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Abstract

Meta-analysis is a statistical analysis that combines results from different indepen-
dent studies. In meta-analysis a number of statistical methods are currently used for
combining effect sizes of different studies. The simplest of these methods is based
on a fixed-effects model, which assumes that all studies in the meta-analysis share
a common true effect size and that the effect sizes in our meta-analysis differ only
because of sampling error. Another statistical method that is used in meta-analysis,
is the random-effects model, which assumes sampling variation due to fixed-effects
model assumptions and random variation because the effect sizes themselves are
sampled from a population of effect sizes. These models are compared to determine
which model is appropriate and under what circumstances is the model appropriate.
We illustrate these models by applying each model to a collection of 3 studies exam-
ining the effectiveness of new drug versus placebo to treat patients with duodenal
ulcers and meta-analysis of 9 studies of the use of diuretics during pregnancy to pre-
vent the development of pre-eclampsia. Results indicated that the choice between
the two model depends on the question of which model fits the distribution of effect
sizes better and takes account of the relevant source(s) of error. We further study
the meta-analysis of longitudinal studies where effect sizes are reported at multiple
time points. Univariate meta-analysis is a statistical approach which may be used to
study effect sizes reported at multiple time point. The problem with this approach
is that it ignores correlation between the effect sizes, which might increase the stan-
dard error of the point estimates. We used the linear mixed-effects model, which
borrows ideas from multivariate meta-analysis. One of the advantages of the lin-
ear mixed-effects model is that it accounts for correlation between effect sizes both
within and between studies. The independence model where separate univariate
meta-analysis is done at each of the time points was compared against models where
correlation was accounted for different alternatives; including random study effects,
correlated random time effects and/or correlated within-study errors, or unstruc-
tured covariance structures. We implemented these methods through an example
of meta-analysis of 16 randomized clinical trials of radiotherapy and chemotherapy
versus radiotherapy alone for the post-operative treatment of patients with malig-
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nant gliomas, where in each trial, survival is evaluated at 6, 12, 18 and 24 months
post randomization. The results revealed that models that accounted for correlations
had better fit.

Keywords: meta-analysis, fixed-effects model, random-effects model, heterogeneity,
publication bias, linear mixed-effects model.
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Chapter 1

Introduction

Meta-analysis is a statistical analysis that combines the findings from different in-
dependent studies. The term meta-analysis is given to retrospective investigations
in which data from all know studies of a particular clinical issue are assembled and
evaluated collectively and quantitatively [1]. The objective of meta-analysis or other
methods of quantitative research synthesis is the use of data from a series of studies
to obtain information about the effect size for a treatment on various constructs. It
is most often applied to treatment effects in randomized clinical trials since meta-
analysis provides an objective way of combining information from independent
studies looking at the same clinical questions [1]. In medical research it is becoming
increasingly popular as a result of the information on efficacy of a treatment that
is available from a number of clinical studies with similar treatment protocols [2].
The advantage of combining the findings across such studies represent an attractive
alternative to strengthen the evidence about the treatment efficacy [2]. Moreover
combing the results of several studies through the techniques of meta-analysis can
provide stronger evidence for or against a treatment effect than one can derive from
any of the individual studies because it produces a more precise estimate of the effect
(i.e an estimate with smaller standard error or a narrower confidence interval) [3].
Meta-analysis is most often used to determine the effectiveness of clinical interven-
tions, providing an estimate of the treatment effect while taking into consideration
the weight of individual studies [4]. For instance, the aim for health professionals
is to use the best treatment for their patients. But it is crucial to identify the most
effective and the least harmful available interventions [4]. Hence meta-analysis in-
form clinical practice guidelines that make treatment recommendations based on
evidence about the least harmful and most effective interventions [4]. In addition,
today it is evident from the Cochrane collaboration and the high volume of publica-
tions for meta-analysis that clinical decision-making rely heavily on meta-analysis
[5]. This statistical method provides both the clinician and the medical investigator
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with quantitative summaries of the results of several studies, usually of evaluated
therapies or of diagnostics methods [3]. The results strengthen our knowledge be-
yond what can be contributed even by multiple single studies and may guide di-
agnosis and treatment of patients as well as suggest directions for future research
[3]. In all areas of clinical practice, meta-analysis of well designed and executed
randomized controlled trials have the potential to provide high levels of evidence
to support therapeutic interventions [5]. Regardless of the potential of the outcome
of such trials to guide decision making, they may sometimes fail to produce credi-
ble conclusive results or may disagree with multiple independent trial that investi-
gate the same clinical question [5]. In such cases, a meta-analysis of the trial results
has the potential to combine conceptually similar and independent studies with the
purpose of deriving more reliable statistical conclusions (based on a much larger
sample data) than any of the individual studies [5]. Meta-analysis of systematically
searched randomized controlled trials are often ranked as the highest available cat-
egory of evidence because systematic review is theoretically less susceptible to bias
[4]. Meta-analysis cannot prevent bias as such, but it can enhance the precision of
the estimated treatment effects and reduce the probability of false negative results
[4].

Meta-analysis usually involves obtaining an estimate of effect sizes from each study
and averaging these estimates to obtain an estimate of the average effect size across
studies [6]. In addition, the researcher may be interested in finding whether any
characteristics of the studies are systematically related to effect size. Some writers
in this research area have cited reasons for the position that different studies of the
same treatment might yield quite different result [7]. Grouping studies with simi-
lar characteristics may resolve many contradictions in research evidence, Light and
Smith argued [7]. They point out that studies with the same characteristic are more
likely to yield similar results and many contradictions among research results arise
from differences in the characteristics of studies. Pillemer and Light [8] have argued
that study characteristic is an important step in assessing the range of generaliza-
tions of a research finding and examining the relationship of variations in study out-
comes. For example, if a treatment produces essentially the same effect in a wider
variety of settings with a variety of people, we are more confident in the generaliza-
tion of finding of a treatment effect related to effect size.

1.0.1 Effect size

Effect size is defined as the strength of the relationship between the independent
and dependent variables [9]. Meta-analyses that deal with medical intervention of-
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ten refer to effect size as a treatment effect, and this term is sometimes assumed to
refer to odds ratio, relative risk and risk difference [9]. The most challenging step in
conducting a meta-analysis is extracting effect sizes from primary research reports.
The reports from the studies fail to provide sufficient information for computing ef-
fect sizes, as they mostly include the results of significance tests of probability values
other than those needed by the meta-analyst. Moreover, the same question can be
addressed using different experimental designs of a series of primary research stud-
ies. Despite the fact that it is not commonly recognized, effect sizes from different
experimental designs often estimate different population parameters [10]. If the ad-
justments for the designs are made they can be directly compared otherwise they
cannot be directly compared [11, 12]. The studies with repeated measures also con-
sist of independent groups (experimental arms) and the problem is thus the combi-
nation of results of studies with independent groups but with cross-sectional versus
repeated measures design. Almost in every treatment of meta-analysis, the calcula-
tion of effect sizes is straight forward when the research depends entirely on inde-
pendent groups design [13, 14]. Nevertheless, when conducting meta-analysis, in
many research areas both repeated measures and independent groups designs. The
studies involved often come from different representative populations. It is impor-
tant to note that this is a general problem in meta-analysis and is not specific to both
independent groups and repeated measures design. Unless a set of studies consist of
perfect replications, differences in design may result in studies that do not estimate
the same population effect size [15]. The only way that the effect sizes can be com-
bined is when these studies provide estimates of the same population parameter, on
other hand the effect sizes from different design should not be combined, since it will
estimate different parameters [15]. From different research studies, statistical meth-
ods have been used to combine information. The work on combining the results of
agricultural experiments is one of the examples of this work, other examples can be
found in biomedical research and other fields [16]. Cochran developed a more de-
fined weighting methods for combining effect sizes for agricultural experiments [17].

Glass proposed the use of statistical methods in research reviews and from that mo-
ment there has been intense interest in quantitative methods for research synthesis.
The method that Glass proposed involves the use of effect sizes [6]. The estimates
of the effect sizes across all studies are calculated using the proposed method. The
average of the effect sizes across studies is used as a treatment effect of the over-
all effect size across studies [18, 19]. The statistical theory for estimating the effect
size was addressed by Hedges [18, 19], He also derived the sampling distribution
of effect size estimators and show how to construct the confidence interval for the
effect sizes when a series of studies share a common population effect size [20]. An
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effect size refers to the magnitude of the effect observed in a study, depending on
the size of a relationship between variables [21]. In meta-analysis the basic principle
is to calculate the effect size of the individual studies and combine them to obtain
average effect size [19].

The general strategy that was recommended by Glass was that of coding the char-
acteristic of studies as a vector of predictor variables and regressing the effect size
estimates on these predictors to determine the relationship between characteristics
of studies and their effect size [22]. Smith and Glass [23] in their meta-analysis
of psychotherapy outcome studies, used ordinary linear regression to determine
the relationship between characteristics of studies (e.g.,type of therapy, duration
of treatment, interval validity of the study) and effect size [23]. Hail [24] used the
same method in quantitative syntheses of gender effects in decoding nonverbal cues.
Uguroglu [25] studied the relationship between academic achievement and motiva-
tion and the effect of goal structures on achievement. Johnson [26] studied the re-
lations between study characteristics and effect size that are found to be consistent
in these analyses. One explanation of these relations derived from the proposal by
Cronbach [27]. Cronbach [27] suggested that evaluation studies should consider a
model in which each treatment site is a sample realization from a universe of re-
lated treatments. Thus when evaluators look at replications of a treatment across
sites, they observe many differences, each sampled from some universe of possible
treatments [27]. Variations in the true population effect of the treatment would be
expected and these variations in treatment are more or less effective in producing
the outcome [27]. The relationship between a fixed characteristic (such as age or sex
of subject) and the outcome variable might be expected to be attenuated by such
variations [27]. Note that this model implies that there is no single true or popu-
lation effect of the treatment across studies. Rather, there is a distribution of true
effect. Each treatment site has its own unique true effect [27]. One may speak of
the average true effect of the treatment as an index of overall efficacy. Without some
measure of the variation in the true effect of the treatment, the average true effects is
not very meaningful [27]. One might find, for example, that the average of the true
effect was larger than zero, but the true effect of the treatment was negative in nearly
half the implementations. The fact that the true effect size is not known, the prob-
lem of estimating the variability in the true effects is complicated. We must estimate
the true effect from sample data, and that estimate will itself be subject to sampling
changes [27]. The underlying population effect sizes will not be constant across a
series of studies that replicate the same treatment. It is these random-effects mod-
els that leads to quantitative research synthesis. The test of homogeneity of effect
sizes was developed by Hedges [19]. Hedge’s procedure tests whether the observed
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estimates of effect size vary by more than expected if all studies shared a common
population effect size. This procedure was used by Giaconia and Hedges in one
quantitative research synthesis [28].

1.0.2 Objectives of the study

The main objectives of the study is to understand methodologies in meta-analysis
for both cross-sectional and longitudinal studies. The specific objectives are to:

• Investigate and understand methods for combining effect sizes from stratified
analyses.

• Investigate and understand methods for cross-sectional meta-analysis.

• Investigate and understand methods for longitudinal meta-analysis.

• Demonstrate the understanding of these methods by applying them into real
data.

1.0.3 Outline of the study

The thesis is organized as follows: Chapter 2 is about an overview of the basic sta-
tistical concepts and approaches in meta-analysis. In Chapter 3, we discuss methods
for meta-analysis of longitudinal studies. In Chapter 4, we illustrate how to apply
these statistical methods in practice and discuss the results found. In Chapter 5, we
present a general conclusion for the overall thesis, after which the References and
Appendices are presented.
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Chapter 2

Overview of basic statistical
concepts and approaches in
meta-analysis

2.1 Preliminary concepts

In this section we showed how to compute the variance for specific effect sizes such
as risk difference, log relative risk and log odds ratio. We discussed the important of
these effect sizes in meta-analysis. Moreover, we highlighted reasons for the selec-
tion of effect size in the analysis.

2.2 Effect sizes based on binary data (2 × 2 tables)

Consider L independent studies yielding 2 × 2 tables of the form (a, b, c, d). Where
(a,b) and (c,d) are the number of positives and negatives which are measured for
treatment group and control group respectively. Let π1 denote the probability of
the event in the treatment group, which is estimated as π̂1 = a

n1
and π2 denote the

probability of the event in the control group, which is estimated as π̂2 = b
n2

. The
null hypothesis is that H0 : π1 = π2 and the alternative hypothesis is H1 : π1 6= π2.
Define the marginal totals by n1 = a+ c, n2 = b+ d, m1 = a+ b, m2 = c+ d and the
grand total by N = n1 + n2 = m1 +m2. We define the table as follows
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2.2. Effect sizes based on binary data (2 × 2 tables)

Table 2.1: A table of follow up randomisation clinical trial

Treatment Group Control Group

Positive a b m1

Negative c d m2

Total n1 n2 N

2.2.1 Risk difference

The risk difference (RD) refers to the simple algebraic difference between the prob-
abilities of the positive response in the two groups with a domain of [-1,1]. The
asymptotic distribution of the risk difference R̂D = p1−p2 follows directly from that
of the sample proportions themselves, where p1 = a

n1
and p2 = b

n2
. Since the R̂D is

a simple linear contrast of two independent proportions, of which each is asymptot-
ically normally distributed, thus RD = π1 − π2. We shall derive the risk difference
through multivariate δ-method, starting with the asymptotic bivariate distribution
of p1 and p2. It is because the two groups are independent, then p = (p1, p2)

′ is
asymptotically distributed as bivariate normal with mean vector π = (π1, π2)

′ and
covariance matrix under the alternative hypothesis as

Σy =

[
π1(1−π1)

n1
0

0 π2(1−π2)
n2

]
. (2.1)

The risk difference is G(π) = π1 − π2, with the corresponding matrix of partial
derivatives

H(π) =

[
∂G(π)
∂π1
∂G(π)
∂π2

]
=

[
1

−1

]
(2.2)

or
H(π) =

[
1 − 1

]′
. (2.3)

Applying the multivariate δ-method, the asymptotic variance of the R̂D under the
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2.2. Effect sizes based on binary data (2 × 2 tables)

alternative hypothesis is given by

σ21 = V[R̂D] ∼= H(π)′ΣyH(π)

=
[

1 − 1
] [ π1(1−π1)

n1
0

0 π2(1−π2)
n2

][
1

−1

]

=
[

π1(1−π1)
n1

−π2(1−π2)
n2

] [ 1

−1

]

=
π1(1− π1)

n1
+
π2(1− π2)

n2
.

(2.4)

Since p1 = a
n1

and p2 = b
n2

, the asymptotic variance can be consistently estimated as

σ̂21 = V̂ (R̂D) =
p1(1− p1)

n1
+
p2(1− p2)

n2

=
ac

(a+ c)3
+

bd

(b+ d)3
.

(2.5)

The asymptotic distribution under the alternative leads to the usual expression for
the large sample 1 − α level confidence interval for the population risk difference
based on the estimate of the variance under the alternative

(θ̂l, θ̂u) = θ̂ ± Z1−α/2σ̂1. (2.6)

Although it is common in practice, these confidence limits are not necessarily bounded
by -1 and 1, and in rare circumstances limits are obtained outside these bounds [29].
Unlike the case of a single proportion, there is no convenient function that may
be used to yield asymmetric confidence limits on the risk difference that are then
bounded by (-1,1).

2.2.2 Relative risk

The relative risk (RR) is the ratio of the risk probabilities of the two groups. It has
a domain consisting of the positive real line and a null value of one. To provide a
symmetric distribution under the null hypothesis it is customary to use the log of
each. We consider the distribution of the log(R̂R), which is the difference in the logs
of the two probabilities. Then the relative risk is expressed as

RR =
π1
π2

(2.7)
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2.2. Effect sizes based on binary data (2 × 2 tables)

and the log relative risk as

log(RR) = log(π1)− log(π2). (2.8)

Now, we shall derive the distribution of the log relative risk through multivariate
δ-method, starting with the asymptotic bivariate distribution of p1 and p2. If the two
groups are independent, then p = (p1, p2)

′ is asymptotically distributed as bivariate
normal with mean vector π = (π1, π2)

′ and covariance matrix under the alternative
hypothesis as

Σy =

[
π1(1−π1)

n1
0

0 π2(1−π2)
n2

]
. (2.9)

The log relative risk is G(π) = log(π1) − log(π2), with the corresponding matrix of
partial derivatives

H(π) =

[
∂G(π)
∂π1
∂G(π)
∂π2

]
=

[
1
π1
−1
π2

]
(2.10)

or
H(π) =

[
1
π1

−1
π2

]′
. (2.11)

Applying the multivariate δ-method, the asymptotic variance of the log(R̂R) under
the alternative hypothesis is given by

σ21 = V[logR̂R] ∼= H(π)′ΣyH(π)

= H(π) =
[

1
π1

−1
π2

] [ π1(1−π1)
n1

0

0 π2(1−π2)
n2

][
1
π1
−1
π2

]

=
[

(1−π1)
n1

−(1−π2)
n2

] [ 1
π1
−1
π2

]

=
(1− π1)
n1π1

+
(1− π2)
n2π2

.

(2.12)
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2.2. Effect sizes based on binary data (2 × 2 tables)

Since p1 = a
n1

and p2 = b
n2

, the asymptotic variance can be consistently estimated as

σ̂21 = V̂ [log(R̂R)] =
(1− p1)
n1p1

+
(1− p2)
n2p2

=
(1− p1)

a
+

(1− p2)
b

=
1

a
− 1

n1
+

1

b
− 1

n2
.

(2.13)

Further, asymptotically

log(R̂R) ≈ N [log(RR), V [log(R̂R)]] (2.14)

hence,
log(R̂R)− log(RR)√

V̂ [log(R̂R)]
≈ N(0, 1). (2.15)

This distribution under the alternative hypothesis is used to derive the large sample
confidence limits on θ = log(RR) as

(θ̂l, θ̂u) = θ̂ ± Z1−α/2σ̂1. (2.16)

The asymmetric confidence limits for relative risk are obtained as

(R̂Rl, R̂Ru) = exp[θ̂ ± Z1−α/2σ̂1] = exp(θ̂l, θ̂u). (2.17)

that are contained within [0,∞).

2.2.3 Odds ratio

The odds ratio (OR) is the ratio of the odds of the outcome of interest in the two
groups. Which is given as

OR =
π1

1−π1
π2

1−π2
(2.18)
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2.2. Effect sizes based on binary data (2 × 2 tables)

and the log odds ratio is obtained as follows,

log(OR) = log

(
π1

1−π1
π2

1−π2

)

= log

(
π1

1− π1

)
− log

(
π2

1− π2

)
.

(2.19)

The distribution of the log odds ratio is obtained as that of a linear combination of
two normally distributed covariates. Within each group, the log odds is simply the
logit of the probability. In the following, however, we shall derive the distribution
of the log odds ratio through multivariate δ-method, starting with the asymptotic
bivariate distribution of p1 and p2.

Σy =

[
π1(1−π1)

n1
0

0 π2(1−π2)
n2

]
. (2.20)

The log odds ratio is G(π) = log

(
π1

1−π1
π2

1−π2

)
= log

(
π1

1−π1

)
− log

(
π2

1−π2

)
, with the

corresponding matrix of partial derivatives

H(π) =

[
∂G(π)
∂π1
∂G(π)
∂π2

]
=

[
1

π1(1−π1)
−1

π2(1−π2)

]
(2.21)

or
H(π) =

[
1

π1(1−π1) , −1
π2(1−π2)

]′
. (2.22)

Applying the multivariate δ-method, the asymptotic variance of the log(ÔR) under
the alternative hypothesis is obtained as follows

σ21 = V[logÔR] ∼= H(π)′ΣyH(π)

=
[

1
π1(1−π1)

−1
π2(1−π2)

] [ π1(1−π1)
n1

0

0 π2(1−π2)
n2

][
1

π1(1−π1)
−1

π2(1−π2)

]

=
[

1
n1

−1
n2

] [ 1
π1(1−π1)
−1

π2(1−π2)

]

=
1

n1π1(1− π1)
+

1

n2π2(1− π2)
.

(2.23)
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2.2. Effect sizes based on binary data (2 × 2 tables)

Since p1 = a
n1

and p2 = b
n2

, the asymptotic variance can be consistently estimated as,

σ̂21 = V̂ [log(ÔR)] =
1

n1p1(1− p1)
+

1

n2p2(1− p2)

=
1

a
+

1

b
+

1

c
+

1

d
.

(2.24)

This is Woolf’s [30] estimate of the variance of the log odds ratio. From Slutsky’s
theorem (Appendix A.2) it follows that asymptotically

log(ÔR) ≈ N(log(OR), σ21) (2.25)

and that,
log(ÔR)− log(OR)√

V̂ [log(ÔR)]
≈ N(0, 1). (2.26)

This yields large sample confidence limits on θ = log(OR) as

(θ̂l, θ̂u) = θ̂ ± Z1−α/2σ̂1 (2.27)

and asymmetric confidence interval limits for the odds ratio are expressed as fol-
lows,

(ÔRl, ÔRu) = exp[θ̂ ± Z1−α/2σ̂1] = exp(θ̂l, θ̂u) (2.28)

and these are again bounded by -1 and 1. The odds ratio is a very popular measure of
treatment effect for meta-analysis. The advantage of the odds ratio is that, it is valid
regardless of the type of sampling used, which is not the case for other comparative
measures for binary data. The choice of an effect size index in the analysis depend on
the following considerations. Firstly, the effect size from the different studies should
be comparable to one another in the sense that they measure atleast approximately
the same thing. That is, the effect size should not depend on aspects of study design
that may vary from study to study (such as sample size or whether covariates are
used). Secondly, the effect size should be computable from the information that is
likely to be reported in published research reports. That is, it should not require the
re-analysis of raw data (unless these are known to be available). Finally, the effect
size should have good technical properties. For example, its distribution should be
known so that variances and confidence intervals can be computed.
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2.3. Fixed-effects model

2.3 Fixed-effects model

In this section we introduce the fixed-effects model. We discuss the assumptions
of this model and show how these are reflected in the formulas used to compute a
summary effect, and in the meaning of the summary effect.

2.3.1 Model description

This approach provides an adjusted estimator that is a minimum variance linear es-
timator (MVLE) of an unknown parameter θ as a measure of association on any
scale θ = G(π1, π2) for some smooth function G(·, ·). Where π1 and π2 denote
the probability of the event in the treatment group and control group respectively.
Thus, within the class of linear estimators these estimates are asymptotically effi-
cient. Since the estimates of θ within each study is consistent then the MVLE is also
a consistent estimator with asymptotic variance. Using the framework of weighted
least squares, we have a vector of random variables θ̂ = (θ̂1 · · · θ̂L)′, where the as-
sumed model specifies that a common θ applies to all the studies such thatE(θ̂i) = θ

for i = 1, · · · , L. Furthermore, the variance of the estimate within the ith study is
V (θ̂i) = E(θ̂i − θ)2 = σ2i for each measure of association such as the risk difference,
log relative risk and log odds ratio. For now, assume that the {σ2i } are fixed. Note
that we are not assuming a common variance across the L strata. In other words we
have a case of heteroscedasticity, that is different variances for the different levels of
the stratifying variable(s). Under this model

θ̂ ∼=


1

.

.

.

1

 θ + ε = Jθ + ε, (2.29)

where J is a L× 1 unit vector of ones, and ε is a L× 1 vector where

E(ε) = 0, V (ε) = diag(σ21, · · · , σ2L) = Σε. (2.30)

Since the estimates θ̂i of each strata provides the consistent estimator that converges
in probability to the assumed common parameter θ for all i, then the weighted least
squares (WLS) estimate of the common parameter is given as

θ̂ = (J ′Σε
−1
J)−1(J ′Σε

−1
θ̂). (2.31)
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2.4. Multivariate Test of Hypotheses

Since Σε
−1 = diag(σ−21 , · · · , σ−2L ), the estimator in (2.31) can be expressed as a

weighted average of the stratum-specific estimate where

θ̂ =

∑
i σ
−2
i θ̂i∑

i σ
−2
i

=

L∑
i

ωiθ̂i, (2.32)

also

ωi =
σ−2i∑
l σ
−2
l

=
τi∑
l τl

(2.33)

τi = σ−2i and
∑

i ωi = 1. Moreover the variance of the estimate is

V (θ̂) = σ2 = (J ′Σε
−1
J)−1 =

1∑
i σ
−2
i

. (2.34)

To compute the estimate we use the estimated weight {ω̂2
i }, obtained by substituting

the large estimate of the stratum-specific variance in equation(2.32) {σ̂2i } so that

θ̂ =
∑
i

ω̂iθ̂i. (2.35)

To compute the estimate of the variance is obtained by substituting the stratum-
specific variance estimate {σ2i } into equation(2.34) so that

V̂ (θ̂) =
1∑
i σ̂
−2
i

. (2.36)

In summary, the minimum variance linear estimator is also known as the fixed-effects model,
since we assume that there is a common value θ for all the strata. Also we assume
that all the variation between the values of the observed parameter θ̂i is caused by
the random sampling variation about a common value θ.

2.4 Multivariate Test of Hypotheses

2.4.1 Multivariate Null Hypothesis

Consider a stratified analysis with L strata. Then, we wish to conduct a test for
a vector of L random variables θ̂ = (θ̂1 · · · θ̂L)′. The stratum-specific estimates θi
can be measured in any scale function such as θi = G(π1i, π2i) for some smooth
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2.4. Multivariate Test of Hypotheses

function θi = G(·, ·). Where π1i and π2i denote the probability of the event in the
ith stratum of the treatment group and control group respectively. The vector of L
random variables is assumed to be normally distributed

θ̂ v NL(θ,Σθ̂), (2.37)

where the mean and the variance are E(θ̂) = θ and V (θ̂) = Σθ̂ = diag(σ21, · · · , σ2L)

for i = 1, · · · , L.
Let θ be the null value of any scale function such as θ = G(πi, πi) for all i. Then, the
null hypothesis for the value of the estimate of the study is

H0 : θ1 = θ2 = · · · = θL = θ or H0 : θ = Jθ for i = 1, · · · , L, (2.38)

where J is a L× 1 unit vector of ones.

2.4.2 Tests for Homogeneity

The null hypothesis of homogeneity specifies that the components of θ share a com-
mon value of θ. Thus, the test for homogeneity among the measures of association
{θi} on some scale function θi = g(π1i, π2i) is given by

H0 : θ1 = θ2 = · · · = θL = θ (2.39)

against an alternative hypothesis that, at least two components of θ are not equal,

H1 : θi 6= θk for some i 6= k, 1 6 i, k 6 L. (2.40)

Note that, in the case where H0 true, this means that the stratum-specific estimate
{θi} share a common value of θ. On the other hand, whereH0 is false, this means that
the stratum-specific estimate {θi} differs among specific strata and this is referred to
as heterogeneity among strata, or an interaction between the group and study effects.

2.4.3 Contrast Test for Homogeneity

The null hypothesis for homogeneity in equation(2.39) means that the difference
between any two studies is zero in the following way
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2.4. Multivariate Test of Hypotheses

θ1 − θ2 = 0

θ2 − θ3 = 0

θ3 − θ4 = 0

...

θi − θi+1 = 0

(2.41)

for i = 1, 2, · · · , L. Now we can write the null hypothesis in the following matrix
equation 

1 −1 0 · · · 0 0

0 1 −1 · · · 0 0
...

...
...

...
...

...
0 0 0 · · · 1 −1



θ1

θ2
...
θL

 =


0

0
...
0


hence,

C′θ = 0 (2.42)

where C′ is a (L − 1) × L contrast matrix and θ is a L × 1. Therefore we can define
the null hypothesis as

H0 : C′θ = 0, (2.43)

and the alternative hypothesis as

H1 : C′θ 6= 0. (2.44)

The test for homogeneity is provided by the T 2-like wald statistics, define as the
quadratic form

χ2
H = (C′θ)′(C′

∑̂
θ̂
C)−1C′θ̂ v χ2

L−1, (2.45)

where θ̂ is defined in equation (2.37) as asymptotically normally distributed and
the estimate of the covariance matrix is defined in equation (2.37). To obtain the
MVLE of the assumed common value for measures of association {θi} on the scale
θi = G(π1i, π2i). Under the null hypothesis of homogeneity in equation (2.39),
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2.5. Heterogeneity

the stratum-specific estimate {θi} for the ith strata is asymptotically normally dis-
tributed as

θ̂ − θ v N(0, σ2i ). (2.46)

Since the hypothesis of homogeneity does not require that π1i = π2i, the variance of
θ̂i is evaluated assuming that π1i 6= π2i. For now assume that the variances, and their
inverses (τi = σ−2i ) are known. Since θ̂ is consistent for θ, its follows from Slutsky’s
theorem (Appendix A.2) that

√
τ̂j(θ̂i − θ)→

√
τ̂i(θ̂ − θ) v N(0, 1). (2.47)

Since σ̂2i is consistent for σ2i and τ̂i is consistent for τi then

τ̂i(θ̂i − θ)2 v χ2
1. (2.48)

Therefore,

χ2
H,C =

∑
i

τ̂i(θ̂i − θ)2 v χ2
(L−1) (2.49)

is distributed asymptotically as chi-square L− 1 degrees of freedom. We estimate θ
as a linear combination of the L stratum-specific estimates. Algebraically, Cochran’s
test is equivalent to the contrast test χ2

H . The χ2
H test has lower power especially

when the number of studies is small, as a comprehensive test of heterogeneity [31].
Conversely it has too much power if the number of studies is large [32].

2.5 Heterogeneity

Heterogeneity in meta-analysis is concerned with the variation in result across stud-
ies. Results may vary across studies because of random error, even when all studies
are measuring the same underlying average effect. Nevertheless probability alone
cannot explain the differences in the results across studies [33, 34]. Meta-analysis
often includes studies that are different from each other in important ways. Hence
heterogeneity may also be due to differences in study design or patient character-
istics across studies [35]. Meta-analysis is not only important for pooling studies to
increase the power for estimating average treatment effect, but also crucial for inves-
tigating potential sources of heterogeneity (exploratory meta-analysis) that may re-
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2.5. Heterogeneity

veal important effect modifiers [34, 35, 36, 33, 37]. This project reviews methods that
can be used in meta-analysis for exploring heterogeneity. After a brief discussion
about the causes of heterogeneity in meta-analysis, statistical tests for homogeneity
of study results are discussed.

2.5.1 Causes of heterogeneity in meta-analysis

Possible causes of heterogeneity in meta-analysis include random sampling error,
definition of treatment effect, some design features and other factors [38]. The re-
sults of different studies will vary even when all the studies are estimating the same
underlying effect size as a result of random sampling error [33, 34]. Such random
variation is greater in smaller studies and is less of a problem in larger studies [38].
If meta-analysis includes a larger number of studies and the difference across stud-
ies is purely due to random variation, then the results of studies will be distributed
around an average and there will be fewer studies whose results are far away from
the average [34]. Random errors can be estimated using statistical methods. Ran-
dom variation alone cannot explain the observed heterogeneity across studies in
meta-analysis.

Clinical causes of heterogeneity are characteristics of study participants and inter-
ventions [37, 36]. The results of different studies may vary because the patients
included in different studies varied and so responded differently to a treatment. The
identification of patient characteristics (e.g severity of illness, diagnosis, age, gender,
etc) as a cause of heterogeneity is clinically important to identify who may benefit
more or less from treatment [38]. This may allow better tailoring of treatment to pa-
tients. Similarly, considerable differences in the results across studies may be cause
by variations in settings and interventions [33, 34]. For example, the level of training
and experience of care givers may differ. Design quality factors, such as the method
of patient allocation, blinding and length of follow-up may also be important causes
of difference in the results of studies. Study design factors are important method-
ological causes of heterogeneity and sometimes may also be clinically meaningful.
For example, studies with different periods of follow-up may report different results.
The association between the results and the duration of follow-up may indicate how
long a treatment should be given, when a treatment may become effective or how
long a treatment effect can last [33].
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2.6. Random-effects model

2.6 Random-effects model

In this section we introduce the random-effects model. We discuss the assumptions
of this model, and show how these are reflected in the formulas used to compute a
summary effect, and in the meaning of the summary effect. This model specification
is equivalent to the null hypothesis of homogeneity in (2.39). There are two possible
reason for heterogeneity to take place. The first reason could be that the fixed-effects
model is misspecified in some way, or perhaps homogeneity is present on some
scale beside the specified analysis. On the other hand, to yield for homogeneity the
covariate must be adjusted. The second reason is that the fixed-effects model may
no hold, which means that there is some extra variation or over-dispersion due to
random differences among strata, and this leads to the formation of a random-effects
model.

2.6.1 Model description

In conducting a meta-analysis for medical research, how to deal with heterogene-
ity between studies is an important problem. The simplest and the most popular
method is to use the normal random-effects model, where a treatment effect in each
study is assumed to be randomly selected from a normal distribution [2]. Suppose
that we have L independent studies, of which the ith study has estimated effects
sizes θ̂i and true effect size θi. A standard model in meta-analysis assumes that θ̂i is
normally distributed with mean θi,

θ̂i = θi + εi, εi v N(0, σ2i ) (2.50)

where σ2i is the within study variance, describing the extent of estimation error for
θi. Any measure can be used for θ̂i as long as the normality assumption is atleast
approximately appropriate. The within study variance σ2i is unknown in practice,
but an estimated value from each study is usually used instead by ignoring the effect
of estimation. We follow this convention and make no distinction between true and
estimated σ2i . The normal random-effects model assume that

θi = θ + εi, εi v N(0, τ2) (2.51)

for i = 1, · · · , L. By combining equation(2.50) and equation(2.51)

θ̂i = θ + εi + εi, εi v N(0, σ2i ), εi v N(0, τ2), (2.52)
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2.6. Random-effects model

where τ2 is the between-study variance, describing the extent of heterogeneity of the
effect size between studies. The two random errors εi v N(0, σ2i ) and εi v N(0, τ2)

are assumed to be independent, hence

θ̂i v N(θ, τ2 + σ2i ). (2.53)

The parameter θ, is the overall average effect size which is our main interest. The
variance components can be expressed as follows

τ2 = E(θi − µθ)2 = V
[
E(θ̂i|θi)

]
(2.54)

σ2i = E(θ̂i − θi)2 = E
[
V (θ̂i|θi)

]
, (2.55)

therefore the unconditional variance of each θ̂i is

V (θ̂i) = τ2 + σ2i . (2.56)

The fixed-effects model is appropriate if τ2 = 0, otherwise if τ2 > 0 then the there
is over-dispersion relative to the fixed-effects model. A test of homogeneity in effect
provides a test of the null hypothesis H0H : τ2 = 0 versus alternative H1H : τ2 > 0.
If the test is significant, then a proper analysis using the two stage random-effects
model requires that we estimate the between-stratum variance component τ2. This is
readily done using a simple moment estimator derived from the test of homogeneity.
The Cochran’s test of homogeneity χ2

H,C can be expressed as a weighted sum of
squares

∑
i τi(θ̂i − µ̂θ)2, where µ̂θ is the MVLE of the mean measure of association

obtained under the fixed-effects model and τ̂i is the inverse of the estimated variance
of the estimate. The sum of squares of each estimate about the overall mean can be
partitioned about the estimated means as

∑
i

τi(θ̂i−µθ)2 =
∑
i

τi(θ̂i− µ̂θ)2 +2
∑
i

τi(θ̂i−µθ)(µ̂θ−µθ)+
∑
i

τi(µ̂θ−µθ)2 (2.57)

χ2
H,C =

∑
i

τi(θ̂i− µ̂θ)2 =
∑
i

τi(θ̂i−µθ)2−2
∑
i

τi(θ̂i−µθ)(µ̂θ−µθ)−
∑
i

τi(µ̂θ−µθ)2,

(2.58)
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since,

2E

{∑
i

τi(θ̂i − µθ) (µ̂θ − µθ)

}
= 2

∑
i

E
{
τi θi µθ − τi θi µθ − µθ µ̂θ τi − µ2θ τi

}
= 2

∑
i

E
{
µθ µ̂θ τi − µ2θ τi

}
= 0

(2.59)

and V (θ̂i) = E(θ̂i−µθ)2, then the expected value of the test statistic in equation(2.58)
is

E(χ2
H,C) =

∑
i

τiV (θ̂i)− V (µ̂θ)(
∑
i

τi). (2.60)

Since V (θ̂i) = τ2 + σ2i , is the unconditional variance for each θ̂i, then∑
i

τiV (θ̂i) =
∑
i

τi(τ
2 + σ2i ). (2.61)

Note that the MVLE is obtained as µ̂θ =
∑

i ω̂iθ̂i using the MVLE weights ωi = τi∑
l τl

,
where τ = σ−2i is assumed known (fixed). Again using the unconditional variance
of each θ̂i, then the other term is

V (µ̂θ) =

∑
i τ

2
i (τ2 + σ2i )

(
∑

i τi)
2

. (2.62)

Hence,

V (µ̂θ)
∑
i

τi =

∑
i τ

2
i (τ2 + σ2i )∑

i τi
(2.63)

therefore expected value is obtatined as,

E(χ2
H,C) =

∑
i

τi(τ
2 + σ2i )−

∑
i τ

2
i (τ2 + σ2i )∑

i τi
. (2.64)

Since τ = σ−2i , then simplifying equation(2.64) we obtained
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E(χ2
H,C) = (L− 1) + τ2

[∑
i

τi −
∑

i τ
2
i∑

i τi

]
. (2.65)

Then the consistent moment estimate for τ2 is given by

τ̂2 = max

0,
χ2
H,C − (L− 1)∑
i τ̂i −

∑
i τ̂

2
i∑

i τ̂i

 . (2.66)

If the solution of the estimate is a negative value, therefore it is set to zero. Using
the unconditional variance of the estimate within each stratum, we can update the
estimate θ̂, when given the estimate of τ̂2 between the strata.
The first-step iterative estimate for the weights are

ω̂
(1)
i =

τ̂
(1)
i∑
l τ̂

(1)
l

=
V̂ (θ̂i)

−1∑
l V̂ (θ̂l)−1

=
(σ2i + τ2)−1∑
l(σ

2
l + τ2)−1

, (2.67)

and the first-step iterative estimate for the MVLE mean of the strata is

µ̂
(1)
θ =

∑
j

ω̂
(1)
i θ̂i (2.68)

with the estimated variance

V̂ (µ̂
(1)
θ ) =

∑
i

(ω̂
(1)
i )2(σ2i + τ2). (2.69)

To recalculate the test for homogeneity the reweighted estimate of the mean µ̂
(1)
θ

would be used. The reweighted mean is also used to update the estimate of the vari-
ance between the strata (τ̂2)(2). The updated weights ω̂(2)

i , mean µ̂(2)θ and so on they
are obtain by the updated variance.The iterative procedure continues until both the
mean µ̂(m)

θ and variance V̂ (µ̂
(m)
θ ) converges to constants.

Remark
The addition of the nonzero variance component between the strata, τ̂2 to the vari-
ance in equation(2.56) has the effect of adding a constant to all of the weights. Thus,
the random-effects shrinks the weight, so that the resulting estimate is close to the
unweighted mean of the fixed-effects model.
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2.7 Choice between fixed-effects and random-effects models

Hedges et.al[39, 40] developed both fixed-effects and random-effects models for
combining effect sizes. Meta-analysis is used as a way of trying to find the true
effect size ( i.e the effect size in a population) by combining effect sizes from indi-
vidual studies. Fixed-effects and random-effects models are the two ways to explain
this concept of meta-analysis. The difference between these two models is explained
by Hedge [39, 40]. In the fixed-effects model the effect sizes in the population are
fixed but unknown constants and the effect sizes in the population is assumed to
be the same for all studies [41]. This situation is called the homogeneous case. The
other possibility is that the population effect sizes vary from study to study. In this
case each study in a meta-analysis comes from a population that is likely to have
a different effect size to any other study in the meta-analysis. This case is called
heterogeneous case, where the population effect size is sampled from a finite popu-
lation [39, 42].

To simplify the concept of fixed-effects model, the studies in the analysis share a
common true effect. While in the random-effects model, studies in the meta-analysis
are assumed to be only a sample of all possible studies that could be done on a given
topic [41]. The calculation of standard errors associated with the combined effect
sizes is the main difference between these models. The fixed-effects model uses only
within study variability in their standard error term because all other unknowns in
the model are assumed not to affect the effect sizes [39, 40]. In the random-effects
model it is necessary to account for the random errors associated with sampling
variation from populations that themselves have been sampled from a finite pop-
ulation. As such the error term contains two components, within study variability
and variability, arising from differences between studies [40]. If effect sizes are het-
erogeneous, then the resulting standard errors in the random-effects model are usu-
ally much larger than in the fixed-effects model and therefore significance tests of
combined effect sizes are more stable. In reality the random-effects model is prob-
ably more realistic than the fixed-effects model on the majority of occasions (espe-
cially when the researcher wishes to make general conclusions about the research
domain as a whole and not restrict their findings to the studies included in the meta-
analysis). Despite this fact, the National Research Council reports that fixed-effects
are the rule rather than the expectation [43]. Osburn and Callender [44] have also
noted that real world data is likely to have heterogeneous population effect sizes
even in the absence of known moderator variables[45]. Despite these observation,
Hunter and Schmidt [41] reviewed the meta-analysis studies reported in psychology
and found 21 studies reporting fixed-effects meta-analysis but none using random-
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effects model. Although fixed-effects model have attracted considerable attention
[39, 46]. The choice of a model depends largely on the type of inferences that the
researcher wishes to make [40]. The random-effects model facilitate inferences that
generalize beyond the studies included in the meta-analysis. While the fixed-effects
model is appropriate only for inferences that extend only to the studies included
in the meta-analysis. Random-effects model are appropriate in the real world data
since researchers usually wish to make inferences that generalize beyond the studies
included in the meta-analysis [40].

2.8 The likelihood method

Maximum likelihood is widely used for estimation and inference. In this section we
review a likelihood method to obtain the estimates of the two parameters of interest
in the random-effects model, θ and τ2.

2.8.1 Estimating θ and τ 2 using maximum likelihood

Recall that the standard random-effects model has θ̂i ∼ N(θ, τ2 +σ2i ), i = 1, 2, · · · , L
and that the σ2i is treated as a known constant. The density function for the random
variable θ̂i is

f(θ̂, τ2) =
1√

(σ2i + τ2)2π
exp−

1

2

(θ̂i − θ)2

σ2i + τ2
, (2.70)

and the likelihood function is given as

L(θ, τ2) =

L∏
i=1

f(θ, τ2)

=

L∏
i=1

1√
(σ2i + τ2)2π

exp−
1

2

(θ̂i − θ)2

σ2i + τ2

=
L∏
i=1

(
2π(σ2i + τ2)

)− 1
2 exp−

1

2

L∑
i=1

(θ̂i − θ)2

σ2i + τ2
.

(2.71)

Finally the log-likelihood function is

`(θ, τ2) = −1

2

L∑
i=1

log(2π(σ2i + τ2))− 1

2

L∑
i=1

(θ̂i − θ)2

σ2i + τ2
, θ ∈ R, τ2 > 0. (2.72)

Maximum likelihood estimates for θ and τ2 can be found by maximizing equation
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(2.72) with respect to θ and τ2 . We first differentiate equation (2.72) with respect to
θ and equate the differential to zero to obtain the maximum likelihood estimate for
θ

∂`(θ, τ2)

∂θ
= −1

2
× 2

L∑
i=1

(θ̂i − θ)
σ2i + τ2

×−1

=
L∑
i=1

(θ̂i − θ)
σ2i + τ2

=
L∑
i=1

θ̂i
σ2i + τ2

−
L∑
i=1

θ

σ2i + τ2
,

(2.73)

equating (2.73) to zero and re-arranging to obtain a maximum likelihood estimate
for θ

θ̂ =
L∑
i=1

θ̂i
σ2i + τ2

/ L∑
i=1

1

σ2i + τ2
. (2.74)

Maximizing (2.72) to obtain maximum likelihood for τ2

∂`(θ, τ2)

∂τ2
= −1

2

L∑
i=1

1

2π(σ2i + τ2)
× 2π − 1

2

L∑
i=1

− (θ̂i − θ)2

(σ2i + τ2)2

= −1

2

L∑
i=1

1

(σ2i + τ2)
+

1

2

L∑
i=1

(θ̂i − θ)2

(σ2i + τ2)2
,

(2.75)

setting equation(2.75) to zero then, we obtain an estimate for τ2

L∑
i=1

(θ̂i − θ)2

(σ2i + τ̂2)2
=

L∑
i=1

1

(σ2i + τ̂2)

L∑
i=1

(θ̂i − θ)2

(σ2i + τ̂2)2
=

L∑
i=1

1

(σ2i + τ̂2)
× σ2i + τ̂2

σ2i + τ̂2

σ2i + τ̂2 =

L∑
i=1

(θ̂i − θ)2

(σ2i + τ̂2)2

/ L∑
i=1

1

(σ2i + τ̂2)2

τ̂2 =

L∑
i=1

(θ̂i − θ)2 − σ2i
(σ2i + τ̂2)2

/ L∑
i=1

1

(σ2i + τ̂2)2
.

(2.76)

The large body of asymptotic theory existing for estimators, is the one major advan-
tage of maximum likelihood estimation. In regular cases a maximum likelihood es-
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timator from sample of L independent and identically distributed random variables
has a normal distribution. TheL variables θ̂i, i = 1, 2, · · · , L from a meta-analysis are
independent but not identically distributed since, Var(θ̂i) = σ2i + τ2. The standard
assumption will still apply in any realistic meta-analysis with large L. However it
is possible to construct a confidence interval for θ, using this asymptotic distribu-
tion, since the asymptotic variance of θ̂ depends on the unknown τ2. This is only an
approximate interval. Therefore the variance of θ̂ is given by

Var(θ̂) = Var

(
L∑
i=1

θ̂i
σ2i + τ2

/ L∑
i=1

1

σ2i + τ2

)

=
1∑L

i=1(σ
2
i + τ2)−1

.

(2.77)

Under the assumption of asymptotic normality we therefore have

θ̂ ∼ N

(
θ,

1∑L
i=1(σ

2
i + τ2)−1

)
. (2.78)

This distribution is used for θ̂ even though the likelihood estimate of τ2 may lie on
the boundary of the parameter space, namely, τ2 = 0. Note that the variance of θ̂ is
of the same form as that for the DerSimonian and Laird random-effects model. In
this case Var(θ̂) is estimated using τ̂2 without any modification to the distribution of
θ̂. Therefore the confidence interval for θ is

θ̂ ± Z1−α
2

L∑
i=1

1

σ2i + τ2
. (2.79)

This method is referred to as the simple likelihood method. A test of homogene-
ity and a confidence interval may be derived using the generalized likelihood ratio
statistic ΛL together with the fact that λL = −2log(ΛL) is, under the homogeneity
hypothesis τ2 = 0, asymptotically distributed as χ2

1 [47]. An asymptotic 100(1−α)%

confidence interval for τ2 is given by the set

C1−α = {τ2 : λL(τ2) ≤ χ2
1; 1− α}, (2.80)

where χ2
1; 1 − α is the 100(1 − α)th percentile point of the χ2

1 distribution [47]. An
alternative asymptotic confidence interval for τ2 can be found by arguing that the
asymptotic distribution of the MLE of τ2 is normally distributed with mean θ and
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variance equal to the inverse of the fisher information and it has been shown its read-
ily shown that this variance is 2∑

(σ2
i+τ

2)−2 [48, 49], so that a 100(1− α)% asymptotic
symmetric confidence interval for τ2 is

τ̂2 − Z1−α
2

√
2∑

(σ2i + τ2)−2
; τ̂2 + Z1−α

2

√
2∑

(σ2i + τ2)−2
, (2.81)

where Z1−α
2

is the 100(1− α
2 )th percentile point of the normal distribution.

2.9 Publication bias

Publication bias occurs when results of published studies are systematically differ-
ent from the results of unpublished studies [50]. Since published studies are more
likely to find their way into a meta-analysis, any bias in the literature is likely to be
reflected in the meta-analysis [9]. If the findings of published studies are systemat-
ically different from those unpublished studies, then the evidence base for clinical
and health-policy decisions will be questionable. As a result, the published studies
will not be a valid representation of all studies conducted [50]. If studies that are in-
cluded in the meta-analytic analysis are biasedly sampled from all relevant studies,
then the mean effect computed by meta-analysis will reflect this bias [9].

In general, studies with statistically significant or positive results are more likely
to be published than those with nonsignificant or negative results [50]. Also for any
given sample size the results are more likely to be statistically significant if the effect
size is larger. It follows that if there is a population of studies that looked at the
magnitude of a relationship and the observed effects are distributed over a range
of values, the studies with effects towards the higher end of that range are more
likely to be statistically significant and therefore to be published [9]. If studies have
relatively small sample size, this tendency has the potential to produce very large
biases, in the magnitude of the relationship [9]. Rothstein [51] reviewed the 95 meta-
analytic reviews published in psychological bulletin between 1995 and 2005 to see
whether they included unpublished research, she found that 23 of the 95 clearly did
not include any unpublished data. Clarke and colleagues [52] studied the references
from health care protocols and reviews published in the Cochrane library in 1999.
They found that about 92% of references to studies included in reviews were from
journal articles. Of the remaining 8%, about 4% were from conference proceedings,
about 2% were from unpublished material, and slightly over 1% were from book
chapters. Furthermore, they also looked at the sources of unpublished literature in-
cluded in the first 100 Cochrane systematic reviews and found that nearly half of
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them did not include any data from unpublished sources [9].

Dissemination bias describes all forms of biases such as language bias (English-
language databases and journals are more likely to be searched, which leads to
an over-sampling of statistically significant studies) [53, 54], Citation bias (Whereby
studies with systematically significant results are more likely to be cited by others
and therefore easier to identity) [55, 56], availability bias (selective inclusion of stud-
ies that are easily accessible to the researcher), cost bias (selective inclusion of studies
that are available free or at low cost), familiarity bias (selective inclusion of studies
only from ones own discipline), duplication bias (studies with statistically signifi-
cant results are more likely to be published more than once) [57] and outcome bias
(selective reporting by the author of a primary study of some outcomes but not oth-
ers, depending on the direction and statistical significance of the results).

All these biases lead to the same consequence namely that the literature located by
a systematic reviewer will be unrepresentative of the population of completed stud-
ies. Hence all present the same threat of review validity of systematic reviews and
reduce our ability to produce valid conclusions based on a body of evidence. This re-
view highlights that no empirical studies of current interventions have shown that
they reduce this bias. Publication bias will result in misleading estimates of treat-
ment effects and associations between study variables [50]. Clinical trials often use
the results of base medical research. Clinical trials may waste limited resources and
fail to confirm the published results of basic studies, if the results of basic research
are falsely positive due to biased selection for publication [58]. For example, pub-
lication bias may be used to explain the observed discrepancy in results between
animal studies and clinical trials regarding the neuroprotective efficacy of nicoti-
namide for focal cerebral ischemia [59]. Over a wide range of health risk factors,
results of observational studies are often highly contradictory, which may be partly
due to publication bias [60]. For example, publication bias may cause highly con-
tradictory results observed in early published studies of genetic associations [61].
Publication bias in clinical trials has a direct impact on patients’s and population’s
health. When the relative efficacy of a treatment is overestimated because of pub-
lication bias, health resources can be wasted by purchasing more expensive inter-
ventions, instead of cheaper alternatives, without corresponding improvement in
outcome. There are also many reported cases in which patients have received in-
effective or harmful treatment [50]. For example, biased reporting of trial results
delayed the detection of increased mortality risk of rofecoxib for alzheimer’s disease
and cognitive impairment and more than 10 million patients had used rofecoxib be-
fore its withdrawal in 2004 [62]. In a meta-analysis, it is possible that the studies
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may overestimate the true effect size because they are based on a biased sample of
the target population of studies. The way to deal with this concern is to compare
effects in the published studies formally with effects in the unpublished studies [9].
If we had the access to the unpublished studies we would no longer be concerned.
Nevertheless, the best approach would be for the reviewer to perform a truly com-
prehensive search of the literature, on hopes of minimizing bias. In fact, there is
evidence that this approach is somewhat effective [9]. Moreover funnel plots and
statistical methods can be used to indicate the presence or absence of publication
bias. Although these can be unreliable in many circumstances [50].

A funnel plot, is a scatter diagram used to visually represent the relationship be-
tween the effect of an intervention/treatment (x-axis) and study precision (y-axis),
have been proposed as a means of detecting publication bias in meta-analysis. From
a statistical point of view, the precision of the estimated intervention effect will in-
crease with increase in study size (presuming the event rate was the same across all
studies) [63]. The dots in the funnel plot represent the studies, the larger studies
will appear at the top of the funnel, while in contrast, effect estimates from smaller
studies may be expected to scatter near the bottom of the funnel. Publication and
selection biases in meta-analysis are more likely to affect small studies, which also
tends to be of lower methodological quality. This may lead to small study effects
where the smaller studies in a meta-analysis show larger treatment effects [64]. One
reason for this may be due to publication bias, where the chances of a small study
being published is higher if the study shows a statistically significant effect [65].
Moreover small study effects may also arise because of between trial heterogeneity
[64]. Although it should be noted that the term small study effect for this case is
somewhat misleading, since large studies can be imprecise, just as small studies can
be precise. The imprecise study effects may be a better description. In the absence
of publication bias, the graph resembles a symmetrical inverted funnel because the
treatment effect estimates from smaller studies scatter more widely at the bottom
of the graph , with the spread narrowing with increasing precision among larger
studies. On the other hand if there is a presence of publication bias, there will be
asymmetry as though a bite has been taken out of the funnel.
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2.9. Publication bias

Figure 2.1 – Example of the funnel plot.

Source:https://toptipbio.com/funnel-plot/funnel-plot-annotated/

Publication bias and true heterogeneity in intervention effects are two factors which
contribute to funnel plot asymmetry [63]. Asymmetry could also result from the
overestimation of treatment effects in smaller studies of inadequate methodologi-
cal quality. For example, a significant effect may only be seen in high risk patients
and these patients were more likely to be recruited into the smaller, early trials [63].
Larger, multi-centre interventions involving hundreds of patients may be more dif-
ficult to implement when compared with smaller trials and in addition, there may
be methodological differences between centres. In such a case, the data from the
smaller, better controlled study may be more precise than the larger and perhaps
less forcefully implemented study involving a more heterogeneous group of par-
ticipants. Furthermore, heterogeneity of treatment effects will lead to funnel plot
asymmetry if the true treatment effect is larger in the smaller trials. For example,
if a combined outcome is considered then substantial benefit may be seen only in
patients at high risk for component of the combined outcome which is affected by
the intervention. Trials conducted in high risk patients will also tend to be smaller,
because of the difficulty in recruiting such patients. Funnel plot shapes can also be
influenced by the statistic used to measure the effect size [63].
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2.10 Forest Plot

A forest plot is a graphical method that is commonly used in meta-analysis. It is
used for the visual representation of the trials included in the analysis and the re-
sults for each of the trials. Moreover, to display point estimates and corresponding
confidence interval for all the studies in the analysis. The summary estimate is more
than the weighted mean of the individual effects. However, the mechanism used to
assign the weights (and therefore the meaning of the summary effect) depends on
our assumptions about the distribution of effect sizes from which the studies were
sampled. Under the fixed-effects model, we assume that all studies in the analysis
share the same true effect size, and the summary effect is our estimate of this com-
mon effect size. Under the random-effects model, we assume that the true effect size
varies from study to study, and the summary effect is our estimate of the mean of the
distribution of effect sizes. Each study is represented by a horizontal line. However
in a case where there are no events, then that specific study would not be represented
by a line. Such studies will be excluded from the meta-analysis. There is a box in
the line for each study. The mid-point of the box represents the point effect estimate
that is, the treatment effect for each study. The size of the box represents the weight
given to the study. For instance, if more weight is given to the study, then the size of
the box will be big. But if less weight is given to the study, then the size of the box
will be small. This is designed so that eyes are drawn towards the studies that are
given more weights.

31



2.10. Forest Plot

Figure 2.2 – Example of the forest plot.

Source:https://guides.lib.monash.edu/systematic-
review/synthesis/quantitativedata

The diamond below the plot represents the overall effect. The width of the lines
shows the confidence intervals of the effect estimate of individual studies and the
mid-point of the diamond is the point estimate of the treatment effect. Pooling many
precise large studies will results in a large long thin diamond while a meta-analysis
that contains few small and imprecise studies will results in a small wide diamond.
In addition there is a vertical line which corresponds to the value zero in the plot
shown. This is the line of no effect. Note that the left of the vertical line it favours
drug group and on the right of the vertical line it favours placebo group. All effect
size commonly used as effect measures in meta-analysis are relative measures. In
this case, zero indicates no effect. If zero is included in the 95% confidence intervals,
it indicates that there is no statistical significance at 5% significance levels. If zero is
not included in the 95% confidence intervals, the results are statistically significant at
5% significance levels. This is applicable for effect estimates for the individual study
level and for the overall estimate. Whether the intervention is beneficial or harmful
depends upon the context.
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Chapter 3

Meta-analysis for longitudinal
studies

In this chapter, we introduce the linear mixed-effects models for meta-analysis of
longitudinal studies. We discuss the assumptions of this model, and show how these
are reflected in the formulas used to compute a summary effect.

3.1 Introduction

In longitudinal studies the study participants are measured repeatedly over time,
thereby allowing the direct assessment of changes in the response variable over time
[66]. Studies that are longitudinal in nature involves multiple or repeated measure-
ments on the same individuals at different times. Furthermore, the studies are de-
signed to investigate changes in response of interest over time on each subject. This
type of study is useful for estimating the relationship between risk factors and the
development of disease, and the outcomes of the treatment at different points in
time. For example, HIV patients may be followed over time and measurements such
as CD4 counts, or viral load collected to characterize immune status and disease bur-
den respectively [67]. Special statistical techniques are required for valid analysis
and inference for such repeated measures data that are correlated within subjects.
Longitudinal studies are in contrast to cross-sectional studies where measurements
are obtained at only a single point in time, where it is not possible to assess indi-
vidual changes on the basis of a single point in time [66]. The primary objectives
in longitudinal studies are often to examine the factors that influence heterogeneity
among individuals in how individual change throughout the duration of the study
[66]. The factors that influence heterogeneity among individuals are genetic, envi-
ronmental, social, and behaviorial factors [66]. This heterogeneity is natural in terms
of how the disease develops and progresses [66]. Longitudinal studies are often use-
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ful to characterize normal growth and aging, to assess the effect of risk factors on
human health and to evaluate the effectiveness of treatments.

During the course of follow-up, longitudinal studies typically report estimates of
the effect of a treatment or exposure at different time points [68]. Meta-analysis of
these studies must account for correlations between effect size estimates from the
same study [68]. The effects of treatment can be reported by estimates calculated at
different times, corresponding to the measurement times in the study [68]. We can
analyse longitudinal studies using summary measures in meta-analysis [69]. The
effects that are reported by meta-analysis of longitudinal studies in terms of a single
summary measure can be handled with standard approaches [2, 70]. Mass [71] de-
scribes a mixed-effects model for the meta-analysis of longitudinal effect estimates,
where He handle the correlation between observations by allowing random inter-
cepts and linear time effects.

Meta-analysis of longitudinal studies combines effect sizes measured at different
time points [72]. In meta-analysis, multiple combined results are required when
there are multiple end points of interest across studies, such as multiple outcomes
[73], multiple time points [74] and multiple treatments effect [75]. The effect sizes are
correlated because the are calculated at multiple time points, from the same group
of patients. In such cases there are multiple correlated effect sizes per study. A meta-
analyst can choose to perform a separate univariate meta-analysis for each effect size
in which individual effect sizes from two or more studies that are combined into a
single summary effect size or to perform multivariate meta-analysis where the mul-
tiple effect sizes are jointly analysed [72]. Both these approaches can be performed
using a standard statistical software such as STATA, R and SAS. The biggest chal-
lenge in meta-analysis is to account for correlation between effect sizes both within
and between studies when the effect sizes are reported longitudinally. The disad-
vantage of using separate univariate meta-analysis approach is that it ignores cor-
relation between the effect sizes and this can increase the standard error of point
estimates [76]. Furthermore, this might result in bias parameter estimates [76]. Riley
[76] studied the effect of ignoring within study correlation and found that ignoring
the within study correlation gives poor meta-analysis results with generally inferior
statistical properties, for example, it increases the mean-square error and standard
error of combined estimates. Moreover, Trikalinos et.al.[77] examined the data with
univariate and multivariate models based on discrete and approximate likelihood.
They found that both these models were comparable since the summary effects for
each outcome were similar with univariate and multivariate meta-analysis. How-
ever, the multivariate model with discrete likelihood gave smaller between study
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3.2. Theory of the linear mixed-effects model for meta-analysis

variance estimates and narrower predictive intervals for new studies. Furthermore,
Olkin and Gleser [75] have considered that it is generally preferable to analyse the
data simultaneously in multivariate meta-analysis framework so as to provide com-
bined conclusions and simultaneous confidence interval for each time points [75].
In contrast to the confidence interval obtained from separate meta-analysis, the idea
of simultaneous confidence interval provide correct average probabilities [75]. Mul-
tivariate meta-analysis can reduce the impact of bias when compared to univariate
meta-analysis in case of outcome reporting bias where some studies in meta-analysis
partially report results [78]. Moreover, multivariate meta-analysis allows the joint
combination of summing-up effect sizes estimates from multiple end points and ac-
counts for within study and between study correlation. In addition this approach
describes the associations between the estimates of effects in order to help make
predictions about the true effects of a new study and provide estimates with better
statistical properties.

3.2 Theory of the linear mixed-effects model for meta-analysis

Linear mixed-effects models are statistical models for continuous outcome variable
in which the residuals are normally distributed but may neither be independent or
have constant variance [79]. Recently, in biomedical, economics, education, phar-
macological and psychological studies, the application of the linear mixed-effects
models to repeated measures data from longitudinal studies has become frequently
used due to increasing availability of software that can be used to fit this model [80].
Furthermore, these statistical models can be used to analyse correlated data, that
include clustered, longitudinal or repeated measures data that quantifies the rela-
tionship between a continuous dependent variable and various predictor variables
[79].

In linear mixed-effects models variance-covariance structures are used to describe
the correlation present in the response for a given subject [81]. These models provide
a flexible and powerful tool for the analysis of data with a complex variance covari-
ance structure, such as correlated data due to a grouping of subject or repeated mea-
surements over time [82]. In addition, linear mixed-effects models combine the in-
formation from multiple subjects to improve estimates and inference [80]. The name
linear mixed-effects models comes from the fact that these models are linear, and
that the covariates or independent variables, may involve a mix of fixed-effects and
random-effects. Fixed-effects are the covariates effects that are fixed across subjects
in the study sample. These effects are the ones of our particular interest. In a linear
mixed-effects model, fixed-effects are unknown constant parameters associated with
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3.2. Theory of the linear mixed-effects model for meta-analysis

either continuous covariates or the levels of categorical factors [79]. In the studies
included in a meta-analytical research, fixed-effects analysis models the systematic
between study differences and assumes subject level sampling errors [80]. Also, the
use of fixed-effects parameters is to describe the relationship of the covariates to
the dependent variable for an entire population. Random-effects are in contrast to
fixed-effects, which are represented by constant parameters in a linear mixed-effects
model [79]. Furthermore, random-effects are represented by unobserved random
variables, which are usually assumed to follow a normal distribution. The covari-
ates effects that vary among subjects are the random-effects, since each subject is
a random subject drawn from a population. That is, each study specific effect is
sampled from the larger population of effects [81]. Hence, each study has its own
population effect and inference is made about the larger population of effects [81].
In the random-effects there are two sources of variability. Firstly, variability due to
the effect parameters and secondly, sampling variability of experimental units into
studies. In other words, random-effects analysis takes into account the true vari-
ance in addition to the modeled between study differences and the sampling error
in fixed-effects models [81]. Moreover, random-effects are used to model the random
variation in the dependent variable at different levels of the data since they are spe-
cific to clusters or subjects within a population [79]. The type of correlation present
is described by a variance-covariance structure, while random-effects for subject de-
scribes only the cause of correlation.

3.2.1 Model description

Consider a meta-analysis of L studies denoted by i = 1, · · · , L. Also consider T
longitudinal effect sizes per study denoted by t = 1, · · · , T . So each study i yield T

estimated effect sizes Yi = (Yi1, · · · , Yit, · · · , YiT ) such that

Yit = X′
itβ + Z′

itui + εit. (3.1)

In this linear model we define our variables as follows,

• X ′it is a 1× p design vector of p fixed-effects.

• β is the corresponding responding regression coefficients contained in the p×1

vector.

• Z ′it is a 1× q design vector of q(≤ p) random-effects.

• ui is a q × 1 vector of random-effects.

• εit is the vector of residuals.
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3.2. Theory of the linear mixed-effects model for meta-analysis

By extending the equation(3.1) above we obtain the general form of linear mixed-
effects model for Y i that can account for the correlations between longitudinal effect
sizes is given by

Yi = Xiβ + Ziui + εi. (3.2)

Where,

• Y i is the T×1 vector of effect sizes from a number ofL related but independent
studies.

• Xi is the T × p design matrix describing study covariates that influence fixed-
effects.

• β is the p× 1 vector of fixed-effects parameters.

• Zi is the subset of Xi is a T × q design matrix describing the covariates of q
random-effects.

• ui is the L×q vector of random-effects or residuals on the between study level.

• εi is the T × 1 vector of residuals on the within study level.

We represent elements of the Yi vector as follows

Yi =



Yi1
...
Yit
...
YiT


.

Note that the number of elements in the Yi may vary from one study to another.
Xi represent the known values of the p covariates, X1, · · · , Xp for each of the T lon-
gitudinal effect sizes collected on the ith study

Xi =


X11 X12 . . . X1p

X21 X22 . . . X2p

...
...

. . .
...

XL1 XL2 . . . XTp

 .

The first column would simply be equal to one for all observations, in a model that
includes an intercept term. Note that all elements in a column of the Xi matrix cor-
responding to a time variant or study specific covariate will be the same. For ease
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3.2. Theory of the linear mixed-effects model for meta-analysis

of presentation, we assume that the Xi matrices are full rank, that is none of the col-
umn or rows is a linear combination of the remaining ones. In general Xi matrices
may not be of full rank, and this may lead to an aliasing or parameter identifiable
problem for the fixed-effects stored in the vector β. The vector of p unknown regres-
sion coefficients or fixed-effect parameters associated with the p covariates used in
constructing the Xi matrix and β can be represented by

β =


β1

β2
...
βp

 .

The Zi matrix is a design matrix that represents the known values of the q covariates
Z1, · · · , Zq for the ith study. This matrix is very much like the Xi matrix in that it
represents the observed values of covariates, however it usually has fewer columns
than the Xi matrix

Zi =


Z11 Z12 . . . Z1q

Z21 Z22 . . . Z2q

...
...

. . .
...

ZL1 ZL2 . . . ZTq

 .

The columns in the Zi matrix represent observed values for the q predictor variables
for the ith study, which have effects on the continuous response variable that vary
randomly across studies. In many cases, predictors with effects that vary randomly
across studies are represented in both the Xi and the Zi matrix. In a linear mixed-
effects model in which only the intercepts are assumed to vary randomly from study
to study, the Zi matrix would simply be a column of ones.

The ui vector for the ith study represents a vector of q random-effects associated
with the q covariates on the Zi matrix

ui =


u1

u2
...
uL

 .

Recall that by definition, random-effects are random variables. We assume that the q
random-effects in the ui vector follow a multivariate normal distribution, with mean
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3.2. Theory of the linear mixed-effects model for meta-analysis

vector 0 and variance covariance matrix denoted by D such that

ui ∼ N(0,D). (3.3)

Elements along the main diagonal of the D matrix represent the variance of each
random-effects in ui, and the off diagonal elements represent the covariance between
two corresponding random-effects. Because there are q random-effects in the model
associated with the ith study, D is a q × q matrix that is symmetric and positive
definite. Elements of this matrix are shown below as follows

D = V ar(ui) =


V ar(u1) Cov(u1, u2) . . . Cov(u1, uq)

Cov(u1, u2) V ar(u2) . . . Cov(u2, uq)
...

...
. . .

...
Cov(u1, uq) Cov(u2, uq) . . . V ar(uq)

 .

Finally, εi is a vector of L residuals, with each elements in εi denoting the residual
associated with an observed response at time t for the ith study. It is because some
study might have more observations collected than others. The εi vector may have
different number of elements

εi =



εi1
...
εit
...
εiT


.

In contrast to the standard linear model, the residuals associated with repeated ob-
servations on the same study in an linear mixed-effects model can be correlated. We
assume that the L× 1 residuals in the εi vector for a given study, i, are random vari-
ables. That follows a multivariate normal distribution with a mean vector 0 and a
positive definite symmetric covariance matrix Ri

εi ∼ (0,Ri). (3.4)

We assume that the vectors of residuals εi = (εi1, · · · , εit, · · · , εiT )′ and random-
effects ui = (u1, u2, · · · , uL)′ are independent of each other. Effect sizes from dif-
ferent studies are assume to be independent of each other, that is cov(εit, εmt) = 0

when i 6= m for time points t, t′ = 1, · · · , T . We also assume that residuals and
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3.2. Theory of the linear mixed-effects model for meta-analysis

random-effects are independent, hence cov(εi,ui) = 0. The within study residu-
als are assumed to be normally distributed. Moreover, they are usually assumed
to be distributed in an identical manner within each group. However, for a meta-
analysis involving large sample sizes, the within study variances can be considered
unknown, and the covariance matrices Ri are specified as diagonal matrices with
known sample variance of the study effect sizes on their diagonals. We represent
the general form of the Ri matrix as shown below

Ri = V ar(εi) =


V ar(ε1) Cov(ε1, ε2) . . . Cov(ε1, εL)

Cov(ε1, ε2) V ar(ε2) . . . Cov(ε2, εL)
...

...
. . .

...
Cov(ε1, εL) Cov(ε2, εL) . . . V ar(εL)

 (3.5)

=


σ2 0 . . . 0

0 σ2 . . . 0
...

...
. . .

...
0 0 . . . σ2

 = σ2IL. (3.6)

The elements in D and Ri are known as variance components and can be written as,[
ui
εi

]
∼ N

([
0
0

]
,

[
D 0
0 Ri

])
. (3.7)

The distinction between the conditional and marginal mean of Yi in the linear mixed-
effects model is given by

E[Yi|ui] = Xiβ + Ziui (3.8)

and the conditional variance covariance of Yi given ui is

V ar(Yi|ui) = V ar(εi)

= Ri,
(3.9)

hence,
Yi|ui ∼ (Xiβ +Ziui,Ri). (3.10)
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The marginal mean of Yi when averaged over the distribution of random-effects ui
is

E(Yi) = E[E(Yi|ui)]

= E[Xiβ +Ziui]

= Xiβ +ZiE(ui)

= Xiβ

(3.11)

and the marginal variance covariance of Yi averaged over the distribution of ui is,

V ar(Y i) = E[V ar(Yi|ui)] + Var[E(Yi|ui)]

= E(Ri) + V ar(Xiβ +Ziui)

= Ri + ZiDZ′i
= ZiDZ′i + Ri.

(3.12)

Hence,
Y i ∼ (Xiβ,ZiDZ′

i + Ri) (3.13)

the observation Yi and random-effects ui have joint multivariate normal distribution[
Yi
ui

]
∼ N

([
Xiβ

0

]
,

[
ZiDZ′i + Ri ZiD

DZ′i D

])
. (3.14)

3.2.2 Estimating fixed-effects for V known

Let Y be normally distributed andV = ZDZ′+R be the marginal variance-covariance
of Y averages over the distribution of ui. Hence,

Y ∼ N(µ = Xβ,V) (3.15)

which has a joint pdf

f(Y) =
1

(2π)
1
2 |V|

1
2

exp

{
−1

2
(Y− µ)′V−1(Y− µ)

}
(3.16)
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then the likelihood is given as,

LML(θ) =
L∏
i=1

1

(2π)
n
2 |V|

L
2

exp

{
−1

2
(Y− µ)′V−1(Y− µ)

}
. (3.17)

Where L is the dimension of Y. Thus, the log likelihood function is given by,

l(β,θ) = −L
2

log2π − 1

2
log|V| − 1

2
(Y− µ)′V−1(Y− µ). (3.18)

We consider a general parameterization of µ and V, such that each element of µ is
a function of elements of a parameter vector θ, and similarly each element of V is a
function of elements of a parameter vector αwhich is unrelated to θ. Thus we write
µ = µ(θ) and V=V(α).
By differentiating the log likelihood with respect to β and setting the results ex-
pression to zero. This leads to the fixed-effects which is expressed in terms of the
variance parameters

∂l
∂θ

=
∂µ′

∂θ
V−1(Y− µ). (3.19)

If we make the following substitution in equation (3.19), let µ = Xβ and θ = β we
obtain the following

∂l
∂β

=
∂(Xβ)′

∂β
V−1(Y−Xβ)

=
∂β′

∂β
X′V−1(Y−Xβ)

= X′V−1(Y−Xβ)

= X′V−1Y− X′V−1Xβ.

(3.20)

Equating ∂l
∂β to zero we obtain the following results

X′V−1Y− X′V−1Xβ = 0, (3.21)
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transposing X′V−1Xβ to right we obtain,

X′V−1Xβ = X′V−1Y (3.22)

multiplying equation(3.22) by (X′V−1X)−1,

(X′V−1X)−1X′V−1Xβ = (X′V−1X)−1X′V−1Y (3.23)

we obtain
β̂ = (X′V−1X)−1X′V−1Y (3.24)

and the variance of β̂ is obtained as

Var(β̂) = (X′V−1X)−1X′V−1Var(Y)V−1X(X′V−1X)−1

= (X′V−1X)−1X′V−1VV−1X(X′V−1X)−1

= (X′V−1X)−1.

(3.25)

Since β is written as β̂, it means that β̂ is the best linear unbiased estimator(BLUE)
of β. Any generalized inverse (X′V−1X)− is used instead of (X′V−1X)−1, if X is not
full rank in-order to obtain the solution for β. The solution obtained is not unique
and is no longer unbiased. However,Xβ̂ is unique and unbiased forXβ, hence

Xβ̂ = X(X′V−1X)−1X′V−1Y (3.26)

thereforeXβ is the maximum likelihood estimator, and so as λ′Xβ̂ is the maximum
likelihood estimator of λ′Xβ for any λ.
Since the Var(Y)=V then

Var(Xβ̂) = X(X′V−1X)−1X′V−1X(X′V−1X)−1′X′. (3.27)

It is Because (X′V−1X)−1′ is a generalized inverse of (X′V−1X), then the invariance
property referred to Var(Xβ̂) reduces to

Var(Xβ̂) = X(X′V−1X)−1X′. (3.28)
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To test the null hypothesis H0 : K′Xβ = m where K′ is of full row rank (rK 6 rX), we
can derive a chi-square statistics using

X2 = (K′Xβ̂ −m)′
[
K′X(X′V−1X)−1X′K

]−1
(K′Xβ̂ −m). (3.29)

Under H0, X2 has a central χ2 distribution with rK=rank(K) degrees of freedom.
Typically V is a scalar multiple, therefore we can write V in terms of a weight matrix
W, which is the inverse of V up to a scalar multiple , that is , V = σ2W−1, where
is assumed known. In such case the follow statistic can be derived as the likelihood
ratio test and is also the most powerful invariant test

F =
(K′Xβ̂ −m)′

[
K′X(X′WX)−X′K

]−1
(K′Xβ̂ −m)

rkσ̂2
, (3.30)

where

σ̂2 =
Y′
[
W−WX(X′WX)−1X′W

]
Y

N − rX
. (3.31)

Under the null hypothesis, F has an F− distribution on rk and N-rX degrees of free-
dom. The null hypothesis is rejected at significant level α when F exceeds Frk

N−rX
, 1−

α.

3.2.3 Predicting random-effects for V know

Suppose ũ represent an arbitrary predictor of u, then ũ is unbiased if E[ũ] = E[u]

and ũ is the best predictor if it reach the minimum square error

E
[
(ũ− u)′A(ũ− u)

]
=

∫∫
(ũ− u)′A(ũ− u)f(u,Y) du dY, (3.32)

is a minimum where A is a positive definite symmetric matrix and f(u,Y) is the
joint pdf of u and Y. The best predictor of u is the conditional mean of u given Y,
ũ = Bp(u) = E(u|Y).
Estimating the best predictor ũ requires some knowledge of the joint density of u
and Y.
Let [

u
Y

]
∼ N

([
E(u)

E(Y)

]
;

[
D DZ′

ZD V

])
(3.33)
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ũ = E(u|Y) + DZ′V−1(Y− E(Y))

= DZ′V−1(Y−Xβ).
(3.34)

The resulting predictor is a best linear unbiased predictor (BLUP). If β is unknown
we use β̂.

ũ = DZ′V−1(Y−Xβ̂)

= DZ′PY
(3.35)

and the variance is given as
Var(ũ) = DZ′PZD (3.36)

where P = V−1 −V−1X(X′V−1X)X′V−1

Note that

• Cov(β̂, û) = 0

• Var(ũ− u) = D−DZ′PZD

•

Var(u) = Var[E(u|Y)] + E[Var(u|Y)]

= Var(ũ) + E[Var(u|Y)]

therefore
Var(ũ) 6 Var(u). (3.37)

Hence ũ has a smaller mean squared error than other estimates based on assuming
the random effects were fixed-effects. They also have less variability and are some-
times called shrinkage estimators as Cov(Y,u)

Var(Y) 6 1

ũ =
Cov(Y,u)

Var(Y)
(Y− E(Y))

=
Cov(Y,u)

Var(Y)
(Ȳi − Ȳ)

(3.38)

is shrunk compared to the corresponding fixed effects α̂i = (Ȳi − Ȳ).
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3.2.4 Predicting random-effects for V unknown

We use D̂ and V̂, when D and V are unknown in equation(3.35), giving what could
be called the estimated best predictor, to be denoted û

û = D̂Z′V̂
−1

(Y−Xβ̂)

= D̂Z′P̂Y.
(3.39)

3.2.5 Maximum likelihood estimation

A method known for obtaining estimates of unknown parameters by optimizing a
likelihood function, in general, is known as maximum likelihood estimation [79].
Based on distributional assumptions, in order to apply the maximum likelihood es-
timation specified in the model the likelihood is constructed as a function of the
unknown parameters [79]. The likelihood function is defined using the density func-
tion of the observations and measures the likelihood of the model parameters given
the data [83]. Further, the likelihood function is the product of the density functions
for each observation when the observation are assumed independent [83]. Never-
theless, the likelihood function of a linear mixed-effects model needs to be based on
a multivariate density function for the observation, since the observation are not in-
dependent [83].
Let the vector of all variance and covariance parameters denoted by α found in
Vi(α) = ZiDZ′i + Ri and the vector of all parameters in the marginal model Yi be
θ = (β′,α′). Then the likelihood is given as

LML(θ) =
L∏
i=1

(2π)−
L
2 |Vi|−

1
2 exp

{
−1

2
(Yi −Xiβ)′V−1i (Yi −Xiβ)

}
(3.40)

and the log-likelihood function l(θ) is given by

l(θ) = −L
2

log(2π)− 1

2
log|Vi| −

1

2

L∑
i=1

(Yi −Xiβ)′V−1i (Yi −Xiβ). (3.41)

The maximum likelihood estimator ofβ, obtained by optimizing the likelihood func-
tion which is given by

β̂(α) =

(
L∑
i=1

X′iV
−1
i Xi

)−1 L∑
i=1

X′iV
−1
i Yi (3.42)

α̂, β̂(α) follows a multivariate normal distribution with mean vector β which is
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given by as

E[β̂(α)] =

(
L∑
i=1

X ′iV
−1
i Xi

)−1 L∑
i=1

X ′iV
−1
i E(Y i)

=

(
L∑
i=1

X ′iV
−1
i Xi

)−1 L∑
i=1

X ′iV
−1
i Xiβ

= β.

(3.43)

Provide that E(Y i) = Xiβ. It is sufficient that the mean of the response is correctly
specified, in order for β̂ to be unbiased. Hence the variance-covariance of β is

Var(β̂) =

(
L∑
i=1

X ′iV
−1
i Xi

)−1( L∑
i=1

X ′iV
−1
i Var(Y i)V−1i Xi

)−1( L∑
i=1

X ′iV
−1
i Xi

)−1

=

(
L∑
i=1

X ′iV
−1
i Xi

)−1( L∑
i=1

X ′iV
−1
i ViV−1i Xi

)(
L∑
i=1

X ′iV
−1
i Xi

)−1

=

(
L∑
i=1

X ′iV
−1
i Xi

)−1( L∑
i=1

X ′iV
−1
i Xi

)(
L∑
i=1

X ′iV
−1
i Xi

)−1

=

(
L∑
i=1

X ′iV
−1
i Xi

)−1
.

(3.44)

Since, the covariance matrix V(Y i) is correctly modelled as Vi = ZiDZ ′i+Ri. There-
fore this is called a sandwich estimator V(β), it obtained by replacing Var(Y i) =

Vi = ZiDZ
′
i +Ri. In practice, the covariance matrix V(β) is estimated by replacing

α by it ML or REML estimator. This approach would yield an estimator for the co-
variance matrix of β̂which would take into account the extra variability. The inverse
fisher information matrix can be used to obtain the standard errors.

3.2.6 Estimating fixed-effects for V unknown

The log likelihood function has to be maximized with respect to V, since V is un-
known but not being a function of β. For µ = Xβ

l(β,θ) = −L
2

log2π − 1

2
log|V| − 1

2
(Y− µ)′V−1(Y− µ). (3.45)

The maximum likelihood equations for V are obtained from equating to 0 the fol-
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lowing expression

∂l

∂αk
= −1

2

[
trace(V−1

∂V
∂αk

)− (Y− µ)′V−1
∂V
∂αk

V−1(Y− µ)

]
. (3.46)

Using α for each parameter in V. In doing this µ is replaced by Xβ̂.
Since β is a function of V. Hence we evaluate the profile likelihood for V denoted
by lp, which is the likelihood for a given value of V with the maximizing value of β
for that V is inserted

lp = −1

2
YPY− 1

2
log|V| − L

2
log(2π) (3.47)

where
P = V−1 −V−1X(X′V−1X)−1X′V−1. (3.48)

To obtain the maximum likelihood estimate αk, we set ∂l
∂αk

to zero.
The iterative methods must be use in order to obtain the estimate of αk. The con-
ventional optimization methods which require first and second derivatives may be
applied.
Information matrix

∂2l

∂θθ′
=

∂

∂θ

(
∂l

∂θ′

)
=

∂

∂θ

([
∂µ′

∂θ
V−1(Y− µ)

]′)
=

∂

∂θ

[
(Y− µ)′V−1

∂µ

∂θ′

]
= −∂µ

′

∂θ
V−1

∂µ

∂θ′
+ (Y− µ)′V−1

∂2µ

∂θi∂θ
′

(3.49)

and so

− E(
∂2l

∂θ∂θ
) =

∂µ′

∂θ
V−1

∂µ

∂θ
. (3.50)

Also

∂2l

∂αk∂θ
′ =

∂

∂αk

[
(Y− µ)′V−1

∂µ

∂θ′

]
= (Y− µ)′

∂V−1

∂αk

∂µ

∂θ′

= −(Y− µ)′V−1
∂V
∂αk

V−1
∂µ

∂θ′
,

(3.51)
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since E[Y− µ] = 0

− E
[

∂2l

∂αk∂θ
′

]
= 0. (3.52)

If we differentiating equation(3.46) with respect to αs, we obtain

∂2l

∂αs∂αk
=

− 1

2
{trace

(
−V−1

∂V
∂αs

V−1
∂V
∂αk

+ V−1
∂2V

∂αs∂αk

)
+ (Y− µ)′

[
(−1)V−1

∂V
∂αs

V−1
∂V
∂αk

V−1 + V−1
∂2V

∂αs∂αk
V−1

−V−1
∂V
∂αs

V−1
∂V
∂αk

V−1
]
(Y− µ)}

.

(3.53)

Now for any A
E[(Y− µ)′A(Y− µ)] = trace{AE[(Y− µ)(Y− µ)′]} = trace(AV )

therefore

−E
(

∂2l

∂αs∂αk

)
=

1

2
{trace

(
−V−1

∂V
∂αs

V−1
∂V
∂αk

+ V−1
∂2V

∂αs∂αk

)
+ trace

[
V−1

∂V
∂αs

V−1
∂V
∂αk

−V−1
∂2V

∂αs∂αk
+ V−1

∂V
∂αk

V−1
∂V
∂αs

]
}

=
1

2
trace

(
V−1

∂V
∂αk

V−1
∂V
∂αs

)
.

(3.54)

Hence, the information matrix is

−E

 ∂2l
∂θ∂θ′

∂2l
∂θ∂α′(

∂2l
∂θ∂α′

)′
∂2l

∂α∂α′



= −E

[
∂µ′

∂θ V−1 ∂µ∂θ 0

0 1
2{trace

(
V−1 ∂V

∂αV−1 ∂V
∂αk

)
}

]
.

Newton Raphson method :

Consider the log-likelihood function l(α) for which we want to find the maximum
at α. The Newton-Raphson method uses the first-order expansion of the score func-
tion around the current estimate α(t) to produce the next estimate α(t+1). Hence
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each Newton-Raphson iteration requires the calculation of the score function and
it’s derivatives

∂l

∂α(k)
=

∂l

∂α(0)
+

∂2l

∂α(k)∂α(k)
′
(
α(k) −α(0)

)
. (3.55)

Setting ∂l
∂α to zero, and solving we obtained

∂l

∂α(0)
+

∂2l

∂α∂α′
(
α−α(0)

)
= 0, (3.56)

re-arranging equation(3.56) to obtain

∂2l

∂α∂α′
α =

∂2l

∂α∂α′
α(0) −

∂l

∂α(0)

α = α(0) −
[

∂2l

∂α∂α′

]−1
∂l

∂α(0)
.

(3.57)

Therefore the estimate of the maximum on the (t + 1)th iteration can be obtained
iteratively by this equation

α(t+1) = α(t) −
[

∂2l

∂α∂α′

]−1
∂l

∂α(t)
. (3.58)

Fisher Scoring algorithm :

The Fisher Scoring algorithm replaces the observed information matrix by the ex-
pected information matrix

α(t+1) = α(t) − E
[

∂2l

∂α∂α′

]−1
∂l

∂α(t)
(3.59)

3.2.7 Restricted maximum likelihood estimation

Optimizing the likelihood function we obtain the restricted maximum likelihood
estimators(REML) for the variance components of α and β [84]. Moreover Harville
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[85] has shown that the likelihood function of the error contrasts can be written as

L(α) = (2π)−
(L−p)

2 |
L∑
i=1

X′iXi|
1
2

× |
L∑
i=1

X′iV
−1
i Xi|−

1
2

L∏
i=1

|Vi|−
1
2

× exp

{
−1

2

L∑
i=1

(Yi −Xiβ̂)′V−1i (Yi −Xiβ̂)

}
.

(3.60)

Where β̂ is given by β̂(α) =
(∑L

i=1 X′iV
−1
i Xi

)−1∑L
i=1 X′iV

−1
i Yi,

finally the likelihood function is equals

L(α) = C|
L∑
i=1

X′iV
−1
i Xi|−

1
2LML(β̂, α̂). (3.61)

Where C is a constant not depending onα and LML(β̂,α) = LML(θ). The REML es-
timator for α and β can also be found by maximizing the REML likelihood function

LREML(θ) = |
L∑
i=1

X′iV
−1
i Xi|−

1
2LML(θ) (3.62)

with respect to all parameters α and β simultaneously.

3.3 Inference

3.3.1 The likelihood ratio test(LR)

The likelihood ratio test is based on comparing the values of likelihood functions
for two nested models, which are full and reduced models. When two models are
nested we mean that the parameter space for the reduced model is a subspace of
the full model. Furthermore, the parameters in the reduced model can be obtained
by imposing certain constraints on the parameters of the full model. The reduced
model is denoted as l̂reduced and the full model as l̂full, where the likelihood ratio
test is given by

LR = −2lLλL = 2(l̂full − l̂reduced) ∼ χ2
df . (3.63)

The likelihood ratio test statistic follows a χ2 distribution, in which the number of
degrees of freedom df , is obtained by subtracting the number of parameters in the
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reduced model from the number of parameters in the full model. If the difference
between the reduced model and full model is sufficiently large, there is evidence
against the reduced model in favor of the full model. However if the difference is
small, we have evidence in favor of the reduced model.

3.3.2 Wald test

A wald test is often used for fixed-effects parameters. If we consider an hypotheses
about β. For each parameters βj in β, j, · · · , p. Therefore we can test the hypothesis
H0 : βj = 0 against Ha : βj 6= 0. The corresponding wald test is calculated as
follows

Z =
β̂j − βj
Se(β̂j)

. (3.64)

Suppose that L is a single row vector then LCov(β̂)L′ is a single value and its square
roots provides an estimates of the standard error for Lβ̂. Hence, an approximate
95% confidence interval is given by

Lβ̂ ± 1.96

√
LCov(β̂)L′. (3.65)

The hypotheses test for the estimates is given by

H0 : Lβ = 0 vs Ha : Lβ 6= 0, (3.66)

where β̂ is asymptotically normal with mean β and covariance matrix, for any know
matrix L. Then the wald statistic is given by

Z =
Lβ̂√

LCov(β̂)L′
. (3.67)

If the Z is a standard normal random variable then Z2 has a χ2 distribution with one
degree of freedom, hence

W = β̂
′
L′
[
LCov(β̂)L′

]
Lβ̂. (3.68)

W follows an asymptotic χ2 distribution with rank L degrees of freedom. However
wald test do not take into account the variability from replacingα by some estimate.
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Hence in sufficiently large samples, wald test will only provide valid inferences. This
is often resolved by replacing the χ2 distribution by an appropriate F distribution
for testing hypotheses about β. In other words, an F-statistic is an alternative test
statistic to the wald test. The F-test statistic for the null hypothesis H0 stated above
is given by

F =
β̂
′
L′
[
LCov(β̂)L′

]−1
Lβ̂

rank(L)
. (3.69)

The numerator degrees of freedom of the F statistic above are equal to rank L and
denominator degrees of freedom are estimated from the data. Such methods as
containment, Satterthwaite approximation, Kenward and Roger approximation are
use to estimate the denominator degree of freedom for the F-statistic above. The
p-values for all methods are the same when estimating the degree of freedom. As
result of the assumption for most application in longitudinal data that different indi-
vidual contribute independent information. Which result in numbers of degrees of
freedom which are large [84]. The F-test reduces to a t-test for univariate hypotheses
and the rank L=1.

3.3.3 Estimating the random-effects

It is often useful to calculate estimates for the random-effects ui, since they reflect
how much the subject specific profiles deviate from the overall average profile. How-
ever, in practice one is usually primarily interested in estimating the parameters in
the marginal linear mixed-effects model, the fixed-effects β and the variance compo-
nents D and σ2. Since such estimates can be interpreted as residuals which may be
helpful for detecting outlying individuals who are behaving differently over time.
Furthermore, whenever the interest is in prediction of subject specific evolutions, es-
timates for the random-effects are needed [84].
It is no longer sufficient to assume that the data can be represented well by the
marginal model N(Xiβ,Vi). We assume conditional interpretation since Yi|ui ∼
N (Xiβ + Ziui,D). It is because random-effects represent natural heterogeneity be-
tween the subjects. The justification of this assumption is when the between subjects
variability is large in comparison to the within subject variability. Therefore it is
most natural to estimate them using Bayesian techniques. To explore the inference
for random-effects. We denote density function of Yi conditional on ui and the prior
density function of ui by f(yi|ui) and f(ui) respectively. Therefore the posterior
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density function of ui given Yi = yi is given by

f(ui|yi) ≡ f(ui|Yi = yi)

=
f(yi|ui)f(ui)∫
f(yi|ui)f(ui)dui

.
(3.70)

The estimate of ui is often the mean of the posterior distribution. The estimate is
given by

ûi(θ) = E(ui|Yi = yi)

=

∫
uif(ui|yi)dui

= DZ′iV
−1
i (yi − Xiβ)

(3.71)

and the covariance matrix of the corresponding estimator equals

Var(ûi) = DZ′i

V−1i −V−1i Xi

(
n∑
i=1

X′iV
−1
i Xi

)−1
X′iV

−1
i

ZiD. (3.72)

Nonetheless inference for ui should account for the variability in ui. Therefore the
inference for ui is usually based on

Var(ûi(β)− ui) = D− Var(ûi(β)). (3.73)

The estimates ML or REML obtained from fitting the marginal model can be used
to replace the parameter in θ. The empirical Bayes estimate for ui is ûi(θ̂). The
inference for ui is often based on approximate t-test or F-test, which are similar to
fixed-effect than the wald test. The following inequality hold for any linear combi-
nation λui of the random-effects

Var(λ′ûi) ≤ Var(λ′ui). (3.74)

It follows that the empirical Bayes estimate show less variability than actually present
in the random-effects population [84]. This is often called shrinkage estimates.
The linear combination of fixed-effects in β and random-effects in ui are often pa-
rameters of interest. For example the subject specific slope in the sum of the average
slope for subjects with the same covariate values, and the subject specific random
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slope for that subject. Hence
µ = λ′ββ + λ′uûi (3.75)

is of interest then
µ = λ′ββ̂ + λ′uûi. (3.76)

Yi is unbiased for u, therefore µ̂ is the best linear unbiased predictor(BLUP) and has
minimum variance among all unbiased linear estimators. Consider the prediction of
the evolution of the ith subject then

Ŷi = Xiβ̂ + Ziui

= Xiβ̂ + ZiDZ′iV
−1
i (yi − Xiβ̂)

= (Ini − ZiDZ′iV
−1
i )Xiβ̂ + ZiDZ′iV

−1
i yi

=
∑
i

V−1i Xiβ̂ + (Ini −
∑
i

V−1i )yi.

(3.77)

The weights of Yi are
∑̂

iV
−1
i and ILi −

∑̂
iV
−1
i respectively and Yi is defined as

the weighted mean for the population average profile Xiβ̂ and the observed data
yi. The regression coefficient in a random-effects model have a subject specific in-
terpretation. If the within subject variability is high then the bigger weight goes to
the overall population mean, while more weight is given to yi if between subject
variability is large.

3.4 Model selection

In this section, we overview statistical methods used to compare models in the anal-
ysis.

3.4.1 Akaike information criteria

Information criteria are another set of tools, that are widely used to compare and se-
lect models. Akaike’s Information Criteria(AIC) can be used to compare non-nested
models. Akaike [86] proposed this method, which is given by

, AIC = −2logL+ 2p (3.78)

where L is the maximum log-likelihood and p is the number of estimable parameters
in the model. If the AIC is smaller, then the model is preferably.
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3.4.2 Schwarz criterion

Schwarz Criterion(SC) also known as Bayesian Information Criterion(BIC). The
Schwarz Criterion has the same properties as AIC, since they both comparing the
non-nested models. However, the AIC aims to find the best approximating model
on the true one. While the BIC aims to identify the true model. The method was
proposed by Schwarz [87] and is given by

SC = −2logL+ plog(n), (3.79)

where n is the sample size and p is the number of estimable parameters in the model.
According to Allison [88], the SC produces more critical penalization on the likeli-
hood for estimating more parameters than AIC. The model is preferable if it has the
smaller SC than the other model with bigger SC. We can lower the options before
comparing model, while doing a model selection. The selection procedure of a vari-
able that enters the model, such as forward, backwards and stepwise selection can
be done by building the regression model. Forward selection starts with the reduced
model and enters one covariate at a time, that is found to be significant at some level
of significance α until all significant variables are added to the model. Backward
selection starts with the full model that contains all covariates and drops one at a
time, that is, insignificant at some level of significance α. This is done until all non-
significant variables are removed from the model. The stepwise selection works the
same way as the forward selection procedure. Nevertheless, in the stepwise proce-
dure the variables that are already in the model are considered to be excluded in the
model each time the new covariate is added in the model, which is the advantage
over the forward selection procedure. The stepwise procedure is preferable, in cases
where there many covariates since it minimizes the chance of keeping the variables
that are no longer needed in the model and leaving out some important ones.

3.5 Checking model assumption(diagnostics)

Model diagnostic is important after fitting a linear mixed-effects model and before
making any inference based upon it. In order to check whether distributional as-
sumptions for the residuals are met and whether the fit of the model is sensitive
to unusual observations [79]. The aim of checking the distributional assumption is
based on the estimated residual errors. Due to the presence of random-effects and
different covariance structures, diagnostics for linear mixed-effects model are more
difficult to perform and interpret, because of the model itself which is more complex
[79]. Throughout the analysis of longitudinal data set, model diagnostics should be
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part of the model building process [79].

3.5.1 Residual diagnostics

A residual is defined as the difference between an observed quantity and its esti-
mated value. In a linear model the set of residual plotted against predicted values
are used to decide whether, they presents a random pattern or not [79]. The use of
residuals against fitted plots plays an important role in verifying model assumptions
and to detect outliers and potentially influential observations [79].

3.5.2 Conditional and marginal residuals

The difference between the observed value and the conditional predicted value of
the dependent variable is defined as the conditional residuals [89]. Conditional
residuals are not well suited for verifying model assumptions and detecting out-
liers. Even if the true model residuals are uncorrelated and have equal variance,
conditional residuals will tend to be correlated and their variances may be different
for different subgroups of individuals. The conditional residuals vector equation for
a given individual i in a longitudinal data set, is defined as follows

ε̂(c)i = Yi − Xiβ̂ − Ziûi. (3.80)

On the other hand, a marginal residual is defined as the difference between the ob-
served data and the estimated marginal mean [89]. The marginal residuals are in
contrast to conditional residuals, since the marginal residuals are based on model
which do not include random-effects [79]. The marginal residuals in vector equation
are defined as follows

ε̂(m)i = Yi − Xiβ̂. (3.81)

The use of raw residuals is to check heterogeneity of the conditional or marginal
variance. However, they are less recommended for checking normality assumptions
and detecting outlying observations. As a result, the raw residuals will be correlated
and their variances will differ.

3.5.3 Standardized and studentized residuals

To avoid the interpretation to depend on the measurement units of the dependent
variable, we consider scaling the residuals by dividing by the true or estimated stan-
dard deviations. To obtain standardized residuals, it would be preferable to scale the
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residuals by their true standard deviations. However, the true standard deviation is
rarely known in practice, hence the estimated standard deviation is use to do the
scaling instead. Therefore, the residuals that are obtained in this manner are called
studentized residuals. The resulting residuals when scaling residuals by dividing
them by the estimated standard deviation of the dependent variable are called Pear-
son residuals. If we assume that variability of β̂ can be ignored then the Pearson-
type scaling is appropriate. We do not consider other scaling choices, although they
are possible. The calculation of a studentized residuals may also depend on whether
the observation corresponding to the residuals in question is included in the estima-
tion of the standard deviation or not. We refer to it as external studentization, if the
observation is excluded.

3.5.4 Influence diagnostics

Maximum likelihood and restricted maximum likelihood method are both sensitive
to unusual observations. To identify observations that heavily influence estimates
of the parameters in either β or θ, one need formal techniques such as influence di-
agnostics. Influence diagnostics for linear mixed-effects model is an active area of
research. The idea of influence diagnostics for a given observation or subset of ob-
servations is to quantify the effect of excluding those observation on the results of
the analysis of the entire data set. Influence diagnostics may be used to investigate
various aspects of the model fit. The influence of observations on the model fit can
clear itself in more varied and complicated ways since linear mixed-effects models
are more complicated than standard linear models. In linear mixed-effects model, it
is generally recommended to follow a top-down approach when carrying out influ-
ence diagnostics. First, check overall influence diagnostics. Assuming that there are
influential sets of observation based on the overall influence diagnostics, proceed
with other diagnostics to see what aspect of the model a given subset of observa-
tions affects: fixed-effects, covariance parameters, the precision of the parameters
estimates, or predicted values. Influence diagnostics plays an important role in the
interpretation of the result. It is appropriate to interpret the model with respect to
prediction, if a given subset of data has a strong influence on the estimates of co-
variance parameters, but limited impact on the fixed-effects. The precision may be
affected by the changes in estimates of covariance parameters to test for fixed-effects
and confidence intervals.

3.5.5 Overall influence

An overall influence statistics measures the change in the objective function being
minimized. The likelihood distance and likelihood displacement are examples of
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an overall influence measure. In the linear mixed-effects model fitted by maximum
likelihood and restricted maximum likelihood. Compute the full data parameter
estimates ψ̂ and estimates based on the reduced data ψ̂(U). Then the likelihood and
restricted likelihood distances are obtained as

LD(U) = 2{l(ψ̂)− l(ψ̂(U))}

RLD(U) = 2{lR(ψ̂)− lR(ψ̂(U))}.
(3.82)

The likelihood distance gives the amount by which the log-likelihood of the full data
changes if one were to evaluate it at the reduced data estimates. The important point
to note is that l(ψ̂(U)) is not the likelihood function obtained by fitting the model to
the reduced data set. It is obtained by evaluating the likelihood function based on
the full data set containing all n observations at the reduced data estimates.
The likelihood distance is a summary measure expressing the joint influence of the
observations in the set U on all parameters in ψ that were subject to updating. De-
termine the nature of that influence, if the summary measure suggests that the point
in U are influential. In particular, the points can affect.

• The estimates of fixed-effects.

• The estimates of the precision of the fixed-effects.

• The estimates of the covariance parameters.

• The estimates of the precision of the covariance parameters.

• fixed and predicted values.

To determine whether data points are actually troublesome it is important to fur-
ther decompose the initial finding. Simply because they are influential somehow,
should not trigger their removal from the analysis or a change in the model. For ex-
ample, if points primarily affect the precision of the covariance parameters without
exerting much influence on the fixed-effects, then their presence in the data may not
violate the hypothesis tests or confidence intervals about β. They will only do so if
your inference depends on a estimate of the precision of the covariance parameter
estimates.

3.5.6 Change in parameter estimates

The Mixed procedure is statistical command in SAS which fits a variety of mixed
linear models to data and enable you to use these fitted model to make statistical in-
ferences about the data. In this context its enables you to compute summary statistics
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that capture the change in the entire parameter vector. Since the number of fixed-
effects and covariance parameters can be large. These quadratic forms are based on
Coook’s D and multivariate DFFITS statistics. The multivariate DFFITS use an ex-
ternalized estimate of the variance of the parameter estimates, while Cook’s D does
not. For the fixed-effects, the two statistics are

D(β) =
(β̂ − β̂(U))

′V̂ar(β̂(U))(β̂ − β̂(U))

rank(X)

MDFFITS(β) =
(β̂ − β̂(U))

′V̂ar(β̂(U))(β̂ − β̂(U))

rank(X)
.

(3.83)

Where (β̂ − β̂(U)), is the difference between the two p × 1 vectors. Large values
indicates that the change in the parameter estimate is large, for both statistics. The
D(θ) and MDFFITS(θ) do not involve division by a rank matrix, if the covariance
parameters are updated during influence analysis.

3.5.7 Change in precision of estimates

The effect on the point estimate is separate from the effect on the precision of esti-
mates. The hypothesis test and confidence intervals can be affect by the data points
that have a small Cook’s D. If their influence on the precision of the estimates is
large. The trace and determinants of the variance matrices based on the full data
and the reduced data estimates are given as follows

Covtrace(β) = |trace(V̂ar(β̂))−1V̂ar(β̂(U))− rank(X)|

CovRatio =
|V̂ar(β̂(U))|
|V̂ar(β̂)|

.
(3.84)

The benchmarks of no influence are zero for the covariance trace and one for the
covariance ratio. If the influence analysis updates the covariance parameters, the
Mixed procedure computes similar statistics for θ

Covtrace(θ) = |trace(V̂ar(θ̂)− V̂ar(θU ))− q|

CovRatio(θ) =
|V̂ar(θU )|
|V̂ar(θ̂)|

,
(3.85)

where q denotes the rank of Var(θ̂). The hessian matrix is used to obtain the variance
matrix that is used in the computation of covariance and CovRatio for covariance
parameters. One can request a listing of this matrix with the asycov option of the
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proc Mixed statement.

3.5.8 Effect on fitted and predicted values

The Mixed procedure computes the following statistics to measure influence on fit-
ted and predicted values. The PRESS residuals is the difference between the ob-
served value and the predicted marginal mean where the predicted value is obtained
without the observations which is given as

ε̂i(U) = Yi − X′iβ̂U . (3.86)

The Mixed procedure reports these PRESS residuals. If one compute the influence of
individual observations, proc Mixed computes the PRESS statistic, when removing
sets of observations. This statistic is the sum of the squared PRESS residuals in a
deletion set

PRESS(U) =
∑
i∈U

ε̂i(U). (3.87)

The DFFITS statistic can measure the effect of observations on fitted values. Due to
removal of a single data point, a DFFITS measures the change in predicted values.
The DFFITS statistic is obtained, if we change the standardized by the externally
estimated standard error of the predicted value in the full data

DFFITSi =
(Ŷi − Ŷi(U))

ese(Ŷi)
. (3.88)

3.5.9 Types of covariance structures

Unstructured.
In general, the unstructured structure allows all the variance and covariance terms
to be different. It requires fitting the most parameters and allowing them to choose
what structure should be. The less data left to estimate the parameters of linear
model and more data are used to assess the covariance structure

σ21 σ12 σ13 σ14

σ12 σ22 σ23 σ24

σ13 σ23 σ23 σ34

σ14 σ24 σ34 σ24

 .

Compound symmetry.
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There is a correlation between two separate measurements of the same subject. But
it is assumed that the correlation that the correlation is constant regardless of how
far apart the measurements of the same subject are. The variance and covariance
are homogeneous since the observations are from the same subjects. Measurements
made apart are further apart are less correlated than consecutive measurements that
are highly correlated

σ2 σ21 σ21 σ21
σ21 σ2 σ21 σ21
σ21 σ21 σ2 σ21
σ21 σ21 σ21 σ2

 = σ2


1 ρ ρ ρ

ρ 1 ρ ρ

ρ ρ 1 ρ

ρ ρ ρ 1

 .

Autoregressive(1).
The AR(1) structure consist of homogeneous variances and the correlations that de-
crease exponentially with distance. Meaning that two measurements that are right
next to each other in time are going to be correlated but depending on the value of
ρ, but as measurements get further apart they are less correlated

σ2


1 ρ ρ2 ρ3

ρ 1 ρ ρ2

ρ2 ρ 1 ρ

ρ3 ρ2 ρ 1

 .

Toeplitz.
The Toeplitz structure is similar to AR(1) in that the correlation is the same for mea-
surements that have that have the same distance. However, the correlation pattern
is different from the AR(1). Hence AR(1) is a special case of the toeplitz.

σ2 σ1 σ2 σ3

σ1 σ2 σ1 σ2

σ2 σ1 σ2 σ1

σ3 σ2 σ1 σ2

 .

3.6 Modelling covariance structures

In this section we consider six models with different covariance structures for equa-
tion(3.2). We discuss the assumptions of this six models. Also, we assume that Xi

consist of only time indicators such thatXi = I4 where I4 is an 4×4 identity matrix,
where we ignore intercept terms.
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3.6.1 Model 1- Independent random time effects model

In this model, we will perform a separate univariate random effect meta-analysis at
each time point. Since the effect sizes at different time points do not depend on each
other. This model allows independent random intercept effects at each time point t
per study i, uit, such that

Yit = βt + uit + εit, t = 1, · · · , 4, (3.89)

where we assume uit v N(0, τ2t ) and εit v N(0, σ2it) to be independent. We can set
model by allowing a random-effect at each measurement occasion. That is, we set
Zi = Xi = I4 so that equation(3.2), becomes

Y i = β + ui + εi, (3.90)

and
V(Y i) = D +Ri = diag(τ21 + σ2i1, τ

2
2 + σ2i2, τ

2
3 + σ2i3, τ

2
4 + σ2i4). (3.91)

Even though, this model ignores within study serial correlation between longitu-
dinal effect size which exists because it is the same individuals who are measured
repeatedly at these time points.

3.6.2 Model 2- Random study effects model

This model is a simplest way to account for the correlation between longitudinal
effect size that is, Ri = diag(σ2i1, · · · , σ2i4). To allow a random-effect that is common
to all longitudinal effect size from a given study. This can be thought of as a random
intercept model. If for example k=4, we would set Z ′i = [1111], so that ui = ui is a
scalar and the model is now given by

Yit = βt + ui + εit, t = 1, · · · , 4, (3.92)

where we assume ui v N(0, τ2) with τ2 representing the between study variabil-
ity or heterogeneity. The variance covariance matrix is now given by V(Y i) =

ZiDZ
′
i +Ri, a 4 × 4 matrix consisting of diagonal elements set to τ2 6= σ2it and off-

diagonal elements all equal to τ2, where D = V(ui) = τ2. Thus, the correlation be-

tween two time points (t, t′) is corr(Yit, Yit′) = τ2
/√

(τ2 + σ2it)(τ
2 + σ2it′). Therefore,

by including a random study effect, we automatically induce a correlation between
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any two effect sizes within a study. Regardless of the time lag between the time
points these correlations are assume to be the same for each set of time points. This
covariance structure is also known as compound symmetry. This model ignores the
serial correlation between effect sizes for instance, effect sizes closer together tends
to be more strongly correlated than those measures far apart due to factors such as
loss-to-follow-up, however it allows only one random effect for all the longitudinal
effect sizes from each study.

3.6.3 Model 3- Correlated random time effects model

In this model, the dependence between effect size is accounted for through the de-
pendence between random time effects, which is the extension of the independent
random time effect model. Meanwhile assuming zero within study serial correla-
tions between longitudinal effect sizes, this model imposes heteroscedastic AR(1)
covariance structure for the random time effects, that is Ri = diag(σ2i1, · · · , σ2i4). As
a result, the variance covariance matrix is now given by V(Y i) = D+Ri, with diag-
onal elements (τ21 + σ2i1, · · · , τ24 + σ2i4) and off-diagonal elements (ρ

|t−t′|
τ τtτ

′
t) for time

points t and t′, where ρτ is the correlation between any two adjacent random-time
effects. As the lag between effect sizes gets smaller the dependence between effect
sizes become stronger. The effect sizes measured far apart have less dependence
than those closer to one another, this is possible since in longitudinal studies where
loss -to-follow-up increases with time. However, this model assumes independent
within study residuals which is not suitable for longitudinal effect sizes. A structure
that takes account of the autocorrelation between the effect sizes within a study is
more suitable.

3.6.4 Model 4- Correlated within-study effect sizes model

The dependence between effect size in this model is accounted for through the de-
pendence in effect sizes within the same study, hence this is an extension of the in-
dependent random time effects model. Meanwhile assuming independent random
time effect, that is D = diag(τ21 , · · · , τ24 ), this model imposes heteroscedastic AR(1)
covariance structure for the within study of longitudinal effect sizes. As a result, the
variance covariance matrix is now give by V(Y i) = D +Ri with diagonal elements
(τ21 +σ2i1, · · · , τ24 +σ2i4) and off-diagonal elements (ρ

|t−t′|
s σitσit′) for time points t and

t′, where ρs is the correlation between any adjacent within study effect sizes. The
purpose of including this model is to assess which covariance structure results in a
more imposed model between the within study covariance matrix (Ri) and between
study covariance (D).
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3.6.5 Model 5- Correlated within-study effect sizes and correlated ran-
dom time effects

In this model, the dependence between effect sizes is accounted for through the de-
pendence in both effect sizes within the same study and random time effects, which
is the extension of the independent random time effects model. It is a combina-
tion of the above two models, where the heteroscedastic AR(1) covariance struc-
tures are imposed on both Ri and D. The variance covariance matrix now given by
V(Y i) = D +Ri, with diagonal elements (τ21 + σ2i1, · · · , τ24 + σ2i4) and off-diagonal
elements (ρ

|t−t′|
τ τtτt′ + ρ

|t−t′|
s σitσit′) for time point t and t′. This model requires esti-

mation of one more parameter compared to each of the above models. However this
model accounts for any dependence between effect sizes, both within and between
studies.

3.6.6 Model 6-Correlated random time effects(unstructured) and corre-
lated within-study effect sizes

In this model, where the dependence between effect sizes is accounted for through
the dependence in both effect sizes within the same study and random time effects,
this is an extension of the independent random time effects model. We assume an
heteroscedastic AR(1) covariance structure for the within study longitudinal effect
sizes an unstructured covariance structure for the random time effects. The vari-
ance covariance structure is now given by V(Y i) = D+Ri, with diagonal elements
(τ21 + σ2i1, · · · , τ24 + σ2i4) and off-diagonal elements (ρ

|t−t′|
τ τtτt′ + ρ

|t−t′|
s σitσit′) for time

points t and t′. The unstructured covariance matrix is quite a superior covariance
structure although its requirement for higher number of parameters many compro-
mise parsimony and convergence in some cases.
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Chapter 4

Application and results

4.1 Examples of a univariate meta-analysis

In this section we show how to apply fixed-effects and random-effects models in
real data. As mentioned above these current standard approaches combines the es-
timates in meta-analysis from independent studies.

4.1.1 Meta-analysis of clinical trial in duodenal ulcers

Our example consists of 3 clinical trials of the effectiveness of new drug versus
placebo, which was used by Lachin [29]. In this example we asses the effectiveness
of a new drug for the treatment of duodenal ulcers where the drug is expected to
promote healing of the ulcers by retarding the excretion of gastric juices that leads to
ulceration of the duodenum. The following tables describe the association between
the stratification covariate ulcers type and treatments group and the association be-
tween the covariate and the likelihood of healing. Here the ulcer type takes the role
of a study for illustration purposes. The data is not the real data its an contrived
setup. The aim was to find the data, which the fixed-effects model holds.

Table 4.1: Clinical Trial in Duodenal ulcers.

Drug Placebo
Study ai ci n1i bi di n2i

1 16 26 42 20 27 47
2 9 3 12 4 5 9
3 28 18 46 16 28 44
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4.1.2 Risk difference

Table 4.2: Fixed-effects computations on risk difference.

Study θ̂i = Risk difference σ̂2
i σ̂−2

i ω̂i 95%C.I.
1 -0.0446 0.0108 92.59 0.4369 (-0.2484,0.1593)
2 0.3056 0.0431 23.20 0.1095 (-0.1012,0.7123)
3 0.2451 0.0104 96.15 0.4537 (0.0448,0.4453)
Total 211.95 1

Table 4.3: Random-effects computations on risk difference.

Study V̂ (θ̂i) τ̂
(1)
i = σ̂−2

i ω̂
(1)
i

1 0.0204 49.02 0.4154
2 0.0527 18.98 0.1608
3 0.0200 50.00 0.4237
Total 117.99 1

Table 4.4: Results of randomised controlled trials of effect of duodenal ulcers from two
methods of meta-analysis.

Method Fixed-effects Random-effects
RD(95%)CI 0.13(-0.01,0.26) 0.13(-0.05,0.32)
τ2 0.0096
P-value 0.0909 0.0909
Q(df=8) 4.797 4.797
I2 37.54%

H2 1.60
AIC 0.076 1.50
BIC -0.825 -0.298
AICc 4.076 13.50
Deviance 4.797 4.225

Table 4.5: Results of the influence diagnostics for the clinical trial in duodenal ulcers using
risk difference as the measure of association.

study rstudent dffits cook.d cov.r tau2.del QE.del hat weight dfbs inf
1 -2.1745 -1.7519 1.0185 0.6481 0.0000 0.0684 0.3977 39.7703 -1.6709 *
2 0.6628 0.3368 0.1301 1.6180 0.0313 3.9472 0.1999 19.9916 0.3211
3 0.5931 0.4284 0.2553 2.2010 0.0344 2.2755 0.4024 40.2381 0.4357
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Figure 4.1 – Forest plot showing the results of three studies examining the effectiveness of
new drug versus placebo. The figure shows the risk difference of effectiveness
of new drug for treatment of duodenal ulcers versus the placebo group with
corresponding confidence intervals in the individual studies and based on fixed-
effects and random-effects models.

Figure 4.2 – Funnel plot shows the risk difference of three studies examining the effective-
ness of new drug versus placebo to treat patients with duodenal ulcers. The
points corresponds to the treatment effects from individual trials and the di-
agonal or curved lines show the expected 95% confidence intervals around the
summary estimate based on fixed-effects and random-effects models.
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Figure 4.3 – Plot of the externally standardized residuals, DFFITS values, Cook’s distance,
covariance ratios, estimates of τ2 and test for residual heterogeneity when each
study is removed in turn, hat values, and weights for the 3 studies examining
the effectiveness of the new drug versus placebo.

Consider Figure 4.1 above, the pooled estimate of risk difference is 0.13(-0.01,0.26)
by using the fixed-effects model. The pooled estimate of risk difference is 0.13(-
0.05,0.32), under random-effects model. Under both models, study 3 zero is not
included in the 95% confidence interval, it indicate that the study was statistically
significant at 5% level of significance. In studies 1 and 2 zero was included in the 95%

confidence interval, indicating that there studies were not statically significant at 5%

level of significance. In study 1, the box is on the left of the line of no effect, which
indicate that the patients favours new drug. Suggesting that, using the new drug to
treat patients with duodenal ulcers is beneficial. But using placebo is harmful. In
studies 2 and 3, the box was on the right of the line of no effect, which indicates that
the patients favours placebo. Suggesting that, using placebo to treat patients with
duodenal ulcers is beneficial. Under the fixed-effects model the summary estimate
does includes zero in the confidence interval, indicate that there studies were not
statistically significant at 5% level of significance. Under the random-effects model,
the summary estimate does include zero in the confidence interval indicating that
there studies were not statistically significant at 5% level of significance. In both
models the diamond touches the line of no effect, which indicates that using both
placebo and the new drug to treat patients with duodenal ulcers will promote heal-
ing. In Table 4.4, I2 was obtained to be (I2 = 37.54%, p=0.0909), we found the
presence of moderate heterogeneity in this meta-analysis [90]. The AIC is smaller
in the fixed-effects model than in the random-effects model, hence the fixed-effects
model had better fit than the random-effects model. Which means that our studies
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are close replications of each other (they use same procedures and measures). The
funnel plot in Figure 4.2 does not necessary informs us wether publication bias exist
or not, because the studies are small (less than ten). When the studies are small, the
funnel could not tell if publication bias exists or not. In Table 4.5 and Figure 4.3,
study 1 is identified as potential outlier and also to be a influential case. The value
of the covariance ratio for this study also suggest that precision could be gained by
its removal [91].

4.1.3 Relative risk

Table 4.6: Fixed-effects computations on log relative risk.

Study θ̂i = log relative risk σ̂2
i σ̂−2

i ω̂i 95%C.I.
1 -0.1107 0.0674 14.84 0.3760 (-0.6196,0.3982)
2 0.5232 0.1667 6.00 0.1520 (-0.2769,1.3234)
3 0.5152 0.0537 18.62 0.4719 (0.0608,0.9696)
Total 39.46 1

Table 4.7: Random-effects computations on log relative risk.

Study V̂ (θ̂i) τ̂
(1)
i = σ̂−2

i ω̂
(1)
i

1 0.0914 10.94 0.3766
2 0.1907 5.244 0.1805
3 0.0777 12.87 0.4430
Total 29.05 1

Table 4.8: Results of randomised controlled trials of effect of duodenal ulcers from two
methods of meta-analysis.

Method Fixed-effects Random-effects
log RR(95%)CI 0.28(-0.03,0.59) 0.28(-0.08,0.64)
τ2 0.0240
P-value 0.1614 0.1614
Q(df=8) 3.65 3.65
I2 22.48%

H2 1.29
AIC 3.75 5.60
BIC 2.85 3.71
AICc 7.75 17.60
Deviance 3.65 3.41
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Table 4.9: Results of the influence diagnostics for the clinical trial in duodenal ulcers using
log relative risk as the measure of association.

study rstudent dffits cook.d cov.r tau2.del QE.del hat weight dfbs inf
1 -1.9098 -1.4704 1.0509 0.7888 0.0000 0.0003 0.3714 37.1445 -1.4613 *
2 0.4905 0.2788 0.0986 1.8982 0.1353 3.2326 0.2165 21.6513 0.2623
3 0.8039 0.6570 0.4751 1.8310 0.0839 1.7167 0.4120 41.2042 0.6613 *

Figure 4.4 – Forest plot showing the results of three studies examining the effectiveness of
new drug versus placebo. The figure shows the log relative risk of effectiveness
of new drug for treatment of duodenal ulcers versus the placebo group with
corresponding confidence intervals in the individual studies and based on fixed-
effects and random-effects models.
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Figure 4.5 – Funnel plot shows the log relative risk of three studies examining the effective-
ness of new drug versus placebo to treat patients with duodenal ulcers. The
points corresponds to the treatment effects from individual trials and the di-
agonal or curved lines show the expected 95% confidence intervals around the
summary estimate based on fixed-effects and random-effects models.

Figure 4.6 – Plot of the externally standardized residuals, DFFITS values, Cook’s distance,
covariance ratios, estimates of τ2 and test for residual heterogeneity when each
study is removed in turn, hat values, and weights for the 3 studies examining
the effectiveness of the new drug versus placebo.

Consider Figure 4.4 above, the pooled estimate of log relative risk is 0.28(-0.03,0.59)
by using the fixed-effects model, hence the relative risk of the summary effect is
e0.28 = 1.32, indicating that the risk that a patient being treated with a new drug will
heal the duodenal ulcers is 32% lower than patients treated with placebo. The pooled
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estimate of log relative risk is 0.23(-0.08,0.64) under the random-effects model, hence
the relative risk of the summary effect is e0.28 = 1.32, indicating that the risk of a pa-
tient being treated with a new drug to heal the duodenal ulcers is 32% lower than
patients treated with placebo. Under both models, study 3 zero was not included in
the 95% confidence interval, indicating that the study was statistically significant at
5% level of significance. In studies 1 and 2 zero was included in the 95% confidence
interval, indicating that there studies were not statically significant at 5% level of
significance. In study 1, the box is on the left of the line of no effect, which indicates
that the patients favours new drug. Suggesting that, using the new drug to treat
patients with duodenal ulcers is beneficial. But using placebo is harmful. In studies
2 and 3, the box was on the right of the line of no effect, which indicates that the
patients favours placebo. Suggesting that, using placebo to treat patients with duo-
denal ulcers is beneficial. Under the fixed-effects model the summary estimate does
includes zero in the confidence interval, indicate that there studies were not statis-
tically significant at 5% level of significance. Under the random-effects model the
summary estimate does include zero in the confidence interval indicating that there
studies were not statistically significant at 5% level of significance. In both models
the diamond touches the line of no effect, which indicates that using both placebo
and the new drug to treat patients with duodenal ulcers will promote healing. In
Table 4.8, I2 was obtained to be (I2 = 22.48%, p=0.1614), we found the presence of
no heterogeneity in this meta-analysis [90]. The AIC is smaller in the fixed-effects
model than in the random-effects model, hence the fixed-effects model had better fit
than the random-effects model. Which means that our studies are close replications
of each other (they use same procedures and measures). The funnel plot in Figure
4.5 does not necessary informs us wether publication bias exist or not, because the
studies are small (less than ten). When the studies are small, the funnel could not
tell if publication bias exists or not. In Table 4.9 and Figure 4.6, studies 1 and 3 are
identified as potential outliers and also to be a influential cases. The covariance ratio
values of these studies also suggest that precision could be gained by their removal
[91].

4.1.4 Odds ratio

Table 4.10: Fixed-effects computations on log odds ratio.

Study θ̂i = log odds ratio σ̂2
i σ̂−2

i ω̂i 95%C.I.
1 -0.1854 0.1880 5.319 0.4541 (-1.0352,0.6644)
2 1.3218 0.8944 1.118 0.0954 (-0.5319,3.1754)
3 1.0014 0.1895 5.277 0.4505 (0.1483,1.8546)
Total 11.714 1
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Table 4.11: Random-effects computations on log odds ratio.

Study V̂ (θ̂i) τ̂
(1)
i = σ̂−2

i ω̂
(1)
i

1 0.3450 2.899 0.4303
2 1.0514 0.9511 0.1412
3 0.3465 2.886 0.4285
Total 6.736 1

Table 4.12: Results of randomised controlled trials of effect of duodenal ulcers from two
methods of meta-analysis.

Method Fixed-effects Random-effects
log OR(95%)CI 0.49(-0.08,1.07) 0.54(-0.22,1.29)
τ2 0.1570
P-value 0.1013 0.1013
Q(df=8) 4.58 4.58
I2 34.85%

H2 1.53
AIC 8.65 10.16
BIC 7.75 8.36
AICc 12.65 22.16
Deviance 4.58 4.09

Table 4.13: Results of the influence diagnostics for the clinical trial in duodenal ulcers using
log odds ratio as the measure of association.

study rstudent dffits cook.d cov.r tau2.del QE.del hat weight dfbs inf
1 -2.1179 -1.7442 1.0165 0.6783 0.0000 0.0947 0.4097 40.9716 -1.6569 *
2 0.6888 0.3279 0.1195 1.5276 0.5156 3.7316 0.1816 18.1646 0.3126
3 0.5862 0.4232 0.2489 2.2252 0.5945 2.0985 0.4086 40.8638 0.4302
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Figure 4.7 – Forest plot showing the results of three studies examining the effectiveness of
new drug versus placebo. The figure shows the log odds ratio of effectiveness
of the new drug for treatment of duodenal ulcers versus the placebo group with
corresponding confidence intervals in the individual studies and based on fixed-
effects and random-effects models.

Figure 4.8 – Funnel plot shows the log odds ratio of three studies examining the effectiveness
of new drug versus placebo to treat patients with duodenal ulcers. The points
corresponds to the treatment effects from individual trials and the diagonal or
curved lines show the expected 95% confidence intervals around the summary
estimate based on fixed-effects and random-effects models.
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Figure 4.9 – Plot of the externally standardized residuals, DFFITS values, Cook’s distance,
covariance ratios, estimates of τ2 and test for residual heterogeneity when each
study is removed in turn, hat values, and weights for the 3 studies examining
the effectiveness of the new drug versus placebo.

Consider Figure 4.7 above, the pooled estimate of log odds ratio is 0.49(-0.08,1.07)
by using the fixed-effects model, hence the odds ratio of the summary effect is
e0.49 = 1.63, indicating that the odds of a patient being treated with a new drug
to heal the duodenal ulcers is 63% lower than patients treated with placebo. The
pooled estimate of log odds ratio is 0.54(-0.22,1.29) under the random-effects model,
hence the odds ratio of the summary effect is e0.54 = 1.72, indicating that the odds
of a patient being treated with a new drug to heal the duodenal ulcers is 72% lower
than patients treated with placebo. Under both models, study three confidence in-
terval does not include zero, indicating that the study was statistically significant at
5% level of significance. In studies 1 and 2 zero is included in the 95% confidence
interval, indicating that there studies were not statically significant at 5% level of sig-
nificance. In study 1, the box is on the left of the line of no effect, which indicate that
the patients favours diuretics. Suggesting that, using the new drug to treat patients
with duodenal ulcers is beneficial. But using placebo is harmful. In studies 2 and
3, the box was on the right of the line of no effect, which indicate that the patients
favours placebo. Suggesting that, using placebo to treat patients with duodenal ul-
cers is beneficial. Under the fixed-effects model the summary estimate does includes
zero in the confidence interval, indicating that there studies were not statistically sig-
nificant at 5% level of significance. Under the random-effects model the summary
estimate does include zero in the confidence interval indicating that there studies
were not statistically significant at 5% level of significance. In both models, the dia-
mond touches the line of no effect which indicates that using both placebo and the
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new drug to treat patients with duodenal ulcers will promote healing. In Table 4.12,
I2 was obtained to be (I2 = 34.85%, p=0.1013), we found the presence of moder-
ate heterogeneity in this meta-analysis [90]. The AIC is smaller in the fixed-effects
model than in the random-effects model, hence the fixed-effects model had better fit
than the random-effects model. Which means that our studies are close replications
of each other (they use same procedures and measures). The funnel plot in Figure
4.8 does not necessary informs us wether publication bias exist or not, because the
studies are small (less than ten). When the studies are small, the funnel could not
tell if publication bias exists or not. In Table 4.13 and Figure 4.9, study 1 is identified
as potential outlier and also to be a influential case. The value of the covariance ratio
for this study also suggest that precision could be gained by its removal [91].

4.1.5 Meta-analysis of effects of diuretics on pre-eclampsia

We use the example by Yusuf [92], of a meta-analysis of nine clinical trials investi-
gating the effect of taking diuretics during pregnancy on the risk of pre-eclampsia.

Table 4.14: Meta-analysis of nine trials of effects of diuretics on pre-eclampsia.

Diuretics Group Placebo Group
study ai n1i p1i bi n2i p2i ORi

Weseley 1962 14 131 0.107 14 136 0.103 1.043
Flowers 1962 21 385 0.055 17 134 0.127 0.397
Menzies 1964 14 57 0.246 24 48 0.500 0.326

Fallis 1964 6 38 0.158 18 40 0.450 0.229
Cuadros 1964 12 1011 0.012 35 760 0.046 0.249

Landesman 1965 138 1370 0.101 175 1336 0.131 0.743
Kraus 1966 15 506 0.030 20 524 0.038 0.770
Tervila 1971 6 108 0.056 2 103 0.019 2.971

Campbell 1975 65 153 0.425 40 102 0.392 1.145
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4.1.6 Risk Difference

Table 4.15: Fixed-effects computations on risk difference.

Study θ̂i = Risk difference σ̂2
i σ̂−2

i ω̂i 95%C.I.
1 0.0039 0.0014 714.286 0.025 (-0.0696,0.0775)
2 -0.0723 0.0010 1000 0.035 (-0.1331,-0.0116)
3 -0.2544 0.0085 117.647 0.004 (-0.4346,-0.0741)
4 -0.2921 0.0097 103.093 0.004 (-0.4850,-0.0992)
5 -0.0342 0.0001 10000 0.349 (-0.0505,-0.0179)
6 -0.0303 0.0002 5000 0.175 (-0.0544,-0.0061)
7 -0.0085 0.0001 10000 0.349 (-0.0306,0.0136)
8 0.0361 0.0007 1428.571 0.050 (-0.0146,0.0869)
9 0.0327 0.0039 256.410 0.009 (-0.0903,0.1556)
Total 28620.007 1

Table 4.16: Random-effects computations on risk difference.

Study V̂ (θ̂
(1)
i ) τ̂

(1)
i = σ̂−2

i ω̂
(1)
i

1 0.0016 625 0.0506
2 0.0010 1000 0.0809
3 0.0087 114.94 0.0093
4 0.0099 101.01 0.0082
5 0.0003 3333.33 0.2696
6 0.0004 2500 0.2022
7 0.0003 3333.33 0.2696
8 0.0009 1111.11 0.0899
9 0.0041 243.90 0.0197
Total 12362.63 1
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Table 4.17: Results of randomised controlled trials of effect of diuretics on pre-eclampsia
from two methods of meta-analysis.

Method Fixed-effects Random-effects
RD(95%)CI -0.03(-0.04,-0.01) -0.02(-0.04,-0.01)
τ2 0.0002
P-value 0.0009 0.0009
Q(df=8) 26.46 26.46
I2 35.32%

H2 1.55
AIC -18.11 -16.61
BIC -17.91 -16.30
AICc -17.54 -14.61
Deviance 26.46 25.88

Table 4.18: Results of the influence diagnostics for the trials of effects of diuretics on pre-
eclampsia using risk difference as the measure of association.

study rstudent dffits cook.d cov.r tau2.del QE.del hat weight dfbs inf
1 0.6429 0.5685 0.5121 2.2150 0.0022 25.8333 0.0861 8.6101 0.5089 *
2 -1.3187 -0.5304 0.2176 0.7126 0.0005 24.0984 0.1072 10.7177 -0.5792
3 -2.4478 -0.3782 0.1366 0.6538 0.0004 20.2421 0.0210 2.0991 -0.4603
4 -2.6716 -0.3822 0.1401 0.6415 0.0004 19.0967 0.0185 1.8549 -0.4702
5 0.0555 0.3927 0.6152 3.4988 0.0037 24.4937 0.2093 20.9330 0.4562 *
6 0.1232 0.4295 0.6881 3.4725 0.0036 26.2691 0.1925 19.2468 0.4834 *
7 0.5168 0.5524 1.0313 3.1673 0.0032 23.4822 0.1972 19.7202 0.6211 *
8 2.2086 0.2691 0.0384 0.3704 0.0001 20.5331 0.1274 12.7402 0.3359
9 0.8725 0.3688 0.1493 1.4328 0.0013 25.5946 0.0408 4.0780 0.3313
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Figure 4.10 – Forest plot showing the results of nine studies examining the use of diuretics
during pregnancy to prevent the development of pre-eclampsia. The figure
shows the risk difference of pre-eclampsia among those treated with diuret-
ics versus the placebo group with corresponding confidence intervals in the
individual studies and based on fixed-effects and random-effects models.

Figure 4.11 – Funnel plot shows the risk difference of nine studies examining the use of di-
uretics during pregnancy to prevent the development of pre-eclampsia. The
points corresponds to the treatment effects from individual trials and the di-
agonal or curved lines show the expected 95% confidence intervals around the
summary estimate and based on fixed-effects and random-effects models.
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Figure 4.12 – Plot of the externally standardized residuals, DFFITS values, Cook’s distance,
covariance ratios, estimates of τ2 and test for residual heterogeneity when each
study is removed in turn, hat values, and weights for the 9 studies examin-
ing the use of diuretics during pregnancy to prevent the development of pre-
eclampsia.

Consider Figure 4.10 above, the pooled estimate of risk difference is -0.03(-0.04,-0.01)
by using the fixed-effects model and the pooled estimate of risk difference is -0.03(-
0.04,-0.01) using the random-effects model. The confidence interval for study 7 is
noticeably narrower than all the studies in both fixed-effects and random-effects
models, reflecting the fact that it has greater precision compared to other studies.
Under the fixed-effects model in Table 4.15, studies 5, 6 and 7 are assigned rela-
tively high weight, while somewhat less weight is assigned to studies 1, 2, 3, 4, 8
and 9. As one would expect, there is a relationship between a study’s precision and
study’s weight in the analysis. Studies with relatively good precision are studies 5,
6 and 7 are assigned more weight, while studies with relatively poor precision are
studies 1, 2, 3, 4, 8 and 9 are assigned less weights. On the other hand, under the
random-effects model in Table 4.16, studies 2, 5, 6, 7 and 8 are assigned relatively
high weights, while somewhat less weight is assigned to studies 1, 3, 4 and 9. In
studies 2, 5, 6, 7 and 8 has relatively good precision since they are assigned more
weight while studies 1, 3, 4 and 9 are assigned less weight thus they had relatively
poor precision. Under both models, in studies 2, 3, 4, 5 and 6 zero was not included
in the 95% confidence interval, indicating that there studies were statistically signif-
icant at 5% level of significance. In studies 1, 7, 8 and 9 zero was included in the
95% confidence interval, it indicating that there studies were not statically signifi-
cant at 5% level of significance. In studies 2, 3, 4, 5 and 6, the box was on the left of
the line of no effect, which indicate that the patients favours diuretics. Suggesting
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that, using the diuretics in preventing the development of pre-eclampsia in pregnant
woman is beneficial. But using placebo is harmful. Studies 1 and 9 the box touches
the line of no effect, which means that the patients in these studies had no effect,
when treated with both diuretics and placebo to prevent the development of pre-
eclampsia in pregnant woman. In study (8 and 9), the box is on the right of the line
of no effect, which indicate that the patients favours placebo. Suggesting that, using
placebo in preventing the development of pre-eclampsia in pregnant woman is ben-
eficial. But using diuretics is harmful. Under the fixed-effects model the summary
estimate does not include zero in the confidence interval, indicate that there studies
were statistically significant at 5% level of significance. Under the random-effects
model the summary estimate does include zero in the confidence interval indicating
that there studies were not statistically significant at 5% level of significance. In both
models, the summary estimate, indicated by the diamond is in the left side of the
line of no effect, meaning that the final conclusion is that the use of diuretics during
pregnancy to prevent the development of pre-eclampsia is beneficial. In Table 4.17,
I2 was obtained to be (I2 = 35.32%, p=0.0009), we found the presence of moderate
heterogeneity in this meta-analysis [90]. The AIC is smaller in the random-effects
model than in the fixed-effects model, hence the random-effects model had better fit
than the fixed-effects model. Which means that there is some extra variation or over-
dispersion due to random differences among the studies. The funnel plot in Figure
4.11 does not necessary informs us wether publication bias exist or not, because the
studies are small (less than ten). When the studies are small, the funnel could not tell
if publication bias exists or not. In Table 4.18 and Figure 4.12, shows that removing
study (1, 5, 6 and 7) would yield little change in the amount of residual heterogene-
ity, but their influence on the model fit is more considerable. Study 8 introduce some
additional residual heterogeneity into the model, removing this study in turn would
yield considerably smaller estimate of τ2, but only have a modest influence on the
fit of the model [93].
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4.1.7 Relative Risk

Table 4.19: Fixed-effects computations on log relative risk.

Study θ̂i = log relative risk σ̂2
i σ̂−2

i ω̂i 95%C.I.
1 0.0375 0.1279 7.819 0.0421 (-0.6634,0.7383)
2 -0.8441 0.0964 10.373 0.0559 (-1.4526,-0.2356)
3 -0.7108 0.0747 13.387 0.0721 (-1.2466,-0.1751)
4 -1.0473 0.1709 5.851 0.0315 (-1.8576,-0.2371)
5 -1.3558 0.1096 9.124 0.0492 (-2.0047,-0.7070)
6 -0.2627 0.0115 86.957 0.4685 (-0.4727,-0.0526)
7 -0.2527 0.1128 8.865 0.0478 (-0.9109,0.4055)
8 1.0512 0.6477 1.544 0.0083 (-0.5262,2.6286)
9 0.0800 0.0240 41.667 0.2245 (-0.2239,0.3840)
Total 185.587 1

Table 4.20: Random-effects computations on log relative risk.

Study V̂ (θ̂
(1)
i ) τ̂

(1)
i = σ̂−2

i ω̂
(1)
i

1 0.2867 3.4880 0.1005
2 0.2552 3.9185 0.1129
3 0.2335 4.2827 0.1234
4 0.3297 3.0331 0.0874
5 0.2684 3.7258 0.1073
6 0.1703 5.8720 0.1692
7 0.2716 3.6819 0.1061
8 0.8065 1.2399 0.0357
9 0.1828 5.4705 0.1576
Total 34.7122 1
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Table 4.21: Results of randomised controlled trials of effect of diuretics on pre-eclampsia
from two methods of meta-analysis.

Method Fixed-effects Random-effects
log RR(95%)CI -0.31(-0.45,-0.16) -0.44(-0.77,-0.10)
τ2 0.1588
P-value 0.0004 0.0004
Q(df=8) 28.62 28.62
I2 72.46%

H2 3.63
AIC 25.38 19.60
BIC 25.58 20.00
AICc 25.96 21.60
Deviance 28.62 20.84

Table 4.22: Results of the influence diagnostics for the trials of effects of diuretics on pre-
eclampsia using log relative risk as the measure of association.

study rstudent dffits cook.d cov.r tau2.del QE.del hat weight dfbs inf
1 0.8644 0.2958 0.0908 1.1642 0.2113 27.6640 0.1031 10.3139 0.2949
2 -0.7662 -0.2751 0.0807 1.2092 0.2190 25.4296 0.1141 11.4127 -0.2746
3 -0.5184 -0.1932 0.0427 1.2993 0.2385 26.2477 0.1232 12.3154 -0.1935
4 -1.0520 -0.3327 0.1100 1.0914 0.1970 25.2939 0.0911 9.1146 -0.3330
5 -2.1305 -0.7622 0.3967 0.7119 0.1012 18.0285 0.1092 10.9242 -0.7878
6 0.3700 0.1514 0.0291 1.4156 0.2558 28.3266 0.1601 16.0122 0.1556
7 0.3312 0.1172 0.0156 1.2969 0.2427 28.5966 0.1081 10.8128 0.1164
8 1.6686 0.3215 0.1012 0.9713 0.1809 25.7581 0.0398 3.9831 0.3290
9 1.3132 0.5694 0.2677 1.0197 0.1602 20.6717 0.1511 15.1111 0.5582
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Figure 4.13 – Forest plot showing the results of nine studies examining the use of diuretics
during pregnancy to prevent the development of pre-eclampsia. The figure
shows the log relative risk of pre-eclampsia among those treated with diuret-
ics versus the placebo group with corresponding confidence intervals in the
individual studies and based on fixed-effects and random-effects models.

Figure 4.14 – Funnel plot shows the log relative risk of nine studies examining the use of
diuretics during pregnancy to prevent the development of pre-eclampsia. The
points corresponds to the treatment effects from individual trials and the di-
agonal or curved lines show the expected 95% confidence intervals around the
summary estimate and based on fixed-effects and random-effects models.
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Figure 4.15 – Plot of the externally standardized residuals, DFFITS values, Cook’s distance,
covariance ratios, estimates of τ2 and test for residual heterogeneity when each
study is removed in turn, hat values, and weights for the 9 studies examin-
ing the use of diuretics during pregnancy to prevent the development of pre-
eclampsia.

In epidemiologic meta-analysis, random-effects summary effect estimates are more
conservative than fixed-effects summaries [94]. This view is clearly seen, when
there is evidence of appreciable heterogeneity among the result from the individ-
ual studies. As a result, random-effects summaries have high estimated variances
and, consequently, wider confidence interval than fixed-effects summaries [94]. In
such instances, however, the random-effects point estimates are not always closer to
the null value nor are their p-values always larger than those of fixed-effects sum-
maries. Moreover they can appear more strongly supportive of causation or preven-
tion than fixed-effects summaries. In Figure 4.13, the pooled estimate of log relative
risk is -0.31(-0.45,-0.16) by using the fixed-effects model and the pooled estimate of
log relative risk is -0.44(-0.77,-0.11) using the random-effects model. As expected the
random-effects model provides a wider confidence interval of the pooled estimate
than the fixed-effects model. Therefore the random-effects summary effect estimates
are more conservative than fixed-effects summaries. Hence the probability of a type
I error in the meta-analyses is minimized. The confidence interval for study 6 is no-
ticeably narrower than all the studies in both fixed-effects and random-effects mod-
els, reflecting the fact that it has greater precision compared to other studies. The
solid squares that are used to outline each of the studies vary in size, with the size of
each square reflecting the weight that is assigned to the corresponding study when
we compute the summary effect. Under the fixed-effects model in Table 4.19, studies
6 and 9 are assigned relatively high weight, while somewhat less weight is assigned
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to studies 1, 2, 3, 4, 5, 7 and 8. As one would expect, there is a relationship between
a study’s precision and that study’s weight in the analysis. Studies with relatively
good precision studies 6 and 9 are assigned more weight while studies with rela-
tively poor precision studies 1, 2, 3, 4, 5, 7 and 8 are assigned less weight. On the
other hand under the random-effects model in Table 4.20, studies 1, 2, 3, 5, 6, 7 and
9 are assigned relatively high weights, while somewhat less weight is assigned to
studies 4 and 5. In studies 1, 2, 3, 4, 5, 7 and 8 has relatively good precision since
they are assigned more weight while studies 4 and 5 are assigned less weight thus
they had relatively poor precision. Under the fixed-effects model we assume that the
true effect size for all studies is identical, and the only reason the effect sizes varies
between studies is sampling error (error in estimating the effect sizes). Therefore,
when assigning weights to different studies we can largely ignore the information in
the smaller studies since we have better information about the same effect size in the
larger studies. By contrast, under the random-effects model the goal is not to esti-
mate one true effect, but to estimate the mean of a distribution of effects. Since each
study provides information about a different effect size, we want to be convinced
that all these effect sizes are represented in the summary estimate. This means that
we cannot discount a small study by giving it a very small weight (the way we would
in a fixed-effects analysis). The estimate provided by that study may be imprecise,
but it is information about an effect that no other study has estimated. By the same
logic we cannot give too much weight to a very large study(the way we might in a
fixed-effects analysis). Our goal is to estimated the mean effect in a range studies,
and we do not want that overall estimate to be overly influenced by any one of them.
In Figure 4.13, the weight assigned to each study is reflected in the size of the box
(specifically the area) for that study. Under fixed-effects model there is a wide of
weights (as reflected in the size of the boxes). Whereas under random-effects model
the weights fall in a relatively narrow range. For example, compare the weight as-
signed to the largest study 6 with that assigned to the smallest study 8 under both
models. Under the fixed-effects model study 6 has high weight than study 8. Under
random-effects model study 6 has slightly high weight than study 8.
In Figure 4.13 above the is a forest plot of a meta-analysis of nine clinical trials inves-
tigating the effect of taking diuretics during pregnancy on the risk of pre-eclampsia.
The treatment effect is measured in terms of the log relative risk. Figure 4.13 consist
of two plot the first plot we use the fixed-effects analysis and the second plot we use
the random-effects analysis. There plots provide a context for the discussion that
follows. In both models studies 1, 7, 8 and 9, zero was included in the 95% confi-
dence interval, indicating that there studies were not statistically significant at 5%

level of significance. Also in studies 2, 3, 4, 5 and 6, zero was not included in the
95% confidence interval, it indicate that there studies were statistically significant
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at 5% level of significance. In studies 2, 3, 4, 5, 6 and 7, the box was on the left of
the line of no effect, which indicates that the patients favours diuretics. Suggest-
ing that, using the diuretic drug in preventing the development of pre-eclampsia in
pregnant woman is beneficial. But using placebo is harmful. Studies 1 and 9 the
box touches the line of no effect, which means that the patients in these studies had
no effect, when treated with both diuretics and placebo to prevent the development
of pre-eclampsia in pregnant woman. On the plot summary effect shown on the
bottom line. Under the fixed-effects model in this example the summary relative
risk is e−0.31 = 0.733, indicating that the risk of a patient being treated with diuret-
ics to prevent the development of pre-eclampsia in pregnant woman is 27% lower
than patients treated with placebo. Under the random-effects model the relative risk
is e−0.44 = 0.644, indicating that the risk of a patient being treated with diuretics
to prevent the development of pre-eclampsia in pregnant woman is 35.6% lower
than patients treated with placebo. In conclusion, under both models the diamond
is in the left side of the line of no effect, meaning that using diuretics to prevent
the development of pre-eclampsia in pregnant woman has less risk compared to
placebo. In Table 4.21 , the value of I2 was found to be (I2 = 72.46%, P=0.0004) and
we found the presence of great heterogeneity in this meta-analysis [90]. The AIC
is smaller in the random-effects model than in the fixed-effects model, hence the
random-effects model is preferably. Which means that there is some extra variation
or over-dispersion due to random differences among the studies. The funnel plot
in Figure 4.14 does not necessary informs us wether publication bias exist or not,
because the studies are small (less than ten). When the studies are small, the funnel
could not tell if publication bias exists or not. In Table 4.13 and Figure 4.15, studies
5 and 8, are identified as potential outliers and also to be a influential cases. The
values of the covariance ratios for these studies also suggest that precision could be
gained by its removal [91].
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4.1.8 Odds Ratio

Table 4.23: Fixed-effects computations on log odds ratio.

Study θ̂i = log odds ratio σ̂2
i σ̂−2

i ω̂i 95%C.I.
1 0.0418 0.1596 6.266 0.0500 (-0.7412,0.8249)
2 -0.9237 0.1177 8.496 0.0677 (-1.5962,-0.2512)
3 -1.1221 0.1780 5.618 0.0448 (-1.9491,-0.2952)
4 -1.4733 0.2989 3.346 0.0267 (-2.5449,-0.4017)
5 -1.3910 0.1143 8.749 0.0697 (-2.0536,-0.7284)
6 -0.2969 0.0146 68.493 0.5460 (-0.5340,-0.0598)
7 -0.2615 0.1207 8.285 0.0660 (-0.9424,0.4193)
8 1.0888 0.6864 1.457 0.0116 (-0.5350,2.7125)
9 0.1353 0.0679 14.728 0.1174 (-0.3753,0.6459)
Total 125.437 1

Table 4.24: Random-effects computations on log odds ratio.

Study V̂ (θ̂
(1)
i ) τ̂

(1)
i = σ̂−2

i ω̂
(1)
i

1 0.3982 2.5113 0.1069
2 0.3563 2.8066 0.1195
3 0.4166 2.4004 0.1022
4 0.5375 1.8605 0.0792
5 0.3529 2.8337 0.1206
6 0.2532 3.9494 0.1681
7 0.3593 2.7832 0.1185
8 0.9250 1.0811 0.0460
9 0.3065 3.2626 0.1389
Total 23.489 1
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Table 4.25: Results of randomised controlled trials of effect of diuretics on pre-eclampsia
from two methods of meta-analysis.

Method Fixed-effects Random-effects
log OR(95%)CI -0.40(-0.57,-0.22) -0.52(-0.92,-0.11)
τ2 0.2386
P-value 0.0006 0.0006
Q(df=8) 27.26 27.26
I2 71.44%

H2 3.50
AIC 27.32 22.94
BIC 27.52 23.33
AICc 27.90 24.94
Deviance 27.26 20.88

Table 4.26: Results of the influence diagnostics for the trials of effects of diuretics on pre-
eclampsia using log odds ratio as the measure of association.

study rstudent dffits cook.d cov.r tau2.del QE.del hat weight dfbs inf
1 0.8565 0.3003 0.0940 1.1737 0.3201 25.9889 0.1086 10.8631 0.2998
2 -0.6331 -0.2332 0.0606 1.2634 0.3485 24.7472 0.1195 11.9497 -0.2334
3 -0.9105 -0.3120 0.0999 1.1508 0.3135 24.1809 0.1045 10.4452 -0.3114
4 -1.3212 -0.3904 0.1447 1.0103 0.2705 23.2907 0.0834 8.3394 -0.3949
5 -1.6831 -0.6395 0.3035 0.8438 0.1938 17.9886 0.1205 12.0490 -0.6395
6 0.3778 0.1523 0.0295 1.4148 0.3870 25.7280 0.1586 15.8556 0.1567
7 0.3899 0.1419 0.0234 1.31853 0.3696 27.0997 0.1187 11.8660 0.1419
8 1.6909 0.3661 0.1287 0.9519 0.2615 24.0065 0.0507 5.0663 0.3768
9 1.2253 0.4909 0.2152 1.0508 0.2614 22.5164 0.1357 13.5657 0.4873
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Figure 4.16 – Forest plot showing the results of nine studies examining the use of diuretics
during pregnancy to prevent the development of pre-eclampsia. The figure
shows the log odds ratio of pre-eclampsia among those treated with diuret-
ics versus the placebo group with corresponding confidence intervals in the
individual studies and based on fixed-effects and random-effects models.

Figure 4.17 – Funnel plot shows the log odds ratio of nine studies examining the use of di-
uretics during pregnancy to prevent the development of pre-eclampsia. The
points corresponds to the treatment effects from individual trials and the di-
agonal or curved lines show the expected 95% confidence intervals around the
summary estimate and based on fixed-effects and random-effects models.
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Figure 4.18 – Plot of the externally standardized residuals, DFFITS values, Cook’s distance,
covariance ratios, estimates of τ2 and test for residual heterogeneity when each
study is removed in turn, hat values, and weights for the 9 studies examin-
ing the use of diuretics during pregnancy to prevent the development of pre-
eclampsia.

Consider the forest plots in Figure 4.16. Both plots show a summary effect on the
bottom line, but the meaning of this summary effect is different in the two mod-
els. In the fixed-effects analysis we assume that the true effect size is the same in
all studies, and the summary effect is our estimate of this common effect size. In
random-effects analysis we assume that the true effect size varies from one study to
the next, and that the studies in our analysis represent a random sample of effect
size that could have observed. The summary effect is our estimate of the mean of
these effects. Under the fixed-effects model we assume that the true effect size for all
studies is identical, and the only reason the effect size varies between studies is sam-
pling error (error in estimating the effect size). Therefore, when assigning weights to
the different studies we can largely ignore the information about the same effect size
in the larger studies. By contrast, under the random-effects model the goal is not to
estimate one true effect, but to estimate the mean of a distribution of effects. Since
each study provides information about a different effect size, we want to be sure that
all these effect sizes are represented in the summary estimate. This means that we
cannot discount a small study by giving it a very small weight (the way we would
in a fixed-effects analysis). The estimate provided by that study may be imprecise,
but it is information about an effect that no other study has estimated.

The pooled estimate of log odds ratio is -0.40(-0.57,-0.22) using the fixed-effects model
and the pooled estimate of log odds ratio is -0.52(-0.92,-0.1)by using the random-
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effects model. As expected the random-effects model provides a wider confidence
interval of the pooled estimate than the fixed-effects model. By examining the weight
allocated to each individual study Table (4.23 and 4.24) it can be seen that large stud-
ies gain relatively smaller weight in the random-effects model compared to that in
the fixed-effects model (vice-versa). For example the largest study (study 6) in the
meta-analysis captures more than half of the total weight (0.5460) in the fixed-effects
model but a much smaller proportion of the total weight (0.1681) in the random-
effects model (to illustrate the influence of the choice of different models, both the
fixed-effects model and random-effects model estimates for this meta-analysis will
be used through the project). The random-effects model considers between study
variation but is not an ideal solution to the problem of heterogeneity because the
model accommodates rather than explains the excess variability between studies.
The assumption that underlying true effects to different studies are normally dis-
tributed is a rather bold hypothesis and may not be true in many cases. It is because
of the wider confidence intervals when calculating random-effects estimates it has
been suggested that random-effects estimates may be conservative than fixed-effects
estimates [95]. However the example presented earlier shows the random-effects es-
timates may not be always conservative enriching the similar observation by others
[94]. In addition by giving relatively larger weight to smaller studies the random-
effects model may be more vulnerable to report bias than fixed-effects model [36].

Figure 4.16 shows that point estimates of treatment effects (log odds ratio of pre-
eclampsia) are different across nine randomized controlled trials. When the out-
come is measure using an odds ratio or other effect size, log scale is often used in
the forest plot. On a log scale an odds ratio or other effect size and its reciprocal are
symmetrical around 1. A unit change in log odds ratio or other effect size has the
same interpretation. Over the scale corresponding to multiplying the odds by the
same factor [96]. The effect size for each study is bounded by a confidence interval,
reflecting the precision with which the effect size has been estimated in that study.
The confidence interval for study 6 is noticeably narrower than the confidence inter-
val of study 8, reflecting the fact that study 6 has greater precision. Also mean that
study 6 has least effect than all the studies. Since the box is near the line of no action.
If the box is far away from the line of no effect it means the is a large effect in that
study. In studies 1, 7, 8 and 9, zero was included in the 95% confidence interval, it
indicate that there studies are not statistical significance at 5% level of significance.
In Studies 2, 3, 4, 5 and 6, zero was not included in the 95% confidence interval, in-
dicating that there studies are statistical significance at 5% level of significance. In
both models the overall mean of all studies does not include zero in the 95% confi-
dence interval, which indicate that the studies were statistical significant at 5% level

93



4.2. Application of the mixed-effects model for meta-analysis

of significance. Which indicate that the use of diuretics during pregnancy to prevent
the development of pre-eclampsia is beneficial.

In studies 1, 8 and 9, the box is on the right of the line of no effect, which indicate
that it favours placebo. Suggesting that, using the diuretic in preventing pregnancy
to prevent the development of pre-eclampsia is harmful. In studies 2, 3, 4, 5, 6, 7 and
8 the box was in the left side of the line of no effect, which indicates that using the di-
uretics during pregnancy to prevent the development of pre-eclampsia is beneficial.
On the plot the summary effect is shown on the bottom line. Under the fixed-effects
model the summary odds ratio is e−0.40=0.67, indicating that the risk of a patient be-
ing treated with diuretics to prevent the development of pre-eclampsia in pregnant
woman is 33% lower than patients treated with placebo. Under the random-effects
model the summary odds ratio is e−0.52=0.59, indicating that the risk of a patient be-
ing treated with diuretics to prevent the development of pre-eclampsia in pregnant
woman is 41% lower than patients treated with placebo. In both models the overall
mean, indicate by the diamond is in the left side of the line of no effect, meaning
that the final conclusion is that the use of diuretics during pregnancy to prevent
the development of pre-eclampsia is beneficial. In Table 4.25 , we found the I2 to
be (I2 = 71.44%, p=0.0006). which indicate that there is great heterogeneity in this
meta-analysis [90]. The AIC is smaller in the random-effects model compared to the
fixed-effects model, which means that there the random-effects model is preferably.
Hence there is some extra variation or over-dispersion due to random differences
among the studies. The funnel plot in Figure 4.17 does not necessary informs us
wether publication bias exist or not, because the studies are small (less than ten).
When the studies are small, the funnel could not tell if publication bias exists or not.
In Table 4.13 and Figure 4.18, studies 5 and 8, are identified as potential outliers and
also to be a influential cases. The values of the covariance ratios for these studies
also suggest that precision could be gained by its removal [91].

4.2 Application of the mixed-effects model for meta-analysis

Our example consists of a meta-analysis of randomized controlled trials compar-
ing postoperative radiation therapy with and without adjuvant chemotherapy in
patients with malignant gliomas. This example was given by [97], also used by
[77, 72]. The outcome of interest is the number of patients surviving at 6, 12, 18 and
24 months. We use this example to present the longitudinal meta-analysis models
described above to illustrate it efficiency. For multivariate meta-analysis of effect
sizes reported at multiple time points. In the original data that was described and
use by [97, 77, 72]. There were missing data for study 17 at months 6 and 18. In
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this thesis we did not cover missing studies, as a result the study that was missing
was not include in the analysis. We were quite aware of the advantage of the linear
mixed-effects model, that it’s can handle missing studies. Notice that in studies 10
and 15 in months 6, when computing odds ratio you get zero or infinity. We used
a continuity correct of 0.5 for the entries that had zero. There reason we used odds
ratio in the following analysis, it is because of its statistical properties. One of the
statistical properties is that its valid regardless of the type of sampling used, which
is not the case for other comparative measures for binary data.

Table 4.27: Number of survivors at four time points 6, 12, 18 and 24 months from ran-
domized trials on the treatment of malignant gliomas using radio-therapy plus
adjuvant chemotherapy versus radiotherapy alone.

Study Sample size, E(C)
Number of survivors, E(C)

6 months 12 months 18 months 24 months
1 19(22) 16(20) 11(12) 4(8) 4(3)
2 34(35) 22(22) 18(12) 15(8) 15(6)
3 72(68) 44(40) 21(15) 10(3) 3(0)
4 72(68) 19(12) 14(5) 5(4) 2(3)
5 70(32) 62(27) 42(13) 26(6) 15(5)
6 183(94) 130(65) 80(33) 47(14) 30(11)
7 26(50) 24(30) 13(18) 5(10) 3(9)
8 61(55) 51(44) 37(30) 19(19) 11(15)
9 36(25) 30(17) 23(12) 13(4) 10(4)

10 45(35) 43(35) 19(14) 8(4) 6(0)
11 246(208) 169(139) 106(76) 67(42) 51(35)
12 386(141) 279(97) 170(46) 97(21) 73(8)
13 59(32) 56(30) 34(17) 21(9) 20(7)
14 45(15) 42(10) 18(3) 9(1) 9(1)
15 14(18) 14(18) 13(14) 12(13) 9(12)
16 26(19) 21(15) 12(10) 6(4) 5(1)

95



4.2. Application of the mixed-effects model for meta-analysis

4.2.1 Results for the separate univariate random effects meta-analysis

Table 4.28: Meta-analysis results from separate univariate random-effects meta-analyses
for the log odds ratio of surviving under the experimental versus the control
treatments at month 6, 12, 18 and 24.

Month 6 Month 12 Month 18 Month 24
log OR(95%)CI 0.22(0.02,0.43) 0.41(0.23,0.60) 0.49(0.27,0.71) 0.49(0.13,0.85)
τ2 0 0 0 0.15
P-value 0.35 0.87 0.66 0.15
Q(df=8) 16.52 9.19 12.24 20.85
I2 0.00% 0.00% 0.00% 32.49%

H2 1 1 1 1.48
AIC 34.23 17.79 26.37 39.59
BIC 35.65 19.20 27.78 41.00
AICc 35.23 18.79 27.37 40.59
Deviance 30.23 13.79 22.37 35.59

Table 4.29: Meta-analysis results of the influence diagnostics for the log odds ratio of sur-
viving under the experimental versus the control treatments at month 6.

study rstudent dffits cook.d cov.r tau2.del QE.del hat weight dfbs inf
1 -0.8797 -0.0955 0.0091 1.0118 0 15.7512 0.0116 1.1644 -0.0955
2 -0.2895 -0.0620 0.0038 1.0459 0 16.4412 0.0439 4.3850 -0.0620
3 -0.3850 -0.1228 0.0151 1.1018 0 16.3768 0.0924 9.2429 -0.1228
4 1.5954 0.2193 0.0481 1.0188 0 13.9797 0.0185 1.8532 0.2193
5 0.2300 0.0398 0.0016 1.0300 0 16.4721 0.0291 2.9124 0.0398
6 -0.5151 -0.2114 0.0447 1.1684 0 16.2597 0.1441 14.4100 -0.2114
7 2.3706 0.3175 0.1008 1.0179 0 10.9053 0.0176 1.7622 0.3175
8 0.0446 0.0100 0.0001 1.0495 0 16.5230 0.0472 4.7219 0.0100
9 1.0379 0.1783 0.0318 1.0296 0 15.4477 0.0287 2.8695 0.1783
10 -1.0423 -0.0700 0.0049 1.0045 0 15.4387 0.0045 0.4493 -0.0700
11 -0.7918 -0.4832 0.2334 1.3724 0 15.8981 0.2713 27.1309 -0.4832 *
12 -0.2891 -0.1622 0.0263 1.3150 0 16.4415 0.2396 23.9584 -0.1622 *
13 -0.0034 -0.0004 0.0000 1.0126 0 16.5250 0.0125 1.2452 -0.0004
14 2.1448 0.2801 0.0784 1.0170 0 11.9250 0.0168 1.6760 0.2801
15 -0.2333 -0.0121 0.0001 1.0027 0 16.4706 0.0027 0.2669 -0.0121
16 -0.1460 -0.0207 0.0004 1.0200 0 16.5037 0.0195 1.9518 -0.0206
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Table 4.30: Meta-analysis results of the influence diagnostics for the log odds ratio of sur-
viving under the experimental versus the control treatments at month 12.

study rstudent dffits cook.d cov.r tau2.del QE.del hat weight dfbs inf
1 -0.4427 -0.0660 0.0044 1.0222 0 8.9901 0.0217 2.1717 -0.0660
2 0.7316 0.1402 0.0196 1.0367 0 8.6507 0.0354 3.5408 0.1402
3 -0.0997 -0.0245 0.0006 1.0602 0 9.1761 0.0568 5.6758 -0.0245
4 1.8475 0.2552 0.0651 1.0191 0 5.7727 0.0187 1.8723 0.2552
5 0.8762 0.1921 0.0369 1.0481 0 8.4183 0.0459 4.5856 0.1921
6 -0.2083 -0.0790 0.0062 1.1439 0 9.1426 0.1258 12.5830 -0.0790
7 0.3375 0.0653 0.0043 1.0374 0 9.0721 0.0360 3.6029 0.0653
8 -0.4443 -0.1133 0.0128 1.0650 0 8.9886 0.0610 6.1047 -0.1133
9 0.4560 0.0814 0.0066 1.0319 0 8.9781 0.0309 3.0893 0.0814
10 -0.7151 -0.1484 0.0220 1.0430 0 8.6746 0.0413 4.1260 -0.1484
11 -0.8210 -0.4517 0.2040 1.3027 0 8.5121 0.2324 23.2384 -0.4517 *
12 0.3950 0.1992 0.0397 1.2542 0 9.0300 0.2027 20.2686 0.1992 *
13 -0.5341 -0.1152 0.0133 1.0466 0 8.9008 0.0445 4.4486 -0.1152
14 0.8028 0.1057 0.0112 1.0173 0 8.5415 0.0170 1.7025 0.1057
15 0.7629 0.0603 0.0036 1.0062 0 8.6040 0.0062 0.6200 0.0603
16 -1.1249 -0.1753 0.0307 1.0243 0 7.9206 0.0237 2.3698 -0.1753

Table 4.31: Meta-analysis results of the influence diagnostics for the log odds ratio of sur-
viving under the experimental versus the control treatments at month 18.

study rstudent dffits cook.d cov.r tau2.del QE.del hat weight dfbs inf
1 -1.7656 -0.2822 0.0796 1.0255 0 9.1259 0.0249 2.4909 -0.2822
2 0.9518 0.2076 0.0431 1.0476 0 11.3375 0.0454 4.5429 0.2076
3 1.1370 0.1912 0.0365 1.0283 0 10.9507 0.0275 2.7494 0.1912
4 -0.4338 -0.0656 0.0043 1.0229 0 12.0552 0.0224 2.2370 -0.0656
5 0.9006 0.2022 0.0409 1.0504 0 11.4323 0.0480 4.7990 0.2022
6 0.6132 0.2195 0.0482 1.1281 0 11.8674 0.1135 11.3547 0.2195
7 -0.8928 -0.1683 0.0283 1.0355 0 11.4464 0.0343 3.4300 -0.1683
8 -1.6885 -0.5029 0.2529 1.0887 0 9.3923 0.0815 8.1483 -0.5029
9 0.9440 0.1676 0.0281 1.0315 0 11.3523 0.0306 3.0574 0.1676
10 0.0454 0.0079 0.0001 1.0303 0 12.2414 0.0294 2.9429 0.0079
11 -0.4908 -0.2863 0.0820 1.3402 0 12.0025 0.2539 25.3858 -0.2863 *
12 0.6894 0.3266 0.1067 1.2245 0 11.7682 0.1833 18.3309 0.3266
13 -0.3047 -0.0742 0.0055 1.0592 0 12.1506 0.0559 5.5927 -0.0742
14 0.7000 0.0723 0.0052 1.0107 0 11.7534 0.0106 1.0560 0.0723
15 0.3796 0.0466 0.0022 1.0151 0 12.0993 0.0149 1.4857 0.0466
16 -0.5114 -0.0801 0.0064 1.0246 0 11.9819 0.0240 2.3964 -0.0801
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Table 4.32: Meta-analysis results of the influence diagnostics for the log odds ratio of sur-
viving under the experimental versus the control treatments at month 24.

study rstudent dffits cook.d cov.r tau2.del QE.del hat weight dfbs inf
1 0.0351 -0.0030 0.0000 1.0901 0.1663 20.8437 0.0390 3.8987 -0.0030
2 1.3236 0.3756 0.1339 1.0057 0.1247 18.2696 0.0708 7.0754 0.3783
3 0.8174 0.0942 0.0089 1.0159 0.1495 20.1053 0.0132 1.3216 0.0941
4 -1.0277 -0.1856 0.0345 1.0420 0.1524 19.7185 0.0304 3.0425 -0.1849
5 -0.1557 -0.0614 0.0040 1.1676 0.1807 20.8355 0.0705 7.0538 -0.0609
6 -0.1879 -0.0901 0.0095 1.2654 0.1973 20.8185 0.1139 11.3878 -0.0917
7 -1.2801 -0.2888 0.0827 1.0365 0.1429 18.9263 0.0502 5.0214 -0.2898
8 -2.0342 -0.5909 0.2721 0.8628 0.0711 15.5674 0.0945 9.4503 -0.5902
9 0.2778 0.0566 0.0033 1.1248 0.1713 20.7041 0.0568 5.6761 0.0560
10 1.2356 0.1485 0.0220 1.0026 0.1444 19.1747 0.0140 1.4006 0.1492
11 -0.5105 -0.2258 0.0626 1.3149 0.1959 19.9011 0.1598 15.9795 -0.2362
12 2.4796 1.2068 0.7302 0.6034 0.0000 14.7021 0.1114 11.1362 1.1714 *
13 0.1749 0.0334 0.0012 1.1879 0.1833 20.7572 0.0815 8.1521 0.0333
14 0.6608 0.1026 0.0106 1.0386 0.1535 20.3172 0.0244 2.4421 0.1021
15 -0.7193 -0.1699 0.0294 1.0874 0.1621 20.2726 0.0468 4.6761 -0.1685
16 0.8096 0.1230 0.0152 1.0295 0.1508 20.0725 0.0229 2.2859 0.1228
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Figure 4.19 – forest plots for month 6, 12, 18 and 24 of the post-operative treatment with
either radiotherapy plus chemotherapy or radiotherapy alone in patients with
malignant gliomas from 16 studies.
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Figure 4.20 – Funnel plot for month 6, 12, 18 and 24 of the post-operative treatment with
either radiotherapy plus chemotherapy or radiotherapy alone in patients with
malignant gliomas from 16 studies.
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Figure 4.21 – Plot of the externally standardized residuals, DFFITS values, Cook’s distance,
covariance ratios, estimates of τ2 and test for residual heterogeneity when each
study is removed in turn, hat values, and weights for 16 studies, for month 6
of the post-operative treatment with either radiotherapy plus chemotherapy or
radiotherapy alone in patients with malignant gliomas.

Figure 4.22 – Plot of the externally standardized residuals, DFFITS values, Cook’s distance,
covariance ratios, estimates of τ2 and test for residual heterogeneity when each
study is removed in turn, hat values, and weights for 16 studies, for month 12
of the post-operative treatment with either radiotherapy plus chemotherapy or
radiotherapy alone in patients with malignant gliomas.
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Figure 4.23 – Plot of the externally standardized residuals, DFFITS values, Cook’s distance,
covariance ratios, estimates of τ2 and test for residual heterogeneity when each
study is removed in turn, hat values, and weights for 16 studies, for month 18
of the post-operative treatment with either radiotherapy plus chemotherapy or
radiotherapy alone in patients with malignant gliomas.

Figure 4.24 – Plot of the externally standardized residuals, DFFITS values, Cook’s distance,
covariance ratios, estimates of τ2 and test for residual heterogeneity when each
study is removed in turn, hat values, and weights for 16 studies, for month 24
of the post-operative treatment with either radiotherapy plus chemotherapy or
radiotherapy alone in patients with malignant gliomas.

Figure 4.19 above show the forest plot of separate univariate random-effects meta-
analyses for months 6,12,18 and 24. In month 6 studies 1, 2, 3, 4, 5, 6, 8, 9, 10, 11,
12, 13, 15 and 16, zero was included in the confidence interval indicating that the
studies were not statistically significant. Moreover since the line of no effect, results

102



4.2. Application of the mixed-effects model for meta-analysis

crossing this line cannot show whether the intervention is better or worse than the
control. Study (7 and 14) zero was not included in the confidence interval indicating
that the studies were statistically significant. In month 12 studies 1, 2, 3, 5, 6, 7, 8,
9, 10, 11, 13, 14, 15 and 16, zero was included in the confidence interval indicating
that the were not statistically significant. In studies 4 and 12 zero was not included
in the confidence interval indicating that the were statistically significant. In month
18 studies 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 14, 15 and 16, zero was included in the
confidence interval indicating that the studies were not statistically significant. In
studies 6 and 12 zero was not included in the confidence interval indicating that the
were statistically significant. In month 24 studies 1,2,3,4,5,6,7,8,9,10,11,13,14,15 and
16 zero was included in the confidence interval indicating that the studies were not
statistically significant. But study(2 and 12) zero was not included in the confidence
interval indicating that the were statistically significant. The result in Table 4.28
clearly shows that the odds of survival were significant higher in the experimental
group compared with the control group. This was consistent across all longitudinal
time points from month 6 to month 24. All four overall odds ratios at month 6, 12,
18 and 24 months were statistically significant because zero was not included in the
confidence interval. The least log odds ratio (0.22) was at month 6 which increased
at month 12 (0.41) and at month 18 (0.49), it remain the same at month 24 (0.49).
In month 6 studies 1 and 14, the box is on the left of the line of no effect, which in-
dicate that it favours experimental group. Suggesting that, using the radiotherapy
plus chemotherapy in patients with malignant gliomas is beneficial. In studies 2, 3,
4, 5, 6, 7, 8, 9, 10, 11, 12, 13 and 15 the box was in the right side of the line of no effect,
indicated that using the radiotherapy alone in patients with malignant gliomas is
beneficial. In month 12 study (16), the box is on the left of the line of no effect, which
indicate that it favours the experimental group. Suggesting that, using the radio-
therapy plus chemotherapy is beneficial. In studies 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
13, 14 and 15, the box was on the right of the line of no effect, which indicate that it
favours the control group. Suggesting that, using radiotherapy in patients with ma-
lignant gliomas is beneficial. In month 18 studies 1, 7 and 8, the box was on the left
of the line of no effect, which indicate that it favours experimental group. Suggest-
ing that, using radiotherapy plus chemotherapy in patients with malignant gliomas
is beneficial. In studies 2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15 and 16 the box was in the
right side of the line of no effect, indicating that using radiotherapy alone in patients
with malignant gliomas is beneficial. In month 24 studies 4, 7, 8 and 15, the box was
on the left of the line of no effect, which indicate that it favours experimental group.
Suggesting that using radiotherapy plus chemotherapy in patients with malignant
gliomas is beneficial. In studies 1, 2, 3, 5, 6, 9, 10, 11, 12, 13, 14 and 16, in month
6, 12, 18 and 24 the overall mean, indicated by the diamond was on the left side of
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the line of no effect, meaning that the final conclusion is that the use of radiotherapy
alone in patients with malignant gliomas beneficial. In Table 4.28, month 6, 12 and
18 we found the I2 value to be I2 = 0%, which means that the is no heterogeneity
in month 6, 12 and 18 in this meta-analysis. But in month 24, we found the value
of I2 to be I2 = 32.49% which means that the is moderate heterogeneity at month
24 in this meta-analysis. Based on the plot (Figure 4.20) there is no visual indication
of publication bias, since the plot resembles a symmetrical inverted funnel because
the treatment effect estimates from smaller studies scatter more widely at the bot-
tom of the graph, with the spread narrowing with increasing precision among larger
studies. In month 6 and 12, in Table 4.29 and Figure 4.23 shows that removing study
(11 and 12) would yield little change in the amount of residual heterogeneity, but
their influence on the model fit is more considerable [93]. In month 18, in Table 4.31
and Figure 4.23 shows that the removal of study 11 would yield little change in the
amount of residual heterogeneity, but their influence on the model fit is more con-
siderable [93]. In month 24, Table 4.32 and Figure 4.24 shows that the influence of
study 12 on the model fit is more considerable, also its removal would yield little
change in the amount of residual heterogeneity [93].
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4.2.2 Results for the linear mixed-effects model for meta-analysis

Table 4.33: Meta-analysis results for models 1 to 3 from the linear mixed-effects model for
the log odds ratio of surviving under experimental treatment compared to the
control treatment using data for 16 trials.

Model 1 Model 2 Model 3
Covariance structures between Indep CS HAR(1)
random time effects(

∑
)

Within-study errors (Ri) Indep Indep Indep
Log odds ratio estimates

Month 6 0.22(0.02,0.43) 0.23( 0.01,0.46) 0.22(0.02,0.43)
Month 12 0.41(0.23,0.60) 0.43(0.23,0.63) 0.41(0.22,0.59)
Month 18 0.49(0.27,0.71) 0.51(0.27,0.74) 0.49(0.23,0.74)
Month 24 0.49(0.13,0.85) 0.48(0.21,0.76) 0.50(0.13,0.87)
Between study variance estimates
Month 6 0.00 0.02 0.00
Month 12 0.00 0.00
Month 18 0.00 0.04
Month 24 0.15 0.18

Model Fit
AIC 117.97 114.95 117.64
BIC 134.73 127.51 136.49
AICc 120.80 116.53 121.24
Deviance 101.97 102.95 99.64
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Table 4.34: Meta-analysis results for models 4 to 6 from the linear mixed-effects model for
the log odds ratio of surviving under experimental treatment compared to the
control treatment using data for 16 trials.

Model 4 Model 5 Model 6
Covariance structures between Indep HAR(1) UN
random time effects(

∑
)

Within-study errors (Ri) HAR(1) HAR(1) HAR(1)
Log odds ratio estimates

Month 6 0.19(-0.01,0.39) 0.19(-0.01,0.40) 0.21(0.00,0.43)
Month 12 0.38(0.20,0.55) 0.37(0.19,0.55) 0.38(0.20,0.56)
Month 18 0.44(0.22,0.66) 0.43(0.20,0.67) 0.43(0.20,0.66)
Month 24 0.44(0.12,0.77) 0.43(0.06,0.81) 0.42(0.05,0.79)
Between study variance estimates
Month 6 0.00 0.00 0.01
Month 12 0.00 0.00 0.00
Month 18 0.00 0.02 0.02
Month 24 0.10 0.19 0.20

Model Fit
AIC 104.67 105.73 115.34
BIC 121.43 124.58 144.66
AICc 107.50 109.33 124.67
Deviance 88.67 87.73 87.34

In Table(4.33 and 4.34) shows the results of applying the linear mixed-effects model
in equation(3.2) to the example of the data by Fine [97], using model 1 to 6. The
results were the same for the independence model as the one obtained from the
separate meta-analysis in Table 4.28. As a result performing univariate meta-analysis
at each time point separately is equivalent to a independence model. There is a
slightly differences of the log odds ratio estimate between model 1 to 6 in Table (4.33
and 4.34). The log odds ratio estimates from model 2 and 6 the pattern of the results
was the same, month 6 was the least it increases in month 12 and 18 then it decreases
in month 24. But in model 1, 4 and 5 the estimates were also have the same pattern,
in month 6 were the least estimates, they increase in month 12 up till month 18 and
stayed constant in month 24. In model 3 the estimates of log odds ratio, increases
from month 6 till month 24. In month 6, 12, 18 and 24 in all six model the log odds
ratio estimates of surviving were significant higher for the experimental treatment
compared to the control treatment since the 95% confidence interval does not include
zero at 5% level of significance. Although month 6 in model 4 and 5 show that the
log odds ratio estimates were not statistically significant at 5% level of significance,
the corresponding p-values were slightly above 0.05. All in all, the likelihood of
survival is significantly better under the experimental treatment compared to the
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4.2. Application of the mixed-effects model for meta-analysis

control treatment. The results of the linear mixed-effects model for the between
study variances ranges from 0.00 to 0.20 and were not statistically different from
zero. Model 4 and 5 had much better fit than the rest of the models, since the values
of Akaike Information Criterion(AIC) were the smaller values among the rest which
indicate better fit. Model 2, 3 and 6 performed slightly better than the independence
model and there were very slight differences in the model fit between these four
model.
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Chapter 5

Discussion and Conclusion

Under the fixed-effects model, we assumed that the effect sizes in our meta-analysis
are different only because of sampling error and that they all share a common mean.
Realistically, we know that each study leads to a different effect size, but each effect
size is an estimate of common mean. Effects sizes differ from each other only because
each study used a different sample of participants and also because of differences in
the way studies were conducted. This assumption is possible when studies are close
replications of one another (they use same procedures and measures). Under the
random-effects model, we assume sampling variation as in our fixed-effects model
assumption and random variation because the effect sizes themselves are sampled
from a population of effect sizes.

Under the random-effects model, the summary effect is an estimate of the mean
of a distribution of true effects. Study weights are more uniform (similar to one an-
other) under the random-effects model than under the fixed-effects model. Large
studies are assigned less relative weight and small studies are assigned more rel-
ative weight as compared with the fixed-effects model. The standard error of the
summary effect and, therefore, the confidence intervals for the summary effect are
wider under the random-effects model than under the fixed-effects model. Under
the fixed-effects model the only source of variation is the within study estimation
error [46]. With a large enough sample size, accumulated across studies, this source
of variation will diminish and the common effect size will be estimated precisely.
Under the random-effects model there are two sources of variation, namely, within
study estimation error variance and between studies variance. With a large enough
sample size, accumulated across studies, the effect of first source of variation will
diminish. However, if the between studies variance is substantial, the only way to
obtain good precision is to increase the number of studies. If we increase the sample
size in a few studies we may know the effect sizes in those studies very precisely,

108



Discussion and Conclusion

but still not have a precise estimate of the mean across all studies. The selection of a
model should be based solely on the question of which model fits the distribution of
effect sizes better and thus takes account of the relevant source(s) of error [46]. When
studies are gathered from the published literature, the random-effects model is gen-
erally a more plausible match. The addition of the nonzero variance component be-
tween strata, τ̂2 to the variance of the estimate to obtain the unconditional variance
has the effect of adding a constant to all of the weights. Thus, the random-effects
analysis shrinks the weights towards the average, so that the resulting estimate is
closer to the unweighted mean of the θ̂i than is the fixed-effects model [29]. If the
estimate of this variance components is zero or nearly so, the random-effects anal-
ysis differs trivially from the fixed-effects analysis. Thus one strategy could be to
always adopt a random-effects model because there is usually some extra variation
or over-dispersion and if not then τ̂2 = 0 and the fixed-effects will result. However
this could sacrifice power in those cases where a fixed-effects model actually applies
because even when τ2 = 0, the estimate τ̂2 = 0 will vary and a small value will still
inflate the variance of the estimate µ̂(1)θ [29]. Thus it is customary to first conduct
a test of homogeneity and to conduct a random-effects analysis only if significant
heterogeneity is detected. While the random-effects model is often the appropri-
ate model, there are cases where it cannot be implemented properly because there
are too few studies to obtain an accurate estimate of the between-studies variance.
In Table(4.4, 4.8 and 4.12), the pattern of the results were the same across all three
measures of association. We found that the values of the Akaike Information Cri-
terion(AIC), were smaller values which indicate better fit, the results show that the
fixed-effects model had much better fit than the random-effects model. Even though
we found the presence of heterogeneity as a result of random sampling error[33, 38].
Such random variation is greater in smaller studies and is less of a problem in larger
studies [34]. All three effect sizes, suggested that using both new drug and placebo
to patients with duodenal ulcers is beneficial. In the example by Yusuf [92], of a
meta-analysis of nine clinical trails investigating the effect of taking diuretics during
pregnancy on the risk of pre-eclampsia. All three measures, the pooled estimate
suggested that treating patients with diuretics in preventing the development of
pre-eclampsia in pregnant woman is beneficial. But when treated with placebo is
harmful. Random-effects model was the appropriate model for all three measures of
association, which means that there is some extra variation or over-dispersion due
to random differences among the studies.

In the example by Fine [97] where, we applied a linear mixed-effects model which
borrows ideas from multivariate meta-analysis. The simplest approach which does
not account for correlation, that is, the independence model where separate meta-
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analysis were done at each of the time points was compared against models where
correlation was accounted for in different alternatives, including random study ef-
fects, correlated random time effects and/or correlated within-study errors, or un-
structured covariance structures. From the results above, the random study effect
model or the correlated random time effect model that accounts for correlation be-
tween effect sizes, yield similar results to the independence model where separate
meta-analysis are done at each time point. The results from models 4 and 5 clearly
show the benefit of accounting for within study serial correlations between effect
sizes. Accounting for correlation using the compound symmetry showed very lit-
tle benefit compared to the independence model. In our example, the autoregres-
sive covariance structure yielded more precise estimates compared to the compound
symmetry covariance structure.Furthermore the results from months 6 to month 24
showed that the odds of survival under the experimental treatment were signifi-
cantly higher compared to the control treatment. The confidence interval for pa-
rameter estimates show that the best performing model 4 had narrowest confidence
intervals compared to the other five models at the four time points. In the multi-
variate example used, Figure 4.20, the subjective impression does support presence
of asymmetry, therefore there is no visual indication of publication bias. Since the
graphs resembles symmetrical inverted funnel plots the treatment effect estimates
from smaller studies scatter more widely at the bottom of the graph, with the spread
narrowing with increasing precision among larger studies. Funnel plot is not the
only method to detect publication bias in meta-analysis. The is a numerous number
of statistical methods to detect and adjunct for publication bias in meta-analysis.

Simulations to confirm whether our findings of the benefit of taking account of
within study correlations using autoregressive structure are needed. Since the ex-
ample that we used cannot generalized other data sets. Our modeling approach was
to estimate point estimates at each fixed time point. However, this thesis has po-
tential to be extended in some respect. In order to improve the estimation and for
further research purposes. The alternative approach by Ahn and French [98], were
they treated time as a continuous covariate and explore both linear and non-linear
models can be considered. Moveover, for further research purposes the thesis can be
extended where we have multiple effect sizes of different types, at each time point.
Such extensions are well suited in the prevailing of longitudinal studies, where a
number of outcomes are measured at multiple time points. However, this creates
complexity in the modelling structure.
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Appendix A

A.1 Partition of variation

A useful result is the principle of partitioning of sums of squares that forms the basis
for the analysis of variance. Given a set of constant {ai} and values {zi} such that∑

i aiyi =
∑

i aizi and∑
i

ai(yi − ȳ)2 =
∑
i

ai(yi − zi)2 +
∑
i

ai(zi − ȳ)2. (5.1)

However it can be shown that
∑

i aizi(yi − zi) = 0. The values {zi}may be random
observations or constants. A similar result provides the partitioning of variation
(mean square error) for an estimate θ̂ of a parameter θ. When the estimate has ex-
pectation E(θ̂) 6= θ, then the mean square of the estimate can be partitioned as

E(θ̂ − θ)2 = E[θ̂ − E(θ̂)]2 + E[E(θ̂)− θ]2 = V (θ̂) + [bias(θ̂)]2. (5.2)

A related expression is the well-known result

V (Y ) = EX [V (Y |x)] + VX [E(Y |x)]. (5.3)

Expressed in terms of the conditional moments of Y given the value of another vari-
able X, integrated with respect to the distribution of X.

A.2 Slutsky’s convergence theorem

Slutsky’s theorem is a multifaceted result which can be used to establish the con-
vergence in distribution and/or the convergence in probability(consistency) of mul-
tidimensional transformations of a vector of statistics. For the purpose here, we
shall present these as two results rather than as a single theorem. The theorem is
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then used in conjunction with the delta method to obtain asymptotic distribution of
transformations of statistics.

A.3 Convergence in distribution

The most common application of slutsky’s theorem concerns the asymptotic distri-
bution of linear combination of two sequences of statistics, one that convergence in
probability to a constant and another that convergence in distribution to a specified
distribution. In this project we are only concerned with functions of statistics that
are asymptotically normally distributed, for which the theorem is so described. The
result, however, applies more generally to statistics that follow any specified distri-
bution. The theorem also readily generalized to more than two such statistics. Let tn
be a sequence of statistics such that as n→∞,

√
n(tn − µ)→ N(0, σ2) (5.4)

where the variance σ2 may be a function of the expectation µ. Also, let rn be a
sequence of statistics that converges in probability to a constant ρ, expressed as rn →
ρ. Then

√
n[(rn + tn)− (ρ+ µ)]→ N(0, σ2) (5.5)

and
√
n[(rntn − ρµ)]→ N(0, ρ2σ2). (5.6)

A.4 Delta method

A.4.1 Univariate case

Deriving large sample moment is a common problem in statistics. For example the
expectation and variance, of a transformation of a statistic, including non-linear
transformations. We can obtain these expression by using the δ−delta method.
Let t be any statistic for which the two central moments are know, E(t) = µ and
V (t) = σ2. We desire the moments of a transformation y = g(t) for some function
g(·) which is assumed to be twice differentiable, with derivatives designated as g′(·)
and g′′(·). A first order Taylor’s series expansion of g(t) about µ is

g(t) = g(µ) + g′(µ)(t− µ) +R2(a). (5.7)
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From the mean value theorem, the remainder for second order is

R2(a) = (t− µ)2g′′(a)/2, (5.8)

for some value a contained in the interval (t, µ). If the remainder vanishes under
specified conditions, such as asymptotically, then

g(t) ∼= g(µ) + g′(µ)(t− µ) (5.9)

so that
E(y) = µy = E[g(t)] ∼= g(µ) + g′(µ)E(t− µ) = g(µ) (5.10)

and

V (y) = E(y − µy)2 ∼= E[g(t)− g(µ)]2

= E[g′(µ)(t− µ))]2 = [g′(µ)]2V (t).
(5.11)

We frequently consider the moments of a transformation of a statistic t that is a
consistent estimate of µ in such cases, since t → µ, then the remainder in equation
(5.8) vanishes asymptotically, or R2(a) → 0, and the above results apply to any
transformation of t. Furthermore, if V̂ (t) is a consistent estimator of V (t), than it
follows from Slutsky’s theorem convergence theorem, that V̂ (y) = [g′(t)]2V̂ (t) is a
consistent estimator of V (y).

A.5 Log(p)

Consider the moments of the natural log of the simple proportion p for which µ = π

and σ2 = π(1−π)
N . The Taylor’s expansion yields

log(p) = log(π) +
dlog(π)

dπ
(p− π) +R2(a), (5.12)

where the remainder for some values a ∈ (p, π) is R2(a) = (p − π)2g′′(a)/2. Since p
is consistent for π, p→ π then asymptotically R2(a)→ 0 and thus

E[log(p)] ∼= log(π) (5.13)
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and
V [log(p)] ∼= [

dlog(π)

dπ
]2V (p) = [

1

π2
]
π(1− π)

N
=

1− π
πN

. (5.14)

A.5.1 Multivariate case

Now consider a transformation of a p-vector T = (t1, . . . , tp)
′ of statistic with mean

vector µ and covariance matrix
∑
T . Assume that Y = (y1 . . . ym)′ = G(T ) =

[gt, . . . , gT ]′, m 6 p, where the kth transformation gk(T ) is a twice differentiable
function of T . Applying a first order Taylor’s series and assuming that the vector of
remaindersR2(A) vanishes for valuesA ∈ (T ,µ) yields

E(Y ) = µY
∼= G(T )

V (Y ) =
∑
Y

∼= H(µ)′
∑
T

H(µ).
(5.15)

WhereH(µ) is a p×m matrix with elements

H(µ) =


∂g1(T )
∂T
...

∂gm(T )
∂T

 =


∂g1(T )
∂t1

. . . ∂g1(T )
∂tp

...
∂gm(T )
∂t1

. . . ∂gm(T )
∂tp


evaluated at T = µ and T is a jointly consistent estimator for µ. Then provides
the first two moments of the asymptotic distribution of Y . Further from slutsky’s
theorem if

∑̂
T is consistent for

∑
T , then

∑̂
Y

= Ĥ(T )′
∑̂
T

Ĥ(T ) = Ĥ ′
∑̂
T

Ĥ (5.16)

is a consistent estimator of
∑
Y .

A.5.2 Multinomial generalized logits

Consider the case of a trinomial where we wish to estimate the mean and variance of
the vector of log odds, logits of the second category versus the first, log(p2p1 ) and also
category versus the first, log(p3p1 ). Thus P = (p1p2p3)

′ has mean vector π = (π1π2π3)
′

and covariance matrix

∑
(H) =

1

N
=

 π1(1− π1) −π1π2 −π1π3
−π1π2 π2(1− π2) −π2π3
−π1π3 −π2π3 π3(1− π3)

 .
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The transformation is Y = G(P ) = [g1P g2P ]′, where g1(P ) = log(p2p1 ) and g2(P ) =

log(p3p1 ) and expected value of Y is given as

E[Y ] = µY = [log(
π2
π1

)log(
π3
π1

)]′. (5.17)

To obtain the asymptotic variance requires the matrix of derivatives, which are

∑
(H) =

[
∂g1(π)
∂π1

∂g1(π)
∂π2

∂g1(π)
∂π3

∂g2(π)
∂π1

∂g2(π)
∂π2

∂g2(π)
∂π3

]′
=

[
− 1
π1

1
π2

0

− 1
π1

0 1
π3

]′

hence, ∑
Y

= H ′
∑
T

H

=
1

N

[
1
π1

+ 1
π2

1
π1

1
π1

1
π1

+ 1
π3

]
.

(5.18)

Provides the asymptotic covariance matrix of the two logits.
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B.1 R code for univariate examples

setwd("C:/Users/mhlengi/Desktop/Meta-R")

Load metafor package for meta-analysis

install.packages("metafor")

library("metafor")

Bring in data from Excel spreadsheet

data2<-read.csv("Ulcers.csv")

Print data on screen

data2

Effect size calculation

dat <- escalc(measure="RD", $ai=a_j, bi=n_1j-a_j,

ci=b_j, di=n_2j-b_j$, data=data2)

summary(dat)

m1<-rma(measure="RD", $ai=a_j, bi=n_1j-a_j, ci=b_j,

di=n_2j-b_j$, data=dat, method="FE")

summary(m1)

Residuals

res1 <- rma(yi, vi,data=dat)

inf1 <- influence(res1)

inf1

plot(inf1,plotdfb = TRUE)

m2<-rma(measure="RD", $ai=a_j, bi=n_1j-a_j,

ci=b_j, di=n_2j-b_j$, data=dat, method="ML")
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summary(m2)

Forest plot for risk difference

par(mfrow=c(2,2))

forest(m1, main="Fixed-effects")

forest(m2, main="Random-effects")

Funnel plot for risk difference

par(mfrow=c(2,2))

funnel(m1, main="Fixed-effects")

funnel(m2, main="Random-effects")

setwd("C:/Users/mhlengi/Desktop/Meta-R")

Load metafor package for meta-analysis

install.packages("metafor")

library("metafor")

Bring in data from Excel spreadsheet

data2<-read.csv("Ulcers.csv")

Print data on screen

data2

Effect size calculation

dat <- escalc(measure="RR", $ai=a_j, bi=n_1j-a_j,

ci=b_j, di=n_2j-b_j$, data=data2)

summary(dat)

m1<-rma(measure="RR", $ai=a_j, bi=n_1j-a_j,

ci=b_j, di=n_2j-b_j$, data=dat, method="FE")

summary(m1)

Residuals

res1 <- rma(yi, vi,data=dat)

inf1 <- influence(res1)

inf1

plot(inf1,plotdfb = TRUE)
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m2<-rma(measure="RR", $ai=a_j, bi=n_1j-a_j,

ci=b_j, di=n_2j-b_j$, data=dat, method="ML")

summary(m2)

Forest plot for log relative risk

par(mfrow=c(2,2))

forest(m1, main="Fixed-effects")

forest(m2, main="Random-effects")

Funnel plot for log relative risk

par(mfrow=c(2,2))

funnel(m1, main="Fixed-effects")

funnel(m2, main="Random-effects")

setwd("C:/Users/mhlengi/Desktop/Meta-R")

Load metafor package for meta-analysis

install.packages("metafor")

library("metafor")

Bring in data from Excel spreadsheet

data2<-read.csv("Ulcers.csv")

Print data on screen

data2

Effect size calculation

dat <- escalc(measure="OR", $ai=a_j, bi=n_1j-a_j,

ci=b_j, di=n_2j-b_j$, data=data2)

summary(dat)

m1<-rma(measure="OR", $ai=a_j, bi=n_1j-a_j,

ci=b_j, di=n_2j-b_j$, data=dat, method="FE")

summary(m1)

Residuals

res1 <- rma(yi, vi,data=dat)

inf1 <- influence(res1)

inf1
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plot(inf1,plotdfb = TRUE)

m2<-rma(measure="OR", $ai=a_j, bi=n_1j-a_j,

ci=b_j, di=n_2j-b_j$, data=dat, method="ML")

summary(m2)

Forest plot for log odds ratio

par(mfrow=c(2,2))

forest(m1, main="Fixed-effects")

forest(m2, main="Random-effects")

Funnel plot for log odds ratio

par(mfrow=c(2,2))

funnel(m1, main="Fixed-effects")

funnel(m2, main="Random-effects")

B.2 R code for meta-analysis of longitudinal studies

%setwd("C:/Users/mhlengi/Desktop/Meta-R")

%install.packages("metafor")

%library("metafor")

%data2<-read.csv("Book4.csv")

%data2

%dat<-escalc(measure="OR",$ai=a_j, bi=c_j, ci=b_j, di=d_j$, data=data2)

%dat

%

%Separate univariate random-effects model

%m6 = rma(yi, vi, data=dat[dat$time==6,], method="REML")

%m12 = rma(yi, vi, data=dat[dat$time==12,], method="REML")

%m18 = rma(yi, vi, data=dat[dat$time==18,], method="REML")

%m24 = rma(yi, vi, data=dat[dat$time==24,], method="REML")

%

%The summary for log odds ratio

%summary(m6);summary(m12);summary(m18);summary(m24)

%

res1 <- rma(yi, vi,data=dat[dat$time==6,])

inf1 <- influence(res1)

inf1

plot(inf1,plotdfb = TRUE)
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res1 <- rma(yi, vi,data=dat[dat$time==12,])

inf1 <- influence(res1)

inf1

plot(inf1,plotdfb = TRUE)

res1 <- rma(yi, vi,data=dat[dat$time==18,])

inf1 <- influence(res1)

inf1

plot(inf1,plotdfb = TRUE)

res1 <- rma(yi, vi,data=dat[dat$time==24,])

inf1 <- influence(res1)

inf1

plot(inf1,plotdfb = TRUE)

%Forest plot for log odds ratio

%par(mfrow=c(2,2))

%forest(m6, main="Month 6")

%forest(m12, main="Month 12")

%forest(m18, main="Month 18")

%forest(m24, main="Month 24")

%

%Funnel plot for log odds ratio

%par(mfrow=c(2,2))

%funnel(m6, main="Month 6")

%funnel(m12, main="Month 12")

%funnel(m18, main="Month 18")

%funnel(m24, main="Month 24")

%

%Multivariate Meta-Analysis for longitudinal data using the linear

mixed model. Independent random time effects model -MODEL1.

%mvmMODEL1 = rma.mv(yi, vi, mods= ˜ as.factor(time)-1,

random = ˜ as.factor(time) | as.factor(study),

struct = "DIAG", data=dat);summary(mvmMODEL1, digits=2)

%

%Random study effects model -MODEL 2 "HCS" for compound symmetry,

%mvmMODEL2 = rma.mv(yi, vi, mods= ˜ as.factor(time)-1,

random = ˜ as.factor(time) | as.factor(study),
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struct = "CS", data=dat);summary(mvmMODEL2, digits=2)

%

%

%HAR(1) correlated random time effects model -MODEL 3 "HAR"

for a heteroscedastic AR(1) autoregressive structure

%mvmMODEL3 = rma.mv(yi, vi, mods= ˜ as.factor(time)-1,

random = ˜ as.factor(time) | as.factor(study),

struct = "HAR", data=dat);summary(mvmMODEL3, digits=2)

%

%Note: For models 4 to 6 we created a variance-covariance

matrix for the within-study errors

%Load data in wide format with variables: study yi6 vi6

yi12 vi12 yi18 vi18 yi24 vi24

%dat=read.csv("data4.csv")

%dat

%

%Reshape to long

%dat.long <- reshape(dat, direction = "long", idvar = "study",

v.names = c("yi","vi"), varying = list(c(2,4,6,8),c(3,5,7,9)))

%dat.long <- dat.long[order(dat.long$study, dat.long$time),]

%rownames(dat.long) <- 1:nrow(dat.long)

%

%Construct the full (block diagonal) V matrix with an AR(1) structure

%rho.within <- .59

%V <- lapply(split(with(dat, cbind(vi6,vi12,vi18,vi24)), dat$study), diag)

%V <- lapply(V, function(v) sqrt(v)

%*% toeplitz(ARMAacf(ar=rho.within, lag.max = 3)) %*% sqrt(v))

%V <- bldiag(V)

%

%Independent random time effects and HAR(1)

correlated within-study effects -MODEL 4

%resMODEL4 <- rma.mv(yi, V , mods= ˜ as.factor(time)-1,

random =˜ as.factor(time) | study, struct = "DIAG",

data=dat.long);summary(resMODEL4, digits=2)

%

%

%HAR(1) correlated random time effects and HAR(1)

correlated within-study effects -MODEL5
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%resMODEL5 <- rma.mv(yi, V , mods= ˜ as.factor(time)-1,

random = ˜ as.factor(time) | study, struct = "HAR",

data=dat.long);summary(resMODEL5, digits=2)

%

%

%Unstructured random time effects and HAR(1)

correlated within-study effect -MODEL6

%resMODEL6 <- rma.mv(yi, V , mods= ˜ as.factor(time)-1,

random = ˜ as.factor(time) | study, struct = "UN",

data=dat.long);summary(resMODEL6, digits=2)

130


	List of Figures
	List of Tables
	Introduction
	Effect size
	Objectives of the study
	Outline of the study


	Overview of basic statistical concepts and approaches in meta-analysis
	Preliminary concepts
	Effect sizes based on binary data (2  2 tables)
	Risk difference
	Relative risk
	Odds ratio

	Fixed-effects model
	Model description

	Multivariate Test of Hypotheses
	Multivariate Null Hypothesis
	Tests for Homogeneity
	Contrast Test for Homogeneity

	Heterogeneity
	Causes of heterogeneity in meta-analysis

	Random-effects model
	Model description

	Choice between fixed-effects and random-effects models
	The likelihood method
	Estimating  and 2 using maximum likelihood

	Publication bias
	Forest Plot

	Meta-analysis for longitudinal studies
	Introduction
	Theory of the linear mixed-effects model for meta-analysis
	Model description
	Estimating fixed-effects for V known
	Predicting random-effects for V know
	Predicting random-effects for V unknown
	Maximum likelihood estimation
	Estimating fixed-effects for V unknown
	Restricted maximum likelihood estimation

	Inference
	The likelihood ratio test(LR)
	Wald test
	Estimating the random-effects

	Model selection
	Akaike information criteria
	Schwarz criterion

	Checking model assumption(diagnostics)
	Residual diagnostics
	Conditional and marginal residuals
	Standardized and studentized residuals
	Influence diagnostics
	Overall influence
	Change in parameter estimates
	Change in precision of estimates
	Effect on fitted and predicted values
	Types of covariance structures

	Modelling covariance structures
	Model 1- Independent random time effects model
	Model 2- Random study effects model
	Model 3- Correlated random time effects model
	Model 4- Correlated within-study effect sizes model
	Model 5- Correlated within-study effect sizes and correlated random time effects
	Model 6-Correlated random time effects(unstructured) and correlated within-study effect sizes


	Application and results
	Examples of a univariate meta-analysis
	Meta-analysis of clinical trial in duodenal ulcers
	Risk difference
	Relative risk
	Odds ratio
	Meta-analysis of effects of diuretics on pre-eclampsia
	Risk Difference
	Relative Risk
	Odds Ratio

	Application of the mixed-effects model for meta-analysis
	Results for the separate univariate random effects meta-analysis
	Results for the linear mixed-effects model for meta-analysis


	Discussion and Conclusion
	References
	Appendix B

