Bidding page

The bidding page is displayed once the client has logged in. It displays all the
details regarding the current auction. This includes the clients Auction ID, the Item
ID, the top bid, minimum bid and the t ime remaining. The client receives an
auction ID number that is unique. This is used to differentiate between different
clients and also maintains client anonymity. The Server generates and distributes

Secure Internet Auctioning System Page 43
Auction Implementation

the auction ID. This ID number is retained while the client stays logged in. If the
client leaves the auction and rejoins they will be issued with a new auction ID.

When the client joins initially, and every auction thereafter the details are sent from
the server to update the client with all the required details. The client then bids for
the item and is notified when the auction is over and who won it. When the
following auction starts the client is notified that a new auction has begun. To aid in
the user friendliness of the application the client also receives an image (if
available) of the item cu rrentl y being auctioned.

If no auctions are running the applet will display no values and the client will not be
able to bid. This auction running and stopped states are displayed, as long as the
client is connected.

4.12) How does the user interface work?

The AucUI class controls the user interface. As with the server application this class
has no control of the actual information it displays. However it wil l display the
Information received from the server.

The applet is made up of two distinct screen shots (see below), the logi n page and
the bidding page. The applet uses layered panes. A layered pane is a window with
more than one pane within. Each pane or element has a z-value. This z-value
determines what pane is displayed. The pane with the highest positive z-value will
be displayed over all the other panes.

When the application begins the logln pane has the highest z-va lue. Once the client
has logged in the AucUI class changes the z-value of the bidding page so that it is
higher than the login page. This causes the bidding page to be displayed. The
reason that this is so useful is that both pages are prepared as the applet starts up
but remain invisible. The applet takes a little longer to execute initially, but once its
running things are quicker. When the applet is ready it displays the cu rrent pane
and makes the perceived speed of the application seem greater.

The Logl" page

The login page is made up of one panel and a button. On this are four text boxes.
They are in order, the Name, credit card (or staff number in t he demo version),
email and Hostname fjelds. The first three fjelds require the user to enter data. Any
fields left blank will prevent the user from continuing. The fourth field displays the
host name of the applet. If there is no connection to the server the applet will
display an error here. Once the fields are all updated the user can continue by
clicking on the "Connect to Server" button. This sends the data to the server. This
page is hidden and the bidding page is then displayed.

Secure Internet Auctioning System Page 44
Auction Implementation

Auctltm En\lvOctails

,

,
Please Enter your Name:

Please enter your Stim Numller: 123456

Please enter your Email : johnd nd.ac2a

The Host Auction server: ,j

1 __ .. _ _ _---
Connect 10 Server.

Fig 4.12.1 The applet login page.
The Bidding Page

The bidding page is made up of four sections. The Auction bids, auction
parameters, auction information and auction image. The auction bids section
consists of a text field for placing a bid and a button to submit the bid. If the text
va lue consists of non-numeric characters an error message will be conveyed to the
client. To send the bid the client must cl ick the "Submit Bid" button.

The auction parameter section displays the details of the auction. It cons ists of four
text boxes. The Auction ID textbox d isplays the client's own Auction ID value. The
auction item ID va lue displays the ID va lue used for the current item auctioned.
The Top bid field displays the current top bid and the auction Id of the bidder. The
time remaining text box displays the time left for the current auction. The AucTimer
class updates th is textbox every second. Due to the fact that the server sends the
time remaining initially and if there are any changes, there may be a slight
discrepancy between the clients time and the Servers time. However the server has
the last word, and it indicates when the auction is over. The time remaining clock is
meant to be a guideline for the client. To prevent unfair last second bids the auction
will add a minute to the time remaining if anyone bids withi n the last sixty seconds.
All of these text boxes are uneditable and are updated by info rmation received from
the server.

The auction information page informs the user on minimum bids, bids submitted,
time extensions and other auction proceedings. The AucUI class has no control over
the auction image section, instead the AucImage class updates the image section.
This takes care of obta ining and displaying the correct item image. It downloads the
item image off the server and promptly displays it in the image section.

In all instances the ClientEngine class instructs the AucUI and Auclmage classes to
update the information.

Secure Internet Auctioning System

User Interaction

Auction Implementation

AucllonDltl --- - ~>t­j Enter Yohr Biii: ~;-:,,,IO:;-o -,----==~"""'''''''-'':''l.1
sub,;;'.!!!'.!1 I __ - •• :..11

Audinll PllramQters-

Your AUc1ion I):

The Auction Item J.l:

Current Top Bid:

Time lafl: (+- ,OstCjI): - -Audlon Illfonnatklll

ha mln bid Is 200.0
Id Accepted 250

Auction "om~"~n";;'IIJ"-~·;· ;':';';'':;

l
-:::-:~' -Fig 4.12.2 The apple t bidding page.

'>.,:

•

Page 45

User Interaction only takes place on two occasions. When the client attempts to
logln into the server, and when the client attempts to place a bid. In both occasions
the class that controls the interaction is the ControlAction class. When it receives
this action it makes sure there are no abnormalities with the information being
entered by the client before presenting it to the ClientEnglne class to send to the
server.

Applet Termination

The applet will only be terminated when the client moves to another web page. As
long as the client remains on the original web page the applet will continuing
running. Re-visiting the web page will cause the application to restart completely.

Known Problems

There are a few problems with the user interface. However they are well
documented in the Java li terature. The main problem that occurs Is the repainting
or refreshing of the client applet. On some occasions the applet forgets to repaint
when it has lost and regained focus.

4.13) How are messages sent between parties?

One must first understand that the application uses the TCP/IP (Transmission
Control Protocol/Internet Protocol) protocol. The reason for this is that TCP/IP has
a number of useful features. It guarantees delivery in the correct order of all

Secure Internet Auctioning System Page 46
Auction Implementation

information sent or rece ived. This means that al l data sent wou ld be received in the
correct order, so no manual time stamping Is required and information sent will not
be corrupt.

I
Server

I I Client I
Sockets Sockets

TCP TCP

IP IP
Datagrams Datagrams

t I
Internet

Fig 4. 13. 1 TCPj lP comm unication

IP is a non-guaranteed and connectionless layer that sends datagrams. TCP then
controls these packets of information, re-sending when necessary, and placing in
the correct order. The stack layer shows how the applications open vi rtual streams
of communication via TCP, which send the packets using the IP protocol from the
server to the client and back again. TCPjIP is far more complex than shown and a
discussion is not needed in the context of this chapter [Hughes, Hughes, Hoffner &
Winslow, 1998, plO].

Java uses streams to communicate, be it to files or networks. Both the client and
server applications open input and output datastreams. A standard stream can only
send and receive bytes. Data Input and output streams allow a higher level of
communication, such as string and data types. The problem though with these
streams Is that they are not buffered. As one places Information in the stream it is
automatically sent. This leads to two problems. One is that it takes a lot of
resources to do this continuous stream handling, which slows down the operation of
the application. Secondly it does not use the TCPjIP packets to its fullest, and one
will be wasting bandwidth, as many packets conta ining few bytes will be sent. To
combat this problem the streams are buffered. This allows for the messages to be
completely created and then placed in the stream, when the buffer is flushed of its
contents, thereby sendi ng information less often in fuller TCPjIP packets [Hughes,
Hughes, Hoffner & Winslow, 1998J.

The usage of these wrappers gives the application more flexibility and allows easier
communication. The way in which the streams are constructed is displayed in the
following diagram. The original input and output streams are linked to the socket
that the application has opened to the other parties involved. Both the server and
client applications use the same send method.

Secure Internet AuctionIng System
Auction Implementation

Data
Output
Stream

Wrapper

Data
Input

Stream ..
Wrapper

Buffered
Output
Stream

Wrapper

Buffered
Input

Stream •
Wrapper

Output
Stream

Input
Stream

Fig 4.13.2 Stream wrappers

/ /SendMsg (String Message) method
If (encryption_ set) then Message = Encrypted(message)
Outputstream. WriteUTF (Message)
Outputstream. flush

Page 47

1 -

1-

First the method checks for encryption. If this is in place the message is encrypted.
The message is then placed in the output stream (which is buffered). The message
is sent once the call to flush the output stream has been executed. If there are no
stream problems the message will be sent. The message is sent in a UTF-8 format.
This writes each element of the String message in one, two or three byte formats.
Common ASCII text will use one byte and the more uncommon ASCII text will use
three bytes. This decreases the amount of information sent, thereby saving
bandwidth in an efficient manner. The length of the String is also encoded so the
stream on the opposite end will know how long the message is and can separate
messages. This format is the common format for communication between Java
applications or programs.

The format of the messages sent between the client and server are quite simple
and re latively small . The message is divided into two sections. The message
descriptor and message information. The message descriptor is a space-delimited
set of numbers. Each sequence of numbers leads to a different command. The
message information contains all the Information required for the current action.

Message
Desc:rlptors

Message
Information

Fig 4.13.3 The Message format

Secure Internet Auct;on;ng System Page 48
Auction Implementation

The Server's messages

As has been indicated by the message format, there are conventions for sending
commands. The following few paragraphs will explain what messages the server
sends to the client and what results from them. The server sends five kinds of
messages. The table below lists the format of the messages sent.

Message Message Message format
Number Identifier

Securitv
0 <Algorithm type> <Public RSA Key> <Public N

value >

Registration
1 <Client Auction ID>

Auction Details
2 1 1 <Item ID> <Min Bid > <hrs> <mns> <scs>
2 2 2 <Too Bid> <Too Bidder ID>

Bid Response
3 1 1 <Bid Value>

(Error messages below)
3 2 1 Bid must be Higher
3 22 Auction Not running
3 23 Bid lower than Minimum
3 24 Bid lower than Current Top bid
3 25 Encrvntion Error

Extend Time
4 <hrs> <mns> <scs>

Average Time
9

Flg 4.13.4 Mes sage formats from server to chent
Note: <Value> are values sent to the client.

The Security message sends, to the client, the type of algorithm that is being used
for symmetric encryption, as well as the public key pair for RSA encryption. The
registration message sends the client and Auction ID on confirmation of all their
details. The auction details messages sends one of two messages. The first is the
details of the current item auctioned. This is sent by default the instant a client logs
into the system, or a new auction begins. The second is the current top bid and
bidder for the auction. This is sent every time the top bid changes. The Bid
response message replies to the clients bid. The response is either an acceptance of
the bid or a rejection with an error message. The extended time message updates
the client with the new finish time of the current auction. The average time
message is very similar to what is known as an Echo request. On receiving this
message the client responds immediately with the same message. This allows the
server to measure the average time packets take to and from the client. All
messages are space delimited.

Secure Internet Auctioning System Page 49
Auction Implementation

The servers messages are sent by calling the method Notify_Client(Message No,
Message) with the appropriate information.

The Client's messages

These are the message formats sent to the server from the client's machine.

Message Number Message format

Security
0 <l<l> .. <K, > //RSA Encrypted Symmetric Key

Login
1 <Name> <Number> <Ema il >

Bid
3 <Bid value>

Average Time
9

Fig 4, 13.5 Message formats from chent to server

The client has a limited number of messages. The first one sends the client's key to
the server, It has been encrypted using the Servers public key. The login message
sends the clients details to the server. The bid message sends the clients current
bid for the auction to the server. The average time procedure responds with the
same message received.

The client calls the method notify_ Server(message number, message). This method
then executes the correct procedures to send the message to the server.

Receiving messages

The cl ient and the server threads sit in a non-blocking loop waiting for information
to arrive in the input stream. As soon as it arrives both applications call a method
called readMsg().

//readMsg() method
String = (String) InputStream.readUTFO
return String

This method reads the message from the input stream using the UTF format. This
UTF format is then cast (changed) to a stri ng and returned to the ca ller. A method
ca lled the MessageProcedure(Message Received) takes this received message and
deals with it according ly.

//MessageProcedure (Message Received) method
New StringTokenizer(Message Received," ")
Message number = (integer) NextToken.StringTokenizer
Select (Message number)

Case 1,' Call Method(Rest of Message Received)
" "
Case n:

End Select

Secure Internet Auc tioning Syste m Page 50
Auction Implementation

The method accepts the string received. It then creates a String token izer. The
str ing tokenizer breaks the string up into tokens or different elements. The
delimiter used to indicate tokens is a space. For instance "3 250" would have two
tokens. The first is the message number. This determines what to do with the rest
of the information sent. The message number retrieved is cast to an integer and
used in a select statement. This select statement then calls the methods associated
with the current command. It passes the remaining string to the method being
called. Conti nuing the example of the Bid "3 350" to t he Server, would mean that
case 3 Is chosen and the BiddingProcedure(String) would be ca lled. The value "350"
would be passed to the BiddingProcedure method.

When the message Is received, at every stage the message is examined for
malformity. Th is prevents any unwanted or incorrect messages affecting the
application. If any poor messages are received they are simply ignored, and the
application makes a note of the occurrence. The message, time and whom it is from
Is all recorded in the log file for examination at a later stage.

4.14) What happens when a bid is placed?

The client sends the bid in a string format. This is placed in the network stream,
which is then flushed. The Clienthandler object for that cu rrent client receives the
message. Th is message goes to the messageprocedure method, which determines
the message type and calls the correct appropriate method (in this case it's the
BiddingProcedure method). The rest of the string (The actual bid) is passed into t he
appropriate method where it is dealt with.

//ClientHandler.Java - BiddingProcedure(String Bid)
Bid value = (float) Bid
Result"" SubmitBid(ClientlD,Name,Email,Number,Bid value)
Switch (Result)

Case 1: Notify_ CJient(Success)
Case 2: .. Case 5: Notify_ Client(Error)

End Switch

The string value is converted to a floating number. The bid is then submitted, along
with the cl ient's detai ls. The reason for the deta ils bei ng passed along is twofold.
Firstly It helps differentiate one bid f rom the next. Secondly no ot her copies of the
clients details exist outside of their Clienthandler object. When the client leaves t his
object is destroyed, and so is t he cl ient's information. It was imperative to keep this
information, so t he cl ients bid and details is stored by the Auctionhandler. When the
auction ends the AuctionHandler wilt know the detai ls of the cl ient who won without
having to keep the all the Clienthandler threads alive. This smal l overhead allows
for an even greater saving of resou rces later in the l ife spa n of the application .

//AuctionHandler.Java - SubmitBid(ClientID,Name,Email;Number,Bid value)
If (auction_ status"" stopped) return "Auction Not Running."

Else
If (MinBid(Current Item) > Bid value) return "Bid lower than min bid."

Else
If (TopBid(Current Item) > Bid value) return "Bid lower than top bid."

Else

Secure Internet Auctioning System
Auction Implementation

If (CheckBiddersExistence(BidList) = true) &(BidVa/ue> LastBid) then
BidList[BidderPositionj.addBid(Client Details)
SortBids()

Else

End if

Va/uesChangedNotify()
Return "Success"

BidList[LastPosition].addBid(Client Details)
SortBids()
Va/uesChangedNotify()
Return "Success'"

If (timeLeft() < 1) then extendAuction

Page 51

The procedure first checks to see if there are any problems with the bids. It makes
sure the current bid is greater than the minimum, top. It also checks to see that
the auction is running before hand. Once all these checks have been confirmed one
of two cases can occur. The client has bid before or it is the client's first bid . If the
client had bid before and the new bid is higher than the previous bid, the new bid is
entered. It overwrites the older bid in the Bidlist and the bids are then sorted to get
them in order.

If the client has not bid before, it is added to the bid list . The list is then sorted and
the Auctionhandler is notified there has been a change in the bid list. On all
occasions the procedure returns the result of the update.

Finally this method checks to see if the time remaining in the auction is less than
one minute. If it is, a bid has been placed in the last minute of the auction, which is
by all means unfa ir for all the other contestants. This results in the auction being
extended by another minute. This extension time is defaulted to one minute.

Bid Storage

The bids are stored in the BidInfo class. The Auctionhandler class has a dynamic
array of theses BidInfo objects. The default number of elements in this Bid list is
five. However it can be extended. The reason for making it a dynamic array was the
fact that not all auctions are based on the top bid (i.e. Dutch Auctions). The result
is that the top n (n=5) bidders bids are kept. For each variable there is a get
method to retrieve the information,

The Bidlnfo class stores the following details for each of the top bids,

Bid Variables

BidderID
BidderName
BidderEmal1
BidderNumber
BidderValue
BidTimeSlamp

Example

AUCID001
Joe Soap
SoapJ@emai l.com
12345
350
2000-01-13,12:37.38 am

When the client calls the setBidInfo(ID.Name.Email.Number.Value) method, these
values are set to local copies of the object, However the BidTimeStamp is also set
so that the AuctionHandler wi ll know when the bid was placed, This means that jf
two bids are equal the person who placed the bid first will take preference,

Secure Internet Auctioning System Page 52
Auction Implementation

The sortBidsO method sorts the bids using a simple bubble sort algorithm,
comparing bids, and if the bids are equal comparing the Bid time stamps. All the
methods are synchronised so that any deadlocking problems are prevented. The
Java system takes care of all the synchronisation of users placing bids.

4.15) How are the Items stored?

The items are stored in the Itemlnfo object. An array of ten elements (or less) of
these objects is created. The user indicates the amount of elements in the array.
Each stores the following information.

Item Varia bles

Item ID
Min Value
Item Desc.
Winner Details

Example

lTEMAAl
250
A lovely UNO emblazoned leather diary.
"AUCIDOOl loe Soap.Soapl@email.com

The Item ID is used to differentiate between different items. Each item has a
reserve minimum bid price, stored in the Min Value variable. There is a string
description of the each item. This is used to give the user a brief description of the
item on the bidding web page. Once the auction is over the Winners Detai ls are
stored. This stores all the information held in the BidInfo object of the win ning bid.
When the auction is over it writes all the relevant information to log files so that the
administrator has the desired contact details of the auction winners.

4.16) How is the Security implemented?

The security of an application cannot be viewed as just the security of its
communications. The entire emphasis of this project was on creating an overall
secure application. For this very reason the methodologies described in chapter 3.9
Java Programming Security Techniques have been closely followed in the
development process thus far.

ThiS means that the security of an application as a whole is based on the secure
communications and programming techniques.

The security of the communications hinges on two very important features. The
first is the cryptographic methods used, and the second being the way in which
they are implemented. A discussion on the choice and implementation of the
cryptosystem will be dealt with in the fo llowing fou r chapters, as well as the
implementation. The system chosen uses RSA to set-up a secure communications
channel and once this has been achieved the client and server share the same key
for MARS or RC6 algorithms.

When the administrator starts the application, the RSA object automatically
generates new RSA keys. One is public which is sent to the ctient and the other is
private which the server uses. The default symmetric cryptosystem is RC6. The
administrator can change the default symmetric cryptosystem. However this must
be done before the server is started. Once the server has been started one may not
change the cryptosystems.

Secure Internet Auctioning System
Auction Implementation

Hint: To change the symmetric cryptosystem, Click Security menu I Select
Algorithm

Page 53

When a client joins for the first time the server sends the client the RSA public keys
and informs the client what symmetr ic cryptographic algorithm to use. This
message is sent as normal with no special encryption. The client has a RSACrypt
class . Which is used for encryption and decryption of RSA. The RSA public key is
used by the client to encrypt a random symmetric key, which is used for either RC6
or MARS encryption . The encrypted random key is then sent to server. The
ClientHandJer on the server decrypts the RSA message from the client using its
private RSA key and obtains the symmetric key. The symmetric key is different for
all cl ients.

Server

Applet
RSA Public key Standard

Send

RSA Encrypted Symmetric Key
Send

Fig 4.16.1 Exchange of public and symmetric keys

Thereafter all communication is secure. As the messages are sent they are
encrypted and when they are received they are decrypted. The class MARSCrypt
and RC6Crypt are used fo r encryption/decryption of MARS and RC6 algorithms
respectively. The Cryptlib class is used for encoding strings to and from bytes and
integers, which are uses by both the encryption classes.

Server

Applet

MARS / Encrypled Messages MARS / RC6

RCO Send

Decryptlon

MARS / RC6 Encrypted Messages MARS / RC6
Send Decryptlon

Fig 4.16.2 Secure Communication

Secure Internet Auctioning System Page 54
Auction Implementation

CryptLib.Java

The client and the server have a copy of the Cryptlib.Java file. This contains useful
methods for the encryption and decryption of information.

On Initialization the CryptLib class creates instances of both the symmetric key
cryptosystems (RC6 and MARS), as it is not known which one wil l be used. The
Server decides which cryptosystem is going to be used. This is selected in the
Security Menu. A variab le called Algo_No in the Auctlonlnterface classes holds an
integer number representing the current algo ri thm (0 = RC6, l = MARS), this is
passed to the CryptLib class which records what algorithm is being used in the
encrypt_mode variable.

Thereafter whenever the client or server asks for Interaction with current
cryptosystem, such as setting the key, encryptlng or decrypting, the CryptLib class
knows what to do for each cryptosystem.

As an example, when the client sets the symmetric Key for the current auction,
they call the setKey method.

//CryptLib.Java setKey(Users Key)
switch (encrypC mode)

End

case 0 : return RC6.generate_Keys(Users key, key length)
case 1 : return MARS.generate_Keys(Users key, key length)

The class determines which algorithm is being used and then cal ls the correct
generate_Keys, which generates the required key.

The decrypt and encrypt methods work in a sim ilar fashion

//CryptLlb.Java Encrypt(Mesg, Key)
switch (encrypCmode)

End

case 0 : return RC6.RC6Encrypt(Mesg,key)
case 0 : return MARS.MARSEncrypt(Mesg,key)

The CryptUb class has a number of other useful functions. It can generate a
random key using a seed from the user, a random number and the MDS hashing
algorithm

//CryptUb.Java randKey(Size, Random Values)
generate random bytes[sizej
MD5.update(bytes)
Return MD5.digest(Random Values)

The user provides random values, which are used to encrypt the random data,
using MDS (See Appendix).

The CryptUb class provides some functionality for both the symmetric
cryptosystems. There are methods for converting an integer to bytes and vice
versa. One can convert strings to bytes, and bytes to strings.

Secure Internet Auctioning System Page 55
Auction Implementation

As all messages are strings, they are converted to bytes, and then from bytes to
equiva lent integer values. These integers are then encrypted by the cryptosystem.
When decryption is complete, the process converts decrypted integers into bytes,
and then the bytes into the original string format .

4.17) What problems are associated with the threads?

An understanding of what threads are is probably a good place to start before
anything else may be discussed. A thread is shorthand for a thread of control. This
thread of control is the simplest element of a program that can execute
independently, [Oaks & Wong, 1999]. Even the most simple of applications has a
single thread of execution. However when one starts dealing with streams and user
Interfaces it becomes easier to break a program up into separate procedures to deal
with asynchronous stream commu nications.

Ever since the inception of a multithreaded environment there has been
competition for the available resources. When threads demand access to resources
at the same time it can lead to confusion and incorrect results. As an example lets
take two threads: Thread one and Thread two. Both are competing for the output
stream to the monitor. Thread one attempts to output "Hello world", and thread
two attempts to output "This is a test". As they are fighting for control of the single
resources the result is a jumbled output of the two threads.

Hell ow arid _ ... _ _-----
Thread!

This Is a test ... - .. -;;;;.;.--.
Thread2

HeUThlsow Is aorld test

Result

Fig 4. 17.1 Threads fighting for the same resource.

If however there is some form of control of the threads, for access to the resources.
this problem would be alleviated.

A semaphore is one way in which one may control the threading issue. A
semaphore allows only one thread to gain access to a resource at a time. All other
threads wanting to gain access are put to sleep until the current thread is finished.
The next thread in the queue is then allowed access to the resource. To achieve this
affect Java uses synchronization to control the paths of execution of threads. The
way in which one may use this feature is quite simple. By declaring a common
method synchronized, any threads attempting to use the method will have to wait
until it is free.

Secure Internet Auctioning System Page 56
Auction Implementation

Admittedly threading issues are far more complex than indicated here, and Java's
support for a multithreading environment is just as complex. However the
synchronization of methods and to cont rol access to a resource is sufficient for this
application and its demands.

4.18) How does the server use synchronization to update all the clients?

As has been mentioned beforehand the server has a list of all the cl ients currently
connected. This is the client list vector, which is a dynamic array of object
references. A Vector can dynamically grow and contract as required.

There are two methods that are used, the addElement(Object) and
removeElement(Object). The add Element method adds a reference to the current
object at the back of the Vector. The removeElement method removes the object in
the Vector. It does not require its Index as it searches and removes this reference.
The power of Vectors arises at this stage, as the removed element would cause an
empty index to exist in the array. However the Vector re-packs all the elements in
the list to consume the empty index, When a client joins or leaves the server they
are added or removed from the client Vector . These method calls are synchronized
so on ly one update occurs at a time. The adding of a client takes place once they
have logged into the server. The removal of a client occurs when the
communications channel is closed between the client and the server.

The objects that are referenced in this list are the clienthandler objects for each
client. When the Auctionhandler determines that an update is required, it calls the
method updateAll(Message Type,Message). An update is required on three
occasions, one when a new top bid is received for the current auction and the final
two when a state change has occurred. (Start or stopping of an auction).

//AuctionHandler.Java - updateAI/(Message Type,Message)
synchronized(clienClist) {

}

Enumerated = clienLlist
While (Enumerated.hasMoreEiements())

(ClientHandler)Enumerated, nextElement .
notify_ Client(Message Type,Message)

End while

The first thing that the method requires is the message type or number, and the
actual body of the message. The client_list is then synchronized. This is done, as
one does not want users joining or leaving as the AuctionHandler traverses the
client Vector. Once the method has control of the client vector It fIrst creates an
enumeration of the Vector.

Secure Internet Auctioning System Page 57
Auction Implem entation

Auction
Cl ient Client Handler
Applet Handler 1\

1,\
I I I I I I V Client

Client Client V List

Appl et Handler Vector

Fig 4.18. 1 The Client Vector List, and its references to ClientHandler objects.

Once the method has control of the client vector it first creates an enumeration of
the Vector. This enumeration generates a series of al l the elements in the Vector.
The method then extracts each element one at a time until there are no elements
left to interrogate using the nextElement call on the enumeration. Once one has
access to this element it is cast to a ClientHandler object. This gives one a
reference to a client's Clienthand ler object. Once this has been ach ieved the
method notify_client(message type, message) is ca lled, wh ich deals with the
physical communication to the individual cl ient. The notify_client method has
already been addressed in section 4,13,

In this way all clients that are currently joined to the server are updated with all the
correct information regarding the auctions.

4 .19) What logging takes places?

The server application performs logging on a continuos basis. It was or ig inally
envisaged to al low logging to be controlled, and stopped or started. However
logging is such an important role for any server application that it was decided to
fo rce logging to be continuous. There are two log files, Aucserver. log and user.log.

The Aucserver log file stores information regarding the genera l ru nning of the
server. Th is includes sta rt and stop times of the server and auctions. Any error
messages generated by the server will be recorded within the file.

The user log file stores information about t he past win ners of auctions. This
incl udes all their details, the bid made, the items involved and the date it all
occurred .

As the application runs cont inuously it was decided to append information to the log
fi les. If these files do not exist, they are then created and thereafter they are
appended. This means that there is a continuous history about the server
application as well as al l the auctions run.

Secure Internet Auctioning System Page 58
Auction Implementation

4.20) How are the directory structures set-up?

The directory set-up Is straightforward. The server application can be installed
anywhere, but the children directory structure must be as follows. The server root
directory holds al l the classes required for execution . This directory requires
execution privileges for the user, but no write privileges.

I
Logs

Directory

Server
Root

Directory

I
Html

Directory

I
Htm l

Images
Directory

I
Html
Help

Directory

I
Html
Help

Images
Directory

Fig 4.20.1 Directory structure

There must be a logs directory called " logs". This is used to hold the log files that
the application writes to . This directory does not need to be readable or executable,
however the server must have write access to this directory.

The " html " Directory holds all the HTML files for the web sever, as wel l as the
applet JAR flies aucjar.jar. The HTML " images" directory holds all the images for the
HTML pages and the images of the items auctioned. This is where the applet
retrieves the images it uses from . The server requires write access to the " html"
directory to update the history and current auction files. A virtua l web site should
be set-up on this directory. The virtual web directory requires executable privileges
to execute the ASP / CGI script and the Java applet file. One must not al low write
priv ileges in this directory as this will compromise the security of the application.

The " htmlhelp" directory holds the help for the server applica tion In HTML files. The
required images are placed in the " images" directory. The application needs read
access to this directory. There Is no need for execute or write privileges. Note that
In the Windows environment the directories are not case sensitive. In Unix all lower
cases are used.

The server may be set-up anywhere on the system, and will require the directory
structure as described above. If these requirements are not met it may lead to
unpredictable results. The privilege requirements have been listed as read, write
and execute as a guideline. Different operating systems have different or no
policies regarding these privileges,

Secure Internet Auctioning System Page 59
Auction Implementation

4 .21) What files are used and Why?

There are four files that the AucServer uses continuously. Those are the two
discussed log files and two HTML include files. These are files included when HTML
pages are displayed. Specifically auchtm.inc and history.inc.

Auchtm.inc file

The auchtm.inc files includes a list of all the items to be auctioned. This file is
generated dynamically by the server application, Every time an auction begins or
ends, the server rewrites the file. It displays the file in the following format:

<Auction ID> I <Description > I <M inimum Bid > I <Finish Time >

ITEMAAl A lovely UND 250 Wed Jan 12
emblazoned leather 13:58:26
diary. GMT+02:00 2000

Actual HTML text
<tr><td> <td> A lovely UND <td>250</td> <td> Wed Jan 12
lTEMAA1</td> emblazoned leather 13:58:26

diary.</td> GMT +02:00
2000</td > </tr>

It displays the auction ID number, the brief description, the minimum bid and the
finish time. The actual file includes all the required HTML text. The HTMl file that
includes this file is the auctions.asp page (auctions.html in Unix), It uses the HTML
code:

<!--#INCLUDE FILE="auchtm.inc"- ->

When a client views the auctions. asp file to get a listing of the available auctions,
the auchtm.inc file is included into the current document. This means that the
application does not impact on the design of the web pages whatsoever.

auchtm.inc Server
dtemid> <desc> .. . App
<i temid> <desc:> ... wri tten

inc luded auctions.asp

<itemid> o::dasc:> ...

0:: itemid> <desc> ...

Fig 4.21.1 auchtm.inc file being included into auctions. asp.

Secure Internet Auctioning Sys tem Page 60
Auction Imple mentation

If one of t he items is currently being auctioned, t h is page displays an HTML
hyperlink to the itemauc.asp page. As an .asp file is designed to work in the
Wi ndows environment usi ng VBScript it wil l not work in a Unix environment. The
server detects what system is being used and will appropriately use the correct
auctioning page. This is itemauc.asp for windows, and itemauc.cgi for Unix, as both
are used for scr ipting on their respective systems. The item id value is highlighted
as the actual l ink to this page, which executes client applet. This l ink is generated
dynamically by the server and is created in the fol lowing, manner:

<A href=itemauc.asp?port=<Port number>&itemid=<Item ID» Item id

auctions .asp itemauc.asp

3002 Applet
include itemaal

••••• port=?
file itemid=?

,

Fig 4.21.2 Passing parameters to applet.

Th is resul ts in the itemauc.asp page being called. Two parameters are passed to
into this web page. These parameters are then passed onto the cl ient applet
res iding in the page. The parameters are Port Number and Item ID. The applet
requires the port number pa rameter so it knows how to commu nicate with the
server. The Item ID is for the item currently being auctioned. This is required by
the client's applet as it must know the item the client origi nall y bids for. The
original way In which one added an applet to a web page was to embed it into the
HTML code as foll ows:

//Itemauc.asp
<Applet Code = "AucClient" Archive="Aucjar.jar" Width=H350" Height=H450">
<Param Name = port Value = <%=request.QueryString("Port"}% >

Name = itemid Value = <%=request.QueryString("itemid")%»
</Appfet>

This wou ld run the file AucClient.class that is found in the JAR AucJar.Jar. The width
it would be displayed in is 350 and height 450 . The pa ramet ers passed in are the
port and item ID numbers. To extract t he parameters from the querystring,
VBScript is used. On a Unix system Perl can be used instead (A sample itemauc.cgi
is included w ith the source) .

However the with Java 2 ava ilable the type of embedded applet command has
cha nged. Su n Microsystems have released an application (" HTML Converter") that
will update the previous HTML code to the correct vers ion implementation. The
application can be down loaded for free from their web site (Java.sun. com) . The
reason for doing this is that the client will automatically try and update t he Java
vers ion if it is not compliant with the current applet being used . This al lows for a
more robust system.

The auct ions. asp f ile is reloaded every fifteen seconds so that the user will see any
changes in auctions.

Secure In ternet Auctioning System Page 61
Auction I m plementat ion

Histo ry.inc f ile

The fina l fi le that the server writes to is the history.inc fi le. This file gives a
complete history of al l the previous winners, their bids, the Item ID and the time it
was achieved. The HTML file that uses the history .inc is the history.asp file. All it
does is include the history.l nc file, so that when t he HTML file is processed so Is the
include file.

<!--#INCLUDE FILE="history.inc"-->

<Auction Number> <Winners Details> <Winni ng Bid> I <Finish Time>

ITEMAAl AUCID001 (loe
SoaD)

history.inc
<i tem> <winner> ...
f<i tem> <winner> ...

Included

350

Server
App

written

history.asp

!- item> <wInner> ...
<item> <winner> ...

Thu lan 12 13:01 :15
GMT +02:002000

Fig 4.21.3 history. inc file included into history .asp

Only the ID value and name of the client is given and not any personal details. This
file is appended unlike the auchtm1.inc file. So it will not overwrite any of the
previous information, thus g iving a complete history of all the past winners. The
way in which the server interacts with files has been developed such that It has no
effect what operating system or f ile structure is being used. The development of the
web pages needs on ly make one or two small concessions to incorporate the
servers file usage to allow the auctions to take place.

Porting

Admitt edly there is a bit of preparation required to set-up the server but t he source
code comes with the examples HTML fi les. These HTML fi les use ASP and reside on
a Wi n32 web server. All the scripting is currently performed using VBScrlpt,
However it is not difficult to port the ASP VBScript to a lang uage such as PERL or
JavaScrlpt if one desires. The only thing that is actually requ ired is to replace the
code below with the appropriate script to extract the Querystring parameters port
and itemid . <%=request.QueryString("Port") % > & < % = request.QueryString ("
ItemID ")% >.

The source has been included for the Windows and Unix versions,

Secure Internet Auctioning System Page 62
Auction Implementation

Conclusion

The aim was to create a robust and secure Internet based application. This
application must be system independent and extendable. The application surpassed
what was expected performing admirably well in testing and development stages.
Java showed Its true potential in the application with its natural support for Internet
based applications and applets. The seamless capability of Java to interact within a
networked environment holds great promise and should bode well for its future as a
development language of choice.

Using object orientated programming techniques and the power of the Java
language I believe all goals were met admirably. Not only did it meet all the goals,
but also, with the increasing popularity of Internet based auctions, the application
has real world marketable potential.

In the next few sections I will discuss the security issues in greater depth.

Secure Interne t Auctioning Syste m Page 63
Security

5) Security

" ... the security of information systems and networks (is) the major secu r ity
challenge of this decade and possibly the next centu ry ... there is insufficient
awareness of the grave risks we face in this arena."

[Joint Security Commission, www.nsa.gov]

The mathematical science of securing information is known as cryptology.
Cryptology's rise in importance is due mainly to the advent of the digital age.
The original Greek terms are Kryptos "" graphia, essentially Kryptos meaning
hidden, and graphia meaning writing. There are four goals that crypto logy strives
for:

Confidentiality

The content of the information and messages must be kept confidential.

Authentication

Determine the identity of the sender of information.

Integrity

To validate that the information has not been tampered with during transmission .

Non repudiation

Prevent the sender from denying that they sent the message, at a later date.

5.1) Terminology

The two parties involved in the communication are usually known as Alice and Bob.
Eve is the undesirable attempting to eavesdrop on the communication channel. The
original information to be encrypted is ca l led the plai ntext (P). The encrypted
information is ca lled ciphertext (C). Both plaintext and ciphertext are stored in t he
standard digital fo rmat (Binary, Hexadecimal etc.). Encryption Is any method by
which plai ntext is converted into ci phertext. Similarly decryp tion is any met hod by
which to convert ciphertext into plaintext

Encrypt ion and Decryption require keys (passwords, PINS or suchlike) to perform
the procedures. The keys (K) help lock (encrypt) the information, as well as unlock
(decrypt) the information. The encryption key (K1) and the decryption key (Kz) may
or may not be the same. This depends on the cipher (algorithm) being used. There
are two types of algorithms:

Secure Inte rne t Auctioning System Page 64
Security

Symmetric Algorithms

The same key is used for encrypting and decrypting the cryptosystem. This is also
known as a "symmetric key" system, e.g. DES (Data Encryption Standard) . 80th
parties (Alice & Bob) agree on the same key before any commu nication can take
place.

Ek(P) = C
Dk(C) = P

Plaintext ~ Ciphe:rtext ~ Plaintext] 5 . e (J) Cl ymme'"c
k <t}k (Algorithm

Fig 5.1.1 The Symmetric Algorithm

Asymmetric Algorithms

Different keys are used for encryption and decryption. The encryption key js usually
known as the public key, and the decrypt ion key is usual ly known as the private
key. This is also known as a "Public key" system, e.g. PGP (Pretty Good Privacy).
No information can be gathered from the encryption key about the decryption key.

E,,(P) = C
D,,(C) = P

The key Kt is not the same key as K2.

Plaintext ~ Ciphe rtext ~ Pl3intext] Asymmetric
~ ~ Algor"hn,

Fig 5.1.2 The Asymmetric Algorithm

Each algorithm attempts to have at least one of t he following properties, but
preferably both.

Confusion

Confusion is the process by which the algorithm hides all relationships between the
ciphertext and plaintext. It makes it difficult to conclude anything about the
plaintext from the ciphertext .

Diffusion

Diffusion attempts to hide any statistical character istics in the plaintext. This is
requ ired as In most languages each letter has a different probability of occurring in
any text.

Secure Internet Auctioning System Page 65
Security

Letter Probability Letter Probability Letter Probabi lity Letter Probability

A 0.083 H 0.161 0 0.075 W 0.023
B 0 .015 I 0.070 P 0.019 X 0.001
C 0.028 J 0.002 IQ 0.001 Y 0 .020
D 0 .043 K 0 .008 R 0 .060 Z 0 .001
E 0.127 L 0.040 5 0 .063
F 0.022 M 0.024 T 0 .091
G 0.020 N 0.067 U 0.028

" . Fig 5.1 .3 Probabilities of mdlvldualletters In English. [Stmtston, 1996[

As one can see from the tab le some letters are more popu lar than others in the
English language , The letter "E" is the most popu lar, with it contributing
approximately thirteen percent of any written English text. Using statistical
evaluations of vast amounts of ciphertext of the English language could possibly
yie ld results if the algorithm does not perform any sort of diffusion. One must bear
In mind that most cryptoanalysts have some form of probabilistic idea about the
plaintext, as they will understand what type of information is to be encrypted.

Cryptography is divid ed into two sets of practitioners, cryptographers and
cryptanalysts . The former creates systems to secu re information. The latter
attempts to break these systems and find faults in them. There are a number of
attacks that can be mounted on any cryptosystem they are as follows :

Ciphertext only attack

The cryptoanalyst on ly has a few ciphertext messages generated by the system .

Known plaintext attack

The cryptoanalyst has ciphertext generated by the system as wel l as its
corresponding plaintext messages.

Chosen plaintext attack

The cryptoanalyst chooses the plaintext and is able to generate the corresponding
clphertext.

Chosen ciphertext attack

The cryptoanalyst Is able to generate the plalntext for a given clphertext.

Each of the attacks attempts to find the keys used by the cryptosystem. There are
a number of assumptions for each of the attacks. It is assumed that the
cryptoanalyst knows the cipher being used. This is known as Kerchoff's principle. It
is generally considered a very poor option for the entire system to be based on the
secrecy of the algorithm. This is security through obscurity, which history has
proved never works. It has been shown that the strongest algor ithms are the ones
that have withstood the scrutiny of the industry.

Secure Internet Auctioning Sys te m Page 66
S ecurity

5 . 2) A formal definition

The following definition is due to [Stinston,1996] formulates it as a mathematical
concept.

Definition: A cryptosystem is composed of the following four conditions;
• P is a finite set of plaintexts (p c P)
• C is a finite set of ciphertexts (c c Cl
• K is the key space, which is a finite set of keys
• For each keK, there is an encryption and decryptlon rule
• Ek(P) = C, Dk(C) = P ,such that Dk(Ek(x)) = x for every plaintext x,P

An immediate consequence is that each encryption must be injective. If this was
not the case one could end up with the fol lowing result:

This Is potentially disastrous, since not only wou ld the cryptoanalyst not be able to
find the correct plaintext, but neither would the va lid parties (Alice and Bob).

The definition of an asymmetric, or public key cryptosystem as related by [Stinston,
1996) is as follows.

Definition: A cryptosystem is composed of the fo llowing conditions:
• P is a finite set of plaintexts
• C is a finite set of clphertexts
• K is the key space, which has a finite set of key pairs (kp, ks), where

(kp is the public encryption key, ks is the private decrypt ion key)
• For each (kp , ks) e: K, there is an encryption and decryption rule
• Ekp(P) = C , Dks(C) = P ,such that DkS(Ekp(x)) = x for every plaintext x£P
• For each xeP and (kp, ks) eK , Ekp(x) = y should be feas ible
• Given y, it should be Infeasible to calculate x with only the knowledge of y and

k,
• Given y, It should be feasible to calculate DIcs(Y) = x

One of the main criteria with public key cryptosystems Is that no information must
be gathered about the plaintext with just the ciphertext and encryption key. Most of
the public key cryptosystem are based on what are believed to be one way
functions.

E" (x) = y , wi t h F ol(y) = x infeasible to ca lculate.

The enti re field is usually based on this type of premise. However there are
cu rrently no proofs that one way functions actually exist.

The security of cipher can be classified as computationally secure or unconditionally
secure. Almost all ciphers fal l into the former category .

Secure Internet Auctioning System Page 67
Security

Computational security

Computational security means that the resources required to break the
cryptosystem are relatively infeasible at this time. The amount expended
attempting to break the cipher, in time and fiscal terms, would be unprofitable. This
does not mean that the cryptosystem is absolutely secu re and that It ca nnot be
broken. This measurement is somethi ng that needs to be re-evaluated constantly
due to the huge advances in computing power. A cryptosystem that is
computationally secure today may be thoroughly insecure in five, ten or twenty
year's time. An example of this is the DES cryptosystem . In 1977 the NSA (National
Security Agency) supported it, however by 1996 the NSA had withdrawn all support
of DES. A year later DES had been broken in a measly fifty -s ix hours, a year later it
was done In twenty hours on a hundred thousand-dollar machine. In 1977 it wou ld
have taken years of computing time, as wel l as millions of dollars to achieve this
feat.

Unconditional security

Unconditional security places no bounds on the amount of resources and t ime tha t
may be used to mount an attack on the cryptosystem (An impossible situation).
Nonetheless even wi th all these resources the cryptosystem wou ld never be broken.
There is only one pure unconditional secure cryptosystem . This Is the "One Time
pad", which has a random key as long as the actual message. For this reason it is a
totally Infeasible cryptosystem. It is difficult to quantify the security of algorithms,
as one deals with infini te resources, and hence one uses probabilities to measure a
cipher.

5.3) The Protocols

The protocol is the actual implementation of the ciphers in a secure and efficient
manner. When one implements a protocol all aspects of the ciphers must be looked
at first . Once all points have been weighed up, all parties involved must know what
protocols are bei ng used and have an identical implementation to aVOid any
conflicts.

What Is required?

The auctioneering application requires secure communication over the Internet.
This needs to be relatively quick and efficient so it can run on your average home
processor, as this is the targeted market of users. It also needs to be Invisible to
the user and must not hamper in any way the actual running of the auction system.
The client and server need to communicate securely and quickly. It is important to
point out that most of the messages sent from the client to the server are relatively
small and this wi l l have an Impact on the cryptosystems used. The lifetime of
messages is not long, as the auctions are re lat ively short. All keys used wi ll be
dynamically and randomly chosen. The application regenerates keys on instruction
and there are no hard coded keys.

Secure Internet Auctioning System Page 68
Security

There are four things that need to be targeted on the Internet to en hance security;
Improved cryptographic algorithms, efficient cryptographic processing, routing and
multi-party cryptography [S.M .Bellovin, 1998] . The scope of the latter two is
outside of the current topic.

Currently there are only a few individuals working on algorithms that will be
successful in the future. It is relatively easy to throw together a block cipher, but
this does not mean that it is going to be any good at all. The science of
cryptography has been described as more of an art. Even though an algorithm may
seem to be secu re it may have inherent weaknesses. It does not take much for one
to realise why people with a strong background In theoretical mathematics, number
theory and information theory, not to mention extensive experience, do relatively
well in the industry. This is the primary reason why I decided not to implement my
own algorithm, but to look at a mix of proven and new algorithms available. Even
with all the experience and support available one's algorithm is not tried and tested
until it has stood up against the indu stry for a number of years. Each of the
algorithms discussed in later chapters has a number of benefits that will be
highlighted in the text that follows.

The efficient processing of cryptographlc algorithms is where a number of problems
occur, and, as one wi ll see later where most applications can fail. The incredible
advancement of technology is facilitating the improvement of algorithm
implementation . The difficulty arises when one attempts to implement an
algorithm that was never intended for use on any form of network. Attempting to
place an Implementation of an algorithm into a twenty-five year old protocol is no
easy feat . There are varying arguments for and against different implementations
of algorithms and the problems that may be faced but these will be dealt with later.

Each of the symmetric and asymmetric algorithm types have benefits and
disadvantages.

Symmetric Algorithm Asymmetric Algorithm

Fast Slow
Single key Separate keys for encryption I Decryption
Smaller key Larqer keys

The biggest problem with symmetric algorithms or ciphers is the fact that the single
symmetric key needs to be securely shared with Alice and Bob. If Alice and Bob
already have this secure communications channel for sharing keys what is the
reason for implementing the cipher? As one can see symmetric cryptosystems
would be ideal for Internet applications and hence the current problem faced.

As symmetric ciphers are on the whole about one thousand times quicker than
asymmetric algorithms it makes sense to use them for bulk encryption of
information, Even though processing power has increased considerably over the
past few years, and will continue to do so in the future it is still not feasible to use
public key cryptosystems for bulk communication due to their general sluggishness.
However as the question has already been posed it Is difficult to exchange the
single key discreetly and securely. A solution wou ld be for Alice and Bob to
physically communicate the key via telephone, courier or some other physical

S ecure Inte rne t Auctioning S ystem Page 69
Secu rity

means, but in many cases this is impractical, especially over the Internet which has
released client t he from physical limitations. Not only is it impractical, but if any
person listens to the conversation or views the message as it is been couriered then
the ent ire security of the algorithm is under threat.

The answer lies In the fact that one may use the asymmetric cryptosystem to
resolve some of these issues. Using the best of both worlds as it may be. The
asymmetric cryptosystem as has been pointed out is rather slow. However it does
not need a single key. There are invariably two keys, a public and private key. The
public key is distributed to everyone that wants to speak to Alice, in other words it
is made public. As the algorithm has been agreed on, anyone who wants to send
Alice a private message need only encrypt the messages using the encryption
algorith m with the pu blic key. Alice is the only one t hat can decrypt t his message
with the associated secret key. The solution then is to use the asymmetric
cryptosystem to share, secretly, the symmetric key between Alice and Bob. This is
known as a hybrid cryptosystem.

Hybrid Cryptosystem

In a Hybrid cryptosystem more than one cryptosystem is used. The public key
cryptosystem is used to create a secure communication between Alice and Bob.
Once this has been achieved, Alice and Bob can then generate and send the
symmetric key to one anot her. Once they have shared this key using the
asymmetric cryptosystem, the cryptosystem is then changed for the remainder of
the communication session. The symmetric cryptosystem is then used for
encryption as both Alice and Bob have the same symmetric key.

Initially one has to bear with the slower performance of the asymmetric algorithm
to take advantage of its key sha ring ability. Thereafter one may switch to the faster
symmetric cryptosystem for t he bulk of communication.

Send
Public

Key

Receive
Symmetric

Key

All ce Bob

D Kp D
~CIPh.,text ~

'il (C) e (K)
Ks Kp

e
k

(1') Cipher text

'ilk (C)

Fig 5.3.1 The process of key exchange

Rece ive
Public

Key

Send
Symmetric

Key

Secure In ternet Auc tioning System Page 70
Security

There are a number of problems that exist. One may ask the question, why doesn't
public key cryptosystem become more popular? If speed is an issue it will be
resolved as technology evolves. Within the next ten to fifteen years technology will
be fast enoug h for it not to matter about the strain that encryption places on the
system. However public key systems are also weaker, relative to their symmetric
counterparts. As the encryption function and key are avai lable, the system is
susceptible to a plalntext-mounted attack, Therefore most public key cryptosystems
require larger keys to make the system relatively stronger against this line of
attack. However this does allow an exhaustive search technique by which the
cryptanalyst can attempt to determine the private key .

However al l is not lost as public key cryptosystems are designed with this fault in
mind. Its security is based on two things, the unfeasibi li ty of determining the
private key with knowledge of the public key, as well deducing the plaintext given
the ciphertext [B.Schneir, 1996].

Martin Hellman and Whitfield Diffie developed public key cryptography in 1976.
Their idea was to remove this key exchange problem altogether. Each person has
their own set of public and private keys, they release their public keys, and use one
another's public keys to en crypt and send information. Similarly they use their own
private key to decrypt the message sent. Using this method no forms of secret key
exchange takes place.

RSA, RC6 and MARS

The three cryptosystems used in this project were RSA, a well known and tested
asymmetric (public key) Cipher, RC6 which is a symmetric cipher developed and
advanced upon RCS, and finally MARS which is the latest symmetric cipher. It must
be mentioned that Re6 and MARS are part the Advanced Encryption Scheme (AES),
which is controlled by the American National Institute of Standards and
Technologies (NIST) to develop a replacement for DES. The usage of these
algori thms in th is project has a number of implications that wil l be mentioned later.

RSA is used for the key exchange, and either RC6 or MARS are used for secure
communication.

5 .4) Provable 5ecurity

The problems that most security applications face these days are vast . It has been
shown that in most secu r ity breaches it is not t he actua l algorithm that Is at fau lt,
but it usually is a problem with the implementation of the algorithm, usage of the
algorithm and the keys selected in the algorithm. This is usually due to a poor
understanding of the algorithm and essentially the ineptitude of the implementers.
Any problem with Implementation is going to give a cryptana lyst another possible
point of att ack, and will generally weaken the system as a whole.

The idea is to find a f ine balance between t he pract ical implementat ion and the
mechanism s of the cryptosystem. The hybrid cryptosystem discussed above using

Secure Internet Auctioning System Page 71
Security

RSA and RC6, or RSA and MARS is the current secu re protocol for message passing
systems on the Internet.

However what is required of a good secure cryptosystem as related by [M Bellare,
1998] is good primitives. The atomic primitives are the foundations of the protocols
used. The idea is to base the protocol on good primitives, resulting in a good
protocol. One needs to question how good these primitives are? How secure are
they? Are they suited to the specific protocol? This will be done In each of the
following chapters concerning the relative algorithms.

How do you prove "Provable Security"?

This task was formerly proposed by Goldwasser and Micali [M Bellare, 1998]. The
idea is based on a mathematical notion and there are a few steps . First one needs
to model a secure system and conceptualise the points required for this secu re
system. In a similar fashion one models the current protocol. Using reduction, and
breaking down the protocol one looks at all its weaknesses. If a weakness is found
in the protocol then the entire protocol needs to be re~assessed . Once the protocol
has been reduced to its primitive elements, the security of the protocol then rests
entirely on the security of these primitives .

The only way then to break the protocol is to break the primitives it is based on.
Then cryptoanalysts will focus on these primitives and if they are secure then the
entire protocol Is secure. Needless to say one has to prove the security of the
primitives, and before this can be done one must understand what the primitive is
designed to do. Just like a matchstick bridge would not serve the purpose of
supporting lorries, nor will a cipher work in an environment it was not developed
for.

To prove that a protocol is sound or secure, one uses the Complexity theory
approach . A discussion on this follows in the next section. However this theory
does not actually look at secure practical physical implementation of the protocols,
rather it examines a theoretical approach. The practice orientated provable security
methods attempts to quantify the security of the physical protocol as discussed by
[M Bellare, 1998], thereby giving it a measure of security. This is made up of two
measurements; the degree of insecurity, which is measure by how easy it is to
attack the protocol and the degree of security which is measured by the reduction
of the protocol and primitives. The reduction of the elements allows one to break
the protocol down to Its most basic elements and examine the security of each.
Admittedly one must realise that when one model's a protocol there are a number
of assumptions that need to be made. Due to the fact the real world cannot be
entirely modelled, all circumstances cannot be foreseen. The models of the
algorithms discussed wi ll show how each of the cryptosystems is implemented,
where their strengths and weaknesses are and where possible lines of attack may
be seen. There are always the attacks that are not seen, which can brutally destroy
a protocol, but bear in mind the security model derived does not prove that it is
secure against the unknown, just the known with a number of assumptions. If any
of the assumptions are wrong and the unknown attack occurs, the entire security
model collapses.

Secure Interne t Auctioning System Page 72
Securltv

5 .5) Complexity Theory

Complexity theory has been developed to examine the complexity of mathematical
formulae. It hopefully leads to some measurement of the formu lae, and hence its
security.

One needs to determine the complexity of an algorithm to deduce any further
information about it. This is measured by the time and space the algorithm
requires. The resultant value is expressed as the order of magnitude of the
complexity of the algorithm. Both time (T) and space (5) are functions of n , with n
being the size of the input of the algorithm. The order of magnitude (0) Is
measured as the biggest va lue of n , as n increases. Th is is because as the n tends
to Infinity, the highest order of magnitude wil l count the most. This order of
magnitude then shows one, the effects of a bigger input, on the time and space
required for the algorithm. IB.Schneier, 19961

T = 0 (n ') < T = 0 (n ')

Algorithms can be of a number of different equations, depending on O . These
range from constants, to polynomials to exponentia l order of magnitude. Algorithms
are usual ly classed as some time complexity equasion (i.e. Polynomial-time
equations 0 (n * a)) . The aim is to find some function that will be able to break
the cryptosystem. New algorithms are designed with this in mind, and attempt to
make this breaking algorithm of exponentia l- time complexity, thereby making it
incredibly hard for one to find a short method for breaking the cryptosystem.
However this theory does not prove that there is no existence of a trapdoor
algorithm that can quickly and easily find a solution. The following table shows why
only the higher order of magnitude of n is considered . Once the order of magnitude
becomes a polynomial equation, breaking the system becomes even more difficult.

Class Complexi ty No. of Operations, Time of operation
N = 10'

Constant o (1) 1 1/1000 sec
Linear o (n) 10' lsec

Quadratic o (n ') 10
12 11.6 days

Cubic o (n ') 10
18 32000 years

Exponential o (2") 1030 1030 10301006 age of
universe

Fig 5.5 Running times of different algOrithms [B.Schneter, 1996]

There are a number of problems with this method as discussed by [E . F. Brickell &
A. M. Odlyzko]. As it is a measurement of the actual algorithm and the time taken
to break it, it cannot deduce what may occur once the cipher is implemented and
has external influences. Secondly this theory is based on the experimental evidence
about the algor ithm. The way in which this is done is by showing how quickly the
algorithm is broken with fewer rounds and then extrapolating this figure out for al l
rounds. Th ese are really just assumptions.

Secure In ternet Auctioning System Page 73
Security

Complexity of Problems

This theory is used to discern the complexity of the actual cryptosystem. All this is
based on the work of Alan Turing, who invented a non-deterministic finite state
machine, commonly known as the Turing machine.

Problems can be divided into two groups as discussed by [B.Schneier, 1996], those
that are feasible, and those that are infeasible. The feas ible problems are usually
solved in some polynomial time by the Turing machine. Those that are infeasible
mayor may not have a solution. These problems are divided into a number of
classes: P,NP, P-Space and EXP-Time. If the algorithm is breakable, the
cryptanalyst will find a P class solution. In other words it executes in polynomial
time and Is a feasible solution . If the problem can be solved in NP time then things
get more difficult. NP time means the solution is solvable by a non-deterministic
Turing machine in P time. A non-deterministic Turi ng machine makes the correct
guesses required to solve the problem. This does put an upper limit on the tIme
required to solve the problem. P-Space problems have been shown to be provable
in polynomial space (The machines would have enough memory to hand le them) ,
but cannot be done in polynomial time. The EXP-Time class of problems can be
solved In exponential time

The interesting thing here is that P class problems fal l under NP as a subcategory.
In other words if a solution can be found in polynomial time on a Turing machine, it
can be found on a non-deterministiC Turlng machine In Polynomial time . Most
cryptosystems fall in to this NP class of problems. Thus far no one has managed to
prove that the class P = NP. In doing so they would prove that any cryptosystem
problem is solvable In polynomial time and all algorithms are breakable. The
solutions to the algorithms wou ld still need to be found, but one wou ld know they
existed. The world would fall into anarchy as chaos ruled supreme and all
economies collapsed.

The cryptosystems that are being dealt with in this book are suspected to be of
type NP hard problems. However as there Is no proof of one way functions
(especially when dea li ng with RSA), this is conjecture and thus there is always a
chance that a cryptanalyst could find a solution to these problems In P, thereby
destroying the algorithm.

5.6) The Process

As has been mentioned previously, RSA, RC6 and MARS are the three algorithms
that are examined . However what has not been discussed is some of the
preliminaries regarding the algorithms. This includes the key generation,
authentication, and verification of the auction system. As is mentioned in [T Aura,
1997], " .. we stress t hat the techniques shou ld be implementable at a reasonable
cost in computation and bandwidth. This is essential because designers of concrete
protocols often struggle with tig ht performance constraints." The aim of this project
has been to achieve a relatively secure system, with as little impact on CPU and
network usage as possible.

Secure Internet Auctioning System Page 74
Security

There are two things that are done. The first is to set-up and share a public key
cryptosystem with the use of RSA. The server generates RSA public and private
keys on starting, or when the administrator issues an explicit command to re-create
the keys. The server sends the client the public key, and information regarding the
symmetric algorithm to be used. (See Chapter 4.13 and Figures 4.13.4, 4.13.5).
This is sent in plaintext, thus anyone can read it. The client receives the server's
public key. Once the client has this key, all messages sent to the server can be
encrypted with this public key. The client can then generate the symmetric key for
the symmetric cipher decided upon. Once this key has been generated (See Keys
and Key management later in this chapter) it is then encrypted using RSA and the
servers public key. This encrypted symmetric key is sent back to the server. The
server receives the message and decrypts it using RSA and the private key. No
other action or request from the client will be accepted until secure communications
are set-up. The server extracts the symmetric session key from the message. This
session key is only for the current client concerned. Clients have their own session
keys for the duration of the auction. The Clienthandler object keeps the session key
for the respective client. If no symmetric key is shared or there is a problem with
the key the server wi ll request the key up to a maximum of three times. Thereafter
if there are still problems communication is ignored from the client. This prevents
malicious flooding and denial of service type attacks.

At this stage the RSA cipher is not used anymore. Thereafter, whenever
communication takes place between the client and the server it is with either the
RC6 or MARS algorithm. As both the client and the server have the same symmetric
key they may use the quicker symmetric cipher system. Al l communication is
automatically encrypted on sending and decrypted on receiving. The client only
uses this key for the duration of the auction. If the client leaves the auction and
then joins again, a new session symmetric key is generated. It should also be
mentioned that if any communication between the cl ient and server has errors or
attempts to perform illegal operations, it is ignored, the message is logged and the
administrator notified. This will catch any message tampering, thereby
guaranteeing message integrity for the messages accepted.

AES

In 1997 NIST made a formal call for new algorithms to replace the current ageing
standards. There were a number of stipulat ions for these algor ithms. They must be
symmetric ciphers of 128-bit block size and 128 to 256 bit key sizes. Within a year
fifteen AES ciphers had been submitted from all over the world .

Since then there has been analysis of these algorithms from the best cryptoanalysts
around the world. A number of the algorithms displayed weakness that caused
them to fall by the wayside . At the end of 1999 5 candidates stili stood standing
meeting all the requirements laid down by NIST. These requirements are quoted as
the following:

Secure Internet Auctioning System Page 75
Security

"Security is the most important factor in the evaluation. Security encompasses
features such as resistance of the algorithm to cryptanalysis, soundness of its
mathematical basis, randomness of the algorithm output, and relative security as
compared to other candidates.

Generlllte
Symmetric

key

Encrypt
Ksym with
Public Key

Client

(Ksym)

Client

(Ksym)

Client

e (ksym)
kp

Plaintext
kp

Server

(Kp,Ks)

Server

(Kp,KS)

Server

(Kp, Ks)

Client Encrypted Server
Send Ksym

Symmetric (Ksym,Kp) (Kp,Ks)
key

Client Server

(Ksym)

Fig 5 .6 Key Exchange

Generate
RSA
Keys

Send
Public

key

Decrypt
ciphertext

with Ks

Cost Is a second important area of evaluation that encompasses licensing
requirements, computational efficiency (speed) on various platforms, and memory
requirements. Since one of NIST's goals is that the final AES algorithm(s) be
available worldwide on a royalty-free baSiS, intellectual property claims and
potential conflicts must be considered in the selection process. The speed of the
algorithms on a variety of platforms must also be conSidered. During Round 1, the
focus was primarily on the speed associated with l2B-blt keys. Additionally,
memory requirements and constraints for software implementations of the
candidates are important considerations.

Secure Internet Auctioning System Page 76
security

The third area of evaluation is algorithm and implementation characteristics
such as flexibility, hardware and software suitability, and algorithm simplicity.
Flexibility includes the ability of an algorithm:

• to handle key and block sizes beyond the minimum that must be supported,
• to be implemented securely and efficiently in many different types of

environments, and
• to be implemented as a stream cipher, hashing algorithm, and to provide

additional cryptographic services.
It must be feasible to Implement an algorithm in both hardware and software, and
efficient firmware implementations are advantageous. The relative simplicity of an
algorithm's design is also an evaluation factor."

[ITL Bulletin, Aug 1999, online]

The finalists of round two were MARS, RC6™, RijndaeJ, Serpent, and Twofish.
However, before these results were published I decided to examine and use MARS
and RC6 because of all their strengths. A discussion comparing the algorithms
would be out of the scope of this thesis.

Due to export restrictions granted by NIST to myself, I may not distribute or
disclose any of the digital code of the two AES algorithms. However I have
developed my own Java implementations which I will be discussing and comparing
to the optimal Java implementations by the actual creators . Hopefully this MSc will
be completed before a winner of the AES algorithms is chosen in late 2000, or early
2001.

5.7) Keys and Key Management

Keys are a highly contentious issue in the world of cryptology. It has been shown
that weak keys or poor choices of keys can turn a secure system into a redundant
system. The aim is to create and share secure keys, whIch do not put the primitives
of the algorithm at fault for any security breach.

As described by [S.Halevi, H.Krawczyk] any key sharing technique that Is required
cannot be based on symmetric ciphers alone. This is the reason for using RSA to
share the keys. As the current auctioning system has a number of requirements it
should be shown what Is done to protect and generate the best keys possible.

PRNG

The most common method for generating a key is to use a Pseudo random number
generator (PRNG). It has been realised recently that a PRNG is actually a form of
cryptographic primitive. In most cases the PRNG is the weakest point in the entire
system and most cryptoanalysts attack this first [J.Kelsey et al]. There is no true
random number generator on a computer, since as one knows, there is nothing
random In a computer. New products are being released as add-on features to
computers that will perform some random functionality. This includes measuring
the heat of hard drives, spin speeds positions, using OSCillating crystals, or pushing
circuitry to its breaking point and outputting the resu lts its spews out. The only
thing that Is truly random Is nature. However this makes it rather difficult to
monitor In a non-living machine.

Secure Internet Auctioning System Page 77
Securlt

Key attacks

The methods used for attacks on PRNG's and the keys paces that they generate can
be classified as fol lows: [J .Kelsey, et al]

1) Direct cryptanalytic attack
This occurs when the cryptanalyst can see the results of the PRNG, and
determine whether it's random or not. By deducing this one may reduce the
keyspace and hence make it easier to guess the correct key.

2) Input based attack
The cryptanalyst has knowledge of the inputs to the PRNG, or may contro l it
thereby compromising the keys. This attack is divided into three parts: The
known input attack means the cryptanalyst has confirmation of the information
placed in the PRNG . The replay-input attack allows the cryptanalyst to force the
same input state to be used. The chosen input attack allows the cryptanalyst to
modify the input state .

3) State Compromise attack
The cryptoanalysts manages to obtain some internal state values of the PRNG.
This results in the cryptanalyst being able to guess and extrapolate what the
future results are of the PRNG.

These are the kind of attacks that may be mounted on the PRNG. If one of them is
successful the cryptographic primitives that the protocol is based on will be
comprom ised, as they are only as strong as the keys used.

PRNG Guidelines

When working with PRNG it is best to take the advice of the industry. As
A.E. Neuman once said "Learn from the mistakes of others; you'l l never live long
enough to make them al l yourself". [J.Kelsey, et a/] recommends some
methodologies to foll ow to make the PRNG reasonably secure.

One should base the PRNG on something secure. This means that the cryptanalyst
has to break the cryptographic primitive used in the PRNG. The internal state of the
PRNG should change over time. This prevents the cryptanalyst from guessing the
current state of the PRNG, which allows one to generate following Information. It
should resist chosen Input attacks. If the cryptoanalysts guesses the correct
internal state, but not the input, they shou ld not be able to determine the result.
The PRNG should recover quickly from compromises. Each change of input shou ld
result in a drastic change in the output.

Key Generation - The Server

Keys are generated in two places, the server and the client . The server generates
the RSA keys to enable the key exchange. The client generates the session key for
the symmetric algorithm.

The server uses the BigInteger class to generate a large prime number. This class
first uses the random function of the Java class generate a large odd number. The

Secure Internet Auctioning System Page 78
Security

BigInteger class then uses the Solovay Strassen primality test to test the primality
of the generated number. The Solovay Strassen test algorithm is as follows.

1) n>l and is a random odd number, a Is a positive integer < n.
2} If gcd(a , n) ~ 1, then n is composite.
3) If Jacobi(a, n) .. a (n-1)/2 (mod n) then n is composite
4) else n Is prime
5) Probability ~ Probability / 2
6) Repeat from 2, using a different value of a until the probability that n is not
prime is Infinitely small

If n is composite it cannot be prime and the test fails. This process continues until
the probability of n's primeness exceeds the minimum limi t as speci fied by the user.
Doing this allows one to be as certain as one wants of the primeness of the random
number. The Miller-Rabin primality test may also be used and Is a quicker
algorithm. However the reason for using the system class function is that it will be
faster than anything I could write. The default setting for the probability that the
random number is prime is ninety-five percent. When dealing with such large
numbers one can be reasonably confident that the number is prime . If there are
any errors a new set of RSA keys will be generated and the problem will be
resolved .

It has been shown that standard random number generators are not very good at
generating random numbers. However the reason that I have used the standard
Java random number generator is that one takes two of these prime random
number and multiplies them together to get the base of the modulo arithmetic,
which is still difficult to determine. This is the basis of RSA security, and in fact as
long as the prime numbers are large enough and prime, the result of multiplying
them together will make it just as hard to factorise and should not Impair the
system, It may slightly decrease the key space that the random numbers are being
chosen from, which at 512 bits up to 4096 bits will be 2512 to 24096 keys to search,

To prevent the random number from being too static the PRNG has been seeded
with two seed values. These are then multiplied together to give a large initial seed.
The seed chosen is the time the application takes to execute, multiplied with the
current memory used by the system. Both of these will be different on all servers,
depending on the following factors: the speed of the CPU, the current amount of
applications running simultaneously, the load on the CPU, the amount of memory
and the amount of memory currently used.

Key Generation - The Client

The client application needs to generate the symmetric key. The Java Sandbox
prevents one from obtaining random values from the client machine, and therefore
another method would be required to generate the key. It also needs a different
type of key that does not need to be as long, but is required to be far more
random. A few steps are followed to obtain a relatively random number from a
PRNG. The client is asked to enter thirty characters into the keyboard, these must
be as random as possible . The client need not remember this information, and all
characters are allowed upper, lower, alphanumeric and special characters. This is
then converted to a byte array (4 bytes/ Char, 30 Chars ~ 120 bytes) . Then a

Secure Internet Auctioning System Page 79
Security

number of random bytes are generated using the random number generator. The
client's characters are used as a key to encrypt the randomly generated values
using MD5 algorithm (See Appendix). MDS is a hashing algorithm, and its output is
used as the symmetric key between the client and the server.

MDS is based on MD4 and has been around since 1991. The reason that I use this
algorithm is that it can be construed as a PRNG. A single change in the key or the
random Input va lues will result in a huge change in the result. The RSAREF 2.0 is
based on the MDS hashing algorithm and addition modulo 2128. MDS has proved
itself rather useful over the past decade In this function and there have been a
number of attempted attacks mounted. It has been shown to be vulnerable against
a chosen input attack that can force the algorithm into repeating information. This
allows the cryptanalyst to work out its internal state at a certa in time. This works In
conjunction with a timing attack that monitors how the CPU works and can deduce
what some of the internal state is. MDS also has another problem. This occurs
because MDS results are order independent of the input. It does not matter if one
sends A, then B into MDS, or B then A, one still gets the same result . [J .Ke lsey, et
all

However there are ways of counteracting these attacks. One should prevent the
cryptanalyst from choosing the input. This is achieved, as the client is the only one
to actually select the characters to be inputted as the key for MDS. The
cryptoanalyst must guess this (relati vely hard), and guess the random number
generated by the computer (relatively easy). As the client machines' information
may not be easily deduced over the Internet, and not much information can be
discovered about the CPU usage. The timing attack fal ls away. The order
Independence problem is resolved because only one set of va lues is ever generated
and this makes it difficult for the cryptanalyst to deduce any statistical or frequency
information.

The MDS algorithm has proved itself over the last few years, and there are some
problems. However due to its design and usage in the protocol it manages to avoid
these weaknesses and hence generate keys that are random enough for usage with
the RC6 and MARS algorithms.

Requ ired Key Le ngths

It has been shown that the security of an algorithm lies in the key, assuming that
there are no major faults with the algorithm. A system wi ll therefore be considered
strong if the only attack that can be mounted on the system is a brute force
method, whereby every key in the key space is tried until the correct one is found.
Thus given a strong system it is imperative to have a large key space.
The auctioning system Is dealing with sensi tive data, but at most this wil l be staff
cards, id numbers or credit card numbers. The fl ow of economic transactions could
not be compared to that of a large corporation and hence it can be concluded that
the type of attack on the system would not come from such a large organization. As
has been mentioned before the benefits of the attack mounted on the auctioning
system must outweigh the costs. Bear in mind that this was included in the design
and development of the application, and therefore some issues that would be
contentious (such as authorization and verification) in other protocols and systems
are not so here.

Secure Internet Auctioning System Page 80
Security

Symmetric Key length

There are a number of ways in which this brute force method can be achieved. It
can be implemented as distributed software that ca n be placed on all the machines
on a university campus. These machines could run the application trying different
keys when they are not in use. This type of attack would not cost any money, as
the machines are free to use and usually idle. Some dedicated students could
mount this attack over a weekend. At the other end of the scale trans-natlonal
corporations and governments could create specific hardware to perform the task of
finding a key. It essentially boils down to two resources, time and money. They are
indirectly proportional in mounting an attack on a system. The table below, from
[B.Schneir, 1996] shows one the estimated cost of a brute force attack for
symmetric keys of increasing length.

Cost / length 40 bits 56 bits 64 bits 128 bits
$100000 2 seconds 35 hours 1 year 1019years

$1000000 .2 seconds 3.5 hours 37 days 1018years
$100000000 2 mllll -seconds 2 minutes 4 days 1016years

$10 Tri ll ion 0.02 mlcro- 1 millisecond 0.3 second 1011years
seconds

FIg 5.7.1 Average Time for brute force attack In 1995

As one can see the, the more money one has to spend, the easier it gets to mount
a hardware brute force attack. These estimates were made in 1995, so they are
now redundant, as no one can predictably measure the speed increase in hardware,
with its associated drop in price for more than two to three years. This means it has
become considerably cheaper to break larger key lengths over the past five years.
Another paper by [M.Blaze, et an, which is about a year older than the figure above
shows how quickly these values must be re-assessed .

Type of Attacker Cost 40 bits 56 bits
Civilian Nil to $400 1 week Not feasible
Small business $10 000 5 hours 38 years
Corporation $300000 12 minutes 18 months
Big Company $10 000 000 24 seconds 19 days
Government $300000000 0.7 seconds 12 seconds

Fig 5.7.2 ReVised average time brute fo rce attacks

In 1997 a machine costing one hundred thousand U.S dollars was used to break the
DES cryptosystem with a brute force attack. It took fifty hours, a year later, the
price of the system had halved and it took twenty hours. DES was using a fifty-six­
bit key. Th is Is an indication how quickly tech nology changes.

The facts that concern the key length are simply this, what information is being
secured, how long does it need to be secured for, and who would attack it. Bearing
this In mind one can apply it to the current problem. The auctioning system has
data that will only be va l id for the lifetime of the current session and auction, which
is measured In minutes and hours. Secondly the Information is not extremely
important so the kind of attacker that would be attracted wou ld be a sma ll
corporation or less. The auctioning system uses 128-bit key encryptlon (32 byte)

Secure Internet Auctioning System Page 81
Security

for the symmetric ciphers RC6 and MARS. The reasoning has already been
provided, but to keep up with advances in technology these can be upped to 256-
bit keys. This should maintain the security of the current session keys for a long
enough period, against advances by the intended attackers.

Asymmetric Key lengths

AS public key algorithms release their public keys, they are susceptible to a
plaintext attack. For this reason the keys in general have to be longer than
symmetr ic algorithm keys. In fact public keys need to be exponentially longer to
attain the same level of security. Most of these keys are also based on the fact that
factoring large numbers and finding their prime decomposition Is rather difficult at
the present time. So one does not need to find the key, one Is required to discover
the pr imes that the key has been created with.

Symmetric Key Length Asymmetric Key LenQth
56 bits 384 bits
64 bits 512 bits
80 bits 768 bits
112 bits 1792 bits
128 bits 2304 bits

Fig 5.7.3 Key Length compansons for eqUiva lent secunty [B.Schnc ler , 19961

This had lead to the rise in specia l factoring algorithms: the quadratic Sieve, and
the number field sieve are but a few. Currently the research in this field is
exploding and this has resu lted in large numbers being faetored at quicker speeds.
Currently 130-digit to 140-digit numbers are being faetored , which means that RSA
512 bit keys are at risk . Admittedly it takes a lot of computation and resources, but
It has been shown that these keys are breakable. Therefore one shou ld not be
complacent with current key lengths, The level of security should be determined by
the information being encrypted, and how long does it need to be secured for. As
the key will be used to distribute session keys it has to last the length of the
session and auction, The default is a 128 bit key, however one has the option to
increase up to and including 4096 bit keys, which does take quite awhile, but wi ll
guarantee security for at least the next five years,

[B.Schneier, 1996] has recommended that in the year 2000, one shou ld have the
fol lowing public key lengths, 1024, 1280 and 1536, These are against Ind ividual,
corporation and government attacks respectively. This would have increased
dramatically to 1280,1536,2048 against individual, corporation and government
attacks respectively by the year 2005. These are just estimates but they do show
the huge strides that are expected in the respective fields of tech nology and
cryptana lyst.

In t he light of all this one should not forego the unknown. We may be on the verge
of a monumentous discovery involving the faetoring of numbers that may yield
public key algorithms defunct.

Secure Internet Auctioning System Page 82
Security

5.8) Protocol Attacks

There are a number of techniques that could be employed to attack the current
protocol. They are as follows:

Eavesdropping

Eve or t he undesirable listens to the communications cha nnel and tries to deduce
some information about the information being sent. This can be performed in a
number of ways. A network sniffer is a utility that catches all packets along a
network l in e even if they are not destined to the current machine . Another method,
which Is rather simple, is a technique by which an electronic device is placed
around a section of the network cable. This then makes a copy of the packets being
sent and diverts them to the attacker.

Replay

The attacker has some record of the messages sent along the communication
channel. The attacker attempts to place these copied messages in the
communication channel at a later stage and determine what occu rs when the
message is received.

Man in the middle

The attacker posses the power to divert the commu nications channel and add or
replace messages in th is cha nnel. The attacker usual ly rep laces the current
message with his own message. The attacker sets up a block between the client
and the server. To the client the attacker acts as the serve r, and v ice versa for the
server.

Client
Perceived

~ Communication L:J --_ _ .. ---
Actual I Communication

(K$, Kc)
eKe, Kd)

Man
In the
Middle

Fig 5.8. 1 Man in the Middle attack

Server

The server sends a message to the client (Ks); the man in the middle (Eve)
intercepts this. This is replaced by (Ke), and forwarded to the cl ient. The client
receives (Ke), and uses it to encrypt (Kc), as it is assumed to be the servers key.
The client sends this message back to the server. However th is message is also

Secure Internet Auctioning System Page 83
Security

intercepted by Eve, whom decrypts this with the (Kd) key. Eve has now got a copy
of (K,) and (K,) . Eve encrypts (K,) with the server's real key (K,) and forwards it
onto the server. The client and the server don't realise there is a problem, The man
in the middle continues this process as he may decrypt and encrypt all messages
between the client to the server .

Miscellaneous

The attacker may use other techniques to get keys to the algorithms from the
client . For instance there are devices that can be pointed at computers from a
distance away and can reproduce the state of the monitor or internal information.
Another method would be to bribe or threaten a user for keys.

5,9) Safeguards

Now that one has a brief understanding of the attacks that may be mounted on the
protocol, we wi ll d iscuss some measures that may be taken to avert such attacks.

Authentication

Authentication schemes provide the user's of protocols with authentication and
confidential ity of the information sent and received . This results in the non­
repudiation property of the cryptosystem being met. Authentication is usually
achieved by use of digital signatures and certificates, implemented through public
key cryptosystems,

In the current problem there are only two parties the server and the client. If one
were to use digital certificates one would have to introduce a third trusted party
known as the CA (Certificate Authority). This means that the problem space would
now have grown, The server would have a certificate that supports its claim to be
who they are, this has been distributed to the server from the CA. The client then
requests the CA certifies the certificate, acknowledging the server's claim. All this
extra work is not a necessity in the current problem and would place an extra
burden on network and computational resources.

One should understand that authentication and key exchange are two sepa rate
problems that most people seem to lump together. Authentication is about
convinci ng the client that they are communicating with the intended server. Key
exchange is the sharing of a single key between th e two parties, As [M.Bel lare,
Progaway, 1995] stated, "Most of the time t he entity authent ication Is Irrelevant...".
What is really a concern is making sure that one can securely share a key between
two parties. Authentication will help in this matter, but it will not achieve this goal.
It will go a long way to resolving the man in the middle attack.

Averting Replay

Replay attacks occurs when the attacker copies some messages from the client or
server and then uses them at a later date. The messages w ill fall Into two
categories, those to the client, and those to the server . If the messages are to the
client or server It does not really matter as the session key only lasts for the

Secure Internet Auctioning System Page 84
Security

duration of the auction. Thereafter it Is changed and the message wil l be ignored,
as it cannot be decrypted. An alternate client cannot use the current client's
message, as they will have a different session key and hence the message will not
be decrypted. This prevents the hijacking of sessions from currently joined clients.
The message can only be a bid message and if it is replayed it will be exactly the
same information as contained in the last bid, in which case it will have no affect on
the auction.

To prevent replay attacks it is suggested that one uses time stamping or a counter
in the message so that the host can differentiate from the previous messages.
There are a number of problems with t ime sta mping . The first is that It
compromises the system as the attacker will now know a partial extract from the
message as it is not too difficult to determine the time on a machine. This will make
it easier to mount an attack on the encryption protocol. Secondly, even if the
counter or time stamp is hashed it is going to increase the size of the message,
thereby using larger bandwidth for communication. The aim is to use as little
resources as possible, and to do this the messages are as sma ll as possible. To
avoid having to use time stamps or counters the auctioning system commu nication
was developed so that a client may place a bid, which is time stamped once it is
received , All messages thereafter, even if they are a repeat, will not be val id unless
the bid Is higher than the previous bid. The use of threads and unique session keys
has averted the risk of replay attacks.

Replay and authentication are both issues that need to be resolved when dealing
with protocol development, However for the current problem I believe that these
matters are not an issue.

5.10) Hardware vs. Software

The implementation of this problem has been software approach, whereby the
algorithms have been manually coded and executed. These days with the huge
increase in digital communication many organizations find that the software
implementation is not efficient enough. This has resulted in algorithms being
implemented in hardware. These come as chips or add on ca rds that allow one to
plug them straight into the system. Each of the algorithms that will be discussed In
the following chapters gives an indication of the software implementation speed at
which they operate .

It is obvious that anything specifically created in a hardware format is going to out
perform the software implementation. There are many companies moving into this
territory and I assume that it won't be long before ha rdware encryption takes over
from software,

As one can see from the table most hardware implementations will be designed for
specific hardware platforms or operating systems. However they are incredible
quick, and the cost to the user of encryptlon will be less than a software
implementation which will slow the computer. This will result in more memory and
CPU's for the server involved. The disadvantage of hardware Implementations is

Secure Internet Auctioning System Page 85
Security

that the are not easily upgradeable, as opposed to the softwa re implementation
which ca n be changed and simply recompiled.

Hardware Encryption Software Encryption

Fast Slow
CPU independent CPU intensive
Cost effective (Cheap) Expensive
System dependant Portable
Fixed Modifiable

Fig 5.10.1 Advantages / Disadvantage of hardware and software encryptlOn

The PIJNENBURG Company deals In these kind of add on ca rds, as example it is
interesting to see the specifications and feature attained by such a card .

pcc- ISES featu res:
ARM7TDMI® Microprocessor with 128KB RAM
Embedded Cryptographic Accelerators
RSA up to 4096 bits, DES, 3DES and SAFER, MD5, SHA- 1 and RIPEMD
True Random Number Generator, Tamper Securi ty Circuit

Function Speed
RSA - 1024 bit 300/ sec
DES (ECB) 400 Mbps
Triple Des (ECB) 400 Mbps
MD5 375 Mbps
SHA-l 300 Mbps
Random Number SO Kbps

Fig 5.10.2 Example of speeds of encryption In a hardware ImplementatIOn.
[http://www.pijnenburg.nl/. on line]

As one can see, the performance of this card is exceptionally fast in all
cryptographic aspects . The card price is estimated at approximately four hundred
US dollars. This is far cheaper than the cost of a new computer, which would deal
exclusively with encrypt ion features of a server.

These types of add-on cards will become more prevalent in the future and will
invariably become programmable. This will enable any bugs or problems to be
fixed. This will increase the ease of use of encryption and make it a com mon place
feature for all network communication In the future.

Secure Internet Auctioning System Page 86
Securltv

5.11) Conclusion

This chapter has discussed the types of problems and issues that face the designer
of a security protocol. The requirements of the current protocol were discussed and
the resultant solution Investigated. This included the types of algorithms used, what
they required and how they interlocked to create the finished cryptographic
protocol.

The major weakness of the protocol is its vulnerability to the " man in the middle"
attack. However as this type of attack is very hard to mount and the rewards are
small it was decided not to persue an expensive third party authentication method,
which is currently the only known way to defend against such attacks.

In the sections that follow I wi ll discuss in detail the RSA algorithm, its
Implementation and its problems

Secure Internet Auctioning System Page 87
RSA

6) RSA

W.Diffie and M.Hellman first brought public key cryptography to light in the paper
"New Directions in Cryptography". In nineteen seventy-six they patented (U.S
Patent #4,200,770) the idea of public key cryptography. In their system all users
have a publ ic and a secret key. The public key is made avai lable to all , and the
secret key remains private. Anyone may encrypt a message using the public key,
but only the secret key of the recipient of the message, will perform decryption.

The RSA cryptosystem Is based on this theory and was publicised in 1977 by
R.Rivest, A.Shamir and L.Adelman. It was patented in 1983 (U. S. Patent
#4,405,829), and it is patented in a number of countries. The security of RSA is
based squarely on the difficulty of factorising large numbers. " I n Scientific
American, Martin Gardner described the RSA scheme as "A New Kind of Cipher That
Would Take Millions of Years to Break." Oddly enough, just 60 years earlier in 1917,
the same journal published an article touting the Vigenere ciphers as "impossible of
translation". (D.Denning, 1996]

An interesting aside is something brought to light in "The Code Book" by S.Singh. It
has been shown that RSA and public key cryptosystems were actually invented in
the late sixties by the British Government Code and Cypher School (GCCS). Three
gentlemen by the names of M. Williamson, C.Cocks and J.Ellis had discovered this
technology and due to the secrecy act, were forbidden to talk about it. It was also
for this very reason that their ideas were not patented, as this would mean the
cryptosystem would fall into enemy hands. In 1997 this department revea led the
truth at a press release.

This tragedy is best described by one of the men involved. As related by J.Ellis in a
secret document, "Cryptography is a most unusual science. Most professional
scientists aim to be the first to publish their work, because it is through
dissemination that the work realises its value. In contrast, the fullest value of
cryptography is rea l ised by minimising the information available to potential
adversaries" (S.Singh,1999]

6.1) Overview

The RSA cryptosystem has been in existence for over twen ty yea rs and has
withstood large amounts of cryptanalysts. Admittedly It wi l l not always be the de
facto standard in asymmetric cryptosystems, but currently there is no better
solution to the key exchange problem. RSA is part of the following international
standards; International Standards Organziation (ISO), the Consultative Committee
in Internationa l Telegraphy and Telephony (CCITT) X.S09 security standard, the
Society fo r Wolrdwide Interbank Financial Telecommunicat ions (SWIFT) and the
ANSI X9.31 sta ndard for the u.s banking industry [RSA FAQJ.

This is the expUcit reason that I used the RSA cryptosystem. It has been the
dominant force over the last twenty years and its Impact on cryptology will be felt
for years to come. The interesting thing about this algorithm, is the fact that it has
never been proven absolutely secure. It has been based on a difficult problem that
is commonly known as a one way function . A one way function is very easy to
eva luate. However it is difficul t to find the Inverse of the function. A trap door one

Secure Internet Auctioning System Page 88
RSA

way function uses the same principle but with a back door. It is easy to calcu late
F (x), and difficult to find F -l(y), unless one has some extra information which
makes the inverse possible. Almost all public-key cryptosystems are based on this
premise of assumed existence of one way, trap door functions.

The major flaw in the thinking is that is has not been proven mathematically that
these functions exist. If a method is found to calculate F - I(y) easily the
cryptosystem would be rendered useless. However thus far no major breakthroughs
have been discovered for inverting RSA's supposed one way trap door function. The
key here is that it is "a lmost impossible", but not purely impossible. This fact will be
revealed later in the cryptanalytic attacks that are mounted on the RSA
cryptosystem .

Even when RSA lies a broken cryptosystem, the way in which it has been used, and
the amount of effort that has been utilized In the examining of the system still
makes it worthy of studying. This is the prime reason I included the most popular
and simple asymmetric cryptosystem currently in use on a global scale.

6.2) Theory

The RSA cryptosystem is based on a number of mathematical premises, which need
to be examined before one can discuss the cryptosystem.

GCD

An integer a is known as common divisor if it divides two integers x and y, i.e.
where

a lx and a ly

The Greatest Common Oivisor (GCO) is expressed as the following.

a ~ gcd(x, Y)

where a is the greatest common divisor of the two integers x and y. For Instance,

x = 20, the divisors of x are: 1,2,4, 5,10.
y = 28, the divisors ofy are: 1,2,4,7,14.
The greatest common divisor, gcd(20,28) = 4.

Note that when another va lue z divides x and y, but is not the greatest common
divisor, then z divides the greatest common divisor. In the current example

z = 1 or 2

The GCO is relatively simple to determine when the numbers are small, however
when the numbers being dealt with become large it becomes difficult to determine
the GCO. The best solution to this problem can be found in the Euclidean algorithm.

Secure Internet Auctioning System Page 89
RSA

Euclidean Algodthm

The Greek mathematician Euclid published the Euclidean algorithm in approximately
300B.C.

The algorithm is a repetitive loop of division until the end result Is attained. Its
formal definition for (x, y) is as follows:

x = yql + rl
y = g2r 1 + r2
rl = gJr2 + r3

" "
" "

r m-2 = rm-lqm + rm
r m 'l = r mqm+l + 0

0< rl < y, y < x
o < r2< rl
o < rJ < r2

0 < rm < r m_l

This repetitive division yields the greatest common divisor of x and y as the value
rm· The initial value of gl multiplied by y is the greatest whole number less than x,
and rl is the remainder.

An example to find the gcd(8246,2326)

8246 ~ 2(2326) + 1268
2326 ~ 1(1268) + 1058
1268 ~ 1(1058) + 210

1058 ~ 5(210) + 8
210 ~ 26.8 + 2

8 ~ 4.2 + 0

gcd(8246,2326) ~ 2

o < 1268 < 2326
o < 1058 < 1268
o < 2 10 < 1058
o < 8 < 210
0<2<8

Note: The running time of this algorithm is determined by O«log n) 2)

Now that one has this method for determining the greatest common divisor, what
can be achieved with it. Before one may continue it is necessary to describe a field.

Definition: A field is a commutative ring in which all non-zero elements have
multiplicative inverse [D.Stlntston].

Z5 is a fie ld, in which all operations on the fie ld are modulo 5.

I Ve·
-5 -4 -3 -2 -1
0 1 2 3 4

~e+ 5 6 7 8 9
Fig 5.2 Z5 field

One can see from the table above what va lues ou tside the field Z5 equate to inside
the Field. Le - 4 mod (5) = 1. ReturnIng to the definition, which states that inverses
must exIst in the field. The extended Euclidean algorithm determines these inverses
in the current field,

Secure Internet Auctioning System Page 9 0
RSA

Extended Euclidean Algorithm

The extended Euclidean algorithm is based on the fo llowing theorems:

If x E Zn ,there exists a yE Z,. which is a multiplicative inverse of x . Le.
x. y =1 in Zn.

It fol lows that If gcd(x,n) = 1 (No other elements in the ring are a divisor for x),
then the inverse of x in Zn Is unique.

The extended Euclidean algorithm is as fol lows:

Calculate to to tm as follows:

Ca lculate the Euclidean and Extended at the same time.

r. = r'.2 - Q.-l . rH
!!! t •. 2 . r1 - qj.! . t'_1 r, (mod ro)
.Ii (t._ 2 - q H ' t._ j) rl (mod ro)
• t, ' rl (mod ro)

Calculate the Euclidean algorithm for (x , y), substituting the values of q.
determined above into the following formu lae. Calculate to to tm as follows:

to= 0, t 1=1,
t, = (to- q, . t,) (mod n)
t, = (t,- q, . t,) (mod n)
" " "
tm= (tm-z - qm- l . tm-d (mod n)

If rm :;t 1, then there is no inverse, If this is not the case then the inverse is

tm (mod n) = a-I In Zn

An example (47563,31387), calculate Euclidean first to see if an inverse exists,

Eucl idean
47563 = 1.31387 + 16176

31387 = 1.16176 + 15211
16176 = 1.15211 + 965
15 211 = 15.965 + 736

965 = 1.736+ 229
736 = 3.229 + 49
229 = 4.49 + 33
49 = 1.33 + 16
33 = 2.16 + 1
16 = 16. 1 + 0

Extended Euclidean
t, =(to- q, . t.) (mod n) = (0-1. 1) (mod 47563) =

47562
t, = (1 - 1.47562) (mod 47563) = 2

t, = (47562 - 1.2) (mod 47563) = 47560
t, = (2- 15. 47560) (mod 47563) = 47

t, = (47560 - 1. 4 7) (mod 4 7563) = 47513
T, = (47- 1.47513) (mod 47563) = 197

t. = (47513-4.197) (mod 47563) = 46725
t, = (197-1.46725) (mod 47563) = 1035

tlO = (46725-2 .1035) (mod 47563) = 44655

(47563,31387) = 1, therefore an inverse exists, so conti nuing with the extended
Euclidean, the inverse is tlo = 44655

Secu re I nternet Auctioning System Page 91
RSA

Therefore 31387"1 in Z"7563 = 44655. This algorithm is one of the core building
blocks of RSA. However there is sti ll a little more theory required to cement the
process.

Primes

A Prime numbers has the special property, which is that, it may only be divided by
itself or the number one. Re latively prime numbers are two integers x,y such t hat
gcd(x,y) = 1. They are prime to one another, this does not mean they are prime.

The Euler function, 0(n), denotes the number of integers in the interval 1..n, which
are relatively prime to n. If p is prime then 0 (p) = p ~ 1. The Euler function is also
multiplicative, so that 0 (mn) = 0(m) 0(n).

The Chinese Remainder Theorem

The Chinese remainder theorem states that if one has a number of relatively prime
positive integers (Pl .. Pk), which are the prime factorization of n (n= P t P2 .. Pk), one
can use this to solve the set of equations,

" "

Which have a unique solution x, with x < n. So, for an arbitrary a < P and b < q
(where P and q are prime), there exists a unique x, where x is less than pq, such
that x . a (mod p), and x . b (mod q).

The Euler Fermat Theore m

If some integer x e Z'n, where (Z'n = {x e Zn, X-I exists in Zn}) , then

x0{n) = 1 in Zn, and for every gcd(x,n)=l, x0(n) ;e: 1 (mod n)

fermat's Theorem

If p is a prime number and x a positive integer, then

gcd(x,p) = 1, and xP'
l

• 1 (mod p), and XPE X (mod p).

Its a lso Interesting to note that if p is prime then Z'p Is a group of order p- l.

This theory is what the RSA algorithm is based, and all will be much clearer once it
has been discussed.

6.3} RSA Algorithm

The following steps are used to implement the RSA algorithm
1.) Alice generates two large random prime numbers p and q .
2.)n= pq
3.} 0(n) = 0 (pq) = (p-l)(q- l)
4 .) Alice then picks a random integer a such that gcd (a, 0 (n» = 1

Secure Internet Auctioning System Page 92
RSA

The public key is then (a ,n). This is used to encrypt information using the fo l lowing
encryption algorithm

E(a,n) (m) = mOl mod n

This rai ses the message value to the power of a in the field Z n. The Chinese
rema inder theorem guarantess a unique solution. This means that on ly the current
message wi ll result in the corresponding ciphertext message.

5.) Allce then determines the inverse of (a -I: b) In Z 0(n) '

The secret key is then (b , n). This is used to decrypt In the fo llowing fashion:

D{b,n) (c) = Cb mod n

The decryption algorithm raises the ciphertext to the inverse of the key, thereby
reverting it to its plaintext status.

The entire secu rity of RSA lies one thing, which is the factorising of n to find the
two primes. Withou t these primes one Is unable to find the Euler function, 0 (n).
The Euler function is the field in which Alice discovers the inverse of a. This inverse,
b is the key to decrypting the encrypted messages. Please note that I I rn' 11 n,

denotes mll mod n.

Theorem :
D (b.n) (E ea.n) (m » == m

Proof:
D(b."' (E, •. ", (m)) ~ « m') (mod n)) ' (mod n)

~ (m) ,. (mod n)

Now b.a = l(mod 0 (n)), as b= a" ,where 0 (n)=(p -1)(q - 1)
= 1 H(p -1)(q -1), where integer t > 1.

= (m) l+t(p· l)(Q- l) (mod n)

= m m t{p- l){q- l) (mod n)

EO m (mt0(n» (mod n)

As m exists in ZOI by Fermat m0(n) i"i! 1

~ m.(l')(mod n)

~ m (mod n)

D{b.n) (E{I.n) (m» = m

Secure Internet Auctioning System Page 93
RSA

It wou ld probably easiest to show the working of RSA In an example .

1.) Generate two primes p and q (211 ,2 51)
2.) n = p .q = 211.251 = 52961
3 .) 0 (n) = (p -1)(q- 1) = (210)(250) = 52500
4.) Choose a , such that 1< a <52500 , a = 139

Kp = (139,52691) is the public key, Now one has to determ ine the private key .

5.) Calculate the inverse of, using the extended Euclidean algorithm,
Use Z 0 (n) as the field, in other words determine the inverse of (52500,136) ,
a " = b = 36259.

The secret key is then K, = (36259,52691).

The public key is given to Bob and anyone else who wants to communicate with
Alice, Bob receives the key and decides to send Alice a message "Hello World! ".

Now that this has been determined let us perform the encryption of the string
"Hello World! ". One needs to convert these characters to numerical characters.
Where, a= OO,b= 01, .. z=25, space=26,!=27 , For the sake of the example we will
ignore the case of the letters,

H
07

E
04

L
11

L
11

o
14 26

W
22

o
14

R
17

L
11

D
03

To make things easier to work with, combine the letters into group of two. The
numbers however must be smal ler than the values of n (n= 52691), to prevent
any problems, This resu lts in the following sequence of numbers that may be
encrypted separately.

0704,1111,1426,2214,1711,0327

E(1 39,52691)(0704) = (0704)''' (mod 52691) = 13400
E(t39,5269 1)(1111) = (1111) 13' (mod 52691) = 14823

" " "
E(l39,S2691) (1711) = (1711)'" (mod 52691) = 24843
E(l39,S269 1)(0327) = (0327) 13' (mod 52691)= 40232

The resultant encrypted message is:

13400,14823,38303, 43817,248483, 40232

27

This is the message sent from Bob to Alice, On receiving it Alice decides to decrypt
the message with the secret key Ks.

D(36259,52691)(13400) =
D(36259,52691)(14823) =

(13400)3625'(mod 52691)= 704
(14823)36259(mod 52691) = 1111

and so on until the message received is

0704,1111,1426,2214,1711,0327

Secure Internet Auctioning System
RSA

This is encoded back into a string, and one gets

07
H

04
E

11
L

11
L

14
o

26 22
W

which is the original message sent by Bob to Alice.

6 .4) RSA Implementation

14
o

17
R

11
L

Page 94

03
D

27

The RSA cryptosystem that has been implemented in the auctioning application is in
the RSACrypt.Java fi le. As the number dealt with can get very large [have decided
to use the new Java implementation of the Big Integer Class, as opposed to coding
up my own class. The Big Integer class has been reworked in Java two and is
incredibly fast and efficient. It would be unproductIve not to use the native support
for large numbers.

The Big Integer class will represent as large a number as one requires and allows all
the required mathematical functions to be performed. " Immutable arbitrary­
precision integers. All opera tions behave as if Big Integers were represented in
two's-complement notation (like Java's primitive integer types). BigInteger provides
analog ues to all of Java's primitive integer operators, and al l relevant methods from
java. lang.Math. Additional ly, Biglnteger provides operations for modular arithmet ic,
GCD calculation, prlmality testing, prime generation, bit manipulation, and a few
other miscellaneous operations." [Java 1.2 Help files].
The class has a number of functions and methods. The class stores the clients
Information, this includes, p, q, n, 0(n) and the public and secret keys. They are all
of type Biglnteger.

When the class Is Intlallzed for the first time It ca lls the method to generate keys

IIRSACrypt.Java - generate_Keys(size,error,seed) method
p = generate_prime(slze,error,seed)
q = generate_prime(size,error,seed)
n = geCN(p,q)
phi = geCphi(p,q)
pub/ickey = geCA(phi)
privatekey= geClnverse(publickey,phi)

The p and q va lues are generated, once this has been done the value of n Is then
determined by calling the geCN(p,q) method. The value of phi is determined by
ca lling the geCPhl(p,q) method. The public key Is determined by ca ll ing the
geCA(phi) method, and the private key Is determined by ca lling the
geClnverse(publickey,phi) method.

Generate_prime(size,error,seed)

This method generates the random large prime numbers for RSA.

Random Number (seed)
if (Error> 99) then Err = 99
else if (Err < 1) then Err = 1
return Random Biglnteger(Size,Err)

Secure Internet Auctioning System Page 95
RSA

The method makes sure the error value is not out of range, and then generates a
random prime number. The error va lue determines how sure one is that the
random number is prime using the Solovay Strassen test.

It is interesting to note that the number of primes five hundred and twelve bits long
or less is equal to 1015°, which is more than the number of atoms in the known
universe [RSA FAQ) .

This method multiplies the two BigInteger values and returns the result. As has
been mentioned before the BigInteger values have explicit functions for
mathematica l functions.

Return p. multiply(q)

This method subtracts one from p and q respectively and multiplies them together
to get the euler function value known as phi. This is the va lue that is returned .

p.subtract(one)
q.subtract(one)
Return p.multiply(q)

This method generates a random public key value between 1 and t he phi value.
This value is then checked to make sure that the greatest common divisor of t he
va lue and phi is one . The key generated is also a prime number, which should
mean that the gcd test succeeds.

Do {
Public key = generate_ prime(sizeOf(phi) -1,error)

}while Not (gcd(public key,phi) =1)

GeCB(phl, a)

This method returns the value b, given a and phi. The va lue of b is simply a-I.
Return geLlnverse(phi,a)

Get_lnverse(publickey, phi)

The inverse function is inverts a va lue in the phi field. It calls the function
geCPower(xI 8,n). This function is also used by the encrypt and decrypt methods.
The public key value is simply raised to the power of negative one, thereby
determining the inverse . This is then returned.

Return get_Power(public key, Biglnteger(- l), phi)

This uses the functionality of the Biglnteger class to perform all t he hard work. It
uses the mod-pow function of the Blglnteger class. This will raise a va lue to a
certa in power and then mod it by a mod va lue . In doing 50 it meets the

Secure Internet Auctioning System Page 96
RSA

requirements of the RSA algorithm, as all operations have to be modulus the n
va lue.

Retrun x.modpow(a,n)
Xa (mod n) is t he result.

RSAEncrypt(plaintext,public Key,n)

At the heart of the encryption is this method. Which accepts a string cal led
plain text, this is then converted into a 8igInteger. This plaintext value Is then
raised to the power of the public key modulus n. The result is returned as a string
value

Return geCPower(BigInteger(plaintext),public keY,n)

RSADecrypt(ciphertext,secret Key,n)

The decryption method works in exactly the same way, but to make things clear, it
has been coded up with a different name.

Return geCPower(8iglnteger(ciphertext),secret keY,n)

There are a number of methods for storing and retrieving the public key, private
key and n values as strings and integers.

6.5) RSACrypt Usage

Each of the client applets and the server creates an instance of the RSACrypt class
as it is central to t he encryption process. This is done in the server's main thread in
the serverlistener method. A copy of this object is passed to the auctionhandler and
each of the clienthandler threads. On initialization the keys are generated for use
between all the cl ients. This Is only changed at the end of an auction or on the
command of the server application administrator. When a client connects to the
server, the server sends a message with the public key (Kp,N) to the client (See
Chapter 4.13).

The client creates an instance of the RSACrypt class. On receiving the message
containing the public key, it extracts these key values and places them In the
RSACrypt class variables, through the get/set methods. The client then generates
the symmetric key. This key Is of type byte, and is made up of thirty- two bytes by
default. The key is divided into pieces of four bytes each, these four byte values are
then converted to single integer va lues. (Le 32 bytes = 8 integers) . The client then
individually encrypts each integer using RSAEncrypt and the public keys . Once all
the integers have been encrypted they are sent back to the server. The
CryptUb.Java library performs the converting of Integer to bytes and vice versa, as
well as a number of other useful cryptographic functions.

//CllentEngine.Java - setEncryptionO Method
For (loop=O;loop<sizeOf(Symmetric Key)14;loop++) {

Integer = ConvertTolnteger(SymmetdcKey[foop*4])
Message += RSAEncrypt(Integer, Public Key, N)
}

Secure Internet Auctioning System Page 97
RSA

The server receives the encrypted integer values. Each integer value is decrypted
using the private key, until all the integers have been dealt with. The integer values
are then converted back to a byte format. All the bytes make up the resulting
symmetric key, which is used for the symmetric algorithm. Only once the
symmetric key has been received, does the usage of RSA stop and the symmetric
cryptosystem takes over. If the server recreates RSA session keys they are
distributed to all new clients as the start, but not clients that are already
communIcating using the symmetric cryptosystem .

6.6) Timing

The timing of the algorithm is interesting to look at because it shows one how fast
the encryptlon and decryptlon is and the kind of pressure it is placing on the CPU. It
Is also useful for one to compare against hardware implementations of the RSA
encryption which show how much faster it could be (Chapter 5.10, Fig 5.10.2)

32 bits 128bits 256 bits 512 bits
Encrypt 220ms 5820ms 32370ms 217610ms
KBlts/ Sec 142.04 21.47 7.63 2.29

Decrypt 220ms 5830ms 32790 214050
KBits/Sec 142.04 21.48 7.61 2.33

Fig 6.6. 1 Times for 1000 encryption and decryption's of RSA.
Using equal sized bits for P and Q and large A.

As one may see from above table the encryption and decryption figure are similar
for the different keys. All get exponentlally slower as the size of the key increases.
One can see however how slow in general the actual operations are. As related by
[B.Schneier,1996], RSA 512 bit is attaining up to Sixty four kilobits a second in a
hardware Implementation, which is Significantly faster than the software
implementation.

32 bits 128 bits 256 bits 512 bits
Encrypt 60ms 220ms 490ms 1980ms
KBits/Sec 520.80 568.17 510 .19 252.51

Decrvot 280ms 6310ms 32680 218380ms
KBits/Sec 111.60 19.81 7 .64 2.28

Fig 6.6.2 Times for 1000 encryption and decryption's of RSA.
Using equal sized bits for P and Q . but a very small e.

The timi ng of the RSA encryption and decryption functions was performed on a
Pentium 11 450MHZ CPU with 196MB ram. Each encryption and decryption is
performed one thousand times to get a good average.

Secure Internet Auctioning System Page 98
RSA

Optimization

The classes used for the operation are all system classes and therefore are as quick
as possible. The only other speed-ups will occur from smaller numbers and hence
quicker operations. On average public key encryption is of the order 0(n2), private
key decryption takes time 0(n3), and the key generation takes the longest with an
order of magnitude of O(n') [RSA FAQ]

One method suggested by Shamir [H.Gilbert , et al] is by fiddling with the public key
exponent. One chooses equal size p and q va lues, but the value of a (xa(mod n» is
chosen to be small , and it meets gcd(a,(p-l)(q-1)=1. In some cases this a has
even been chosen as sma ll as three. This will mean that the encryption of the
message is Incredibly qu ick. However this does not decrease the speed of
decrypt ion as the inverse (secret key) wi ll inva riably be a la rge number.
Another method is the use of different sized p and q 's. Whereby the val ue of p Is
half the size of q. However this m ethod is susceptible to attack as discussed by
[M.Joyle & J.J.Quisquater, 1997] and will not be discussed.

6.7) Attacks on RSA

RSA has been checked, analysed, pulled apart and attacked in many different ways,
but none of these attacks have actually crippled the cryptosystem . There are one or
two main lines of attack, but most seem to attack the improper implementation of
the cryptosystem.

There have been many attacks over the past twenty years and al l are not relevant
to this discussion. Only a few of the main attacks wil l be discussed here .

Factorization

The non -factorization of n (n=pq) into its component va lues of p and q is the basis
of the security of the algorithm, and also its main point of attack. One must realise
though that the difficulty of this factorlng problem is actually a conjecture, and
furthermore it has never been proven that one needs to factor n to find the
decryption exponent.

One asks how hard is it to discover the factors of the modulus n. Once these have
been discovered , 0 (n) is easily determined and b = a -I (mod 12'(n» ca n be found.
Determining these factors is commonly known as a brute force attack as one tries a
huge number of solutions until the correct one is found . The factoring of large
numbers is related by [D.Boneh] as " ... one of the most beautiful problems of
computatonal mathematics. N

The factorlng of large numbers has been getting better every year due to a
combination of things. The technology used to implemen t the factoring of numbers
is getting quicker, as well as cheaper, and the algorithms used are becoming more
efficient and powerful. The Quad ratic sieve the fastest-known algorithm for
numbers less than 110 digits. The fastest algorithm for digits above this is the
Number field sieve (NFS). As an indication, t he General number fie ld sieve, which
has factored 132 digit numbers (Approximately RSA 512 bit), has a running t ime of
exponential ((c +0(1»nl13109213n), where c<2, on n bit Integers. {A.K .Lenstra, et
al], relates a discussion of the Number field sieve. However the interesting thing to

Secure Internet Auctioning System Page 99
RSA

note here is that the NFS is generally considered ten times faster than the QS for
larger numbers.

"In March 1994, a 129-digit (428-bit) number was factored using the double large
prime variation of the mu ltiple polynomial QS [66J by a team of mathematicians led
by Lenstra. Volunteers on the Internet ca rried out the computation: 600 people and
1600 machines over the course of eight months, probably the largest ad hoc multi ­
processor ever assembled . The calculation was the equivalent of 4000 to 6000
mips-years" (B.SchneierJ . This means that for anyone wi l ling to spend a few million
dollars it is within the rea lm of posslbJl!ty to break a 512-blt RSA encryption . Each
year the price of the hardware drops, the speed increases and the size of the
numbers to be facto red Increases.

For the purpose of the current protocol it wou ld take a rather long t ime to factorise
the required values. The length of the auction is measu red in hours and minutes,
and hence so Is the RSA session key. The time taken wou ld require days and
months to determine, which means that by the time the decryption exponent was
discovered it would be out of date for the current auction.

Revealing decryption exponent

This may seem trivial at first, but it is relevant to show how the revealing of the
secret key wou ld result In the cryptosystem fa iling . This is described in [O.Boneh,
Pg3] , but if one does have the decryption exponent b , it seems pointless
determining and factoring n, as one will be able to decrypt all messages.

However if the encryptJon and decryption exponents (public and private keys)
change often and the value of n is constant it is shown that by using the Chinese
remainder theorem and by guessing one can find the factors (p and q). However
this will take the order of 0(n 3

) . The attack on a common modulus Is described In
[O .BleichrnBacher, et a/][O. Boneh] and [M.loyle & l.l.Quisquater, 1997].

The only way that one could get the decryption exponent from the auction server
would be to have some control over the system It Is running on. As Is indicated In
most security speCifications, if an intruder has access to the machine the system Is
executing on no security may be guaranteed. In other words, all bets are off. The
entire protocol Is designed at maintaining secure communication between the client
and the server. The server is assumed to be a relative ly secure environmen t . If the
server is unfaithful and reveals this information then noth ing may be done.

Discovering 0 (n)

It has also been suggested that one guesses the values of (p -l) and (p-l), one
could then use the extended Euclidean algorithm to find the Inverse of the
encryption exponent. To find these values though would be just as difficult as
factoring n . There are two equations available to finding the factors of n.

n=p.q (1)
0(n) = (p -1)(q -1) (2)

with q= nIp from (1) substituted into (2), we have

Secure Internet Auctioning System

0(n) ~(p-1)(n/p- 1)

0(n) ~ n - p - n / p + 1
p' - np + n - p + 0 (n)p ~ 0
p' + (0 (n) - 1 - n)p + n ~ 0

RSA
Page 100

Expanding the right side of the eqn.
multiply by p, and take to the left side.

The roots of this equation would give one the values of p and, as n is known, the
value of q drops out. However before this can be solved one needs the value of
0(n) . As it has already been stated the value of 0(n) is therefore just as difficult to
determine as the factorising of n, and one would need to discover 0(n) to solve the
above equation.

The same Idea holds for this attack as it does for the factorlng of n. It rea lly boi ls
down to the feasibility of the attack, the time required and the general lifetime of
t he key . As it wou ld take huge fisca l sum, a large amount of t ime and a lot of
effort, it would be pOintless mounting an attack where the keys last hours and the
information encrypted would not be sufficient to recoup the costs.

Small Encryption Exponent

To increase the speed of encryption the size of the encryption exponent is made
sma ll ((ma) where a very smal l). In some cases a=3 Is used, but 216+1=65537 is
the most common value (This is even used in the SWIFT implementation). As this
encryption exponent is small it will be easier to encrypt information, as (mil) where
a is small, is easy to calculate. However the decryption not be as quick as the value
of b (decryption exponent) will not be small.

The attack for th is method is based on D.Coppersmlth Theorem. "Let N be a integer
and Zx be a manic polynomial d. Set X = N1fd

'
e for some e>O. Then given <N,f>,

one can find all integers jXol < X satisfying F(xo)=O mod N. " [D.BonehJ.

This attack shows in some instance the attack can be quicker than a brute force
attack, but it st il l t akes on exponential ru nning time to determine d [D.Boneh,
G.Durfee]. The theorem proves that a sma ll exponent is susceptible to an attack,
but due to the fact a small exponent is not used in the auction systems
implementation of RSA this is not an issue .

Brute Force

It is certainly possible for a cryptanalyst to try every possible b until he stumbles on
the correct one. Alternatively one could guess the plaintext and encrypt plaintext
guesses until the exact same ciphertext appears . This would take a lot of time and
effort, as it has been shown that a brute-force attack is even less efficient than
try ing to factor n .

The implementation of the protocol is used in such a manner that the plaintext
encrypted by RSA on the clients side cannot be guessed. As this is a key created by
the MD5 algorithm (See Appendix). This means that someone would have to first
break MDS, guess the correct plaintext and key for MDS, and on ly then mount the
plaintext attack on RSA. This is really infeasible and certain ly not efficient.

Attempting all t he decryption exponents has two problems, the fi rst bei ng t hat t he
exponent may not be found as one does not have 0 (n), and second ly even for t he

Secure Internet Auctioning System Page J 0 1
RSA

next few years guessing and attempting al l these numbers is beyond the power of
computing .

Timing Attack

An attack that this algorithm is susceptible to is known as the Timing attack. One
can measure the time it takes for the computer to decrypt messages received. This
along wi t h the information pertaining to the system ca n lead one to determine t he
suspected length of the decryption exponent. Armed with this information one wi ll
be able to guess the range in which the decryption exponent lies. Knowing this
range one can simply try all the elements in this range until the correct decrypt ion
exponent is discovered.

There are a lot of assumptions made here, and essentia lly the cryptanalyst needs to
be able to record minute timing details from the decryption obj ect. This is rather an
impractical attack for the current protocol as a lot of the information required would
not be discernible from the server running the auctioning system.

Secure Internet Auctioning Sys tem Page J02
RSA

6.8) Conclusion

RSA has shown over the last twenty years of its existence that it is a relative ly
secure asym metric cryptosystem and shou ld rema in for a few years yet. This is
assuming that no major breakthroughs in factoring, or that any other attacks, are
developed in the near future. One should not be complacent, but nothing has
indicated that this will happen in the near future, and for the time being the
primitive used in t he asymmetric cryptosystem is secu re.

It has been shown how RSA has been implemented and what attacks may be
mounted upon the protocol. The protocol was developed so that it minimised the
effects of the attacks discussed on RSA. It should be impractical, infeasible in
monetary and time constraints, to mount an attack on the auctioning system.

The next chapter will examine the first symmetric key cryptosystem Re6 .

Secure Internet Auctioning System Page J03
RC.

7) RC6

RC6 is a block ciphert or symmetric cipher based on the fi ve-year-old ReS system
invented by Ran Rivest, one of the designers of RSA. There are four operations that
the algorithm depends on; XOR, addition, multiplication and rotation.

RC6 was created to meet the AES requirements, the improved the security and
efficiency of the algorithm. The RC series of ciphers has been undergoing revision of
the algorithms. RC2 was the first algorithm released, and even to this day the
workings of it are unknown, as a non-disclosure agreement is signed by anyone
that uses it. The RC supposedly stands for "Rivest's cipher".

7 .1) Overview

The reason I decided to use RC6 as one of the two symmetric ciphers is that it has
been based on a relatively secure foundation. The RC algorithms have been in
existence for awhile, and are used to this day in many commercial applications. The
RC5 algorithm has been around for a number of years and has proven to be
re latively secure, with no serious fl aws. As RC6 Is a natura l progression of RCS, one
hopes that it is stronger than its predecessor.

RC6 is what's known as a block cipher. Block ciphers encrypt blocks of plaintext at
a time. Stream ciphers, which are also symmetric cryptosystems, encrypt or
decrypt single bits. The RC6 algorithm is also known as RC6 w/r/b. Where w stands
for the size of the words being encrypted, r is the number of rounds the algorithm
is for executed, and b is the size of the key in bytes. I have used the algorithm
default here as it speeds up the encryption and decryption process. The defau lt
values are w=32 and r =20. Essentially the algorithm uses thirty-two bit words and
twenty rounds of operations.

However before one can examine the algorithm, its implementation, and attacks
against it, it is pertinent to look at the theory behind symmetric cryptosystems.

7.2) Concepts

These backg round concepts behind the block ciphers are useful for both of the
algorith ms used in the auctioning application. As was discussed In chapter 5,
confusion and diffusion is the aim of the encryption process and serves to hide
statistical information .

Bayes Rule

This is based on what is called conditional probability. This in essence Is the
occurrence of event A, based on the occurrence of another event B. As is standard
notation, the probabi li ty of A occurring by itself is P(A), and the probability of A
occurring given that B has occurred is written as P(AIB).

Secure Internet Auctioning System Page 104
RCO

Bayes rule is as follows,

P(AI B) = P(A)P(BIA) / P(B) , and P(B). O

For a good discussion of this and all the required proofs refer to EL.Bain &
J.EngeIHardt,1991]. This assumes that A's probability is dependent on 8's
probability. Another variation of this is if A and B are Independent of one another,
which would mean that P(AIB)=P(A). Th is is known as Independent events

The reason that Bayes rule is important is that it relates directly to the secrecy of
the cryptosystem. What this boils down to is that the secrecy of the encryption
algorithm is based on the plaintext and the key. If any probability can be concluded
from the clphertext about the plaintext without knowing the key, one then has a
weak cryptosystem.

Entropv

Entropy is the measure of the amount of information in a message. The way in
which It Is measured is by the probabi l ity distribution formulae. The formu la Log 2

rn, Is commonly used where rn is the total amount of meanings for the current
message.

The entropy of a message is denoted by the function H(X) . One has to determine
the probability distribution of all the possible messages, where Xl .. Xrn are all the
messages. The probability of them occurring is P(xd .. P(xm). H(X) is expressed as
fo llows:

H(X) = -L P(x,) 109, P(X,)
I_l .. m

This is useful as it gives an average amount of bits needed to encode the message.
As an example consider three events that can occur with the following probabil ities,

The entropy of this would be as follows:

H(X) = -x109,X - ylog, y - zl09,Z
V2 log 2 112 + 1/4 log 2% + 1f4log2 V4

= (V2)1 + (V4)2 +(V4)2
= 1.5

Now that we have a definition of the entropy, what can we use it for? If one
expands that equation to include something called Conditional Entropy it will
become clear.

Conditional Entropy

Conditional entropy is the entropy of some X, given some value of Y, where Xt .• Xm

and Yl"Ym are the random variables.

H(XIY) =-L P(y,) (L P(xdy,) 109, P(x, IY,»
J-1..m I_ I. .m

Secure Interne t Auctioning System Page J05
RCO

This formula determines the uncertainty of some value X, given V, where y eV. This
Is averaged for all the values in the finite set Yl .. Ym. So if X was our plaintext, and V
ou r ciphertext, what is the uncertainty of t he plaintext given that one knows the
ciphertext. Conditional entropy al lows one to measure how difficult it is to
determine the plalntext once It Is encrypted.

Key Equivocation

After examining the entropy of the plaintext and the ciphertext it is pertinent to
discover the entropy of a key from the ciphertext. Using the standard notation
where P is the finite set of the plaintext, C the finite set of ciphertext and K the
keyspace

H(KIC) = H(K) + H(P) H(C)
Proof: See [D.Stinston]

The uncertainty (entropy) of the key given the ciphertext Is, the uncertainty of the
key and plalntext minus the uncertainty of the ciphertext (as Its known). The
security of the cryptosystem lies on the entropy of the key. The higher the entropy
the harder it is to determine the key, and thus harder to discover the plalntext. This
is the reason that larger keys invariably mean better security as the entropy
increases.

Entropy of Languages

The entropy of a language measures the information per letter that the language
holds. This is denoted by Hl •

Hl = lirn (H(X") / n)
n- >""

Where Xn is a random set of letters of length n in the language L. This is an
approximation, and studies have shown the English language to have an average of
approximately 1.5 bits per a letter . With the knowledge of the entropy of the
language encrypted, one has a good idea of the message type, and one can then
Ignore keys that result in gibberi sh once the ciphertext is decrypted . These keys are
known as spu rious keys.

The reason the natural entropy of a language is important is that it allows one to
work out the redundancy in the language.

Redundancy of Languages

This is the excess information in a natu ral language. In other words In an intelligent
stri ng of a language, the measure of letters that are not actually adding to the
information in the string. This is denoted by RL •

Rl = 1- Hl / (Log, !PI)

P is the probability of a random string in the natural language. As the Hl of English
is between 1.0 < Hl < 1.5, one can approximate that Rl

0.5 < Rl < 0.75

Secure Internet Auct ion In g System Page 106
RC.

ThiS means that Engl ish is a highly redundant language, but as has been show n, so
are all natural languages. As the ciphertext gives some information about the
plaintext it is important to reduce this redundancy in the plaintext. The redundancy
gives the cryptanalysts information regardi ng the plai ntext encrypted .

Unicity Distance

Unici t y distance attempts to find the minimum length of ciphertext for which a
cryptanalyst will be able to determine an intel ligible pla intext solution . Unicity
distance is given by the fo llowing formula

u ~ H(K) / RL

This is t he entropy of the cryptosystem, which is based on the key entropy, divided
by the redundancy of the language. A good cryptosystem should aim to remove the
redundancy of t he plaintext by using some form of compression. Since in the above
formula , as RL tends to zero, the Unicity distance tends to infinity and it becomes
almost impossible to determ ine the correct plaintext for the current ciphertext.

Confusion & Diffusion

As has been mentioned before a good cryptosystem incorporates the two properties
of confusion and diffusion . Confusion hides all links and relationships between the
plaintext, ciphertext and the key. Djffusion spreads the statistical information held
in the plai ntext over the entirety of the ciphertext.

Using these two properties, statistical , linear and differential cryptanalysis becomes
difficult. How does one hide the information t hat can be determi ned by unicity
distances, entropies and statist ica l examination? One of the most powerful methods
Is by the use of a Feistel network.

Feistel Networks

I n th is methodolgy one ta kes the plain text and divides it into two equa l ha lves.
These are commonly known as Land R, which stands for left and ri ght respectively.
Each round in the algorith m (or loop of operations) involves a process whereby the
left and right values are swapped.

LH 1 1 RH

• CD- I k;_l

•
<--L-,---; -,I L-I _ R-,---; -'

Fig 7.2.1 Feistel Network

Secu,.e Inte,.net Auctioning System Page 107
RCO

l.; = R,-I
R, = l.;-I Ell F(RI-l ,K,)

This process Is repeated from i= 1 to the max number of rounds. The function F,
which is reversible, encrypts half the Information with the current round key. The
trick comes with the XORing of t.... -I with the function F(R1_1,K1) as this is a XOR
process it is reversible and as the algorithm proceeds the data originally held in R
and L is spread repeatedly after each round, as well as encrypted, making it
exceptionally hard to determine any statistical information about the original
plaintext.

S-Box

$-Boxes or substitution boxes help In strengthening the security of an algorithm. An
S-Box is usually an array of predefined numbers. The $-Box takes input from a
function and maps this input to an element in the S-Box, resulting in a new output
obtained from the S-Box. The input is used as the index value in an S-Box array.
This step is a non-linear step, as the S-Box is some random data. The resulting
values returned are then used in the next round of the algorithm, and so forth.

S-Box

,-
'/

/
F(x)= S-Box Value

Fig 7.2.2 Extracting S-Box elements

The larger the S-Box, the harder it is for someone to cryptanalyze the system. 5-
Boxes are especially strong if the information contained within them is random, and
Independent of the key.

ECB

Electronic codebook (ECB) mode encrypts a block of plaintext at a time, If the
message is too big it is broken into correct sized chunks, which are then, encrypted
separately with the same key,

The benefit of this method is that each block of ciphertext is independent of the
rest so an error in one block will not propagate throughout the ciphertext.

CBe

Cipher block chaining (CBC) mode encrypts a block of text, which is first XORed
with the previous block of ciphertext. Each block encrypted will be based on the
plaintext and the previous block of ciphertext .

The big problem with this method Is that if just one bit of Information Is lost in
transmission, all following ciphertext will not decrypt correctly and the message wi ll
be ru ined.

Secure Internet Auctioning System Page 108
RCO

Other Modes

There are a number of other methods including streams, output feedback (OFB)
mode and cipher feedback (CFB) modes. However for a longer and more involved
discussion please see [B.Schneier,1996]. The only mode encryptlon that Is of
interest in this application is the ECB mode that is used.

7.3) RC6 Algorithm

The RC6 algorithm has two important parts, the actual encryption/decryption and
the key schedu le. It is easier to discuss the key schedule first as it creates the S­
Box used for encryption and decryption based on the users key. As RC6 Is an AES
candidate the amount of information regarding the algorithm is l imited and hence
most of the Information comes from the paper [R.Rivest, et aI, 1998].

The operations

The are a number of common operations performed in the key schedule, encryption
and decryption. The are as follows:

A+B Addition modulo 2w

A-B Subtraction modulo 2w

A*B Multiplication modu lo 2w

Ae B XOR modulo 2w

A< <8 Rotation left of A, by B
A»B Rotation right of A, by B
[R. Rlvest , et al)

Whenever one sees these operations in the following algorithm it is assumed that it
is performed as described above. These operations are usually quick and relatively
efficient on most operating systems . As the algorithm is made up of these primitive
operations It Is designed to take advantage of the speed benefits offered by them .

The Kev Schedule

The key schedule is composed of three steps. The copying of the user key into an
array (L), the initialisation of the S-Box array, and finally the mixing of the two
arrays into the resultant key used for encryption and decryption.

Step 1

The user-supplied key, which is of size b bytes, is placed in the array L. The array L
has c elements in it, L[O] .. L[c-l]. The array is of type integer, and therefore the
bytes of the user key need to be converted to integers. The first four bytes are
placed In the array element L[O], and so forth.

The value of c is determined by the closest number of words derivable from the
number of bytes of the user key (Word = Bytes / 4). If any extra bits are required,
zero are appended to make up the missing terms.

Secure Internet Auctioning System
RCO

C = (Length User Key) / 4, if Length Key = 0, then c= 1
Place user key into L[OJ .. L[c-1J

Step 2

Page 109

The next step is to initialize the 5 array. There are recommended starting va lues,
Pw and Qw' These values are mixed into the Initial 5 array creati ng random values,
which are Independent of the key. To get as accurate as possible values for these
two numbers, the word size binary numbers are used

Pw = «e - 2)2W) (e=naturallog base) = P" = b7e15163 = 2.718281828 ...
Qw = «0 - 1) 2W) (golden ratio) = Q" = 9a3779b9 = 1.618033988 ...

The initial value of 5[0] = Pw' The 5 array has 2r+3 elements, where r is the
number of rou nds used for the algorithm. (5[OJ .. 5[2r+3]).

The 5 array is then modified with the following formula, initialis ing all its values.
The 5 array elements are words.

5[iJ = 5[1-1J + Qw

This process is repeated from i=l to 2r+3. The operations are performed modulo
2w, where w is the size of the words being used in the algorithm. The bigger the
word size (w) of the system, the more accu rate the values of Pwand Qw, as
specified in the paper [R.Rivest,199S] . "These va lues are somewhat arbitrary, and
other va lues could be chosen to give custom or proprietary versions of RC6" [
R.Rivest, et at]. This essentially means any values that are difficult to determine
can be used to initialise the 5 array as long as they are Independent of the key.

Step 3

The final step mixes the Land 5 array together. The operations are designed to be
relatively one way, so it Is difficult to determine the user key from the 5 array. The
mixing is repeated by the maximum of c or (2r+4) multiplied by three.

LoopUmit = 3 * Max(c,2r+4)

Four temporary variables are used for the mixing process, A, B, I, j. All of which are
initial ised to zero before the operations are performed .

For loop = 0 to LoopLimit do
A =5[IJ = (5[IJ +A+B) «3
B =L(jJ = (L(jJ + A+B)«(A+B)
I = (i+1) mod (2r+4)
J = (j+1) mod c

End For

The result of x «y, means that x is shifted to the left by y places, All operations
are carried out modulo 2w

, The S-Box array is the same for encryption and
decryptlon. The key schedule algorithm is almost exactly the same one used in
ReS, as It has shown to be quite successful in the past.

Secure Internet Auctioning System Page 110
RCO

The Encryption Algorithm

Encryption with RC6 w/r/b, (word size/rounds/key size in bytes) is a block cipher 50

the plaintext is treated as such. Thus far the key has been generated and it resides
in the 5 array. or the expanded key table. The 5 array is not quite an S-Box as the
values in it are used sequentially as opposed to the lookup method used in an 5-
Box. The encryption encrypts four w bit words at a time. These words are placed
into the variables A, B, C, D. They are also known as registers.

The plaintext is placed in the word registers using little endian notation, whereby
the first byte of the plaintext takes up the low order byte of the word A. The fourth
byte of the plaintext is the high order byte in the word A and the fifth byte of the
plaintext then takes its position in the low order byte of 6, and so forth.

The 5 array is initially added to the plalntext and thereafter it is mixed In with the
encryption function. This helps in distributing the key and the plaintext, and
increasing the entropy of both . The algorithm is as follows:

8 = 8 + 5[0]
0=0+5[1]
For (i=l;l<r;i++)

t = (8 * (2B+1) «log, w
u = (0 * (20+1) «log, w
A = «A Ell t)«u) +5[21]
C = «C Ell u)«t) +5[2i+ 1]
(A, B, c, D) = (B, C, 0, A)

End For
A = A + 5[2r+2]
C = C + 5[2r+3]

The values of 5[0] and 5[1] are added to the B, and D respectively. The main
operation then begins and is repeated r times. The user specifies all the values of r,
wand b. The variables t and u are temporary for holding the information as it is
modified in each round . The interesting aspect about this algorithm Is the fact that
it is so short and simple. This leads to efficiency in computation. The aim of the
designers of RC6 was to meet three requirements, security. simplicity and good
performance.

The values of A, B, C, D are modified in a Feistel network fashion. The actions
performed by (B * (2B+l) «1092 wand (D * (2D+l) « log2 w, are actually the
transformation function being applied to half of the values each round. The one to
one function that is used to change each register is:

F(X) = x * (2x+1) mod (2W)

Theorem:
F(X) = x * (rx+s) mod (2W)
Is one to one over {O,l,2,,,,2W

-
'
}, whenever r is even and s odd

for any integer w>=O

Proof: by contradiction
Assume F(x) = F(V) for x <> V
Then
x(rx+s) =y(ry+s) mod 2w

r(x'-v') = s(V-x) mod 2w
,

Secure Internet Auctioning System Page 111
RCO

Thus r(x+y)(x-y) = -s(x-y) mod 2 " .
But 2 divides the left side more times than the right side. QED [R.Rivest]

A B c

8[O J

f

Igw

«<r--t---------t-------------+---"

I

-~--9 S[2r+ 3]

C

o

I

T
o

8[1]

rerutal
for r

rounds

Fig 7.3.1 Encryption with RC6-wjrjb. F(x):x (2x+l) [R.Rivest, et 01, 1998[

The function's design is to diffuse the information being encrypted, thereby hiding
all relationships and statistics. After the transformation function Is applied the
values are XORed with previous values and then rotated. Once these values have
been rotated the next elements of the key are added. The left rotations are
dependent on the va lues transformed in u and t.

One can see that this plaintext is split up and values are swapped at the end of
each round. The values of A and B are not simply swapped with C and D, instead
they are mixed , (A, 8, C, D) :: (8, C, D, A). This means that the va lues are equally
shifted to the left every round and each element will be changed accordingly. It will
obviously take four rounds for each element to move full Circle back to its original
register .

As rand b increases so does the security of the algorithm. This is because the
plaintext is distributed more evenly as the rounds increase, and a larger key will
make it more difficult to guess (i ncreased key entropy). However this tends to slow

Secure Internet Auctioning System Page 112
RCO

down the speed of the encryption and decryption. The 5 array is not l ike other
algorithms that can access any element of the array at once, which requires the
entire array to be In memory. It uses the elements sequentia lly, and therefore only
one element at a time needs to be dealt with. This saves vast amounts of memory,
and is a big reason why RC6 is targeted at applications that use minimal memory
(Smartcards, etc)

The add ition of the key to the regi sters before the rounds begin

6 = 6 + 5[OJ
D = D + 5[lJ

and after the rounds end,

A = A + 5[2r+2J
C = C + 5[2r+3J

is known as the pre and post whitening stages. The reason for these stages is that
if it is not done the plaintext will reveal the input in the first part of the encryption,
and the clphertext will reveal the part of the input of the last part of the encryption.
This is something that ca n be attacked so the key Is added to hide this information.
This forces the cryptanalyst not only to guess the key used in the algorithm but
also to guess the values used for whitening.

The Decrypt ion A lgorith m

As the encryption algorithm makes use of left rotations, XOR's, multiplication and
the swapping of values, all the decryption algorithm does is invert each stage of the
encryption algorithm. This includes right rotations, XOR's, divisions and reverse
swapping of values.

The clphertext is placed In the same registers A, B, C, 0, In the exact same format
little Endlan format the encryption algorithm uses. The same number of rounds r
are used, and the same keys in the 5 array are used.

The algorithm is as follows

c = C - 5[2r+3J
A = A - 5[2r+2J

For (I = r; i> 0 ;1--)
(A, B, C, D) = (0, A, B, C)
u = (D*(2D+1)) «Iog,w
t = (B*(2B+1))«log,w
C = «C-5[21+1]»>t) El) u
A = «A-5[2I]»>u) El) t

End For

D = D-5[1J
6 = 6-5[OJ

The decryption starts at the last round and essentially undoes what the encryptlon
algorithm performed. Reversi ng all t he results round by round until the orig inal
va lues are attained.

Secure Internet Auctioning System Page 113
RC6

An Example

As an example, using w/r/b = 32/4/4. Please note that some values may be
negative, as this is due to the rotations of the integer values. Integer values must
be in the ran!}e (_232+ 1) to 2n, any value exceeding this will simply wrap around,
hence the negative values.

Let the user key be,

o 1 23

This is then given to the key schedule algorithm, wh ich then expands the key
schedule .

C = 1, therefore there is only one element in L

L[OJ ~ 50462976

The initial values of S are then calculated for 2r +4 elements of S.

S(OJ ~ Pw = Oxb7e15163
5[0 .. 12J = {1209970333 1444465436 -196066091 -1836597618 817838151 -
8226933761831742393191210866 -14493206611205115108 -435416419-
2075947946}

The values of L[] is mixed into S[] , which results in the finalS array value of

S(O .. 12J = {1089557206 -2003891483 2122675648 - 172460913 -1170572592
955928541 -1506510775 -129986502 -5240755341310761307 - 1839897398
1162524834}

Now to encrypt the message " Hello World !", first one converts it to integer values,
this is done using the CryptUb method ConvertAnyString(String), that converts the
string to bytes and then to integers.

Hello World!
181904314418679809115602294900

When the values are passed into the encryption algorithm they are placed in the
registers A, B, C, 0 where

A=1819043144, B~ 1867980911, C~ S60229490, D=O

A bit of pre-whitening takes place and the values of 8,0 are increased by 5[0] and
S[lJ respectively.

A=1819043144 B= -1337429179 C= 560229490 d~ - 2003891483

The algorithm then starts performing the rounds. It determines t, u and then the
resulting A and C values. The values A, B, C t 0 are then all swapped.

Round = l
t~ - 1227714832

u~621646576

A= 1782468734

Secure Internet Auctioning System

C=1782468734
Before

RC6

A=1782468734 8=-1337429179 C=-197494536 d=-2003891483
After
A=-1337429179 B=-197494536 C=-2003891483 d=1782468734

Round=2
t=-374657264
u= -578187064
A=-165 1 060695
C=-1651060695
Before
A=-1651060695 B=-197494536 C=-752376605 d=1782468734
After
A=-197494536 B=-752376605 C=1782468734 d = -1651060695

Round=3
t=-1134760272
u=-2038191764
A=261684431
C=261684431
Before
A=261684431 6=-752376605 C=-246186761 d=-1651060695

After
A=-752376605 B=-246186761 C=-1651060695 d=261684431

Round =4
t=-184732878
u=1361801790
A=716825574
C=716825574
Before
A=716825574 B=-246186761 C=-696265647 d=261684431
After
A=-246186761 B=-696265647 C=261684431 d=716825574

After the rounds are complete, the post whitening takes place.
A= -2086084159 B=-696265647 C=1424209265 d=716825574

Finally our ciphertext is
-2086084159 -696265647 1424209265 716825574

Page lJ4

To decrypt, the ciphertext and key are passed to the decryption algorIthm, and the
first thing that takes place is the de-whitening

A=-246186761 6 = -696265647 C=261684431 d=716825574
This is where C = C - S[2r+3] and A = A - S[2r+2]. The rounds then begin starting
at the highest round and decreasing there after

Round=4
A=716825574 6=-246186761 C=-696265647 d=261684431
t=-184732878
u=1361801790
A=-752376605

Secure Internet Auctioning System
RCS

C~-246186761

Until we get to the last round,

Round=1
A~ 1782468734 B~-1337429179 C~ - 197494536 d ~ -2003891483

t~-1227714832
u~621646576

A~1819043144

C~-1337429179

Page 115

After the rounds are complete the values left in the registers are the following:
A ~ 1819043144 B~-1337429179 C~ 560229490 d ~- 2003891483

The final values of the key are then subtracted (D ~ D-5(1) and B ~ B-5(O)) which
results In

A~ 1819043144 B~ 1867980911 C~560229490 d~O

These are the same values as our original plaintext, which Is "Hello World!"

7.4) RC6 Implementation

Due to the non-disclosure agreement that was signed with NIST, I cannot display
any of the actual code for the algorithm. However I will discuss pseudo code for the
RC6 algorithm.

The Class has a number of predefined variables, these are the 5 array and the
values of rand w. All of these are stored as integers. The RC6Crypt initialise
method performs the following:

//RC6Crypt.Java RC6Crypt method
CL ~ New CryptLib
W~32

R ~ 20
User_key[32] ~ 0
5 = generate_ Keys(User_key,32)

A new object of the CryptUb class Is created. as a few of the methods are used by
the encryption and decryption functions. A default user key is created which is set
to zero. This enables a default 5 key array to be created, when generate_ Keys is
called. The values of wand r are set to 32 and 20, but these may be changed to
increase the secu rity of the algorithm at a later date.

There are two encryption and decryption functions, and the method for generating
the keys.

Generate_Keys(userKey, size)

This method takes a user key of bytes and uses it in the key schedule to expand
the key into the 5 array. It returns the S array of type integers.

Secure Internet Auctioning System

5 = new integer[2*r+4]
S[OJ = Oxb7e15163

RC6

For (loop=1;/00p«2*r+4);/00p++)
S[loopJ = S{loop-1J + Oxge3779b9

End For

Page JJ6

This section initialises the 5 array as described in step two of the key schedule.

c = key_'ength / 4 + Key_length % 4
L = new integer [cl
For (looP=Oiloop<key_'engthiloop+4)

L{loop/4J = ConvertTo[nteger(UserKey{loop .. /oop+3J)
End For

This section determines the length of c (Amount of words In the bytes), and then
converts the bytes to integers which are placed in the L array, as described in step
one of the key schedule.

A= B=i=j=v=O
v = max(c,2*r+3)
for (loop=li1ooP < VilooP++)

A = S[/oopJ = (S[iJ+A+B)«3 or (S[iJ+A+B»>29
B = L[LoopJ = (L[j]+A+B)«(A+B) or (L[j]+A+B» >(-1 *(A+B))
[=(l+1) % (2*r+4)
] =(j+1) % c

End for

The third step of the key schedule initialises all the variables used to zero. Then it
determines the maximum of c or 2*r+3. The 5 array and L array manipulation then
take place. The reason that I have ORed both of these steps with the two rotations
«<3, and »(32-3» is that this stops the timing attack that is discussed later.

Finally once the key schedule is complete it returns the 5 array.

RC6Encrypt(pla intext String, u serkey)

There are two version of the encryption, one accepts a string and the other four
integer values in an array.

Tempint[] = CryptLib. ConvertAnyString(P/aintext)
For (loOP=Oi loop < Templnt. LengthiloOp+4)

BlockPlain text[4] = Tempint[loop,loop+ 1,loop+2,loop+ 3]
B/ockP/aintext[4J = RC6Encrypt(B/ockP/aintext{],use key)
Ciphertext += BlockPlaintext

End for

The current method accepts the plalntext, and converts it to an array of integers,
which is of uniform length that is divisible by four. The ConvertAnylnteger pads the
end with zeros if it Is not long enough. Then the code copies four elements of the
plain text integers into an array of four elements. These four elements are then
encrypted using the other RC6Encrypt method, passing the array of four plaintext
integers and the user key. The result of this is then added to a string called
ciphertext. The loop continues looping until all elements in the plaintext integer
array Tempint have been encrypted. The cl phertext string is returned.

Secure Internet Auctioning System Page 11 7
RC6

RC6Encrypt(plaintext[] Integer, userkey)

This method accepts the four plaintext elements and the key. This method then
proceeds to encrypt the four integer (also known as word) values. The plaintext
elements are copied to variables a, b, c, d.

a=b=c=d=t=u=O
a=plaintext[OJ, b=plaintext[lJ, c=plainlexl[2J, d=plainlexl[3J
5= user key

The algorithm then proceeds with the whitening of the input.

b+= 5[OJ, d+=5[lJ

Once this has been achieved the rounds begin,
For (loop=l;loop< =r;foop++)

1= (b*(2*b+ l)
1 = (1« log,w) or (t»(w-Iog,w))
u = (d*(2*d+l))
u = (u« I092W) or (u» (W-Jo9 '2W))

This Is done as a two step process, as then it is more efficient to calculate the value
of x*(2*x+l) once, and then performs the data dependant rotations. Wherever
possible I have tried to speed up the encryptlon by hard codi ng elements that
would not change in the application.

a = (a Xor I)
c = (e Xor u)
a = ((a < <u)or(a»-u)) + 5[2*loopJ
e = ((e«I) or (c»-I)) + 5[2*loop+lJ
(a, b, c, d) = (b, c, d, a)

End For

To optimise calculations the same procedure is followed in the calcu lations of a and
C initially. Thereafter the shifting, left and right, of a and c Is performed. Finally the
values of a, b, c, d are all swapped.

The post whitening then completes the encryptlon

a+= 5[2*r+2J
c+=S[2*r+3J
Plaintext[OJ= a, Plaintext[lJ= b, Plaintexl[2J= e, Plaintexlf3J= d

The plaintext array of four integers is then returned.

RC6Decrypt(ciphertext String, userkey)

The same process is used in this method, as the RC6Encrypt(String, key) method.
The string is converted to a uniform length integer array. A loop is then executed
taking four of these integers and calling the RC6Decrypt(Ciphertext[] Integer, Key)
method. The results are then appended to a string called plaintext.

Tempint{j = CryptLib. ConvertAny5Iring(CipherText)
For (Ioop=O;loop < Templnt. Length;loop+4)

BlockCipherText[4} = Tempint[loop,loop+ l ,foop+2,loop+ 3}

Secure Internet Auctioning System
RCO

BlockCipherText [4} = RC6Decrypt(BlockCipherText[],use key)
Plaintext+ = BlockCipherText

End for

The results are then returned in the plaintext string variable.

RC6Decrypt(Ciphertext(] Integer, UserKey)

Page 118

The same registers and variables are used in this method as the RC6Decrypt
(Plaintext[J Integer,UseKey) method. They are all initialised as the algorithm
proceeds.

a=b=c=d=t=u=O
a=Ciphertext[O}, b= Ciphertext [1}, c= Ciphertext [2}, d= Ciphertext [3}
5= Userkey

The removal of the whitening then takes place

a- = 5[2*r+2}
c-=5[2*r+3}

And the rou nds begin from the r down to the last round one.

For (Ioop=r, loop>O;loop--)
(b, c, d, a)= (a, b, c, d)

t= (b*(2* b+l)
t = (t«IOg2W) or (t»W-IOg2W)
u = (d*(2*d+l))
u = (u« I092W) or (u»w-I092W)
a -= 5[2*loop}
c -= 5[2*loop+l}
a = ((a < < u)or(a > >-u)) Xor t
c = ((c«t) or (c»-t)) Xor u

End for

This reverses the operat ions performed by the encryption process. The same
optimislng methods have been used for the decryption method as were used for the
encryptlon method.

b -= 5[0}, d -=5[1}
Ciphertext[O}= a, Ciphertext[l]= b, Ciphertext[2}= c, Ciphertext[3}= d

The ciphertext integer array of four elements is returned, containing the recently
decrypted ci phertext.

7.5) RC6 Usage

The client and server application has a copy of the RC6Crypt class. This Is initialised
on the initialisation of the CryptUb class. As has been mentioned before the cl ient
generates the user defined key . The client sends this key, first encrypting it with
RSA, to the server. The server then decrypts the RSA message and obtains the key.
The key Is specific to each client, and therefore the copy of the key is kept in each

Secure In ternet Auctioning System Page JJ9
RC6

clienthandler class. Therefore each client has their own session key which wi l l be
different f rom any other client key. Once the key is received it is then given to the
generate_Keys method which executes the key scheduler which will create the
correct key for encryption and decryption .

The Cryptlib class deals with the administration of the algorithms and their uses . It
monitors which algorithm is being used, it also executes the corresponding key
scheduler method. This generates the key in the 5 array . The cl ient and the server
perform the same key schedule method and hence they wi ll have the same key for
the current client's session. Once the key has been generated, and there are no
problems, the encryptlon then changes from RSA to the specified encryption
algorithm (i n this case its RC6).

//ClientHandler.Java - send method

If (encrypCmode>O)
CurrentMesg= CL. Encrypt(CurrentMesg,Key)

EndIf

Thereafter whenever the SendMsg method is cal led by t he client , and Send method
by the server, the messages are first passed to the CLEncrypt() method. This
method passes the message to the RC6Encrypt(Strlng,UserKey) method , which
encrypts the message and returns a set of numbers in a string format. This is the
ciphertext, and it is then sent to the recipient of the message.

//CllentHand lerJava - run method

CurrentMesg = ReadStream
If (encrypCmode >O)

CurrentMesg= CL. Decrypt(CurrentMesg,Key)
EndIf

When the client or server rece ives a message, it is first passed to the CL.Decrypt
method which passes it to the correct decryption method (RC6Decrypt(String,
UserKey». This method decrypts the message, and then the message is dealt with .
I f any errors occur while decrypting messages they are ignored, and the error is
reported to the administrator.

7.6) T imin g

Speed tables are used to show the reader how much quicker a symmetric
cryptosystem over asymmetric cryptosystems is. The algorithm has been optimised
in one or two places, but for the sake of readabi l ity It Is as close as possible to the
pseudo code. The Optimised implementation results of RC6 are from [R.Rivest, et
aJ) performance figures .

Secure In ternet Auctioning System Page J20
RC'

Lanquaqe Scheme Blocks Sec Mbits Sec

Auction RC6
lDK 1.2 EncrvDtlon 4545.45 0 .554
JDK 1.2 Decrvotion 6250.0 0.762

Optimlsed
Imolementations
JDK 1.1.7 Encrvotion 12100 0.19
JDK 1.1.7 Decrvotion 12300 0.19
Java JIT) Encrvotion 197000 3.15
Java (lIT) Decrvption 209000 3.35
ANSI C EncrvDtion 325000 5.19
ANSI C DecrvPtion 353000 5.65

Fig 7.6.1 Encryptlon a nd Decryptlon figures of RC6 32/20 / 32

The Auction version of RC6 has been implemented and tested on an Intel PII 4S0.
The encryptlon's and decryption's were performed one thousand times each to
obtain a good average. It can be seen that the Auction implementation on the
whole Is slower than most of the optimised figures quoted. These optimlsed
implementations were executed on an Intel Pentium Pro 200 . In the article by
[B.Schneier, et al] the performance implementations are discussed , as it is noted
that the performance of RC6 on a Pentium Pro ie; three times faster than on any
other Pentium class chipset. The reason for this is that multiplication and variable
rotation are not naturally supported by these chipsets.

RC6 also has huge differences in speed depending on t he type of Chipset (ie RISe,
Intel, etc). The main reason is because of the integer multiplication that takes
place. It is interesting to note though, that the optimised version of RC6, when
executed with a JIT compiler is not that much slower than the ANSI C version. As
Java has always been hailed as much slower than e on all platforms this is an
encouraging sign. [B.Schneier, et al], relates a more in depth discussion of the
performance of RC6 and the ot her AES candidates on different platforms (32-bit
and 64-bit).

The results of the timings do indicate however that the current implementation
used for the auction application will more than suffice. The average message size is
only a few bytes (approximately 32 bytes, 1 block = 16 bytes) long, and
approximately five blocks need to be encrypted or decrypted per a client. The
server application could handle easi ly over one thousand clients .

7 .7) Attacks

As RC6 is based on RCS, many of the attacks wi ll follow the current trend of attacks
on ReS. There are two ways in which the algorithm is going to be broken. Breaking
the key schedule, or breaking the algorithm, and both will be discussed.

Key Schedule Attack

The Re6 algorithm can use up to 2040 bit keys, which means the key space is very
large. It has been suggested that when the key size is very large there is a good
chance that there are Similar keys. These are known as equivalent keys, which are

Secure Internet Auctioning System Page 121
RCO

keys that will perform very simi lar encryption [M-J. O. Saarinen). If this is t he case
then the key space is not as large as initially expected. There is no proof that
different keys yie ld the same round of keys. As an example, the chance of two 2S6-
bit keys existing and y ielding a table of 44, 32-bit round keys is approximately

22'256-44>32 = 2-896 (High ly unlikely in other words.) [R.Rivest, et al]

RC6 uses forty four keys for a twenty round implementation. Two are used for pre­
whitening (5[0] & 5[1]), forty are used for the rounds and two more are used for
post whitening (5[43] & 5[44]). If the keys used for encryption of the same
plaintext, differ by 5[43J and 5[44] (two key elements), the ciphertext w ill be
constantly different as wel l. This means that one can start to look for matches when
using different keys. By guessing just two key elements, one can decrease the key
space considerably. Instead of 44 elements, only 42 are required . This can be used
to mount an attack on the system, and it w ill certa inly decrease the amount time
required for a brute force attack.

Using this idea, it has been suggested by (M-J. O. SaarinenJ, that one can guess
round va lues when generating the key. It has also been shown that if one selects a
value of L[i), it wi ll only change the values from 5[i+1,,,,43]. If one is able to
determine 5[43J and 5[42], one can get an approximation of L(43-i). The problem
here is that the key scheduJer is a one way algorithm, in as much as the rotational
value (A+B) is lost once the rotation has been completed for the rounding, making
it difficult to reverse the process. This is what makes the attack impractical.

As this is the same key schedule that has been used for RCS, it has been
extensively cryptoanalyzed. What has been concluded is that due to the nature of
the scheduler and the algorithm that uses it, there are no weak keys. In other
words all keys should be equally as strong.

Timing Attack

The timing attack comes about because of the data dependant rotat ions of the
encryption algorithm. "Rivest notes that on 'Modern microprocessors, a variable
rotation ... takes constant time"'[H.Handschuh, H.Heys]. As this is not always the
case with modern hardware it ca n lead to some susceptibility. The bits have to be
moved or swapped bit by bit. Each movement takes time, and one can determine
from this what the rotational value is. This attack was original noticed in RCS, but
the same idea may be extrapolated out to RC6.

A full discussion on the attack on Res is discussed in (H .Handschuh, H.Heys], and
some interesting Ideas can be drawn from this attack. The attack measures the
time of the entire rounds of encryption. It then be easily determined what the time
is for one round of operation. As all the operations are known in each round, one
can break it up into the fixed time operations and the variable time operations per
round. This fixed time operations do not change, and hence if once subtracts it from
the total round time one is left w ith the variable operations time. This is the time
used for rotating «A $ t)«u) and «C $ u)«t). With work and approximations
one is able to determine important va lues for each round which may allow
reconstruction of the piaintext.

This attack is aimed mostly at the likes of smart cards, etc. It would be difficult to
gather the t iming information in the curren t implementation due to the fact that the
cryptanalyst does not really have access to the machines being used, as well as the

Secure Internet Auctioning System Page 122
RC.

timing information. The current implementation is not immune to this attack, so a
solution has been put in place to nullify the attack.

As recommended by [R.Rivest, et al], a modification to the implementation of the
algorithm which does not cha nge the encryption is used. To do this the left shift of
x bits Is ORed with a right shift of (w-x) bits. The time of the rotation now becomes
data independent, and the timing attack will not succeed.

Linear and Differential Cryptanalysis

To mount any of the Linear or Differential attacks on the system it needs large
amounts of corresponding ciphertexts and plaintexts. This in practise is difficult to
obtain, as the auction system will probably not generate the kinds of
plaintext{ciphertext that is required, and even then the attacker will need to know
the values of the plaintext{ciphertext pairs.

Differential cryptanalysis examines the evolution of simi lar plaintexts as t hey are
encrypted with the same key, giving probabilities for each iteration of encryption.
This allows one to make approximations of the plai ntext as it is encrypted and the
keys used to encrypt it. The most powerful differential attack on RC6 uses
differences in va lues (Le A-B) to help obtain the probabilities of plaintext values.
However the main problem with this is that it requires large amounts of plaintext.
As mentioned in [R.Rivest, et at], RC6 32{8{b (8 round) requires 276 of chosen
plaintext it mount such an attack. When one expands this attack for greater rounds
it does not fare as well as it becomes exponential ly hard er on each rounds iteration
to determine the keys and plaintext.

Linear cryptanalysis uses known plaintext to approximate the actions of the
algorithm. This is done incrementally with large amounts of plaintext, and one can
then start determining information about the key. The attack uses a linear
approximation over a number of rounds regarding the quadratic function. This
method works rela t ively well over a short number of rounds (6 to 8), but thereafter
the numbers dealt with and required amount of plaintext to mount the attack
becomes incredibly large. The suggested amount of plaintexts to mount a linear
attack is of the order 2182

, which is more than cu rrent auction applica tion will
encrypt in a lifetime of operations. (To encrypt 264 and 280 blocks of data on 50
machines capable of encryption rate of 1012 bits/sec would be 1 and 98000 years
respectively [R.Rivest, et at])

These techniques of cryptanalysis wil l work, but there are really three problems
that prevent them from doing so. The amount of plaintext, and ciphertext required
is not even attainable. The computing resources required wou ld be enormous, and
the time it takes to perform all these attacks would invariably be an exponentially
large number. Bearing in mind that the auction application does not deal with large
fi scal va lues and the life span of the messages is relatively short, barring any huge
advances in cryptanalysis and computing power the algorithm is secu re enough.

Brute Force

It has been shown that to mount a brute force attack on the system, the exhaustive
key search difficulty is estimated to be the minimum of (28b, 21408)[R.Rivest, et at],
where b is the number of bytes of the key. If the user key were larger than the
table of keys it would be easier to guess this latter.

Secure Internet Auctioning System Page J23
RCO

The problem with the brute force attack is that it gets exponentially difficult to
perform as the size of the key increases, as there are more va riations to attempt.
This means that the algorithm does not really have a weakness and the only other
alternative is to try all keys. This shows that the algorithm is strong, and unless a
weakness is found it will take a large effort in computing, fiscal and time resources
to determine the ciphertext. As the life span of the keys and messages is not all
that long, it would be improbable that the ciphertext messages examined would be
broken within the required time. The opportunity cost of breaking the ciphertext
message is not quite enough for someone to mount this exorbitant attack on the
system.

Secure Internet Auctioning System Page 124
RC.

7.8) Conclusion

The RC6 cipher is based on a proven secure algorithm, and has been improved to
take advantage of 32-bit systems. It was decided to stick with the suggested
Implementation of the algorithm RC6 32/20/b as it has been shown in the literature
available that anything less than this will weaken the system.

One has to choose between speed and security trade-offs . The higher the number
of rounds the slower the algorithm, but the more secure it becomes. At the moment
the algorithm more than meets the requirements of the auction application in both
the speed and security departments.

With current trends and technologies it is not feasible or viable to attack the auction
system, and unless some inherent weakness in the algorithm is discovered it will
protect the information more than adequately.

The next section will examine the implementation of and attacks against MARS.

Secure Internet Auctioning System Page J25
MARS

8) MARS

The MARS algorithm was designed and created by IBM as a replacement for the
DES cryptosystem. IBM originally designed DES in the seventies. MARS is a result
of a group of eleven IBM cryptographers, and majority of information comes from
the paper by [C.Burwick,eta,1998].

8.1) Overview

The MARS algorithm was designed with a number of predefined specifications in
m ind. The choices as related by [C.Surwick,eta,1998] are as fol lows:

Operations

The algorithm was designed to take advantage of the current computing
technology. This involved the usage of strong operations, wh ich are operations that
can be easi ly and quickly performed by computers.

Structure

The structure of the algorithm is very important, and it has been shown that
different parts of the structure perform different security actions. MARS was
designed to use a mixed structure.

Analysis

All the components of the MARS have been designed so that extensive analysis may
take place. This enables one to examine each component and note is strengths and
weaknesses.

As an introduction to symmetric ciphers has been given in the previous chapter we
may now proceed to the MARS Algorithm itself.

8.2) The MARS Algorithm

MARS is a symmetric key block cipher, which supports variable key sizes. The block
size used is 128-bits, and the key size varies from 128 bits to 1248 bIts. As has
been indicated the MARS algorithm was designed with a number of prerequisites in
mind.

The operations used in the MARS algori thm are XOR's, multiplication, addition,
subtraction and rotations. The XORlng of keys and information mixes the two
together. All XOR's have additional operations included, as it is not a strong
cryptographic primitive operation by itself. It is however a reversible operation
which makes it very useful for undoing the operat ions initially performed.

Addition and subtraction are standard operations on any processor, and one will
find that they are incredibly quick to perform. Hence the reason they are so
common in most algorithms today. Multiplications were initially very expensive

Secure Internet Auctioning System Page 126
MARS

operations on computers, however this has changed as technology has developed,
and it now on ly take 2 machine cycles to complete on modern architectures.

The rotations used are of two types, fixed and data dependant. The fixed rotations
are used to obtain the required bits out of data. The data dependant rotations are
used because of their strong cryptographic results, wh ich prevents certain types of
attacks. There are a few weaknesses but these wi ll be addressed later. On the
whole rotations are re latively quick operations on modern computer architecture.

Another operation that takes place is that of the table lookup of the S-Box. This is
the basis o f security in the MARS algorithm. It has been shown that S-Box's resist
differential or linear attacks, as they are non-linear in operation. The problem with
the S-Box (512, 32 bit words in MARS) is that the operations are quite costly in
resources. It require memory lookups, and the S-Box is usual ly memory intensive
as this is where it resides.

The development of MARS was aimed at complementing the cu r rent strengths of
computer archi tectu res today. The algorithm requires an S-Box, an expanded Key
and the encryption/decryption functions that will be discussed next, and are shown
in the paper by [C.Burwick, et a/] .

The S-Box

The S-Box for MARS has been developed to resist linear and differential attack by
carefully picking the entries used. The elements have been generated using SHA- 1
(A hashing algorithm) . The three inputs were 'It, e and a constant c, which was
changed for a number of iterations. The S-Box that was developed went through
226 different values of c until a value was found that met the requirements below.

Each S-8ox and its elements was checked for certain properties. Some of the
differential properties were as follows

• No all zeros or all ones in a word
• Every entry differs by at least four bits
• 5 has no entries where S[i]=S[j] or -S[i]=S[j] or S[i]= -S[j] with i * j

The linear properties:

• Two Consecutive bi t s have a probabi l ity of 1/30 of occu rring.

The generated S- Box has been checked for strengths of its va lues as they make it
difficult for ana lysis to take place. This S-Box is recommended jf one wants to keep
MARS secure. Other S-Sox's may have weaknesses or inadequacies that cou ld be
exploited.

The Key Schedule

The key schedule expands the user key, which is comprised of n 32 bit words, into
an array K[] of forty words. The user key requi res no predetermined structure, all
structure is created in the key generation. The key elements created have two
provisions, the last two bits are set to one, and there are no elements that contain
all ones or all zeros. There are four steps in the key schedule algorithm.

Secure Internet Auctioning System Page 127
MARS

Step 1

The f irst step initialises an array T[], which has forty seven elements. The T[] array
is indexed as -7 .. 39. The first seven ent ries are then filled with the first seven
entries of the S-Box.

T[i] = 5[i+7], T[-7]=5[O] .. T[-1]=5[6],

Once this has been completed the user key is then mixed in using the fol lowing
formu lae,

T [i] = ((T[i-7]EI)T[i-2])«3), i= 0 .. 38
T[i] = T[i] El) k[i mod n] El) i

This XOR's two of the current T{I] values, and then sh ifts these values to the left by
three positions. Once that has been completed, the va lue of T[I] is then XORed with
the user key k. The index to determine which user key is used is given as
(i mod n), where n is the leng th of the user keys in words (n = UserKey Length).
This means that if t he index i is out of the user key index range, it then starts
repeating the keys used so that all the va lues of T[i] will have user keys mixed in .
The aim is spread the user key throughout the expanded key. The key is then
XORed with the val ue of the index.

T[39] = n

ThiS is used so that no two keys of different lengths generate the same key, If one
has two different length user keys of all zeros, it wil l force the resultant keys to be
different.

Step 2

Once the ar ray has been created it is then mixed using a Feistel network. There are
two operations that are performed seven times.

For (rou nds = 1 to 7)
For (i = 1 to 39)

T[i] = (T[i] +5[Low 9 bits of T[i-l]]) < <9
End For
T [O] = (T[O] +5[Low 9 bits ofT[39]]) < <9

End for

The inner loop adds the current T array elements to a S-Box element. The index
used to determine which S-Box element to use, is the lowest nine bits of T[i-l].
Once this loop has fini shed the T[O] operation is performed manually as when i=O
the T[I-l] element equals T[-l], and one wants wrap around of the elements.

Step 3

The words in the T(] array are then placed in the 40 element key array K.

For (i=O to 39)
K[7*i mod 40] = T[i]

The words are then placed in the K array in the order specified by seven multiplied
by the loop variable I modulus forty. The elements will be placed such that

Secure Internet Auctioning Sys tem Page 128
MARS

K[O) = T[O) , K[7) = T[l), K[14)=T[2) .. , K[35) = T[5), K[2) = T[6)

and so forth. This means that the elements are reordered.

Step 4

The final step checks the keys that are used for multiplication in the encryption and
decryption. The check is to prevent the formation of weak keys, such as zero or
one, as this will cause the algorithm to be susceptible to cryptana lysis. The keys
that are checked are K[51,K[7] .. K[35]. Any key is considered weak if it contains
more than nine consecutive zeros or ones.

For (i=5 to 35, i+2)
j = least 2 bits of K[i)
w = K[I), with least two bits set to one.
M = bit mask of K[I),
If M = 0 then K[I) • weak
End if
If M = I then K[I) =weak

Else

End For

r= least five bits of K[i+31
K[l) = w$«B[j)«r) OR M)

If there are any ten consecutive zeros or ones in the value of w, the key is weak.
To resolve this, whenever there are two or more consecutive zeros or ones in w,
the last bit of the consecutive values are changed to zero.

If w = 031 150 1201(superscript indicates the amount of consecutive ones or zeros),
then M consider consecutive runs of zeros or ones a one, so

where 1150 12 are considered by the mask as twenty seven ones. Now one must
change the zeros to ones at the end of each consecutive list of ones or zeros. So M
becomes

One uses the Key elements K[i+3] to determine a data dependant rotation r. The
array 8[] contains the elements in the S-8ox at position 265 .. 268. They have non -
repeating values in them, where no large consecutive zeros or ones exists and are
well suited for the rotation by r . This is then ORed with M, and the result of this is
XORed with w, resulting in the new K[i]. As the va lues in 8 are known the new
values of K[I] will not be a weak key.

Encryption Algorithm

There are a number of arrays that are used. SE] is the S-80x that has five hundred
and twelve 32bit words (So = first 256 elements, SI = second 256 elements). K[] is
the key generated by the key schedu le algorithm, wh ich consists of forty 32bit
words. D[] is the input array consisting of four 32bit words.

Secure Internet Auctioning System
MARS

There are three phases in the encryption process, forward mixing, key
transformation and backward mixing.

Forward Mixing

Page 129

The forward mixing performs pre-whitening. This starts with the first four elements
of the key K being added to the plaintext elements in D[).

For (i= 0 to 3)
D[iJ = D[iJ + K[iJ

Once this has been performed the mixing commences in an eight round feistal
network process.

For (i = 0 to 7)
D[lJ = D[lJ <J) So [lowest byte of D[OJJ
D[lJ = D[lJ + S,[Second byte of D[OJJ
D[2J = D[2J + So[Third byte of D[OJJ
D[3J = D[3J <J) S,[Highest byte of 0[0]]
D[OJ = D[OJ »24
If 1= 0 or 4 then D[OJ += D[3J
If 1=1 or 5 then D[OJ += D[lJ
(0[0], D[lL D[2J, D[3J) = (D[lJ, D[2J, 0[3], 0[0])

End ror

This mixes the plaintext with the key and itself rotates the first plaintext element
0[0] to the right by twenty four (Note: Word length = 32, therefore 24/32 = 3/4).

The four plaintext elements are all moved one element to the left at the end of
each round, and there are eight rounds, which means that each element will be
modified twice by all operations in the round.

This mixes the plaintext with the key and itself rotates the first plaintext element
D[OJ to the left by twenty four (Note: Word length = 32, therefore 24/32 = '14). The
four plaintext elements are all moved one element to the left at the end of each
round, and there are eight rounds, which means that each element will be modified
twice by all operations in the round.

Key Transformation

The keyed transformation is composed of a sixteen round Feistel network of
operations. The function that transforms the values is known as the E-Function I it
takes one plaintext element and returns three elements wh ich are mixed in with the
rest of the plaintext elements.

Secure Internet Auctioning System Page J30
MARS

Ol]j °l2j Oll] °lOj

Kl3] Kl2j KlOj

twice

~ []I] H,]2 S-boxc,

EB :Iddition !S»> right-rotation by R

Fig 8.2.1 The Forward Mixing phase [C.Burwick,el 0,19981
For (1=0 10 15)

Oul[] = E-Funclion(O[O), K[2*i+4), K[2*I+s))
0[0) = 0[0) «13
0[2) = 0[2) + Oul[2)
If 1=8 Ihen

Else

End if

0[1) = O[l)+Oul[l)
0[3) = 0[3)<D Oul[3)

0[3) = 0[3)+Oul[1)
0[1) = 0[1) <D Oul[3)

(0[0), 0[1), 0[2), 0[3)) = (0[1), 0[2), 0[3), 0[0)
End for

Secure In ternet Auctioning System
MARS

- -
I - ~

.
\

E E

nu t 1 / oull /
D[21

olll2 / 0",

r-
t,u!.1 / o u!.

, Back \Vard~ mode
Dl o,) -I -

E

)Ul~

Itlt2

lull

[)jJl

EB addition

/

/

I

E

mL1 11

lu l2

r-
Hul

~ J2 x 96 cx p:msion function

\3«< Jell-rotation by 13

Page 1.3J

• • •

• • •

Fig 8.2.2 The Keyed Transformation [C.Burwick,et a, 19981

The E-Function accepts D[O] and two keys, it then generates three outputs which
are p laced in Out[1..3J. These outputs are used in the addition and XORing of the
D[l] .. D[3] plaintext elements. Once these operations have been performed all the
va lues In D[] are moved one position to the left. This is done for every round and
hence each plai ntext element will have four occasions in which it w ill occupy a
certain pla intext fie ld.

E-Function

The E function accepts three values, D[O], K[2*i+4] and K[2* i+ 5], which will be
denoted by d,k1 and k2 respective ly. Three temporary variables are used to
manipulate this information A,B and C, which are returned as the output of the E­
Function

A = d + kl
B = (d«13) * k,
i = lowest nine bits of A
C = Sri]
B = 8«5
b = lowest five bits of B
A = A « b
B = B « 5
C=C EIl B
b = lowest five bits of B

Secure Internet Auctioning System Page 132
MARS

c = C« b

A,B and C are a mix of the two keys, the plaintext element and one S-Box element.
The initial value of A is equal to the sum of the first key and the plalntext element.
B is the value of the plaintext element rotated left thirteen places multipl ied by the
second key. The nine lowest bits of A are used as the index to the S-Box, wh ich C
takes the va lue of. B is then rotated left by five. A is rotated by the lowest five bits
of b. The va lue of C Is the XORed with B, and then shifted to the left by the lowest
Five bits of B. The important thing to realise here is that the inFormatIon Is being
spread over as much of the ciphertext as possible, hiding all the possible statistical
data available.

Another important aspect is to realise that these operations have been
implemented in such a Fashion that t hey are reversible, and hence decryption
possible. When examining the decryption one wi ll see that va lues are XORed,
shifted right instead of left and divided Instead of multiplied .

- -
I] « T· (UdJ~

nUl)

III -
r

, oUI2

l.@ oull

EH exclusivc-or rn 9 x 32 S·bo.x

If] addit ion 11 <<'< leO· rotation by n

r;] multirlic<lt ion <t< data-dcpendcnt roTatioll

F'ig 8.2.3 The E·Function [C.Burwick,et a,1998J

Backward Mixing

The backward mixing also performs whitenIng and its types of operations are very
similar to the forward mixing phase.

For (I = 0 to 7)
If 1=2 or 6 t hen 0 [0] -= 0[3]
If 1=3 or 7 then 0[0] -= 0[1]
0 [1] = 0[1] e So(lowest byte of 0(0]]
0(2] = 0(2] - So(HIghest byte of 0(0]]
0(3] = 0(3] - S,(Thlrd byte of 0(0]]
0(3] = 0[3] e So(Second byte of D[Oll
0(0] = 0(0] «24
(0(0], 0(1], 0(2], 0(3]) = (0(1], 0(2], 0(3], 0(0])

End for
For (I =0 to 3)

0(1] = D(I]-K(36+ I]
End For

Secure Internet Auctioning System Page 133
MARS

D[.l] D[2] D[I] D[Il]

twice
x2

K

K

a

K[39] K[3 K] K[37] ~-IK[36]

~ b subtraction (a-b) ~@] 8 x 32 S-boxes

exclusive-or 8«< left-rotation by 8

Fig 8.2.4 The Backward Mixing phase IC.8urwick,et a,1998J

Each round one of the plaintext elements (0[0]) Is used as the source words to
modify the three other plaintext elements. The following round the value of 0[1] is
moved into 0[0], and hence it becomes the source word or the current round, each
element Is the source word on two occasions. On the second and sixth round the
source word subtracts the value of 0[3]. In the third and seventh rounds the source
word subtracts the value of 0[1].

Finally a bit of whitening takes place when elements of the key are subtracted from
all the plaintext elements. The values remaining in the 0[0] .. 0[4) are now the
ciphertext elements.

Secure Internet Auctioning System Page 134
MARS

The Decryption Algorithm

The decryption of MARS Is simple to understand if the encryption was understood.
As the encryption is made up of rotations, XOR's, additions, subtractions and
multiplication's. All of which are reversible operations, it stands to reason that the
decryption will be the opposite of the encryption.

There are three different steps, the forward mixing, keyed transformation and
backward mixing.

Forward Mixing

The forward mixing takes places first, and it uses the same variables that the
encryption algorithm used . O[] is an array of four 32- blt words that conta in the
ciphertext. The S[] array which contains the S-Box array of five hundred and twelve
elements of 32-bit words. The key K[] array has forty elements.

The forward mixing of the decryption reverses the process of the backward mixing
in the encryptlon algorithm and one wil l notice how similar it is. Additions are
replaced by subtractions. XORed values are XORed, and the ciphertext elements
are sh ifted one element to the right in the swapping process. Rotations occur in the
opposite direction with the same measurement of rotation. All operations are
performed in reverse

For (i=O to 3)
o [iJ = D[iJ-K[36+ IJ

End For

For (I = 7 downto 0)
(O[OJ, O[lJ, 0[2J, 0[3]) = (0[3J, 0[0], 0[1], 0[2J)
D[OJ = D[OJ »24
D[3J = D[3J Ell s o[second byte of D[Oll
D[3J = D[3J +s,[Thi rd byte of O[Oll
D[2J = D[2J + s o[Hlghest byte of O[OJJ
D[lJ = D[lJ Ell So [lowest byte of D[OJJ
If 1=2 or 6 then O[OJ += D[3J
If i=3 or 7 then D[OJ += D[lJ

End for

The Keyed Transformation

The same process takes place in the keyed transformation. It reverses exactly the
operation performed by its encryption counterpart. The rounds start at fifteen and
finish at zero. The values are first swapped to the left. The value of D[O] is rotated
in the oppOSite direction by the same amount thirteen. Three values are generated
again from the E-Function. As the value of 0[0] does not change, besides its
rotation, its value wi ll be consistent with the encryption algori thm, the exact same
E-Function may be used with 0[0] , and the same key values. This will result in the
same values existing in Out[1] .. Out[3].

For (i=15 to 0)
(D[OJ, 0[1], 0[2], 0[3]) = (0[3], 0[0], 0[1], 0[2])
D[OJ = D[OJ »13
Out[] = E-Function(D[OJ, K[2*1+4], K[2* i+5J)
D[2J = D[2J - Out[2J

Secure Internet Auctioning System

If i=8 then

End jf
End for

Else

MARS

0[1] = O[I]-Out[l]
0[3] = 0[3]EIl Out[3]

0[3] = 0[3] -Out[l]
0[1] = 0[1] Ell Out[3]

Page 135

As one can see, Instead on addition, subtraction is used thereby reversing the
encryption operation by operation.

Backward Mixing

The backward mixing reverses the process performed by the forward mixing of the
encryption algorithm . Once again all operations are performed in the reverse order,
reversing the original operations performed on them.

For (I = 7 to 0)

End for

(0[0], 0[1], 0[2], 0[3]) = (0[3],0[0], 0[1], 0[2])
If 1=0 or 4 then 0[0] -= 0[3]
If 1=1 or 5 then 0[0]-= 0[1]
0[0] = 0[0] < <24
0[3] - 0[3] ID S,[Highest byte of O[Oll
0[2] = 0[2] - So[Thlrd byte of 0[0]]
0[1] = 0[1] - S,[Second byte of O[Oll
0[1] = 0[1] El) So[lowest byte of O[Oll

For (i= 0 to 3)
O[i]= O[i] - K[i]

The values in 0[0] .. 0[3J wil l contain the deciphered plaintext elements.

An Example

The key scheduling begins with a user key
k = { 0, 1, 2, .. ,31}

The initial mixing takes place resulting in the temporary array T[] , with the
fol lowing elements,

T[-7 .. 38] = {164676729, 684261344, -2069205959, -1649577337, 2113903587, -
735673503, -915562028, -323995194, 170718370, 1272489713, -1291699165,-
1574176379,775155458,1093196693, 184593213, 1529051314, 29780847,
1241525645, 274897490, 848037223, -1656480989, -679515193, 740622749, -
1228274602,909075862, 1045363007, 706022039, 189071841, -62578810,
538581743,1265025929, -1297483056, -1371025234, -823293138, 655918954,-
2041138099, 788724001, 1922672416, -230292849, -437142186, -497399764,
474208460, 795471396, -1994711459, - 124494573, - 1041039443, -198107373, -
198107373}

Once the temporary array T has been stirred and placed in the key array K[], one is
left with,

Secure Internet Auctioning System Page 136
MARS

K[0 .. 39J = {-1344297214, 875956763, -801971149, -1571757423, 179380674,
195762001, -515924257, -2072789416, 1651641163, 1601951000, - 1259914813,
1345696749, -1404700122, 949929765, -351704798,2088320838, -1281311071,
-1037466454, -117857471, 1627198274, -677770879,1632128159, -
1702510644, -459911906, 1999764266, 1917876914, 162413934,212 157580,
1571707305, - 1260684647,1227506311, -823164753, 276248922, -187899174,
1917877738, -614471195, -1205950396, -1093647705, -954722349, 949280097}

Now one must fix the weak keys, checking elements 5,7, ... ,35 in the key array K.

K[5.7, . .35J = {195762001, -2072789416, 1601951000, 1345696749,949929765,
2088320838, -1037466454, 1627198274, 1632128159, -459911906,1917876914,
212157580, -1260684647, -823164753, -187899174, -614471195
}

One can see that there were no elements that are considered weak in the current
key, and hence none were changed.

The final key then is as stated above in K[O .. 39].

Encryption

Now to encrypt the message "Hello World!", first one converts It to Integer values,
this is done using the CryptLib method ConvertAnyString(Strlng), that converts the
string to bytes and then to integers.

Hello World!
1819043144 1867980911 560229490 0

When the values are passed into the encryption algorithm they are placed in the
D[] array where,

0[OJ=1819043144, 0[lJ=1867980911, 0[2J =560229490, 0[3J=0

The first thing that is done is the addition of the keys O[iJ = O[IJ+K[IJ, i=0 .. 3

O[O .. 3J = {474745930, -1551029622, -241741659, -1571757423}

The forwa rd mixing takes place for eight rounds,

Round 0
0[0 .. 3J = {1646355905, -1656557383, 742058680, 2017932500}
Round 1
O[O .. 3J = {201595491, 1721471700, 1332004190, 761912261}
"
"
Round 6
O[O .. 3J = {55044653, 88209549, 535438619, -267296678}
Round 7
0[0 .. 3)= {1572015899, 792603926, -1466545613, 1206529283}

Now that the forward mixing is completed the Keyed transformation takes place
over sixteen rou nds.

Secure Internet Auctioning System
MARS

Round 0
Out[1..3] ={167695470, 210115501, -776316752}
0[0 .. 3] = {960299396, -1256430112, -1773111885, 1642294198}
Round 1
Out [1..3] ={605507730, 833079814, 161325982}
O[O .. 3]={ -650922382, -940032071, 1753139240, -1607432409}
"
"
Round 14
Out [1..3] ={754136283, -1045599012, -73306089}
O[O .. 3]={ -1637864550, -296466158, 1415363190, -965716442}
Round 15
Out[1..3] ={-1348234262, 711001132, -1970933296}
O[O .. 3]={1691465922, 2126364322, 1981016592, 91444172}

Page 137

The backward mixing takes place for eight rounds resulting in the following values
in O[].

Round 0
O[O . . 3]={89016844, 1373058604, 901405797, -1033580104}
Round 1
O[O .. 3]={573480788, 1637079300, 1259736458, 201674314}
"
"
Round 6
O[O .. 3]={266242868, 711977859, -937129531, -316107467}
Round 7
O[O .. 3]={ -1340437116, -2063161365, 1469176171, -1310364001}

Once the final whitening has taken place, with O[i]=O[i] - K[36+i], i=0 .. 3 the final
ciphertext is

0[0 .. 3] = {-134486720, -969513660, - 1871068776, 2035323198}

Oecryptlon

The first thing that takes place is the forward mixing, this reverses the process of
the backwards mixing in the encryption algorithm. The values of the D[] array is as
follows

0[0 .. 3] = {-134486720, -969513660, -187 1068776, 2035323198}

The whitening then Is reversed, D[I]=O[I] + K[36+1], i=0 .. 3

0[0 .. 3] = {-13404371 16, -2063161365, 1469176171, -1310364001}

The forward mixing then proceeds for eight rounds

Round 7
0[0 .. 3] = {266242868, 711977859, -937129531, -316107467}
Round 6
0[0 . . 3] = {417439973, -1065722789, -1419324492, - 263427336}

"

Secure Internet Auctioning System
MARS

"

Round 1
0[0 .. 3J = {89016844, 1373058604,901405797, -1033580104}
Round 0
0[0 .. 3J = {1691465922, 2126364322, 1981016592, 91444172}

The Keyed transformation then proceeds
Round 15
Out[1..3J = {-1348234262, 711001132, -1970933296}
0[0 .. 3J = {-1637864550, -296466158, 1415363190, -965716442}
Round 14
Out [1..3J ={754136283, -1045599012, - 73306089}
0[0 .. 3J={-1637864550, -296466158, 1415363190, -965716442 }
"
"
Round 1
Out [1..3J ={605507730, 833079814, 161325982}
0[0 .. 3J={-650922382, -940032071, 1753139240, - 1607432409}
Round 0
Out[1..3J ={ 167695470, 210115501, - 776316752}
0[0 .. 3] = {960299396, -1256430112, -1773111885, 1642294198}

Page 138

Once the transformation is complete the backward mixing takes place, which is
exactly the reverse of the forward mixing of the encryption algorithm. There are
eight rounds in the mixing,

Round 7
0[0 .. 3J ={ 55044653, 88209549, 535438619, -267296678}
Round 6
0[0 .. 3J ={ 1525682528, 592963985, 2013255885, -505864879}
"
"
Round 1
0[0 .. 3J = {1646355905, -1656557383, 742058680, 2017932500}
Round 0
0[0 .. 3J = {474745930, -1551029622, -241741659, -1571757423}
The last operation that takes place is 0[1] = D[f]-K[i], i=0 .. 3, resu lting in the
correct piaintext elements in O[] , which is

0[0] = 1819043144, 0[1]=1867980911, 0[2]=560229490, 0[3]=0

"Hello World!"

8.3) MARS Implementation

Due to the non-disclosure agreement that was signed with NIST, I cannot display
any of the actual code for the algorithm. However I can diSCUSS pseudo code for the
MARS algorithm.

The Class MARSCrypt.Java has a number of predefined variables, these are the S­
Key array and the user key array. Al l of these are stored as arrays of integers. The

Secure Internet Auctioning System Page 139
MARS

S-Box is a predefined set of data values and has been recommended, there are five
hundred and twelve entries in the SE] array .

The MARSCrypt initialise method performs the followi ng:

IIRC6Crypt.Java RC6Crypt method
CL = New CryptLib
User_key[32] = 0
5 = generate_Keys(User_key,32)

A new object of the CryptLib class is created, as a few of the methods are used by
the encryption and decryption functions. A default user key is created which is set
to zero. This enables a defau lt S-key array to be created, when generate_Keys is
called. There are two encryption and decryption functions, and the method for
generating the keys.

Generate_Keys(userKey, size)

n = S;ze/4
integer 8[4], T[47],K[40]
K{] = CryptLib.getlnteger(UserKey)

For (/OOP=Oi/oop<8i/OOP++)
T{loop]= S{loop]

End For

The user key is converted from bytes to words and placed in K[]. The temporary
array is then initiated with the first seven values of the S- Box. To makes things
easier to control, the array index of T[] goes from 0 .. 46, instead of -7 .. 38, as it is
easier to work with.

For (/OOP=Oi/oop<40;/oop++)
w = (T{loop] XOR T{loop +5]) ;
T[/oop+7] = ((w»>29) OR (w«3)) XOR K[/oop mod n] XOR loop;

End For
T[46] = n;

The initial mixing of the key and the temp array take place. One will notice that two
rotations are executed instead of one, this is so one will have a data Independent
rotation and no timing information can be obtained.

For (rounds = 0 ;rounds <7;rounds++) {
For (Joop=liIOOp<40;/oop++) {

T[7+loop] = T[7+loop] + S[Low bits of T[7+loop-lJ];
T[7+loop] = (T[7+loop] «9)1 (T[7+loop] »23);

End For
T[7] = T[7]+S[low Bits ofT[46J];
T[7] = (T[7] « 9) OR (T[7] »23);

End For

The seven rounds of mixing or stirring then occur as the information of the S-Box is
then used. Once again the same methodology Is used in the rotation operations.
One wi ll notice that al l the index's have the va lue of seven added to them. This Is
because t he array index starts at zero instead of negative seven and the same

Secure Internet Auctioning System Page .1.40
MARS

algorithm is used for mixing so one needs to offset these indexes. (As opposed to
working with negative indexed array elements)

For (loop=O;loop < 40;foop++) {
K[(7*loop) Mod 40] ~ T[loop+7];

End For

Once the Key values have been set they are then checked for weak subkeys.

For (loop ~ 5;loop<36;loop+~2) {
K[loop] ~ fix_subkey(K[loop],K[loop+3]);

}

The function fix_subkey returns a corrected sub key, all it does is check for
consecutive bits, If there are none, no changes take place, If there are refer back to
the algorithm discussion to see what is performed. The value of K Is returned as the
key of the algorithm with forty entries.

MARSEncrypt(plalntext String, userKey[])

There are two versions of the encryption, one accepts a string and the other four
integer va lues in an array. This occurrence deals with splitting up the strings into
encryptable values.

Tempint[] ~ CryptLib,ConvertAnyString(Plaintext)
For (/oop=O;loop< Templnt. Length;/oop+4)

BJockPJaintext[4] = Tempint[loop,loop+ l,loop+2,loop+3]
BlockPlaintext[4] ~ MARSEncrypt(BlockPlaintext[],use key)
Ciphertext + = B/ockP/aintext

End for

The current method accepts the plaintext, and converts it to an array of integers,
which is of uniform length that is divisible by four. The ConvertAnyInteger pads the
end with zeros if it Is not long enough, Then the code copies four elements of the
plaintext integers into an array of four elements. These are the four elements that
are then encrypted using the other MARSEncrypt method, passing the array of four
plaintext integers and the user key. The result of this is then added to a string
called ciphertext . The loop conti nues looping until all elements in the plaintext
integer array Tempint have been encrypted. The ciphertext string is returned.

MARSEncrvpt(plaintext [J , Kev[J)

The algorithm takes the four plaintext words and places them in the array D[], and
adds similar positioned keys elements to them. This is the whitening stage,

For (foop=O;/oop<4;/oop++)
O[loop]~ Plaintext[/oop]+Key[loop]

End For

The forwa rd mixing then takes place,

For (/oop=O;/oop<8;foop++)
0[1] ~ 0[1] <ll SO[/ow byte of 0[0]]
0[1] ~ 0{1] + Sl[Second byte of 0[0]]
0[2] ~ 0[2] + SO[Third byte of 0[0]]

Secure Internet Auctioning System
MARS

D[3} = D[3} Ell 51 {Highest byte of D{O}}
D{O} = (D{O}»24) OR (D{O}«8)
If loop = 0 or 4 then D[O}+=D[3}
If loop = 1 or 5 then D{O} + =D{l}

D{} = SwapValuesLeft(D)

Page 141

The values are XORed, and added to one another, and once again the same
rotation methodology is used to prevent timing attacks. The values in D are then
shifted one position to the left in the array D when the SwapValuesLeft method is
executed. The keyed transformation step now proceeds.

For (loop=O;loop<15;loop++)
Out = Efunction(D[O},K{2*loop+4,2*loop+5})
D{O}= (D{O}«13) or (D{O»>19)
D{2}+=Out{I}
If loop = 8 Then D{I}+=Out{O} , D{3} XOR=Out{2}

Else D{3}+=Out[O} , D{l} XOR =Out{2}
D{} = SwapValuesLeft(D)

End For

The final step which is backward mixing then takes place .

For (loop=O;loop<8;loop++)
If 100p=2 or 6 then D{O}-=D{3}
If 100p=3 or 7 then D{O}-=D{l}
D[l} = D{l} XOR Sl{low byte of O[O}}
D[2} = D[2} - SO[Highest byte of D[O}}
D[3} = D[3} - Sl[Third byte of D[O}}
D[3} = D[3} XOR SO[Second byte of D[O}}
D[O} = (D[O}»24) or (D[O}«8)
D{} = SwapValuesLeft(D)

For (loop =O;loop < 4;/oop++)
D{loop}-= Key[36+loop}

End For

The values in D[] are returned as the ciphertext as an array of integers.

EFunction(d,K1,K2)

The E-Function transforms the values in using a Feistel network.

M = d+Kl
R = ((d«13) or (d»19)) * k2
L = S[i = lowest 9 bits of M}
R = (R« 5) or (R»27)
M = (M«(lowest 5 bits of R)) or ((M»- l *(lowest 5 bits of R))
L = L XOR R
R = (R«5) or (R»27)
L =LXORR
L = (L< «lowest 5 bits of R)) or ((L> >-I*(lowest 5 bits of R))
Return L,M,R

Secure Internet Auctioning System Page 142
MARS

Oecrypt(cipherText String, key[])

The string Is converted to a uniform length integer array (Divisible by four). A loop
is then executed taking four consecutive Integers at a time and calling the
MARSDecrypt(Ciphertext[] integer, Key) method. The results are then appended to
a string called plaintext.

TempintU ~ CryptLib,ConvertAny5tring(CipherText)
For (loop=O;loop<Templnt.Length;loop+4)

BlockCipherText[4] ~ Tempint[loop,loop+ 1,loop+2,1oop+ 3}
BlockCipherText [4} ~ MAR50ecrypt(BlockCipherText[],use key)
Plaintext+ = BlockCipherText

End for

The results are then returned in the plalntext string variable.

Oecrypt(cipherText(],key(])

ThiS algorithm takes an array of four words and then places them in the array D[],
such that

For (loop~0;loop<4;loop++)
O[/oop}+~ Key[36+loopJ

End For

The values of D[] are now ready for the forward mixing stage of the decryption
algorithm.

For (loop=7;loop>-1;loop--)
DU ~ 5wapValuesRight(O)
O[OJ ~ (0[0«24) or (0[0»8)
0[3] ~ 0[3} XOR 50[5econd byte of O[Oll
0{3] ~ 0[3} + 51 [Third byte of O[Oll
0[2] ~ 0[2J + 50[Highest byte of O[OJ}
O[lJ ~ O{lJ XOR 5l[/ow byte of O[Oll
If loop~2 or 6 then 0[OJ+-~O[3]
If loop~3 or 7 then 0[0]+-~0[11

End For

The forward mixing operat ions of the decryption algorithm reverses the process
performed by the backward mixing operations in the encryption algorithm. The
values of D(] are all moved one index position to the right, with wrap arou nd . This
is done the function SwapValuesRightO.

The keyed transformation operations now proceeds,

For (loop=15;loop>-1;loop- -)
DU ~ 5wapValuesRight(O)
O[O}~ (0[0»13) or (0[0]«19)
Out ~ Efunction(0[0},K[2*loop+4,2*loop+5])
0[2]-~Out[1}
If loop ~ 8 Then O[l]-~Out[O}, O[3} XOR~Out[2}

Else 0[3}-~Out[OJ , O{lJ XOR~Out[2}
End For

Secure Internet Auctioning System Page 143
MARS

The keyed transformation reverses the operations performed by its counterpart in
the encryption algorithm. The backward mixing then takes place,

For (/00p=7;loop>-1;loop--)
O[] = swapValuesRight(O)
If loop = 0 or 4 then 0[OJ-=0[3J
If loop = 1 or 5 then O[OJ-=O[lJ
O[OJ = (0[OJ « 24) or (O[OJ> >8)
0[3J = 0[3J XOR 51 [Highest byte of O[Oll
0[2J = 0[2J - SO[Third byte of O[Oll
O[lJ = O[1J - 51 [Second byte of O[Oll
O[lJ = O[lJ XOR SO{low byte of O[Oll

End For

Once this has been completed the final remova l of whitening takes place

For (Io0P=Oiloop<4;loop++)
O{loopJ-=Key[/oopJ

End For

The plaintext elements are then returned In the integer array O[].

8 .4) MARS Usage

The client and server applications have a copy of the MARSCrypt class. These are
initialised on the initialisation of the CryptUb class. As has been mentioned before,
the client generates the user-defined key . The client sends this key, first encrypting
it with RSA to the server. The server then decrypts the RSA message and obtains
the key. The key is specific to each client, and therefore the copy of the key is kept
in each clienthandler class. Therefore each client has their own session key which
will be different from any other client key. Once the key is received it is then given
to the generate_Keys method which execute the key schedu ler and which will
create the correct key for encryption and decryption algorithm.

As the Cryptlib class executes the correct key scheduler method. It generates the
key and places it in the S array . The client and the server perform this key schedule
method and hence they will have the same key for the current client's session.
Once the key has been generated, and there are no problems, the encryption then
changes from RSA to the specified encryption algorithm (in this case its MARS).

IIClientHandler.Java - send method

If (encrypCmode>O)
CurrentMesg = CL. Encrypt(CurrentMesg, Key)

EndIf

Thereafter whenever the SendMsg method is called by the client, and Send method
by the server, the messages are first passed to the Cl. EncryptO method. This
method passes the message to the MARSEncrypt(String,UserKey) method, which
encrypts the message and returns a set of numbers in a string format. This is the
dphertext, and it is the sent to the recipient of the message.

Secure Internet Auctioning System

IIClientHandler.Java - run method

CurrentMesg = ReadStream
If (encrypLmode>O)

Page 144
MARS

CurrentMesg = CL. Decrypt(CurrentMesg, Key)
EndIf

When the client or server receives a message, it is first passed to the CL.Decrypt
method which passes it to the correct decryption method (MARSDecrypt (Stri ng,
UserKey)), this decrypts the message, and then the message Is dealt with. If any
errors occur while decrypting messages they are ignored, and the error is reported
to the administrator. Both the MARS and RC6 algorithms have been implemented in
such a way that they have the same methods and functions to maintain standard
speci fi cations of the implementation.

8.5) Timing

Speed tables re used to compare the performance of the algorithm to other
implementations. The performance shows MARS to be relatively quick, and it has
been shown to be even more so in a hardware Implementation of t he algorithm.

Language Scheme Blocks/Sec Mbits/Sec

Auct ion MARS
JOK 1. 2 Enqyption 20000 2.56
lDK 1.2 Decryption 20000 2.56

Fig 8 .5.1 EncryptlOn a nd Decrypl10n figure s o f MARS

l anauaae Scheme Blocks/Sec Mbits/Sec

Optlmised
Imolementatlon
JOK 1.1.6 Encrvotion ? 14.5
lDK 1.1.6 Decrvotion ? 17.3
Borla nd C++ Encrvotion ? 28
Borland C++ Decrvotion ? 28 . . FIg 8.5.2 Encryplton and Dccryptlon figures of MARS IC. Bunvlck, et a~

The auction implementation of MARS was completed on an Intel PII 450Mhz chip
with 196MB Ram, running MS Windows 98. A few optlmizations were implemented
In the algorithm, but for readability 's sake it is as close to the pseudo code as
possible. As it can be seen the MARS speeds, it is slightly faster than RC6. This is
due mainly to the compilers and CPU 's used , as d iscussed in [B.Schneier, et at],
and MARS is actually considered a slower algorithm as it requires more operations.
It can be seen that the auction applications implementation is about fi ve times
slower than the optimized version of the code .

The figures shown here for the optimized implementations were obtained using an
Intel Pentium Pro 200MHz chip with 64MB Ram, runn ing in MS Wi ndows 98. As it
has been mentioned before, the Pentium Pro chlpset is better su ited for the

Secure Internet Auctioning System Page 1.45
MARS

operations that are performed by the algorithms. This and the fact that the
algorithms are optimized, result in the higher speeds, The main result of these
figures is to show that the current implementation of the MARS algorithm is able to
support a large number of simultaneous clients,

As the algorithm is encrypting or decrypting over two and a half megabits a second,
it equates to a large capacity of messages that may be handled . This is more than
adequate for the auction application as it could deal with over a thousand clients a
second.

8.6) Attacks

There are a number of attacks that the MARS algorithm may be susceptible to, but
it is still a rather new algorithm and has shown good resistance to the classica l
attacks. There are a few different roots of attacking the algorithm, and this includes
the key schedu le, the S-Box, Timing attacks and linear and differential attacks.

The S-Box attack

As the S-Box is a known value and is not random, it means that it may be
extensively examined. The developers of MARS, [C.Burwick, et al] relate this
attack, based on the assumption there is a weakness in the S- Box.

Assume that one of the S-Box halves So or SI , has two elements where

" = 5, [iJ XOR 5, [j] = 0 in the highest bits

This weakness will mean that the key and the encryption is at risk, as the hig h
order bits in multiplication, addition and subtraction w ill have greater significance in
these operations. This means that when one performs encryption the change in the
elements wi ll not be as great as expected, and hence a part of the pla intext may be
revealed during the encryption process. One may be able to determine this
information with weaknesses in the $-Box,

There are a few other attacks that could be mounted on an 5-Box, but the specified
S-Box has been chosen such that the information is relatively random and al l
elements differ by a number of bits. This is to prevent all the well -known attacks
mounted on DES's S-Box. The inventors of the algorithm showed that there are
characteristi cs that hold in the S-Box which occur w ith a probability of more than 2-
32 . This means it's an unlikely source of attack, as the S-Box is about as random as
needs be, and that an attack on the S-Box wi ll probably be the easiest.

The Key Schedule Attack

Accord ing to the creators of MARS, there are no weak or equivalent keys, The keys
used for multiplication's are checked for any form of weaknesses and are f ixed if
any problems do arise. It is also suggested that the key sched ule or expansion is
random enough to produce very expanded keys even tho ugh the user keys have
similar characteristics. The expanded key has about 21248 effective bits. It has
been shown that the pairs of original n bit keys mapped to the same expanded key
are about 2 20 - 1249, a rather large value for the normal 128 bit key.

Secure Internet Auctioning System Page 1.46
MARS

The reason that an attack on the key expansion is unlikely is because some of the
operations are not easily reversiblei the most important one being the checking of
the multiplication keys. This however is a problem as this method may actually
cause a collision, in which the user key and expanded keys are the same. All this
would require at least a searching of 232 different keys [M -J.O.Saarinen] for one to
find the original key. This is assuming one is able to reverse the key fixing or
checking step, and reverse all of the other steps. If one were to attempt this it
would not take too long for a standard computer to search the 232 keys. The reason
why it will not fail in the case of the auction application is that the expanded or user
key is never seen, due to the fact that it is encrypted by RSA. If RSA failed the
entire protocol would fail as one of Its primitives was flawed.

Linear and Differential Attacks

"In linear analysis one tries to find a subset of the bit positions in the plaintext,
ciphertext and expanded keys, so that for a uniformly chosen plaintext and
expanded key, the probability that the sum of the bits in these positions is equal to
zero modulo two, will be bounded away from one half" [C.Surwick, et at]. The
difference between the probability and one half is known as a bias. The bigger the
bias the better as it requires less guessing of values, and hence less of a workload.

To mount a linear attack the algorithm is broken down into its constituent
operations, and each of these operations is given an approximation . All these
approximations are combined together to find the global approximation of the
complex operation or algorithm. Once this has been completed one can then
attempt to approximate bits and bit values within the algorithm for each round. As
the end result is known (the ciphertext) , one works backwards giving the
approximations of bits for each round, until one can guess or approximate the
plaintext. The problem however is that these approximations have shown that the
linear approximation of the algorithm has a bias of 2 , 69, which is very small. This
means that the complexity of the problem is of the order 2 128

, which is incredibly
difficult to solve.

Many aspects of the algorithm, such as the S- Box, and E-Functian which maintain
the security of the algorithm have been designed to minimize linear attacks. For
instance the E-Function which transforms the data has no operations or values
totally dependant on one another, making it difficult to perform approximations.

[Co Burwick, et at] have shown a number of features of differential cryptanalysis
which would make breaking the algorithm very difficult. One is an examination af
the Key transformation characteristics of the algorithm. To construct such
characteristics using the expanded key and plaintext has a probability of 2 '2<10 . This
is assuming one can obtain enough ciphertext, plaintext and keys ta perform this
analysis (2 128 pairs, which is almost impossible to obtain), This is just for the keyed
transformation and does not deal with any of the other operations,

Once again it, as has been mentioned before it is not feasible in any terms to
mount these attacks on the practical implementation of the auction application. The
rewards are far to slim to make it anywhere near a profitable exercise.

Timing Attack

As the algorithm uses data dependent rotations, which have been shown to execute
at different speeds depending on the rotational value, it is considered a weakness.

Secure Internet Auctioning System Page 147
MARS

One could possibly time the rotations and then work out the important values In
each round of the encryption, thereby giving away information of the plaintext.

To resolve th is problem the same methodology that was used for RC6 has been
used for MARS. This is t he inclusion of a second rotation in the opposite direction.
The rotational value is the negative rotational value modulus the word length. This
two rotations are then ORed together to get the final result. This double rotation
results in a constant time for rotation and hence no timing information may be
concluded .

Brute Force Attack

The brute force attack will attempt every set of keys unti l the correct plaintext is
determined. As the length of the user key is unknown (128 - 1248 bits). The
security of the algorithm grows quite extensively as the size of the key gets to 256
bits. Once the size of the key goes over 300 bits one wi l l not essentially benefit
from much more security .

It has been suggested that the security of the algorithm is 2n
, where n is the

number of bits used in the key (with n<256). It is not even easier to guess the
expanded key, as the S-Box would have played a role in the generation and it will
conform to a whole lot of ru les. Using this as a general guideline once again brings
us to the conclusion that this attack is just not feasible in fisca l and time
constrai nts.

Secure Internet Auctioning System Page 148
MARS

8.7) Conclusion

The last three chapters have examined the encryption algorithms used in the
auction applications protocol and they are the primitives of th is protocol. The
protocol as a whole could not work without one other, both the symmetric and
asymmetric systems need one another as has been explained, The algorithms
known to be relatively secure, barring any new advances in technology or
cryptanalysis,

The reason that the overall protocol is considered re latively secure is really because
of the way in which it is used, It has been stressed repeatedly that the even if the
protocol is breakable the resources currently available (money, t ime, expertise and
Information) would not be sufficient to meet the requirements of an attack, Even if
they were, the rewards for breaking the system wou ld not be sufficient. The correct
implementation of the algorithms has ensured the security of the overall project

Secure Internet Auctioning System Page 149
Conclusion

9) Conclusion

The auction ing application has the met criteria laid out at the beginning of the
thesis in number of ways.

The use of Java as the development language has had dual benefits. Java has
enabled the creation of a system independent application, which does not require
any specific operati ng system or hardware. Java's intrinsic security support has
allowed the development of a relatively secure application that poses no threat for
the cl ient or server.

The auctioning application also had a dual purpose. The application was a vessel for
the implementation and usage of secure communication. The auctioni ng application
tu rned out to be viable, efficient, practical and even meets a certa in need in the
industry.

The Three algorithms RSA, RC6 and MARS handled secure communica tion. RSA is a
proven publ ic key encryption algorithm that meets the requirements for secure key
exchange between the client and the server. MARS and RC6 are re latively new
algorithms that are based on sound theory which have shown to be more than
adequate in meeting the requi rements of secure communication. The algorithms
have been used in such a way that their weaknesses are not exposed. The protocol
as a whole, proves to be relatively secure and currently is not susceptible to any
feasible attacks. However this does not guarantee that the system will remain
secu re as new attacks and weaknesses are devised very rapid ly.

The application pulls together as a whole, using as little bandwidth as possible,
thereby benefiting the clients, and minimizing server resource usage. The result is
then: \lA Real Time, System Independent, Secure, Internet Based Auctioning
System",

Secure Internet Auctioning System Page 150
Installation &. Usage

10) Installation and Usage

The installation of the application is rather straightforward. The are a number of
requirements though:

Requirements

• TCP/IP connection
• Web Server with ASP (VBScript) for Win32 or CGI (PERL 5+) for Unix
• Java 1.2 or above
• 1MB Free Space

The installation packages have been divided into two types Win32 and Unix. The
files are named win32aucserv,zip and unixaucserv.tar, respective ly. The only
reason that there are two different files is that the CGI scripting used to pass
parameters from the HTML documents to the applet and vice versa is d ifferent for
the two operating systems. On Win32 system, VBScript through ASP is used, and
on the Unix system, PERL through CGI is used. The class files are exactly the same.

Files Included

The fi les included in both zip files are :

Aucserv,jar
HtmlHelp Directory
Logs Directory
Images Directory
Html Directory
Does Directory

The aucserv.jar file contains all the class files for the auction server. The HtmlHelp
directory contains the Html Help pages for the Auction Server application. The Logs
directory contains empty log files . The Images directory conta ins the image icons
used by the Auction Server application. The Html directory contains a default Html
site and a few required files. For a more comprehensive discussion see the "Auction
Implementation" chapter. The Win32aucserv.zip file has a run.bat file used for
executing the application.

9.1) Installation & Setwup

Extract the zip file by using a Zip utility, On Win32 systems use pkunzlp or Winzip,
and in Unix use Tar. When unzipping be sure to include all directory structures and
subdirectories.

Win32
pkunzip - d w;n32aucserv.zip

Allow the html directory to be executable.

Secure Internet Auctioning System
Installation & Usag e

Unix
tar -zvf unixaucserv.tar

Set up a symbol ic link from the web root to t he htm l di rectory.
Ln -s <Installed Directory> <Link name>
The web si te wi ll then be available at http://hostname/< li nk name>

le: In -5 /home/auction/public_html /httpd/html/auction
http ://hostname/auction

Page J5J

One needs to configure the web server. In the /etc/h ttpd/conf/access.conf file add
the following:
<Directory /home/httpd/html/auction
AllowOveride No
Options ExecCGI I nclude
</Directory>

In the /etc/httpd/conf/srm.conf file add the following:
AddHandler cg i_script .c9i
Add Handler Server_parsed .htm

Allow the files in the html di rectory to be executable
chmod +x "'.*

9 .2) Executing the Server

In the aucserver directory execute the following

Win32

run. bat

Or

Java -Jar aucserv.jar

Unix

Java -jar aucserv.jar

9.3) Application Maintenance

The sou rce is included in AucServersrc.zip and AucClientsrc.zip. Within each file is
the source code for the specif ied application. All source files are included, except for
the RC6Crypt and MARSCrypt source files as I cannot revea l the source code for the
applicati ons due to the AES non-disclosure agreement. However the class files were
included so that the appl ication may stil l execute.

Secure Internet Auction;ng System Page 152
Installation & Usage

9.4) Server Usage

Once the application has started it does not automatically start the server,

Note: Unavailable menu items (Greyed out) indicate that other options or features
need to be addressed before one may proceed,

Starting the Server

To start the server, select the Server Menu I Start Server

Selecting the Port number

If the server fails because the port the server has attempted to start on (Default
3002), one must change the port number, Once the port number has been changed
one must then restart the server (see above),

To change the port number, select Server Menu I Port Number, Type a port value
between 1000 and 65000, and then click on OK .

Exiting the Application

To exit the application there are two options

Select the close option on the Window.

Or

Select the Serve Menu I Exit.

Once the server has been started the auctions may then be configured.

Entering Item details

To enter the item details:

Select Auctions Menu I Item Details

Select the amount of items to be auction and click OK. One is then asked to enter
the item details one by one in the Auction Item Details frame. The frame tells one
what the number in the auction list the item is, and it requests the following
details: the auction item ID number, the minimum starting price and a brief
description. Once all the details for the current item have been entered click OK.
Repeat until all details for all items have been entered. If any errors are made the
application will notify one about the errors.

Note: If one wants a picture of the item to be sent to the client, during the auction,
one must place the image in the Images directory off the html directory. The image
must have the name (in lower case) of the item ID number, and it must be a GIF
image .

The details entered here are written to the file auchtm.inc file, which is included in
an HTML file, so the clients may see what being auctioned, If one wants to enter
more details about the items auctioned this will have to be done manually on the

Secure Interne t Auctioning System Page 153
Installation 8.. Usage

web site. Once the details have been entered one can then set the stop tlme for the
current auction. Auctions start with the first item entered and finishes with the last.

Entering Stop Time

When choosing the stop time it is for the current item auctioned on ly. To extend the
current auction change the finish at any stage throughout the auction. All users will
be notified about this cha nge. When the auction finishes for the current item one
may then set the following items stop time.

Select the Auctions Menu I Stop Time. Then choose the correct year, date and time
to finish.

If no finish time is entered and the auction is started it will finish immediately and
proceed to the next auctioned item.

Starting an Auction

Once all the above sections have been dealt with the auction may be started. If any
of the previous steps have been missed this menu option wi ll not be available .

Select Auctions Menu I Start Auction

Or

Select the Play button on the Menu Bar.

The auction wi ll start and all details pertaining to the auction wil l be displayed in
the status bar and on the information panel. To see information about the users
select the Users panel (See below).

Stopping an Auction

When one stops an auction, the clients will be notified and the next item will be
prepared for auctioning. This will forcefully stop the auction at the present time. If
the auction is left to its own devices it will only stop at t he pre-determined t ime.

Select the Auction Menu I Stop Auction

Or

Click on the Stop button on the Menu Bar

Demo Auction

If one does not want to go through the entire rigmarole of setting up an auction
one ca n run t he Demo auction . This auctions four items w ith random stop t imes
and minimum values.

Select Auction Menu I Demo Auction

Or

Click on the 0 in the Menu Bar

S e cure Inte rne t Auctioning S ystem Page l 54
Ins tallation &. Us age

Se lecting Ke y Le ngth

One may change the RSA key length from its defau lt (128 bit) to a number of
d ifferen t values up to and including 4096 bit keys. However one shou ld be aware
that large keys take longer to generate.

Select Security Menu I Key Length

This changes the key length but does not generate new keys, this need to be done
manually.

Regeneratin g Keys

One may ma nually fo rce the application to generate new keys.

Select the Security Menu I Generate Keys

Selecting Symmetric Cryptosystem

One has a choice of two symmetric key sys tems. This may be changed before and
auction starts, and thereafter It will remain fixed until the auction has ended. Only
once the auction has ended may one select another cryptosystem .

Select Security Menu I Cryptosystem of choice (RC6 I MARS)

Help

To get onl ine help.

Select the Help Menu I Help

ThiS bri ngs up another f rame, which is a web browser. There are two buttons: the
contents page, w hich wi ll return one to the default help page, and the close help
bu t ton which will close the help page. The application will conti nue runni ng even
though one may be perusing the help pages.

Information

There are va r ious bits of information that is displayed in the auction appl ication and
it is displayed in two panels. The I nformation panel and the User panel.

Information Panel

The informa tion panel displays information pertaining to t he server, cu rrent auction
and any problems. One may get Information about the current auction by cl icking
on t he det ai ls menu bar button . If the screen becomes too cluttered one may click
on t he Clear button, wh ich wi ll remove all information from the information panel.

User Panel

The user panel d isplays a list of the cu r ren t users con nected to the appl ication . By
selecting a clien t it will display t heir details in the cl ient information box, The
current top bid is d isplayed in the bottom left ha nd corner.

Secure Internet Auctioning System Page 155
Installation & Usage

9.5) Client Usage

The client selects the item to bid for from the web page. It will take one to the page
containing the applet. The applet execute and asks the client to type thirty random
characters. These are used as the key for the encryption process.

Once this has been done the client needs to fu ll in all relevant data (Name, Email,
etc) . Once this has been completed, click on the connect button to connect to the
auction server. If there are no problems the applet displays the bidding page.

The bidding page only has one action available. This is simply to bid . The client
enters a bid value which must be greater that the minimum bid or current top bid
and clicks on the submit button to send it. This page relates all the details to the
client about the current auction.

Secure Internet Auctioning System Page 156
Reference & Bibliography

11) References

Aura, "Strategies against Replay Attacks", IEEE Computer Society, 1997

Bain, K. & Engelhardt,M. 1991 "Introduction to probability and Mathematical
statistics", ISBN 0-534-92930-3

Bleichenbacher, D. & Joyle ,M. & Quisquater, J.J. "A New and Optimal Chosen­
message Attack on RSA-type Cryptosystems"

Blaze,M. & Diffie,W. & Rivest,R. & Schneier,B. & Shimomura,T. & Thompson,E. &
Weiner,M. 1996 "Minimal Key Lengths for Symmetric Ciphers to Provide Adequate
Commercial Security

Bellare,M., 1998." Practice -Orientated Provable Security", Proceedings of First
International Workshop on Information Security (I5W 97), Lecture Notes in
Computer Science Vol. 1396, E. Okamoto, G. Davida and M. Mambo eds., Springer
Verlag

Bellare,M. and Rogaway,P.,1995,"The complexity of approximating a nonlinear
program; Journal of Mathematical Programming S, Vo l. 69, No. 3, pp. 429-441

Bellovin, S.M., 1996," Problem Areas for the IP security Protocols, Proceedings of
the Sixth Usenix Unix Security Symposium, pp. 1-16, San Jose,CA.

Bellovin, S.M.,1998,"Cryptography and the Internet", Proceedings of CRYPTO '98, ,
pp. 46-55.

Boneh, D., 1999, "Twenty years of Attacks on the RSA cryptosystem", j-NAMS 46
n. 2, pp. 203-213.

Boneh, D. & Durfee,G. ,1999, "New Results on the Cryptanalysis of Low Exponent
RSA", submitted to Eurocrypt '99.

Boneh, D. & Venkatesan, R.,1998, "Breaking RSA may be easier than factoring",
Proceedings Eurocrypt '98, Lecture Notes in Computer SCience, Vo l. 1233, Springer­
Verlag, pp. 59-71.

Brlckel l, E.F & Odlyzko, A. M., 1988,"Contemporary Cryptology, Cryptanalysts: A
Survey of Recent Results", chapter 10, IEEE Press, pp. 501-540. Preliminary
version Proc. IEEE 76, pp. 578-593.

Burwick, C. & Copersmith, D. & D'Avignon, E. & Gennaro, R. & Halevi, S. & Jutla, C.
& S.M. Matyas Jr., S.M. & O'Connor, L. & Peyravian, M. & Safford, D. & Zunic, N.
,1998, "MARS - A candidate for AES", IBM, First AES conference.

Koffman,Elliot S., Quote - Pg186,Turbo Pascal/ Elliot 80 Koffman with Bruce R.
Maxim. - 4th Edition, ISBN 0-201-558811-4 , Addison-Wesley , 1993

Franklin, M. & Wright, R.N, 1998,"Secure Communication in Minimal Connectivity
Models", Eurocrypt 98

Secure Internet Auctioning System Page 157
Reference & Bibliography

Gil bert, H. & Gupta, D. & Odlyzlo, A.M & Quisquater, J.J, 1998, " Attacks on
Shamir's 'RSA for paranoinds"'. Information Processing Letters (1998)

Gennaro, R. & Krawczyk, H. & Rabin, T., "RSA-Based Undeniable Signatures",
Proceedings of CRYPTO'97.

Goldreich, O. & Micali, 5., 1984, "Increasing the Expansion of Pseudorandom
Generators" .

Ha levi, S. & Krawczyk, H., 1998, "Public- key cryptography and password
protacols", , Proceed ings of the Fifth ACM Conference on Computer and
Communications Security, to appear

Handschuh, H. & H. Heys, H., 1998, "A Timing Attack on ReS", Workshop on
Selected Areas in Cryptography, Springer-Verlag.

Hughes, M. & Hughes, C. & Shoffner, M. & Winslow,M., 1996," Java Networking
programming", ISBN 1-884777-34-1

Joyle, M. & Quisquater, J.J, 1997, "Fau lty RSA encryption", Tech. Report CG-
1997/8, UCL Crypto Group, Louvain- Ia-Neuve.

Kelsey, J. & Schneier , B. & Wagner, D. & Hall, c., 1998,"Cryptanalytic Attacks on
Pseudorandom Number Generators", Fast Software Encryption, Fifth Tnternational
Workshop Proceed ings (March 1998), Springer-Verlag, pp. 168-188.

Lenstra, A.K & Lenstra, H.W & Pollard, J.,1990, "The Number fie ld sieve",
proceedings of the 22"d ACM symposium on the Theory of computi ng .

Peterson,H. & Michels, M., 1998,"Cryptanalysis and improvement of signcryption
schemes", IEEE Proc.- Comput. Digit. Tech, Vcl 14S , No2 .

RSA Frequently Answered Question, RSA Laboratories

Rivest, R., 1995, "The ReS Encryption algorithm".

Rivest, R., 1992, "The MD5 Message Digest algorithm", Internet RFC 1321.

Rivest, R. & Robshaw, M. & Sidney, R. & Yin,Y., 1998, "The RC6™ Block Cipher"

Saarinen, MJ. O. ,"A note regarding the Hash function use of MARS and Re6"

Schneier, B., 1996, "Advanced Cryptography Second Ed it ion", I SBN 0-471-12845-
7, Wi ley publishers.

Schneier, B. & Kelsey, J. & Wh iut ing, D. & Wagner, D. & Hall, C. & Ferguson, N.,
1999, "Performance Comparison of the AES Submissions", Second AES Candidate
Conference.

Stinston, 0.,1996, "Cryptography : Theory and Practise", CRC Press.

Zakon, R,t 2000 "Hobbes' I nternet Timeline" Copyright © 1993-2000
http://infa .isac.arg/guest/zakan/lnternet/Histary 1 HIT. html

Secure Internet Auctioning System Page 158
Reference &. Bibliography

ITL Bulletin, ADVISING USERS ON INFORMATION TECHNOLOGY, August 1999,
http://www.nist.gov/itl/ lab/bulletns/aug99.htm

Note: Almost all of these papers can be found at: http://www.counterpane.comj
bibliol

Secure Internet Auctioning System Page 159
Reference & Bibliography

Bibliography

Lewis, J. & Loftus, W" 1998, "Java Softwa re Solutions", ISBN 0-201 - 57164-1,
Add ison Wesley,

Oaks, S, & Wong, H" 1999, "Java Thread, Second Edition", ISBN 1-56592-418- 5

Hopson, K.C, & Ingram, E., 1996, "Developing Professional Java Applets", ISBN1-
57521-03-5, Sams,net Publishing,

S.5ingh, 1999, "The Code Book", ISBN 0-385-49531-5.

Schneier, B., 1996, "Advanced Cryptography Second Edition", ISBN 0-471-12845-
7, WHey publishers.

Sain, L. & Engelhardt, M" 1992, "Introduction to Probability and Mathematical
Sta tistics, Second Addition", ISBN 0-534-98563-7, PWS-Kent Publishing.

Herman , E" 1996, "Teach Yourself CGI Programming with Perl 5 In a week", ISBN
1-57521-009-6, Sams.net publishing.

Secure Internet Auctioning System
Appendix

Appendix A

MSc Progress

February to June 1998

Attended Honours Java course for the trimester.
Design Concept of application.

July 1998 to April 1999

Implemented Auction application without security.
Researched secu r ity features.

May 1999 to October 1999

Implemented security aspects of program.

November 1999 to May 2000

Write up and presentation of MSc

May 2000

Hand In of MSc.

Page 160

Secure Internet Auctioning System Page 161
Appendix

Appendix B

MDS

MDS accepts a message M, which is made up of b number of bits. The following
implementation is from [R.Rivest, 1992].

I.e M o .. Mb• 1

Step 1

The message is then padded so it has a length of 448 modulo 51 2. It length is then
considered congruent to 448 modulo 512. The first bit added is one, thereafter all
other bits are zero . As modulo 512 is applied to the value, one needs to add at
most 512 bits or at least one bit.

Step 2

A sixty four-bit representation of the original value of b is then added to the result
of step 1, which means it has an overall length of 512 bits. Where Mo to M,,-l is the
32 bit words in the new value. The value of n is divisible by sixteen.

Step 3

Four word buffers (A, 6, C, D) are used as registers, which are initialized with the
values

A: 01 234567
B: 89 ab cd ef
C: fe dc ba 98
D: 76 54 32 10

Step 4

Four functions are used that accept three thirty two bit words and output one thirty
two bit word.

F(X,Y,Z) ~ XY OR not(X) Z
G(X,Y,Z) ~ XZ OR Y not(Z)
H(X,Y,Z) ~ X '" Y '" Z
I(X,Y,Z) ~ Y '" (X OR not(Z))

For (i~ 0;I<N/(16-1),I++)
For (j=Oij< 1S,j++)

Set X[jl to M[i*16+j].
End For

End For

AA = A, BB = 6, CC = C, DD = D

ThiS following rounds uses a 64-element table T[1 ... 64]. This is made from the
sine function. Let T(i] = 4294967296 * abs(sin(i)), (i is in radians).

Secure Internet Auctioning System Page 162
Appendix

Round One

Let abed k s i denote

a = b + «a + F(b,e,d) + X[k] + T[i]) <<< 5).

Now apply it to the fo llowing operations, where ABCD Is the four register 32~bit
registers A, 6, C, D in that order.

[ABCD 0 7 1] [DABC 1 12 2] [CDAB 2 17 3] [BCDA 322 4J
[ABCD 4 7 5] [DABC 5 12 6] [CDAB 617 7] [BCDA 722 8]
[ABCD 8 7 9] [DABC 9 12 10] [CDAB 10 17 11] [BCDA 11 22 12]
[ABCD 12 713] [DABC 13 12 14] [CDAB 14 17 15] [BCDA 15 22 16]

Round Two

Let [abed k 5 i] denote

a = b + «a + G(b,e,d) + X[k] + T[i]) «< 5).

Now apply it to the fol lowing operations:

[ABCD 1 517] [DABC 6 918] [CDAB 1114 19] [BCDA 020 20J
[ABCD 5 5 21] [DABC 10 922J [CDAB 15 14 23J [BCDA 420 24J
[ABCD 9 525] [DABC 14 926] [CDAB 3 14 27] [BCDA 82028]
[ABCD 13 529] [DABC 2 930] [CDAB 7 14 31] [BCDA 12 20 32]

Round Three

Let [abed k 5 t] denote

a = b + «a + H(b,c,d) + X[k] + T[i]) «< 5). *f

Now apply it to the following opera tions:

[ABCD 5 433] [DABC 8 11 34] [CDAB 11 1635] [BCDA 14 23 36]
[ABCD 1 4 37] [DABC 4 11 38] [CDAB 7 16 39] [BCDA 10 23 40]
[ABCD 13 441] [DABC 0 11 42] [CDAB 3 1643] [BCDA 62344]
[ABCD 9 445] [DABC 12 11 46] [CDAB 15 1647] [BCDA 22348]

Round Four

Let [abed k 5 t] denote

a = b + «a + I(b,c,d) + X[k] + T[iJ) «< 5). *f

Now apply it to the following operations:

[ABCD 0 6 49] [DABC 7 10 50] [CDAB 14 15 51] [BCDA 5 21 52]
[ABCD 12 653] [DABC 3 10 54] [CDAB 10 15 55] [BCDA 1 21 56J
[ABCD 8 6 57) [DABC 15 10 58] [CDAB 6 15 59] [BCDA 13 21 60]
[ABCD 4 661] [DABC 1110 62] [CDAB 21563] [BCDA 921 64]

Finally perform the following operations, and return the values in A, B, C, D as the
result. A += AA, B+ = BB, e + = ec, D+ = DD

