

### Declaration

I, Sunveer Matadin declare that

- (i) The research reported in this dissertation, except where otherwise indicated, is my original work.
- (ii) This dissertation has not been submitted for any degree or examination at any other university.
- (iii) This dissertation does not contain other persons' data, pictures, graphs or other information, unless specifically acknowledged as being sourced from other persons.
- (iv) This dissertation/thesis does not contain other persons' writing, unless specifically acknowledged as being sourced from other researchers.
   Where other written sources have been quoted, then:

a) their words have been re-written but the general information attributed to them has been referenced;

b) where their exact words have been used, their writing has been placed inside quotation marks, and referenced.

- (v) Where I have reproduced a publication of which I am an author, co-author or editor, I have indicated in detail which part of the publication was actually written by myself alone and have fully referenced such publications.
- (vi) This dissertation does not contain text, graphics or tables copied and pasted from the Internet, unless specifically acknowledged, and the source being detailed in the dissertation and in the References sections.

Sunveer Matadin

## Acknowledgements

The author wishes to thank the following ladies and gentlemen for their respective roles in this research and design project: Supervisors; Prof. E. Boje, Prof. B. M. Nleya and Mr. R. Chidzonga for their assistance and guidance; Mr. Sanjiv Sewpaul – Senior Manager (Spoornet), for his guidance and support, Mr Jarque Botha (Volt-Drop Test technician) for his time and assistance, Ms. Fiona Higginson, Ms. Asha Maharagh and Ms. Colleen Gee for their administrative assistance and Ms. Arusha Asari for her time and assistance.

# Abstract

In a rapidly evolving technological and industrialised society, automation is a current and growing trend. The concept is typically applied to uneconomical processes and extends from the automation of highly complex processes to those that are less complex. This dissertation discusses the automation of a previously mundane, manual, time-consuming and inefficient task using an embedded controller with dual enhanced microcontrollers as its core. Spoornet recognised the need to automate this and other processes hence a drive was initiated by Spoornet's Engineering and Technology department into the study of automation principles and techniques that can be used as a basis for the automation of workshops and test centers. This research stems from the above mentioned drive.

The Volt-Drop Test was the process that was used as a model to investigate the considerations, boundaries, design concepts and the hardware and software development that is inherent in the automation of a process. The design of the controller that facilitates the automation of the Volt-Drop Test was completed after research into embedded systems, embedded microcontrollers, programming languages and techniques, digital electronics, analogue electronics, digital system design concepts and techniques, analogue system design concepts and techniques, and the latest available electronic components.

A Graphic User Interface (GUI) was developed to interface with the controller to set up test parameters, display the present test status, perform calculations on the data received from the controller and display faults in the armature under test. Further, the GUI has the functionality to save all test data in a predefined and secure location to be retrieved and viewed as historical data or used for trending. A Remote Graphic User Interface (RGUI) was also developed. This interface is used solely to view test data (retrieved from the saved history files), from any geographic location provided that the user has been granted access to the secure location in which this data is saved.

Ι

In the testing phase, all tests were carried out using high quality, high accuracy and recently calibrated instrumentation. The test results obtained largely reflected what was expected from the system when compared to simulations that were carried out on the controller and the GUI during their development. With regard to the automation process, the system follows the procedure as it was designed with respect to correct switching sequences, response to system errors, timing of events and correct and efficient communication between the controller and the GUI. In terms of the data acquisition aspects the system captures, converts, calculates, analyses and logs data, within the expected input range with a level of accuracy that is considered to be high (a maximum percentage error of 0.75% - expressed as a percentage of the injected test supply) for this type of application when compared to the accuracy of present test methods.

# Contents

| Chapter 1. |                                             | .1 |
|------------|---------------------------------------------|----|
| Introduc   | tion                                        |    |
| 1.1        | General Background                          | .1 |
| 1.2        | Overview                                    | .6 |
| 1.3        | Background of the Volt-Drop test            | 0  |
| 1.4        | Present test program and short-comings      | 1  |
| Chapter 2. | 1                                           | 15 |
| Project C  | Concept and Overview                        |    |
| 2.1        | Design Objectives                           | 15 |
| 2.2        | Project Scope1                              | 5  |
| 2.3        | Design Concept                              | 17 |
| 2.3.1      | Automation and Machine Design Concept       | 17 |
| 2.3.2      | 2 Data Acquisition Concept                  | 28 |
| 2.4        | System Advantages and Features              | 28 |
| Chapter 3. |                                             | 31 |
| Graphic    | User Interface (GUI) Development            |    |
| 3.1        | A walk through the GUI                      | 32 |
| 3.1.1      | Test Setup Fields                           | 32 |
| 3.         | 1.1.1 User Identification Frame             | 32 |
| 3.         | 1.1.2 Armature Properties Frame             | 37 |
| 3.         | 1.1.3 Job Number Property Frame             | 39 |
| 3.         | 1.1.4 Test Option Property Frame            | 39 |
| 3.         | 1.1.5 Test Parameter Property Frame         | 11 |
| 3.         | 1.1.6 The Date and Time Frames <sup>2</sup> | 11 |
| 3.1.2      | 2 Test In Progress Fields                   | 12 |
| 3.         | 1.2.1 Fault Log List                        | 12 |
| 3.1.3      | 3 The Control Commands                      | 13 |
| 3.1.4      | Error Status Frame                          | 19 |
| 3.1.5      | 5 Test Status Display                       | 52 |
| 3.1.6      | 6 Recorded Test Data Option5                | 53 |
| 3.         | 1.6.1 Print Option5                         | 54 |
| 3.         | 1.6.2 Save Option                           | 54 |
| 3.         | 1.6.3 Open option5                          | 55 |
| 3.         | 1.6.4 Delete Option                         | 57 |
| 3.1.7      | 7 Directory Path Specification              | 59 |
| 3.1.8      | 8 Exit Command                              | 51 |
| 3.2        | Percentage Variance Calculation             | 51 |
| 3.3        | The Remote Graphic User Interface (RGUI)    | 57 |

| Chapter 4                                                                                                                                                                             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4.1 The Communication Microcontroller                                                                                                                                                 |
| 4.1.1.1 External Interrupts                                                                                                                                                           |
| 4.1.1.2 The Reading Subroutine                                                                                                                                                        |
| 4.1.2 ADC Control 87                                                                                                                                                                  |
| 4.2 Automation Microcontroller                                                                                                                                                        |
| 4.2.1 Explanation of functions, tasks and flow process                                                                                                                                |
| 4.2.1.1 External Interrupt 1 and External Interrupt 1 ISR 103                                                                                                                         |
| 4.2.1.2 External Interrupt 0 and External Interrupt 0 ISR 106                                                                                                                         |
|                                                                                                                                                                                       |
| Chapter 5                                                                                                                                                                             |
| Hardware Design                                                                                                                                                                       |
| 5.1 Digital System Design                                                                                                                                                             |
| 5.1.1 The Communication Microcontroller Module111                                                                                                                                     |
| 5.1.2 The Automation Microcontroller Module                                                                                                                                           |
| 5.1.3 The Bar Detection Module117                                                                                                                                                     |
| 5.2 The Data Acquisition Module124                                                                                                                                                    |
| Chapter 6132Additional Features1326.1Automatic Repetitive Readings1326.2The Calibration Tool1356.3Multiple User Names And Passwords1406.4GUI Special Function (Simulator) Controls141 |
| Chapter 7                                                                                                                                                                             |
| Conclusion162                                                                                                                                                                         |
| List of References165                                                                                                                                                                 |
| Appendices                                                                                                                                                                            |
| Appendix A: GUI Screen Captures                                                                                                                                                       |

| Appendix B: | List of ASCII prompts            |
|-------------|----------------------------------|
| Appendix C: | GUI Source Code                  |
| Appendix D: | Printout From A Saved File       |
| Appendix E: | Test Report Printout             |
| Appendix F: | Remote GUI (RGUI) Screen Capture |
|             |                                  |

| <b>Appendix G:</b> | Remote GUI (RGUI) Source Code                                     |
|--------------------|-------------------------------------------------------------------|
| Appendix H:        | The AT89S51 Microcontroller Datasheet                             |
| Appendix I:        | Acebus Development Environment                                    |
| ••                 | For Microcontroller Embedded Programming                          |
| Appendix J:        | Component Datasheets                                              |
| Appendix K:        | Automation Microcontroller Port Utilisations                      |
| ••                 | Communications Microcontroller Port Utilisations                  |
|                    | Automation Microcontroller Register Utilisations                  |
|                    | Communications Microcontroller Register Utilisations              |
|                    | Automation Microcontroller Bit Addressable Ram Used For Flags     |
|                    | Communications Microcontroller Bit Addressable Ram Used For Flags |
| Appendix L:        | Automation Microcontroller Source Code                            |
| ••                 | Communications Microcontroller Source Code                        |
| <b>Appendix M:</b> | Controller Circuit Schematic                                      |
| Appendix N:        | Screen Capture For The Calibration Screen                         |
| Appendix O:        | Disc Containing Recorded Test Results &                           |
|                    | A GUI PowerPoint Presentation                                     |
| Appendix P:        | Detailed Discussion on Graphic User Interface (GUI) Development   |
|                    | (Includes Flow Diagrams and Code Extracts)                        |
| Appendix Q:        | Detailed Discussion on Microcontrollers and Embedded Programming  |
|                    | (Includes Flow Diagrams and Code Extracts)                        |
| <b>Appendix R:</b> | Detailed Discussion on Hardware Design                            |

# List of Figures

| 8                                   |    |
|-------------------------------------|----|
| Chapter 1                           | 1  |
| Figure 1-1: Present Test Instrument | 11 |
| Figure 1-2: Present Test Set-up     |    |
| Figure 1-3: Commutator – Top View   |    |
| Figure 1-4: Commutator – Front View | 14 |

| Chapter 2                                                          | 15 |
|--------------------------------------------------------------------|----|
| Figure 2-1: System Block Diagram                                   | 17 |
| Figure 2-2: Sketch of Test Setup [Left view]                       | 20 |
| Figure 2-3: Sketch of Mechanical Linear Setup [Front View]         | 21 |
| Figure 2-4: Sketch of Mechanical Linear Setup [Left View]          | 21 |
| Figure 2-5: Sketch of Test Current Probes [Front View]             | 22 |
| Figure 2-6A: Sketch of Spring Loaded Test Probes [Left View]       | 22 |
| Figure 2-6B: Sketch of Probe & Sensor Unit [Front View]            | 22 |
| Figure 2-6C: Sketch of the complete Detection Unit Head [Top View] | 23 |
| Figure 2-6D: Sketch of the complete Detection Unit Head            |    |
| (Above A Pair of Copper Bars) [Top View]                           | 23 |
| Figure 2-7: Basic System Flow Chart                                | 26 |
|                                                                    |    |

| Chapter 3                                                                      | .31 |
|--------------------------------------------------------------------------------|-----|
| Figure 3-1: System Block Diagram                                               | .31 |
| Figure 3-2: Initial Test Screen                                                | .33 |
| Figure 3-3: User Identification Frame on the Initial Test Screen               | .33 |
| Figure 3-4: Initiate Test Screen                                               | .34 |
| Figure 3-5: User Identification frame on the Initiate Test Screen              | .34 |
| Figure 3-6A: GUI representation when an incorrect password had been entered    | .35 |
| Figure 3-6B: Message Box Informing the user of the number of tries that remain | .36 |
| Figure 3-7A: Message Box informing the user that he/she has been Locked Out    | .36 |
| Figure 3-7B: Lock Out Screen                                                   | .37 |
| Figure 3-7C: Armature Properties Frame                                         | .37 |
| Figure 3-8: Administrator's Password Prompt                                    | .38 |
| Figure 3-9: GUI displaying the Administrator's Password Prompt                 | .38 |
| Figure 3-10: Job Number Property Input Frame                                   | .39 |
| Figure 3-11: Test Option Property Frame                                        | .40 |
| Figure 3-12: Test Status Property Frame                                        | .40 |
| Figure 3-13: Test Parameter Property Frame                                     | .41 |
| Figure 3-14: Date and Time Property Frame                                      | .41 |
| Figure 3-15A: The Fault Log screen displaying present test faults              | .42 |
| Figure 3-15B: The Fault Log screen displaying retrieved file data              | .43 |
| Figure 3-16: Controls for Normal Test Conditions                               | .44 |
| Figure 3-17A: Disabled Manual Reading Control                                  | .44 |
| Figure 3-17B: Enabled Manual Reading Control                                   | .44 |

| Figure 3-18B: Start and Emergency Stop Control Enabled                  | .45 |
|-------------------------------------------------------------------------|-----|
| Figure 3-18C: Start Control Button Clicked to Begin Test                | .46 |
| Figure 3-19A: End Control Highlighted Blue to Alert User                | .46 |
| Figure 3-19B: End Control Highlighted Green After Alert Is Acknowledged | .47 |
| Figure 3-20: Continue After Error Pause Control Enabled for Error 4     | .48 |
| Figure 3-21: Emergency Stop Evoked                                      | .49 |
| Figure 3-22: Error Status Frame                                         | .49 |
| Figure 3-23A: Error 1 Display                                           | .50 |
| Figure 3-23B: Error 2 Display                                           | .50 |
| Figure 3-23C: Error 3 Display and Invoked Emergency Stop                | .51 |
| Figure 3-24: Continue After Error Pause Control Enabled for Error 4     | .52 |
| Figure 3-25: Test Status Display                                        | .53 |
| Figure 3-26: Test Data Options                                          | .53 |
| Figure 3-27: Input Prompt When 'Open' is Clicked                        | .56 |
| Figure 3-28: List of Saved Serial Numbers                               | .56 |
| Figure 3-29: List of Test Dates for a Specified Armature Serial Number  | .57 |
| Figure 3-30: List of Serial Numbers Generated on the Delete Click Event | .58 |
| Figure 3-31: Pop up Prompt on selecting an item to be deleted           | .58 |
| Figure 3-32: Directory Path Specification                               | .59 |
| Figure 3-33: Directory Path Specification                               | .60 |
| Figure 3-34: Exit Command Click                                         | .61 |
| Figure 3-35: Flow Diagram for the Calculation Subprogram                | .63 |
| Figure 3-36: Remote Graphic User Interface (RGUI)                       | .68 |
| Figure 3-37A: Remote Graphic User Interface (RGUI) Data Display         | .69 |
| Figure 3-37B: Remote Graphic User Interface (RGUI) Display Format       | .69 |

| Chapter 4                                                          | 70  |
|--------------------------------------------------------------------|-----|
| Figure 4-1A: Screen Capture of the Acebus Development Environment  | 71  |
| Figure 4-1B: Screen Capture of the Acebus Development Environment  |     |
| in Simulation Mode                                                 | 72  |
| Figure 4-2: System Block Diagram                                   | 73  |
| Figure 4-3: Flow Diagram For The Communications Microcontroller    | 76  |
| Figure 4-4: Flow Diagram for External Interrupt 0 – CM             | 81  |
| Figure 4-5: System Block Diagram                                   | 82  |
| Figure 4-6: Reading subroutine Flow diagram                        | 84  |
| Figure 4-7: Flow Diagram for The ADC Control process               | 89  |
| Figure 4-8: Flow Diagram of Steps taken by the CM to Implement the |     |
| ADC Control Process                                                | 91  |
| Figure 4-9: Timing diagram for ADC Control process                 | 92  |
| Figure 4-10: System Block Diagram                                  | 93  |
| Figure 4-11: Diagrammatic Representation of the                    |     |
| Three Level Control System                                         | 95  |
| Figure 4-12: Flow Diagram For The Automation Microcontroller       | 98  |
| Figure 4-13: External Interrupt 1 ISR Flow Diagram                 | 105 |
| Figure 4-14: EX0 ISR Flow Diagram                                  | 108 |

| Chapter 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 110                                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| Figure 5-1: The Communication Microcontroller Module                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 112                                                  |
| Figure 5-2: The Automation Microcontroller Module                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 116                                                  |
| Figure 5-3: Typical Commutator of an Armature Under Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 117                                                  |
| Figure 5-4: Copper Bars on a Commutator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 118                                                  |
| Figure 5-5: Bar Detection Network                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 119                                                  |
| Figure 5-6: Initial Level Shifter Network                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                      |
| Figure 5-7: Timing Diagram for the Detection Network                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 122                                                  |
| Figure 5-8: Block Diagram for the Data Acquisition Module                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                      |
| Figure 5-9: Detailed Block Diagram for the Data Acquisition Module                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 124                                                  |
| Figure 5-10: Analogue-to-Digital Converter Network                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                      |
| Chapter 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                      |
| Figure 6-2: Screen Capture of the Calibration Screen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 135                                                  |
| Figure 6-3: Diagrammatic Representation of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                      |
| Least Squared Approximation Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 138                                                  |
| Figure 6-4: Multiple User Names And Passwords Setup Frame                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 140                                                  |
| Figure 6-5: GUI Special Function Controls frame                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 141                                                  |
| Figure 6-6: SuperUser Identification Frame                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 142                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.40                                                 |
| Figure 6-7: GUI Simulator that simulates controller transmission                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 142                                                  |
| Figure 6-7: GUI Simulator that simulates controller transmission                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 142                                                  |
| Figure 6-7: GUI Simulator that simulates controller transmission                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 142<br><b>144</b>                                    |
| Figure 6-7: GUI Simulator that simulates controller transmission<br><b>Chapter 7</b><br>Figure 7-1: Input Linearity Curve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 142<br><b>144</b><br>146                             |
| Figure 6-7: GUI Simulator that simulates controller transmission<br><b>Chapter 7</b><br>Figure 7-1: Input Linearity Curve<br>Figure 7-2: Linear Best-Fit Input Linearity Curve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 142<br><b>144</b><br>                                |
| Figure 6-7: GUI Simulator that simulates controller transmission<br><b>Chapter 7</b><br>Figure 7-1: Input Linearity Curve<br>Figure 7-2: Linear Best-Fit Input Linearity Curve<br>Figure 7-3: Output Linearity Curve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 142<br>144<br>146<br>147<br>147                      |
| Figure 6-7: GUI Simulator that simulates controller transmission<br><b>Chapter 7</b><br>Figure 7-1: Input Linearity Curve<br>Figure 7-2: Linear Best-Fit Input Linearity Curve<br>Figure 7-3: Output Linearity Curve<br>Figure 7-4: Linear Best-Fit Output Linearity Curve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 142<br>144<br>146<br>147<br>147<br>148               |
| Figure 6-7: GUI Simulator that simulates controller transmission<br><b>Chapter 7</b><br>Figure 7-1: Input Linearity Curve<br>Figure 7-2: Linear Best-Fit Input Linearity Curve<br>Figure 7-3: Output Linearity Curve<br>Figure 7-4: Linear Best-Fit Output Linearity Curve<br>Figure 7-5: Plot of Output (Acquired) Readings Vs Input (Injected) Values                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 142<br>144<br>146<br>147<br>147<br>148<br>148        |
| Figure 6-7: GUI Simulator that simulates controller transmission<br>Chapter 7<br>Figure 7-1: Input Linearity Curve<br>Figure 7-2: Linear Best-Fit Input Linearity Curve<br>Figure 7-3: Output Linearity Curve<br>Figure 7-4: Linear Best-Fit Output Linearity Curve<br>Figure 7-5: Plot of Output (Acquired) Readings Vs Input (Injected) Values<br>Figure 7-6: Linear Best-Fit Plot of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                      |
| <ul> <li>Figure 6-7: GUI Simulator that simulates controller transmission</li> <li>Chapter 7</li> <li>Figure 7-1: Input Linearity Curve</li> <li>Figure 7-2: Linear Best-Fit Input Linearity Curve</li> <li>Figure 7-3: Output Linearity Curve</li> <li>Figure 7-4: Linear Best-Fit Output Linearity Curve</li> <li>Figure 7-5: Plot of Output (Acquired) Readings Vs Input (Injected) Values</li> <li>Figure 7-6: Linear Best-Fit Plot of</li> <li>Output (Acquired) Readings Vs Input (Injected) Values</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 142<br>142<br>144<br>147<br>147<br>148<br>148<br>149 |
| <ul> <li>Figure 6-7: GUI Simulator that simulates controller transmission</li> <li>Chapter 7</li> <li>Figure 7-1: Input Linearity Curve</li> <li>Figure 7-2: Linear Best-Fit Input Linearity Curve</li> <li>Figure 7-3: Output Linearity Curve</li> <li>Figure 7-4: Linear Best-Fit Output Linearity Curve</li> <li>Figure 7-5: Plot of Output (Acquired) Readings Vs Input (Injected) Values</li> <li>Figure 7-6: Linear Best-Fit Plot of</li> <li>Output (Acquired) Readings Vs Input (Injected) Values</li> <li>Figure 7-7: System Timing Diagram</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                      |
| <ul> <li>Figure 6-7: GUI Simulator that simulates controller transmission</li> <li>Chapter 7</li> <li>Figure 7-1: Input Linearity Curve</li> <li>Figure 7-2: Linear Best-Fit Input Linearity Curve</li> <li>Figure 7-3: Output Linearity Curve</li> <li>Figure 7-4: Linear Best-Fit Output Linearity Curve</li> <li>Figure 7-5: Plot of Output (Acquired) Readings Vs Input (Injected) Values</li> <li>Figure 7-6: Linear Best-Fit Plot of</li> <li>Output (Acquired) Readings Vs Input (Injected) Values</li> <li>Figure 7-7: System Timing Diagram</li> <li>Figure 7-8: Timing Diagram For A Typical Bar Detection Cycle</li> </ul>                                                                                                                                                                                                                                                                                                                                                     |                                                      |
| <ul> <li>Figure 6-7: GUI Simulator that simulates controller transmission</li> <li>Chapter 7</li> <li>Figure 7-1: Input Linearity Curve</li> <li>Figure 7-2: Linear Best-Fit Input Linearity Curve</li> <li>Figure 7-3: Output Linearity Curve</li> <li>Figure 7-4: Linear Best-Fit Output Linearity Curve</li> <li>Figure 7-5: Plot of Output (Acquired) Readings Vs Input (Injected) Values</li> <li>Figure 7-6: Linear Best-Fit Plot of</li> <li>Output (Acquired) Readings Vs Input (Injected) Values</li> <li>Figure 7-7: System Timing Diagram</li> <li>Figure 7-8: Timing Diagram For A Typical Bar Detection Cycle</li> <li>Figure 7-9: Timing Diagram For Main Component Switching</li> </ul>                                                                                                                                                                                                                                                                                    |                                                      |
| <ul> <li>Figure 6-7: GUI Simulator that simulates controller transmission</li> <li>Chapter 7</li> <li>Figure 7-1: Input Linearity Curve</li> <li>Figure 7-2: Linear Best-Fit Input Linearity Curve</li> <li>Figure 7-3: Output Linearity Curve</li> <li>Figure 7-4: Linear Best-Fit Output Linearity Curve</li> <li>Figure 7-5: Plot of Output (Acquired) Readings Vs Input (Injected) Values</li> <li>Figure 7-6: Linear Best-Fit Plot of</li> <li>Output (Acquired) Readings Vs Input (Injected) Values</li> <li>Figure 7-7: System Timing Diagram</li> <li>Figure 7-8: Timing Diagram For A Typical Bar Detection Cycle</li> <li>Figure 7-9: Timing Diagram For Main Component Switching</li> <li>Figure 7-10: Error 1 Initiation After a 10s+1s, predefined,</li> </ul>                                                                                                                                                                                                               |                                                      |
| <ul> <li>Figure 6-7: GUI Simulator that simulates controller transmission</li> <li>Chapter 7</li> <li>Figure 7-1: Input Linearity Curve</li> <li>Figure 7-2: Linear Best-Fit Input Linearity Curve</li> <li>Figure 7-3: Output Linearity Curve</li> <li>Figure 7-4: Linear Best-Fit Output Linearity Curve</li> <li>Figure 7-5: Plot of Output (Acquired) Readings Vs Input (Injected) Values</li> <li>Figure 7-6: Linear Best-Fit Plot of</li> <li>Output (Acquired) Readings Vs Input (Injected) Values</li> <li>Figure 7-7: System Timing Diagram</li> <li>Figure 7-8: Timing Diagram For A Typical Bar Detection Cycle</li> <li>Figure 7-9: Timing Diagram For Main Component Switching</li> <li>Figure 7-10: Error 1 Initiation After a 10s+1s, predefined, allowable period has lapsed</li> </ul>                                                                                                                                                                                   |                                                      |
| <ul> <li>Figure 6-7: GUI Simulator that simulates controller transmission</li> <li>Chapter 7</li> <li>Figure 7-1: Input Linearity Curve</li> <li>Figure 7-2: Linear Best-Fit Input Linearity Curve</li> <li>Figure 7-3: Output Linearity Curve</li> <li>Figure 7-4: Linear Best-Fit Output Linearity Curve</li> <li>Figure 7-5: Plot of Output (Acquired) Readings Vs Input (Injected) Values</li> <li>Figure 7-6: Linear Best-Fit Plot of</li> <li>Output (Acquired) Readings Vs Input (Injected) Values</li> <li>Figure 7-7: System Timing Diagram</li> <li>Figure 7-8: Timing Diagram For A Typical Bar Detection Cycle</li> <li>Figure 7-9: Timing Diagram For Main Component Switching</li> <li>Figure 7-10: Error 1 Initiation After a 10s+1s, predefined, allowable period has lapsed</li> <li>Figure 7-11: Error 1 Initiated after the pre-calculated time of</li> </ul>                                                                                                          |                                                      |
| <ul> <li>Figure 6-7: GUI Simulator that simulates controller transmission</li> <li>Chapter 7</li> <li>Figure 7-1: Input Linearity Curve</li> <li>Figure 7-2: Linear Best-Fit Input Linearity Curve</li> <li>Figure 7-3: Output Linearity Curve</li> <li>Figure 7-4: Linear Best-Fit Output Linearity Curve</li> <li>Figure 7-4: Linear Best-Fit Output Linearity Curve</li> <li>Figure 7-5: Plot of Output (Acquired) Readings Vs Input (Injected) Values</li> <li>Figure 7-6: Linear Best-Fit Plot of</li> <li>Output (Acquired) Readings Vs Input (Injected) Values</li> <li>Figure 7-7: System Timing Diagram</li> <li>Figure 7-8: Timing Diagram For A Typical Bar Detection Cycle</li> <li>Figure 7-9: Timing Diagram For Main Component Switching</li> <li>Figure 7-10: Error 1 Initiation After a 10s+1s, predefined,</li> <li>allowable period has lapsed</li> <li>Figure 7-11: Error 1 Initiated after the pre-calculated time of</li> <li>6s x 1.2 = 7.2s has lapsed</li> </ul> |                                                      |
| <ul> <li>Figure 6-7: GUI Simulator that simulates controller transmission</li> <li>Chapter 7</li> <li>Figure 7-1: Input Linearity Curve</li> <li>Figure 7-2: Linear Best-Fit Input Linearity Curve</li> <li>Figure 7-3: Output Linearity Curve</li> <li>Figure 7-4: Linear Best-Fit Output Linearity Curve</li> <li>Figure 7-5: Plot of Output (Acquired) Readings Vs Input (Injected) Values</li> <li>Figure 7-6: Linear Best-Fit Plot of Output (Acquired) Readings Vs Input (Injected) Values</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |
| <ul> <li>Figure 6-7: GUI Simulator that simulates controller transmission</li> <li>Chapter 7</li> <li>Figure 7-1: Input Linearity Curve</li> <li>Figure 7-2: Linear Best-Fit Input Linearity Curve</li> <li>Figure 7-3: Output Linearity Curve</li> <li>Figure 7-4: Linear Best-Fit Output Linearity Curve</li> <li>Figure 7-5: Plot of Output (Acquired) Readings Vs Input (Injected) Values</li> <li>Figure 7-6: Linear Best-Fit Plot of</li> <li>Output (Acquired) Readings Vs Input (Injected) Values</li> <li>Figure 7-7: System Timing Diagram</li> <li>Figure 7-8: Timing Diagram For A Typical Bar Detection Cycle</li> <li>Figure 7-9: Timing Diagram For Main Component Switching</li> <li>Figure 7-10: Error 1 Initiated after the pre-calculated time of</li> <li>6s x 1.2 = 7.2s has lapsed</li> <li>Figure 7-13: Annotated Timing Diagram for the</li> </ul>                                                                                                                |                                                      |

# **List of Tables**

| Chapter 4                                               |    |
|---------------------------------------------------------|----|
| Table 4-1: Table of the AM Error Output Indication Pins | 79 |
| Table 4-2: Table of the CM Error Input Indication Pins  | 80 |

# Chapter 1

## Introduction

## 1.1 General Background

Automation [1], [6] in the industrial arena was the evolutionary step from mechanisation. Mechanisation sought to use machinery to accomplish physical tasks that were previously undertaken by humans or animals, through the use of mechanical engineering concepts in order to complete tasks in a shorter timeframe and with less effort. The machinery was still fully controlled by humans that were required to use their senses to monitor, their brain to compute progress, decisions, outcomes or assessments and their limbs (actuated by muscles), voice or physical actions to provide an appropriate output.

Automation involves the use of sensors/transducers, controllers and actuators to control a machine carrying out a task or a process consisting of multiple operating machines. Sensors [1], [7], [8] are used to sense the value/condition/progress/status of a parameter or task in the real world. They convert real world parameter values for temperature, pressure etc. to electrical signals. Controllers read these electrical signals and convert them to meaningful values that are used as variables in the controller logic to determine an appropriate output. If a physical output is required, the controller may itself or via the use of sub-controllers control actuators [1], [7], [8] that perform the real-world action required. Tasks within a process can be precisely controlled as there can be constant communication between controllers or process coordination via a master controller (master) to which individual task controllers (slaves) report.

From a controller perspective, the automation of industrial processes and machinery (leading into the realm of robotics) can be accomplished using the wealth of controllers and controller architectures available off the shelf, and by the design of embedded controllers which are used for dedicated or specialised applications. An automation project begins with the study of an existing process or machine. If the process or machine is not in existence then a theoretical or academic analysis of the

process is undertaken to determine how the process can be best automated and what machinery is required to carry out the task or tasks. As part of the machine or process design the inputs to the system needs to be determined. This leads to the choice of the appropriate transducer to convert the real world parameter values to electrical signals e.g. distance, temperature, pressure, acceleration, speed, flow rate etc. Also part of the machine or process design is the identification of the required outputs from the system.

Actuators are chosen based on what the machine or process is required to physically control or output. Actuators convert the electrical signals from the control system to real world physical outputs. Audio, visual, data etc. may also be required as outputs. These are implemented using audio system, display units and communication modules/ports/buses. The automated machine may be a standalone device or part of a process or network. If the latter is true then communication between devices is critical. The communication protocol is dependent on the choice of the control device, i.e. PLC [1], [6], [8] embedded controller or industrialised mother board. Also to be determined is whether a human-machine interface (HMI) or graphic user interface (GUI) is required.

Some tasks or processes may require an output or end result with no need for human intervention. In this instance, all that is required from the controller is data or physical real world outputs. Where human intervention is required, a HMI or GUI will give the operator control of the machine or process when required. As important is the HMI or GUI which provides insight into the status of the tasks presently undertaken as well as graphically displaying required data. The choice of HMI or GUI is also dependant on the choice of controller. For example where PLCs are used, Supervisory Control and Data Acquisition (SCADA) [6] software (e.g. Wonderware) is most commonly used. In the case of embedded controllers and industrialised mother boards, HMIs or GUIs can be developed in Visual Basic [3], [4], C Sharp etc.

PLCs have proven to be the most popular controller choice for industrial automation. They are considered as a generic solution for automation tasks that do not require specialised processing and control. Single, standalone PLCs can be used for the control of a machine or multiple networked PLCs, distributed throughout a plant, can control multi-loop processes aided by communication over Ethernet and using protocols such as Modbus, Profibus etc. System architecture may vary from central control where a single PLC controls multiple remote Input/Output (I/O) modules, to a distributed system architecture where PLCs are networked and communicate with each other or via a master controller that coordinates tasks and the flow of data. In the first instance, the PLC is the core of the system and performs all the processing (logic and mathematical operations) and issuing of instructions. The PLC communicates with remote I/Os to acquire data or instruct an output. The processing capability of an I/O module is determined by the application. In the case of a distributed architecture each PLC is assigned the control of a task, machine, or component. Data is transmitted between PLCs or to a master PLC. The HMI resides on a host PC or microprocessor based display unit that communicates with the master PLC via the serial port, Ethernet etc. This system is defined as a SCADA system and its configuration is similar in functionality and architecture to a formally defined Distributed Control System (DCS) [6].

A DCS is typically a large control system that consists of a number of distributed microprocessor/microcontroller based controllers situated near or on the device it controls. I/O devices can be directly coupled to the controller or they can be located remotely and connected to the controller via the chosen industrial network. Also integral in a DCS are PCs or microprocessor based display units that run HMIs etc. All these subcomponents are supplied by single vendor that custom designs and configures a complete system for the process(s) to be controlled. This differs from a SCADA system where controllers, I/O devices, HMI software, display units etc. may all be off the shelf and originate from different vendors. In the past, SCADA systems were considered to be supervisory in nature with its primary function being data acquisition and display, and to provide the primary control system. With the introduction of PLCs and the advanced communication technologies now used in SCADA systems, the line between DCS and SCADA systems have been blurred.

A PLC can be programmed in five programming languages as defined by IEC 61131-3. These are: Ladder Logic (LD) [8], Structured Text (ST), Instruction List (IL), Functional Block Diagram (FBD) and Sequential Function Chart (SFC). With the evolution of PLCs came the evolution of HMIs. SCADA software has proven to be the most popular. Tags or points are assigned to each input or output controlled by the PLC. The SCADA software interface addresses tags or points when data has to be read from an input or an output has to be controlled. Points are referred to either as "hard" or "soft" with "hard" referring to actual data and "soft" referring to values that are the result of mathematic or logic expressions using "hard" point values. All data can be displayed numerically or graphically using the SCADA HMI graphic building blocks to represent components, equipment or processes. Data can also be stored in a data base for historical trending or auditing. Alarms and warnings can be defined to alert the operator of undesirable or dangerous conditions so that the operator can take the appropriate action using the interface to control the outputs of the PLC.

Embedded controllers are designed for specialised needs that are dedicated to specific tasks where generic PLCs may offer inferior performance. Microcontrollers [9] or Digital Signal Processors are usually the core of an embedded system with interfacing circuitry comprising digital and analogue electronic subsystems that condition signals to the input of the core and provide outputs from the core to the outside world. In most instances the core is a self contained device comprising of all the modules that are found on a standard PC. Microcontrollers for example contain a central processing unit (CPU), input/outputs ports, onboard Flash memory, RAM and communication ports (serial, USB, Ethernet). On specialised microcontrollers, analogue to digital converters (ADCs), comparators, PWM generators etc. can be found. Microcontrollers are manufactured by a number of companies each with various families that range from 4-bit to 64-bit and are chosen based on the processing power required. Microcontrollers are programmed in Assembler, C etc. using development environments that are provided by the manufacturer of the device e.g. Atmel, Microchip etc. or by developers that specialise in developing embedded development tools e.g. Keil C, Acebus [2] etc. The code that resides on an embedded controller is referred to as firmware.

Embedded controllers may operate in isolation as in the case of a dedicated controller for a machine or component or as part of a DCS. In the case of DCSs, each embedded system is a dedicated controller and communication between controllers via Ethernet, serial port, CAN bus etc. can be accomplished using protocols such as Controller Area Network (CAN) [13], [14], [15], [16], etc. Systems communicate with each other or via a master controller (master) with slave controllers (slaves) reporting to and taking instructions from the master. The degree of pre-processing and control by slaves vary based on the system needs. This will impact on the choice of slave processor. In the CAN architecture, CAN transceivers embedded on each controller are responsible for communication via the CAN bus. A CAN master controls the flow of data on the CAN bus as well as providing data to a host PC which interprets, processors, stores or displays the data on a HMI or GUI. The HMI resides on the PC and communication with the CAN master is via the serial port, Ethernet etc. Due to the flexibility inherent in the design of an embedded controller (cost factor aside) controllers can be designed for various operating conditions, tasks, inputs, outputs and processing requirements.

A step taken to make embedded controller design more accessible to programmers as opposed to specialised engineering disciplines was the introduction of the industrialised mother board. This motherboard is essentially a standard PC motherboard that has been designed to operate in harsh environments, i.e. extreme temperatures, EMI [5] conditions etc. Boards vary depending on the type of processor, memory, input/output ports etc. that are required. Processors only differ from standard PC processors with regard to temperature specification due to the environments in which they operate. Any standard operating system (OS) can be loaded onto these processors, however for efficiency and improved processing speeds embedded OSs such as Embedded Windows XP are used with only the drivers required for the incorporated peripherals installed. Touch screens and LCDs that display the HMI or GUI are easily incorporated. HMIs and GUI can be written in almost any language for execution on the controller. The industrialised motherboard controller interfaces with off the shelf I/Os, specialised designed I/Os and other controllers via the onboard communication ports, hence they can operate within a network or as a standalone controller.

Controllers are most widely used for the execution of predefined tasks and error handling procedures based on predefined conditions or events. This is accomplished by hard coding logical steps or mathematical algorithms that provide outputs based on the inputs received. Decisions are presented as a choice of possible hard coded outcomes. Using this methodology or approach, every possible outcome, event or occurrence must be known before coding can begin. This approach works very well when a complete system analysis has been carried out and every possibility or occurrence in the system is taken into account. In systems where every possible event or outcome is not known or where the system is expected to adapt or "learn" from basic building blocks in the decision making process, or make decisions that do not exist as hard coded instructions, Artificial Intelligence (AI) [10], [11], principals are introduced to bridge the divide. Concepts such as Fuzzy Logic [8], [10], [11], Neural Networks [10], [11], etc. are applied to make decisions based on inputs that are not discrete or expected or use past "experiences" that are based on human experience or historical data and outcomes acquired by the controller. In the realm of automation AI is most prevalent in robotics with AI concepts being applied to motion control, balance, sight based on image recognition and image processing etc. With the growth in processing power in most controllers, AI will become a more prevalent feature as knowledge and trust in the field grows.

### 1.2 Overview

Given the advancement of technology, the need be efficient in order to drive financial gains and the need to be competitive, Spoornet acknowledged the necessity to streamline their processes and methods of operation in order to improve their efficiency, reduce cost and increase profit. One way of achieving this is through the automation of processes that require skilled staff to perform simple and time consuming tasks. The objective of this research project was to design an embedded controller and GUI that will automate the Volt-Drop Test process.

The successful design principles, techniques and findings from this research and design process will be used to automate other such tests and processes in workshops and test centers. The reason for the design approach as opposed to the purchasing of controllers is based on Spoornet having a wealth of recourses in terms of equipment, facilities, funding and engineers, all of which have been used successfully to design, build and install embedded systems onboard locomotives. It was therefore a natural extension to use these resources to design controllers to automate processes in workshops and test centers.

This research and design was undertaken according to the mandate given by Spoornet to design an embedded controller and GUI for the automation of the Volt-Drop test. All software and firmware development is entirely the original work of the author. Where mathematic equations were encoded to form the computation algorithms for the GUI, the sources were quoted. The sources are purely mathematic books, which only provided equations, the coding of the equation as a function in the GUI was the work of the author. The circuit design is also entirely the original work of the author, except for the standard circuitry that is stipulated by the manufacturer for the setting up of the 555 Timer, the AT89S51, the MAX 701, the MAX 4622, the MAX 232 and the MAX 1166. This standard circuitry includes quartz crystals, capacitors and resistors that are stipulated by the component manufacturer in the component datasheet for the correct operation of the component.

In certain instances the suggested values were changed to suit the application for which the component was used. Other than the standard manufacturer component setup circuitry, all designs, component choices and calculations were undertaken by the author. This includes all circuit designs, schematic designs, component choices, PCB layout and design, protection circuitry that was required, EMI protection and software and firmware development. This work is also based on the experience that the author has gained during the design of controllers which operate on locomotives, especially in highly electrically noisy environments. One such design was that of a Weak-field controller for a pneumatic Weak-field switch array on the 6E class of electric locomotives.

Given the mandate, the first phase of the research into embedded controllers and embedded system design involved research into microcontrollers. Once the basic principals were understood, more complex concepts such as Interrupts and Interrupt Service Routines, as well as Serial Communications were tackled, as these are key features that the controller would require for effective operation. The next phase in this project involved devising a practical concept for the automation of the Volt-Drop Test. From this phase, the author was able to decipher the number and types of transducers that would be required to monitor the system and provide the relevant feedback, as well as gauge the number and types of outputs that would be required by the Drives and Drivers of the associated actuators (off-the-shelf Drives are used for motor control and off-the-shelf Drivers are used for IGBT switching). With knowledge of the number of inputs and outputs that the embedded system would require, as well as the expected input and required output, electrical signals that would enter and leave the system, an interfacing Digital and Analogue System was designed. These networks form the interface between the signals being received from sensors and transmitted to Drives and Drivers, and the microcontroller core.

The digital system involves level shifting, signal conditioning and logic manipulations. Also part of the digital system is the Analogue to Digital Converter (ADC) [8]. The ADC is controlled by the Communications Microcontroller, which also reads the data made available on ADC's eight-bit parallel output bus. The ADC's analogue input is the last stage in an analogue network that is responsible for the rejection of any signals that are out of the ADC Analogue input range. Considerable time was also spent in researching components such as ADCs, instrumentation amplifiers, semiconductor based analogue switches, optical sensors, proximity switches, motor drives, IGBT drivers etc.

The development of the GUI was carried out in parallel to the design of the controller. For the GUI development, the principals and techniques of object orientated programming had to be understood before the interface was designed and coded. A critical aspect during this phase was the establishment of a serial communication link between the GUI and the controller. During development however, the controller was not available to test the GUI's response to prompts and data transmitted from the controller. It was for this reason that a simulation interface was designed to mimic data that was transmitted by the controller.

Using the simulator, the author was able to monitor the GUI's response to prompts and ascertain the accuracy of the calculations carried out by the GUI. The GUI was not only designed as an interface to the automated system. Along with data analysis, test results are automatically saved in files that bear the same name as the serial number of the armature under test in a predefined destination that is specified using the GUI. This is done in order to create a test history of each armature tested. At the end of a test, the user also has the option of printing an official test report that reflects the name of the user, the type of armature under test, the date of the test, armature winding faults that were logged during the test, as well as an undertaking, that has to be signed by the user, to remedy these faults.

Once the two entities, these being the controller and the GUI, were fully developed, additional features were integrated into the system before the testing phase of this project began. Two of these features ensure a greater level of accuracy during data acquisition and analysis. The first is the ability of the system to capture one hundred consecutive readings on a single pair of bars and record these readings on an Excel spreadsheet, which is also automatically saved along with the Fault Logged results. Presently, the average of the one hundred readings is used in calculations and is displayed on the GUI. However, any other filtering or statistical methods algorithm can replace the averaging algorithm in order to group the most relevant readings, and use an average of those grouped readings in the calculation algorithm.

The second feature is the addition of a calibration screen. At this point, the calibration screen is used by the administrator to capture readings and compare them to injected values, thus aiding the administrator to "tune" the controller in order to gain more accurate values. It is however envisaged that this calibration screen will in the near future be used to apply software calibration techniques in order to calibrate the system.

Tests were carried out on the controller to verify that the physical automation process operated as was required and designed to operate. Data accuracy and computation algorithms that formed the basis of the GUI were also tested.

The reader will be lead from the present Volt-Drop Test process to the overall design concept of the automated process and then to the more specific machine, software and electronic hardware design concepts. This finally leads to the discussion on the actual hardware, software and machine design that encompassed the specific considerations and factors that needed to be taken into account in order to implement the project practically. Each phase is discussed with reference to technical explanations, reasoning and decisions so that the reader may follow the entire design process from conceptualisation to testing. This chapter illustrates the process to be automated. The theory of the Volt-Drop Test is briefly discussed along with the present test processes and the shortcomings thereof.

## **1.3** Background of the Volt-Drop test

The Volt-Drop test is carried out on armatures in order to test the integrity of the windings. This test is conducted on locomotive traction motors that have failed during operation and have been brought in for repairs. The Volt-Drop test is one of the first tests conducted after the motor has been stripped and cleaned. This test is also conducted prior to the armature being passed for assembly into the traction motor. The stator of the traction motor undergoes a different test and repair procedure.

The Volt-Drop test is a simple yet effective test. The effectiveness of the test however, depends on the accuracy of the test equipment. Very basically, the test entails the injection of a high current, via probes, to the commutator of the armature under test. The volt-drop across each pair of bars, hence across the winding that the bars are connected to, is measured and is compared to a reference value. The reference value is usually the volt-drop measured across the first pair of bars that were tested. If this comparison depicts a large percentage variation from the reference reading, the armature winding that is connected to that pair of bars, is either damaged, open circuited or short circuited.

The distinction between these three conditions is made evident by the value of the reading acquired for that pair of bars. Short circuited windings will be reflected by a potential difference reading that is very nearly zero volts whilst open circuited windings will be reflected as a potential difference reading that is equal to the potential of the supply test current (+15VDC maximum). Damaged windings will be reflected as a percentage variance from the reference reading. Typically any variance larger than 5% is considered by depot engineers as a reflection of a damaged winding. One should however note that if there are constant faults being recorded for each pair of bars after the pair on which the reference reading was taken, it is highly probable that the winding on the reference pair of bars itself was damaged. In this case, a new

reference reading is recorded on a different pair of bars. More detail into the present test process follows in the section below.

### **1.4** Present test program and short-comings

Presently, a trained technician carries out the volt-drop test. The author has observed two different test techniques at two test bays situated in different parts of the country. The first technique that was observed is as follows: The armature under test is placed on rollers and a test current of 350Amps (max), is available to the commutator of the armature under test, via two current probes mounted roughly 30° apart, on a semicircular frame. This current is applied to the commutator when a footswitch is pressed. At this point the technician holds two probes, one on each consecutive bar, and measures the potential difference or volt-drop between them. The variance from the reference reading, which is usually the first reading, if large, reflects a short circuit, open circuit or a damaged armature winding. The test instrument that measures the volt-drop variation is zeroed on the first pair of bars.



FIGURE 1-1: PRESENT TEST INSTRUMENT

This is now the reference value. On either side of the zero mark percentage variance markings are present. If the needle deflection on a pair of bars is within a chosen percentage variance, the pair is passed and the next pair is tested. If the needle deflection falls outside a chosen range that pair of bars is marked for further attention.

After the reading has been taken, the test current to the armature is switched of by releasing the footswitch, and the technician rotates the armature by hand to the next pair of consecutive bars. The process is then repeated until the voltage drops between all bars have been taken.

The second technique is similar to the first with the difference being that the test current probes are held onto an armature (also roughly  $30^{\circ}$  apart) by means of a weighted band. This is a non-conductive band that is 3cm wide with weights on either end. Once slung over the commutator the weights on the ends of the band allow for the current probes to be held firmly between the commutator and the band.

The current is switched on once and the readings are taken bar-to-bar using the same instrument mentioned above. The current is not switched off, the supply probes are simply moved from section to section until the entire commutator has been tested. This method is not recommended and is discouraged by company policies and safety regulations due to the possibility of electric shock if the supply current probes are not handled with care. The only reason the author can deduce for adopting this practice is that this method is considered easier to implement and is far less time consuming.

The figures that follow will give the reader a better understanding of the present test setup. Please note that the Commutator End Bearing and Front End Bearing are separate units which are fixed onto the armature shaft in order to enable rotation on the test stand. These bearings are not part of the armature and its motor assembly.



FIGURE 1-3: COMMUTATOR – TOP VIEW

In Figure 1-3, the reader will notice the distinct grooves between the commutator bars. This is due to a process called Undercutting. Not all commutators are undercut

before the volt-drop test, some commutators are simply turned in a lathe leaving the Epoxy Resin between the commutator bars. This makes no difference to the actual test however it is an important issue that has to be considered when choosing a sensor to detect the bars.



FIGURE 1-4: COMMUTATOR – FRONT VIEW

The shortcomings of these test methods become apparent when one considers the fact that some faults on the windings pass through undetected. There are two reasons for this. The first relating to the accuracy of the test instrument being used and the other is the manner in which the test is carried out by the technician. Due to a lack of test evidence, the tests are sometimes conducted in a haphazard manner. A further shortcoming of the present test is that there is no record created, soft or hard copy. A test history can therefore not be created. Further, this task is repetitive, uncomplicated, time consuming and leads to inefficient use of skilled staff.

# Chapter 2

## **Project Concept and Overview**

## 2.1 Design Objectives

The objective of the design of the controller for the Automated Volt-Drop Tester is twofold. The first aim is addressed by automating the test. This introduces cost effectiveness and reliability into the armature refurbishing process. The second aim is addressed through the capturing and storing of digital test data. Using this data, a history of an armature can be created and test technicians can be held accountable for overlooking the detected faults as the recorded test results, which reflects the name of the technician, serves as evidence. The overall accuracy of the system is also improved by the introduction of an electronic means of capturing volt-drop readings.

## 2.2 Project Scope

This project entailed the design of an Embedded Controller and a Graphic User Interface that controls the motion, inputs and outputs of a mechanical structure which enables the automation of a Volt-Drop Test as well as taking voltage readings that can be analysed, displayed and stored. The aforementioned controller consists of an embedded core i.e. a pair of microcontrollers, which analyse input data from the system and then prompts the appropriate output devices.

The interface between the system to be controlled and the embedded core is a digital system. This digital system was designed to condition signals before they are input to the microcontrollers. The digital system also provides the appropriate signals and voltage levels as inputs to drivers, drives and other output modules.

An analogue signal-conditioning module was also designed. The purpose of this module is to provide the input to the ADC with a volt-drop reading that is within its input range.

A Graphic User Interface (GUI) was designed to provide the controller with the required information, provide the user with a tool to monitor the system and test the

progress as well as a means to save data collected during tests. Visual Basic 6 was used to develop this GUI.

A Remote Graphic User Interface (RGUI) was also developed using Visual Basic 6. The RGUI is installed on the desktops and laptops of authorised persons based anywhere in the country with access to the network. The GUI updates and creates records on the network. The RGUI enables a remote user to view records from any network position at any time.

The aim of this project was not to "redesign the wheel". Where components and modules are commercially available there is no need to design or develop them. These devices have been researched, designed, built and tested by leaders in the specific field. Their reliability has been proven in industry. It is therefore logical and cost-effective to incorporate these modules into the system as it will add to the reliability of the system and reduce cost as time and money would have to be invested in the research, design, building and testing of these modules.

The control of motors, in terms of speed and soft-starting, is not within the scope of this project and will be accomplished by drives that are readily available as off-the-shelf units. The design of drivers for IGBTs is also not within the scope of this project. IGBT drivers are commercially available and are recommended for, or matched with, specific IGBTs based on the device rating and application.

## 2.3 Design Concept

The design concept will be discussed under two more specific headings, namely, the Automation and Machine Design Concept and the Data Acquisition Concept.





FIGURE 2-1: SYSTEM BLOCK DIAGRAM

In order to design an efficient machine and controller that carries out all the operations required to perform the test, time had to be spent in the test bay observing and conducting tests. It was noted that in terms of basic operation, the armature under test had to be rotated, the commutator bars had to be detected, the test probes had to be lowered and raised, the test current supply had to be switched and the reading analysed. For the design of the automated system, which includes the test machine (physical test station) and controller, each of these tasks had to be accomplished using transducers, actuators, electronic hardware systems or software.

In this system a PC or Laptop that interfaces with the controller runs software that provides a Graphic User Interface (GUI) to the system. The test and test machine can be controlled via the interface. The interface displays the test status, faults logged and system errors when they occur. The GUI also performs analysis and storage of data. Analysis and storage of data will be discussed under the heading Data Acquisition Concept. The figures that follow are aimed to aid the reader in the understanding of the mechanical design concept for the Physical Test Station. These figures do not reflect the final design as different, more economical and robust approaches were taken by the manufacturer, however, the concept remains the same. These are the original sketches that were presented to mechanical engineering companies in order to describe the system that was required.

The mechanical system is designed to operate as follows under the control of the embedded controller and GUI. A test has to be set-up by the test technician. The technician ensures that the armature to be tested is lowered into the correct position using an overhead crane. Once the armature is in position the test technician lowers the Test Current Probes onto the surface of the armature ensuring that the Test Current Probes are roughly 30° apart. See Figure 2-5 for a front view sketch of the Test Current Probes.

The Test Current Probes are the probes from which the Test Current is injected though the armature under test via an IGBT. The IGBT is used to switch the Test Current. The Test Current Probes are lowered onto the commutator and are fixed into place at the start of the test and are in no way attached to the Detection Unit. These probes are never raised off the surface of the commutator at any time during the test. Once the Test Current Probes are fixed into place, the technician must position the Detection Unit such that two consecutive bars are detected. See Figure 2-6C and Figure 2-6D. The detection of the bars on the commutator is accomplished through the use of an optical detection sensor unit.

The optical sensor operates on the principal of emission and reflection. A laser beam is emitted onto a surface by the unit and the reflection is detected by an optical sensor on the same unit. These optical sensors, together with the spring mounted test probes (see Figure 2-6A) form the Probe and Sensor Unit as shown in Figure 2-6B. The Detection Unit Head comprises of one fixed Probe and Sensor Unit and one sliding Probe and Sensor Unit as shown in Figure 2-6C. The Detection Unit is set up such that two consecutive bars are detected by lowering the unit to the surface of the bars, typically between 50mm and 70mm above the surface of the bars, and ensuring that the fixed Probe and Sensor Unit detects a bar. This is indicated by the green LED on the optical sensor switching on. This is a built-in feature on the optical unit. Once this occurs the sliding Probe and Sensor Unit is slid into position above the immediate next bar until the green LED on that optical sensor is also switched on. Once this has

occurred the sliding Probe and Sensor Unit is fixed into position using the wing-nut as shown in Figure 2-6C and Figure 2-6D. The Detection Unit Head is then raised to its original position by the test technician.

Once the set-up has been completed the technician begins the test using the GUI. The armature under test is then rotated by the Armature Drive Motor via a gear drive system until the next pair of bars has been detected. See Figure 2-2. When a pair of bars has been detected, the Armature Drive Motor is stopped and the armature is locked into place using a solenoid in the gear drive unit. The signal to the solenoid driver that allows for the energising and de-energising of the solenoid is the same as the signal used to stop and start the Armature Drive Motor via the Armature Drive Motor drive. Note that this gear drive unit is to be designed by the mechanical engineering company that was awarded the tender to design the mechanical system.

Once the armature under test has been locked into place the test current is switched on via an IGBT and the Detection Unit Head is lowered onto the surface of the commutator bars via the Detection Unit Drive Motor and the Mechanical Linear Setup which incorporates a mechanical power thread/screw [13] system much like that used in a mechanical press as shown in Figure 2-3 and Figure 2-4. The Detection Unit Drive Motor rotates, lowering the Detection Unit Head until both the spring mounted Test Probes are on the surface of the bars with sufficient pressure. This is indicated by the mechanical switches that are "Made" when the test probes are on the bars. See Figure 2-6A. Once this is signaled, the Detection Unit Drive Motor is stopped and the Detection Unit Head is held in position by the mechanical power thread which is designed not to allow movement unless it is being rotated.

Test readings can now be taken on this pair of bars. Once the reading has been completed, as signaled by the GUI, the Detection Unit is raised by rotating the Detection Unit Drive Motor in the opposite direction. The Detection Unit is raised to its original position, which is signaled by the mechanical switches on the Mechanical Linear Setup as shown in Figure 2-3 and Figure 2-4, and the Test Current is switched off. This marks the end of one test cycle. To begin the next test cycle on the next pair of bars the controller waits for a prompt from the GUI. Upon receiving this prompt the solenoid in the gear drive unit is de-energised thus unlocking the armature under

test and the armature is rotated by the Armature Drive Motor until the next pair of bars has been detected. This continues until the last pair of bars has been tested. Note that future references to the stopping of the Armature Drive Motor will imply both the signal to stop the Armature Drive Motor and the locking of the armature under test. Future references to the starting, prompting or rotating of the Armature Drive Motor will imply both the signal to start the Armature Drive Motor and the unlocking of the armature under test.

Initially mechanical switches were to be used on the Mechanical Linear Setup and on the spring mounted Test Probes to indicate position of the Detection Unit Head and the state of the Test Probes respectively. However, seeing as these applications entail a high number of repetitive on-off transitions when monitoring the position of the Test Probes and the initial position of the Detection Unit, the mechanical switches were replaced by non-contact inductive proximity switches. This was done because mechanical switches entail the physical "making" and "breaking" of metal alloy contacts and due to the high number of transitions, these contacts will wear after short periods thereby reducing the lifetime of the mechanical switch to much lower than that of non-contact switches. This is discussed further in Section 5.1.4 and Section 5.1.5. Due to the cost of the inductive proximity switches, one switch instead of the two depicted in Figure 2-3 is used to detect when the Detection Unit has returned to its initial position. Although the type of switch has been changed from those reflected in the sketches provided, the principle purpose and positioning of the switches remain the same.







#### FIGURE 2-3: SKETCH OF MECHANICAL LINEAR SETUP [FRONT VIEW]



### FIGURE 2-4: SKETCH OF MECHANICAL LINEAR SETUP [LEFT VIEW]

The switches shown in Figure 2-3 and Figure 2-4 indicate when the Detection Unit Head has been returned (is raised) to its original position. The switch shown in Figure 2-6A indicates when the Test Probes are resting on the pair of bars under test with adequate pressure as supplied by the compressed spring.



#### FIGURE 2-5: SKETCH OF TEST CURRENT PROBES [FRONT VIEW]



### FIGURE 2-6A: SKETCH OF SPRING LOADED TEST PROBES [LEFT VIEW]



#### FIGURE 2-6B: SKETCH OF PROBE & SENSOR UNIT [FRONT VIEW]







### FIGURE 2-6D: SKETCH OF THE COMPLETE DETECTION UNIT HEAD (ABOVE A PAIR OF COPPER BARS) [TOP VIEW]

Given that this machine has to perform specific tasks at certain times, an algorithm was developed to facilitate smooth and accurate task execution. The said tasks are based on information received from three sources: the machine itself, the controller and the Graphic User Interface. In order to better understand the above-mentioned algorithm, the discussion that follows will describe the Graphic User Interface and controller and their roles in the system.

The controller core consists of a pair of embedded microcontrollers that interface with a digital system and an analogue system. Each of these two microcontrollers has a specific role. One microcontroller is tasked with the automation procedures and is aptly named the Automation Microcontroller (AM) whilst the other is tasked with data acquisition and communication with the GUI, and is called the Communications Microcontroller (CM). These two microcontrollers communicate with each other via a port-to-port parallel bus.

The CM communicates with the GUI via a serial link, where the UART of microcontroller is interfaced with the serial port of a PC or Laptop. The test technician completes the GUI data fields. Using this information, the GUI analyses the input data and calculates and displays the test status. The relevant information is then transmitted to the CM, which in turn communicates with the AM. Information is also transmitted in the opposite direction, from the AM to the CM to the GUI. The system is designed to operate in one of two modes: Automated or Manual.

In Automated mode, the mechanical system is controlled by the controller via the AM. In Manual mode, the automation functionality is disabled and the CM and GUI are used to capture, analyse and record readings. The operation of the GUI and the controller is discussed in detail in Chapters 3 and 4 respectively. Figure 2-7 presents the flow chart that describes the basic operation of the test machine.




#### FIGURE 2-7: BASIC SYSTEM FLOW CHART

Errors 1, 2, 3 and 4 are the result of undesired events occurring in the system during operation. When any one of these errors occurs the AM enters the relevant subroutine and informs the CM which then also enters its relevant subroutine. The CM in turn informs the GUI of the error so that it is reflected on the interface.

Error1 occurs when a pair of bars is not detected by the optical sensors within a specified time. This time is calculated by recalling the time taken for the detection of the previous pair of bars and adding an additional twenty percent of this previously recorded time.

Error2 occurs when the test probes are not present on the surface of the commutator within a pre-selected default time. This occurs when the switches shown in Figure 2-6A and Figure 2-6B are not "made" within the default time.

Error3 occurs when the test current is not switched off before a pre-selected default time has expired. If the period of time measured from the instant that the microcontroller pulses the IGBT driver to switch on the Test Current, till the instant that the microcontroller pulses the IGBT driver to switch off the Test Current, is greater than the default time, Error3 will be signaled. This condition is monitored by the Test Current On-Time Timing Module which is discussed in Chapter 5.

Error4 occurs when the test probes are not raised to their original position within a specified time. This time is calculated by recalling the time taken to lower the test probes onto the surface of the commutator and adding an additional twenty percent of this previously recorded time. The switches shown in Figure 2-3 and Figure 2-4 indicate when the Detection Unit has returned (is raised) to its original position

# 2.3.2 Data Acquisition Concept

The input module that measures the volt-drop across each pair of bars is made up of three distinctive sub-modules. These are the Input Instrumentation Amplifier, Signal conditioning and the Analogue to Digital Conversion. The Analogue to Digital Converter that was chosen has a resolution of sixteen bits and an eight bit parallel output bus that interfaces with an eight bit input port on the CM. The sixteen-bit word is saved as two bytes (high byte and low byte) in allocated registers in the CM. These two bytes are then transmitted to the GUI where it is analysed. Analysis comprises the conversion of the received data into the correct data type and then using this value, the actual volt-drop reading is calculated. This calculated volt-drop reading is then compared to the reference value and if the variation is greater than the pre-selected percentage variance on the GUI, a fault is recorded. Based on the results of the analysis, the GUI either records the reading as a fault or signals the AM via the CM to continue to the next pair of bars. The GUI allows the user to set the following properties before a test can commence

- Select the type of armature to be tested
- The allowable percentage variance from the reference value and
- The destination on the hard drive, or network where the recorded data is to be saved.

The RGUI allows for authorised persons to view records from remote locations, provided that there is access to the network. The capturing of data and the analysis thereof is covered in detail in Chapters 3, 4 and 5.

# 2.4 System Advantages and Features

This system will address the problem of inaccurate readings and the lack of recorded data and armature test history. The fact that the system is automated allows for skilled staff to be deployed in critical areas while the tests are being conducted. Looking ahead, if multiple units are built and placed in test bays, more than one test can be carried out at the same time with one member of staff overseeing the entire process.

Below the reader will find a list of the system's main features.

- User name and password
- Administrator name and password
- Lockout
- Armature serial number (Job number)
- Time and date of test
- Duration of test
- Automated operation Motion, bar detection, test current switching and data acquisition are governed by the controller
- Manual operation Physical motion, bar detection and test current switching are controlled by the test technician. Data is acquired automatically when prompted by the test technician
- Error indication
- Printout of all recorded faults
- Addition of new armatures settings (only administrator)
- Addition of new percentage variance settings (only administrator)
- Set new destination for data files (only administrator)
- Emergency stop
- Test history for armatures (Save and View test files)
- Bar under test
- Number of bars remaining
- Number of faults logged
- Delete files (only administrator)
- Record reference value
- Data analysis and processing
- Fault display
- Test status
- Reference value reset
- Test status reset on reference value reset.
- Remote Graphic User Interface (RGUI) to view records from remote locations.
- Additional Features
  - The ability to automatically take repetitive readings on a single pair of bars

- Automatically record each reading and the average of all the readings for a pair of bars on an Excel Spreadsheet. Also automatically save Excel Spreadsheets at the end of tests.
- Calibration of the system using the GUI.
- Multiple, unique user names and passwords
- SuperUser name and password

# Chapter 3

# **Graphic User Interface (GUI) Development**

The GUI provides a means to control the automated machine as well as a means to capture, analyse and store data. See Appendix A for a screen capture of the GUI and Appendix C for the complete GUI source code. Also see Appendix P for a detailed discussion including flow diagrams and code extracts. In order to perform the above two functions, reliable communication between the GUI and the Controller is imperative. As previously mentioned, the GUI communicates directly with the Communication Microcontroller (CM) which then in turn communicates with the Automation Microcontroller (AM).



FIGURE 3-1: SYSTEM BLOCK DIAGRAM

In order to understand the function of the GUI, the communication between GUI and the CM has to first be discussed.

The GUI and the CM communicate serially using their respective serial ports which are setup to interact as required. In this chapter the author will discuss how data is processed from the point at which it is present in the GUI serial buffer and the prompts transmitted by the GUI to the controller, more specifically, the CM.

The interface between the GUI and the serial port (RS232) of a PC or Laptop using the Visual Basic 6 development environment is the MSComm component. Once enabled the properties of the MSComm component have to be set so that they mirror the settings for the CM serial port.

# 3.1 A walk through the GUI

The aim of this walk through is to lead the reader through the features, functions and code behind the Graphic User Interface. Screen captures will help the reader to understand how the GUI responds to user prompts and data that is received. See Appendix A for a true representation of the GUI and Appendix O for a GUI PowerPoint Presentation. The GUI is divided into two separate parts, one being the Test Setup Fields and the other being the Test In Progress Fields. Each of these will be discussed individually in the sections that follow.

# 3.1.1 Test Setup Fields

## 3.1.1.1 User Identification Frame

The input fields in this section are used to setup the system for the specific armature that is to be tested. The User Identification frame is the location in which the details of the staff member performing the test are entered.

| Setup Fields                               | Test In Progress Fields                                                                  |
|--------------------------------------------|------------------------------------------------------------------------------------------|
| User Identification                        | Fault Log                                                                                |
| Password                                   |                                                                                          |
|                                            |                                                                                          |
| New Test                                   |                                                                                          |
| Name                                       |                                                                                          |
|                                            |                                                                                          |
|                                            |                                                                                          |
| Armature Properties                        |                                                                                          |
| Armature Select                            |                                                                                          |
|                                            |                                                                                          |
| Number Of Commutator Bars Add New Armsture |                                                                                          |
|                                            |                                                                                          |
| Click To Remove Highlighted Armsture       | Controls Test Status Click To Print                                                      |
|                                            | Capiting After ENED CENCY Bar Under Test Print                                           |
| - Job Number                               | LOAD END Error Pause STOP Bas Remaining                                                  |
| <u>.</u>                                   | Faulto Logged                                                                            |
| Test Option                                |                                                                                          |
| Option C Automated Operation               | Error Jacus                                                                              |
| Test Parameter                             | Automated Test                                                                           |
| Percentage Variance                        | Error 1 Error 2 Error 3 Error 4 Reading                                                  |
| prid New Value                             | Deter                                                                                    |
|                                            |                                                                                          |
| CIECTO PERIORE LIGUIGUES VANE              | Manual Reading Controls GUI Special Fuction Controls View/Change Directory Path Settings |
| Date                                       | Click To Take Reading Prompt View Controls View Settings                                 |
|                                            | Manual Beering                                                                           |
| Time                                       | View Last Profile                                                                        |
| Test Started                               |                                                                                          |
| Test Ended                                 | Exit View Calibration Screen                                                             |
| Test Duration                              | Exit Calibration Setup                                                                   |

FIGURE 3-2: INITIAL TEST SCREEN

| N | lew Te | əst | 1 |
|---|--------|-----|---|

## FIGURE 3-3: USER IDENTIFICATION FRAME ON THE INITIAL TEST SCREEN

Initially, except for the New Test button encircled in Figure 3-2, all the buttons and text input boxes are disabled. On clicking the New Test button in the Password frame the Enter button is enabled and replaces the New Test button. See Figure 3-4.

| st Setup Fields                        | Test In Progress Fields                                                                  |
|----------------------------------------|------------------------------------------------------------------------------------------|
| - User Identification                  | Fault Log                                                                                |
| Password                               |                                                                                          |
|                                        |                                                                                          |
| Enter                                  |                                                                                          |
| Nume -                                 |                                                                                          |
| - Nalite                               |                                                                                          |
|                                        |                                                                                          |
| Armature Properties                    |                                                                                          |
| Armature Select                        |                                                                                          |
| New Armature Name                      |                                                                                          |
| - Number Of Commutator Bars Add New    |                                                                                          |
|                                        |                                                                                          |
|                                        | Contols                                                                                  |
| LICK To Hemove Highlighted Almature    | Bar Under Test Drive                                                                     |
| Job Number                             | LOAD END Continue After EMERGENCY Bas Remaining                                          |
|                                        | Click To Save                                                                            |
| Test Option                            | Save                                                                                     |
| Choose an Operating C Manual Operation | Enor Status Manual Test                                                                  |
| Uption C Automated Operation           | Error 1 Error 2 Error 3 Error 4 Automated Test                                           |
| Test Parameter                         | Emoral Emoral Emoral Emoral                                                              |
| Percentage Variance                    | Delete                                                                                   |
| Add New Value                          | Dete                                                                                     |
| Click To Remove Highlighted Value      |                                                                                          |
|                                        | Manual Reading Controls GUI Special Fuction Controls View/Change Directory Path Settings |
| Date                                   | Click To Take Reading - Reading Prompt - View Controls View Settings                     |
|                                        | Menual Reading                                                                           |
| Time                                   | View User Profile                                                                        |
| Test Started                           |                                                                                          |
| Test Ended                             | Exit View Calibration Screen                                                             |
| Test Duration                          | Exit Calibration Setup                                                                   |

| User Identification |  |
|---------------------|--|
| Password            |  |
|                     |  |
|                     |  |
| Enter               |  |
| Name                |  |
|                     |  |
|                     |  |

## FIGURE 3-5: USER IDENTIFICATION FRAME ON THE INITIATE TEST SCREEN

At this stage, except for the Enter button, all other control buttons are disabled and except for the Password text input box all the text input boxes are still disabled. To enable the GUI the correct user password has to be entered. This password was originally a generic password that was assigned to the system. Any staff member that was assigned to use this system was to use this password. This has subsequently been changed such that each user has a unique username and password that is chosen by the individual. The username and password is stored in a file on the PC or laptop hard-drive and is accessed and/or edited via the GUI whenever need be.

The login system requires that the password is entered in order to use the system. If the password is one that exists in the Username and Password file, the username that is associated with the entered password is displayed in the Name text box. This method is used to ensure accountability as the username displayed in the Name text box is the name that is printed in the test report and saved in the test history file. The username and password feature is discussed in detail in Chapter 6 under the heading, Multiple User Names and Passwords.

On entering the incorrect password GUI informs the user that the password is incorrect as well as the number of attempts that remain. See Figure 3-6A and Figure 3-6B.



# FIGURE 3-6A: GUI REPRESENTATION WHEN AN INCORRECT PASSWORD HAD BEEN ENTERED

| Incorrect Password 🛛 🗙            |  |
|-----------------------------------|--|
| Incorrect Password, Tries left: 2 |  |
| ОК                                |  |

# FIGURE 3-6B: MESSAGE BOX INFORMING THE USER OF THE NUMBER OF TRIES THAT REMAIN

If, on the third attempt, an incorrect password is entered the message box depicted in Figure 3-7A appears informing the user that he/she is about to be locked out by the system.

| Lock Out                                                                  | ×   |
|---------------------------------------------------------------------------|-----|
| You DO NOT have the authority to use this equipment. You have been LOCKED | OUT |
| ОК                                                                        |     |

# FIGURE 3-7A: MESSAGE BOX INFORMING THE USER THAT HE/SHE HAS BEEN LOCKED OUT

On acknowledgement of this message (by clicking on the OK button) the Lock Out frame is activated. The Lock Out frame hides every input and output function of the GUI, except for the Administrator Password functionality. See Figure 3-7B. The administrator password is used by a member of staff that is responsible for the supervision of the tests as well as the test technicians. This password allows the administrator to access and edit properties such as the Armature Properties, Test Parameters, Directory path and Unlocking. A user with a basic user password does not have the ability to edit these properties. Note that only the administrator can unlock the system once it has been locked.



## FIGURE 3-7B: LOCK OUT SCREEN

## 3.1.1.2 Armature Properties Frame

It is here that the user selects the armature type that is to be tested. See Figure 3-7C.



FIGURE 3-7C: ARMATURE PROPERTIES FRAME

The list of armatures is created by completing the New Armature Name and Number of Commutator Bars field and then clicking on the Add New Armature button. As mentioned previously, this functionality is only available to the administrator, therefore upon clicking the above mentioned button, the user is asked for the

1.....

administrator password before the new armature is added, see Figure 3-8 and Figure 3-9. If an incorrect password is entered the new armature will not be added. For the removal of armatures from the list the Click To Remove Highlighted Armature functionality is used and is a functionality only available to the administrator. The reason for limiting access to these property fields is to exercise control over the test system. The user may only use the system and may not define any test limits and conditions other than those available to him/her.

| 🐂 Administrator's Password     |       |
|--------------------------------|-------|
| Enter Administrator's Password |       |
|                                | Enter |
|                                |       |

FIGURE 3-8: ADMINISTRATOR'S PASSWORD PROMPT

| i ciup i cius                                                          | Lest in Progress Helds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| User Identification                                                    | Failog                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Name<br>Surveer Matadin                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Armature Properties                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| New Armature Name  Et traction  Add New  Armature  G80                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Click To Remove Highlighted Armature                                   | Contois     Contois     Administrator's Password     EDX     EDEX     EDEX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Test Option                                                            | Erter Administrator's Password Erter |
| Choose an Operating C Manual Operation<br>Option C Automated Operation | Env 1 Env 2 Env 4 Autometed Text Open                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Test Parameter Percentage Variance Add New Value                       | Error 1 Error 2 Error 3 Error 4 Reading Delete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Click To Remove Highlighted Value                                      | Manual Readino Controla                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Dole                                                                   | Cick To Take Reading Promet Manual Reading View Controls View Settings View User Polie Setup View User Polie View View Polie View View Polie View View View View View View View View                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Test Started Test Ended Test Duration                                  | Exit View Calibration Screen<br>Exit Labration Screen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

#### FIGURE 3-9: GUI DISPLAYING THE ADMINISTRATOR'S PASSWORD PROMPT

All armatures that appear on the list are stored in a sequential file. This sequential file is accessed and/or edited when creating the list of armatures that are to be tested, adding a new armature to an existing list or deleting an armature from the list.

The destination to which this file is saved is determined by **Default Path**. This path is specified in the Directory Path frame which will be discussed later in this chapter. The name of the file is Arm.

## 3.1.1.3 Job Number Property Frame



FIGURE 3-10: JOB NUMBER PROPERTY INPUT FRAME

It is in this input box that the armature serial number is entered. This serial number is reflected in the test report printout and it is also used as a file name under which the test results are saved. As will be discussed later in this chapter, tests are saved in files bearing the serial numbers of armatures as filenames in order to generate a test history for each armature. When a test is carried out on an armature with a file name (serial number) which does not appear in the file containing the list of armatures that were previously tested, that armature is added to the saved list, i.e. its serial number is added to a sequential file name (**Saved\_List**'.

A sequential file bearing the name of the serial number of the armature is also created and it is here that the test results are saved. When saving a test for an armature with a serial number that already exists the content of the Job Number Property frame is compared with the list of serial numbers in the 'Saved\_List' file. When a match is found that file is opened and the present test details are added to it. If no match is found then a new file is created and the name of the file is added to the 'Saved\_List' file.

## 3.1.1.4 Test Option Property Frame

| - Test Option       |                     |
|---------------------|---------------------|
| Choose an Operating | C Manual Operation  |
| Option              | Automated Operation |
|                     |                     |

FIGURE 3-11: TEST OPTION PROPERTY FRAME

This property frame allows the user to choose between Automated and Manual modes by selecting the appropriate option. Once a selection is made it is reflected in the Test Status property frame, as show on Figure 3-12 below.

| Test Status      |  |  |  |
|------------------|--|--|--|
| Bar Under Test   |  |  |  |
| Bars Remaining   |  |  |  |
| Faults Logged    |  |  |  |
|                  |  |  |  |
| Manual Test      |  |  |  |
| F Automated Test |  |  |  |
| Reading          |  |  |  |
| Searching        |  |  |  |
|                  |  |  |  |

FIGURE 3-12: TEST STATUS PROPERTY FRAME

In Automated mode the entire system is enabled. This means that the controller, more specifically the Automation Microcontroller (AM), controls the mechanical system according to the commands from the GUI and the Communication Microcontroller (CM). In Manual mode, the automated control functionality of the system is disabled and the AM enters power-down mode. Only the data acquisition, analysis and storage functionalities of the system are available to the user. In this mode, the test technician is responsible for placing the test probes on the commutator bars and switching the test current using a footswitch.

## 3.1.1.5 Test Parameter Property Frame

| - Test Parameter-                 |               |   |  |
|-----------------------------------|---------------|---|--|
| Percentage Va                     | ariance       | • |  |
|                                   | Add New Value |   |  |
| Click To Remove Highlighted Value |               |   |  |

FIGURE 3-13: TEST PARAMETER PROPERTY FRAME

The Parameter Property Frame is where the user stipulates the allowable percentage variance (i.e. percentage difference) of present reading from the reference reading. This value is then stored in variable **Percentage** to be used in the Calculation subprogram. Different ranges can be added and removed from the available options by the administrator in exactly the same was way as the Armature Properties Frame. The operation of this frame is identical to that of Armature Properties Frame therefore the author will not enter into a discussion on the operation of this frame.

## **3.1.1.6** The Date and Time Frames



FIGURE 3-14: DATE AND TIME PROPERTY FRAME

These output fields reflect the date and duration of the test. On starting the test, by clicking the Start button, the date and the current time (Test Started) is uploaded from the PC's internal clock.

When a test ends, either naturally (when all the bars have been tested) or unnaturally (when an emergency stop has been invoked), the end time of the test (Test Ended) is uploaded from the PC's internal clock.

# 3.1.2 Test In Progress Fields

## 3.1.2.1 Fault Log List

The Fault Log list is a list that displays each reading that falls outside the specified percentage variance range. It is also the screen that is used to display all relevant test information and test history that is retrieved from stored files.

| rauktog            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Fault on Bar: 3, F | Percentage Variance = 19.28123, Bar Reading: 0.1626973V, Reference: 0.136398V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| Fault on Bar: 5, F | Percentage Variance = 10.88503, Bar Reading: 0.1215511V, Reference: 0.136398V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| Fault on Bar: 7, F | Percentage Variance = 10.3879, Bar Reading: 0.1505669V, Reference: 0.136398V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| Fault on Bar: 8, V | /olt-Drop Reading Is Zero (0V), Indicating A Possible Short Circuit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| Fault on Bar: 9, V | /olt-Drop Reading Is Out Of Range, Indicating A Possible Open Circuit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| Emergency Stop of  | Emergency Stop on Bar 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| Test Print Complet | te and a second s |  |  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| ,                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |

# FIGURE 3-15A: THE FAULT LOG SCREEN DISPLAYING PRESENT TEST FAULTS

Figure 3-15A depicts a typical test fault log. This is what the user will see during the test as faults are recorded. Figure 3-15B illustrates the same test results that have been recalled from a stored file.

| Job Number: Test Results<br>Operator's Name: Sunveer Mata<br>Armature Name: b Number of B                                                                                                                                               | ıdin<br>Bars: 10                                                                                                                                                                                                                                                                                                              | - |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| Percentage Variance: 5%<br>Date: 2006/04/12                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                               |   |
| Recorded Faults                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                               |   |
| Fault on Bar: 3, Percentage Vari<br>Fault on Bar: 5, Percentage Vari<br>Fault on Bar: 7, Percentage Vari<br>Fault on Bar: 8, Volt-Drop Readi<br>Fault on Bar: 9, Volt-Drop Readi<br>Emergency Stop on Bar 10<br>End Of Recorded Results | riance = 19.28123, Bar Reading: 0.1626973V, Reference: 0.136398V<br>riance = 10.88503, Bar Reading: 0.1215511V, Reference: 0.136398V<br>riance = 10.3879, Bar Reading: 0.1505669V, Reference: 0.136398V<br>ding Is Zero (0V), Indicating A Possible Short Circuit<br>ding Is Out Of Range, Indicating A Possible Open Circuit |   |

# FIGURE 3-15B: THE FAULT LOG SCREEN DISPLAYING RETRIEVED FILE DATA

Figure 3-15B depicts a saved test that has been recalled in order to view the stored results. Critical information such as the job (serial) number, the operators name, the type of armature (the armature name and the number of bars on the commutator), the allowable percentage variance and the date of the test are displayed.

Under 'Recorded Faults', each fault is recorded with the following information: the number of the pair of bars on which the fault was recorded, the percentage variance from the reference reading, the actual volt-drop reading across the present two bars, the actual reference reading and, in the event of an emergency stop, the pair of bars on which such a stop was initiated.

## **3.1.3** The Control Commands

The control commands are used to prompt the controller, and where necessary the automated machine, to react to a user initiated event. There are three controls that may be used under normal test conditions when none of the system errors have occurred. These are the Load/Start, End and the Emergency Stop controls as shown in Figure 3-16.



#### FIGURE 3-16: CONTROLS FOR NORMAL TEST CONDITIONS

In the event of an error, the two controls to be used are the Continue After Error Pause and the Manual Reading as shown in Figure 3-17A and Figure 3-17B. On an error that requires a manual reading to be taken, i.e. Error1 and Error2, the Manual Reading Control is enabled and the Reading Prompt turns green. A red Reading Prompt alerts the user that the system is not ready to take a manual reading whilst a green setting indicates to the user that the system has been prepared for a manual reading procedure. The user clicks on the Manual Reading button on the GUI when the reading is about to be taken. Thereafter the user presses a Manual Reading switch situated on the automated machine after the test current is switched on and the test probes are set in place. The volt-drop reading is then captured and processed.

| Manual Reading Controls |                   |
|-------------------------|-------------------|
| Click To Take Reading   | - Reading Prompt- |
| Manual Reading          |                   |
|                         |                   |

#### FIGURE 3-17A: DISABLED MANUAL READING CONTROL

| Manual Reading Controls |                |
|-------------------------|----------------|
| Click To Take Reading   | Reading Prompt |
| Manual Reading          |                |
|                         |                |

## FIGURE 3-17B: ENABLED MANUAL READING CONTROL

Referring to Figure 3-16, the reader will notice that the first button in the Controls frame is the Load button and all other control buttons are disabled. This is to ensure that all the data required for a test has been entered correctly in the Test Setup Fields as discussed earlier.

Once all the data has been entered the Load button is clicked to upload the applicable information to the controller (more specifically the Communications Microcontroller). All the input data fields on the GUI are disabled when the Load button is clicked in order to ensure that the input setting can not be altered during a test. If any input data fields have not been completed when the Load button is clicked a message box or an input box appears prompting the user to enter the required data. See Appendix P the flow diagram relating to this process. Once the CM has received the information it acknowledges having done so by transmitting the ASCII code for the letter 'd' back to the GUI.

On receiving this, the Load button is replaced by the Start Button and the Emergency Stop Button is enabled as depicted in Figure 3-18B. When the user is ready to begin the test the Start button is clicked and 'A' is transmitted to the controller to begin. When the Start button is clicked it turns green, as shown in Figure 3-18C, and the mouse pointer changes to a pointer and hourglass signifying that the test is in progress.



## FIGURE 3-18B: START AND EMERGENCY STOP CONTROL ENABLED



#### FIGURE 3-18C: START CONTROL BUTTON CLICKED TO BEGIN TEST

After the last pair of bars has been tested the End control button is highlighted in blue as shown in Figure 3-19A below. This alerts the user that the test is complete. The user must acknowledge this alert by clicking on the End button. The End control is also enabled and highlighted when an Emergency Stop is initiated. This is further discussed below.



FIGURE 3-19A: END CONTROL HIGHLIGHTED BLUE TO ALERT USER

When the End control button is clicked, 'B' is transmitted to the controller and the End button is highlighted in green to signify the completion of the test. This signifies that the controller has entered powerdown mode and that the data is ready to be printed and saved or only saved. Referring to Figure 3-19B, the reader will notice that the Print and Save options are now enabled. All the output fields in the Test Status Frame and all the input fields in the Test Setup Frame are cleared. Further, all control and input buttons, except for the password Enter Button, are disabled. This allows the user to begin the next test once a valid password has been entered.

Chapter 3 - Graphic User Interface (GUI) Development



# FIGURE 3-19B: END CONTROL HIGHLIGHTED GREEN AFTER ALERT IS ACKNOWLEDGED

When the detection unit, containing the test probes and optical sensor, is not raised to its initial position within the allocated time Error 4 is invoked and the Continue After Error Pause control, The Emergency Stop control as well as the Error 4 status display are enabled and highlighted as depicted in Figure 3-20.

The GUI is made aware of this error when the ASCII code for the letter 'L' is received. When this error occurs the user has to assess the problem and if the fault is not serious enough to abandon the test, the user will physically raise the unit to its initial position. Once this is done and the user is confident that the error was not due to an event that may be recurring, the user will click on the Continue After Error Pause control for the test to progress as usual. Once clicked all the control buttons and displays that were highlighted and enabled due to the error are disabled and are no longer highlighted. If the fault is deemed to be serious and possibly recurring in nature the user will then click on the highlighted Emergency Stop control to immediately stop the test.



FIGURE 3-20: CONTINUE AFTER ERROR PAUSE CONTROL ENABLED FOR ERROR 4

The last control featured in the Controls frame is the Emergency Stop button. This functionality is enabled as soon as the test is started and remains enabled throughout the test. If at any point during the test, the user decides that it is unsafe to continue with the test, an emergency stop can be evoked by clicking on the Emergency Stop control button. When clicked, the Emergency Stop control is highlighted in red, the End button is enabled and the ASCII code for the Letter 'F' is transmitted from the GUI to the CM. The CM then Sets (1) P0.5, which is connected to the AM P1.5 and P3.2 (External Interrupt 0). When the AM is interrupted due to External Interrupt 0 being triggered and P1.5 is High (1), the AM immediately initiates an emergency stop. The AM immediately halts the task that was being carried out, switches off the Test Current by Clearing (0) P2.7 and safely shuts the system down before entering Powerdown mode. The GUI reflects the fact that an Emergency Stop was evoked in the Fault Log and waits for the user to click the End button in order to end the present test.



FIGURE 3-21: EMERGENCY STOP EVOKED

# 3.1.4 Error Status Frame

The Error Status Frame is where errors are reflected as or when they occur. When no errors have occurred, the frame looks like Figure 3-22, with each error status display being disabled.



FIGURE 3-22: ERROR STATUS FRAME

When an error does occur the appropriate display is highlighted red and is enabled. Once the user clicks on the error a display message box pops up informing the user of the type of error, the cause and possible steps to follow. Only once the error has been corrected and the controller communicates this to the GUI, will the highlighted display be disabled. Each error and flow chart depicting the steps taken when they occur will be discussed in detail in Chapter 4 and Appendix Q. For the purposes of this discussion, the author will only concentrate on those events which trigger these errors and the manner in which the GUI reflects them.

Error 1 occurs when a pair of bars is not detected within an allocated time. The controller is responsible for the timing of this process and if the allocated time has

elapsed before the next pair of bars are detected, the controller transmits the ASCII code for the letter 'J' to the GUI. When the GUI receives a 'J' it immediately enables and highlights the Error 1 display as well as the Manual reading control. As mentioned earlier, a detailed discussion concerning this and all the other errors will follow in Chapter 4. See Figure 3-23A for a representation of the Error 1 display. When the Error 1 display is clicked the following message appears in a message box: "The next pair of bars has not been detected within the allowable period. A Manual Reading must now be taken"



#### FIGURE 3-23A: ERROR 1 DISPLAY

Error 2 occurs when the detection unit has not been lowered onto the surface of the commutator within the allowable time. Here again the controller is responsible for the timing of this process and if the allocated time has elapsed before the detection unit has been lowered the controller transmits the ASCII code for the letter 'm' to the GUI. On receiving this character the GUI highlights Error 2 and enables the Manual reading control.



## FIGURE 3-23B: ERROR 2 DISPLAY

When the Error 2 display is clicked the following message appears in a message box:

"The Test Probes have not been lowered within the allowable period. A Manual Reading must now be taken"

Error 3 occurs when the test current is switched on for a period longer than the predetermined allowable time. In this case the controller transmits the ASCII code for the letter 'L' to the GUI. Unlike the previous two errors, Error 3 initiates an immediate Emergency Stop (by transmitting the ASCII code for the letter 'F' to the controller) and enables the End control function. The GUI still however highlights Error 3 in order to inform the user that the Emergency Stop was initiated as a result of the occurrence of Error 3. On clicking the Error 3 display the following message appears in a message box:

"The Test Current has been switched on for too long, and as a safety measure an Emergency Stop has been invoked. Please Click End, check the device and Restart the Test"



FIGURE 3-23C: ERROR 3 DISPLAY AND INVOKED EMERGENCY STOP

Error 4 was discussed in the explanation pertaining to the Continue After Error Pause Control, however for completeness it has been discussed briefly below.

Error 4 occurs when the detection unit has not been raised to its initial position within the allowable time. When this occurs the controller transmits the ASCII code for the letter 'Q' to the GUI. On receiving this the GUI highlights and enables the Error 4 display as well as the Continue After Error Pause and Emergency Stop controls as shown in Figure 3-20 and Figure 3-24. The user then assesses the fault and elects to either continue with the test by clicking on the Continue After Error Pause button or stopping the test by clicking on the Emergency Stop button.



# FIGURE 3-24: CONTINUE AFTER ERROR PAUSE CONTROL ENABLED FOR ERROR 4

# 3.1.5 Test Status Display

The Status Display is responsible for the summary of the present test at any point during the test. As can be seen from Figure 3-25, the information displayed includes the number of the pair of bars (i.e. first pair, second pair etc) that is currently under test, the number of pairs of bars that remains to be tested, the number of faults that were logged, the mode that the system is operating in (i.e. manual or automated) and the task that the system is presently performing (i.e. either searching for the next pair of bars or taking a reading).

| Test Status      |            |  |
|------------------|------------|--|
| Bar Under Test 2 |            |  |
| Bars Remainin    | g 398      |  |
| Faults Logged    | 1          |  |
|                  |            |  |
| Manu             | al Test    |  |
| Autor            | nated Test |  |
| F Readi          | ing        |  |
| Searc            | hing       |  |
|                  |            |  |

FIGURE 3-25: TEST STATUS DISPLAY

## 3.1.6 Recorded Test Data Option

The user has four options relating to the handling of recorded test data. These are the print, save, open and delete options. Each will be discussed individually in the subsections that follow. Below is a representation of the options available at different stages of the process.

Figure 3-26A depicts the options available after the correct password is entered but before a test has started. Figure 3-26B depicts the options available while a test is in progress and Figure 3-26C depicts the options available at the end of a test.





## 3.1.6.1 Print Option

A printed test report is useful for three reasons. Firstly, a hard copy of a specific test or a test history of an individual armature can be made available. The second reason is that a written record travels with the armature after this test so that staff involved at the next stage of the process will have access to the results. The third use of a printed test report is that it aids in accountability, i.e. the technician that performs the test can be held accountable for the test and the results since his/her name appears on the test report as well as his/her signature acknowledging the faults.

The user may view and print saved test records by opening a specified file using the Open button. It is for this reason that the print option is made available to the user after the correct password is entered but before a test is started. When Print is clicked, all the data contained in the opened file is printed in the format shown in Appendix D. If a file was not opened, thus implying that no data is displayed when Print is clicked, the following message appears:

## "No Data Available To Print"

Once a test is in progress the print option is disabled until the end of the test. Here, when Print is clicked, only the data recorded during the test which was just completed is printed in the format shown in Appendix E. One of the main features of this new system is the fact that test data can be printed and stored. It is for this reason that when the user prints the present test the data is also automatically saved in the appropriate file.

## 3.1.6.2 Save Option

As mentioned above, when a completed test is printed it is also automatically saved therefore there is no need to click on the Save button. The Save button is useful when the user wishes to only save the present test data without printing a copy.

A dual sequential file system is used to save a test record. The first sequential file is the one used to store the names or serial numbers of the armatures that have been tested and saved, in order to generate a list when required. This file is named **DefaultPath & ''Saved\_List.TXT''**. DefaultPath is the specified location of the file named Saved\_List. The above-mentioned list is available when the user clicks on the Open or Delete buttons.

The second sequential file is the one in which the test data is saved. The file name is the serial number of the armature under test. Each record added to this file has the following fields: the serial number of the armature, the name of the test technician, the type of armature, the allowable percentage variance specified for the test, the date of the test and recorded faults (if any) read by incrementing the index number of the Fault Log list and the actual fault logged on that pair of bars. In other words, each fault recorded on the Fault Log list is saved in the file with the test parameters and identification data fields preceding it. A typical record in the file is found below,

"matadin","sun 04/05","Armature Name: f Number of Bars: 50","Percentage Variance: 20%","2005/05/04","Emergency Stop on Bar 0"

Once the last item from the Fault Log has been saved, a record containing 'xxx' in the user name, armature name and allowable percentage variance fields together with the serial number field is saved to indicate the end of a test record.

"End","xxx","xxx","xxx","2005/05/04","End Of Recorded Results"

## 3.1.6.3 Open option

This option is only available to the user once a valid password has been entered. By clicking on Open, the user may view any and all saved tests. When clicked an input box, as shown in Figure 3-27, appears prompting the user to enter the serial number of the armature for which the test data is to be viewed. When this number has been entered all the recorded tests for that serial number i.e. the armature test history, are displayed on the Fault Log display.

| Enter The Job Number Of the Test You Wish | To Open 🛛 🗙 |
|-------------------------------------------|-------------|
| Enter Job Number                          | ОК          |
|                                           | Cancel      |
|                                           |             |

FIGURE 3-27: INPUT PROMPT WHEN 'OPEN' IS CLICKED

In order to refine the search, for example if a test on a specific date is required, the user enters 'Find' in the input box. A list of armature serial numbers appears as shown in Figure 3-28. This list is generated by reading the 'Save\_List' file mentioned above.



FIGURE 3-28: LIST OF SAVED SERIAL NUMBERS

By clicking on a serial number from this list a search is initiated. This search entails the opening of the file with the name matching the selected serial number, in this case matadin, reading through each record and displaying the dates on which tests were carried out on the selected armature. All these dates along with a 'View All' option are displayed in a list box as depicted in Figure 3-29.

By selecting a specific date, the user may view the data recorded during the test (or tests) carried out on that armature on the specified date. By clicking on the 'View All' option a test history containing all tests recorded and saved under the specified serial

number is displayed. The user clicks on the Exit button provided to exit from the Open procedure at any time.



# FIGURE 3-29: LIST OF TEST DATES FOR A SPECIFIED ARMATURE SERIAL NUMBER

## 3.1.6.4 Delete Option

The delete option allows a user with administrative rights to delete a file with a specified serial number. When an armature is discarded it may be decided that the history of that armature is no longer relevant however, the opposite may also be true. The relevance of the history of a discarded armature can only be decided by the workshop management and maintenance engineers.

The Delete option works in the same way as the Open option. All the records with the specified serial number are located when that serial number is entered into the input box prompt or a list containing all the saved serial numbers is generated when "Find" is entered into the input box as depicted in Figure 3-30. The difference is when the Delete button is clicked - the GUI requests the Administrator's password. If the password is entered correctly and a serial number is selected the GUI will ensure that the user is sure of his decision by prompting a response using a pop up box as shown in Figure 3-31.

| Test Status    | Click To Print |
|----------------|----------------|
| Bar Under Test | Print          |
| Bars Remaining |                |
| Faults Logged  | Llick To Save  |
|                | Save           |
| Manual Test    | Open           |
| Automated Test | Open           |
|                |                |
| Searching -    | Delete Exit    |
|                | matadin A      |
|                | auae 🗾 💌       |

FIGURE 3-30: LIST OF SERIAL NUMBERS GENERATED ON THE DELETE CLICK EVENT

| Confirm Delete           | X                               |
|--------------------------|---------------------------------|
| Are You Sure That You Wa | nt to Delete The Selected Item? |
| Yes                      | No                              |

#### FIGURE 3-31: POP UP PROMPT ON SELECTING AN ITEM TO BE DELETED

If Yes is selected by the user the deletion process is initiated. This process entails the removal of the selected serial number from the sequential file that generates the list of saved serial numbers, i.e. "Saved\_List.TXT", as well as removing the file that contains the test history saved under the name of the selected serial number. Removing the selected item from the "Saved\_List.TXT" file is accomplished by reading this file and copying all items except the one selected into another file, in this case "Saved\_List\_Del". At the end of this process, "Saved\_List.TXT" is deleted and "Saved\_List\_Del" is renamed as "Saved\_List.TXT".

To delete the file containing the test history the following statement:

Kill (DefaultPath & Save\_Test)

is used to remove the file with the name stored in **Save\_Test** (which is the serial number of the selected item) using **DefaultPath** to locate it.

# **3.1.7 Directory Path Specification**

The Directory Path specifies the location where all files generated and accessed by the GUI are saved. This location is copied into the variable **DefaultPath** which precedes the file name. Using **DefaultPath** files can be saved on the local hard drive, written to removable data storage devices or by mapping a network drive, files can be stored in allocated locations on the network.

The Directory Path settings can be viewed and reset via the Directory Path frame. The Directory Path frame is made visible by clicking on the View Setting button found on the View/Change Directory Path Settings Frame. The user can return to the View/Change Directory Path Settings Frame from the Directory Path Frame by clicking on the Exit Settings button. See Figure 3-32 and Figure 3-33.

| View/Change Directory Path Settings |  |  |
|-------------------------------------|--|--|
| View Settings                       |  |  |
| View User Profile Setup             |  |  |
| View User Profile                   |  |  |
|                                     |  |  |
|                                     |  |  |
|                                     |  |  |

## FIGURE 3-32: DIRECTORY PATH SPECIFICATION

| Directory Path                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                 |
|-------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| 🖃 c: [P] 💌                                                  | Cky370 ▲<br>Cky370 ▲ | Admin Password Form.fr                          |
| Exit Settings                                               | Ga sun<br>Ga M.Sc. Design<br>Ga M.Sc Only _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ana.vbp<br>ana.vbw<br>ana2.frm<br>Animation.frm |
| View                                                        | w Default Path                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Animation.vbw                                   |
| View Selected Path Change Default Path Backup of Sheet2.Sch |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                 |
|                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                 |

FIGURE 3-33: DIRECTORY PATH SPECIFICATION

The Default Path can only be set or changed by an administrator. A directory path is selected using the drive, directory and file input boxes. The administrator then clicks on 'View Selected Path' to verify that this is the correct selected destination. Once satisfied with the selected path, the administrator clicks on Change Default Path. An input box which prompts the administrator for the administrator's password appears and if the correct password is entered the selected path is saved as the new default directory path.

The default path can also be viewed by clicking on the 'View Default Path' button. The Default Path setting is dynamic (i.e. it can be changed when required and is not hard-coded) and points to the location in memory in which data can be saved. The Default Path itself also has to be saved in a file so that it can be referred to whenever the default path is required. The location of this file is static i.e. it is hard-coded and cannot be changed by the user or the administrator.

The name and location of this file is **SavePath** and "C:\**Program Files\SavePath**" respectively. When the GUI is loaded for use each time it is initiated, the Form\_Load procedure opens the **SavePath** file and copies its contents into the Default Path variable. This is carried out on the onset of a test so that the Default Path variable can be accessed whenever the path is required instead of opening, reading and closing a sequential file each time it is required.
## 3.1.8 Exit Command

The exit command allows the user to exit from the GUI before a test is started or once the test has ended. The Exit functionality is disabled during a test.

| Exit- |      |  |
|-------|------|--|
|       | Exit |  |
|       |      |  |

FIGURE 3-34: EXIT COMMAND CLICK

# 3.2 Percentage Variance Calculation.

All the literature in this chapter thus far has concentrated on the activities of the GUI when being prompted by a user or the controller and the output commands or signals that are transmitted by the GUI to the controller based on the data received and calculations carried out by the GUI. One such calculation is carried out when the GUI receives the test data from the Analogue-to-Digital converter (ADC) via the CM. This is the calculation of the percentage variance of the present reading from the stored reference reading. This is arguably the most critical calculation as the need for the entire project has evolved around it.





#### FIGURE 3-35: FLOW DIAGRAM FOR THE CALCULATION SUBPROGRAM

This subprogram has two objectives; the first is to calculate the percentage variance of a present reading from the reference reading whilst the second objective is centered on the reference reading itself. Consider this, what if the reference reading is in fact a fault reading, i.e. what if the reference reading is the reading across an open or short circuit or a damaged winding on the armature? The first step would be to check whether the first reading recorded is very close or equal to zero volts.

This would indicate a short circuit and this value will therefore not be stored as a reference value. A true open circuit would be indicated by a reading that is very close to or equal to the supply voltage. But the supply voltage and current is not the same for every type of armature tested due to the armature characteristics as well as the arc length between the test current supply probes on the commutator. Also considering that damaged and potentially problematic windings also have to be detected. There is no clear cut value that can be used to reject a reference reading (that is other than the reading for a short circuit). In order to detect that the reference value being used is

indeed a value that was recorded on a fault winding; the GUI performs a check after the first five readings taken, subsequent to the reference reading.

This essentially means that this check is carried out on the sixth reading captured. Variable **Initial Count** keeps track of the number of readings taken and by recalling an earlier discussion regarding the Test Status display, the reader will remember that the number of faults recorded is displayed in a text box (Text8). Noting this, in the event that the value in **Initial Count** is six and the value of Text8 is five,

If (Initial\_Count = 6) And (Val(Text8.Text) = 5) Then

this event will indicate that five (5) faults have been logged immediately after the reference value was set.

If such an event occurs, the GUI will conclude that based on the last five captured readings, the reference value was set on a fault or damaged winding reading. The reference value is then reset to that of the value recorded on the present bar (which will be the sixth bar). The values in the Test Status display as well as the variables that hold the values which reflect the number of bars that remain to be tested and the bar presently under test, are also adjusted appropriately to reflect this change. The test is reset on the sixth bar and continues as normal from that point forward.

For all of the above to occur the data transmitted from the controller has to be converted, manipulated and passed through mathematical formulae in order to obtain usable values that can be compared, displayed and stored. The following discussion will cover the manner in which this is done. Recall, that ASCII codes are transmitted by the controller. These ASCII codes are then converted into their associated numerical values in the OnComm procedure using the Visual Basic Asc function, as shown below,

Low\_Byte = Asc(SerIn)

and,

High\_Byte = Asc(SerIn)

When the calculation subprogram is called by the OnComm procedure, the Low\_Byte and High\_Byte variables already contain the required numerical values. The first step in the calculation subprogram is to convert these two bytes of data into the original sixteen (16) bit word that was present in the ADC register before its transmission as two separate bytes to the CM. This is accomplished using:

StnBit\_WD = ((High\_Byte \* 256) + Low\_Byte)

Once the sixteen-bit word has been realised, it is then necessary to calculate the actual voltage that this word represents. This is accomplished by dividing the ADC reference value (which is also the maximum input ADC voltage) by the sixteen-bit word when each bit is equal to 1 (i.e. 1111 1111 1111 1111 which equals 65536). By doing this, the voltage-per-bit value or the resolution in volts (stored in variable **ActVolReadRes**) is obtained. With an ADC internal  $V_{Ref}$  of 4.096V and sixteen bit resolution, the smallest voltage increment that the input signal can broken down into is:

Resolution in Volts =  $4.096 / 65536 = 62.5 \mu V$ 

This value is then multiplied by the value of the sixteen-bit word that was captured (**StnBit\_WD**) to produce the actual voltage associated with the sixteen bit word. This actual voltage is then stored in variable, **ActVolRead**. Furthermore, the actual voltage is divided by the analogue gain to obtain the true voltage reading that is present on the bars before the analogue gain. Note that the variable named "Gain" holds the value of the analogue gain as set using the Instrumentation Amplifiers external gain resistor  $R_G$ .

Let ActVolReadRes = (4.096 / 65536) Let ActVolRead = (StnBit\_WD \* ActVolReadRes) Let mVActVolRead = (ActVolRead / Gain)

For the calculation of the percentage variance however, these actual voltage values are not used. The percentage variance is calculated using the numerical value of the sixteen bit words that are stored in variable **StnBit\_WD** (which holds the value of present reading) and that stored in variable **Reference** (which holds the value of the reference reading). This is done in order to use values as close to the original recorded

values as possible and to decrease the probability of any errors that may arise by using values that have been rounded off. The equation below is responsible for the calculation of the percentage variance of the present reading from the reference reading.

```
Current Variance = (((Abs(StnBit_WD - Reference)) / Reference) * 100)
```

**Abs** is a Visual Basic function that produces the absolute value of a mathematical calculation. Here it is used to provide the absolute value for the difference between the present reading value (**StnBit\_WD**) and the reference reading value (**Reference**) as either value may be greater than the other for any reading taken. This value is then divided by the reference value and multiplied by a hundred to obtain the percentage variance.

The next step is to compare the percentage variance value (**Current Variance**) to the allowable or pre-selected percentage variance that was selected by the user. Recall that this pre-selected percentage variance is stored in variable, **Percentage**.

```
If (Current_Variance > Percentage) Then
List1.AddItem "Fault on Bar: " & Text6.Text & ", Percentage Variance = " &
"Current_Variance & ", Segment Reading: " & ActVolRead & "V" &
", Reference Reading: " & ActReference & "V"
Let Text8.Text = Val(Text8.Text) + 1
End If
```

The statements above show the comparison between the two values. In the instance where **Current Variance** is greater than **Percentage**, a fault will be recorded in the Fault Log display.

Another subprogram that is executed on every bar is the calculation of the number of bars that remain to be tested. The Bar\_count subprogram decrements the number of bars that remain to be tested (stored in variable No\_of\_Bars) by one each time the controller transmits an increment prompt (ASCII code for the letter 'I'). This increment prompt is transmitted by the controller before the rotation of the armature under test is initiated hence the total number of bars is decremented before the very first rotation.

With this in mind, the reader will follow that when the increment signal is transmitted by the controller before the last pair of bars is tested, the decremented value in Bar\_count will be zero. After the last pair of bars has been tested and when the controller next sends an 'I' the decremented value will be less than one. It is at this point that the GUI signals to the controller that the last bar has been tested and that the test must now end.

The prompt to the CM which signals that the last bar has been tested is the ASCII code for the letter 'P'. For every increment signal received by the GUI before the last one, the ASCII code for the letter 'p' is transmitted to the controller to indicate the last bar has not been tested and that rotation should be initiated.

# **3.3** The Remote Graphic User Interface (RGUI)

The Remote Graphic User Interface is used by authorised users in remote locations to view test records via the network, see Appendix F for a true representation of the RGUI and Appendix G for a printout of the associated code. The RGUI can only access information when the test station GUI stores data in a location on the network by mapping the network as a drive. The Default Path that is set on the RGUI must be the same as that of the GUI on the workshop floor. The RGUI only allows users to read and print information from saved files. Note that the format in which test data is displayed is exactly the same as the format in which the GUI displays retrieved file data as shown in Figure 3-37A and Figure 3-37B.

The user cannot edit, replace or delete files from a remote location. The RGUI contains three fields, namely the Search Information field, Data Display field and Directory path field. The inputs and button prompts are much the same as those on the test station GUI. They carry out the same functions and operate in the exact same way. The only variation from the test station GUI is the File Names and Refined Search – Dates display lists. The File Names list and contents is the same as the list that appears on the test station GUI when the Open button is clicked. In the RGUI this list box is permanently displayed.

The Refined Search – Dates list and contents is the same as the list that appears when a serial number is clicked on in the serial number list on the GUI. Here as well, the difference is that this list box is permanently displayed on the RGUI. As in the GUI, when Open is clicked, an input box appears prompting the user to enter a serial number. If a valid serial number is entered all test results for that serial number will be displayed in the Data Display screen. If 'Find' is entered into the input box the serial numbers of all tested armatures are displayed on the RGUI in the File Names list.

Upon selecting an item from this list, all dates on which tests were carried out on the selected armature as well as a 'View All' option appears in the Refined Search – Dates list. By selecting a specific date the results of test(s) carried out on that date will be displayed in the Data Display screen. If 'View All' is selected, results of all tests carried out on the selected armature are displayed. All other functionalities that are available on the RGUI operate in the same manner as those on the GUI.



FIGURE 3-36: REMOTE GRAPHIC USER INTERFACE (RGUI)

| arch Information       | - Dicilan Data                                                                                                                                                                                                             | - Directory Path                       |
|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| Bassword               |                                                                                                                                                                                                                            | - Path Propeties                       |
|                        | Job Number: Test Results 1<br>Describer Name: Summer Materia                                                                                                                                                               | Ven Date & Date                        |
| L                      | Armature Name: b Number of Bars: 10                                                                                                                                                                                        | view Derauk Path                       |
| Password               | Date: 2006/04/12                                                                                                                                                                                                           |                                        |
|                        | Recorded Faults                                                                                                                                                                                                            | View Selected Path Change Default Path |
| - Print Displayed Data | Fault on Bar. 2. Percentage Valance = 4.370112E-02. Segment Beading: 0.1372522V. Beference Beading: 0.1373122V                                                                                                             | Drive / Network Path                   |
| Print                  | Fault on Bar. 3, Percentage Variance = 18.39481, Segment Reading: 0.16257057, Reference Reading: 0.13731227<br>Each an Bar. 4, Recentage Variance = 0.5904046, Segment Reading: 0.13251187, Reference Reading: 0.1373127   |                                        |
|                        | Fault on Bar. 5. Percentage Valance = 0.0306040, Segment Reading: 0.1223241V, Reference Reading: 0.1373122V                                                                                                                | 1 - church                             |
| Upen File              | Fault on Bar. 6, Freicerkage Valance = 0.4614717, Segment Reading: 0.1365786V, Reference Reading: 0.1373122V<br>Fault on Bar. 7, Percentage Valance = 10.28797, Segment Reading: 0.1514389V, Reference Reading: 0.1373122V | Folders                                |
| Upen                   | Fault on Bar: 8, Volt-Drop Reading Is Zero (DV), Indicating A Possible Short Circuit<br>Fault on Bar: 9, Volt-Drop Reading Is Out Of Range, Indicating A Possible Open Circuit                                             |                                        |
| - File Names           | Fault on Bar. 10, Vol-Drop Reading Is Zero (DV), Indicating A Possible Short Circuit<br>End Df Becorded Besults                                                                                                            | Documents and Settings                 |
| True and a second      |                                                                                                                                                                                                                            | My Documents —                         |
| Test_                  |                                                                                                                                                                                                                            | Sun Sc Design                          |
| 001 002                |                                                                                                                                                                                                                            | M.Sc Only                              |
| aa<br>Test Demo1       |                                                                                                                                                                                                                            | 🔁 data 💆                               |
| Test Results           |                                                                                                                                                                                                                            | Fles                                   |
| Test Results 1         |                                                                                                                                                                                                                            |                                        |
| 001 Test Results       |                                                                                                                                                                                                                            | ana.fm                                 |
| 888                    |                                                                                                                                                                                                                            | ana.vbp                                |
|                        |                                                                                                                                                                                                                            | ana2.fm<br>Animation.fm                |
| Refined Search - Dates |                                                                                                                                                                                                                            | Animation.vbp<br>Animation.vbw         |
| View All               |                                                                                                                                                                                                                            | Backup of PCB1.PCB                     |
| 2000/04/12             |                                                                                                                                                                                                                            | binary to interger.fm                  |
|                        |                                                                                                                                                                                                                            |                                        |
|                        |                                                                                                                                                                                                                            |                                        |
|                        |                                                                                                                                                                                                                            |                                        |
|                        |                                                                                                                                                                                                                            |                                        |
|                        |                                                                                                                                                                                                                            |                                        |
|                        |                                                                                                                                                                                                                            |                                        |
|                        |                                                                                                                                                                                                                            |                                        |
|                        |                                                                                                                                                                                                                            |                                        |
|                        |                                                                                                                                                                                                                            |                                        |
|                        |                                                                                                                                                                                                                            |                                        |
| 1                      |                                                                                                                                                                                                                            |                                        |
| - Exit Program         |                                                                                                                                                                                                                            |                                        |
| Eva                    |                                                                                                                                                                                                                            |                                        |
| EXI                    |                                                                                                                                                                                                                            |                                        |

#### FIGURE 3-37A: REMOTE GRAPHIC USER INTERFACE (RGUI) DATA DISPLAY

Job Number: Test Results 1 Operator's Name: Sunveer Matadin Armature Name: b Number of Bars: 10 Percentage Variance: 5% Date: 2006/04/12

**Recorded Faults** 

Fault on Bar: 2,Percentage Variance = 4.370112E-02,Segment Reading: 0.1372522V,Reference Reading: 0.1373122VFault on Bar: 3,Percentage Variance = 18.39481,Segment Reading: 0.1625705V,Reference Reading: 0.1373122VFault on Bar: 4,Percentage Variance = 0.5904046,Segment Reading: 0.1365015V,Reference Reading: 0.1373122VFault on Bar: 5,Percentage Variance = 10.91533,Segment Reading: 0.1223241V,Reference Reading: 0.1373122VFault on Bar: 6,Percentage Variance = 0.4614717,Segment Reading: 0.1366786V,Reference Reading: 0.1373122VFault on Bar: 7,Percentage Variance = 10.28797,Segment Reading: 0.1514389V,Reference Reading: 0.1373122VFault on Bar: 8,Volt-Drop Reading Is Zero (0V), Indicating A Possible Short CircuitVolt-Drop Reading Is Out Of Range, Indicating A Possible Open CircuitFault on Bar: 10,Volt-Drop Reading Is Zero (0V), Indicating A Possible Short CircuitNot-Drop Reading Is Zero (0V), Indicating A Possible Short CircuitFault on Bar: 10,Volt-Drop Reading Is Zero (0V), Indicating A Possible Short CircuitEnd Of Recorded Results

# FIGURE 3-37B: REMOTE GRAPHIC USER INTERFACE (RGUI) DISPLAY FORMAT

# Chapter 4

# **Microcontrollers and Embedded Programming**

In this chapter the core of the controller will be discussed. This core comprises a pair of microcontrollers that communicate with each other via their port pins in order to perform the appropriate physical tasks, at the precise time, based on information received from the GUI and transducers on the automated machine i.e. the Physical Test Station. Both are AT89S51 microcontrollers and are enhanced derivatives of the 8051 [9] family. These microcontrollers were chosen on the basis of them having the following essential features: four eight pin input/output ports, 4K bytes of Flash memory, two external interrupts, two sixteen bit timers and a full duplex UART serial channel. For further information on this microcontroller, see Appendix H for a comprehensive datasheet.

A microcontroller is the bridge between software instructions (commands) and electrical hardware. Programs written in C, Assembly [9] or any other compiler compatible language are compiled and assembled, and stored in the microcontroller memory which is most likely to be EEPROM technology. The speed at which these programs are stepped through (or executed) is dependent on the length of time that one machine cycle takes to execute and the number of machine cycles that are required for each instruction to execute. Depending on the instruction, data is either processed or input and output ports are addressed to either read signals or produce signals to or from interfacing electrical hardware.

The length of time that one machine cycle takes to execute depends on the frequency of the oscillator that provides the clocking source for the microcontroller. This design is not time critical which means that commands based on processed information did not have to execute at a very rapid rate. It is for this reason that a 12MHz quartz crystal was chosen to drive the on-chip oscillator resulting in a machine cycle of one microsecond (1 $\mu$ s) duration. The tasks performed by these microcontrollers do not involve complex mathematical calculations or algorithms. It is for this reason that code was written in assembly language as opposed to a higher level programming language. The advantages that assembly language has over higher level languages for these types of applications (bit manipulation, logic operations and input/output port interaction) are execution speed and the efficient use of program memory space. The Acebus development environment was used to develop and simulate the code for both microcontrollers. This tool allows the developer to write, assemble, simulate and debug code written in assembly language. In the simulation environment, code can be stepped through line-by-line and the changes in the respective registers, special function registers, input/output ports etc. are reflected accordingly. See Figure 4-1A and Figure 4-1bB for screen captures of the Acebus development environment and Appendix I for a labeled representation of the development environment.

| R GERANI - 22-09 05 Minori 16 Mato |                  |              |                                                        |          |        |                    |             |                                                    |    |
|------------------------------------|------------------|--------------|--------------------------------------------------------|----------|--------|--------------------|-------------|----------------------------------------------------|----|
| Π                                  | ז ⊯ום ם          | X B          |                                                        |          |        |                    |             |                                                    |    |
| Ē                                  |                  |              |                                                        | (=tert]r | DAUX . |                    |             |                                                    |    |
| lł                                 | 22-09-05 Mic     | ro1 16bitADC |                                                        |          |        | 22-09-05 Mi        | cro2 latest |                                                    | 츽  |
| Ш                                  |                  | JMP          | GO . #IDI W DND                                        | <b>_</b> |        | ;Date L            | ast mod:    | 111ed : 22-09-05                                   | -  |
| Ш                                  | sa:              | CINE         | P2 7 to u2 to signal last bar                          |          |        |                    | *:          |                                                    |    |
| Ш                                  |                  | imp          | Finish                                                 |          |        | ,<br>: * * * * * * | ******      | ***************************************            |    |
| Ш                                  |                  | Juip         |                                                        |          |        | ·                  |             |                                                    |    |
| Ш                                  | ;DEC NO          | OF BARS      | FROM THE TOTAL IN U1 HERE                              |          |        |                    | ORG         | OH                                                 |    |
| Ш                                  | ;ALSO C          | HECK FOR     | LAST BAR - IF YES, ALLERT NB                           |          |        |                    | LJMP        | MAIN                                               |    |
| Ш                                  | ;THEN W.         | AIT FOR      | THE "END"PULSE FROM NB AND JUMP TO END                 |          |        |                    | ORG         | 0003H                                              |    |
| Ш                                  | ;*****           | *****        | ***************************************                | *****    |        |                    | LJMP        | EXOISR                                             |    |
| Ш                                  | co.              | O D D D      | DO O. GENDE MO HO / DEM ORD                            |          |        |                    | ORG         | UU13H                                              |    |
| Ш                                  | GO:              | SETE         | PO.0; START TO 02 / PET OFF                            |          |        |                    | LOMP        | PVITPK                                             |    |
| 1                                  |                  |              |                                                        |          |        | COUNT              | EQU         | -10000 ;DELAY LOOP                                 |    |
| Ш                                  |                  | SETB         | P2.7 ;NOT LAST BAR                                     |          |        | COUNT2             | EQU         | -50000 ;SAFTY TIME                                 |    |
|                                    | BGN_TW:          | JNB          | P2.2, BGN_TW ; WAIT TO CHECK IF PULSE WAS REC          | IEVEL    |        |                    |             |                                                    |    |
| Ш                                  |                  | CLR          | P2.7 , to u2 to signal last bar                        |          |        |                    | ORG         | 0030H                                              |    |
| Ш                                  |                  | SETB         | EXO                                                    |          |        | MAIN:              | MOV         | TMOD, #00010001B                                   |    |
| Ш                                  |                  | NOP          |                                                        |          |        |                    | MOV         | 1P,#UUUUUUUIB                                      |    |
| Ш                                  |                  | NOP          |                                                        |          |        |                    | MOV         | 12,#00001018                                       |    |
| Ш                                  |                  | NOP          |                                                        |          |        | ;*****             | *****       | **************************************             |    |
| Ш                                  | WT RDNG          | JNB          | P2.2, WT RDNGE ; WAIT FOR TAKE READING PULSE           |          |        |                    | MOV         | PO,#OH ; only for sim, input ports must be set to  |    |
| Ш                                  |                  | SETB         | P0.7; TO U2 TO CONT AFTER READING TAKEN                |          |        |                    | MOV         | P1,#11111111B ; only for sim, input ports must be  | .  |
| Ш                                  |                  | NOP          |                                                        |          |        |                    | MOV         | P2, #OH ; only for sim, input ports must be set to |    |
| Ш                                  |                  | NOP          |                                                        |          |        |                    | MOV         | P3,#00011111B ; only for sim, input ports must be  |    |
| Ш                                  |                  | NOP          | P0 7                                                   |          |        | ;*****             | ******      | **************************************             |    |
| Ш                                  |                  | CALL         | RDG SUB                                                |          |        | ; clear            | ing all     | flags                                              |    |
| Ш                                  |                  | JMP          | WT U2ST; LOOP ENDS NORMALLY                            |          |        | ,                  | CLR         | 00H                                                |    |
| Ш                                  | WT RDNG          | E:JNB        | 03H,WT RDNG                                            |          |        |                    | CLR         | 01H                                                |    |
| Ш                                  |                  | CLR          | 03H                                                    |          |        |                    | CLR         | 02H                                                |    |
| Ш                                  |                  | JMP          | WT_U2ST; LOOP ENDS AFTER ERROR 1 ND 2                  |          |        |                    | CLR         | 03H                                                |    |
| Ш                                  |                  |              |                                                        |          |        |                    | CLR         | 04H                                                |    |
| Ш                                  |                  |              |                                                        |          |        |                    | CLR         | USH                                                |    |
| Ш                                  |                  |              |                                                        |          |        |                    | CLR         | 00n<br>07H                                         |    |
| Ш                                  |                  |              |                                                        |          |        |                    | CLR         | 08H                                                |    |
| Ш                                  | ;*****           | *****        | *************                                          | ****     |        |                    | CLR         | 09H                                                |    |
| Ш                                  | ;                |              | EXTERNAL INTERRUPT ISR - FOR ERRORS 1 TO 4             |          |        |                    | CLR         | OAH                                                |    |
| Ш                                  | ;*****           | ******       | ***************************************                | ****     |        |                    | CLR         | OBH                                                |    |
| Ш                                  |                  |              |                                                        |          |        |                    | CLR         | OCH                                                |    |
| Ш                                  | EXUISE:          | JNB          | PZ.4, ERRZ                                             |          |        |                    | CLR         | UDH                                                |    |
| Ш                                  |                  | SETB         | 13H: FLAG TO INDICATE TO MT RDNG LOOP THAT R           | N ERF    |        |                    | SETB        | EA                                                 |    |
| Ш                                  |                  | JMP          | EXCOUT                                                 |          |        |                    | SETB        | IT1                                                |    |
| Ш                                  | ERR2:            | JNB          | P2.5, ERR3                                             |          |        |                    | SETB        | ITO                                                |    |
| Ш                                  |                  | CALL         | ER2_SUB                                                |          |        | AGIAN:             | SETB        | EX1; ENABLE EX INT1                                |    |
| Ш                                  |                  | SETB         | 03H                                                    |          |        | START:             | JNB         | P1.0, START                                        |    |
| П                                  | •1               | JMP          | EXCOUT                                                 |          | •      |                    | JB          | P1.6, AUTO ; (1 = AUTO, 0 = MAN)                   | -  |
| Ľ                                  |                  |              |                                                        | ا» ت     |        |                    | -           |                                                    |    |
| Fo                                 | r Help, press F1 |              | I serve a server from here here here the server of the |          |        |                    |             | Ln 257, Col 46   INS   Read                        | 1. |
| P                                  | age 2 Sec 1      | 2/3          | At 6.1cm Ln 6 Col 13 REC TRK EXT OVR English (U.S 🛄 🛣  |          |        |                    |             |                                                    |    |

#### FIGURE 4-1A: SCREEN CAPTURE OF THE ACEBUS DEVELOPMENT ENVIRONMENT

| 🕱 DEFAULT - P      | r DEFAULT - Port1 |                                                            |             |               |                                        |              | - O ×        |
|--------------------|-------------------|------------------------------------------------------------|-------------|---------------|----------------------------------------|--------------|--------------|
| File Edit View     | Assemble 9        | imulate Monitor Options Window Help                        |             |               |                                        |              |              |
|                    |                   |                                                            |             |               |                                        |              |              |
| 22-09-05 M         | licro1 16bitA     |                                                            | 22-09-05    | Micro2 latest |                                        | ConReg1      | - U ×        |
|                    | ORG               | OH 🔺                                                       | ;Date       | Last mo       | dified : 22-09-05                      | PSW 16       |              |
|                    | LJMP              | MAIN                                                       | ; * * * * * | ******        | ************                           | ** IP 0      |              |
|                    | ORG               | 0003H                                                      | ;           |               | ************* MICROCONTROLLER          | 2 IE 0       |              |
|                    | LJMP              | EXOISR                                                     | ;****       | *****         | ******                                 | ** TCON 0    |              |
|                    | ORG               | 0023H —                                                    |             |               |                                        | TMOD 0       |              |
|                    | LJMP              | SPISR                                                      |             | ORG           | OH                                     | PCON 0       |              |
|                    |                   |                                                            |             | LJMP          | MAIN                                   | T2CON U      |              |
|                    |                   |                                                            |             | ORG           | UUU3H                                  | SCON U       |              |
| . + + + + +        | ++++++            | **************************************                     |             | LJMP          | EXUISE                                 | SBUF U       |              |
| 1 200000           |                   | INTILIZE I/O PORTS                                         |             | TIMD          | DUIJH<br>PV1TCP                        | TU U         |              |
| MATN               | MOV               | PO #00000100B ; only for sim input ports must be           |             | DOME          | BAILOR                                 | 72 0         |              |
| instru.            | MOV               | P1.#11111111B ; only for sim, input ports must be          | COUNT       | ROIL          | -10000 :DELAY LOOP                     | RCAP2 0      |              |
|                    | MOV               | P2.#01111110B ; only for sim, input ports must be          | COUNTZ      | FOIL          | -50000 ;SAFTY TIME                     |              |              |
|                    | MOV               | P3,#01010111B ; (rEC & tRANS PORTS SET TO 1), onl          |             | 100.000       |                                        | Q Desictor 1 |              |
| ;****              | ******            | **************************************                     |             | ORG           | 0030H                                  | Registeri    | 크믹스          |
|                    |                   |                                                            | MAIN:       | MOV           | TMOD, #00010001B                       | A U          |              |
|                    | SETB              | P3.5                                                       |             | MOV           | IP,#0000001B                           |              |              |
|                    |                   |                                                            |             | MOV           | IE,#00000101B                          | P1 0         |              |
|                    | CLR               | RSO ;1S                                                    |             |               |                                        | R1 0         |              |
|                    | SETB              | RS1                                                        | ;*****      | *****         | ************************************** | * R3 0       |              |
|                    | MOV               | R6,#50                                                     |             | MOV           | PO,#OH ; only for sim, input p         | or R4 95     |              |
| DLY3:              | mov               | r5,#100                                                    |             | MOV           | P1,#11111111B ; only for sim,          | in R5 100    |              |
| dly:               | mov               | r4,#100                                                    |             | MOV           | P2,#0H ; only for sim, input p         | or R6 50     |              |
| aryz:              | dinz              | r5 div                                                     | . * * * * * | ******        | ************************************** | *" R7 0      |              |
|                    | D TM 7            | P6 DIX3                                                    | , i         |               | INTIBIZE 1/0 PORTS                     | SP 7         |              |
|                    | CLR               | RSD                                                        | : cles      | ring al       | l flags                                | PC 62        |              |
|                    | CLR               | RS1 ; 1S                                                   |             | CLR           | 00H                                    | DPTR 0       |              |
|                    |                   |                                                            |             | CLR           | 01H                                    | 0.00.00      |              |
|                    |                   |                                                            |             | CLR           | 02H                                    | IRAMI        | 르비즈          |
|                    | CLR               | 00H ;CLEARING FLAGS                                        |             | CLR           | 03H                                    | 00:0         | <u> </u>     |
|                    | CLR               | 01H                                                        |             | CLR           | 04H                                    | 01: 0        |              |
|                    | CLR               | 02H                                                        |             | CLR           | 05H                                    | 02: 0        |              |
|                    | CLR               | 03H                                                        |             | CLR           | 06H                                    | 04. 0        |              |
|                    | CLR               | 04H                                                        |             | CLR           | 07H                                    | 05.0         |              |
|                    |                   |                                                            |             | CLR           | 08H                                    | 06.0         |              |
| ;*****             | ~~~~~             | DO O                                                       |             | CLR           | 098                                    | 07:0         |              |
|                    | NOD               | P2.0                                                       |             | CLR           | OPU                                    | 08: 0        |              |
|                    | CLR               | D3 5                                                       |             | CLR           | 0CH                                    | 09: 0        |              |
|                    | CDIV              | 20.0                                                       |             | CLR           | 0DH                                    | 0A: 0        |              |
|                    |                   |                                                            |             |               |                                        | 0B: 0        |              |
|                    | NOP ;             | tst                                                        |             | SETB          | EA                                     | 0C: 0        |              |
|                    | MOD               |                                                            |             | 827D          | T T T                                  | 0D: 0        |              |
| Port1              |                   |                                                            |             |               |                                        | OE: 0        |              |
| PO 0000            | 0100              |                                                            |             |               |                                        | UF: U        |              |
| P1 1111            | 1111              |                                                            |             |               |                                        | 10:0         |              |
| P2 0111            | 1110              |                                                            |             |               |                                        | 12. 0        | -1           |
| P3 0111            | J111              |                                                            |             |               |                                        | <u> </u>     |              |
| For Help, press F1 |                   |                                                            |             |               |                                        |              | INS Ready // |
| Dage 2 See         | - 1 2             | 12 At 4 Arm In 7 Col 40 DEC TOV EVE DUE English (U.S. 1037 |             |               |                                        |              |              |

FIGURE 4-1B: SCREEN CAPTURE OF THE ACEBUS DEVELOPMENT ENVIRONMENT IN SIMULATION MODE

Each microcontroller has a specific function, one being communication and acquisition of data as performed by the Communication Microcontroller (CM) and the other being the control of the automation tasks as performed by the Automation Microcontroller (AM).

# 4.1 The Communication Microcontroller

The Communication Microcontroller communicates with the GUI via its onboard serial port and with the Automation Microcontroller and the Analogue-to-Digital Converter (ADC) via its input/output pins (I/O pins). See Appendix Q for a detailed discussion including flow diagrams and code extracts.



FIGURE 4-2: SYSTEM BLOCK DIAGRAM

The function of the CM includes the transmission and reception of prompts to and from the GUI, the control of the ADC, the capture of data (high and low bytes) and storage thereof in two registers in its memory and the transmission of this data to the GUI for analysis. When the analysis is complete the GUI prompts the CM which in turn signals the AM to continue with the test.

While the AM is in control it communicates with the CM in the event of any system errors. If no errors occur, the AM will hand over control to the CM in order for the CM to take the volt-drop readings after the test current has been switched on and the test probes have been lowered onto the bars of the commutator. These readings are then transmitted to the GUI and so the process continues until the last pair of bars has been tested. See Figure 4-3 for the flow diagram of the CM. A discussion follows thereafter.







FIGURE 4-3: FLOW DIAGRAM FOR THE COMMUNICATIONS MICROCONTROLLER

On power up the CM initialises the ADC (i.e. the MAX 1166). With reference to the MAX 1166 datasheet, included as Appendix J, the ADC manufacturer's application information found on page 9 suggests that a 'dummy' conversion should be run in order to put the ADC in a known state after powering up from shut down. The CM then waits for the GUI to transmit a "Status: Ready" prompt, i.e. the ASCII code for the letter 'A'. When this has been received the CM transmits 'b' to the GUI to request the mode of operation in which the test is to be run. If a 'G' is received then the test is to be run in manual mode, the CM then informs the AM of this by Clearing (0) the CM P0.6 so that the AM can enter Powerdown mode.

The CM notes that the test is being run in manual mode by setting flag 04H in the bit addressable ram. This flag is tested in the CM Reading Subroutine in order to establish whether communication with the AM should be attempted. Recalling that AM is in Powerdown mode during a manual test any attempt by the CM to communicate with the AM will be futile and will ultimately leave the CM in a continuous wait loop as it will be waiting for communication signals from the AM that will never arrive. When flag 04H is tested in the Reading Subroutine and is found

to be Set (1), the CM will not attempt to communicate with the AM as the test is being run in manual mode. However, if this flag is tested and is found to be Low (0) the CM will establish communication with the AM as the test will be running in automated mode. If a 'g' is received, the test will be run in the automated mode. The AM will be informed of this by Setting (1) the CM P0.6. Once the CM captures the mode of operation it transmits a 'd' to the GUI to indicate that it is ready to begin the test. As mentioned previously in the discussion relating to the GUI Start control, it is once the 'd' is received that the Start Button is enabled. On clicking the Start button an 'A' is transmitted by the GUI. On receipt of this prompt ('A') the controller begins the test.

For the first pair of bars to be tested the CM transmits an increment prompt to the GUI, which is the ASCII code for the letter 'I', without waiting for an increment signal from the AM. However, after the first pair of bars has been tested, the CM will wait for the increment signal from the AM before transmitting the 'I' prompt to the GUI. The increment signal from the AM is signaled by setting its output P0.0, High (logic level 1). See Appendix K for a complete list of Input/Output port utilisations for both microcontrollers.

The input P2.3 of the CM which is directly connected to P0.0 of the AM is then also read as a High. This High state on the CM input pin is recognised as an increment signal from the AM. This signal from the AM serves to inform the GUI, via the CM, that the system is ready to test the next pair of bars. When the increment prompt is transmitted to the GUI, the Bar\_count subroutine is called in order to ascertain whether the last pair of bars has been tested. If it has been tested, the GUI transmits a 'P' to the CM to acknowledge that the test has been completed. On receiving this prompt the CM in turn informs the AM that the test is over and that Powerdown mode should be entered into. After verifying that the AM has received the command to enter Powerdown the CM itself enters Powerdown.

Note that in manual mode, the CM does not read an increment pulse from the AM as the AM is in Powerdown mode. An increment signal is generated by the user pressing on a switch that is connected to P3.6 which sends the increment prompt to the GUI.

The end of a test is signaled by the receipt of a 'B' prompt from the GUI. This prompt is transmitted when the END control button is clicked on the GUI. The prompt 'B' is transmitted regardless of the mode in which the test has been run. However in the automated mode the CM does not wait for the receipt of this prompt to enter Powerdown as it is already aware of the end of the test due to the AM increment signal and the GUI Bar\_count subroutine.

If the last pair of bars has not yet been tested, the GUI transmits 'p'. When the CM receives this signal it instructs the AM to begin the rotation of the armature under test by setting P0.0 High. The CM waits for the AM to detect the next pair of bars, stop the armature rotation, switch on the test current and lower the test probes onto the detected bars. Once the AM receives a signal from the detection unit, indicating that the test probes are on the commutator, it signals the CM to take a reading. When the CM reads P2.2 as a High it calls the subroutine that captures the volt-drop reading for the pair of bars under test. This subroutine will be discussed in detail later in this chapter. The captured data is stored as a High Byte and Low Byte in two registers in the CM memory (RAM). The CM then transmits each byte to the GUI where it is analysed. Upon completion of the calculation and the analysis process by the GUI, the GUI transmits an ASCII 'E' to the CM. This prompt serves to inform the CM that the data has been analysed and that the GUI is ready to proceed to the next pair of bars.

It should be noted that as an additional feature, one hundred consecutive readings are captured at 1000µs intervals and averaged for each pair of bars. The CM and GUI Reading Subroutines were therefore modified to enable this functionality. The details and discussion offered in this chapter are aimed at providing an understanding of the basic features and concepts before the more complex additional features are discussed in Chapter 6.

On receipt of this prompt, the CM informs the AM that it too is ready to proceed to the next pair of bars by setting its P0.7 High (1). On receiving a High on P1.7, the AM confirms that it is ready to proceed to the next pair of bars by setting its P0.1 High (1) which is the increment signal that the CM reads on its P2.3. When P2.3 is read as a High (1) the CM transmits the increment prompt ('I') to the GUI.

The CM follows this process until the last pair of bars has been tested or until any one of the four possible system errors interrupts the process flow. When such an interrupt is encountered there is a branch from the main program flow to an interrupt handling procedure (an ISR) that caters specifically for the encountered error. Once the error has been 'handled' control is handed back to the main program. These Interrupts, their associated Interrupt Service Routines (ISRs) and critical subroutines will be discussed in the sections that follow. See Appendix L for the source code for both the Communication and Automation microcontrollers.

## 4.1.1.1 External Interrupts

The CM makes use of External Interrupt 0 by enabling and disabling it on demand and initialising it with a low-level interrupt priority and negative-edge activation. The function of this interrupt is to indicate and service system errors if or when they occur and to inform the GUI (by transmitting a 'O') when a manual Emergency Stop has been initiated by pressing on the Emergency Stop switch (on P3.2) on the Test Station or by the activation of a safety interlock. Once the GUI has been informed of an Emergency Stop, the CM enters Powerdown mode.

Error1 occurs when a pair of bars is not detected within a specified time, Error2 occurs when the test probes are not present on the surface of the commutator within a pre-selected default time, Error3 occurs when the test current is not switched off after a pre-selected default time and Error4 occurs when the test probes are not raised to their original position within a specified time. The AM is the first to recognise any errors should they occur as system monitoring signals produced by proximity switches and other transducers are input to the AM via the interfacing digital system. The AM then sets High (1) output pins that correspond to the error that has occurred. See Appendix K and Table 4-5.

| Automation Microcontroller (AM) – Automation Control |      |                                                |  |  |  |
|------------------------------------------------------|------|------------------------------------------------|--|--|--|
| P2.6                                                 | (27) | <b>O</b> – Error 4 – Test Probes Not Raised.   |  |  |  |
| P3.5                                                 | (15) | <b>O</b> – Error 1 – Pair Not Detected.        |  |  |  |
| P3.6                                                 | (16) | <b>O</b> – Error 2 – Test Probes Not Lowered.  |  |  |  |
| P3.7                                                 | (17) | <b>O</b> – Error 3 – Current On-Time Exceeded. |  |  |  |

### TABLE 4-1: TABLE OF THE AM ERROR OUTPUT INDICATION PINS

These output pins are connected to individual input pins on the CM as well as the External 0 interrupt as depicted in Appendix K and Table 4-6.

| (    | Communications Microcontroller (CM) – Communication & Signalling |                                                                     |  |  |  |  |
|------|------------------------------------------------------------------|---------------------------------------------------------------------|--|--|--|--|
| P2.4 | (25)                                                             | I – Error 1 – Pair Not Detected.                                    |  |  |  |  |
| P2.5 | (26)                                                             | I – Error 2 – Test Probes Not Lowered.                              |  |  |  |  |
| P2.6 | (27)                                                             | I – Error 3 – Current On-Time Exceeded.                             |  |  |  |  |
| P3.2 | (12)                                                             | I – External Interrupt 0 – All Error Inputs Connected here as well. |  |  |  |  |
| P3.4 | (14)                                                             | I – Error 4 – Test Probes Not Raised.                               |  |  |  |  |

## TABLE 4-2: TABLE OF THE CM ERROR INPUT INDICATION PINS

When a system error occurs, the AM signals the CM by setting the associated pin High (1). When any one of the error lines go High (1) the interfacing digital system also triggers External Interrupt 0.



#### FIGURE 4-4: FLOW DIAGRAM FOR EXTERNAL INTERRUPT 0 – CM

When the interrupt is triggered the External Interrupt 0 ISR is initiated. Once in the ISR, each input error pin is tested for a High (1) status and when an error pin is identified the associated subroutine is called to handle it.

#### Mr. S. Matadin 2001 027 41

## 4.1.1.2 The Reading Subroutine

The Reading Subroutine is responsible for communication with the Reading subroutine in the AM, controlling the ADC via the ADC control lines, capturing the recorded data from the ADC and transmitting this data to the GUI.



FIGURE 4-5: SYSTEM BLOCK DIAGRAM





FIGURE 4-6: READING SUBROUTINE FLOW DIAGRAM

Once called the first operation undertaken by this subroutine is to verify whether flag 04H has been set. Flag 04H is set when the system is to be operated in Manual mode. When running in Manual mode the AM is in Powerdown and will therefore not respond to any communication signals from the CM. When operating in the Automated mode there is constant communication between the AM and the CM in order to maintain synchronisation.

Whilst operating in Manual mode this communication is fruitless as the CM will be waiting for signals from the AM which will never be transmitted. The CM will therefore be caught in an endless waiting loop. The reason for the testing of the 04H flag is to ensure that the CM knows if it should communicate with the AM (whilst in Automated mode) or if all its communication instructions should be skipped, whilst in Manual mode as discussed earlier in this chapter. Flag 05H is used to indicate that 100 successive readings are to be taken. This is an additional feature and will be discussed in Chapter 6.

If the system is in Automated mode, P2.2 is tested in order to verify that the AM has called and is presently executing its Reading subroutine and to ensure that it is ready to take a reading. The CM then confirms having received this signal by setting its P0.7 pin. As mentioned above, these steps are skipped when in Manual mode. Next, P0.2 is tested in order to verify that the reading about to be taken is within the maximum input range of the ADC and other interfacing circuitry. The exact mechanics behind this process will be discussed in detail in Chapter 5. However in order to facilitate a better understanding, the author will briefly discuss the principle and concept used.

Although the test is setup by the technician to record values within a particular range, 200mV to 350mV, the possibility exists that a volt-drop equal to the potential of the Test Supply can be recorded across a pair of bars. This will occur when the pair of bars being tested is connected to an open circuited winding. According to tests carried out by the author, the typical Test Supply potential when setting the aforementioned range is between ten and fifteen volts (10V to 15V) depending on the type and rating of the armature under test. As will be explained in chapter five the first stage in the input circuitry is more than capable of handling these values as well as negative input

potentials, as in the case when the polarity of the Test Supply Current or the orientation of the input test probes is reversed. The ADC input stage cannot handle such potentials. The ADC absolute maximum rating for the input pin is positive 6 volts to negative 0.3V (+6V to -0.3V). It is for this reason that an Analogue Switch (MAX 4622) is placed on the ADC input line. This switch is only switched on by the CM when the interfacing analogue circuitry confirms that the potential on the ADC input line is safely within its operating range. This circuitry is explained in Chapter 5, Section 5.3.

If the CM P0.2 is High (1), the Analogue Switch is off due to the input value being out-of-range. In this case 1111 1111 (binary code) is transmitted as the High Byte and 1111 1110 (binary code) is transmitted as the Low Byte to the GUI as the reading for the pair presently under test. Upon receiving this value the GUI immediately recognises the out-of-range reading and displays a possible open circuit on this pair of bars. After this transmission the CM sits in a wait loop, waiting for the GUI to transmit the Continue Test prompt, i.e. 'E'. Note that in order to facilitate the 100 reading additional feature, a second prompt is used to verify that all 100 readings have been captured. This prompt is the ASCII code for the character 'S'. Further details on this additional feature will be provided in Chapter 6.

If P0.2 is low, the Analogue Switch is and the ADC can read the input potential. The ADC control pins are then prompted and read by the CM in order to capture a reading. The High Byte is stored in the CM register 5, R5 and the Low Byte is stored in the CM register 3, R3. See Appendix K for a list of the registers used for both the AM and CM.

The next step is to check if R5 holds 1111 1111 and R3 holds 1111 1110. This is the previously mentioned out-of-range default value. If the default value has been recorded, the value held in R3 is changed to 1111 1111. This new value and the out-of-range default value should normally not be recorded on a non-fault bar. As discussed in Chapter 3, the ASCII code for the letter 'z' is transmitted to the GUI before the High Byte (the value held in R5) of the captured reading is transmitted to the GUI. The ASCII code for the letter 'y' is transmitted to the GUI before the Low Byte (the value held in R3) of the captured reading is transmitted to the GUI. The CM

then waits for the GUI to process the transmitted data and informs the CM that it is ready to continue by transmitting an 'E' (the Continue Test prompt).

On receiving this prompt the CM again tests if flag 04H is set High (1). If it is not set High, then using P0.7 and P2.2 as described above, the CM communicates with the AM to inform it that the reading has been successfully captured, transmitted and analysed and that it should ready itself to proceed with the next task in the process. If the flag 04H is set, then this communication process is skipped as mentioned earlier. The CM then switches off the analogue switch on the ADC input line in order to protect the ADC in the event of an out-of-range input value on the next pair of bars. The subroutine is then exited and control is returned to the calling program at the statement immediately following the CALL instruction.

# 4.1.2 ADC Control

The ADC control pins and the associated connection pins on the CM are listed below. The  $\overline{CS}$ , Convert Start ADC input pin, is connected to the CM P3.5 pin which is configured as an output pin. The R/ $\overline{C}$ , Read/ $\overline{Convert}$  ADC input pin is connected to the CM P2.0 pin which is configured as an output pin. The  $\overline{EOC}$ , End Of Conversion ADC output pin, is connected to the CM P2.1 pin which is configured as an input pin.

And finally, the HBEN, High-Byte Enable ADC input pin is connected to the CM P3.3 pin which is configured as an output pin. Figure 4-7 depicts the flow diagram that describes the process that is followed when the ADC captures a reading. Figure 4-8 depicts the flow diagram that shows the steps taken by the CM to implement the process followed in Figure 4-7. Figure 4-9 depicts the timing diagram for the ADC control process. See Appendix J to view the ADC (MAX 1166) datasheet.





FIGURE 4-7: FLOW DIAGRAM FOR THE ADC CONTROL PROCESS





### FIGURE 4-8: FLOW DIAGRAM OF STEPS TAKEN BY THE CM TO IMPLEMENT THE ADC CONTROL PROCESS



High, After the First Rising Edge of  $\overline{CS}$  Following the Third Falling Edge

### FIGURE 4-9: TIMING DIAGRAM FOR ADC CONTROL PROCESS

#### Mr. S. Matadin 2001 027 41

# 4.2 Automation Microcontroller

The Automation Microcontroller (AM) controls the Physical Test Station based on input signals received from the Physical Test Station itself, as well as commands and prompts received from the CM and the GUI via the CM.



FIGURE 4-10: SYSTEM BLOCK DIAGRAM

This section will describe the tasks undertaken by the AM and the manner in which these tasks are executed. See Appendix Q for a detailed discussion including flow diagrams and code extracts. The previous section provided detailed explanations on all the relevant microcontroller functionalities, such as Timers, Interrupts, Subroutines etc. This section will concentrate solely on discussing the AM's use of these functionalities to efficiently complete specific tasks. In order to provide an overview of the AM's process flow a diagrammatic depiction is presented in the form of a flow diagram in Figure 4-12.

# 4.2.1 Explanation of functions, tasks and flow process

The program for the AM was developed using three control levels based on interrupts and interrupt priorities. The first level is the base level where the Main program has control. Here the required initialisations are carried out as well as the control and timing of the Armature Drive Motor and the calling of Error 1 subroutine, should Error 1 occur. When a pair of bars is detected, External Interrupt 1 is triggered and the External Interrupt 1 Interrupt service routine assumes control thereby entering the second control level. The EX1 ISR is responsible for stopping the Armature Drive Motor, the lowering and raising of the Detection Unit, switching of the Test Current, communication with the CM in order to capture the volt-drop readings and calling of error subroutines should the associated errors occur. The third level is the domain of the External Interrupt 0 (EX0) ISR. EX0 is assigned a higher priority than EX1 and can therefore interrupt the EX1 ISR as in the case when the test probes have reached the surface of the detected bars. In fact this is the function of EX0, i.e. to ascertain the status of the Detection Unit. When the test probes reach the surface of the bars EX0 is triggered, the Detection Unit Drive Motor is stopped and the time taken for the probes to be lowered to the surface of the bars is recorded in the EX0 ISR. EX0 is also triggered when the test probes have been raised to their initial position.

In summary, the base level allows for initialisations and also prompts the Armature Drive Motor to begin the rotation of the armature under test. When a pair of bars is detected EX1 is triggered and EX1s ISR is initiated as the second control level and assumes control from the base level. In the EX1 ISR, the Armature Drive Motor is stopped, the Detection Unit Drive Motor is prompted to lower the Detection Unit and the Test Current is switched on. The time taken for the test probes to reach the bars allows the test current to settle. Once the test probes on the Detection Unit reach the surface of the bars EX0 is triggered, the EX1 ISR is interrupted and the EX0 ISR executes initiating control level three and assuming control from the EX1 ISR. When the EX0 ISR has stopped the Detection Unit Drive Motor and has completed recording the relevant times, the ISR is exited and control is handed back to the EX1 ISR hence control level two.

The EX1 ISR then proceeds to communicate with the CM and a volt-drop reading is taken after which the Detection Unit Drive Motor is prompted to raise the Detection Unit. When the Detection Unit Drive Motor reaches its initial position EX0 is again triggered thereby initiating control level three and assuming control from the EX1 ISR and control level two. The EX0 ISR stops the Detection Unit Drive Motor and exits handing control back to EX1 ISR and control level two. EX1 ISR is then also exited and control is handed to the base control level and the Main program. Based on the commands from the GUI via the CM, the cycle is repeated until the last bar is tested. See Figure 4-11 for a diagrammatic representation of the above discussion. A more

detailed explanation of the Automation Microcontrollers process flow follows after Figure 4-12.



FIGURE 4-11: DIAGRAMMATIC REPRESENTATION OF THE THREE LEVEL CONTROL SYSTEM






# FIGURE 4-12: FLOW DIAGRAM FOR THE AUTOMATION MICROCONTROLLER

The AM first executes an initialisation process in which all the timers, interrupts and input/output ports that will be utilised for the duration of a test are initialised. Thereafter the AM waits for the start pulse from the CM on P1.0. Upon receiving this pulse, the AM tests P1.6 to ascertain whether the test will be run in the Automated or Manual mode. If P1.6 is High (1) then the Manual mode has been selected and the AM initiates Powerdown mode. If P1.6 is Low (0) then the Automated mode has been selected and the AM Sets (1) and Clears (0) P0.1, which is responsible for signaling 'Increment The Number Of Bars'.

The AM then waits for the GUI to inform it, via the CM, whether or not the last pair of bars has been tested. If P3.0 is Low (0), then the last pair of bars has been tested and the AM waits for the End command from the GUI via the CM. Once this is

received, the AM enters Powerdown mode. If P3.0 is High (1), then the last pair has not been tested and the command is given to the Armature Drive Motor to initiate the rotation of the armature under test by setting P0.4 High (1). The AM then waits for the next pair of bars to be detected while timing the period between the initiation command and moment when the pair of bars has been detected. Detection of a pair of bars triggers External Interrupt 1 (EX1). If EX1 is not triggered before the maximum allowable time for detection is exceeded, Error 1 has occurred and the associated subroutine is called. Recall that Error 1 occurs when a pair of bars has not been detected within the maximum allowable time. The maximum allowable time for detection for each of the first three pairs is a preset value of 10 seconds.

The time duration recorded on the third pair of bars is stored to be used to calculate a tolerance or the maximum allowable time for the detection of a pair of bars after initiating the rotation of the armature under test. This new maximum allowable time will be the Detection Reference Time for the duration of the test. The time recorded on the third pair plus twenty percent is used as the reference value, i.e.

#### Detection Reference Time = Third Pair Time Recording x 1.2

From the fourth pair of bars onwards, if EX1 is not triggered before the Detection Reference Time has expired, Error 1 subroutine is called. The use of the Detection Reference Time allows for greater control of the system as the unique reference value that is used for the duration of the test is based on the bar widths and spaces between the bars of the particular armature under test. In this way an error is detected sooner than if a preset value that catered for all armatures was used, hence the possibility of excessive damage to the system and the armature under test due to a system error is reduced. The reason that the Detection Reference Time is calculated based on the time recorded for the third pair of bars is simply because the system is given time to settle during the first and second cycles.

The question that now arises is what happens if a detection error occurs on the third pair of bars, i.e. when the time is being recorded to calculate the Detection Reference Time? The answer is that if Error 1 was called before External Interrupt 1 was triggered, then a time period will not be recoded as all time recordings is done by the External Interrupt 1 interrupt service routine (ISR). The Error 1 subroutine does not have the capability to perform any time interval recording. Hence the value that will be used to calculate the Detection Reference Time will now be recorded on the next detection cycle, i.e. on the fourth pair of bars. However, to introduce redundancy, the Error 1 subroutine also takes appropriate measures when this event occurs. Note that the use of timers to record time, set preset intervals and introduce delays is discussed in Section 4.1.4.

When a pair of bars has been detected before the Detection Reference Time has exceeded, hence triggering EX1, the rotation of the armature under test is immediately stopped by Clearing (0) P0.4. The rest of the process from this point forward is executed in the External Interrupt 1 ISR. From this ISR, the signal to the Detection Unit Drive Motor to begin lowering the Detection Unit is given. The Test Current is also switched on by Setting (1) P2.7. The Test Current is switched on before the Test Probes on the Detection Unit reach the bars as opposed to when they are already on the bars. This is done to prevent large voltage spikes due to the switching of the large test current to the inductive load (i.e. the inductance (L) of the armature under test), from damaging the input circuitry.

The Test Probes must not be confused with the Test Current Probes. The Test Current Probes are the probes from which the Test Current is injected though the armature under test via an IGBT. The Test Current Probes are lowered onto the commutator and are fixed into place at the start of the test and are in no way attached to the Detection Unit. These probes are not raised off or lowered onto the commutator as in the case of the Test Probes on the Detection unit. The Test Current is switched on when a reading is to be taken and is switched off when a reading is complete and the Test Probes have been raised off the surface of the commutator.

The Test Current probes are never raised off the surface of the commutator at any time during the test. When the IGBT is switched off, the collapsing magnetic energy that is stored in the armature is dissipated via an onboard fly-back diode. Fly-back diodes are a standard feature on most modern IGBT units and are built into the semiconductor structure of the IGBT to provide onboard protection in a single unit. The Test Current is switched on between 2 and 4 seconds after it was last switched off

depending on the speed of rotation and the spacing of the commutator bars. The low switching frequency allows for sufficient time for the stored magnetic energy to be dissipated via the onboard fly-back diode hence there is no arcing.

The spring mounted Test Probes are fixed onto the Detection Unit. These probes are lowered and raised when a reading is to be taken. A minute current flows through these test probes due to the extremely high input impedance of the Data Acquisition Module, more specifically the input impedance of the precision Instrumentation Amplifier, the INA 118, as discussed in Section 5.3. It is due to this high input impedance and the low Test Supply Voltage of typically +15VDC maximum that arcing does not occur when the test probes are raised off and lowered onto the Commutator when the Test Current is flowing through the armature. Tests on the Data Acquisition Module proved that no arcing takes place when the test probes are raised off and lowered to flow through the armature.

The only undesirable electrical effect that would have to be catered for is the bouncing of the input signal due to the mechanical bounce created when spring loaded test probes make contact with the surface of the bars. This bounce will create oscillations in the input signal however, the amplitude of these oscillations should not exceed the amplitude of the input signal when it has settled. This means that although there will be oscillations due to the bounce, there will be no voltage spikes as created when switching the Inductive load. In order to cater for the above-mentioned oscillations, the ADC is instructed to perform acquisition and conversion only after a delay period has been enforced.

If the test probes on the detection unit do not reach the surface of the bars within a preset time then Error 2 occurs and the associated subroutine is called. When the test probes reach the surface of the bars within the allocated time, the Detection Unit outputs a signal which triggers External Interrupt 0 (EX0). As mentioned previously, EX0 is assigned a higher priority than EX1. Error 2 will be initiated when the preset allowable time of ten seconds, for reaching the surface of the bars, expires before EX0 is triggered. If EX0 is triggered before the aforementioned time expires, the EX0 ISR is initiated. The EX0 ISR stops the Detection Unit Drive Motor and stores the time

that was taken for the test probes to reach the surface of the bars by copying the values held in the timer registers. Once on the surface of the bars, the AM signals the CM that a volt-drop reading can now be taken be Setting (1), P0.0. The AM then waits for one of two signals from the CM. The first is the signal received on P1.7, which informs the AM that the reading has been successfully taken by the CM, transmitted to the GUI, analysed and stored. Now both the GUI and the CM are ready to proceed.

The second signal is received on P3.1 which informs the AM that the maximum allowable time that the Test Current can be switched on for an individual volt-drop reading has been exceeded. The timing of the Test Current on-time is carried out by external interfacing circuitry and is discussed in Section 5.1.6. If P3.1 is Set (1) before P1.7, Error 3 has occurred. The Error 3 subroutine is then called and due to the severity of the effects of such high currents being applied to the armature under test for a prolonged period of time, an Emergency Stop is automatically initiated and the AM immediately halts the task that was being carried out, switches off the Test Current by Clearing (0) P2.7 and safely shuts the system down before entering Powerdown mode. If however, P1.7 is Set (1) before P3.1 then the volt-drop reading will be captured with no system irregularities and the process flow continues as normal.

The next step is to prompt the Detection Unit Drive Motor to begin raising the test probes off the surface of the bars. Here again EX0 is triggered when the Detection Unit reaches its initial position. If, however, EX0 is not triggered before the maximum allowable time has elapsed Error 4 occurs and the associated subroutine is called. This maximum allowable predetermined time for this process is called the Unit Raising Reference Time. This period is derived by adding twenty percent of the time taken for test probes to reach the surface of the bars (during lowering) to the recorded time itself, i.e.

Unit Raising Reference Time = Recorded Test Probe Lowering Time x 1.2

When EX0 is triggered before the Unit Raising Reference Time expires, the Detection Unit Drive Motor is stopped and control is returned to the EX1 ISR, which in turn returns control to the Main program. The Main program then transmits an Increment signal to the GUI via the CM and waits for the response. This cycle continues until each pair of bars on the commutator of the armature under test has been tested.

#### 4.2.1.1 External Interrupt 1 and External Interrupt 1 ISR

External Interrupt 1 is triggered when the optical sensors on the detection unit detects a pair of bars and signals this event via a D flip-flop and an interfacing digital network. On triggering this interrupt, the program is immediately paused and the program vectors off to the location in memory that is allocated to the EX1 ISR (0013H). Due to its size, eight bytes is too little space to hold the entire ISR. The ISR has to therefore be located elsewhere in memory and identified by a label. Once at the vectored address, i.e. 0013H, a long jump is initiated to the ISR using the label EX1ISR to identify the ISR's location in memory. The label is the starting point of the ISR and once identified, the ISR executes and returns control to the interrupted program i.e. the Main program in this case using the Return Form Interrupt (RETI) statement. Figure 4-13 depicts the flow diagram for the EX1 ISR.





FIGURE 4-13: EXTERNAL INTERRUPT 1 ISR FLOW DIAGRAM

On entering the ISR, the first task carried out is to stop the rotation of the Armature Drive Motor by Clearing (0) P0.4 and also stopping the Timers by Clearing (0) TR1 and TR0. The next task is to Clear (0) the D flip-flops that produce the triggering pulse. This is accomplished by setting port pin P0.5 High (1) for a short period before clearing it again. This is done to ensure that the D flip-flops are in a known state for the next detection cycle. The operation of the input detection circuitry will be discussed in Chapter 5. Next, the EX1 flag, 04H, is set. This indicates to the Main program that External Interrupt 1 was triggered and that EX1 ISR did execute.

Following this, the ISR checks whether the pair of bars that were detected are the third pair. If it is the third pair, then the values that are stored in the timer registers are copied into registers R4 (high byte) and R5 (low byte). Further, the value stored in register R3 (Timer 1 overflow count) is copied into register R6 in Register Bank 0, see Appendix K. These values are used in the calculation of the Detection Reference Time.

The Detection Unit Drive Motor is prompted to begin lowering the unit and the test probes onto the surface of the commutator by calling the RUN\_DWNX subroutine. Once the test probes are on the surface of the bars the READING subroutine is called. This subroutine communicates with the CM READING subroutine in order to capture a volt-drop reading for that pair of bars. When the process reading is complete the

RUN\_UP subroutine is called to raise the bars to its initial position. Note that all subroutines will be discussed in the section entitled Subroutines.

Finally, prior to exiting the ISR and returning control to the Main program, the timer registers and the Timer 1 overflow count register, R3, is reloaded with values that will force an almost immediate timer overflow thereby forcing the maximum allowable time to be exceeded, as discussed earlier. Control is then returned to the Main program.

#### 4.2.1.2 External Interrupt 0 and External Interrupt 0 ISR

External Interrupt 0 is triggered when the test probes on the Detection Unit has reached the bars under test (when the unit is being lowered), the test probes have been raised to their initial position (when the unit is being raised), when an Emergency stop has been initiated (by pressing the Emergency Stop switch on the Test Station) or if one of the systems Safety Interlocks are triggered. When triggered the program vectors off to 0003H where it is redirected using a jump statement to the location in memory where the label EX0ISR resides. The location of this label is the beginning point of the EX0 ISR code.





FIGURE 4-14: EX0 ISR FLOW DIAGRAM

The first task undertaken by the interrupt service routine is to test port pin P1.5. If this pin is High (1) then EX0 was triggered by the initiation of an emergency stop or one of the systems Safety Interlocks was triggered. The ISR then jumps to the End label where the input/output ports are cleared and Powerdown mode is entered into. If P1.5 was Low (1) then the interrupt was triggered by the test probes reaching the surface of bars when being lowered or its initial position when being raised.

However, the ISR has to further ascertain if the interrupt was triggered while the ERROR READING PROCEDURE Subroutine was being executed by testing flag 0EH. This flag is Set (1) by the ERROR READING PROCEDURE Subroutine when a manual reading has to be taken due to an error and when it is Set (1), the EX0 ISR is to ignore the interrupt and exit the ISR. The ERROR READING PROCEDURE Subroutine will be further discussed later in this chapter. When flag 0EH is tested and found to be Low (0), the interrupt was not triggered during the execution of the ERROR READING PROCEDURE Subroutine. Both the raising and lowering motion is then stopped by Clearing (0) the port pins responsible for prompting the action, i.e. P0.2 and P0.3 respectively. Thereafter, the Timers are stopped by Clearing (0) TR1

and TR0. Following this, flag 0CH is tested. This flag is set by the RUN\_UP subroutine to indicate that the Detection Unit was in the process of being raised at the moment of the interrupt.

If 0CH is set, i.e. High (1), the Detection Unit was being raised before the ISR, which means that a reading was already completed and the test probes are off the surface of the bars and at its initial position when this interrupt was triggered. It is then required that the Test Current is switched off and this is accomplished by Clearing P2.7. If flag 0CH was not set, i.e. Low (0), then the interrupt was triggered when the test probes reached the surface of the bars in order to take a volt-drop reading. The Test Current is therefore left on. After this process a delay is enforced by calling the DELAYLOOP subroutine.

The EX0 flag, 08H, is then set to indicate that this interrupt has been triggered and that the associated ISR has executed. Next, flag 0CH is retested. In this case if the flag is not set (which implies that the interrupt was triggered when the Detection Unit was being lowered) the values in the timer registers are stored in Register Bank 1, register R1 (high byte) and R2 (low byte).

The Timer 1 overflow value that is stored in register R3 is copied into register R7 in Register Bank 0, see Appendix K. These values are recalled and used to calculate the Unit Raising Reference Time.

Prior to exiting and returning control to EX1 ISR the timer registers and the Timer 1 overflow count register, R3, are reloaded to force an almost immediate timer overflow hence forcing the maximum allowable time to be exceeded, as discussed earlier. Control is then handed back to the EX1 ISR by executing the RETI statement.

# Chapter 5 Hardware Design

This chapter discusses the hardware design that enables the software that is executing within the embedded mirocontrollers and the GUI to be transformed into physical pulses and signals that control actuators that initiate the motion of objects in the physical world. Hardware also converts, conditions and monitors signals that are produced by transducers, which monitor the external environment, into signals and pulses that are decipherable and understood by the embedded microcontrollers.

This enables the system to respond to various inputs by executing the appropriate blocks of code in response to specific events. The author used the Protel Design Environment to draw schematics and develop the layout and routing of the PCB (Printed Circuit Board). The controller circuit was drawn in modules that link to each other using Netlables (this is a functionality that is available in the Protel Development Environment). The "Bottom-Up" design approach was used to develop this schematic. This approach involves drawing modules on independent sheets and using a Master Sheet (Entitled "Master" in this design) to facilitate linking between all schematic sheets using the above-mentioned Netlables.

Drawing schematics in modules that link to each other makes the circuit easy to understand and modify if need be, as it is uncluttered and easy to isolate a problem area. Each module will be discussed independently however; the reader will be informed as to how the module being discussed is connected to interfacing modules. The complete circuit schematic which includes all the modules discussed can be found in Appendix M, all datasheets can be found in Appendix J, and all test results are presented in Chapter 7. Also see Appendix R for a more detailed discussion covering all hardware modules.

# 5.1 Digital System Design

The digital system includes all digital circuitry, from the embedded controllers to the logic gates and drivers that are used in signal conditioning and level shifting respectively. The first modules to be discussed will be the Automation Microcontroller module and the Communication Microcontroller module. In both cases the 40 pin AT89S51 microcontroller was used.

# 5.1.1 The Communication Microcontroller Module

The Communication Microontroller module interfaces and communicates with the ADC by pulsing and reading the ADC control pins, HBEN,  $\overline{CS}$ ,  $\overline{EOC}$  and  $R/\overline{C}$  as well as receiving the 8 bit output from the ADC parallel output bus. This module also communicates with the Automation Microcontroller, reads the status on the Manual Reading switch and reacts to a forced emergency stop whether it was initiated by pressing the Emergency Stop switch or by the activation of any one of the four safety interlocks. See Figure 5-1 for a representation of the Communication Microcontroller Module and Appendix M for the complete circuit schematic.



FIGURE 5-1: THE COMMUNICATION MICROCONTROLLER MODULE.

The on-chip oscillator is driven by a quartz crystal X1 with the aid of two stabilising capacitors (C1 and C2). Using a 12MHz crystal and noting that each machine cycle is 12 oscillator periods, each machine cycle is calculated to be 1µs in duration, as shown below.

$$T = \frac{1}{12MHz} = 83.33333 \times 10^{-9}$$
$$T_{\text{Machine Cycle}} = 83.33333 \times 10^{-9} \times 12 \text{ periods} = 1 \mu \text{s}$$

The reset pin (9) of the microcontroller is connected to the Reset pin of MAX 701 (see Appendix J for a complete datasheet for the MAX 701). The MAX 701 is a

supervisory circuit that monitors the supply to the microcontroller in order to detect Brown-out conditions. A Brown-out<sup>5</sup> occurs when the supply falls to a level that is appreciably lower than the normal supply level for a prolonged amount of time. This will cause components that are powered by this supply to behave erratically and unpredictably. In the event of a Brown-out, which in the case of the MAX 701 is anything equal to or less than 4.65V, the Reset pin of the MAX 701 goes High (4.65V or the present available positive logic High voltage) and is held at this level until the supply returns to its normal rating.

This procedure effectively holds the microcontroller in a Reset state until the supply is within its normal operating range. Note that holding the Reset pin (9) of the AT89S51 high (1) for at least two machine cycles effectively resets the microcontroller. The MAX 701 also provides a Reset-On-Power-up pulse to the microcontroller. This ensures that the microcontroller is in a known state on power-up i.e. all its input/output ports, internal registers, special function registers, program counter etc. are loaded with the default reset values reflected on Page 6 of the AT89S51 datasheet found in Appendix J.

The author originally used the RC network to provide the reset pulse on power-up but the author's experience has shown that this network behaves erratically and is therefore unreliable in environments where EMI (Electromagnetic Interference) is a factor.

The MAX 701 solved the EMI related problems, specifically relating to Reset-On-Power-up. There were various other methods adopted to negate the effects of EMI on the circuit as a whole. Some of these include, but are not limited to, proper PCB layout and design, which involved, amongst other things, placing the microcontrollers in the center of the board and the quartz crystals as close to the microcontroller oscillator pins (XTAL1 and XTAL2) as possible.

<sup>&</sup>lt;sup>5</sup> Brown-out refers to the condition where the rms supply voltage falls to a value that is appreciably lower than the normal value but not zero. In the case of a Black-out, the supply falls to zero, i.e. there is a complete loss of the supply.

Reduced track lengths, avoiding 90° bends in tracks, routing power and signal tracks away from each other, designing multilayer PCBs with paired power and ground planes, placing  $0.1\mu$ F capacitors across all ICs with the addition of a  $4.7\mu$ F capacitor directly across the microcontrollers. Along with these, the circuit was kept compact and a common grounded guard ring was routed around the edge of the PCB.

The first line of defense against EMI is the metal enclosure in which the circuit is housed. Keeping the size of the holes on the enclosure as small as possible and ensuring that the lid makes proper electrical contact with the rest of the enclosure, results in the metal enclosure forming a Faraday Cage around the circuit. To further reduce the impact of EMI via conductors from the external environment, shielded cables were used.

The interconnections between the Automation and Communications microcontrollers are summarised in the respective Microcontroller Port Utilisation tables found in Appendix K. The connections from the Communications Microcontroller to other devices are also summarised in the Communications Microcontroller Port Utilisation table found in Appendix K. Note that the  $\overline{EA}$  (External Access) pin is connected to VCC. When the  $\overline{EA}$  pin is held low (0) the microcontroller executes programs from external ROM. Holding the pin high (1) forces the microcontroller to execute programs from internal ROM.

The input to External Interrupt 0, P3.2, is an OR and NOR gate network which allows any of the system errors (Error 1, 2, 3 or 4) or an Emergency Stop, labeled "*EmgcyStop\_SW&Intlks*", (initiated by pressing the Emergency Stop switch or triggering a Safety Interlock) to trigger the interrupt. The Emergency Stop signal is an input to both microcontrollers that enforces a complete system stop by interrupting both microcontrollers and forcing them to enter a safe shutdown procedure before entering power-down themselves. This Emergency Stop is initiated by the triggering of switches (push-button and interlock) on the physical system and should not be confused with the Emergency Stop that is initiated by clicking on the Emergency Stop button on the GUI, although both events yield the same end result. Including Emergency Stop triggers from various sources makes the entire system safer in the occurrence of an undesirable or dangerous event. The Emergency Stop is generated by an independent network which will be discussed later in this chapter.

#### **5.1.2** The Automation Microcontroller Module

The Automation Microcontroller module is responsible for the control of the system's actuators which include the Armature Drive Motor and the Detection Unit Drive Motor as well as the switching of the Test Current Supply via an IGBT. It also receives input signals from the physical system to indicate the system status and the occurrence of events whether desirable or undesirable.

These input signals include the signal indicating the detection of a pair of bars, labeled "*u2\_EX1\_Bar\_Dect*", the signal that indicates that the Detection Unit has reached its initial position, labeled "*Detect\_Unit\_Switches*", as well as Emergency Stop signals, labeled "*EmgcyStop\_gui*" and "*EmgcyStop\_SW&Intlks*". All of the above mention signals, except "*EmgcyStop\_gui*", are generated by independent networks which will be discussed later in this chapter. The "*EmgcyStop\_gui*" signal is generated by the Communication Microcontroller to inform the Automation Microcontroller that an Emergency Stop has been initiated via the GUI. See Figure 5-2 for a representation of the Automation Microcontroller Module and Appendix M for the complete circuit schematic.



FIGURE 5-2: THE AUTOMATION MICROCONTROLLER MODULE

The Automation Microcontroller is set up in exactly the same way as the Communications Microcontroller. The interconnections between the Automation and Communications microcontrollers are summarised in the respective Microcontroller Port Utilisation tables in Appendix K. The connections from the Automation Microcontroller to other devices are also summarised in the Automation Microcontroller Port Utilisation table in Appendix K.

The input to External Interrupt 0, P3.2, is an OR and NOR gate network which triggers the interrupt in the occurrence of any of the two Emergency Stop events ("*EmgcyStop\_gui*" and "*EmgcyStop\_SW&Intlks*") or the occurrence of the bar detection event ("*Detect\_Unit\_Switches*"). The input to port pin P1.5 is also an OR gate with "*EmgcyStop\_gui*" and "*EmgcyStop\_SW&Intlks*" as input signals. The reason for this becomes apparent when the reader recalls the discussion in Chapter 4 concerning the External Interrupt 0 ISR for the Automation Microcontroller.

The first task undertaken by the interrupt service routine is to test port pin P1.5. If this pin is High (1) then EX0 was triggered by the initiation of an emergency stop".

As soon as External Interrupt 0 (EX0) is triggered, the associated ISR first checks if P1.5 is High (1), indicating that any one of the Emergency Stop sources had been triggered. If this is the case, the system shut down and controller power-down procedures are entered into. If this not the case and P1.5 is Low (0) then the interrupt was triggered due to the detection of a pair of bars, i.e. the "*Detect\_Unit\_Switches*" signal. Hence this port pin is only used to decipher whether an interrupt was initiated due to an emergency stop or the detection of a pair of bars.

### 5.1.3 The Bar Detection Module

The Bar Detection module is responsible for alerting the Automation Microcontroller when a pair of bars has been detected. The actual detection of each copper bar on the commutator of the armature under test is undertaken using optical sensors that detect the reflection of an emitted laser beam. The Omron E3X-NA11 amplification unit together with the Omron E32-DC200 fiber optic unit (with reflective sensors) was used to carry out this task. See Appendix J for complete datasheets. The combination of these two units allow for the accurate detection of a copper bar from a distance of between 50mm and 70mm above the surface of the commutator. See Figure 5-3 and Figure 5-6 for images of the commutator and the copper bars that are to be detected.



FIGURE 5-3: TYPICAL COMMUTATOR OF AN ARMATURE UNDER TEST



FIGURE 5-4: COPPER BARS ON A COMMUTATOR

The above images depict a typical commutator, however in this case, the reader will notice that there are grooves present between each copper bar. Grooves are created by a process called Undercutting which entails the use of a motorised, revolving, circular saw blade typically 20mm in diameter. These grooves are not present in all commutators that are to be tested. In some instances the armature that is to be tested still has an epoxy resin (from the VIP stage of the armature refurbishing process) between the bars. Due to the Turning stage (using a lathe) in the armature refurbishing process the surface of the commutator is smooth, with the copper bars and the epoxy resin being exactly the same level. It is for this reason that a high accuracy proximity sensor was abandoned. After testing various sensors, the optical sensor produced the best results and proved to be the most reliable means of detecting the copper bars.

The sensor is set on Light On mode. In this mode, an open collector NPN transistor, which is the output of the Omron E3X-NA11, is switched on when a reflected beam is detected by the reflective sensor.

The optical sensors are supplied with +15V and the outputs from these sensors provide a clock pulse to respective positive-edge-triggered D flip-flops. The output of the D flip-flops provide the two inputs to the NAND gate which in-turn triggers the External Interrupt 1 pin on the Automation Microcontroller when driven low (0). This signal, " $u2\_EX1\_Bar\_Dect$ ", must go low (0) only when a pair of bars has been detected. It must return to high (1) when the D flip-flops are cleared by the Automation Microcontroller and go low (0) again when the next pair or bars are detected. The network shown in Figure 5-5 fulfils the above triggering requirements. See Figure 5-7 for a timing diagram for the bar detection network.



**FIGURE 5-5: BAR DETECTION NETWORK** 

The voltage divider resistor-network ensures that 5V is present at the output when the transistor is off (implying that no bars have been detected) and 0V ( $V_{CE}$  to be exact) is present at the output when the transistor is on (implying that a bar has been detected). A 6.2V zener diode, with a very low response time, or a Tranzorb, depending on the operating environment, is placed in parallel with the output resistor for protection purposes to ensure that the output of the voltage divider resistor-network will not exceed 6.2V.

Initially, the network that was used as a level shifter to provide a TTL level input to the digital interface from the optical sensor output of 0V to 15V was a simple series resistor and zener diode network as depicted in the figure below.



FIGURE 5-6: INITIAL LEVEL SHIFTER NETWORK

It may seem like an adequate solution, however, when one considerers the fact that the zener diode has response time, although very small, one will become aware of a potential problem that may arise when using this series network. The instant that the NPN transistor in the output circuit of the optical sensor is switched off, the zener diode is still essentially "off" as it does not respond instantaneously to the applied source. Ideally, the zener diode will be seen as an open circuit to the rest of the network for this period of time.

This being the case, the output of this series network, which is the input to the NOT gate, will for all intents and purposes, be pulled up to +15V by the series resistor which acts as a pull-up resistor for the period before the zener diode responds or "switches on". This +15V input is well above the absolute maximum rating for the IC and will ultimately damage it. The author used the word ultimately because, due to the very small response time of the zener diode, the IC will only be exposed to +15V for a very short period. The IC may therefore not be damaged instantly however, repeated exposure to such high input potentials will damage the IC over time.

It is for the above reason that the voltage divider comprising of a  $1k\Omega$  and  $2k\Omega$  with adequate protection was used. This network produces a 5V drop across the  $1K\Omega$  resistor when a +15V source is applied.

$$V_{R1K} = \frac{1K}{1K + 2K} \times 15V = 5V$$

This network ensures that the input to the NOT gate is exposed to a maximum of 6.2V which is within recommended operating range for the IC.

The output of the resistor-zener network enters a NOT gate which inverts the signal producing an output high (1) when a bar has been detected and a low (0) when no bars have been detected. The output of this NOT gate clocks a positive-edge-triggered D flip-flop whenever a bar has been detected. Because the D input of the flip-flop is tied high (Vcc) when clocked, the output of the flip-flop, Q, goes high. The output of the D flip-flop provides the input to the NAND gate which triggers the external interrupt pin on the Automation Microcontroller. The microcontroller clears both D flip-flops in order to put them in a known state, as soon as it enters the Interrupt Service Routine (ISR) that it vectored to when a pair of bars have been detected.



FIGURE 5-7: TIMING DIAGRAM FOR THE DETECTION NETWORK

The discussion that follows is with reference to Figure 5-7 and Figure 5-5 and describes the operation of the Bar Detection module. Assume that the commutator is rotating slowly and Sensor 1 detects a bar, the output of the NOT gate [point A] is

high (1). The low-to-high transition (positive edge) clocks the D flip-flop producing an output [at point F] that is also high (1). If, at this point, Sensor 2 has not yet detected a bar the output of the NAND gate remains high (1). The commutator will continue slowly rotating with Sensor 1 directly over it's bar until Sensor 2 detects a bar. For the purposes of this explanation, assume that Sensor 2 has also detected a bar at the same time that Sensor 1 has detected a bar (Ideal situation with an ideal commutator) the output of the NOT gate [point B], is high (1). The low-to-high transition (positive edge) clocks the D flip-flop producing an output [at point E] that is high (1). With both the inputs to the NAND gate being high (1), the output [at point G] goes low (0).

This high-to-low transition (negative edge) triggers External Interrupt 1 of the Automation Microcontroller. The microcontroller clears both flip-flops in the associated ISR. When rotation resumes, control is handed back to the Bar Detection module. At this point both sensors indicate that they detect a bar. This is because the Armature Rotation Drive Motor was stopped as soon as both bars were detected. The outputs of the NOT gates at both point A and point B are now high (1). These high outputs however, do not clock the D flip-flops as they are positive edge triggered. Since the clock did not go low (0) before going high (1), the outputs of the flip-flops remain cleared (0) implying that the output of the NAND gate remains high (1). As the commutator rotates the sensors will pass over the groove (or epoxy resin gap) between a pair of consecutive bars.

This causes the output of the sensors to produce a low (0), via the NOT gates. On the detection of the next bar, a low-to-high transition will be created and this positive edge will again trigger the D flip-flops. It is thus clear that the Bar Detection module only detects the NEXT pair of bars to be tested by using positive edge triggered flip-flops to reject the high (1) signal from the sensors when they are still over the pair of bars that were previously detected. Note that although theoretically both bars should be detected at the exact same time by their respective optical sensors, this is not the case practically. There are two reasons for this, one being that when the commutator is undercut, some of the copper is also cut into producing bars and gaps of varying widths. The other reason is dirt, spots or marks on a bar that do not allow for the reflection of the laser. If the bars and the gaps between bars were the exact same

width throughout the circumference of the commutator and the commutator was clean, as in the case of a new commutator, both bars will be detected at the exact same time.

#### 5.2 The Data Acquisition Module

The Data Acquisition module is responsible for measuring the difference in potential between two successive bars, signal conditioning to reject any inputs outside the expected input range and converting the input analogue signal to a sixteen-bit word that is to be transmitted to the Graphic User Interface (GUI) via the Communications Microcontroller. See Figure 5-8 and Figure 5-9 for the block diagram describing this module.



FIGURE 5-8: BLOCK DIAGRAM FOR THE DATA ACQUISITION MODULE



FIGURE 5-9: DETAILED BLOCK DIAGRAM FOR THE DATA ACQUISITION MODULE

Before discussing this module any further it is important for the reader to know the type and magnitude of the input signal that is to be measured. The test supply is a maximum of +15V / 400A. The typical potential difference (or volt drop) expected to

be measured between a pair of successive bars, on any armature that is to be tested, is in the range of between 100mV and 350mV for a healthy winding. Before the test begins the test technician will verify that readings within this range are produced by measuring the volt drop across the first pair of bars and, if need be, varying the magnitude of the test supply or varying the arc length of the test supply probes or both to ensure that the reading produced is within the stipulated range.

The technician will thereafter measure the volt drop across at least five other successive pairs of bars that lie within the arc length of the test supply probes in order to verify the range. If the readings on these bars fall outside the range that was set on the first pair of bars the implication is that the windings of first pair of bars are unhealthy or damaged. In this case the input range must be set and verified on one of the other five measured pairs of bars.

The expected input range discussed above only applies to healthy windings, i.e. windings that are not open circuited, shot circuited or damaged. If a winding is open circuited the volt drop across the connected pair of bars will be equal to the supply potential. If a winding is short circuited the volt drop across the pair of connected bars will be zero volts. If a winding is damaged the volt-drop across the connected pair of bars will fall outside the preset variance (or tolerance) from the reference reading specified at the beginning of the test. The input signals are DC with no expected AC components. Any AC components encountered are regarded as noise and will be rejected and/or filtered.

A precision Instrumentation Amplifier, the INA 118 is used to acquire the potential difference (or volt drop) between two successive bars. See Appendix J for the complete datasheet for the INA 118. This amplifier features amongst other things, a high Common Mode Rejection (CMR) of 110dB (at a gain of 10) and input protection of up to  $\pm$  40V. It also offers a non-linearity of typically  $\pm$  0.0005% of the full-scale range (at a gain of 10). Some of the specifications mentioned above are stipulated at a gain of 10. This is because a gain of 10 is set (using the external resistor,  $R_G$  – see datasheet) to amplify the input signal from the hundreds of millivolts to the volt range. Hence, an input of 350mV will be amplified to 3.5V. This is done in order to utilise the full input range of the sixteen-bit Analogue-to-Digital Converter hence

maximising the 16-bit resolution and reducing the effects of any conversion errors should they occur.

A sixteen-bit, successive approximation, Analogue-to-Digital Converter, the MAX 1166, with an input range of between -0.3V and  $V_{Ref}$  (4.096V) is used to convert the input signal to a sixteen-bit word (2 eight-bit wide, parallel output words). See Appendix J for the complete datasheet for the MAX 1166. The operation of the ADC was discussed in detail in Chapter 4, under the section entitled ADC Control. The ADC was set-up to make use of the internal reference voltage as prescribed in the datasheet and shown in Figure 5-10.



#### FIGURE 5-10: ANALOGUE-TO-DIGITAL CONVERTER NETWORK

The ADC features, amongst other things, sixteen-bit resolution, a high speed sampling rate, an eight-bit wide parallel output and an accuracy of  $\pm 2$  LSB (Least Significant Bit). With an internal V<sub>Ref</sub> of 4.096V and sixteen bit resolution, the smallest voltage increment that the input signal can broken down into is:

Resolution in Volts = 
$$4.096 / 65536 = 62.5 \mu V$$

i.e. each digital bit is equal to an analogue step of  $62.5\mu$ V.

As mentioned earlier, the input signal is amplified by a factor of 10, the true analogue step size (after being scaled down in software) is  $6.25\mu$ V. Similarly, the true input voltage range after being scaled down by software will be 0 to 350mV.

This implies that a variance of

Variance (%) = 
$$\frac{6.25 \,\mu\text{V}}{350 \,\text{mV}} \times 100 = 1.786 \times 10^{-3}\%$$

can theoretically/ideally be detected by the system. This value has two important connotations, the first being the fact that the smallest input change that can be detected is well below 1%, hence the percentage variance from the reference reading can be calculated with a great degree of accuracy. The second connotation is that the ADC error of  $\pm 2$  LSB will be almost negligible when considering the percentage variance from the reference value.

Recalling that the input range for the ADC is between -0.3V and  $V_{Ref}$  (4.096V), the ADC has to be protected from any inputs outside this range as they will potentially damage the ADC. Out of range input signals can be produced in two ways, the first being due to an open circuit. In this case, the potential difference across the pair of bars that are connected to an open circuited winding will equal to the potential of the test supply current (which may be as high as 15V). The second way an out of range reading can be produced is by the reversal of the orientation of the test probes with respect to the test supply probes.

This means that when the test current positive probe is to the right of the negative probe and the positive test probe is to the left of the negative test probe (or versa-visa) a negative reading of equal magnitude to the positive reading will be produced. This situation can arise when the test technician setting up the test reverses the polarity of the test supply or when the test technician is taking a manual reading and uses an independent (unauthorised) set of test probes to take a manual reading and unknowingly reverses the orientation of the polarity of the inputs with respect to the potential of the test supply probes. Although this situation should not occur, protection has to be designed into the system to prevent any hardware damage should

this situation somehow occur. The reader may ask why an ADC with an equal positive and negative input range (e.g.  $\pm$  5V) is not used.

The answer to this is – the expected input range is between 0 and 3.5V (after amplification). And with a sixteen-bit ADC that has a positive input range (eg. +5V), all sixteen bits are dedicated to conversions within this positive range. If a sixteen-bit ADC with an equal positive and negative range was to be used, eight bits will be dedicated to the positive range, 0 to +5V, and the other eight bits will be dedicated to the negative range, 0 to +5V. Hence only an eight bit resolution can be expected for the readings of importance i.e. those within the 0 to 5V range. The eight bits dedicated to undesirable readings that are produced by an incorrect system set up or use. In the author's opinion, the eight bit resolution used for the negative range of inputs is wasted. The author has hence elected to use a sixteen-bit ADC with only a positive input range and has devised a method of rejecting all unwanted and potentially damaging input signals. This method will be discussed in the paragraphs that follow.

With reference to Sheet 4 of the circuit schematic found in Appendix M, the first stage of the data acquisition module is the INA 118 instrumentation amplifier. This stage is followed by a filtering stage that comprises capacitors of various values which facilitates more efficient filtering over a range of frequencies. Seeing as the output of the instrumentation amplifier is expected (and required) to be purely DC in nature, any AC components found on this signal must be filtered before the signal progresses to the next phase of the system. It is for this reason that capacitors were used as low-pass filters instead of low-pass high order passive or active filters with cut-off frequencies set very low (almost zero Hertz, in this case).

In the phase that follows, three Voltage Followers (or Buffers) makes three identical copies of the original signal. A Voltage Follower is simply an Op-Amp (LM 741 in this case) with its output fed directly into its inverting input. The non-inverting input is the input pin for the signal. This network produces an output with zero gain, i.e. an output that is equal to the input. A fourth Voltage Follower is placed at the input to the ADC.

Note that all the Op-Amp and Comparator ICs that are used make provision for a potentiometer that is used to nullify the output offset voltage. These potentiometers are also used for "tuning" purposes to ensure that the signal which is the input to the ADC is equal to the signal at the input end of the data acquisition module provided that the magnitude of the signal is within the allowable ADC input range.

Three identical copies of the input signal are made purely to maintain the integrity of the input signal to the ADC. Two comparator stages are required to determine whether the input signal is outside the ADC input range. These two stages are in parallel implying that they each require a perfect copy of the original input signal. The third copy of the input signal flows directly to the ADC input via an analogue switch. If only one signal was used in each of the comparison stages before being input to the ADC, the integrity of that one signal would be compromised, i.e. the ADC input signal will vary from the original input signal to the data acquisition module.

Recalling that the input of the ADC must be within the -0.3V to 4.096V range, a comparison must be done in order to reject all inputs outside this range. This comparison is done in two parallel stages. The first stage determines if the input signal is less than the ADC reference voltage,  $V_{Ref}$ , which is equal to 4.096V. In order to do this a comparator (the LM 311) is used with the input signal connected to the comparator's inverting input and a reference voltage connected to the non-inverting input pin. The reference voltage is set up using a voltage divider network that comprises a  $2k\Omega$  and a  $9k\Omega$  resistor both with a 1% tolerance. With these values the expected reference at zero percent variance is:

$$V_{\text{Ref}} = \frac{9k\Omega}{9k\Omega + 2k\Omega} \times 5V = 4.091V$$

with a  $\pm 1\%$  V<sub>Ref</sub> variance of the range between 4.076V and 4.105V.

The output of LM 311 is open-collector, with pin 7 being the collector end and pin 1 being the emitter end of the output transistor. Connecting the collector (pin 7) via a pull-up resistor to the +5V supply and connecting the emitter (pin 1) to ground, the comparator outputs a High (1), i.e. +5V, when the non-inverting input is greater than the inverting input and a Low (0), 0V (or  $V_{ce}$ ) when the inverting input is greater than

the non-inverting input. The output of this comparison stage is connected to the first of two inputs of an AND gate.

The second comparison stage is tasked to ensure that all negative input signals are rejected. Here the input signal is connected to the non-inverting input pin of the comparator (LM 311) and the reference is connected to the inverting input. The reverence voltage,  $V_{Ref}$ , is set to 0V by connecting the inverting input directly to ground. However, the reader should note that a voltage divider network which is set up between -15V and ground (Gnd) is provided in the event that a slightly negative reference is required due to the operating environment. To set a 0V reference using this network the resistor to ground is replaced with a physical jumper and the resistor to the negative supply is not inserted. The output of this comparison stage is connected to the second of the two inputs to the AND gate.

When the input signal is within range the first comparator stage will produce a High input signal to the AND gate because the potential at the inverting pin will be greater than that at the non-inverting pin. The second comparator stage will also produce a High input signal to the AND gate for the same reason. The output of the AND gate is hence High. The output of the AND gate (" $V_RangeDetect$ ") provides the input to the Communication Microcontroller's P0.2. Before a reading can be taken this input port (i.e. P0.2) is tested to verify if it is High (1).

If this is the case, the Analogue Switch (MAX 4622) is switched on by the Communication Microcontroller port pin P0.0, allowing the signal to pass through to the ADC input pin. See Appendix J for a complete datasheet for the MAX 4622. If this port pin is Low, the analogue switch is left off, connecting the ADC input pin to ground. The MAX 4622 analogue switch has a low on-resistance, with a normally open, normally closed and a common pin. It can be operated from a bipolar supply of  $\pm 18V$ , although in this case the operating supply is  $\pm 15V$ . This allows the analogue switch to control any input within this range without any damage which makes it perfect for this application. When the input pin of this device is low, as in the case where the input signal is found to be outside the allowable range, the common pin is "connected" to the normally closed pin which in this case is connected to ground. When the input pin of this device is High, as in the case where the input signal is

found to be within the allowable range, the common pin is "connected" to the normally open pin which in this case is connected to output pin of the first voltage follower stage which represents the input signal to the data acquisition unit.

For completeness, if the input signal is higher than the preset reference,  $V_{Ref}$ , of the first comparison stage as in the case where an open circuit is detected on a winding connected to the pair of bars under test, the output of the comparison stage will be Low. This is because the inverting input will be at a higher potential than the non-inverting input. The output of the AND gate will therefore be Low hence ensuring that the Communication Microcontroller keeps the analogue switch off. This in turn ensures that the ADC input remains connected to ground, i.e. 0V, and not to the out-of-range input signal.

If the input signal is lower than the preset reference, 0V, of the second comparison stage, as in the case where the orientation of the test probes is reversed with respect to that of the Test Supply probes, the output of the comparison stage will be Low. This is because the inverting input will be at a higher potential than the non-inverting input. The output of the AND gate will be Low ensuring that the Communication Microcontroller keeps the analogue switch off. This in turn ensures that the ADC input remains connected to ground, i.e. 0V, and not to the out-of-range input signal. It is in this way that all out-of-range inputs are rejected by the data acquisition module.

This method was not the first approach that was tried. After much research and experimentation with adaptive (variable) gain Op-Amp networks, arithmetic using a number of Op-Amp stages, scaling and using various switching devices such as relays, BJTs and FETs, this approach was found to be the simplest, most effective and most accurate method of rejecting out-of-range input signals while still maintaining the integrity of the original input signal.

# Chapter 6

# **Additional Features**

In order to gain a greater level of accuracy and provide engineers and technicians with more valuable data, three additional features were added to the basic system. These include:

- The ability to automatically take repetitive readings on a single pair of bars
- Automatically record each reading and the average of all the readings for a pair of bars on an Excel Spreadsheet. Also automatically saving Excel Spreadsheets at the end of tests.
- Calibration of the system using the GUI Calibration Tool.

# 6.1 Automatic Repetitive Readings

The system has now been setup to take one hundred (100) consecutive readings in roughly 1000µs intervals. This implies that the duration for one complete, one hundred reading recordings is roughly 100ms. This is achieved by introducing a variable called "MultiReading" in the Calculation Subroutine of the GUI. This variable is loaded with a value of one hundred and decremented each time the Calculation Subroutine is called. As long as the value held in variable "MultiReading" is not equal to zero, the ASCII code for the character "E" is transmitted to the Communication Microcontroller. When "MultiReading" holds zero, the ASCII code for the character "S" is transmitted.
Additions for each reading, as well as the average of the 100 readings for each bar are to be recorded in an Excel Spreadsheet. This Spreadsheet is created as an object, when the Load button is.

The author has setup the Spreadsheet such that each row from column 1 to 100, holds "raw" readings as they are acquired. Column 102 of each row will contain the average for that row. Further, the reference reading raw data and the average calculated is represented in bold font.

After all 100 readings have been recorded the average is calculated using a For Loop to read the data from each column in the current row and adding it to the sum of the previous readings in that row. The sum of all 100 readings is recorded in variable SumBarReading which is divided by 100 to acquire the average. This average is stored in variable AvgBarReading and is recorded in column 102 in the current row.

The Excel Spreadsheet containing all the data recorded for a test is automatically saved in the same default location as the Test Fault Log files under the Name, Date and Time of the test when the Save or Print button is clicked.

Using these Spreadsheets data can be further analysed by makingthrough the use of graphs and other mathematical tools.

Also included as an additional feature is the systems ability to indicate a possible Open or Short Circuit. A Short circuit is identified when the system records a value of zero for more than 50 repetitive readings on the same pair of bars. This count takes place in variable "ZeroIn". It should be noted that the ADC represents zero volts by 0111 1000 0111 1000. The decimal representation of this code, broken into a High and Low byte is 120 120. This is exactly the condition that is tested in order to increment variable, "ZeroIn".

If ZeroIn is greater than 50, the Spreadsheet recordings for each cell of this 100 cycle reading will be changed to "Adjusted" and the average reading held in column 102 of

that row will be changed to 0. The value held in variable "AvgBarReading" is also changed to 0.

In the case of an Open Circuit, the reader will recall that the Input Analogue Circuitry alerts the Communication Microcontroller when the reading is out of range. The Communication Microcontroller then transmits 1111 1111 1111 1110 to the GUI. Note that this is a unique code that is only transmitted on the occurrence of an out of range reading. Recall that if ever this code is encountered during a normal reading acquisition, the Communication Microcontroller converts the acquired code to 1111 1111 1111 1111 before transmitting it to the GUI. Also, note that the port pin on the Communication Microcontroller i.e. P0.2 is set high by the input analogue circuitry to indicate that the orientation of the system input test probed is revered with respect to the polarity of the Test Supply Current probes.

This condition will however never occur during the automated process provided that the test was set up correctly by the test technician. This implies that whenever 1111 1111 1111 1110 is encountered during a reading acquisition cycle, it can only indicate that an Open Circuit has been detected. When this value is encountered by the Calculation Subroutine as decimal 65534, variable/flag "StnBit\_WDflg" is set to true.

#### 6.2 The Calibration Tool

The ideology behind the GUI Calibration Tool is to facilitate calibration by the system administrator whenever necessary. This tool aids the calibration process which has to be carried out by specially trained personnel. Presently, the Calibration Tool is used to simply acquire and record the system readings for a respective known injected value. The author is experimenting with software calibration techniques and in the future will implement algorithms based on these techniques to enable software calibration of the system.

This will imply that the user can account for any offsets and variations that may occur over time in software as opposed to hardware tuning. To demonstrate the ability and possibilities of the Calibration Tool, the author has included an algorithm based on the nullification of errors using two linear Best-Fit curves. A true size representation of the calibration screen can be found in Appendix N and a screen capture of the calibration screen is shown in Figure 6-2.

| 🝬 Calibration Screen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | _ <u>6 ×</u> |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |
| Reading:1[10mV +/·1mV]  E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |
| Reading: 2[20mV +/ 1mV]     Reading: 22(220mV +/ 1mV]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |
| Reading: 3 (30mV +/-1mV)  Image: 23 (230mV +/-1mV)  Image:                  |              |
| Reading: 4 [40ml/ +/-1ml/]  I    Reading: 24 [240ml/ +/-1ml/]  I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |
| Reading: 5 [50mV +/. 1mV]  Image: 25 [250mV +/. 1mV]  Im |              |
| Reading: 6 [50mV +/- 1mV]  E    Reading: 26 [260mV +/- 1mV]  E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |
| Reading: 7 [70mV +/- 1mV]  E    Reading: 27 [270mV +/- 1mV]  E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |
| Reading: 8 [80mV +/-1mV]  E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |
| Reading: 9[30mV +/-1mV] □                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |
| Reading: 10 [100m/ +/- 1m/]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |
| Reading: 11 [110m/ +/- 1m/]     Reading: 31 [310m/ +/- 1m/]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |
| Reading: 12[120mV +/- 1mV]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |
| Reading: 13 [130mV +/-1mV]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |
| Reading: 14 [140mV +/· 1mV]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |
| Reading: 15 [150mV +/- 1mV]  Reading: 35 [350mV +/- 1mV]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
| Reading::16[160mV +/-1mV]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |
| Reading: 17 [170ml/ +/-1ml/]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |
| Reading: 18(180ml/+/-1ml/)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |
| Reading: 19[190ml/ +/-1ml/]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |
| Reading: 20 [200m/ +/-1m/]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |
| Close Calbration Screen View Spread Sheet Re-Tails Reading(s) Calculate And Save                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |

FIGURE 6-2: SCREEN CAPTURE OF THE CALIBRATION SCREEN

The Calibration Screen is a separate form that is called by clicking on the Calibration Setup button on the main GUI. The user is then prompted for the Administrator's Password. The Calibration Screen is only made visible if the correct password is entered.

As shown, there are two Text Boxes, one Check Box and one Button for each of the forty readings that are to be taken. An injection value is specified for each reading with an allowable variance of  $\pm$  1mV. The voltage value being injected into the controller's data acquisition module is to be entered into the first Text Box before the button is clicked.

When the button is clicked, the value that the data acquisition system acquires for the voltage that is being injected is recorded in an Excel Spreadsheet along with the injection value that was entered in the first Text Box. The acquired value is also displayed in the second Text Box for the present reading. Note that an average of 100 readings is also used here however, only the average is recorded in the Spreadsheet. The CalibrationSub subroutine is responsible for this process. See Appendix C for the subroutine coding.

After a reading has been taken the button is disabled and the Check Box is checked to indicate completion. Readings can be retaken by the Re-Take Reading button. After all forty readings have been taken the Calculate And Save button is clicked to perform the relevant calculations and save the calibration factor in a specified file.

The calculation carried out here is completed in three phases. The first phase involves the calculation of the gradient and the Y-intercept of the best-fit linear plot for the injection values that were entered in the first Text Box. The second phase entails the calculation of the gradient and the Y-intercept of the best-fit linear plot for the values acquired by the data acquisition system which were displayed in the second Text Box. These plots are obtained by using the Least Squares Approximation technique. The following equations were used to calculate the gradient and the Y-intercept respectively, for each plot.

Gradient = 
$$\frac{n \times (\text{sum of } x_i \times y_i) - (\text{sum of } x_i) \times (\text{sum of } y_i)}{n \times (\text{sum of } x_i \times x_i) - (\text{sum of } x_i)^2}$$
6-1

$$Y-intercept = ((sum of y_i) - Gradient \times (sum of x_i)) / n \qquad 6-2$$

Where, n = total number of points or samples

i = point or sample index

x = x coordinate of a point or sample

y = y coordinate of a point or sample

Source: Calculus and Analytic Geometry (9<sup>th</sup> Edition) [17]

Once the gradient and Y-intercepts for each best-fit linear plot has been calculated, a straight line equation for each is derived with the value of y being the same for both and representing the point or reading number.

| $y_{\text{Injection}} = m_{\text{Injection}} x_{\text{Injection}} + c_{\text{Injection}}$ | 6-3 |
|-------------------------------------------------------------------------------------------|-----|
| $y_{Acquired} = m_{Acquired} x_{Acquired} + c_{Acquired}$                                 | 6-4 |

Now,  $x_{Injection}$ , represents a value on the best-fit linear plot for the injected voltage for a given reading, point or sample as represented by the y-coordinate  $y_{Injection}$ , for that point. For example, the coordinate for point (1, 0.25) means reading number 1, with a value of 0,25V as represented by ( $y_{Injection}$ ,  $x_{Injection}$ ). The same applies to the acquired readings and plots. See Figure 6-3 for a diagrammatic representation of the above paragraph.



X-Axis: Indicating Injected & Acquired Values For Each Reading

#### FIGURE 6-3: DIAGRAMMATIC REPRESENTATION OF THE LEAST SQUARED APPROXIMATION METHOD

Phase three of the calculation entailed equating both of the above equations ( $y_{Injection} = y_{Acquired} = point$  number) and calculating the calibration factor as follows:

| $m_{\text{Injection}} x_{\text{Injection}} + c_{\text{Injection}} = m_{\text{Acquired}} x_{\text{Acquired}} + c_{\text{Acquired}}$     | 6-5 |
|----------------------------------------------------------------------------------------------------------------------------------------|-----|
| $m_{\text{Injection}} x_{\text{Injection}} = m_{\text{Acquired}} x_{\text{Acquired}} + c_{\text{Acquired}} - c_{\text{Injection}}$     | 6-6 |
| $x_{\text{Injection}} = (m_{\text{Acquired}} x_{\text{Acquired}} + c_{\text{Acquired}} - c_{\text{Injection}}) / m_{\text{Injection}}$ | 6-7 |

Rearranging,

 $x_{\text{Injection}} = x_{\text{Acquired}} \times (m_{\text{Acquired}} / m_{\text{Injection}}) + ((c_{\text{Acquired}} - c_{\text{Injection}}) / m_{\text{Injection}})$  6-8

The calibration factor therefore aims to get the best-fit Injection plot as close to the best-fit acquisition plot as possible for the entire range of input values. This is accomplished by manipulating the acquired value,  $x_{Acquired}$ , such that it is equal to the injected value  $x_{Injection}$ , for that specific reading number. This manipulation is carried out in the Calculation Subroutine by implementing Equation 6-8 as follows:

 $x_{\text{Calibrated}} = x_{\text{Acquired}} \times (m_{\text{Acquired}} / m_{\text{Injection}}) + ((c_{\text{Acquired}} - c_{\text{Injection}}) / m_{\text{Injection}})$  6-9

#### Where,

x<sub>Calibrated</sub> is the true value calculated from the system acquired value, x<sub>Acquired</sub>.

This calibration factor is then saved along with the date of the calibration procedure in a file entitled Calibration1 which is located in a specially created folder named Calibration<sup>6</sup> in the Program files folder on the C drive. Each time the Load button on the GUI is clicked this file is opened and the calibration factor is loaded into variables "gradient" and "intercept" which are used in the Calculation subroutine. If on first use the system has not been calibrated or the calibration file has been erased, a default value of 1 is loaded into "gradient" and 0 into "intercept". The user is also made aware that the system needs to be calibrated by means of a message box.

Each time the system is calibrated, the previous calibration factor and date are replaced by the new ones. In order to facilitate this calibration functionality, the Communication Microcontroller has to be made aware that it should only take a reading when it is prompted and not communicate with the Automation Microcontroller or any of the sensor or transducer modules. This is accomplished by transmitting the ASCII code for the letter "H" when any one of the forty calibration buttons on the calibration screen are clicked. Also, when one of these buttons are clicked the CalibFlagClear flag is set to "False". This is done so that when this flag is tested at the beginning of the Calculation subroutine and is found to be false the Calibration subroutine is called to handle the incoming data. When this flag is set to "True", indicating that a test is in progress the Calculation Subroutine handles all incoming data.

<sup>&</sup>lt;sup>6</sup>When installing the GUI onto a Desktop Computer or Notebook, the installer must create a folder entitled Calibration in the Program files folder on the C drive.

### 6.3 Multiple User Names And Passwords

Access to this functionality is obtained through clicking on the View User Profile button on the GUI. The user will then be prompted to enter the Administrator's Password before proceeding. The Administrator can then allow a user to enter his name and personal unique password. Once all entries have been made, the Administrator clicks on the Enter New User button. This opens (or creates if not in existence) a file named "B\_2\_B\_Pwd" in the Calibration folder which is found in the Program files folder on the C drive. The new user details are then added to this file.

Note that if the Password and Confirm Password entries do not match the user is asked to reenter a password. The Administrator also has the option of deleting a user's records from this file, thus effectively revoking his/her rights to access the system. When a user intends on using the system, he/she enters a password and clicks on the GUI Enter button. This action opens the password file "B\_2\_B\_Pwd" and verifies if the password exists. If it does exist, the User Name associated with that password is automatically displayed in the Name Text Box on the GUI. See Figure 6-4 for a screen capture of this functionality.

| View/Change Directory Path Settings |                 |
|-------------------------------------|-----------------|
| View Settings                       |                 |
| User Profile Setup                  |                 |
| User Name                           | Enter New User  |
| Password                            | Delete User     |
| Confirm Password                    | Exit User Setup |
|                                     |                 |

#### FIGURE 6-4: MULTIPLE USER NAMES AND PASSWORDS SETUP FRAME

### 6.4 GUI Special Function (Simulator) Controls

The GUI Special Function Controls have no bearing on the GUI functionality. These controls are made available to a SuperUser, in this case only the author, who has a unique user name and password. The Special Function Controls allows the SuperUser to simulate inputs from the Controller. It is thus in essence a Graphic User Interface Simulator. As the GUI and the controller were developed in parallel there was no means of assessing the GUI when it became necessary to test it in terms of its responses to input prompts and data, as well as the outputs it generated based on its calculations.

A simulator had to therefore be developed to mimic the controller and the data that it transmitted. The simulator functionality is useful in the event of a system failure or malfunction where the author can determine if the GUI or the controller or both is at fault by testing them independently. These controls are also useful for de-bugging purposes in the event of future modifications and additional functionalities. In order to display the simulator screen (or frame) the Super User first clicks on the View Controls button that is found in the GUI Special Function Controls frame depicted in the Figure 6-5.

| GUI Special Fuction Controls |
|------------------------------|
| View Controls                |
|                              |
|                              |
|                              |
|                              |
|                              |
|                              |

#### FIGURE 6-5: GUI SPECIAL FUNCTION CONTROLS FRAME

Upon clicking this button an identification frame appears prompting the Super User for a username and password, as shown in Figure 6-6.

#### Mr. S. Matadin 2001 027 41

| - GUI Special Fuction Controls |
|--------------------------------|
| View Controls                  |
| User Name                      |
|                                |
| Password                       |
|                                |
| Enter                          |
| Exit                           |

#### FIGURE 6-6: SUPERUSER IDENTIFICATION FRAME

When the correct user username and password is entered, the Simulator is made available to the SuperUser as shown in the figure below. The Super User simply clicks on the Exit button to exit from this frame and returns to the default frame that is depicted in Figure 6-5.

| Simulator    |
|--------------|
| K L b        |
| y d J        |
| Q I z        |
| Into Out     |
|              |
| MScom In Sim |
| E util       |
| Case Select  |
|              |

## FIGURE 6-7: GUI SIMULATOR THAT SIMULATES CONTROLLER TRANSMISSION

Recall that the OnComm procedure is developed such that it is initiated when received data is present in the serial port buffer. This data is then copied from the buffer into the variable, **SerIn**,

#### Let SerIn = MSComm1.Input

before the Select Case routine is invoked.

In order to mimic the controller, the data must be received in much the same way as when data is being received from the controller. The problem however arises when one considers that there will be no data present in the serial port buffer. This means that the OnComm procedure will never be initiated. The simulator has to therefore input data (mimicked received data) to the very first storage facility after the serial port buffer. This facility is the variable, **SerIn**.

The simulator therefore writes all data that was entered into the "Mscom In Sim" input box to this variable and since the Select Case routine is not initiated automatically as in the case of the OnComm procedure it has to be manually initiated using the Case Select button. The GUI transmitted output may also be read in the "Out" text box provided that the code simulated writes to the original serial port as well as the Out text box. Code Extract 6-5 shows the source code for the Case Select button.

Note that the code is exactly the same as that of the OnComm procedure except for the fact that the mimicked data is being read from Text Box 17 and is copied directly into **SerIn**.

### Chapter 7 Test Results

Various tests were conducted with results recorded to measure the system's performance and verify the system process flow and event sequencing. Tests were carried out in two phases. The first phase was aimed at quantifying the Data Acquisition accuracy, repeatability and all round performance. The second phase was aimed at verifying the automated flow process and to ensure that the correct sequence of events was followed as programmed.

For the first phase of tests, forty voltage values were injected at intervals of  $10\text{mV} \pm 1\text{mV}$  and the GUI Calibration Tool was used to acquire and record the forty respective system readings. The readings are taken in exactly the same manner as it would be in a normal test, i.e. 100 successive readings which will be averaged to produce the final value for the respective injected voltage value.

The first test carried out in this phase was aimed at determining the repeatability of the system, i.e. to quantify the variation between the maximum and minimum readings acquired by the system for the same injected voltage value. Note that the results of this test are influenced by the Test Supply which was measured to have a worst case ripple of  $\pm 1$  mV.

The complete results of this test, comprising 100 readings for each acquisition cycle, can be found on the disc included as Appendix O. The spreadsheet entitled "Repeatability Test As Recorded" is an unedited spreadsheet that depicts the manner in which readings are recorded by the system. The spreadsheet entitled "Repeatability Test with Highlights" has been edited by the author to present the recorded data to the reader in a manner that is easier to analyse. With reference to Column CX the maximum average acquired was 0.187902V and the minimum average acquired was 0.187048V producing a variance range of 0.000854V.

The second test in this phase was aimed at quantifying the variances of the acquired values from the true, injected values, determining the output linearity of the system and ascertaining the relationship between the input injected values and the system output recorded values. The complete results of this test, comprising 100 readings for each acquisition cycle, can be found on the disc included as Appendix O.

The Spreadsheet entitled "System Evaluation" shows the data that was acquired and recorded during this test. Columns A to CX are the original data columns and depict the data that was recorded during each reading cycle. Column CY represents the voltage that was injected into the system in order to produce the respective system reading and recording. Column CZ shows the absolute value of the difference between the injected and recorded values, i.e. the system error, and Column DA represents the reading number. It should be noted here again that the results of this test depends on the ripple of the Test Supply.

The author noted that the system's acquired values vary more from the true injected values for the lower range of injected values, i.e. for injected values less than 0.08V. As the input voltage (injected voltage) increases the variation from the true value reduces. Recalling that the expected input range for any test that is to be carried out by this system is within the range of 100mV to 350mV, these variances for the lower input values are tolerable, as it will have little bearing on actual test results due to the decreasing error as the input voltage increases to within the typical 100mV to 350mV input range. If need be, more time and resources can be spent on reducing this variation when the system is installed. For the expected input range of 100mV to 350mV, the maximum error that was measured during this test was 0.00112V which when calculated as a percentage of the injected voltage (i.e. 0.15V) for that measurement is:

The graphs shown in Figures 7-1 to 7-6 summarises the results of this test. The input (injected value) curves and best-fit input linear curves are plotted and compared with

the output (acquired values) curves and best-fit output linear curves. This is done in order to compare the variation of the output from the input injection values throughout the range of the Data Aquisation System. As can be seen from these graphs and the best fit linear graph equations, the variation between the injected values and the system acquired values is minimal therefore implying an almost straight line, y = x relationship between the system input and recorded output values, as depicted in Figure 7-6.

When plotting the Output Vs Input curve and deriving the associated straight-line equation, i.e. y = 1.004x - 0.0012, it is clear the deviation from the ideal, y = x, curve is minimal. In simple terms this means that whatever potential is present at the system input is acquired and recorded by the system with very little deviation from the original input value.



FIGURE 7-1: INPUT LINEARITY CURVE



#### FIGURE 7-2: LINEAR BEST-FIT INPUT LINEARITY CURVE



#### FIGURE 7-3: OUTPUT LINEARITY CURVE



#### FIGURE 7-4: LINEAR BEST-FIT OUTPUT LINEARITY CURVE



## FIGURE 7-5: PLOT OF OUTPUT (ACQUIRED) READINGS VS INPUT (INJECTED) VALUES

Mr. S. Matadin 2001 027 41



FIGURE 7-6: LINEAR BEST-FIT PLOT OF OUTPUT (ACQUIRED) READINGS VS INPUT (INJECTED) VALUES

Test three in this phase concentrated on the analysis of the data. As mentioned previously, if the potential difference across a pair of bars varies from the reference reading by a percentage that is larger than the percentage variance selected by the technician at the beginning of the test, a fault containing all the necessary details must be logged. At the end of the test, a test report containing all the faults as well as the test details and selected parameters must be printed. This information is also saved as a soft copy, as an update to the file that is associated with the armature under test by the component's serial number.

For this test, a simple series resistor and potentiometer network was set up on a test bench. All the resistor values were identical,  $10k\Omega$ , and were to represent/simulate bars that were healthy, i.e. bearing no faults. The resistor represented/simulated bars 1, 2, 4 and 6. Bars 3, 5 and 7 were represented/simulated by potentiometers that were set such that the potential difference across them varied from the reference value (0.13594V) by a percentage that was greater the pre-selected 5% variance. The test report for this test can be found in Appendix E and the data recorded during this test can found on the disc provided as Appendix O under the file named "001 Test Results 2006-4-12 14H16M31". Note that the name of the file represents the serial number that was entered, i.e. 001 Test Results, and the date and time of the test.

With reference to Appendix E and O the reader will note all the recorded faults. The simulated short circuit fault that was logged on Bar 8 was created by simply shorting the system's input probes. As discussed in the previous chapter and with reference to Appendix O, each cell in this row holds "Adjusted" except for column 102 of this row which holds 0. In the case of an Open Circuit, the binary word (1111 1111 1111 1110) that was transmitted by the Communication Microcontroller upon encountering this condition alerts the Calculation Subprogram that an Open Circuit has been detected. The value here is not important, all that matters is that a fault was logged on this bar indicating an Open Circuit. However, for completeness the value of 0.411646 is calculated using an algorithm in the Calculation subroutine in the GUI. Note that this algorithm contains the variable "Gain" which the reader will recall was set to 9.95, the outcome when 1111 1111 1111 1110 is received by the GUI is:

Let ActVolReadRes = (4.096 / 65536) Let ActVolRead = (StnBit\_WD \* ActVolReadRes) Let mVActVolRead = ActVolRead / Gain

i.e.

Let ActVolReadRes = 4.096 / 65536 = 0.0000625 Let ActVolRead = 65534 x 0.0000625 = 4.095875 Let mVActVolRead = 4.095875 / 9.95 = 0.411646

And finally, on the tenth pair of bars, an Emergency Stop was initiated.

The second phase of tests involved the testing of the automation processes. For these tests a digital oscilloscope that is capable of handling sixteen digital inputs was used to record the sequence of events as a test was carried out. The first test that was carried out was aimed at confirming the timing and the process flow of the system. See Figure 7-7 for the results from this test.



FIGURE 7-7: SYSTEM TIMING DIAGRAM

| Where,   |                                                                      |
|----------|----------------------------------------------------------------------|
| Signal 0 | Represents the output of the first optical sensor                    |
| Signal 1 | Represents the output of the second optical sensor                   |
| Signal 2 | Represents the output of the D flip-flop to which the first optical  |
|          | sensor is connected                                                  |
| Signal 3 | Represents the output of the D flip-flop to which the Second optical |
|          | sensor is connected                                                  |
| Signal 4 | Represents the input to the External Interrupt 1 pin of the          |
|          | Automation Microcontroller                                           |
| Signal 5 | Represents the output signal that controls the Armature Drive Motor  |
| Signal 6 | Represents input to the External Interrupt 0 pin of the Automation   |
|          | Microcontroller                                                      |
| Signal 7 | Represents the output signal that controls the Detection Unit Drive  |
|          | Motor for the lowering motion                                        |
| Signal 8 | Represents the output signal that controls the Detection Unit Drive  |
|          | Motor for the raising motion                                         |
| Signal 9 | Represents the output signal that controls the Test Supply Current   |

Every test cycle begins by pulsing the Armature Drive Motor to begin rotating the armature under test, as signal 5 depicts. While rotating the armature optical sensors 1 and 2 detect the copper bars on the commutator. Upon detecting a bar, the respective

optical sensor output goes high, clocking the gate of the D flip-flop that it is connected to causing its output to also go high. This is depicted by signals 0 and 2, and signals 1 and 3. As soon as both D flip-flop outputs are high, External Interrupt 1 is triggered via a NAND Gate as depicted by signal 4. The External Interrupt 1 ISR is then initiated. The Armature Drive Motor is stopped immediately, (Signal 5). Following this, the D flip-flops are "Cleared" (output = 0). This is evident when one looks at the point when External Interrupt 1 is triggered. After a few microseconds, the Armature Drive Motor signal goes Low followed by the outputs of the D flip-flops (Signals 1 and 3) both going low.

Note that for this test the optical sensors were manually triggered, hence the output returns low after the triggering source is removed. Ordinarily, the outputs of the optical sensors will only return low when the gap between the bars have been detected. Signals 0 and 1 going High indicates that a copper bar has been detected, and returning to Low indicated that the gap between the bars have been detected. This is shown in the figure below.



FIGURE 7-8: TIMING DIAGRAM FOR A TYPICAL BAR DETECTION CYCLE

Where,

| Signal 0 | Represents the output of the first optical sensor                                                                                              |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------|
| Signal 1 | Represents the output of the second optical sensor                                                                                             |
| Signal 2 | Represents the output of the D flip-flop to which the First optical sensor is connected                                                        |
| Signal 3 | Represents the output of the D flip-flop to which the Second optical sensor is connected                                                       |
| Signal 4 | Represents the input to the External Interrupt 1 pin of the Automation Microcontroller                                                         |
| Signal 5 | Represents the P0.5 on the Automation Microcontroller which<br>provided the input signal to a Nand gate in order to clear the D flip-<br>flops |
| Signal 6 | Represents the output of the above-mentioned Nand Gate, which triggers External Interrupt 1.                                                   |

Continuing with reference to Figure 7-7, shortly after the Armature Drive Motor has been stopped and the flip-flops cleared, the Detection Unit is lowered by pulsing the Detection Unit Drive Motor (Signal 7). At this point the Test Current is also switched on (Signal 9) for the reasons discussed in Chapter 4. When the test probes have reached the surface of the commutator as signaled by the inductive proximity switch on the Detection Unit, External Interrupt 0 is triggered as depicted by Signal 6. The External Interrupt 0 ISR immediately stops the lowering process.

The 100 cycle successive reading process then begins. Once this process is completed the Detection Unit is raised by pulsing the Detection Unit Drive Motor (Signal 8). Once raised to its initial position, as signaled by the inductive proximity switch on the physical test unit frame, External Interrupt 0 is again triggered. This time the ISR ends the raising process. The Test Supply Current is also switched off at this point. This is one complete automation cycle. The very same process is carried out for the next pair of bars. The control of the system's main components such as the Armature Drive Motor, Detection Unit Drive Motor and the IGBT, via their respective electronic drives and drivers is depicted in Figure 7-9.



FIGURE 7-9: TIMING DIAGRAM FOR MAIN COMPONENT SWITCHING

Where,

| ,        |                                                                     |
|----------|---------------------------------------------------------------------|
| Signal 0 | Represents the output signal that controls the Armature Drive Motor |
| Signal 1 | Represents the input to the External Interrupt 1 pin of the         |
|          | Automation Microcontroller                                          |
| Signal 2 | Represents the output signal that controls the Detection Unit Drive |
|          | Motor for the lowering motion                                       |
| Signal 3 | Represents input to the External Interrupt 0 pin of the Automation  |
|          | Microcontroller                                                     |
| Signal 4 | Represents the output signal that controls the Detection Unit Drive |
|          | Motor for the raising motion                                        |
| Signal 5 | Represents the output signal that controls the Test Supply Current  |

The next two tests were concerned with the verification of the accuracy of the maximum allowable time that is reloaded into the timer registers for the detection process i.e. Detection Reference Time and for the raising of the detection unit, i.e.

Unit Raising Reference Time. As discussed in Chapter 4 under the heading Automation Microcontroller, the same subroutine is used by both procedures therefore, if the calculation and reloading algorithm is correct for one, it will also hold true for the other.

With this in mind, the author chose to verify the Detection Reference Time. Note that unlike the Unit Raising Reference Time, the Detection Reference Time for the first three bars is a preset 10s. This is because the recorded time from which the Detection Reference Time is calculated is only taken on the third pair of bars for the reason discussed in Chapter 4. Recall from Chapter 4, "*The reason that the Detection Reference Time is calculated based on the time recorded for the third pair of bars is simply because the system is given time to settle during the first and second cycles.*" This means that Error 1 should occur if a pair of bars is not detected within 10s of the Armature Drive Motor being started, for the first three pairs of bars.



#### FIGURE 7-10: ERROR 1 INITIATION AFTER A 10S+1S, PREDEFINED, ALLOWABLE PERIOD HAS LAPSED

Where,

| where,   |                                                                     |
|----------|---------------------------------------------------------------------|
| Signal 0 | Represents the output signal that controls the Armature Drive Motor |
| Signal 1 | Represents the input to the External Interrupt 1 pin of the         |
|          | Automation Microcontroller                                          |
| Signal 2 | Represents the output signal that controls the Detection Unit Drive |
|          | Motor for the lowering motion                                       |

| Signal 3 | Represents input to the External Interrupt 0 pin of the Automation Microcontroller                  |
|----------|-----------------------------------------------------------------------------------------------------|
| Signal 4 | Represents the output signal that controls the Detection Unit Drive<br>Motor for the raising motion |
| Signal 5 | Represents the output signal that controls the Test Supply Current                                  |

Figure 7-10 shows the first complete automation cycle for the first pair of bars but for the second automation cycle a pair of bars has not been detected, as shown by the External Interrupt 1 (Signal1) not being initiated, hence allowing the Armature Drive Motor to continue running until the 10s preset time has elapsed. This initiates the Error1 subroutine. The reader will notice that the Armature Drive Motor, Signal 0, was left to run for 11s. This is because of the 1s delay loop that was called immediately after initiating the Armature Drive Motor P0.4 to cater for real time switching delays.

SETB PO.4 CALL DELAYLOOP

The effect of this is that 11s will elapse due to the 10s predetermined allowable time only being counted after the 1s delay loop.

As shown in the next test's results, see Figure 7-11, the 1s delay loop has no effect on the calculated Detection Reference Time. This reference time is equal to the time recorded for the detection process on the third pair of bars plus an additional 20% of this recorded time.

Detection Reference Time = Third Pair Time Recording x 1.2

The reason that the 1s delay loop does not have any effect on this calculation is because the recording of this time was stopped after a 1s delay loop which was called immediately after the Armature Drive Motor was stopped. In other words, the time recording process was started 1s after the Armature Drive Motor was started and stopped 1s after the Armature Drive Motor was stopped, the net result being that the precise duration for which the Armature Drive Motor ran, was recorded. The exact same procedure was followed in recording the Test Probe Lowering Time which is used to calculate the Unit Raising Reference Time.

Unit Raising Reference Time = Recorded Test Probe Lowering Time x 1.2

The reference time recorded on the third pair of bars was 6 seconds and as can be seen in the figure below the maximum allowable time for a pair of bars to be detected, i.e. Detection Reference Time, is 7.2 seconds.



## FIGURE 7-11: ERROR 1 INITIATED AFTER THE PRE-CALCULATED TIME OF 6S X 1.2 = 7.2S HAS LAPSED

| Where,   |                                                                     |
|----------|---------------------------------------------------------------------|
| Signal 0 | Represents the output signal that controls the Armature Drive Motor |
| Signal 1 | Represents the input to the External Interrupt 1 pin of the         |
|          | Automation Microcontroller                                          |
| Signal 2 | Represents the output signal that controls the Detection Unit Drive |
|          | Motor for the lowering motion                                       |
| Signal 3 | Represents input to the External Interrupt 0 pin of the Automation  |
|          | Microcontroller                                                     |
| Signal 4 | Represents the output signal that controls the Detection Unit Drive |
|          | Motor for the raising motion                                        |
| Signal 5 | Represents the output signal that controls the Test Supply Current  |

The last test in this phase focused on the ADC control inputs and outputs. Although the fact that 100 volt-drop readings are acquired for each reading cycle, see Appendix O, is proof that the ADC is operating as it should, the author thought that the following results should be included for completeness.

Figure 7-12 and Figure 7-13 depict the transitions that each of the ADC control pins undergo for each of the 100 readings taken. The time scale on which these results were recorded was  $50\mu$ s/division.



FIGURE 7-12: TIMING DIAGRAM FOR THE ADC INPUT AND OUTPUT CONTROL PINS

Where,

| Signal 0 | Represents the ADC input pin, $R/\overline{C}$  |
|----------|-------------------------------------------------|
| Signal 1 | Represents the ADC output pin, $\overline{EOC}$ |
| Signal 2 | Represents the ADC input pin, HBEN              |
| Signal 3 | Represents the ADC input pin, $\overline{CS}$   |

#### Mr. S. Matadin 2001 027 41



FIGURE 7-13: ANNOTATED TIMING DIAGRAM FOR THE ADC INPUT AND OUTPUT CONTROL PINS

Where,

| Signal 0 | Represents the ADC input pin, $R/\overline{C}$  |
|----------|-------------------------------------------------|
| Signal 1 | Represents the ADC output pin, $\overline{EOC}$ |
| Signal 2 | Represents the ADC input pin, HBEN              |
| Signal 3 | Represents the ADC input pin, $\overline{CS}$   |

As presented in Chapter 4, the ADC control pins follow the same input and output sequence as specified in the datasheet. With reference to Figure 7-13, the reader will see that the first red marker, labelled 1, denotes the first  $\overline{CS}$  falling edge. Holding  $R/\overline{C}$  low during this transition puts the ADC into acquisition mode. The second red marker denotes the second  $\overline{CS}$  falling edge. This initiates the start of a conversion. Holding  $R/\overline{C}$  low during this transition puts the ADC into Standby Mode, i.e. the reference and buffer remain powered up after a conversion. Shortly after the second  $\overline{CS}$  falling edge, the  $\overline{EOC}$  line goes low signalling the end of a conversion to the Communications Microcontroller. Upon receiving this signal the Communications

Microcontroller sets the HBEN pin Low, in order to ensure that the low-byte (i.e. the least significant data byte) of the converted ADC data is available on the output data bus on the  $\overline{CS}$  third falling edge. The  $\overline{CS}$  third falling edge is then initiated, as denoted by red marker labelled 3. This action loads the ADC data onto the eight-bit output bus. The HBEN pin is then toggled so that the high-byte (i.e. the most significant data byte) of the ADC conversion is available on the output data bus. Following this, the first  $\overline{CS}$  raising edge after the third falling edge, as denoted by the pink marker labelled 4, puts the ADC output bus back into a high impedance state, as well as forcing the *EOC* line High. The next *CS* falling edge will begin the next conversion cycle.

### Conclusion

The research, design and development that was required for the controller used in the Automated Volt-Drop Test process was centred largely on the design of embedded systems for automation applications. Microcontroller based embedded systems offers the designer the flexibility to design any controller or system based on specific application requirements.

However with flexibility comes the requirement for a deeper level of design detail in which case the designer has to cater for every task, function and outcome using software, firmware and hardware. From the provision of responses to inputs from the external environment to achieving communication between the modules that make up the controller or system and the building of a product that can operate optimally in the environment that it is designed to, the designer has to conceptualise, design, build and test each module. The same applies to the development of a GUI. With design of a controller, one can tailor a GUI that suits the application using existing programming packages with very little cost. However this entails a deeper level of programming to achieve the required outcomes.

The designed controller, GUI and RGUI fulfil the requirements of the set-out objective, i.e. the design of an embedded controller and GUI for the automation of the armature Volt-Drop Test. This was confirmed by the automation phase test results and the data acquisition and computation test results which revealed a maximum percentage error of 0.75%. When compared to the present test methods this controller and GUI will introduce a higher degree of accuracy in terms of the actual volt-drop readings and greater efficiency in terms of ensuring that every winding is tested and that skilled staff are not under utilised by performing these tests. Further, this new process ensures that test records are automatically saved on file to build a history of the armatures tested and to verify the competency of the test technician and armature repair staff.

Although embedded controller designs are recommended for specialised or smaller controllers, with regard to larger scale process automation, off the shelf controllers

and GUI packages are recommended. From the authors experience, embedded controllers prove to be more cost effective and robust in on-board locomotive applications especially when considering the older locomotives where relays, resistors and heavy current contacts switches are used instead of microprocessor control and power electronic components such as IGBTs. Custom designed embedded controllers are recommended as the controllers that are installed in these locomotives as part of modifications have to withstand the unusually high electrical noise, EMI, vibration, dust and temperature environment along with very irregular and electrically noisy power supplies. Off the shelf controllers often fail in this environment. For common industrial environments, off the shelf controllers are sufficiently rugged to cope with the operating environment.

Off the shelf controllers, which include PLCs, may offer less flexibility and may require the purchase of a controller that incorporates features, functionality, input and output ports etc. that may be considered over-kill for smaller controller applications, however, they do offer built-in features, functionality and plug-and-play options for the interconnection of additional modules and GUI packages that will require minimal programming and hardware design. Built-in software functions and hardware operation have been tested in industry and have a proven record by the specific manufacturer.

An off the shelf GUI environment, SCADA for example, which will be used with PLCs offer a large array of functionalities that can easily be used with minimum programming required as compared to a tailored GUI but has the associated downside of the cost.

In summary, the design of an embedded controller, GUI and RGUI for the automation of the Volt-Drop Test was a task that involved detail design and testing along each phase of the project. For future automation projects in Spoornet workshops and test centres, it is recommended that the use of a off the shelf controller be investigated along with the design of embedded controllers. The trade off that has to be considered in terms of embedded controller design is the flexibility to design a controller that is perfectly suited to the application and environment vs. the time and cost required for design and testing. The trade off to be considered in using off the shelf controllers is the ease of use and reduced time of implementation due to proven product history vs. the cost of purchasing these products and the possibility of unreliable performance in the operational environment.

### **List of References**

- [1] E. Chikuni, O. I. Okoro and M. T. Khan, *Concise Higher Electrical Engineering*. Cape Town: Juta & Company Ltd, 2008.
- [2] Acebus, "Acebus," *Acebus.com*, [Online], Available: http://www.acebus.com/, [Accessed: June 2006].
- [3] D. I. Schneider, *An introduction to programming using Visual Basic 5.0*, 3<sup>rd</sup> ed. New Jersey: Prentice-Hall, 1998.
- [4] Sybex Inc., *Visual Basic 6: Complete*. United States of America: Sybex Inc., 1999.
- [5] P. J. Kerry, "The ABC of EMC", *Electron Journal*, vol. 22, no.7, pp.11, July 2005.
- [6] A. T. Lawrence, *Automation Systems for Control and Data Acquisition*. North Carolina: Instrument Society of America, 1992.
- [7] C. J. Chesmond, *Basic Control System Technology*. Great Britain: Edward Arnold, 1990.
- [8] C. T. Kilian, *Modern Control Technology: Components and systems*, 2<sup>nd</sup> ed. New York: Delmar, 2001.
- [9] I. S. Mackenzie, *The 8051 Microcontroller*, 3<sup>rd</sup> ed. New Jersey: Prentice-Hall, 1992.
- [10] Y. Lu, *Industrial Intelligent Control: Fundamentals and applications*. Chichester: John Wiley & Sons Ltd, 1996.
- [11] B. Whitby, Artificial Intelligence. Oxford: Oneworld Publications, 2008.
- [12] J. E. Shigley, *Mechanical Engineering Design*, 3<sup>rd</sup> ed. London: McGraw-Hill, 1977.
- [13] ON Semiconductor, Appl. Note AND8169/D, pp. 1-8.
- [14] Microchip, Appl. Note ADN004, pp. 1-2.
- [15] Micro-key, Appl. Note CAN, pp. 1-4
- [16] Robert Bosch GmbH, "CAN Specification version 2.0," Bosch. 1991.
- [17]G. B. Thomas, Jr., and R. L. Finney, *Calculus and Analytic Geometry*, 9<sup>th</sup> ed. United States of America: Addison-Wesley Publishing Company, 1996.

Mr. S. Matadin 2001 027 41

## Appendices

GUI Screen Captures : Appendix A List of ASCII prompts :Appendix B GUI Source Code : Appendix C Printout From A Saved File :Appendix D Test Report Printout :Appendix E Remote GUI (RGUI) Screen Capture :Appendix F Remote GUI (RGUI) Source Code : Appendix G The AT89S51 Microcontroller Datasheet :Appendix H Acebus Development Environment :Appendix I For Microcontroller Embedded programming Component Datasheets : Appendix J Automation Microcontroller Port Utilisations :Appendix K Communications Microcontroller Port Utilisations Automation Microcontroller Register Utilisations **Communications Microcontroller Register Utilisations** Automation Microcontroller Bit Addressable Ram Used For Flags Communications Microcontroller Bit Addressable Ram Used For Flags Automation Microcontroller Source Code :Appendix L **Communications Microcontroller Source Code** Controller Circuit Schematic : Appendix M Screen Capture For The Calibration Screen :Appendix N Disc Containing Recorded Test Results & :Appendix O A GUI PowerPoint Presentation Detailed Discussion on Graphic User Interface (GUI) Development :Appendix P (Includes Flow Diagrams and Code Extracts) Detailed Discussion on Microcontrollers and Embedded Programming : Appendix Q (Includes Flow Diagrams and Code Extracts)

Detailed Discussion on Hardware Design :Appendix R

# Appendix A

**GUI Screen Captures** 

# Appendix B

List of ASCII prompts
# Appendix C

**GUI Source Code** 

# Appendix D

**Printout From A Saved File** 

# Appendix E

**Test Report Printout** 

# Appendix F

Remote GUI (RGUI) Screen Capture

# Appendix G

Remote GUI (RGUI) Source Code

# Appendix H

The AT89S51 Microcontroller Datasheet

Appendix I

Acebus Development Environment For Microcontroller Embedded Programming

# Appendix J

**Component Datasheets** 

#### Appendix K

Automation Microcontroller Port Utilisations Communications Microcontroller Port Utilisations Automation Microcontroller Register Utilisations Communications Microcontroller Register Utilisations Automation Microcontroller Bit Addressable Ram Used For Flags Communications Microcontroller Bit Addressable Ram Used For Flags

#### Appendix L

Automation Microcontroller Source Code Communications Microcontroller Source Code

# Appendix L

**Communications Microcontroller Source Code** 

# Appendix L

Automation Microcontroller Source Code

# Appendix M

**Controller Circuit Schematic** 

# Appendix N

Screen Capture For The Calibration Screen

### Appendix O

Disc Containing Recorded Test Results & A GUI PowerPoint Presentation

# Appendix P

Detailed Discussion on Graphic User Interface (GUI) Development (Includes Flow Diagrams and Code Extracts)

Appendix Q

Detailed Discussion on Microcontrollers and Embedded Programming (Includes Flow Diagrams and Code Extracts)

#### Appendix R

**Detailed Discussion on Hardware Design** 

| - 0 ^ |  | 8 | X |
|-------|--|---|---|
|-------|--|---|---|

| Password                                                                                         |                                                                                        |
|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
|                                                                                                  |                                                                                        |
| Ne                                                                                               | w Test                                                                                 |
| -                                                                                                |                                                                                        |
| Name                                                                                             |                                                                                        |
|                                                                                                  |                                                                                        |
|                                                                                                  |                                                                                        |
| Armature Properties                                                                              |                                                                                        |
| Armature Select                                                                                  |                                                                                        |
| New Armature Name                                                                                |                                                                                        |
| I<br>Number Of Commutato                                                                         | Add New                                                                                |
|                                                                                                  |                                                                                        |
|                                                                                                  |                                                                                        |
| Click To Remo                                                                                    | ve Highlighted Armature                                                                |
|                                                                                                  |                                                                                        |
| ob Number                                                                                        | C Manual Operation                                                                     |
| ob Number<br>est Option<br>Choose an Operating<br>Option                                         | C Manual Operation<br>C Automated Operation                                            |
| ob Number<br>est Option<br>Choose an Operating<br>Option                                         | C Manual Operation<br>C Automated Operation                                            |
| ob Number<br>est Option<br>Choose an Operating<br>Option<br>est Parameter<br>Percentage Variance | C Manual Operation<br>C Automated Operation                                            |
| ob Number<br>est Option<br>Choose an Operating<br>Option<br>est Parameter<br>Percentage Variance | C Manual Operation<br>C Automated Operation                                            |
| ob Number<br>est Option<br>Choose an Operating<br>Option<br>est Parameter<br>Percentage Variance | C Manual Operation<br>C Automated Operation                                            |
| ob Number<br>est Option<br>Choose an Operating<br>Option<br>est Parameter<br>Percentage Variance | C Manual Operation<br>C Automated Operation<br>Add New Value<br>Nove Highlighted Value |
| ob Number                                                                                        | C Manual Operation<br>C Automated Operation<br>Add New Value<br>Nove Highlighted Value |
| ob Number                                                                                        | C Manual Operation<br>C Automated Operation<br>Add New Value<br>Nove Highlighted Value |
| ob Number                                                                                        | C Manual Operation<br>C Automated Operation<br>Add New Value<br>Nove Highlighted Value |
| ob Number                                                                                        | C Manual Operation<br>C Automated Operation<br>Add New Value<br>Move Highlighted Value |
| ob Number                                                                                        | C Manual Operation<br>C Automated Operation<br>Add New Value<br>nove Highlighted Value |
| ob Number                                                                                        | Manual Operation<br>Automated Operation<br>Add New Value<br>Nove Highlighted Value     |
| ob Number                                                                                        | C Manual Operation<br>C Automated Operation<br>Add New Value<br>Nove Highlighted Value |

|  | <br> |  |
|--|------|--|

| LOAD END Co                                                                                                                                                                                                  | ntinue After<br>rror Pause STOP         | Bar Under Test Print<br>Bars Remaining Click To Save<br>Faults Logged Save    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-------------------------------------------------------------------------------|
| Error Status                                                                                                                                                                                                 | Error 3<br>Error 4<br>Error 4           | Manual Test Manual Test Automated Test Reading Searching Delete Delete Delete |
| Manual Reading Controls         Click To Take Reading         Manual Reading         Manual Reading         Exit         Exit         Exit         Exit         Calibration Screen         Calibration Setup | GUI Special Fuction Controls View/Chang | ye Directory Path Settings                                                    |

| Fassword                                                                               |                                                                                                                        |
|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
|                                                                                        |                                                                                                                        |
|                                                                                        | Enter                                                                                                                  |
|                                                                                        |                                                                                                                        |
| Name                                                                                   | 091                                                                                                                    |
| Sunveer M                                                                              | atadin                                                                                                                 |
|                                                                                        |                                                                                                                        |
| rmature Prope                                                                          | erties                                                                                                                 |
| Armature Nam                                                                           | e: I. Number of Bars: 600 🛛                                                                                            |
| New Armatur                                                                            | e Name                                                                                                                 |
|                                                                                        | Add Name                                                                                                               |
| Number Of C                                                                            | ommutator Bars Armature                                                                                                |
|                                                                                        |                                                                                                                        |
| Pit-1                                                                                  | T. D. HOLT D. JA                                                                                                       |
| Click                                                                                  | To hemove highlighted Annature                                                                                         |
| ob Number                                                                              |                                                                                                                        |
| 1100 DIG                                                                               |                                                                                                                        |
| 1100_218                                                                               |                                                                                                                        |
|                                                                                        |                                                                                                                        |
| PSET LIGHTER                                                                           |                                                                                                                        |
|                                                                                        | C Manual Operation                                                                                                     |
| Choose an O<br>Option                                                                  | perating C Manual Operation<br>C Automated Operation                                                                   |
| Choose an Oj<br>Option                                                                 | perating C Manual Operation<br>C Automated Operation                                                                   |
| Choose an O<br>Option                                                                  | perating C Manual Operation<br>C Automated Operation                                                                   |
| Choose an O<br>Option<br>est Parameter                                                 | Perating C Manual Operation<br>C Automated Operation<br>r<br>Variance: 5%                                              |
| Choose an O<br>Option<br>est Parameter<br>Percentage \                                 | Perating C Manual Operation<br>C Automated Operation<br>r<br>Variance: 5%                                              |
| Choose an D<br>Option<br>est Parameter<br>Percentage \                                 | Perating C Manual Operation C Automated Operation Variance: 5% Add New Value                                           |
| Choose an D<br>Option<br>est Parameter<br>Percentage \<br>Clic                         | Perating C Manual Operation<br>C Automated Operation<br>Variance: 5%<br>Add New Value<br>& To Remove Highlighted Value |
| Choose an D<br>Option<br>est Parameter<br>Percentage V                                 | Perating C Manual Operation Automated Operation Variance: 5% Add New Value Add New Value K To Remove Highlighted Value |
| Choose an D<br>Option<br>est Parameter<br>Percentage \<br>Clic<br>Date                 | Perating Manual Operation Automated Operation  Variance: 5% Add New Value  Add New Value  2006/09/16                   |
| Choose an D<br>Option<br>est Parameter<br>Percentage \<br>Clic<br>Date                 | Perating Manual Operation Automated Operation  Variance: 5% Add New Value Add New Value 2006/08/16                     |
| Choose an D<br>Option<br>est Parameter<br>Percentage \<br>Clic<br>Date                 | Perating C Manual Operation C Automated Operation Variance: 5% Add New Value Add New Value 2006/08/16 2006/08/16       |
| Choose an O<br>Option<br>est Parameter<br>Percentage \<br>Clic<br>Date<br>Test Started | Perating Manual Operation Automated Operation  Variance: 5% Add New Value Add New Value 2006/08/16 11:57:00            |
| Choose an D<br>Option<br>est Paramete<br>Percentage 1<br>Clic<br>Date<br>Test Started  | Perating Manual Operation Automated Operation Variance: 5% Add New Value Add New Value 2006/08/16 11:57:00             |



| Passwo                                                                     | rd                                                                                                                                                                                                       |
|----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                            |                                                                                                                                                                                                          |
| 100                                                                        | Enter                                                                                                                                                                                                    |
| -                                                                          | Entel                                                                                                                                                                                                    |
| Name-                                                                      |                                                                                                                                                                                                          |
| Sunve                                                                      | eer Matadin                                                                                                                                                                                              |
|                                                                            |                                                                                                                                                                                                          |
| urmature                                                                   | Properties                                                                                                                                                                                               |
| Armahure                                                                   | Name: I. Number of Bars: 600                                                                                                                                                                             |
| New Arr                                                                    | mature Name                                                                                                                                                                                              |
| <u> </u>                                                                   |                                                                                                                                                                                                          |
| Number                                                                     | Add New Amature                                                                                                                                                                                          |
| Tramber                                                                    | Sindator Bars                                                                                                                                                                                            |
| 116                                                                        |                                                                                                                                                                                                          |
| J                                                                          | Click To Remove Highlighted Armature                                                                                                                                                                     |
|                                                                            |                                                                                                                                                                                                          |
|                                                                            |                                                                                                                                                                                                          |
| ob Numb                                                                    | ber                                                                                                                                                                                                      |
| ob Numb<br>1100_2                                                          | ber<br>218                                                                                                                                                                                               |
| ob Numb<br>1100_2                                                          | ber<br>218                                                                                                                                                                                               |
| ob Numt<br>1100_2<br>est Optio                                             | ber<br>218<br>on                                                                                                                                                                                         |
| ob Numt<br>1100_2<br>est Optio<br>Choose                                   | on<br>an Operating                                                                                                                                                                                       |
| ob Numt<br>1100_2<br>est Optio<br>Choose<br>Option                         | on<br>an Operating<br>C Manual Operation<br>C Automated Operation                                                                                                                                        |
| ob Numt<br>1100_2<br>est Option<br>Option                                  | on<br>an Operating<br>C Manual Operation<br>C Automated Operation                                                                                                                                        |
| ob Numt<br>1100_2<br>est Optic<br>Choose<br>Option                         | on<br>an Operating<br>C Manual Operation<br>C Automated Operation<br>ameter                                                                                                                              |
| ob Numt<br>1100_2<br>est Optio<br>Choose<br>Option                         | on<br>an Operating<br>C Manual Operation<br>C Automated Operation<br>ameter<br>tage Variance: 5%                                                                                                         |
| ob Numt<br>1100_2<br>est Option<br>Option                                  | on<br>an Operating<br>C Manual Operation<br>C Automated Operation<br>ameter<br>tage Variance: 5%                                                                                                         |
| ob Numt<br>1100_2<br>est Option<br>Choose<br>Option<br>est Para            | on<br>an Operating<br>C Manual Operation<br>C Automated Operation<br>ameter<br>tage Variance: 5%                                                                                                         |
| ob Numt<br>1100_2<br>est Option<br>Choose<br>Option                        | on<br>an Operating<br>C Manual Operation<br>Automated Operation<br>ameter<br>tage Variance: 5%<br>Add New Value<br>Click To Remove Highlighted Value                                                     |
| ob Numt<br>1100_2<br>est Option<br>Choose<br>Option                        | on<br>an Operating Manual Operation<br>& Automated Operation<br>ameter<br>tage Variance: 5%<br>Add New Value<br>Click To Remove Highlighted Value                                                        |
| ob Numt<br>1100_2<br>est Option<br>est Para<br>Percen                      | on<br>an Operating C Manual Operation<br>C Automated Operation<br>ameter<br>tage Variance: 5%<br>Add New Value<br>Click To Remove Highlighted Value                                                      |
| ob Numt<br>1100_2<br>est Option<br>Choose<br>Option<br>est Para<br>Percent | ber<br>218<br>on<br>an Operating<br>C Manual Operation<br>C Manual Operation<br>C Automated Operation<br>ameter<br>tage Variance: 5%<br>Add New Value<br>Click To Remove Highlighted Value<br>2006/08/16 |
| ob Numt<br>1100_2<br>est Option<br>est Para<br>Percent                     | on<br>an Operating Manual Operation<br>& Automated Operation<br>ameter<br>tage Variance: 5%<br>Add New Value<br>Click To Remove Highlighted Value<br>2006/08/16                                          |
| ob Numt<br>1100_2<br>est Option<br>est Para<br>Percen                      | ber<br>218<br>on<br>an Operating<br>C Manual Operation<br>C Automated Operation<br>ameter<br>tage Variance: 5%<br>Add New Value<br>Click To Remove Highlighted Value<br>2006/08/16<br>arted 11:57:00     |
| ob Numt<br>1100_2<br>est Option<br>est Para<br>Percent<br>Date<br>Date     | on<br>an Operating Manual Operation<br>& Automated Operation<br>ameter<br>tage Variance: 5%<br>Add New Value<br>Click To Remove Highlighted Value<br>2006/08/16<br>arted 11:57:00                        |



| Passwor                    | d                                   |
|----------------------------|-------------------------------------|
|                            |                                     |
| 10 (                       | Enter                               |
|                            | LING                                |
| Name                       | 081                                 |
| Sunve                      | er Matadin                          |
|                            | 1                                   |
| Armature F                 | Properties                          |
| Armature 1                 | Name: I. Number of Bars: 600        |
| New Arm                    | nature Name                         |
|                            | Add Norr                            |
| Number                     | Of Commutator Bars Armature         |
|                            |                                     |
|                            |                                     |
| <u></u> /-                 | lick, i o Hemove Hignighteo Amature |
| ob Numb                    | ~                                   |
| 1100 21                    | 18                                  |
| 11100_21                   |                                     |
| est Optio                  | n                                   |
| Choose a                   | n Operating C Manual Operation      |
| Option                     | Automated Operation                 |
| s                          |                                     |
| est Parar                  | neter                               |
| Percenta                   | age Variance: 5%                    |
| <u> </u>                   | Add New Value                       |
| 16<br>11                   |                                     |
| -                          | LICK TO Hemove Highlighted Value    |
|                            |                                     |
| )ate                       | 2000, 100, 11 0                     |
| )ate —                     | 2006/08/16                          |
| )ate                       | 2006/08/16                          |
| )ate                       | 2006/08/16                          |
| )ate<br>ime<br>Test Star   | 2006/08/16<br>ted 11:57:00          |
| ) ate<br>Time<br>Test Star | ted 11:57:00                        |



| the second s |                                                                                  |
|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
|                                                                                                                |                                                                                  |
|                                                                                                                | Fax: 1                                                                           |
|                                                                                                                | Ente                                                                             |
| Name                                                                                                           |                                                                                  |
| Sunveer M                                                                                                      | Matadin                                                                          |
|                                                                                                                |                                                                                  |
| Armature Prop                                                                                                  | perties                                                                          |
| Armahure Nar                                                                                                   | me: L. Number of Bars: 600                                                       |
| New Armatu                                                                                                     | ure Name                                                                         |
|                                                                                                                |                                                                                  |
| I.<br>Number Of (                                                                                              | Add New Add New                                                                  |
| Number of                                                                                                      | Commutator Dais Annatorie                                                        |
| W.                                                                                                             |                                                                                  |
| Click                                                                                                          | < To Remove Highlighted Armature                                                 |
|                                                                                                                |                                                                                  |
| ob Number-                                                                                                     |                                                                                  |
| 1100_218                                                                                                       |                                                                                  |
| 11                                                                                                             |                                                                                  |
| est Option-                                                                                                    |                                                                                  |
| Choose an (                                                                                                    | Operating C Manual Operation                                                     |
| Option                                                                                                         | Automated Operation                                                              |
|                                                                                                                |                                                                                  |
| 1 6 G 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                        | er                                                                               |
| est Paramet                                                                                                    | -                                                                                |
| est Paramete<br>Percentage                                                                                     | Variance: 5%                                                                     |
| est Parametr<br>Percentage                                                                                     | Variance: 5%                                                                     |
| est Parametr                                                                                                   | Variance: 5%                                                                     |
| est Parametr<br>Percentage                                                                                     | Add New Value Add New Value ick To Remove Highlighted Value                      |
| est Parametr<br>Percentage                                                                                     | Variance: 5%<br>Add New Value<br>lick To Remove Highlighted Value                |
| est Parametr<br>Percentage                                                                                     | Add New Value Add New Value ick To Remove Highlighted Value                      |
| est Parametr<br>Percentage                                                                                     | Add New Value Add New Value ick To Remove Highlighted Value 2006/08/16           |
| est Parametr<br>Percentage                                                                                     | Add New Value Add New Value lick To Remove Highlighted Value 2006/08/16          |
| est Parametr<br>Percentage                                                                                     | Add New Value Add New Value lick To Remove Highlighted Value 2006/08/16 12:01:22 |
| est Parametr<br>Percentage                                                                                     | Add New Value Add New Value ick To Remove Highlighted Value 2006/08/16 12:01:23  |

| - |  |  |  |
|---|--|--|--|
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |



| Password                                                                               | d                                                                                                                                                                               |
|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                        |                                                                                                                                                                                 |
| 100                                                                                    | Enter 1                                                                                                                                                                         |
|                                                                                        | LING                                                                                                                                                                            |
| Name                                                                                   |                                                                                                                                                                                 |
| Sunve                                                                                  | er Matadin                                                                                                                                                                      |
|                                                                                        |                                                                                                                                                                                 |
| Armature F                                                                             | Properties                                                                                                                                                                      |
| Armature N                                                                             | Name: I. Number of Bars: 600                                                                                                                                                    |
| New Arm                                                                                | nature Name                                                                                                                                                                     |
|                                                                                        | AddMan                                                                                                                                                                          |
| Number (                                                                               | Df Commutator Bars Armature                                                                                                                                                     |
|                                                                                        |                                                                                                                                                                                 |
|                                                                                        | Tel. To Deserve Undefinited Association                                                                                                                                         |
| 16                                                                                     | nick, i o meniove mgnighted Annatore                                                                                                                                            |
| ob Numbr                                                                               | 81                                                                                                                                                                              |
| 1100 21                                                                                | 8                                                                                                                                                                               |
| 100                                                                                    |                                                                                                                                                                                 |
|                                                                                        |                                                                                                                                                                                 |
| est Option                                                                             | n                                                                                                                                                                               |
| fest Option<br>Choose a                                                                | n                                                                                                                                                                               |
| est Option<br>Choose a<br>Option                                                       | n C Manual Operation<br>(C Manual Operation<br>(C Automated Operation                                                                                                           |
| est Option<br>Choose a<br>Option                                                       | n Operating C Manual Operation<br>C Manual Operation<br>C Automated Operation                                                                                                   |
| est Option<br>Choose a<br>Option                                                       | n Operating O Manual Operation                                                                                                                                                  |
| est Option<br>Choose a<br>Option<br>est Paran                                          | n Operating O Manual Operation<br>Automated Operation<br>meter<br>age Variance: 5%                                                                                              |
| est Option<br>Choose a<br>Option<br>est Paran<br>Percenta                              | n Operating C Manual Operation<br>en Operation C Automated Operation<br>meter<br>age Variance: 5%<br>Add New Value                                                              |
| est Option<br>Choose a<br>Option<br>est Paran<br>Percenta                              | n Operating C Manual Operation<br>en Operating C Automated Operation<br>meter<br>age Variance: 5% C<br>Add New Value                                                            |
| est Option<br>Choose a<br>Option<br>est Paran<br>Percenta                              | n Operating C Manual Operation<br>en Operating Automated Operation<br>meter<br>age Variance: 5%<br>Add New Value<br>Click To Remove Highlighted Value                           |
| est Option<br>Choose a<br>Option<br>est Paran<br>Percenta                              | n Operating C Manual Operation<br>Automated Operation<br>meter<br>age Variance: 5%<br>Add New Value<br>Click To Remove Highlighted Value                                        |
| est Option<br>Choose a<br>Option<br>est Paran<br>Percenta                              | n Operating C Manual Operation<br>en Operating Automated Operation<br>meter<br>age Variance: 5%<br>Add New Value<br>Click To Remove Highlighted Value<br>2006/08/16             |
| est Option<br>Choose a<br>Option<br>est Paran<br>Percenta                              | n Operating C Manual Operation<br>en Operating Automated Operation<br>meter<br>age Variance: 5% 2<br>Add New Value<br>Click To Remove Highlighted Value<br>2006/08/16           |
| est Option<br>Choose a<br>Option<br>est Paran<br>Percenta                              | n Operating C Manual Operation<br>Automated Operation<br>neter<br>age Variance: 5% C<br>Add New Value<br>Click To Remove Highlighted Value<br>2006/08/16                        |
| est Option<br>Choose a<br>Option<br>est Paran<br>Percenta<br>Jate<br>Jate<br>Test Star | n Operating C Manual Operation<br>an Operating Automated Operation<br>meter<br>age Variance: 5%<br>Add New Value<br>Click To Remove Highlighted Value<br>2006/08/16<br>12:01:23 |
| est Option<br>Choose a<br>Option<br>est Paran<br>Percenta<br>)ate<br>)ate<br>Test Star | n Operating C Manual Operation<br>enter<br>age Variance: 5% 2<br>Add New Value<br>Click To Remove Highlighted Value<br>2006/08/16<br>ted 12:01:23<br>ed                         |

| END                                                                                                                                                                                  | Error Pause STOP                                                                             | Bars Remaining 600<br>Faults Logged 0<br>Save                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------|
| Error Status                                                                                                                                                                         | Error 3<br>Error 4<br>Error 4                                                                | Manual Test Manual Test Automated Test Reading Searching Delete Delete |
| Manual Reading Controls           Click To Take Reading           Manual Reading           Manual Reading           Exit           Exit           Exit           Exit           Exit | Simulator<br>K L b<br>y d J<br>Q l z<br>Into Out<br>MScom In Sim<br>J<br>Case Select<br>Exit | ngs                                                                    |

| Password                                                                                                |                                                                                                                                                         |
|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                         |                                                                                                                                                         |
|                                                                                                         | Entor                                                                                                                                                   |
|                                                                                                         | LINCI                                                                                                                                                   |
| Name                                                                                                    |                                                                                                                                                         |
| Sunveer N                                                                                               | Matadin                                                                                                                                                 |
| L                                                                                                       |                                                                                                                                                         |
| urmature Prop                                                                                           | perties                                                                                                                                                 |
| Armature Nar                                                                                            | ne: I. Number of Bars: 600                                                                                                                              |
| New Armatu                                                                                              | ire Name                                                                                                                                                |
|                                                                                                         |                                                                                                                                                         |
| Number Of (                                                                                             | Commutator Bars Add New                                                                                                                                 |
| -                                                                                                       |                                                                                                                                                         |
| 16                                                                                                      |                                                                                                                                                         |
| Click                                                                                                   | < To Remove Highlighted Armature                                                                                                                        |
|                                                                                                         |                                                                                                                                                         |
| ob Number-                                                                                              |                                                                                                                                                         |
| 11100 218                                                                                               |                                                                                                                                                         |
|                                                                                                         |                                                                                                                                                         |
| act Option                                                                                              |                                                                                                                                                         |
| est Option                                                                                              | C Manual Operation                                                                                                                                      |
| est Option<br>Choose an (<br>Option                                                                     | Operating C Manual Operation                                                                                                                            |
| est Option<br>Choose an (<br>Option                                                                     | Operating C Manual Operation<br>C Automated Operation                                                                                                   |
| est Option<br>Choose an (<br>Option                                                                     | Operating C Manual Operation<br>C Automated Operation                                                                                                   |
| est Option –<br>Choose an C<br>Option<br>est Paramete                                                   | Operating C Manual Operation<br>C Automated Operation<br>er<br>Variance: 5%                                                                             |
| est Option –<br>Choose an (<br>Option                                                                   | Operating C Manual Operation<br>C Automated Operation<br>er<br>Variance: 5%                                                                             |
| est Option –<br>Choose an (<br>Option<br>est Parametr<br>Percentage                                     | Operating C Manual Operation<br>C Automated Operation<br>er<br>Variance: 5%                                                                             |
| est Option –<br>Choose an C<br>Option<br>est Paramet<br>Percentage                                      | Operating C Manual Operation<br>C Automated Operation<br>er<br>Variance: 5%                                                                             |
| est Option –<br>Choose an C<br>Option<br>est Paramete<br>Percentage                                     | Operating C Manual Operation<br>C Automated Operation<br>er<br>Variance: 5%<br>Add New Value<br>ick To Remove Highlighted Value                         |
| est Option<br>Choose an (<br>Option<br>est Parametr<br>Percentage                                       | Operating C Manual Operation<br>C Automated Operation<br>er<br>Variance: 5%<br>Add New Value<br>ick To Remove Highlighted Value                         |
| est Option<br>Choose an (<br>Option<br>est Parametr<br>Percentage                                       | Operating C Manual Operation<br>C Automated Operation<br>er<br>Variance: 5%<br>Add New Value<br>ick To Remove Highlighted Value<br>2006/08/16           |
| est Option -<br>Choose an (<br>Option<br>est Paramet<br>Percentage                                      | Operating C Manual Operation<br>Automated Operation<br>er<br>Variance: 5% 2<br>Add New Value<br>ick To Remove Highlighted Value<br>2006/08/16           |
| est Option<br>Choose an C<br>Option<br>est Paramete<br>Percentage<br>C<br>Date                          | Operating C Manual Operation<br>Automated Operation<br>er<br>Variance: 5%<br>Add New Value<br>ick To Remove Highlighted Value<br>2006/08/16<br>12:05:36 |
| est Option<br>Choose an 0<br>Option<br>est Parametr<br>Percentage<br>Cl<br>Date<br>Date<br>Test Started | Operating C Manual Operation<br>Automated Operation<br>er<br>Variance: 5%<br>Add New Value<br>ick To Remove Highlighted Value<br>2006/08/16<br>12:05:36 |



| Passwor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | rd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10 million - 10 mi | Enter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LINGI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Name-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Sunve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | eer Matadin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ( ) ju                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| urmature l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Properties                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Armature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Name: I. Number of Bars: 600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| New Am                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nature Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Of Commutator Bars Armature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ni.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Click To Remove Highlighted Armature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ob Numb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | er                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Contraction of the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1100_2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1100_2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1100_2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 18<br>on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| est Optic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | on C Manual Operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| est Optic<br>Choose                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | on<br>an Operating<br>C Manual Operation<br>C Automated Operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| est Optic<br>Choose<br>Option                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | an Operating C Manual Operation<br>C Automated Operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| est Optic<br>Choose<br>Option                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | on<br>an Operating<br>C Manual Operation<br>C Automated Operation<br>meter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| est Optic<br>Choose<br>Option<br>est Para                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n<br>an Operating<br>C Manual Operation<br>C Automated Operation<br>meter<br>age Variance: 5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| est Optic<br>Choose<br>Option<br>est Para                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | an Operating C Manual Operation<br>C Manual Operation<br>C Automated Operation<br>meter<br>age Variance: 5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| est Optic<br>Choose<br>Option<br>est Para                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | an Operating C Manual Operation<br>C Manual Operation<br>C Automated Operation<br>meter<br>age Variance: 5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| est Optio<br>Choose<br>Option<br>est Para<br>Percent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | IN an Operating C Manual Operation The Automated Opera |
| est Optic<br>Choose<br>Option<br>est Paral<br>Percent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | IN an Operating C Manual Operation C Manual Operation C Automated Operation meter age Variance: 5% Add New Value Click To Remove Highlighted Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| est Optio<br>Choose<br>Option<br>est Para<br>Percent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | IN C Manual Operation C Manual Operation C Automated Operation meter age Variance: 5% Add New Value Click To Remove Highlighted Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| est Optic<br>Choose<br>Option<br>est Para<br>Percent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | IN<br>an Operating C Manual Operation<br>C Automated Operation<br>meter<br>age Variance: 5%<br>Add New Value<br>Click To Remove Highlighted Value<br>2006/08/16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| est Option                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | IN<br>an Operating C Manual Operation<br>Mutomated Operation<br>meter<br>age Variance: 5%<br>Add New Value<br>Click To Remove Highlighted Value<br>2006/08/16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| iest Optic<br>Choose<br>Option<br>est Para<br>Percent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | IN an Operating C Manual Operation The Automated Opera |
| iest Optio<br>Choose<br>Option<br>est Para<br>Percent<br>ate<br>test Sta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | IN<br>an Operating C Manual Operation<br>Meter<br>age Variance: 5%<br>Add New Value<br>Click To Remove Highlighted Value<br>2006/08/16<br>12:07:39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1100_2<br>est Option<br>Option<br>est Parai<br>Percent<br>ate<br>tate<br>Test Sta<br>Test End                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | IN an Operating C Manual Operation<br>Automated Operation<br>Meter<br>age Variance: 5%<br>Add New Value<br>Click To Remove Highlighted Value<br>2006/08/16<br>I2:07:39<br>ded                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |



| Password                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| W                                                                                                                                                                      | Enter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                        | (=11)(p)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Name                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Sunveer Matad                                                                                                                                                          | lin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Armature Properties                                                                                                                                                    | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Armature Name: 1                                                                                                                                                       | Number of Bars: 600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| New Armature Na                                                                                                                                                        | ame                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                        | Add New                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Number Of Comm                                                                                                                                                         | nutator Bars Armature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Click To F                                                                                                                                                             | Bemove Highlighted Armature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 15466667626                                                                                                                                                            | and the Part Part of the State |
| lob Number                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1100_218                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1100_218                                                                                                                                                               | ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1100_218<br>rest Option                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1100_218<br>Test Option<br>Choose an Opera<br>Option                                                                                                                   | ting C Manual Operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1100_218<br>Fest Option<br>Choose an Opera<br>Option                                                                                                                   | iting C Manual Operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1100_218<br>Fest Option<br>Choose an Opera<br>Option                                                                                                                   | ting C Manual Operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1100_218<br>Fest Option<br>Choose an Opera<br>Option<br>Fest Parameter<br>Percentage Varia                                                                             | nting C Manual Operation<br>Automated Operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1100_218<br>Fest Option<br>Choose an Opera<br>Option<br>Fest Parameter<br>Percentage Varia                                                                             | nting C Manual Operation<br>C Automated Operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1100_218<br>Fest Option<br>Choose an Opera<br>Option<br>Fest Parameter<br>Percentage Varia                                                                             | iting C Manual Operation<br>C Automated Operation<br>ance: 5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1100_218<br>Fest Option<br>Choose an Opera<br>Option<br>Fest Parameter<br>Percentage Varia<br>Click Tr                                                                 | Iting C Manual Operation<br>Automated Operation<br>ance: 5%<br>Add New Value<br>o Remove Highlighted Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1100_218<br>Test Option<br>Choose an Opera<br>Option<br>Test Parameter<br>Percentage Varia<br>Click Tr                                                                 | nting C Manual Operation<br>Automated Operation<br>ance: 5%<br>Add New Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1100_218<br>Fest Option<br>Choose an Opera<br>Option<br>Fest Parameter<br>Percentage Varia<br>Click Tr<br>Date                                                         | nting C Manual Operation<br>Automated Operation<br>ance: 5%<br>Add New Value<br>o Remove Highlighted Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1100_218         Fest Option         Choose an Opera         Option         Fest Parameter         Percentage Varia         Click Tr         Date                      | ting C Manual Operation<br>Automated Operation<br>ance: 5%<br>Add New Value<br>o Remove Highlighted Value<br>2006/08/16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1100_218         est Option         Choose an Opera         Option         est Parameter         Percentage Varia         Click Tr         Oate                        | ting C Manual Operation<br>Automated Operation<br>ance: 5%<br>Add New Value<br>o Remove Highlighted Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1100_218         est Option         Choose an Opera         Option         est Parameter         Percentage Varia         Click To         Oate         Test Started   | ting C Manual Operation<br>Automated Operation<br>ance: 5%<br>Add New Value<br>o Remove Highlighted Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1100_218         fest Option         Choose an Opera         Option         fest Parameter         Percentage Varia         Click Tr         Oate         Test Started | ting Manual Operation<br>Automated Operation<br>ance: 5%<br>Add New Value<br>o Remove Highlighted Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

| Emergency Stop on Bar 0 |  |  |
|-------------------------|--|--|
|                         |  |  |
|                         |  |  |
|                         |  |  |
|                         |  |  |
|                         |  |  |
|                         |  |  |
|                         |  |  |
|                         |  |  |
|                         |  |  |



|  | - | 8 | X |
|--|---|---|---|
|--|---|---|---|

| -                                               |                                 |                                                         |                                 |
|-------------------------------------------------|---------------------------------|---------------------------------------------------------|---------------------------------|
| 1                                               |                                 |                                                         |                                 |
|                                                 | New                             | Fest                                                    |                                 |
|                                                 |                                 |                                                         |                                 |
| Name                                            |                                 |                                                         |                                 |
|                                                 |                                 |                                                         |                                 |
|                                                 |                                 |                                                         |                                 |
| krmature Pro                                    | perties                         |                                                         |                                 |
| Armature Se                                     | lect                            |                                                         | ¥                               |
| New Armal                                       | ure Name                        |                                                         | 1                               |
|                                                 | 2070 - 000 - 000                |                                                         | Add New                         |
| Number Of                                       | Commutator Bar                  | s                                                       | Armature                        |
|                                                 |                                 | -                                                       | ]                               |
| Clic                                            | :k To Remove H                  | iahliahted Arm                                          | ature                           |
| -                                               |                                 |                                                         |                                 |
| est Uption-                                     | 8                               | 7250 DV 103                                             | e ///#5                         |
| Choose an<br>Option                             | Operating                       | C Manual (<br>C Automat                                 | Uperation<br>ed Operation       |
| Choose an<br>Option                             | Operating                       | C Manual (<br>C Automat                                 | Operation<br>ed Operation       |
| Choose an<br>Option<br>est Parame               | Operating<br>ter                | C Manual (<br>C Automat                                 | Operation<br>ed Operation       |
| Choose an<br>Option<br>est Parame<br>Percentag  | Operating<br>ter<br>e Variance  | C Manual (                                              | Operation<br>ed Operation       |
| Choose an<br>Option<br>est Parame<br>Percentag  | Operating<br>ter<br>e Variance  | C Manual (<br>C Automat                                 | Jperation<br>ed Operation       |
| Choose an<br>Option<br>est Parame<br>Percentag  | Operating<br>eter<br>e Variance | C Manual (<br>C Automat<br>Add New Val                  | Jperation<br>ed Operation       |
| Choose an<br>Option<br>est Parame<br>Percentag  | Operating<br>eter<br>e Variance | C Manual (<br>C Automati<br>Add New Val                 | Jperation<br>ed Operation<br>   |
| Choose an<br>Option<br>est Parame<br>Percentag  | Operating<br>eter<br>e Variance | C Manual (<br>C Automat<br>Add New Val<br>Highlighted V | Jperation<br>ed Operation<br>ve |
| Choose an<br>Option<br>est Parame<br>Percentag  | Operating<br>eter<br>e Variance | C Manual (<br>C Automat<br>Add New Val                  | Jperation<br>ed Operation       |
| Choose an<br>Option<br>est Parame<br>Percentag  | Operating<br>eter<br>e Variance | C Manual (<br>C Automat<br>Add New Val<br>Highlighted V | Jperation<br>ed Operation       |
| Choose an<br>Option<br>est Parame<br>Percentag  | Operating<br>eter<br>e Variance | C Manual (<br>C Automat<br>Add New Val<br>Highlighted V | Jperation<br>ed Operation       |
| Choose an<br>Option<br>Fest Parame<br>Percentag | Operating<br>eter<br>e Variance | C Manual 1<br>C Automat<br>Add New Val                  | Jperation<br>ed Operation       |

| Contols                                                              |                     |                               |                                                    | Test Status                                           | Click To Print                 |
|----------------------------------------------------------------------|---------------------|-------------------------------|----------------------------------------------------|-------------------------------------------------------|--------------------------------|
| LOAD                                                                 | END                 | Continue After<br>Error Pause | EMERGENCY<br>STOP                                  | Bar Under Test Bars Remaining Faults Logged           | Click To Save                  |
| Error Status                                                         | Error 2             | Error 3                       | Error 4                                            | Manual Test<br>Automated Test<br>Reading<br>Searching | Open<br>Open<br>Open<br>Delete |
| - Manual Reading Controls<br>Click To Take Reading<br>Manual Reading | Reading Prompt      | GUI Special Fuction           | N Controls<br>Is<br>User Profile Setu<br>User Name | rectory Path Settings                                 | Enter New User                 |
| - Exit-                                                              | View Calibration Sc | reen                          | Password                                           |                                                       |                                |

| - 0 ^ |  | 8 | X |
|-------|--|---|---|
|-------|--|---|---|

| Password                                                                                                                           | 5                                                                                                   |                           |
|------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|---------------------------|
|                                                                                                                                    |                                                                                                     |                           |
|                                                                                                                                    | New Test                                                                                            |                           |
| -                                                                                                                                  |                                                                                                     |                           |
| Name                                                                                                                               |                                                                                                     |                           |
| . k                                                                                                                                |                                                                                                     |                           |
| Armature Pri                                                                                                                       | operties                                                                                            |                           |
| Armature Se                                                                                                                        | elect                                                                                               | -                         |
| New Arma                                                                                                                           | ture Name                                                                                           |                           |
|                                                                                                                                    |                                                                                                     | Walat Kitawa              |
| Number 0                                                                                                                           | f Commutator Bars                                                                                   | Armature                  |
|                                                                                                                                    |                                                                                                     | ]                         |
| Ch                                                                                                                                 | * To Bemove Highlighted Arm                                                                         | ature 1                   |
|                                                                                                                                    |                                                                                                     |                           |
| ob Number                                                                                                                          | 3                                                                                                   |                           |
| lob Number                                                                                                                         |                                                                                                     |                           |
| ob Number<br>est Option<br>Choose ar<br>Option                                                                                     | Operating C Manual (<br>C Automat                                                                   | Dperation<br>ed Operation |
| ob Number                                                                                                                          | Operating C Manual (<br>C Automat                                                                   | Dperation<br>ed Operation |
| lob Number<br>(est Option<br>Choose ar<br>Option<br>(est Parame                                                                    | Operating C Manual (<br>C Automati<br>eter                                                          | Dperation<br>ed Operation |
| lob Number<br>(est Option<br>Choose an<br>Option<br>(est Parame<br>(Percentag                                                      | Dperating C Manual (<br>C Automati<br>eter<br>je Variance                                           | Dperation<br>ed Operation |
| ob Number                                                                                                                          | Dperating C Manual C Automat<br>C Automat<br>eter<br>ge Variance<br>Add New Val                     | Dperation<br>ed Operation |
| lob Number<br>[est Option<br>Choose an<br>Option<br>[est Parame<br>Percentag                                                       | Operating     C Manual 0     C Automat  eter ge Variance Add New Val  Dlick To Remove Highlighted V | Deration<br>ed Operation  |
| lob Number                                                                                                                         | Operating Manual O Automat  eter ge Variance Add New Val  Dlick To Remove Highlighted V             | Deration<br>ed Operation  |
| ob Number                                                                                                                          | Operating Manual O Automati eter ge Variance Add New Val Dlick To Remove Highlighted V              | Deration<br>ed Operation  |
| ob Number                                                                                                                          | Operating Manual O Automation eter ge Variance Add New Val Dlick To Remove Highlighted V            | Deration<br>ed Operation  |
| lob Number                                                                                                                         | Operating Manual O Automation eter ge Variance Add New Val Dlick To Remove Highlighted V            | Deration<br>ed Operation  |
| lob Number                                                                                                                         | Operating Manual O Automation eter ge Variance Add New Val Dick To Remove Highlighted V             | Deration<br>ed Operation  |
| lob Number<br>[est Option<br>Choose an<br>Option<br>[est Parame<br>Percentag<br>]<br>Date<br>]<br>Date<br>Test Starte<br>Test Ende | Dick To Remove Highlighted V                                                                        | Deration<br>ed Operation  |



| Password                                                                                                         |                                                                     |                                     |
|------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------|
|                                                                                                                  |                                                                     |                                     |
| 10 (                                                                                                             | Foller                                                              | 1                                   |
|                                                                                                                  | LING                                                                |                                     |
| Name                                                                                                             |                                                                     | 44<br>24                            |
| Sunveer Matadi                                                                                                   | n                                                                   |                                     |
|                                                                                                                  |                                                                     |                                     |
| Armature Properties                                                                                              | -                                                                   |                                     |
| Armature Select                                                                                                  |                                                                     | -                                   |
| New Armature Nar                                                                                                 | ne                                                                  |                                     |
|                                                                                                                  |                                                                     |                                     |
| Number Of Comm                                                                                                   | Itator Bars                                                         | Add New<br>Armature                 |
|                                                                                                                  |                                                                     | Finacaro                            |
| 10                                                                                                               |                                                                     | -                                   |
| Click To R                                                                                                       | emove Highlighted Ari                                               | mature                              |
| ob Number                                                                                                        |                                                                     |                                     |
| ob Number<br>est Option<br>Choose an Operati<br>Option                                                           | ing C Manual<br>C Automa                                            | Operation<br>ted Operation          |
| ob Number<br>est Option<br>Choose an Operati<br>Option                                                           | ing C Manual<br>C Automa                                            | Operation<br>ted Operation          |
| ob Number<br>est Option<br>Choose an Operati<br>Option<br>est Parameter<br>Percentage Variar                     | ing C Manual<br>C Automa                                            | Operation<br>ted Operation          |
| ob Number<br>est Option<br>Choose an Operati<br>Option<br>est Parameter<br>Percentage Variar                     | ing C Manual<br>C Automa<br>nce                                     | Operation<br>ted Operation          |
| ob Number                                                                                                        | ing C Manual<br>C Automa<br>nce<br>Add New Va                       | Operation<br>ted Operation          |
| ob Number<br>est Option<br>Choose an Operati<br>Option<br>est Parameter<br>Percentage Variar<br>Click To         | ing C Manual<br>C Automa<br>nce<br>Add New Va<br>Remove Highlighted | Operation<br>ted Operation          |
| ob Number                                                                                                        | ing C Manual<br>C Automa<br>nce<br>Add New Va<br>Remove Highlighted | Operation<br>ted Operation<br>value |
| ob Number<br>est Option<br>Choose an Operati<br>Option<br>est Parameter<br>Percentage Variar<br>Click To<br>Date | ing C Manual<br>C Automa<br>nce<br>Add New Va<br>Remove Highlighted | Operation<br>ted Operation          |
| ob Number                                                                                                        | ing C Manual<br>C Automa<br>nce<br>Add New Va<br>Remove Highlighted | Operation<br>ted Operation          |
| ob Number                                                                                                        | ing C Manual<br>C Automa<br>nce<br>Add New Va<br>Remove Highlighted | Operation<br>ted Operation          |
| ob Number                                                                                                        | ing C Manual<br>C Automa<br>nce<br>Add New Va<br>Remove Highlighted | Operation<br>ted Operation          |
| ob Number                                                                                                        | ing C Manual<br>C Automa<br>nce<br>Add New Va<br>Remove Highlighted | Operation<br>ted Operation          |

| onrtols |     |                               |                   | Test Status                                     | - Click To Prir |
|---------|-----|-------------------------------|-------------------|-------------------------------------------------|-----------------|
| onitols | END | Continue After                | EMERGENCY         | Test Status<br>Bar Under Test                   | Click To Print  |
| onrtols | END | Continue After<br>Error Pause | EMERGENCY<br>STOP | Test Status<br>Bar Under Test<br>Bars Remaining | Click To Print  |

| Error Status Error 1 Error 2 Error 2                                                                                                                                          | Error 3                                  | Manual Test<br>View All<br>2005/05/03<br>2005/05/04<br>2005/05/05<br>2005/05/09 | Open Exit<br>sunveer<br>dude Delete Delete |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------|
| - Manual Reading Controls<br>Click To Take Reading<br>Manual Reading<br>Exit<br>Exit<br>Exit<br>Exit<br>Click To Take Reading<br>View Calibration Screen<br>Calibration Setup | GUI Special Fuction Controls View/Change | e Directory Path Settings                                                       |                                            |

| 🖷 Automated Volt-Drop Test |                   | 6 |
|----------------------------|-------------------|---|
|                            | Lock Out Password |   |
| LOCKED OUT                 |                   |   |
|                            |                   |   |
|                            |                   |   |
|                            |                   |   |
|                            |                   |   |
|                            |                   |   |
|                            |                   |   |
|                            |                   |   |
|                            |                   |   |
|                            |                   |   |
|                            |                   |   |
|                            |                   |   |
|                            |                   |   |
|                            |                   |   |
|                            |                   |   |
|                            |                   |   |
|                            |                   |   |

| Password                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                             |
| Enter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                             |
| Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                             |
| Sunveer Matadin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                             |
| Irmature Properties                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                             |
| Armature Select                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •                                                           |
| New Armature Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Add Nam                                                     |
| Number Of Commutator Bars                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Armature                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                             |
| LICK TO REMOVE Highlighte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                             |
| ob Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                             |
| est Option                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                             |
| est Option<br>Choose an Operating O Ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nual Operation                                              |
| est Option<br>Choose an Operating O Ma<br>Option O Aut                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nual Operation<br>omated Operation                          |
| est Option<br>Choose an Operating O Ma<br>Option O Aut                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nual Operation<br>omated Operation                          |
| est Option<br>Choose an Operating<br>Option<br>C Aut                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nual Operation<br>omated Operation                          |
| est Option<br>Choose an Operating<br>Option<br>C Aut<br>est Parameter<br>Percentage Variance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nual Operation<br>omated Operation                          |
| est Option<br>Choose an Operating<br>Option<br>C Aut<br>est Parameter<br>Percentage Variance<br>Add New                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nual Operation<br>omated Operation<br>• Value               |
| est Option<br>Choose an Operating<br>Option<br>C Aut<br>est Parameter<br>Percentage Variance<br>Add New<br>Click To Bemove Highligh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | nual Operation<br>omated Operation<br>v Value               |
| est Option<br>Choose an Operating<br>Option<br>C Ma<br>Option<br>C Aut<br>est Parameter<br>Percentage Variance<br>Add New<br>Click To Remove Highligh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nual Operation<br>omated Operation<br>V Value<br>Ited Value |
| est Option<br>Choose an Operating<br>Option<br>C Ma<br>Option<br>C Ma<br>Option<br>Aut<br>est Parameter<br>Percentage Variance<br>Add New<br>Click To Remove Highligh<br>Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nual Operation<br>omated Operation<br>v Value<br>ited Value |
| est Option<br>Choose an Operating<br>Option<br>Choose an Operating<br>Choose a | nual Operation<br>omated Operation<br>v Value<br>ited Value |
| est Option<br>Choose an Operating<br>Option<br>C Ma<br>Option<br>C Ma<br>Out<br>Option<br>C Ma<br>Out<br>Option<br>C Ma<br>Option<br>Option<br>C Ma<br>Option<br>Option<br>Option<br>C Ma<br>Option<br>Option<br>Option<br>Option<br>C Aut<br>C C Aut<br>C C C C C C C C C C C C C C C C C C C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nual Operation<br>omated Operation<br>Value<br>ted Value    |
| est Option<br>Choose an Operating<br>Option<br>Choose an Operating<br>Choose an                                                                                                                   | nual Operation<br>omated Operation<br>v Value<br>ited Value |
| est Option<br>Choose an Operating<br>Option<br>Choose an Operating<br>Choose an Operating<br>Aut<br>est Parameter<br>Percentage Variance<br>Add New<br>Click To Remove Highligh<br>Date<br>Test Started                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nual Operation<br>omated Operation<br>v Value<br>ited Value |
| est Option<br>Choose an Operating<br>Option<br>C Ma<br>Option<br>C Ma<br>Out<br>C Ma<br>Out<br>C Ma<br>Out<br>C Ma<br>Out<br>C Ma<br>Out<br>Out<br>C Ma<br>Out<br>Out<br>C Ma<br>Out<br>Out<br>Out<br>C Aut<br>C C Aut<br>C C C C C C C C C C C C C C C C C C C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nual Operation<br>omated Operation<br>v Value<br>ted Value  |

| Conrtols                                                  |                                                                                |                                 | 10                                                                              | l est Status                                          | - Click To Print-                |
|-----------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------|----------------------------------|
| Load                                                      | END                                                                            | Continue After<br>Error Pause   | EMERGENCY<br>STOP                                                               | Bar Under Test                                        | Click To Save                    |
| Error Status                                              | Error 2                                                                        | Error 3                         | Error 4                                                                         | Manual Test<br>Automated Test<br>Reading<br>Searching | Open<br>Open<br>Delete<br>Delete |
| Manual Reading Control Click To Take Readi Manual Reading | s<br>Ing<br>I<br>Reading Prompt<br>View Calibration Scree<br>Calibration Setup | GUI Special Fuction View Contro | n Controls - View/Change Di<br>vis View Sel<br>- View User Profile<br>View User | rectory Path Settings                                 |                                  |

| Setup Fields                                                                                | Test In Progress Fields                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| - User Identification                                                                       | - Fault Log                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Password New Test                                                                           | Fault on Bar: 3, Percentage Variance = 19.28123, Bar Reading: 0.1626973V, Refe<br>Fault on Bar: 5, Percentage Variance = 10.88503, Bar Reading: 0.1215511V, Refe<br>Fault on Bar: 7, Percentage Variance = 10.3879, Bar Reading: 0.1505669V, Refer<br>Fault on Bar: 8, Volt-Drop Reading Is Zero (0V), Indicating A Possible Short Circuit<br>Fault on Bar: 9, Volt-Drop Reading Is Out Of Range, Indicating A Possible Open Circ<br>Emergency Stop on Bar 10<br>Text Print Complete | erence: 0.136398V<br>erence: 0.136398V<br>ence: 0.136398V<br>suit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Sunveer Matadin                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Armature Properties                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Armature Name: b Number of Bars: 10                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Add New Amature                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Click, To Remove Highlighted Armature                                                       | Conrtols                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Test Status Click To Print                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Job Number<br>Test Results                                                                  | Start EMERGENCY<br>Error Pause STOP                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Bars Remaining Click To Save                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Test Option<br>Choose an Operating<br>Option<br>C Manual Operation<br>C Automated Operation | Error Status                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Manual Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Test Parameter Percentage Variance: 5%                                                      | Error 1 Error 2 Error 3 Error 4 Error 4                                                                                                                                                                                                                                                                                                                                                                                                                                              | Automated Test  Automated Test  Reading  Searching  Delete  Delete Delete Delete Delete Delete Delete Delete Delete Delete Delete Delete Delete Delete Delete Delete Delete Delete Delete Delete Delete Delete Delete Delete Delete Delete Delete Delete Delete Delete Delete Delete Delete Delete Delete Delete Delete Delete Delete Delete Delete Delete Delete Delete Delete Delete Delete Delete Delete Delete Delete Delete Delete Delete Delete Delete Delete Delete Delete Delete Delete Delete Delete Delete Delete Delete Delete Delete Delete Delete Delete Delete Delete Delete Delete Delete Delete Delete Delete Delete Delete Delete Delete Delete Delete Delete Delete Delete Delete Delete Delete Dele |
| Add New Value Click To Remove Highlighted Value                                             | Manual Reading Controls                                                                                                                                                                                                                                                                                                                                                                                                                                                              | rectory Path Settings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Date                                                                                        | Click To Take Reading - Reading Prompt - View Controls View Set                                                                                                                                                                                                                                                                                                                                                                                                                      | Setup                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Time<br>Test Started 13:53:53                                                               | View User                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Profile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Test Ended                                                                                  | Exit View Calibration Screen                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Test Duration 0: 4: 15                                                                      | Exit Calibration Setup                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

🚮 Start 🛛 🛃 🏉 🍪 🎲 🔯 🔍 🔗

Document1 - Microsoft W... 🔂 Datapath

M.Sc Only

Sc Only 📩 Project1 - I

🚖 Project1 - Microsoft Visual... 🕞 Automated Volt-Drop ... 🛛 🕹 🍕 🕸 🚳 🛲 🕮 🐼 🤯 13:58

🚮 Start 🛛 🛃 🏉 🍪 🎲 🔯 🔍 🔗

Document1 - Microsoft W... 🔄 Datapath

🌫 🌗 🥸 🛲 🕮 EN 🔝 🖏 🖄 14:20

| st Setup Fields                       | Test In Progress Fields                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |  |  |  |  |  |
|---------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--|--|--|--|--|
| - User Identification                 | Iser Identification       Fault on Bar: 3, Percentage Variance = 19.45295, Bar Reading: 0.1623932V, Reference: 0.1359474V         Fault on Bar: 5, Percentage Variance = 10.68346, Bar Reading: 0.1214235V, Reference: 0.1359474V         Fault on Bar: 7, Percentage Variance = 11.05382, Bar Reading: 0.1509748V, Reference: 0.1359474V         Fault on Bar: 8, Volt-Drop Reading Is Zero (0V), Indicating A Possible Short Circuit         Fault on Bar: 8, Volt-Drop Reading Is Out Of Range, Indicating A Possible Open Circuit         Emergency Stop on Bar 10         Test Print Complete |                |  |  |  |  |  |
| Password<br>New Test                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |  |  |  |  |  |
| Sunveer Matadin                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |  |  |  |  |  |
| Armature Properties                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |  |  |  |  |  |
| Armature Name: b Number of Bars: 10   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |  |  |  |  |  |
| New Armature Name                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |  |  |  |  |  |
| Number Of Commutator Bars Armature    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |  |  |  |  |  |
| Click. To Remove Highlighted Armature | Conrtols Test Status                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Click To Print |  |  |  |  |  |
|                                       | Bar Under Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Print          |  |  |  |  |  |
| Job Number<br>001 Test Results        | Start END Continue After EMERGENCY Bars Remaining Eaults Logged                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Click To Save  |  |  |  |  |  |
| - Test Option                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Save           |  |  |  |  |  |
| C Manual Operation                    | Error Status Manual Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - Open         |  |  |  |  |  |
| C Automated Operation                 | Error 1 Error2 Error3 Error 4 Automated Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Open           |  |  |  |  |  |
| Test Parameter                        | Error 1 Error 2 Error 3 Error 4 Error 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |  |  |  |  |  |
| Percentage Variance: 5%               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Delete         |  |  |  |  |  |
| Add New Value                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Delete         |  |  |  |  |  |
| Click To Remove Highlighted Value     | Manual Reading Cantals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |  |  |  |  |  |
| Date                                  | Click To Take Beading      Reading Prompt      Autor Special Function Controls      View Change Directory Fain Settings                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |  |  |  |  |  |
| 2006/04/12                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |  |  |  |  |  |
|                                       | Manual Reading View User Profile Setup                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |  |  |  |  |  |
| Test Started 14:16:31                 | View User Profile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |  |  |  |  |  |
| Text Field 14:20:01                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |  |  |  |  |  |
|                                       | Exit View Calibration Screen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |  |  |  |  |  |
| Test Duration U: 3: 30                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |  |  |  |  |  |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |  |  |  |  |  |

M.Sc Only

Project1 - Microsoft Visual... 🔁 Automated Volt-Drop ...

| Variable                                              | μ1 (In) | $\mu_1$ (Out) | NB (In) | NB (Out) | Protocol |
|-------------------------------------------------------|---------|---------------|---------|----------|----------|
| Ask for Man/Auto                                      |         | X             | Х       |          | b        |
| Volt Drop Reading                                     |         | x             | Х       |          | Data     |
| Ready to begin test                                   |         | x             | Х       |          | d        |
| Start (click)                                         | Х       |               |         | Х        | Α        |
| End (click)                                           | Х       |               |         | X        | В        |
| Continue After Error (click)                          | Х       |               |         | Х        | С        |
| Take reading - Manual (signal)                        | х       |               |         | Х        | D        |
| Continue test (signal)                                | Х       |               |         | Х        | Е        |
| Emergency Stop (click)                                | Х       |               |         | Х        | F        |
| Auto/Man Toggle (signal)<br>Manual                    | Х       |               |         | Х        | G        |
| Auto/Man Toggle (signal)<br>Automatic                 | Х       |               |         | Х        | g        |
| Manual Emergency Stop<br>(Press -Switch on the frame) |         | x             | X       |          | 0        |
| Last Bar Reached (signal)                             | Х       |               |         | X        | Р        |
| Last Bar Not Reached (signal)                         | Х       |               |         | Х        | р        |
| Increment # of bars (signal)                          |         | X             | Х       |          | Ι        |
| Error 1 – Bars Not Detected (signal)                  |         | X             | Х       |          | J        |
| Error 2 – Probes not<br>lowered (signal)              |         | x             | Х       |          | m        |
| Error 3 – Current Time<br>Exceeded (signal)           |         | x             | Х       |          | L        |
| Error 4 – Probed not Raised (signal)                  |         | x             | Х       |          | Q        |
| Alert NB of incoming Test<br>reading data (High Byte) |         | x             | x       |          | z        |
| Alert NB of incoming Test<br>Reading data (Low Byte)  |         | x             | x       |          | У        |

# Communications Microcontroller Notebook Protocols Serial Communication

Communications Microcontroller ⇔ Notebook Protocols - Serial Communication

| End of 100 count reading continue signal | x |  | x | S |
|------------------------------------------|---|--|---|---|
| Perform Calibration<br>Procedure         | x |  | x | Н |
Form1 - 1 '\*\*\*\*\*For arm sel File \*\*\*\*\*\* 'num -> no. of bars 'nam -> name of arm 'cnt -> record number '\*\*\*\*End For arm sel File \*\*\*\*\* Dim DefaultPath As String "\*\*\*\*\*\*Printing\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Dim Print flag As Boolean ' for deleting file while print '\*\*\*\*\*\*End Printing\*\*\*\*\*\*\*\*\*\*\* '\*\*\*\*\*\*Open & Del Files\*\*\*\*\*\*\* 'aa is the Job No field 'bb is the Operators Name field 'cc is the Armature Selection field 'dd is the Percentange Variance field 'ee is the Date field 'ff is the Recorded Faults field Dim Save Test As String ' file name of amature with specific job no Dim Deletex As String Dim Test Date As String ' date of test for specific armature '\*\*\*\*\*End Open & Del Files\*\*\*\*\*\* '\*\*\*\*\*\*\*\*Calculation\*\*\*\*\*\*\*\*\* Dim ActVolReadRes As Single ' holds resolution ie, ref voltage devided by 16 bit levels (4.096/ 65535) Dim ActVolRead As Single ' holds actual voltage level of the current reading Dim mVActVolRead As Single 'holds actual voltage level of the current reading in millivolts Dim ActReference As Single 'holds actual reference level Dim mVActReference As Single 'holds actual reference level in millivolts Dim StnBit\_WD As Long ' holds the 16 bit word Dim StnBit\_WDflg As Boolean Dim Current\_Variance As Single ' holds the variance of current reading fron ref Dim Initial\_Count As Integer ' counts the first 5 readings Dim Initial\_Error As Boolean ' flag to signal that the first (ref reading) was on an fault bar Dim Reference As Long Dim Bin2Dec As String Dim AvgRefReading As Single ' average reference reading calculated after 100 cycles '\*\*\*\*\*\*\*\*End Calculation\*\*\*\*\*\* '\*\*\*\*\*\*\*Serial In\*\*\*\*\*\*\*\*\*\*\* Dim SerIn As String Dim High\_Byte As String \* 8 Dim Low\_Byte As String \* 8 Dim Incomming HighB Flag As Boolean Dim Incomming LowB Flag As Boolean '\*\*\*\*\*\*\*End Serial In\*\*\*\*\*\*\*\*\*\*\*\* '\*\*\*\*\*\*Time calc\*\*\*\*\*\*\* Dim timef As Integer Dim timed As Integer Dim timee As Integer Dim timea As Integer Dim timeb As Integer Dim timec As Integer '\*\*\*\*\*\*\*End Time calc\*\*\*\*\*\*\*\* Dim MultiReading As Integer Dim RowCount As Integer Dim ExcelSheet As Object Dim Savetime As String Dim SaveDate As String Dim TimerFlag As Boolean Dim Gain As Single 

```
Dim CalibFlag As Boolean
 Dim ReadingBoxIndex As Integer
 Dim CalibRefIn As Single
 Dim gradient As Single
 Dim intercept As Single
  Public AddNewArm As Boolean
 Public RemoveArm As Boolean
 Public AddNewVal As Boolean
 Public RemoveVal As Boolean
 Public CalPassW As Boolean
 Public PathPassW As Boolean
 Public DelFile As Boolean
 Public UsrProf As Boolean
 Dim ZeroIn As Integer
 Dim HighBCount As Integer
 Dim HighBCount1 As Integer
 Dim HighBCount2 As Integer
 Dim HighBCount3 As Integer
 Dim HighBCount4 As Integer
 Dim HighBCount5 As Integer
 Dim SndEntry As Integer
 Dim Auto_Man As String ' automatic / manual select
 Dim No_of_Bars As Long ' global variable for num of bars
Dim Percentage As Single ' global variable for & variance
 Dim Pswd As String ' 3 password tries
 Dim PasswdFlag As Boolean ' flag to signal correct password
 Dim Emergency As Boolean
 Dim pa As Integer
Dim a As Integer
Private Sub Combo1_Click()
Dim dp As Integer
Let dp = Combol.ListIndex
Let dp = dp + 1
Open DefaultPath & "Per.TXT" For Input As #3
    Do While Not EOF(3)
    Input #3, per, vlu
       If vlu = dp Then
       Let Percentage = Val(per)
       End If
    Loop
 Close #3
End Sub
Private Sub Combo2 Click()
Dim d As Integer
Let d = Combo2.ListIndex
Let d = d + 1
Open DefaultPath & "Arm.TXT" For Input As #1
   Do While Not EOF(1)
   Input #1, nam, num, cnt
       If cnt = d Then
       Let Text7.Text = num
       Let Text6.Text = 0
       Let Text8.Text = 0
       Let No_of_Bars = Val(num)
       End If
   Loop
Close #1
End Sub
Private Sub Commandl Click()
Let AddNewArm = True
Form3.Visible = True
'Form3.Show 1
Form3.Text1.Text = ""
form3.Text1.SetFocus
```

Forml - 2

```
End Sub
 Private Sub Commandl_GotFocus()
 If Form3.AdminPasswordFlag = True Then
Let Form3.AdminPasswordFlag = False
    If (Text3.Text <> "") Then
       Combol.AddItem "Percentage Variance: " & Text3.Text & "%"
Let pa = Combol.ListCount ' used as a record number, 1st item starts at 1
        Open DefaultPath & "Per.TXT" For Append As #3
       Write #3, Text3.Text, pa
       Let Text3.Text = ""
       Close #3
    Else
    MsgBox "Enter new Percentage Variance", vbOKOnly, "Enter Percentage Variance"
    End If
'Else
'MsgBox " You are Not Authorised to use this fuctionality"
End If
End Sub
Private Sub Command10 Click()
MsgBox " The next pair of bars has not been detected within the allowable period. A Manual Read
ing must now be taken", vbOKOnly, "Detection Error"
End Sub
Private Sub Command11 Click()
MsgBox " The Test Probes have not been lowered within the allowable period. A Manual Reading mu
st now be taken", vbOKOnly, "Detection Unit Lowering Error"
End Sub
Private Sub Command12 Click()
MsgBox " The Test Current has been Switched on for too long, and as a safety measure an Emergen
cy Stop has been invoked. Please Click End, check the device and Restart the Test", vbOKOnly, "
Test Current On-Time Exceeded"
End Sub
Private Sub Command13 Click()
MsgBox " The Test Probes have not been raised within the allowable time. Check the device and c
lick Continue After Error Pause OR Click Emerengcy Stop!", vbOKOnly, "Detection Unit Raising Er
ror"
End Sub
Private Sub Command14 Click()
Commandl5.Enabled = False
Command14.Enabled = False
If List1.List(0) <> "" Then
   If Left(List1.List(0), 11) = "Job Number:" Then
   Let Deletex = Fopen
   Printer.NewPage
   Let Print Save i = 0
       Do While Print Save i <= (List1.ListCount - 1)
       Printer.Print List1.List(Print_Save_i)
       Print Save i = Print Save i + \overline{1}
      Loop
   Listl.AddItem "Test Print Complete"
   Printer.EndDoc
   'Timer1.Enabled = True
   Else
   'Timerl.Enabled = True
   Let Save Test = Text9.Text
  Call FsaveSub
   Printer.NewPage
   Printer.FontBold = True
  Printer.FontSize = 9
  Printer.Print "
```

11

```
Forml - 4
     Printer.FontBold = False
     Printer.FontSize = 8
     Printer.Print ""
     Printer.Print Spc(49); "Automated Volt-Drop Test Report"
     Printer.FontBold = True
     Printer.FontSize = 9
     Printer.Print "
     Printer.Print ""
     Printer.Print Spc(5); "Job/Serial Number:
                                              " & Text9.Text
     Printer.Print Spc(5); "Operator's Name: " & Text2.Text
     Printer.Print Spc(5); Combo2.List(Combo2.ListIndex)
     Printer.Print Spc(5); Combol.List(Combol.ListIndex)
     Printer.Print Spc(5); "Date: " & LTrim(Text11.Text)
     Printer.Print "
     Printer.Print ""
     Printer.FontSize = 12
     Printer.Print Spc(4); "Recorded Faults "
     Printer.FontBold = False
     Printer.FontSize = 8
     Printer.Print ""
    Let Print_current_i = 0
Do While Print_current_i <= (List1.ListCount - 1)
        Printer.Print Spc(5); List1.List(Print_current_i)
        Print_current_i = Print_current_i + 1
        Loop
    Printer.FontBold = False
    Printer.Print ""
    Printer.FontSize = 9
    Printer.Print Spc(5); "I, " & Text2.Text & " acknowledge the above results and pledge to in
 vestigate and/or remedy the"
    Printer.Print Spc(5); "above recorded faults (if any)."
    Printer.Print ""
    Printer.Print Spc(5); "Signature, " & Text2.Text & "
    Printer.Print ""
    Printer.Print ""
    List1.AddItem "Test Print Complete"
    Printer.FontBold = True
    Printer.Print "
    Printer.EndDoc
    End If
Else
MsgBox "No Data Available To Print", vbOKOnly, "Print Error"
Command14.Enabled = True
End If
End Sub
Private Sub Command15 Click()
Dim Add Flag As Boolean
Command14.Enabled = False
Command15.Enabled = False
Let Add_Flag = False
Let Save Test = Text9.Text
'objExcel.Application.Save "Sun"
'objExcel.Application.Quit
ExcelSheet.SaveAs DefaultPath & Text9.Text & Space(2) & SaveDate & Space(2) & Savetime
ExcelSheet.Application.Quit
Set ExcelSheet = Nothing
If Dir(DefaultPath & "Saved List.TXT") <> "" Then
   Open DefaultPath & "Saved_List.TXT" For Input As #7 ' file for the list of all jobs saved
      Do While Not EOF(7)
```

```
Input #7, Add_list
             If Add list = Save_Test Then
                 Let Add Flag = True
             End If
         Loop
     Close #7
         If Add_Flag = False Then
             Let Add_Flag = False ' redundant
             Open DefaultPath & "Saved List.TXT" For Append As #7
             Write #7, Save_Test
             Close #7
         End If
Else
    Open DefaultPath & "Saved_List.TXT" For Append As #7
    Write #7, Save_Test
    Close #7
End If
    Open DefaultPath & Save_Test For Append As #5
    Let i = 0
    Do While i <= (Listl.ListCount - 1)
        Write #5, Text9.Text, Text2.Text, Combo2.List(Combo2.ListIndex), Combo1.List(Combo1.Lis
tIndex), LTrim(Text11.Text), List1.List(i)
        Let i = i + 1
    Loop
    Write #5, "End", "xxx", "xxx", "xxx", LTrim(Text11.Text), "End Of Recorded Results"
    Close #5
End Sub
Private Sub Command16_Click()
End
End Sub
Private Sub Command17_Click()
Frame37.Visible = True
Command46.Visible = True
Text20.Text = ""
Text21.Text = ""
Text22.Text = ""
Pswd = Pswd - 1
If Text1.Text <> "" Then
    If Dir("C:\Program Files\Calibration\" & "B_2_B_Pwd") <> "" Then
    Open "C:\Program Files\Calibration\" & "B_2_B_Pwd" For Input As #1
        Do While Not EOF(1)
        Input #1, UserName, UserPassword
            If UserPassword = Text1.Text Then
                'If Text1.Text = "AutoSun6" Then
                Let PasswdFlag = True
                Let Text2.Text = UserName
            End If
       Loop
       Close #1
   If PasswdFlag = True Then
                Text1.Text = ""
                Textl.Locked = True
                Let Emergency = False
                'Let Text2.Text = UserName
                Let Text2.Locked = True
                Let Text9.Locked = False
                'Let Text2.Text = ""
               Let Text9.Text = ""
               Combo2.Text = "Armature Select"
               Combol.Text = "Percentage Variance"
               Option1 = False
               Option2 = False
               Let Command5.Caption = "Load"
               Let Command14.Enabled = False ' print
Let Command15.Enabled = False ' save
               Let Command36.Enabled = True ' change default path
                        Let Text2.Locked = False
```

```
Let Text3.Locked = False
                         Let Text4.Locked = False
                         Let Text5.Locked = False
                         Let Text9.Locked = False
                         Let Command30.Enabled = True 'For delete and open
                         Let Command32.Enabled = True '
                          'Let Frame30.Enabled = True
                          'Let Frame31.Enabled = True
                         Command14.Enabled = True ' print
                 Let Text3.Text = ""
                 Let Text4.Text = ""
                 Let Text5.Text = ""
                 Let Command6.Enabled = False
                 Let Command6.BackColor = &H8000000F
                 Let Command1.Enabled = True
                 Let Command2.Enabled = True
                 Let Command3.Enabled = True
                 Let Command4.Enabled = True
                 Let Command5.Enabled = True ' enabled for LOAD, then disabled and then enabled
 for START after mscomm says micro is ready
                 Let Command9.Enabled = True
                 Let Combol.Enabled = True
                 Let Combo2.Enabled = True
                 Let Option1.Enabled = True
                 Let Option2.Enabled = True
                 Let Command17.Enabled = False
                 Let Command18.Enabled = False ' Lock out password
                 Let Text10.Locked = True ' Lock out password
                 'clearing flags and resetting variabled for calculation
                 Let StnBit WD = 0
                 Let Current Variance = 0
                 Let Initial Count = 0
                 Let Initial Error = False
                 Let Reference = 0
                 '******Initilize Serial Comm port 1******
                     ' new code 20/11 to re-initilze the sp and Clear the Out(transmit) buffer
                     'Rec data
                     MSComm1.PortOpen = False
                    MSComml.RThreshold = 1
                    MSComm1.InputLen = 1
                    MSComml.DTREnable = False
                    MSComm1.Settings = "2400, N, 8, 1"
                    MSComm1.CommPort = 1
                    MSComm1.PortOpen = True
                    'Trans data
                    MSComml.OutBufferCount = 0
                    '**** End Initilize Serial Comm port 1*****
            Else
                If Pswd > 0 Then
                MsgBox "Incorrect Password, Tries left: " & Pswd & "", vbOKOnly, "Incorrect Pa
ssword"
                Let Text1.Text = ""
                Text1.SetFocus
                Else
                MsgBox " You DO NOT have the authority to use this equipment. You have been LOC
KED OUT", vbOKOnly, "Lock Out"
    Let Textl.Text = ""
                Frame27.Visible = True
                Text10.Visible = True
                Command18.Visible = True
                End If
            End If
```

```
Forml - 7
     Else
     MsgBox "A User Profile List Has Not Been Created", vbOKOnly, "User Profile Error"
     Text1.Text = ""
     End If
 Else
 MsgBox "Please Enter A Password In the Space Provided", vbOKOnly, "Enter Password"
 Text1.SetFocus
 End If
 End Sub
 Private Sub Command18_Click()
 If Text10.Text = "AdminAutoSun6" Then
 Frame27.Visible = False
 Text10.Text = ""
 Let Command18.Visible = False
 Let Text10.Visible = False
 Let Pswd = 3
 End If
 Text10.Text = ""
 End Sub
 Private Sub Command19 Click()
 Command5.BackColor = &H8000000F 'simulator
 Let Command5.Caption = "Start"
 Command5.Enabled = True
 Let Command8.Enabled = True
 Screen.MousePointer = vbArrow
 End Sub
 Private Sub Command2 Click()
 Let AddNewArm = True
 Form3.Visible = True
 'Form3.Show 1
 Form3.Text1.Text = ""
 Form3.Text1.SetFocus
End Sub
 Private Sub Command2 GotFocus()
If Form3.AdminPasswordFlag = True Then
Let Form3.AdminPasswordFlag = False
    If MsgBox("Are You Sure That You Want to Delete The Selected Item?", vbYesNo, "Confirm Dele
te") = vbYes Then
        Dim pc As Integer
        Let pb = Combol.ListIndex ' note: first item in box is at 0 therefore 1 must be added t
o = the listcount value the record is saved under
        Combol.Clear
        If Dir(DefaultPath & "Per.TXT") <> "" Then
            Open DefaultPath & "Per.TXT" For Input As #3
            Open "Del2" For Output As #4
                Do While Not EOF(3)
                Input #3, per, vlu ' vlu is the record num saved when adding and starts at 1
                    If vlu <> (pb + 1) Then ' cos listindex begins at 0 and listcount starts a
t 1
                    Combol.AddItem "Percentage Variance: " & per & "%"
                    Let pc = Combol.ListCount
                    Write #4, per, pc
                    End If
                Loop
            Close #3
            Close #4
            Kill DefaultPath & "Per.TXT"
            Name "Del2" As DefaultPath & "Per.TXT"
        Else: MsgBox "No Percentage Variance Values Found", vbOKOnly, "Percentage Variance Erro
r"
        End If
   End If
'Else
'MsgBox " You are Not Authorised to use this fuctionality"
End If
```

```
End Sub
  Private Sub Command20 Click()
  Command47.Visible = True
  Text23.Visible = True
  Text24.Visible = True
 Command49.Visible = True
 Label14.Visible = True
 Label18.Visible = True
 End Sub
 Private Sub Command21 Click()
 Text15.Text = Auto_Man
 End Sub
 Private Sub Command22 Click()
 Call Bar_count
 End Sub
 Private Sub Command23 Click()
 Let Command10.Enabled = True ' error1
         Command10.BackColor = QBColor(12)
         Frame14.ForeColor = QBColor(12)
         Frame14.FontSize = 10
         Frame14.FontBold = True
         Command9.Enabled = True
         Frame20.ForeColor = QBColor(10) ' enables man reading but and dsply
         Picture5.BackColor = QBColor(10) '
         Frame21.ForeColor = QBColor(10)
         Command9.BackColor = QBColor(9)
 End Sub
 Private Sub Command24_Click()
 Let Commandl1.Enabled = True ' error2
         Command11.BackColor = QBColor(12)
         Frame16.ForeColor = QBColor(12)
         Frame16.FontSize = 10
         Frame16.FontBold = True
         Frame20.ForeColor = QBColor(10) ' enables man reading but and dsply
         Picture5.BackColor = QBColor(10) '
         Frame21.ForeColor = QBColor(10) '
         Command9.BackColor = QBColor(9)
 End Sub
Private Sub Command25 Click()
Let Command12.Enabled = True 'error3 is enabled and is disabled when Cont after pause or emgncy
 stop is clicked
         Command12.BackColor = QBColor(12)
        Frame17.ForeColor = QBColor(12)
        Frame 17.FontSize = 10
        Frame17.FontBold = True
        Command7.Enabled = True
        Command7.BackColor = &HFF8080
        Command8.BackColor = \&HFF8080
        Command8.Enabled = True
End Sub
Private Sub Command26_Click()
Let Command13.Enabled = True 'error4 is enabled and is disabled when Cont after pause or emgncy
 stop is clicked
        Command13.BackColor = QBColor(12)
        Frame15.ForeColor = QBColor(12)
        Frame15.FontSize = 10
        Frame15.FontBold = True
        Command7.Enabled = True
        Command7.BackColor = &HFF8080
        Command8.BackColor = &HFF8080
        Command8.Enabled = True
End Sub
Private Sub Command27_Click()
High Byte = SerIn
End Sub
?rivate Sub Command28_Click()
```

```
Low Byte = SerIn
Call Calculation
End Sub
Private Sub Command29 Click()
Let SerIn = Text17.Text
    If Incomming_LowB_Flag = True Then
    Low Byte = SerIn
    Picturel.Print Low Byte
    Let Incomming LowB Flag = False
    Let Incomming_HighB_Flag = False ' redundant
    Call Calculation
    ElseIf Incomming_HighB_Flag = True Then
    High Byte = SerIn
    Picturel.Print High Byte
    Let Incomming_HighB_Flag = False
    Else
    Select Case SerIn
    Case "a"
       Call Trans_Arm_Type
    Case "b"
       Text15.Text = Auto_Man
    Case "d"
       Command5.BackColor = &H8000000F
       Let Command5.Caption = "Start"
        Command5.Enabled = True
       Let Command8.Enabled = True
       Screen.MousePointer = vbArrow
   Case "O" 'Emergency Stop prompt when the Emergenct Stop switch on the test station is press
ed
       Command8.BackColor = QBColor(12)
       Command7.BackColor = &H8000000F
       Let Command6.Enabled = True
       Let Command6.BackColor = &HFF8080
       Let Picture6.BackColor = &H8000000F
       Call TestEnd_States
       Let Emergency = True
       Command8.Enabled = False
       List1.FontBold = True
       List1.AddItem "Emergency Stop on Bar " & Text6.Text
       List1.FontBold = False
   Case "I"
       Call Bar_count
   Case "J"
       Let Command10.Enabled = True ' error1
       Command10.BackColor = QBColor(12)
       Frame14.ForeColor = QBColor(12)
       Frame14.FontSize = 10
       Frame14.FontBold = True
       Command9.Enabled = True
       Frame20.ForeColor = QBColor(10) ' enables man reading but and dsply
       Picture5.BackColor = QBColor(10) '
       Frame21.ForeColor = QBColor(10) '
       Command9.BackColor = &HFF8080
   Case "m"
       Let Command11.Enabled = True ' error2
       Command11.BackColor = QBColor(12)
       Frame16.ForeColor = QBColor(12)
       Frame16.FontSize = 10
       Frame16.FontBold = True
      Frame20.ForeColor = QBColor(10) ' enables man reading but and dsply
      Picture5.BackColor = QBColor(10) '
      Frame21.ForeColor = QBColor(10) '
      Command9.BackColor = &HFF8080
  Case "L"
      Frame17.ForeColor = QBColor(12)
      Frame17.FontSize = 10
      Frame17.FontBold = True
      Command8.Enabled = True
      Command7.Enabled = True
      Command7.BackColor = &HFF8080
      Command8.BackColor = &HFF8080
```

Forml - 9

```
Form1 - 10
```

```
'Emergnet stop is automatically entered into hence the code below is a copy of the "Em-
 rgency Stop" button
         Command8.BackColor = QBColor(12)
         Command7.BackColor = &H8000000F
         Let Command6.Enabled = True
         Let Command6.BackColor = &HFF8080
         Let Picture6.BackColor = &H8000000F
         Call TestEnd States
         Let Emergency = True
         Command8.Enabled = False
         List1.FontBold = True
         Listl.AddItem "Emergency Stop on Bar " & Text6.Text
         List1.FontBold = False
         Let Command12.Enabled = True 'error3 is enabled and is disabled when Cont after pause c
 r emgncy stop is clicked
         Command12.BackColor = QBColor(12)
     Case "Q"
        Let Command13.Enabled = True 'error4 is enabled and is disabled when Cont after pause c
 r emgncy stop is clicked
         Commandl3.BackColor = QBColor(12)
         Frame15.ForeColor = QBColor(12)
         Frame15.FontSize = 10
         Frame15.FontBold = True
         Command8.Enabled = True
         Command7.Enabled = True
         Command7.BackColor = &HFF8080
        Command8.BackColor = &HFF8080
     Case "z"
        Let Incomming_HighB_Flag = True
        Picture8.Back\overline{C}olor = QBColor(4)
        Picture9.BackColor = &H8000000F
    Case "y"
        Let Incomming_LowB_Flag = True
    End Select
    End If
End Sub
Private Sub Command3 Click()
Let AddNewArm = True
Form3.Visible = True
'Form3.Show 1
Form3.Text1.Text = ""
Form3.Text1.SetFocus
End Sub
Private Sub Command3 GotFocus()
If Form3.AdminPasswordFlag = True Then
Let Form3.AdminPasswordFlag = False
    If (Text4.Text <> "") And (Text5.Text <> "") Then
        Combo2.AddItem "Armature Name: " & Text4.Text & " Number of Bars:
                                                                                " & Text5.Text
        Let a = Combo2.ListCount ' used as a record number, 1st item starts at 1
        Open DefaultPath & "Arm.TXT" For Append As #1
        Write #1, Text4.Text, Val(Text5.Text), (a)
       Let Text4.Text = ""
       Let Text5.Text = ""
       Close #1
   Else
   MsgBox "Enter new Armature Name and Number of Bars", vbOKOnly, "Enter Data"
   End If
'Else
'MsgBox " You are Not Authorised to use this fuctionality"
End If
End Sub
Private Sub Command30_Click()
Dim X As String
Jim j As Boolean
Command14.Enabled = True
Save_Test = InputBox("Enter Job Number", "Enter The Job Number Of the Test You Wish To Open")
If Save Test <> "" Then
```

```
Forml - 11
      If Save Test <> "Find" Then
          If Dir(DefaultPath & Save_Test) <> "" Then
           List1.Clear
           Open DefaultPath & Save Test For Input As #5
                      Let j = False
                      Do While Not EOF(5)
                          Input #5, aa, bb, cc, dd, ee, ff
                              If j = False Then
                                  List1.AddItem "Job Number: " & aa
                                  List1.AddItem "Operator's Name: " & bb
                                  Listl.AddItem cc
                                  Listl.AddItem dd
                                  List1.AddItem "Date: " & LTrim(ee)
                                  Listl.AddItem ""
                                  List1.AddItem "Recorded Faults "
                                  List1.AddItem ""
                                  Listl.AddItem ff
                                  Let j = True
                              Else
                                  Listl.AddItem ff
                                      If aa = "End" Then
                                      Let j = False
                                      Listl.AddItem ""
                                      Listl.AddItem ""
                                      GoTo Next Rec
                                      End If
                              End If
 Next Rec:
                      Loop
                 Close #5
         Else: MsgBox "The Requested Job Number Does Not Exist", vbOKOnly, "Request Error"
         End If
     Else
       If Dir(DefaultPath & "Saved List.TXT") <> "" Then
         Open DefaultPath & "Saved_List.TXT" For Input As #7
         List2.Clear
             Let Open Hold = ""
                 Do While Not EOF(7)
                 Input #7, job
                     If Open_Hold <> job Then
                     List2.AddItem job
                     Let Open Hold = job
                     End If
                 Loop
                     If List2.ListCount <> 0 Then
                     List2.Visible = True
                     Command33.Visible = True
                     Else
                    MsgBox "There Are No Tests To View", vbOKOnly, "Data Error"
                     End If
             Close #7
       Else: MsgBox "There Are No Tests To View", vbOKOnly, "Data Error"
       End If
 End If
 Else: MsgBox "Job Number Was Not Entered", vbOKOnly, "Enter Data"
 End If
End Sub
Private Sub Command31 Click()
Let Text18.Text = ""
Text18.Text = Dirl.Path
If Right(Dirl.Path, 1) <> "\" Then
Text18.Text = Text18.Text & "\"
End If
End Sub
?rivate Sub Command32 Click()
Let DelFile = True
'Form3.Visible = True
Form3.Show 1
```

```
Form3.Text1.Text = ""
  'Form3.Text1.SetFocus
  End Sub
  Private Sub Command32_GotFocus()
  If Form3.AdminPasswordFlag = True Then
  Let Form3.AdminPasswordFlag = False
  Save_Test = InputBox("Enter File Name", "Delete file")
      If Save Test <> "" Then
          If Save Test <> "Find" Then
              If Dir(DefaultPath & Save Test) <> "" Then
                  Open DefaultPath & Save Test For Input As #5
                      If MsgBox("Are You Sure That You Want to Delete The Selected Item?", vbYesN
 o, "Confirm Delete") = vbYes Then
                      Call Delete
                      End If
                  Close #5
              Else: MsgBox " File Does Not Exist", vbOKOnly, "Data Error"
             End If
         Else
         If Dir(DefaultPath & "Saved List.TXT") <> "" Then
         Open DefaultPath & "Saved_List.TXT" For Input As #7
         List3.Clear
             Let Del Hold = ""
                  Do \overline{W}hile Not EOF(7)
                  Input #7, Delx
                      If Del Hold <> Delx Then
                      List3.AddItem Delx
                     Let Del Hold = Delx
                     End If
                 Loop
                     If List3.ListCount <> 0 Then
                     List3.Visible = True
                     Command34.Visible = True
                     Else
                     MsgBox "There Are No Tests To View", vbOKOnly, "Data Error"
                     End If
              Close #7
         Else: MsgBox "There Are No Tests To View", vbOKOnly, "Data Error"
         End If
         End If
     Else: MsgBox "Job Number Not Entered", vbOKOnly, "Enter Data"
     End If
 'Else
 'MsgBox " You are Not Authorised to use this fuctionality"
End If
End Sub
Private Sub Command33 Click()
List2.Visible = False
Command33.Visible = False
List2.Clear
List4.Visible = False
List4.Clear
End Sub
Private Sub Command34 Click()
List3.Visible = False
Command34.Visible = False
List3.Clear
End Sub
Private Sub Command35_Click()
Frame37.Visible = True
Command46.Visible = True
Fext20.Text = ""
rext21.Text = ""
Fext22.Text = ""
Command35.Visible = False
Let Command36.Enabled = True
End Sub
```

Forml - 12

```
Form1 - 13
 Private Sub Command36 Click()
 Let Text18.Text = ""
 Text18.Text = Dir1.Path
 If Right(Dirl.Path, 1) <> "\" Then
  Text18.Text = Text18.Text & "\"
 End If
 If Text18.Text <> "" Then
     Let AddNewArm = True
     Form3.Visible = True
     'Form3.Show 1
     Form3.Text1.Text = ""
     Form3.Text1.SetFocus
 Else
 MsgBox "No Path Specified", vbOKOnly, "Data Path Error"
 End If
 End Sub
 Private Sub Command36 GotFocus()
 If Form3.AdminPasswordFlag = True Then
 Let Form3.AdminPasswordFlag = False
         If Dir("C:\Program Files\SavePath") <> "" Then
             Open "C:\Program Files\SavePath" For Input As #10 ' to save the default path
             Open "Temp" For Output As #11
             Write #11, Text18.Text
             Close #11
             Close #10
             Kill ("C:\Program Files\SavePath")
             Name "Temp" As "C:\Program Files\SavePath"
             Command17.Enabled = True
         Else
             Open "C:\Program Files\SavePath" For Output As #10
             Write #10, Text18.Text
             Close #10
             Command17.Enabled = True
         End If
    Let DefaultPath = Text18.Text
     'Else
 'MsgBox " You are Not Authorised to use this fuctionality"
    End If
End Sub
Private Sub Command37 Click()
If Dir("C:\Program Files\SavePath") <> "" Then
    Open "C:\Program Files\SavePath" For Input As #10
    Input #10, DefaultPath ' holds the path to the saved files
    Let Text18.Text = DefaultPath
    Close #10
Else
    MsgBox "Default Path is Not Valid due to an Unauthorized change", vbOKOnly, "Data Path Erro
r"
End If
End Sub
Private Sub Command38 Click()
Picture2.Cls
Picture2.Visible = False
End Sub
Private Sub Command39 Click()
ExcelSheet.Application.Visible = True
End Sub
Private Sub Command4 Click()
Let AddNewArm = True
Form3.Visible = True
'Form3.Show 1
Form3.Text1.Text = ""
Form3.Text1.SetFocus
```

```
Forml - 14
 Private Sub Command4 GotFocus()
 If Form3.AdminPasswordFlag = True Then
 Let Form3.AdminPasswordFlag = False
     ' When removing an item the listindex value is used to find the record using the
     ' record number it was stored under using the listcount prop. The problem is that the
     ' using listcount, the first item is at 1, and for the listindex prop, the 1st item in
     ' the combo box is at 0. Therefore 1 is added to listindex value in order to match the
     ' stored record value using listcount.
         If MsgBox("Are You Sure That You Want to Delete The Selected Item?", vbYesNo, "Confirm
 Delete") = vbYes Then
         Dim c As Integer
             Let b = Combo2.ListIndex ' note: first item in box is at 0 therefore 1 must be adde
 d to = the listcount value the record is saved under
             Combo2.Clear
             If Dir(DefaultPath & "Arm.TXT") <> "" Then
                 Open DefaultPath & "Arm.TXT" For Input As #1
                 Open "Del" For Output As #2
                     Do While Not EOF(1)
                     Input #1, nam, num, cnt ' cnt is the record num saved when adding and start
 s at 1
                         If cnt <> (b + 1) Then ' cos listindex begins at 0 and listcount start
 s at 1
                         Combo2.AddItem "Armature Name: " & nam & " Number of Bars: " & n
 um
                         Let c = Combo2.ListCount
                         Write #2, nam, num, c
                         End If
                    Loop
                 Close #1
                 Close #2
                 Kill DefaultPath & "Arm.TXT"
                 Name "Del" As DefaultPath & "Arm.TXT"
             Else: MsgBox "No Armature Properties Found", vbOKOnly, "Data Error"
            End If
        End If
 'Else
 'MsgBox " You are Not Authorised to use this fuctionality"
 End If
End Sub
Private Sub Command40 Click()
Command41.Visible = True
Frame34.Visible = True
End Sub
Private Sub Command41 Click()
Command41.Visible = False
Frame34.Visible = False
End Sub
Private Sub Command42 Click()
Let CalPassW = True
Form3.Visible = True
'Form3.Show 1
Form3.Text1.Text = ""
Form3.Text1.SetFocus
End Sub
Private Sub Command43_Click()
If Text20.Text <> "" And Text21.Text <> "" And Text22.Text <> "" Then
    If Text21.Text = Text22.Text Then
        If Dir("C:\Program Files\Calibration\" & "B 2 B Pwd") <> "" Then
        Open "C:\Program Files\Calibration\" & "B_2_B_Pwd" For Append As #1
        Write #1, Text20.Text, Text21.Text
       Close #1
       Else
       Open "C:\Program Files\Calibration\" & "B_2_B_Pwd" For Output As #1
       Write #1, Text20.Text, Text21.Text
       Close #1
```

```
Form1 - 15
         Text20.Text = ""
         Text21.Text = ""
         Text22.Text = ""
         End If
     Else
     MsgBox " The two Passwords that were entered Do Not match", vbOKOnly, "Password Error"
     Text21.Text = ""
     Text22.Text = ""
     End If
 Else
 MsgBox "Please Enter All The Requested Information Before Proceeding", vbOKOnly, "Input Data E
 ror"
 End If
 End Sub
 Private Sub Command44 Click()
 Frame37.Visible = True
 Command46.Visible = True
 Text20.Text = ""
 Text21.Text = ""
 Text22.Text = ""
 End Sub
 Private Sub Command42 GotFocus()
 If Form3.AdminPasswordFlag = True Then
 Let Form3.AdminPasswordFlag = False
 Form2.Visible = True
Let CalibFlag = True
 Let MultiReading = 0
Let RowCount = 0
Set ExcelSheet = CreateObject("Excel.Sheet")
'********End multiple reading initialization*********
'for test
If Dir("C:\Program Files\Calibration\" & "Calibration1.txt") <> "" Then
Open "C:\Program Files\Calibration\" & "Calibration1.txt" For Input As #1
Input #1, gradient, intercept, ddate
Close #1
Else
MsgBox "The system has not been Calibrated or the Calibration Factor File does not exist. The T
est will, however, still continue", vbOKOnly, "No Calibration Warning"
Let gradient = 1
Let intercept = 0
End If
'for test
Let Gain = 9.95
'Else
'MsgBox " You are Not Authorised to use this fuctionality"
End If
End Sub
Private Sub Command45 Click()
If Text20.Text <> "" Then
   If Dir("C:\Program Files\Calibration\" & "B 2 B Pwd") <> "" Then
   Open "C:\Program Files\Calibration\" & "B_2_B_Pwd" For Input As #1
Open "C:\Program Files\Calibration\" & "B_2_B_Pwd2" For Output As #2
       Do While Not EOF(1)
       Input #1, UserName, UserPassword
           If UserName <> Text20.Text Then
           Write #2, UserName, UserPassword
           End If
       Loop
   Close #1
   Close #2
   Kill "C:\Program Files\Calibration\" & "B 2 B Pwd"
   Name "C:\Program Files\Calibration\" & "B_2_B_Pwd2" As "C:\Program Files\Calibration\" & "B
2 B Pwd"
```

```
Forml - 16
     Text20.Text = ""
     Text21.Text = ""
     Text22.Text = ""
     Else
     MsgBox "A User Profile List Has Not Been Created", vbOKOnly, "Data Error"
     End If
 Else
 MsgBox "Please Enter User Name", vbOKOnly, "Enter Data"
 End If
 End Sub
 Private Sub Command46 Click()
 Let UsrProf = True
 Form3.Visible = True
 'Form3.Show 1
 Form3.Text1.Text = ""
 Form3.Text1.SetFocus
 End Sub
 Private Sub Command46 GotFocus()
 If Form3.AdminPasswordFlag = True Then
 Let Form3.AdminPasswordFlag = False
 Frame37.Visible = False
 Command46.Visible = False
 End If
 End Sub
 Private Sub Command47 Click()
If Text23.Text = SuperUser & Text24.Text = SuperAutoSun6 Then
 Frame38.Visible = False
Else
MsgBox " You are Not Authorised to use this fuctionality", vbOKOnly, "Unauthorized Action"
Command47.Visible = False
Text23.Visible = False
Text24.Visible = False
End If
End Sub
Private Sub Command48 Click()
Frame38.Visible = True
Command47.Visible = False
Text23.Text = ""
Text24.Text = ""
Text23.Visible = False
Text24.Visible = False
Label14.Visible = False
Label18.Visible = False
End Sub
Private Sub Command49 Click()
Command47.Visible = False
Text23.Visible = False
Text24.Visible = False
Command49.Visible = False
Labell4.Visible = False
Label18.Visible = False
End Sub
Private Sub Command5 Click()
If Command5.Caption \equiv "Start" Then
Picture9.BackColor = QBColor(10) 'search highlighted on first count
Set ExcelSheet = CreateObject("Excel.Sheet")
Command16.Enabled = False
End If
Command42.Enabled = False
Let MultiReading = 0
Let RowCount = 0
'Set ExcelSheet = CreateObject("Excel.Sheet")
********End multiple reading initialization**********
```

```
Let Gain = 9.95
 If Dir("C:\Program Files\Calibration\" & "Calibration1.txt") <> "" Then
 Open "C:\Program Files\Calibration\" & "Calibration1.txt" For Input As #1
 Input #1, gradient, intercept, ddate
 Close #1
 Else
 MsgBox "The system has not been Calibrated or the Calibration Factor File does not exist. The 1
 est will, however, still continue", vbOKOnly, "No Calibration Warning"
 Let gradient = 1
 Let intercept = 0
 End If
 'Let Text9.Text = gradient 'for test
 'Let Text2.Text = intercept ' for test
 'Dim ADList As Integer
 'Let Check = ""
 'Let ADList = 0
 'If Dir("DefaultPath & Save_Test") <> "" Then
    Open "DefaultPath & Save Test" For Input As #5
    Do While (Not EOF(5))
    Input #5, aa, bb, cc, dd, ee, ff
            If Check <> aa Then
            Let ADList = ADList + 1
            Let Check = aa
            End If
        Loop
     Close #5
  End If
 'If ADList <= 25 Then
    '*********log number of bars**********
    If Combo2.Text <> "" And Combo2.Text <> "Armature Select" Then
        '*********log % variance***********
       If Combol.Text <> "" And Combol.Text <> "Percentage Variance" Then
           If Option1 = True Or Option2 = True Then
               Do While Text2.Text = ""
              Text2.Text = InputBox("Enter User Name", "User Name Not Entered")
              Loop
              Do While Text9.Text = ""
              Text9.Text = InputBox("Enter Job Number", "Job Number Not Entered")
              Loop
              Screen.MousePointer = vbArrowHourglass ' change mouse icon when test is running
               '********* load begin time and date*******
              Let Text11.Text = Space(30) & Date
              Let SaveDate = Year(Date) & "-" & Month(Date) & "-" & Day(Date)
              Let Text12.Text = Space(20) & Time
              timed = Second(Time)
              timee = Minute(Time)
              timef = Hour(Time)
              Let Savetime = Hour(Time) & "H" & Minute(Time) & "M" & Second(Time)
              '******Enable Control Buttons**********
              'Let Command6.Enabled = True ' only enabled after last bar is reached, or test
ended
              Let Command7.Enabled = False 'only enabled when error 3 or 4 occurs
                       '*******End Enable Control Buttons*********
              '************Disable fields when started*********
              Let Command30.Enabled = False 'For delete and open
              Let Command32.Enabled = False
              'Let Frame30.Enabled = False
```

'Else

```
'Let Frame31.Enabled = False
                 Let Fopen = ""
                 Let Deletex = ""
                List1.Clear
                List2.Visible = False
                List2.Clear
                List3.Visible = False
                List3.Clear
                List4.Visible = False
                List4.Clear
                Command33.Visible = False
                Command34.Visible = False
                Let Print flag = False ' for deleting file while print
                Let Commandl.Enabled = False
                Let Command2.Enabled = False
                Let Command3.Enabled = False
                Let Command4.Enabled = False
                Let Command5.Enabled = False
                Let Command9.Enabled = False
                Let Command14.Enabled = False 'print
                Let Command15.Enabled = False 'save
                Let Combol.Enabled = False
                Let Combo2.Enabled = False
                Let Option1.Enabled = False
                Let Option2.Enabled = False
                Let Command17.Enabled = False
                Let Text1.Locked = True
                Let Text2.Locked = True
                Let Text3.Text = ""
                Let Text3.Locked = True
                Let Text4.Text = ""
                Let Text4.Locked = True
                Let Text5.Text = ""
                Let Text5.Locked = True
                Let Text9.Locked = True
                '******End Disable fields when started*********
                MSComm1.Output = "A"
                Text15.Text = "A"
                Command5.BackColor = QBColor(10)
                Command5.Enabled = False
            Else
            MsgBox " Select Automated Or Manual Opperation", vbOKOnly, "Select Operation Mode"
            End If
        Else
        MsgBox "No Percentage Variance Value Selected", vbOKOnly, "Select Percentage Variance"
        End If
        '*******End log % variance**********
    Else
    MsgBox "Armature Not Selected", vbOKOnly, "Select Armature"
    End If
        '********End log number of bars*********
   ' MsgBox "The File in which the Test Files are saved contains 50 Items and if Full, Delete I
tems before proceding."
   ' Command30.Enabled = False
    'Command32.Enabled = True
    'Listl.Clear
                            'list boxes and commands for open and delete and list1
   ' List2.Visible = False
   ' List2.Clear
   ' List3.Visible = False
    'List2.Clear
    'Command33.Visible = False
    'Command34.Visible = False
'End If
End Sub
Private Sub Command6 Click()
```

```
MSComm1.Output = "B"
 Command16.Enabled = True
 Text15.Text = "B"
 Command6.BackColor = QBColor(10)
 Let Text6.Text = ""
 Let Text7.Text = ""
 Let Text8.Text = ""
 Let Pswd = 3
 Let PasswdFlag = False
 Let Command18.Enabled = True ' Lock out password
 Let Text1.Locked = False ' Lock out password
 Let Command17.Enabled = True ' password
 Let Command14.Enabled = True 'print
 Let Command15.Enabled = True 'save
 Let Text1.Locked = False ' Lock out password
 Let Command17.Enabled = True ' password
 Let Command8.Enabled = False
 Command8.BackColor = &H8000000F
 Call TestEnd States
 Command6.Enabled = False
 Command35.Visible = True 'new test button
 If Initial Error = True Then ' if initial bar was a Fault bar
List1.FontBold = True
Listl.AddItem "Note: Reference Value Error Occured, Bar 5 has be recorded as the Bar 1 ( First
Bar )"
List1.FontBold = False
MsgBox "Note: Reference Value Error Occured", vbOKOnly, "Reference Value Error"
End If
End Sub
Private Sub Command7 Click()
MSComm1.Output = "C"
Text15.Text = "C"
Command7.BackColor = &H8000000F
Command7.Enabled = False
Command8.BackColor = &H8000000F
Let Command12.Enabled = False 'error3
Command12.BackColor = &H8000000F
Frame17.ForeColor = &H80000012
Frame17.FontSize = 8
Frame17.FontBold = False
Let Command13.Enabled = False 'error4
Command13.BackColor = &H8000000F
Frame15.ForeColor = &H80000012
Frame15.FontSize = 8
Frame15.FontBold = False
End Sub
Private Sub Command8 Click()
MSComm1.Output = "F"
Text15.Text = "F"
Command8.BackColor = QBColor(12)
Command7.BackColor = &H8000000F
Let Command6.Enabled = True
Let Command6.BackColor = &HFF8080
Let Picture6.BackColor = &H8000000F
Call TestEnd States
Let Emergency = True
```

```
Command8.Enabled = False
 List1.FontBold = True
 List1.AddItem "Emergency Stop on Bar " & Text6.Text
 List1.FontBold = False
 End Sub
 Private Sub Command9_Click()
 MSComml.Output = "D" ' send signal to ready the switch to take man reading
 Text15.Text = "D"
 'Command9.BackColor = &H8000000F
 'Command9.Enabled = False
 Command9.Enabled = False 'disables man reading but and dsply
 Frame20.ForeColor = &H8000000F '
 Picture5.BackColor = QBColor(12) '
 Frame21.ForeColor = &H8000000F
 Let Command10.Enabled = False 'error4
 Command10.BackColor = &H8000000F
 Frame14.ForeColor = &H80000012
 Frame14.FontSize = 8
 Frame14.FontBold = False
 Let Commandll.Enabled = False 'error4
Command11.BackColor = &H8000000F
Frame16.ForeColor = &H80000012
 Frame16.FontSize = 8
Frame16.FontBold = False
 'Command8.Enabled = True
 '***below code is just to test & is not prog code****
'To delete a File
'Dim Arm As ArmData
'Close #1
'Kill DefaultPath & "Arm.TXT"
'Textl.Enabled = True
'Text1.Text = "Works"
'Text1.Enabled = False
''Picture10.FontSize = 13
''Picture10.Print "a"
'Command11.Enabled = True
'Command11.BackColor = QBColor(12)
'Frame14.ForeColor = QBColor(12)
'Frame14.FontSize = 10
'Frame14.FontBold = True
'Command12.Enabled = True
'Command12.BackColor = QBColor(12)
'Frame15.ForeColor = QBColor(12)
'Frame15.FontSize = 10
'Frame15.FontBold = True
'Command13.Enabled = True
'Command13.BackColor = QBColor(12)
'Frame16.ForeColor = QBColor(12)
'Frame16.FontSize = 10
'Frame16.FontBold = True
'Command10.Enabled = True
'Command10.BackColor = QBColor(12)
Frame17.ForeColor = QBColor(12)
Frame17.FontSize = 10
Frame17.FontBold = True
```

```
End Sub
 Private Sub Dir1 Change()
 Let File1.Path = Dir1.Path
 End Sub
 Private Sub Drivel Change()
 Let Dirl.Path = Drivel.Drive
 End Sub
 Private Sub Form Load()
 Let Pswd = 3
 Let PasswdFlag = False
 Let Emergency = False
 Frame27.Visible = False
 *******************Calibration*****************
 Let Form2.Visible = False
 Let Form2.CalibFlagClear = True
 Let CalibFlag = False
 List8.AddItem Form2.CalibFlagClear 'for test
 If Dir("C:\Program Files\SavePath") <> "" Then
    Open "C:\Program Files\SavePath" For Input As #10
    Input #10, DefaultPath ' holds the path to the saved files
    Close #10
Else
   MsgBox "Default Path is Not Valid due to an Unauthorized change", vbOKOnly, "Data Path Erro
r"
    'Let DefaultPath = "xxx"
    Command17.Enabled = False
End If
'******************* End Load default path from c:program files******************
'cnt is used as a record number and is the listcount value.
'cnt starts at 1 but when items are loaded into the combo box, the 1st item is at 0
If Dir(DefaultPath & "Per.TXT") <> "" Then
   Open DefaultPath & "Per.TXT" For Input As #3
       Do While (Not EOF(3))
       Input #3, per, vlu
       Combol.AddItem "Percentage Variance: " & per & "%"
       Loop
   Close #3
End If
'cnt is used as a record number and is the listcount value.
'cnt starts at 1 but when items are loaded into the combo box, the 1st item is at 0
If Dir(DefaultPath & "Arm.TXT") <> "" Then
   Open DefaultPath & "Arm.TXT" For Input As #1
       Do While (Not EOF(1))
       Input #1, nam, num, cnt
      Combo2.AddItem "Armature Name:
                                  " & nam & "
                                             Number of Bars: " & num
      Loop
   Close #1
End If
'******Initilize Serial Comm port 1******
'Rec data
MSComml.RThreshold = 1
MSComml.InputLen = 1
MSComml.DTREnable = False
MSComm1.Settings = "2400,N,8,1"
4SComm1.CommPort = 1
4SComm1.PortOpen = True
```

Forml - 21

```
'Trans data
  MSComml.OutBufferCount = 0
  '**** End Initilize Serial Comm port 1*****
  'Text10.Locked = True
              Let Text2.Locked = True
              Let Text3.Locked = True
              Let Text4.Locked = True
              Let Text5.Locked = True
              Let Text9.Locked = True
 End Sub
 Private Sub List2 Click()
 Let Save Test = List2.Text
 List1.Clear
 Let Dspl_Date = ""
 List4.Clear
 List4.AddItem "View All"
 Open DefaultPath & Save_Test For Input As #5
     Do While Not EOF(5)
     Input #5, aa, bb, cc, dd, ee, ff
         If (Dspl_Date <> ee) And (bb <> "xxx") Then
             List4.AddItem LTrim(ee)
             Let Dspl Date = ee
         End If
     Loop
     If List4.ListCount = 1 Then
     MsgBox "There are no items to View", vbOKOnly, "Data Error"
     List4.Clear
     Else
     List4.Visible = True
     End If
 Close #5
 'Call FopenSub
 'List2.Visible = False
 'Command33.Visible = False
 End Sub
Private Sub List3 Click()
Let Save Test = List3.Text
    If MsgBox("Are You Sure That You Want to Delete The Selected Item?", vbYesNo, "Confirm Dele
 te") = vbYes Then
    Call Delete
    End If
List3.Visible = False
Command34.Visible = False
End Sub
Private Sub List4_Click()
List1.Clear
Let Test Date = List4.Text
Call FopenSub
List2.Visible = False
List4.Visible = False
Command33.Visible = False
End Sub
Private Sub MSComm1 OnComm()
If MSComm1.CommEvent = comEvReceive Then
Let SerIn = MSComml.Input
' after emergency stop, the micro goes into powerdowm mode and "" is sent to the pc, this value
crashes the program
' b4 power down \tilde{P}3 is loaded with 00000011B, keeping the serial pins 1, this should prevent a "
" value from being sent
' this code is kept here in the event an unexpected "" is sent, and thus prevent the program fr
om crashing
If SerIn = "" Then
Let SerIn = "x"
End If
Let Text19.Text = SerIn ' for tests only
Sist5.AddItem SerIn ' for tests only
```

```
If Incomming_LowB_Flag = True Then
     Low Byte = Asc(SerIn)
     List6.AddItem Low Byte
     ' for tests only
     Let Incomming LowB Flag = False
     Let Incomming HighB Flag = False ' redundant
     Call Calculation
     ElseIf Incomming HighB Flag = True Then
     High_Byte = Asc(SerIn)
     List7.AddItem High Byte ' for tests only
     Let Incomming_HighB_Flag = False
     Else
     Select Case SerIn
     'Case "a" ' bar count done in the nb therefore no need to transmit this data.
        Call Trans_Arm_Type
     Case "b"
         MSComml.Output = Auto_Man
     Case "d"
         Command5.BackColor = &H8000000F
         Let Command5.Caption = "Start"
         Command5.Enabled = True
         Let Command8.Enabled = True
         Screen.MousePointer = vbArrow
     Case "O" 'Emergency Stop prompt when the Emergenct Stop switch on the test station is press
 ed
         Command8.BackColor = QBColor(12)
         Command7.BackColor = &H8000000F
         Let Command6.Enabled = True
         Let Command6.BackColor = &HFF8080
         Let Picture6.BackColor = &H8000000F
        Call TestEnd_States
        Let Emergency = True
        Command8.Enabled = False
        List1.FontBold = True
        List1.AddItem "Emergency Stop on Bar " & Text6.Text
        Listl.FontBold = False
    Case "I"
        Call Bar_count
    Case "J"
        Let Command10.Enabled = True ' error1
        Command10.BackColor = QBColor(12)
        Frame14.ForeColor = QBColor(12)
        Frame14.FontSize = 10
        Frame14.FontBold = True
        Command9.Enabled = True
        Frame20.ForeColor = QBColor(10) ' enables man reading but and dsply
        Picture5.BackColor = QBColor(10) '
        Frame21.ForeColor = QBColor(10)
        Command9.BackColor = &HFF8080
    Case "m"
        Let Commandll.Enabled = True ' error2
        Commandll.BackColor = QBColor(12)
        Frame16.ForeColor = QBColor(12)
        Frame16.FontSize = 10
        Frame16.FontBold = True
        Command9.Enabled = True
        'Command8.Enabled = False
        Frame20.ForeColor = QBColor(10) ' enables man reading but and dsply
        Picture5.BackColor = QBColor(10) '
        Frame21.ForeColor = QBColor(10)
        Command9.BackColor = &HFF8080
   Case "N"
        MsgBox "A Negative Potential has been detected. Correct the fault and Click Continue or
Click Emenengcy Stop", vbOKOnly, "Error: Negative Input Value Detected"
   Case "L"
       Let Command12.Enabled = True 'error3 is enabled emgncy stop is automatic as the system
is already shut down on error3
       Command12.BackColor = QBColor(12)
        Frame17.ForeColor = QBColor(12)
       Frame17.FontSize = 10
       Frame17.FontBold = True
       Command8.Enabled = True
       Command7.Enabled = True
       Command7.BackColor = &HFF8080
```

```
Form1 - 24
```

Command8.BackColor = &HFF8080

```
'Emergnet stop is automatically entered into hence the code below is a copy of the "Eme
 rgency Stop" button
         Command8.BackColor = QBColor(12)
         Command7.BackColor = &H8000000F
         Let Command6.Enabled = True
         Let Command6.BackColor = &HFF8080
         Let Picture6.BackColor = &H8000000F
         Call TestEnd States
         Let Emergency = True
         Command8.Enabled = False
         Listl.FontBold = True
         List1.AddItem "Emergency Stop on Bar " & Text6.Text
         List1.FontBold = False
         Let Command12.Enabled = True 'error3 is enabled emgncy stop is automatic as the system
 is already shut down on error3
         Command12.BackColor = QBColor(12)
         . . . . . . . . . .
       . . . .
     Case "Q"
        Let Command13.Enabled = True 'error4 is enabled and is disabled when Cont after pause o
 r emgncy stop is clicked
         Command13.BackColor = QBColor(12)
         Frame15.ForeColor = QBColor(12)
         Frame15.FontSize = 10
         Frame15.FontBold = True
         Command8.Enabled = True
         Command7.Enabled = True
         Command7.BackColor = &HFF8080
         Command8.BackColor = &HFF8080
     Case "z"
         Let Incomming HighB Flag = True
         Picture8.BackColor = QBColor(4)
         Picture9.BackColor = &H8000000F
    Case "y"
        Let Incomming_LowB_Flag = True
    End Select
    End If
End If
End Sub
Private Sub Option1 Click()
Picture6.BackColor = QBColor(10)
Picture7.BackColor = &H8000000F
Let Auto Man = "G"
End Sub
Private Sub Option2 Click()
Picture7.BackColor = QBColor(10)
Picture6.BackColor = &H8000000F
Let Auto Man = "g"
End Sub
Private Sub Text15 Change()
xa: If Text15.Text = "E" Then
Call Calculation
GoTo ха
End If
End Sub
Private Sub Timer1_Timer()
'Let Form2.Text6 = "xxx"
'Timerl.Enabled = False
'For i = 1 To 102
'Let ExcelSheet.Application.Cells((RowCount + 1), i).Value = ""
'Let ExcelSheet.Application.Cells(RowCount, i).Value = ""
'Next i
'Let MultiReading = 0
'Let RowCount = RowCount - 1
'MSComml.Output = "H"
'If Form2.CalibFlagClear = False Then
```

```
'Call CalibrationSub
 'Else
 'Call Calculation
 'Let Form2.Text6 = "xxxyyy"
 'End If
 'Picture2.Cls
 Picture2.Visible = True
     Picture2.Print "Job Number: " & Text9.Text
     Picture2.Print "Operator's Name: " & Text2.Text
     Picture2.Print Combo2.List(Combo2.ListIndex)
     Picture2.Print Combol.List(Combol.ListIndex)
     Picture2.Print "Date: " & LTrim(Text11.Text)
     Picture2.Print ""
     Picture2.Print "Recorded Faults "
     Picture2.Print ""
 Let Print current_i = 0
        Do While Print_current_i <= (List1.ListCount - 1)</pre>
        Picture2.Print List1.List(Print current i)
        Print_current_i = ((Print current_i) + (1))
        Loop
 Picture2.Print ""
    Picture2.Print "I, " & Text2.Text & " acknowledge the above results and pledge to investig
ate and/or remedy the"
    Picture2.Print "above recorded faults (if any)."
    Picture2.Print "Signature, " & Text2.Text & '
    Picture2.Print ""
    End Sub
Public Sub TestEnd States()
Let Command18.Enabled = True ' Lock out password
Let Picture6.BackColor = &H8000000F
Let Picture7.BackColor = &H8000000F
Let Picture8.BackColor = &H8000000F
Let Picture9.BackColor = &H8000000F
Let Text10.Locked = False ' password
Screen.MousePointer = vbArrow ' change mouse icon when test is NOT running
Command5.BackColor = &H8000000F
Command5.Enabled = False
Let Command7.Enabled = False
Command7.BackColor = &H8000000F
Let Command9.Enabled = False
Picture5.BackColor = QBColor(12)
Frame20.Enabled = False
Frame21.Enabled = False
Let Command10.Enabled = False ' error1
Command10.BackColor = &H8000000F
Frame14.ForeColor = &H80000012
Frame14.FontSize = 8
Framel4.FontBold = False
Let Commandll.Enabled = False ' error2
Command11.BackColor = &H8000000F
Frame16.ForeColor = &H80000012
Frame16.FontSize = 8
Frame16.FontBold = False
Let Command12.Enabled = False 'error3
Command12.BackColor = &H8000000F
Frame17.ForeColor = &H80000012
```

```
Form1 - 26
 Frame17.FontSize = 8
 Frame17.FontBold = False
 Let Command13.Enabled = False 'error4
 Command13.BackColor = &H8000000F
 Frame15.ForeColor = &H80000012
 Frame15.FontSize = 8
 Frame15.FontBold = False
 If Emergency = False Then
 Let Text13.Text = Space(20) & Time
    timed = Second(Time) - timed
    If timed < 0 Then
    timed = 60 + timed
    timee = timee + 1
    End If
    timee = Minute(Time) - timee
    If timee < 0 Then
    timee = 60 + timee
    timef = timef + 1
   End If
   timef = Hour(Time) - timef
   If timef < 0 Then
   timed = 24 + timef
   End If
   Let Text14.Text = Space(20) & timef & ":" & Space(1) & timee & ":" & Space(1) & timed
End If
 End Sub
Public Sub Trans_Arm Type() ' might not be needed as the bar count is done in the nb.
Let HB_bars = No_of Bars / 256
Let LB bars = No of Bars Mod 256
MSComm1.Output = Chr(HB_bars) ' transmit High byte
MSComm1.Output = Chr(LB_bars) ' transmit Low byte
Text15.Text = Chr(HB_bars) ' transmit High byte
Text18.Text = Chr(LB bars) ' transmit Low byte
End Sub
Public Sub Bar count()
Let No_of_Bars = No_of_Bars - 1
If No_of_Bars < 0 Then ' <0 cos for the last bar this variable = 0
MSComm1.Output = "P"
Command6.BackColor = QBColor(9)
Command5.BackColor = &H8000000F
Command6.Enabled = True
Text15.Text = "P"
Else
MSComm1.Output = "p"
Text15.Text = "p"
Let Text7.Text = No of Bars
Let Text6.Text = Val(Text6.Text) + 1
End If
End Sub
Public Sub Calculation()
' List8.AddItem "enter" 'for test
'If Form2.CalibFlagClear = True Then
'Let CalibFlag = False
```

```
Form1 - 27
 'Else
 'If Form2.CalibFlagClear = False Then
 'Let CalibFlag = True
 'End If
 'List8.AddItem CalibFlag 'for test
 'If CalibFlag = True Then
 'Call CalibrationSub
 'GoTo EndReading
 'End If
 List8.AddItem "enterl" 'for test
 Dim AvgBarReading As Single
 Dim SumBarReading As Single
 If MultiReading = 0 Then
   Let MultiReading = 100
    'Let TimerFlag = True
   'Let Timer1.Enabled = True
End If
Let MultiReading = MultiReading - 1
If MultiReading = 99 Then
   Let RowCount = RowCount + 1
   Let ZeroIn = 0
   Let HighBCount = 0
   Let HighBCount1 = 0
   Let HighBCount2 = 0
   Let HighBCount3 = 0
   Let HighBCount4 = 0
   Let HighBCount5 = 0
   Let SndEntry = 0
   Let StnBit WDflg = False
End If
Let ColumnCount = 100 - MultiReading
Picture8.BackColor = QBColor(4)
Picture9.BackColor = &H8000000F
' convert to 16 bit word
'Let Bin2Dec = High Byte
'Call Binary2Decimal
'High_Byte = Bin2Dec
'Picture1.Print Bin2Dec
'Let Bin2Dec = Low_Byte
'Call Binary2Decimal
'Picturel.Print Bin2Dec
StnBit_WD = ((High_Byte * 256) + Low_Byte)
Picturel.Print StnBit WD
If StnBit_WD = 65534 Then
  Let StnBit WDflg = True
End If
If High Byte And Low_Byte = 120 Then
  Let ZeroIn = ZeroIn + 1
End If
If High Byte = 120 Then
  Let HighBCount = HighBCount + 1
End If
If High Byte = 1 Then
```

```
Form1 - 28
     Let HighBCount1 = HighBCount1 + 1
 End If
 If High Byte = 2 Then
     Let HighBCount2 = HighBCount2 + 1
 End If
 If High Byte = 3 Then
     Let HighBCount3 = HighBCount3 + 1
 End If
 If High Byte = 4 Then
     Let HighBCount4 = HighBCount4 + 1
 End If
     If High Byte = 5 Then
 Let HighBCount5 = HighBCount5 + 1
 End If
 '**************Lower Range Value Adjust***********************
 Let ActVolReadRes = (4.096 / 65536)
    Let ActVolRead = (StnBit WD * ActVolReadRes)
    Let mVActVolRead = ActVolRead / Gain
    'Let mVActVolRead = ((gradient * (ActVolRead / Gain)) + intercept) ' actual voltage with ca
 libtation factor.
    'objExcel.Application.Cells(RowCount, ColumnCount) = mVActVolRead
    ExcelSheet.Application.Cells(RowCount, ColumnCount).Value = mVActVolRead
    If High Byte <> 120 Then
        'ExcelSheet.Application.Cells((RowCount + 1), ColumnCount).Value = mVActVolRead
        Let SndEntry = SndEntry + 1
    End If
    'Listl.AddItem mVActVolRead & " , " & StnBit_WD & " , " & Low_Byte & " , " & High_Byt
   ' f
е
    List8.AddItem RowCount 'for test
    List8.AddItem ColumnCount 'for test
    List8.AddItem mVActVolRead 'for test
If MultiReading > 0 Then
    MSComml.Output = "E" ' to microcontroller ' 07-02-06
    Text15.Text = "E"
    GoTo EndReading
End If
If MultiReading = 0 Then
    Let SumBarReading = 0
       For col = 1 To 100
       Let SumBarReading = SumBarReading + ExcelSheet.Application.Cells(RowCount, col).Value
       Next col
    Let AvgBarReading = SumBarReading / 100 '100= no of readings
    'objExcel.Application.Cells(RowCount, 102) = AvgBarReading ' put the average of this row in
 col 102
   ExcelSheet.Application.Cells(RowCount, 102).Value = AvgBarReading
End If
    '**************Lower Range Value Adjust***********************
   If ZeroIn > 50 Then
           For adj = 1 To 100
          ExcelSheet.Application.Cells(RowCount, adj).Value = "Adjusted"
           Next adj
       ExcelSheet.Application.Cells(RowCount, 102).Value = "0"
       Let AvgBarReading = 0
   End If
   'List1.AddItem HighBCount & " ' " & HighBCount1 & " ' " & HighBCount2 & " ' " & HighBCount3
& " ' " & HighBCount4 & " ' " & HighBCount5
   'If (HighBCount1 > 10 Or HighBCount2 > 10 Or HighBCount3 > 10 Or HighBCount4 > 10 Or HighBC
unt5 > 10) Then
       For adj = 1 To 100
           If ExcelSheet.Application.Cells((RowCount + 1), adj).Value = "" Then
           Let ExcelSheet.Application.Cells((RowCount + 1), adj).Value = "0"
           End If
       Next adj
```

```
Let SumBarReading = 0
                  For col = 1 To 100
                  Let SumBarReading = SumBarReading + ExcelSheet.Application.Cells(RowCount + 1, col).Ve
   lue
                  Next col
                  Let AvgBarReading = SumBarReading / SndEntry
                  For adj = 1 To 100
                 ExcelSheet.Application.Cells(RowCount, adj).Value = ExcelSheet.Application.Cells((RowCount, adj).Value = ExcelSheet.Application.Cells((Row
  ount + 1), adj).Value
                 Let ExcelSheet.Application.Cells((RowCount + 1), adj).Value = ""
                 Next adj
                 ExcelSheet.Application.Cells(RowCount, 102).Value = AvgBarReading
                 ExcelSheet.Application.Cells(RowCount, 102).Font.Bold = True
         1
         'End If
              'For adj = 1 To 100
              'Let ExcelSheet.Application.Cells((RowCount + 1), adj).Value = ""
              'Next adj
         If Initial Count = 0 Then
                      'Let Reference = StnBit WD
                      'Let ActReference = (Reference * ActVolReadRes)
                      'Let mVActReference = (ActReference / Gain)
                      'objExcel.Application.Cells(RowCount, ColumnCount) = mVActReference
                      For Acol = 1 To 100
                      ExcelSheet.Application.Cells(RowCount, Acol).Font.Bold = True
                      Next Acol
                              Let AvgRefReading = AvgBarReading
                              ExcelSheet.Application.Cells(RowCount, 102).Font.Bold = True
               End If
             Let Initial Count = Initial Count + 1
  '***********End set Reference value on first reading***********
 If AvgRefReading <> 0 Then ' checking if reference value = 0
 ' calc variance of current reading
        If Initial Count > 0 Then
        'Current_Variance = (((Abs(StnBit_WD - Reference)) / Reference) * 100)'07-03-06
       Current_Variance = (((Abs(AvgBarReading - AvgRefReading)) / AvgRefReading) * 100)
       End If
 ****
        'If a value less than 20 is recorded, the CM is Indicating a possible SC and should be disp
 layed as such.
         If StnBit_WD > 20 Then ' the min value of 20 may be change depending on the typical Short
Circuit reading
              'If 65534 is recorded, the CM is Indicating an out of range reading. This should be dis
played as a possible OC.
              If StnBit WDflq = True Then
             Listl.AddItem "Fault on Bar:
                                                                " & Text6.Text & ",
                                                                                                    Volt-Drop Reading Is Out Of Range,
  Indicating A Possible Open Circuit"
             Let Text8.Text = Val(Text8.Text) + 1
             ElseIf AvgBarReading = 0 Then
             List1.AddItem "Fault on Bar:
                                                              " & Text6.Text & ", Volt-Drop Reading Is Zero (OV), In
dicating A Possible Short Circuit"
             Let Text8.Text = Val(Text8.Text) + 1
             Else
                    ' compare to selected % variance and log if a fault
                    If (Current Variance > Percentage) Then
                          Listl.AddItem "Fault on Bar: " & Text6.Text & ",
                                                                                                                 Percentage Variance = " &
Current Variance & ",
                                        Bar Reading: " & AvgBarReading & "V" & ",
                                                                                                                   Reference: " & AvgRefRead
ing & "V"
                          Let Text8.Text = Val(Text8.Text) + 1
                    End If
                    'end current reading and comparison
             End If
             'end possible OC check
```

```
Else
            List1.AddItem "Fault on Bar: " & Text6.Text & ", Volt-Drop Reading Is Almost
 r Equal to Zero, Indicating A Possible Short Circuit"
     End If
     'end possible SC check
 ****
           Command9.Enabled = False 'disables man reading but and dsply
           Frame20.Enabled = False
           Picture5.BackColor = QBColor(12) '
           Frame21.Enabled = False
           Let Command10.Enabled = False ' errorl
           Command10.BackColor = &H8000000F
           Frame14.ForeColor = &H80000012
           Frame14.FontSize = 8
           Frame14.FontBold = False
           Let Command11.Enabled = False ' error2
           Commandll.BackColor = &H8000000F
           Frame16.ForeColor = &H80000012
           Frame16.FontSize = 8
           Frame16.FontBold = False
    ' checking the 1st 5 readings to see if the ref reading is from a fault bar.
    Let Initial Count = Initial_Count + 1
       If (Initial_Count = 6) And (Val(Text8.Text) = 5) Then
       'Let Reference = StnBit WD
       'Let ActReference = (Reference * ActVolReadRes)
       'Let mVActReference = (ActReference / 1000)
       Let AvgRefReading = AvgBarReading
       Let Text8.Text = ""
       Let No_of_Bars = ((Val(Text6.Text) + Val(Text7.Text)) - 1)
       Let Text7.Text = No of Bars
       Let Text6.Text = 1
       Let Initial_Error = True ' flag to indicate Ref value error.
       List1.FontBold = True
       List1.AddItem "Test Restarted, Bar 5 is reset as the Initial (First) Bar!"
       List1.FontBold = False
       End If
          MSComm1.Output = "S" ' to microcontroller ' 07-02-06
          Picture8.BackColor = &H8000000F
          Picture9.BackColor = QBColor(10)
          Text15.Text = "S"
          Else
MsgBox " The Recorded reference value is 0 Volts & is therefore not Valid. Please Restart this
Test", vbOKOnly, "Invalid Reference Value"
      MSComm1.Output = "S" ' to microcontroller ' 07-02-06
      Picture8.BackColor = &H8000000F
      Picture9.BackColor = QBColor(10)
      Text15.Text = "S"
       End If
EndReading:
End Sub
Public Sub Binary2Decimal()
)im B2D flag As Boolean
)im B2D a As String
```

)im B2D b As Integer

```
Form1 - 31
 Dim B2D d As Integer
 Dim B2D_total As Integer
 Let B2D a = ""
 Let B2Da = Bin2Dec
 Let B2D^{-1} = 1
 Let B2D flag = False
 Let B2D^{-}b = Len(B2D^{-}a)
 Do While B2D flag = False
 Let B2D_c = InStr(B2D_1, B2D_a, "1", 0)
 If B2D c <> 0 Then
 Let B2D_total = B2D_total + 2 \land (B2D_b - B2D_c)
 Let B2D_1 = B2D_c + 1
 Else
 Let B2D_flag = True
 End If
 Loop
 Let Bin2Dec = B2D total
 End Sub
 Public Sub FopenSub()
     If Test Date = "View All" Then
             Open DefaultPath & Save_Test For Input As #5
                 Let j = False
                 Do While Not EOF(5)
                     Input #5, aa, bb, cc, dd, ee, ff
                         If j = False Then
                              List1.AddItem "Job Number: " & aa
                             List1.AddItem "Operator's Name: " & bb
                             List1.AddItem cc
                             List1.AddItem dd
                             List1.AddItem "Date: " & LTrim(ee)
                             List1.AddItem ""
                             List1.AddItem "Recorded Faults "
                             List1.AddItem ""
                             List1.AddItem ff
                             Let j = True
                         Else
                             List1.AddItem ff
                                 If aa = "End" Then
                                 Let j = False
                                 Listl.AddItem ""
                                 List1.AddItem ""
                                 End If
                         End If
                 Loop
                 Close #5
    Else
         Open DefaultPath & Save_Test For Input As #5
                 Let j = False
                 Do While Not EOF(5)
                     Input #5, aa, bb, cc, dd, ee, ff
                        If (Test_Date = LTrim(ee)) Then
                             If j = False Then
                                 List1.AddItem "Job Number: " & aa
                                 List1.AddItem "Operator's Name: " & bb
                                 List1.AddItem cc
                                 Listl.AddItem dd
                                 List1.AddItem "Date: " & LTrim(ee)
                                 List1.AddItem ""
                                 List1.AddItem "Recorded Faults "
                                 List1.AddItem ""
                                 Listl.AddItem ff
                                 Let j = True
                             'End If
                             Else
                                 List1.AddItem ff
                                     If aa = "End" Then 'xxx (or End) signals end of a test and
all the fields for the next test has to be printed
                                     Let j = False
                                     Listl.AddItem ""
```

```
List1.AddItem ""
                                  End If
                          End If
                       End If
                Loop
        Close #5
    End If
 'aa is the Job No field
 'bb is the Operators Name field
 'cc is the Armature Selection field
 'dd is the Percentange Variance field
 'ee is the Date field
 'ff is the Recorded Faults field
 End Sub
 Public Sub Delete()
 If Dir(DefaultPath & "Saved List.TXT") <> "" Then
 Open DefaultPath & "Saved List.TXT" For Input As #7
Open "Saved List Del" For Output As #8
Do While Not EOF(7)
        Input #7, look
            If Save Test <> look Then
               Write #8, look
           End If
        Loop
           Close #7
           Close #8
           Kill DefaultPath & "Saved List.TXT"
           Name "Saved List Del" As DefaultPath & "Saved List.TXT"
 Else: MsgBox "File Does Not Exist", vbOKOnly, "Data Error"
End If
 'Close #5
If Dir(DefaultPath & Save Test) <> "" Then
Kill (DefaultPath & Save Test)
List1.Clear
End If
End Sub
Public Sub FsaveSub()
'objExcel.Application.Save (Text9.Text & Text11.Text)
'objExcel.Application.Quit
ExcelSheet.SaveAs DefaultPath & Text9.Text & Space(2) & SaveDate & Space(2) & Savetime
ExcelSheet.Application.Quit
Set ExcelSheet = Nothing
Dim Add_Flagx As Boolean
Let Add Flagx = False
Let Save Test = Text9.Text ' redundant
If Dir(DefaultPath & "Saved List.TXT") <> "" Then
   Open DefaultPath & "Saved List.TXT" For Input As #7 ' file for the list of all jobs saved
      Do While Not EOF(7)
       Input #7, Add list
           If Add list = Save Test Then
              Let Add Flagx = True
           End If
       Loop
   Close #7
       If Add Flagx = False Then
           Let Add Flagx = False ' redundant
           Open DefaultPath & "Saved_List.TXT" For Append As #7
          Write #7, Save Test
          Close #7
       End If
Else
   Open DefaultPath & "Saved List.TXT" For Append As \#7
   Write #7, Save Test
   Close #7
```

```
End If
        Open DefaultPath & Save Test For Append As #5
        Let i = 0
        Do While i <= (List1.ListCount - 1)
 Write #5, Text9.Text, Text2.Text, Combo2.List(Combo2.ListIndex), Combo1.List(Combo1.ListIndex), LTrim(Text11.Text), List1.List(i)
        Let i = i + 1
        Loop
        Write #5, "End", "xxx", "xxx", "Xxx", LTrim(Text11.Text), "End Of Recorded Results"
        Close #5
 End Sub
 Public Sub CalibrationSub()
 Let Form2.Text6 = "xxxyyysun"
 Dim AvgBarReading As Single
 Dim SumBarReading As Single
        If MultiReading = 0 Then
       Let MultiReading = 100
       Let TimerFlag = True
       Let Timerl.Enabled = True
       Let Form2.Text5.Text = Timer1.Interval
       End If
       Let MultiReading = MultiReading - 1
       If MultiReading = 99 Then
       Let RowCount = RowCount + 1
       Let ZeroIn = 0
       Let HighBCount = 0
       Let HighBCount1 = 0
       Let HighBCount2 = 0
       Let HighBCount3 = 0
       Let HighBCount4 = 0
       Let HighBCount5 = 0
       Let SndEntry = 0
       End If
       Let ColumnCount = 100 - MultiReading
       StnBit_WD = ((High_Byte * 256) + Low_Byte)
Picture1.Print StnBit WD
If High Byte And Low Byte = 120 Then
Let ZeroIn = ZeroIn + 1
End If
If High Byte = 120 Then
Let HighBCount = HighBCount + 1
End If
If High Byte = 1 Then
Let HighBCount1 = HighBCount1 + 1
End If
If High Byte = 2 Then
Let HighBCount2 = HighBCount2 + 1
End If
If High Byte = 3 Then
Let HighBCount3 = HighBCount3 + 1
End If
If High Byte = 4 Then
Let HighBCount4 = HighBCount4 + 1
End If
If High Byte = 5 Then
Let HighBCount5 = HighBCount5 + 1
End If
```

```
Let ActVolReadRes = (4.096 / 65536)
     Let ActVolRead = (StnBit WD * ActVolReadRes)
     Let mVActVolRead = ((ActVolRead) / Gain)
                                           '[ removed for test ]
     ExcelSheet.Application.Cells(RowCount, ColumnCount).Value = mVActVolRead
     If High Byte <> 120 Then
     ExcelSheet.Application.Cells((RowCount + 1), ColumnCount).Value = mVActVolRead
     Let SndEntry = SndEntry + 1
     End If
    Form2.List1.AddItem mVActVolRead & " , " & StnBit_WD & " , " & Low_Byte & " , " & Hig
 h Byte ' for test
 If MultiReading > 0 Then
    MSComm1.Output = "E" ' to microcontroller ' 07-02-06
    GoTo EndReading2
 End If
 If MultiReading = 0 Then
 Let TimerFlag = False
 Let Timer1.Enabled = False
 Let SumBarReading = 0
    For col = 1 To 100
    Let SumBarReading = SumBarReading + ExcelSheet.Application.Cells(RowCount, col).Value
    Next col
    'For col = 1 To 100
    'Let ExcelSheet.Application.Cells(RowCount, col).Value = ""
    'Next col
    Let AvgBarReading = SumBarReading / 100 '100= no of readings
    'objExcel.Application.Cells(RowCount, 102) = AvgBarReading ' put the average of this row in
 col 102
    ExcelSheet.Application.Cells(RowCount, 102).Value = AvgBarReading
    ExcelSheet.Application.Cells(RowCount, 102).Font.Bold = True
    'For i = 0 To 39
    'If Form2.Command1(i).Value = True Then
    Let i = Form2.ReadingBoxIndex
    Let Text25.Text = i
   Let Form2.Text2(i).Text = AvgBarReading
    Let CalibRefIn = Val(Form2.Text1(i).Text)
    'ExcelSheet.Application.Cells(RowCount, 3).Value = CalibRefIn
    'ExcelSheet.Application.Cells(RowCount, 1).Value = RowCount
    'Let Form2.Command1(i).Enabled ExcelSheet.Application.Cells(RowCount, 2).Value = CalibRefIn
= False
    'End If
   'Next i
 If ZeroIn > 50 Then
       For adj = 1 To 100
       ExcelSheet.Application.Cells(RowCount, adj).Value = "Adjusted"
       Next adj
       ExcelSheet.Application.Cells(RowCount, 102).Value = "0"
       Let Form2.Text2(i).Text = "0"
   End If
   Let Form2.Text6 = HighBCount & " ' " & HighBCount1 & " ' " & HighBCount2 & " ' " & HighBCou
nt3 & " ' " & HighBCount4 & " ' " & HighBCount5
   If (HighBCount1 > 10 Or HighBCount2 > 10 Or HighBCount3 > 10 Or HighBCount4 > 10 Or HighBCo
int5 > 10) Then
       For adj = 1 To 100
          If ExcelSheet.Application.Cells((RowCount + 1), adj).Value = "" Then
          Let ExcelSheet.Application.Cells((RowCount + 1), adj).Value = "0"
```

```
End If
         Next adj
         Let SumBarReading = 0
         For col = 1 To 100
        Let SumBarReading = SumBarReading + ExcelSheet.Application.Cells(RowCount + 1, col).Val
 ue
        Next col
        Let AvgBarReading = SumBarReading / SndEntry
        For adj = 1 To 100
        ExcelSheet.Application.Cells(RowCount, adj).Value = ExcelSheet.Application.Cells((RowCo
 unt + 1), adj).Value
        Let ExcelSheet.Application.Cells((RowCount + 1), adj).Value = ""
        Next adj
        ExcelSheet.Application.Cells(RowCount, 102).Value = AvgBarReading
        ExcelSheet.Application.Cells(RowCount, 102).Font.Bold = True
        Let i = Form2.ReadingBoxIndex
        Let Text25.Text = i
        Let Form2.Text2(i).Text = AvgBarReading
        Let CalibRefIn = Val(Form2.Text1(i).Text)
    End If
        'If HighBCount1 > 0 Then
        'ExcelSheet.Application.Cells(RowCount, adj).Value = "Adjusted"
        'Next adj
        'ExcelSheet.Application.Cells(RowCount, 102).Value = "0.0016"
        'Let Form2.Text2(i).Text = "0.0016"
        'End If
        'If HighBCount2 > 0 Then
        'For adj = 1 To 100
        'ExcelSheet.Application.Cells(RowCount, adj).Value = "Adjusted"
        'Next adj
        'ExcelSheet.Application.Cells(RowCount, 102).Value = "0.0032"
        'Let Form2.Text2(i).Text = "0.0032"
        'End If
        'If HighBCount1 > 0 Then
        'For adj = 1 To 100
        'ExcelSheet.Application.Cells(RowCount, adj).Value = "Adjusted"
        'Next adj
        'ExcelSheet.Application.Cells(RowCount, 102).Value = "0.0048"
        'Let Form2.Text2(i).Text = "0.0048"
        'End If
        'If HighBCount1 > 0 Then
        'For adj = 1 To 100
        'ExcelSheet.Application.Cells(RowCount, adj).Value = "Adjusted"
        'Next adj
        'ExcelSheet.Application.Cells(RowCount, 102).Value = "0.0064"
        'Let Form2.Text2(i).Text = "0.0064"
       'End If
       'If HighBCount1 > 0 Then
       'For adj = 1 To 100
       'ExcelSheet.Application.Cells(RowCount, adj).Value = "Adjusted"
       'Next adj
       'ExcelSheet.Application.Cells(RowCount, 102).Value = "0.008"
       'Let Form2.Text2(i).Text = "0.008"
       'End If
      For adj = 1 To 100
      Let ExcelSheet.Application.Cells((RowCount + 1), adj).Value = ""
      Next adj
End If
'End If
   MSComm1.Output = "S" ' to microcontroller ' 07-02-06
           Text15.Text = "S"
```
```
Form2 - 1
  Dim cSum Of Prod xy As Double
  Dim cSum_x As Single
  Dim cSum y As Single
  Dim cGrad As Single
  Dim cIntcpt As Single
  Dim cProd x As Single
 Dim cSum Prod x As Single
 Dim aSum_Of_Prod_xy As Single
 Dim aSum_x As Single
 Dim aSum_y As Single
 Dim aGrad As Single
 Dim aIntcpt As Single
 Dim aProd x As Single
 Dim aSum_Prod x As Single
 Dim Adj_m As Single
 Dim Adj c As Single
 Public ReadingBoxIndex As Integer
 Public CalibFlagClear As Boolean
 Dim ExcelSheet As Object
 Private Sub Command1_Click(Index As Integer)
 Let CalibFlagClear = False
 For i = 0 To 39
 If Command1(i).Value = True Then
 Let ReadingBoxIndex = i
 Let Text3.Text = ReadingBoxIndex
 Let Check1(i). Value = 1
 Let Commandl(i).Enabled = False
 End If
 Next i
 Form1.MSComm1.Output = "H"
 '******for test******************
 Let Text3.Text = ReadingBoxIndex
 'If Forml.CalibFlag = True Then
 Let Text4.Text = "True"
 'Else
Let Text4.Text = "false"
 'End If
 *******for test*****************
End Sub
Private Sub Command2_Click()
Form2.Visible = False
Let CalibFlagClear = True
ExcelSheet.Application.Quit
Set ExcelSheet = Nothing
End Sub
Private Sub Command3_Click()
For i = 0 To 39
Let Command1(i).Enabled = True
Let Checkl(i).Value = 0
Next i
End Sub
Private Sub Form2 Load()
End Sub
Private Sub Command4 Click()
ExcelSheet.Application.Visible = True
End Sub
Private Sub Command5 Click()
'Dim Incomp As Integer
Let Incomp = 0
For i = 0 To 39
'If Textl(i).Text = "" Or Textl(i).Text = "" Then
'Let Incomp = Incomp + 1
'End If
```

```
Form2 - 2
 'Next i
 'If Incomp = 0 Then
    Let cProd xy = 0
    Let cSum Of Prod xy = 0
    Let cSum x = 0
    Let cSum_y = 0
    Let cGrad = 0
    Let cIntcpt = 0
    Let cProd x = 0
    Let cSum Prod x = 0
    Let aProd xy = 0
    Let aSum_Of_Prod_xy = 0
    Let aSum x = 0
    Let aSum_y = 0
    Let aGrad = 0
    Let aIntcpt = 0
    Let aProd x = 0
    Let aSum Prod x = 0
    For i = 0 To 39
    Let cProd_xy = (Val(Text1(i).Text) * (i + 1))
    Let cSum_Of_Prod_xy = cSum_Of_Prod_xy + cProd_xy
    Let cSum_x = cSum_x + Val(Text1(i).Text)
    Let cSum_y = cSum_y + (1 + i)
    Let cProd_x = ((Val(Text1(i).Text)) * Val((Text1(i).Text)))
    Let cSum_Prod_x = cSum_Prod_x + cProd_x
    Let aProd xy = (Val(Text2(i).Text) * (i + 1))
    Let aSum_Of_Prod_xy = aSum_Of_Prod_xy + aProd_xy
    Let aSum_x = aSum_x + Val(Text2(i).Text)
    Let aSum_y = aSum_y + (1 + i)
    Let aProd_x = ((Val(Text2(i).Text)) * Val((Text2(i).Text)))
   Let aSum_Prod_x = aSum_Prod_x + aProd_x
   Next i
   Let cGrad = ((40 * cSum_Of_Prod_xy) - (cSum_x * cSum_y)) / ((40 * cSum_Prod_x) - ((cSum_x)
  (cSum x)))
   Let cIntcpt = ((cSum_y) - (cGrad * cSum_x)) / 40
   Let aGrad = ((40 * aSum_Of_Prod_xy) - (aSum_x * aSum_y)) / ((40 * aSum_Prod_x) - ((aSum_x)
* (aSum_x)))
   Let aIntcpt = ((aSum_y) - (aGrad * aSum_x)) / 40
   Let Text3.Text = cGrad
   Let Text4.Text = cIntcpt
   Let Text5.Text = aGrad
   Let Text6.Text = aIntcpt
   'using y1 = m1x1 + c1 for the best fit calibrated injected linear plot
   'and
   'using y^2 = m^2x^2 + c^2 for the best fit actual system reading linear plot
   'we get
   m1x1 + c1 = m2x2 + c2, (y1=y2)
   'therefore, x1 = x2 + [m2/m1] + [(c2-c1)/m1]
   ' x1 is the true, real or adjusted reading, given the untrue reading, x2.
   Let Adj_m = Text3.Text 'aGrad / cGrad
   Let Adj_c = Text4.Text '(aIntcpt - cIntcpt) / cGrad
   Let Adj m = aGrad / cGrad
   Let Adj_c = (aIntcpt - cIntcpt) / cGrad
   Open "C:\Program Files\Calibration\" & "Calibration2" For Output As #2
  Write #2, Adj_m, Adj_c, Date
  Close #2
  If Dir("C:\Program Files\Calibration\" & "Calibration1.txt") <> "" Then
  Kill "C:\Program Files\Calibration\" & "Calibration1.txt"
  Else
  Open "C:\Program Files\Calibration\" & "Calibration1.txt" For Output As #1
```

```
Form2 = 3
    Close #1
    Kill "C:\Program Files\Calibration\" & "Calibration1.txt"
    End If
    Name "C:\Program Files\Calibration\" & "Calibration2" As "C:\Program Files\Calibration\" &
    "Calibration1.txt"
    ' Else
    ' MsgBox "Input Fields Incomplete. Please Complete all Recordings before continuing"
    End If
End Sub
Private Sub Command6_Click()
End Sub
Private Sub Form_Load()
Set ExcelSheet = CreateObject("Excel.Sheet")
End Sub
```

```
Form3 - 1
 Public AdminPasswordFlag As Boolean
 Private Sub Command1 Click()
 If Text1.Text = "AdminAutoSun6" Then
    Let AdminPasswordFlag = True
     If Form1.AddNewArm = True Then
     Form1.Command3.SetFocus
     End If
     If Forml.RemoveArm = True Then
     Form1.Command4.SetFocus
    End If
    If Form1.AddNewVal = True Then
    Forml.Commandl.SetFocus
    End If
    If Form1.RemoveVal = True Then
    Form1.Command2.SetFocus
    End If
    If Form1.CalPassW = True Then
    'Form1.Command42.SetFocus
    End If
    If Form1.PathPassW = True Then
    Form1.Command36.SetFocus
    End If
    If Forml.DelFile = True Then
    Form1.Command32.SetFocus
    End If
    If Form1.UsrProf = True Then
    Form1.Command46.SetFocus
    End If
Else
MsgBox "You are NOT Authorized to perform this action"
End If
Form3.Visible = False
Let Form1.AddNewArm = False
Let Form1.AddNewVal = False
Let Form1.RemoveArm = False
Let Form1.RemoveVal = False
Let Form1.CalPassW = False
Let Form1.PathPassW = False
Let Form1.UsrProf = False
Let Form1.DelFile = False
End Sub
Private Sub Form LostFocus()
Form3.Visible = False
End Sub
```

Module2 - 1

Public Type ArmData name As String \* 40 no As Integer End Type Date: 2005/05/05

**Recorded Faults** 

Emergency Stop on Bar 0 End Of Recorded Results

Job Number: matadin Operator's Name: ccccccc Armature Name: h Number of Bars: 200 Percentage Variance: 15% Date: 2005/05/05

**Recorded Faults** 

Emergency Stop on Bar 0 End Of Recorded Results

Job Number: matadin Operator's Name: zxzxzxzxzxzxzxz Armature Name: e Number of Bars: 25 Percentage Variance: 25% Date: 2005/05/05

**Recorded Faults** 

Emergency Stop on Bar 0 End Of Recorded Results

Job Number: matadin Operator's Name: VVVVVVV Armature Name: c Number of Bars: 15 Percentage Variance: 25% Date: 2005/05/05

**Recorded Faults** 

Emergency Stop on Bar 0 End Of Recorded Results

Job Number: matadin Operator's Name: v1v1v1v1v1v1 Armature Name: c Number of Bars: 15 Percentage Variance: 5% Date: 2005/05/05

**Recorded Faults** 

Emergency Stop on Bar 0 End Of Recorded Results

lob Number: matadin Dperator's Name: matadin 05/05/05 Armature Name: d Number of Bars: 20 Percentage Variance: 20% Date: 2005/05/05

'ecorded Faults

mergency Stop on Bar 0 nd Of Recorded Results Job Number: matadin Operator's Name: matadin2 05/05/05 Armature Name: c Number of Bars: 15 Percentage Variance: 30% Date: 2005/05/05

**Recorded Faults** 

Emergency Stop on Bar 0 End Of Recorded Results

Job Number: matadin Operator's Name: 09-05 Armature Name: e Number of Bars: 25 Percentage Variance: 15% Date: 2005/05/09

**Recorded Faults** 

Emergency Stop on Bar 0 End Of Recorded Results

Job Number: matadin Operator's Name: sun 09-05 Armature Name: d Number of Bars: 20 Percentage Variance: 25% Date: 2005/05/09

**Recorded Faults** 

Emergency Stop on Bar 0 End Of Recorded Results

Job Number: matadin Operator's Name: sun2 09-05 Armature Name: e Number of Bars: 25 Percentage Variance: 35% Date: 2005/05/09

**Recorded Faults** 

Emergency Stop on Bar 0 End Of Recorded Results

Job Number: matadin Operator's Name: sun3 09-05 Armature Name: d Number of Bars: 20 Percentage Variance: 15% Date: 2005/05/09

**Recorded Faults** 

Emergency Stop on Bar 0 End Of Recorded Results

ob Number: matadin )perator's Name: sun4 09-05 (rmature Name: f Number of Bars: 50 'ercentage Variance: 35% vate: 2005/05/09

ecorded Faults

Emergency Stop on Bar 0 End Of Recorded Results

Job Number: matadin Operator's Name: sun5 09-05 Armature Name: e Number of Bars: 25 Percentage Variance: 20% Date: 2005/05/09

**Recorded Faults** 

Emergency Stop on Bar 0 End Of Recorded Results

Job Number: matadin Operator's Name: sunveer Armature Name: d Number of Bars: 20 Percentage Variance: 20% Date: 2005/05/09

**Recorded Faults** 

Emergency Stop on Bar 0 End Of Recorded Results

Job Number: matadin Operator's Name: sunveer2 Armature Name: a Number of Bars: 5 Percentage Variance: 15% Date: 2005/05/09

**Recorded Faults** 

Emergency Stop on Bar 0 End Of Recorded Results

Job Number: matadin Operator's Name: sunny 09- 05 Armature Name: f Number of Bars: 50 Percentage Variance: 40% Date: 2005/05/09

**Recorded Faults** 

Emergency Stop on Bar 0 End Of Recorded Results

ob Number: matadin )perator's Name: matadin 09-05 ,rmature Name: c Number of Bars: 15 ercentage Variance: 25% ate: 2005/05/09

ecorded Faults

mergency Stop on Bar 0 1d Of Recorded Results

b Number: matadin berator's Name: matadin 09-05 'mature Name: c Number of Bars: 15 Prcentage Variance: 10% Date: 2005/05/09

**Recorded Faults** 

Emergency Stop on Bar 0 End Of Recorded Results Job/Serial Number: 001 Test Results Operator's Name: Sunveer Matadin Armature Name: b Number of Bars: 10 Percentage Variance: 5% Date: 2006/04/12

#### **Recorded Faults**

Fault on Bar: 3,Percentage Variance = 19.45295,Bar Reading: 0.1623932V,Reference: 0.1359474VFault on Bar: 5,Percentage Variance = 10.68346,Bar Reading: 0.1214235V,Reference: 0.1359474VFault on Bar: 7,Percentage Variance = 11.05382,Bar Reading: 0.1509748V,Reference: 0.1359474VFault on Bar: 8,Volt-Drop Reading Is Zero (0V), Indicating A Possible Short CircuitVolt-Drop Reading Is Out Of Range, Indicating A Possible Open CircuitFault on Bar: 9,Volt-Drop Reading Is Out Of Range, Indicating A Possible Open Circuit

I, Sunveer Matadin acknowledge the above results and pledge to investigate and/or remedy the above recorded faults (if any).

Signature, Sunveer Matadin

Job/Serial Number: Test Results Operator's Name: Sunveer Matadin Armature Name: b Number of Bars: 10 Percentage Variance: 5% Date: 2006/04/12

#### **Recorded Faults**

Fault on Bar: 3,Percentage Variance = 19.28123,Bar Reading: 0.1626973V,Reference: 0.136398VFault on Bar: 5,Percentage Variance = 10.88503,Bar Reading: 0.1215511V,Reference: 0.136398VFault on Bar: 7,Percentage Variance = 10.3879,Bar Reading: 0.1505669V,Reference: 0.136398VFault on Bar: 8,Volt-Drop Reading Is Zero (0V), Indicating A Possible Short CircuitFault on Bar: 9,Volt-Drop Reading Is Out Of Range, Indicating A Possible Open CircuitEmergency Stop on Bar 10Percentage Variance Is ControlPercentage Variance Is ControlPercentage Variance Is Control

I, Sunveer Matadin acknowledge the above results and pledge to investigate and/or remedy the above recorded faults (if any).

Signature, Sunveer Matadin

| Search Information     | Display Data | <br>Directory Path                                                                                                                                                               |
|------------------------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Password               |              | <br>Path Propeties                                                                                                                                                               |
|                        |              | View Default Path                                                                                                                                                                |
| Password               |              | View Selected Path Change Default Path                                                                                                                                           |
| Print Displayed Data   |              | Drive / Network Path                                                                                                                                                             |
|                        |              | 🖵 f: [\\trac\cky370\$]                                                                                                                                                           |
| Open File              |              | Folders                                                                                                                                                                          |
| File Names             |              | GBT<br>Weakfield                                                                                                                                                                 |
|                        |              | Files                                                                                                                                                                            |
|                        |              | 05SysArchDesign.pdf<br>aLARMS DIAGRAM.doc<br>DataloggerDraft Functional Description v0.doc<br>LCMS Project Charter v3_chris Sanjiv_Final_2<br>Specification for Logger_VerF3.doc |
| Refined Search - Dates |              |                                                                                                                                                                                  |
|                        |              |                                                                                                                                                                                  |
|                        |              |                                                                                                                                                                                  |
|                        |              |                                                                                                                                                                                  |
|                        |              |                                                                                                                                                                                  |
| Exit Program           |              |                                                                                                                                                                                  |
| Exit                   |              |                                                                                                                                                                                  |
|                        |              |                                                                                                                                                                                  |

```
Dim DefaultPath As String
  Dim Pswd As Integer
  Dim PasswdFlag As Boolean
  Dim Test Date As String
  Dim Save_Test As String
  'Dim Save Test As String
  Private Sub Command1_Click()
  Dim X As String
  Dim j As Boolean
  Save_Test = InputBox("Enter Job Number", "Enter The Job Number Of the Test You Wish To Open")
      If Save_Test <> "Find" Then
          If Dir(DefaultPath & Save_Test) <> "" Then
           List1.Clear
           Open DefaultPath & Save_Test For Input As #5
                      Let j = False
                      Do While Not EOF(5)
                          Input #5, aa, bb, cc, dd, ee, ff
                              If j = False Then
                                  List1.AddItem "Job Number: " & aa
                                  List1.AddItem "Operator's Name: " & bb
                                  List1.AddItem cc
                                  List1.AddItem dd
                                  List1.AddItem "Date: " & LTrim(ee)
                                  List1.AddItem ""
                                  List1.AddItem "Recorded Faults "
                                  Listl.AddItem ""
                                 List1.AddItem ff
                                 Let j = True
                             Else
                                 Listl.AddItem ff
                                      If aa = "End" Then
                                     Let j = False
                                     List1.AddItem ""
                                     List1.AddItem ""
                                     GoTo Next Rec
                                     End If
                             End If
Next_Rec:
                      Loop
                 Close #5
        Else: MsgBox "The Requested Job Number Does Not Exist"
        End If
    Else
      If Dir(DefaultPath & "Saved_List.TXT") <> "" Then
        Open DefaultPath & "Saved_List.TXT" For Input As #7
        List2.Clear
            Let Open Hold = ""
                Do While Not EOF(7)
                Input #7, job
                    If Open_Hold <> job Then
                    List2.AddItem job
                    Let Open_Hold = job
                    End If
                Loop
                    If List2.ListCount <> 0 Then
                    List2.Visible = True
                    'Command33.Visible = True
                    Else
                    MsgBox "There Are No Tests To View"
                    End If
            Close #7
      Else: MsgBox "There Are No Tests To View"
      End If
End If
Else: MsgBox "Job Number Was Not Entered"
End If
nd Sub
rivate Sub Command2 Click()
swd = Pswd - 1
```

```
If Text1.Text = "AutoSun6" Then
      Let PasswdFlag = True
      Textl.Text = ""
      Text1.Locked = True
      Command1.Enabled = True
      Command2.Enabled = False
      Command4.Enabled = True
  Else
      If Pswd > 0 Then
      MsgBox " Incorrect Password, Tries left: " & Pswd & ""
      Let Text1.Text = ""
      Else
      MsgBox " You DO NOT have the authority to use this equipment. You have been LOCKED OUT"
      Let Text1.Text = ""
      Frame1.Visible = True
      'Text10.Visible = True
       Command18.Visible = True
      End If
  End If
 End Sub
 Private Sub Command3 Click()
 End
 End Sub
 Private Sub Command4 Click()
If List1.List(0) <> "" Then
     If Left(List1.List(0), 11) = "Job Number:" Then
     Let Deletex = Fopen
     Printer.NewPage
     Let Print Save i = 0
         Do While Print_Save_i <= (List1.ListCount - 1)
         Printer.Print List1.List(Print_Save_i)
         Picture1.Print List1.List(Print_Save_i)
         Print_Save_i = Print_Save_i + 1
         Loop
     List1.AddItem "Test Print Complete"
     Printer.EndDoc
     End If
Else
MsgBox "No Data Available To Print"
End If
End Sub
Private Sub Dir2 Change()
End Sub
Private Sub Command5 Click()
Let Text2.Text = ""
Text2.Text = Dirl.Path
If Right(Dirl.Path, 1) <> "\" Then
 Text2.Text = Text2.Text & "\"
End If
End Sub
Private Sub Command6_Click()
Let Text2.Text = ""
rext2.Text = Dir1.Path
[f Right(Dirl.Path, 1) <> "\" Then
Text2.Text = Text2.Text & "\"
lnd If
f Text2.Text <> "" Then
   If InputBox("Enter Password", "Enter Administrator's Password") = "AdminAutoSun6" Then
       If Dir("C:\Program Files\SavePath") <> "" Then
           Open "C:\Program Files\SavePath" For Input As #1 ' to save the default path
           Open "Temp" For Output As #2
           Write #2, Text2.Text
           Close #2
           Close #1
           Kill ("C:\Program Files\SavePath")
```

```
Name "Temp" As "C:\Program Files\SavePath"
          Else
              Open "C:\Program Files\SavePath" For Output As #1
              Write #1, Text2.Text
              Close #1
              End If
      Let DefaultPath = Text2.Text
      Else
      MsgBox "You are NOT Authorised to perform this task"
      End If
  Else
  MsgBox "No Path Specified"
  End If
  End Sub
  Private Sub Command7 Click()
 If Dir("C:\Program Files\SavePath") <> "" Then
     Open "C:\Program Files\SavePath" For Input As #1
     Input #1, DefaultPath ' holds the path to the saved files
     Let Text2.Text = DefaultPath
     Close #1
 Else
     MsgBox "Default Path is Not Valid, it has been changed"
 End If
 End Sub
 Private Sub Dirl_Change()
 Let File1.Path = Dir1.Path
 End Sub
 Private Sub Drivel Change()
 Let Dirl.Path = Drivel.Drive
 End Sub
 Private Sub Form Load()
 Let Pswd = 3
Let PasswdFlag = False
Let Commandl.Enabled = False
Let Command4.Enabled = False
Frame1.Visible = False
If Dir("C:\Program Files\SavePath") <> "" Then
    Open "C:\Program Files\SavePath" For Input As #1
    Input #1, DefaultPath ' holds the path to the saved files
    Close #1
Else
    MsgBox "Default Path is Not Valid, it has been changed"
    'Let DefaultPath = "xxx"
End If
End Sub
Private Sub List2 Click()
Let Save Test = List2.Text
List1.Clear
Let Dspl_Date = ""
List4.Clear
List4.AddItem "View All"
Open DefaultPath & Save_Test For Input As #5
   Do While Not EOF(5)
   Input #5, aa, bb, cc, dd, ee, ff
       If (Dspl_Date <> ee) And (bb <> "xxx") Then
            List4.AddItem LTrim(ee)
           Let Dspl Date = ee
       End If
   Loop
   If List4.ListCount = 1 Then
   MsgBox "There are no items to View"
   List4.Clear
   Else
   List4.Visible = True
   End If
lose #5
nd Sub
```

```
Private Sub List4 Click()
 List1.Clear
 Let Test Date = List4.Text
 Call FopenSub
  'List2.Visible = False
  'List4.Visible = False
 'Command33.Visible = False
 End Sub
 Public Sub FopenSub()
     If Test_Date = "View All" Then
             Open DefaultPath & Save Test For Input As #5
                 Let j = False
                 Do While Not EOF(5)
                     Input #5, aa, bb, cc, dd, ee, ff
If j = False Then
                             Listl.AddItem "Job Number: " & aa
                             Listl.AddItem "Operator's Name: " & bb
                             List1.AddItem cc
                            Listl.AddItem dd
                            Listl.AddItem "Date: " & LTrim(ee)
                            List1.AddItem ""
                            List1.AddItem "Recorded Faults "
                            Listl.AddItem ""
                            List1.AddItem ff
                            Let j = True
                        Else
                            Listl.AddItem ff
                                If aa = "End" Then
                                Let j = False
                                List1.AddItem ""
                                List1.AddItem ""
                                End If
                        End If
                Loop
                Close #5
    Else
        Open DefaultPath & Save_Test For Input As #5
                Let j = False
                Do While Not EOF(5)
                    Input #5, aa, bb, cc, dd, ee, ff
                       If (Test Date = LTrim(ee)) Then
                            If j = False Then
                                Listl.AddItem "Job Number: " & aa
                                List1.AddItem "Operator's Name: " & bb
                                Listl.AddItem cc
                               List1.AddItem dd
                               List1.AddItem "Date: " & LTrim(ee)
                               List1.AddItem ""
                               List1.AddItem "Recorded Faults "
                               List1.AddItem ""
                               List1.AddItem ff
                               Let j = True
                            'End If
                           Else
                               List1.AddItem ff
                                   If aa = "End" Then 'xxx (or End) signals end of a test and
all the fields for the next test has to be printed
                                   Let j = False
                                   Listl.AddItem ""
                                   Listl.AddItem ""
                                   End If
                           End If
                       End If
               Loop
       Close #5
  End If
'aa is the Job No field
bb is the Operators Name field
cc is the Armature Selection field
dd is the Percentange Variance field
```

rormi - 5

## Features

- Compatible with MCS®-51 Products
- 4K Bytes of In-System Programmable (ISP) Flash Memory – Endurance: 1000 Write/Erase Cycles
- 4.0V to 5.5V Operating Range
- Fully Static Operation: 0 Hz to 33 MHz
- Three-level Program Memory Lock
- 128 x 8-bit Internal RAM
- 32 Programmable I/O Lines
- Two 16-bit Timer/Counters
- Six Interrupt Sources
- Full Duplex UART Serial Channel
- Low-power Idle and Power-down Modes
- Interrupt Recovery from Power-down Mode
- Watchdog Timer
- Dual Data Pointer
- Power-off Flag
- Fast Programming Time
- Flexible ISP Programming (Byte and Page Mode)

## Description

The AT89S51 is a low-power, high-performance CMOS 8-bit microcontroller with 4K bytes of In-System Programmable Flash memory. The device is manufactured using Atmel's high-density nonvolatile memory technology and is compatible with the industry-standard 80C51 instruction set and pinout. The on-chip Flash allows the program memory to be reprogrammed in-system or by a conventional nonvolatile memory programmer. By combining a versatile 8-bit CPU with In-System Programmable Flash on a monolithic chip, the Atmel AT89S51 is a powerful microcontroller which provides a highly-flexible and cost-effective solution to many embedded control applications.

The AT89S51 provides the following standard features: 4K bytes of Flash, 128 bytes of RAM, 32 I/O lines, Watchdog timer, two data pointers, two 16-bit timer/counters, a five-vector two-level interrupt architecture, a full duplex serial port, on-chip oscillator, and clock circuitry. In addition, the AT89S51 is designed with static logic for operation down to zero frequency and supports two software selectable power saving modes. The Idle Mode stops the CPU while allowing the RAM, timer/counters, serial port, and interrupt system to continue functioning. The Power-down mode saves the RAM contents but freezes the oscillator, disabling all other chip functions until the next external interrupt or hardware reset.



8-bit Microcontroller with 4K Bytes In-System Programmable Flash

## AT89S51

2487B-MICRO-12/03





## **Pin Configurations**

#### PDIP

|               |    |    | 1            |
|---------------|----|----|--------------|
| P1.0 🗆        | 1  | 40 | □vcc         |
| P1.1 🗆        | 2  | 39 | D P0.0 (AD0) |
| P1.2 🗆        | 3  | 38 | DP0.1 (AD1)  |
| P1.3 🗆        | 4  | 37 | DP0.2 (AD2)  |
| P1.4 🗆        | 5  | 36 | 🗆 P0.3 (AD3) |
| (MOSI) P1.5 🗆 | 6  | 35 | 🗆 P0.4 (AD4) |
| (MISO) P1.6 🗆 | 7  | 34 | 🗆 P0.5 (AD5) |
| (SCK) P1.7 🗆  | 8  | 33 | 🗆 P0.6 (AD6) |
| RST 🗆         | 9  | 32 | 🗆 P0.7 (AD7) |
| (RXD) P3.0 🗆  | 10 | 31 | □ EA/VPP     |
| (TXD) P3.1 🗆  | 11 | 30 | ALE/PROG     |
| (INT0) P3.2 🗆 | 12 | 29 | D PSEN       |
| (INT1) P3.3 🗆 | 13 | 28 | 🗆 P2.7 (A15) |
| (T0) P3.4 🗆   | 14 | 27 | 🗆 P2.6 (A14) |
| (T1) P3.5 🗆   | 15 | 26 | 🗆 P2.5 (A13) |
| (WR) P3.6 🗆   | 16 | 25 | 🗆 P2.4 (A12) |
| (RD) P3.7 🗆   | 17 | 24 | 🗆 P2.3 (A11) |
| XTAL2         | 18 | 23 | 🗆 P2.2 (A10) |
| XTAL1 🗆       | 19 | 22 | 🗆 P2.1 (A9)  |
| GND 🗆         | 20 | 21 | 🗆 P2.0 (A8)  |
|               |    |    |              |





#### PLCC D 1.4 D 1.4 D 1.3 D 1.2 D 1.1 D 1.1 D 1.1 D 1.1 D 1.1 D 1.4 D 1.3 D 2.3 4 9 9 7 9 39 □ P0.4 (AD4) 5 4 3 0 N (MOSI) P1.5 🗆 (MISO) P1.6 28 38 🗆 P0.5 (AD5) (SCK) P1.7 37 🗆 P0.6 (AD6) 19 RST 🗆 10 36 P0.7 (AD7) 35 🗆 EA/VPP (RXD) P3.0 11 NC 12 34 🗆 NC (TXD) P3.1 13 33 ALE/PROG (INT0) P3.2 [ 14 32 🗆 PSEN (INT1) P3.3 [ 15 31 🗆 P2.7 (A15) (T0) P3.4 🗖 16 30 🗆 P2.6 (A14) (WR) P3.6 (RD) P3.6 (RD) P3.6 (RD) P3.6 (RD) P3.6 (RD) P3.6 (RD) P3.7 (212 20 24 (A10) P2.2 (24 25 24 (A10) P2.2 (24 25 26 68 (A11) P2.3 (22 26 68 (A11) P2.3 (T1) P3.5 🗆

#### PDIP

|               |    |    | 1             |
|---------------|----|----|---------------|
| RST 🗆         | 1  | 42 | □ P1.7 (SCK)  |
| (RXD) P3.0    | 2  | 41 | D P1.6 (MISO) |
| (TXD) P3.1 🗆  | 3  | 40 | D P1.5 (MOSI  |
| (INT0) P3.2   | 4  | 39 | 🗆 P1.4        |
| (INT1) P3.3 🗆 | 5  | 38 | 🗆 P1.3        |
| (T0) P3.4 🗆   | 6  | 37 | 🗆 P1.2        |
| (T1) P3.5 🗆   | 7  | 36 | 🗆 P1.1        |
| (WR) P3.6 🗆   | 8  | 35 | 🗆 P1.0        |
| (RD) P3.7 🗆   | 9  | 34 |               |
| XTAL2 🗆       | 10 | 33 | D PWRVDD      |
| XTAL1 🗆       | 11 | 32 | 🗆 P0.0 (AD0)  |
| GND 🗆         | 12 | 31 | 🗆 P0.1 (AD1)  |
| PWRGND 🗆      | 13 | 30 | 🗆 P0.2 (AD2)  |
| (A8) P2.0 🗆   | 14 | 29 | 🗆 P0.3 (AD3)  |
| (A9) P2.1 🗆   | 15 | 28 | 🗆 P0.4 (AD4)  |
| (A10) P2.2 🗆  | 16 | 27 | 🗆 P0.5 (AD5)  |
| (A11) P2.3 🗆  | 17 | 26 | DP0.6 (AD6)   |
| (A12) P2.4 🗆  | 18 | 25 | DP0.7 (AD7)   |
| (A13) P2.5 🗆  | 19 | 24 | □ EA/VPP      |
| (A14) P2.6 🗆  | 20 | 23 | ALE/PROG      |
| (A15) P2.7 🗆  | 21 | 22 | D PSEN        |
|               |    |    |               |

## **Block Diagram**







## **Pin Description**

| Supply voltage (all packages except 42-PDIP).                                                                                                                                                                                                                                                                                                                             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ground (all packages except 42-PDIP; for 42-PDIP GND connects only the logic core and the embedded program memory).                                                                                                                                                                                                                                                       |
| Supply voltage for the 42-PDIP which connects only the logic core and the embedded program memory.                                                                                                                                                                                                                                                                        |
| Supply voltage for the 42-PDIP which connects only the I/O Pad Drivers. The application board <b>MUST</b> connect both VDD and PWRVDD to the board supply voltage.                                                                                                                                                                                                        |
| Ground for the 42-PDIP which connects only the I/O Pad Drivers. PWRGND and GND are weakly connected through the common silicon substrate, but not through any metal link. The application board <b>MUST</b> connect both GND and PWRGND to the board ground.                                                                                                              |
| Port 0 is an 8-bit open drain bi-directional I/O port. As an output port, each pin can sink eight TTL inputs. When 1s are written to port 0 pins, the pins can be used as high-impedance inputs.                                                                                                                                                                          |
| Port 0 can also be configured to be the multiplexed low-order address/data bus during accesses to external program and data memory. In this mode, P0 has internal pull-ups.                                                                                                                                                                                               |
| Port 0 also receives the code bytes during Flash programming and outputs the code bytes during program verification. <b>External pull-ups are required during program verification</b> .                                                                                                                                                                                  |
| Port 1 is an 8-bit bi-directional I/O port with internal pull-ups. The Port 1 output buffers can sink/source four TTL inputs. When 1s are written to Port 1 pins, they are pulled high by the internal pull-ups and can be used as inputs. As inputs, Port 1 pins that are externally being pulled low will source current ( $I_{IL}$ ) because of the internal pull-ups. |
| Port 1 also receives the low-order address bytes during Flash programming and verification.                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                           |

| Port Pin | Alternate Functions                   |  |  |  |
|----------|---------------------------------------|--|--|--|
| P1.5     | MOSI (used for In-System Programming) |  |  |  |
| P1.6     | MISO (used for In-System Programming) |  |  |  |
| P1.7     | SCK (used for In-System Programming)  |  |  |  |

**Port 2** Port 2 is an 8-bit bi-directional I/O port with internal pull-ups. The Port 2 output buffers can sink/source four TTL inputs. When 1s are written to Port 2 pins, they are pulled high by the internal pull-ups and can be used as inputs. As inputs, Port 2 pins that are externally being pulled low will source current ( $I_{II}$ ) because of the internal pull-ups.

Port 2 emits the high-order address byte during fetches from external program memory and during accesses to external data memory that use 16-bit addresses (MOVX @ DPTR). In this application, Port 2 uses strong internal pull-ups when emitting 1s. During accesses to external data memory that use 8-bit addresses (MOVX @ RI), Port 2 emits the contents of the P2 Special Function Register.

Port 2 also receives the high-order address bits and some control signals during Flash programming and verification.

## AT89S51

Port 3

Port 3 is an 8-bit bi-directional I/O port with internal pull-ups. The Port 3 output buffers can sink/source four TTL inputs. When 1s are written to Port 3 pins, they are pulled high by the internal pull-ups and can be used as inputs. As inputs, Port 3 pins that are externally being pulled low will source current ( $I_{II}$ ) because of the pull-ups.

Port 3 receives some control signals for Flash programming and verification.

Port 3 also serves the functions of various special features of the AT89S51, as shown in the following table.

| Port Pin | Alternate Functions                    |  |  |  |
|----------|----------------------------------------|--|--|--|
| P3.0     | RXD (serial input port)                |  |  |  |
| P3.1     | TXD (serial output port)               |  |  |  |
| P3.2     | INT0 (external interrupt 0)            |  |  |  |
| P3.3     | INT1 (external interrupt 1)            |  |  |  |
| P3.4     | T0 (timer 0 external input)            |  |  |  |
| P3.5     | T1 (timer 1 external input)            |  |  |  |
| P3.6     | WR (external data memory write strobe) |  |  |  |
| P3.7     | RD (external data memory read strobe)  |  |  |  |

**RST** Reset input. A high on this pin for two machine cycles while the oscillator is running resets the device. This pin drives High for 98 oscillator periods after the Watchdog times out. The DISRTO bit in SFR AUXR (address 8EH) can be used to disable this feature. In the default state of bit DISRTO, the RESET HIGH out feature is enabled.

ALE/PROG Address Latch Enable (ALE) is an output pulse for latching the low byte of the address during accesses to external memory. This pin is also the program pulse input (PROG) during Flash programming.

In normal operation, ALE is emitted at a constant rate of 1/6 the oscillator frequency and may be used for external timing or clocking purposes. Note, however, that one ALE pulse is skipped during each access to external data memory.

If desired, ALE operation can be disabled by setting bit 0 of SFR location 8EH. With the bit set, ALE is active only during a MOVX or MOVC instruction. Otherwise, the pin is weakly pulled high. Setting the ALE-disable bit has no effect if the microcontroller is in external execution mode.

**PSEN** Program Store Enable (PSEN) is the read strobe to external program memory.

When the AT89S51 is executing code from external program memory, PSEN is activated twice each machine cycle, except that two PSEN activations are skipped during each access to external data memory.

**EA/VPP** External Access Enable. EA must be strapped to GND in order to enable the device to fetch code from external program memory locations starting at 0000H up to FFFFH. Note, however, that if lock bit 1 is programmed, EA will be internally latched on reset.

 $\overline{EA}$  should be strapped to V<sub>CC</sub> for internal program executions.

This pin also receives the 12-volt programming enable voltage ( $V_{PP}$ ) during Flash programming.

**XTAL1** Input to the inverting oscillator amplifier and input to the internal clock operating circuit.

XTAL2 Output from the inverting oscillator amplifier





# Special<br/>FunctionA map of the on-chip memory area called the Special Function Register (SFR) space is shown<br/>in Table 1.RegistersNote that not all of the addresses are occupied, and unoccupied addresses may not be imple-<br/>mented on the chip. Read accesses to these addresses will in general return random data,<br/>and write accesses will have an indeterminate effect.

| 0F8H |                  |                  |                   |                  |                  |                  |                    |                  | 0FFH |
|------|------------------|------------------|-------------------|------------------|------------------|------------------|--------------------|------------------|------|
| 0F0H | B<br>00000000    |                  |                   |                  |                  |                  |                    |                  | 0F7H |
| 0E8H |                  |                  |                   |                  |                  |                  |                    |                  | 0EFH |
| 0E0H | ACC<br>00000000  |                  |                   |                  |                  |                  |                    |                  | 0E7H |
| 0D8H |                  |                  |                   |                  |                  |                  |                    |                  | 0DFH |
| 0D0H | PSW<br>00000000  |                  |                   |                  |                  |                  |                    |                  | 0D7H |
| 0C8H |                  |                  |                   |                  |                  |                  |                    |                  | 0CFH |
| 0C0H |                  |                  |                   |                  |                  |                  |                    |                  | 0C7H |
| 0B8H | IP<br>XX000000   |                  |                   |                  |                  |                  |                    |                  | 0BFH |
| 0B0H | P3<br>11111111   |                  |                   |                  |                  |                  |                    |                  | 0B7H |
| 0A8H | IE<br>0X000000   |                  |                   |                  |                  |                  |                    |                  | 0AFH |
| 0A0H | P2<br>11111111   |                  | AUXR1<br>XXXXXXX0 |                  |                  |                  | WDTRST<br>XXXXXXXX |                  | 0A7H |
| 98H  | SCON<br>00000000 | SBUF<br>XXXXXXXX |                   |                  |                  |                  |                    |                  | 9FH  |
| 90H  | P1<br>11111111   |                  |                   |                  |                  |                  |                    |                  | 97H  |
| 88H  | TCON<br>00000000 | TMOD<br>00000000 | TL0<br>00000000   | TL1<br>00000000  | TH0<br>00000000  | TH1<br>00000000  | AUXR<br>XXX00XX0   |                  | 8FH  |
| 80H  | P0<br>11111111   | SP<br>00000111   | DP0L<br>00000000  | DP0H<br>00000000 | DP1L<br>00000000 | DP1H<br>00000000 |                    | PCON<br>0XXX0000 | 87H  |

Table 1. AT89S51 SFR Map and Reset Values

6

AT89S51

User software should not write 1s to these unlisted locations, since they may be used in future products to invoke new features. In that case, the reset or inactive values of the new bits will always be 0.

**Interrupt Registers:** The individual interrupt enable bits are in the IE register. Two priorities can be set for each of the five interrupt sources in the IP register.

| AUXR    | Address = 8EH Reset Value = XXX00XX0E |                               |          |               |               |           | /alue = XXX00XX0B |         |
|---------|---------------------------------------|-------------------------------|----------|---------------|---------------|-----------|-------------------|---------|
| Not Bit | Addressable                           |                               |          |               |               |           |                   |         |
|         | _                                     | -                             | I        | WDIDLE        | DISRTO        | -         | _                 | DISALE  |
| Bit     | 7                                     | 6                             | 5        | 4             | 3             | 2         | 1                 | 0       |
|         | Rese                                  | Reserved for future expansion |          |               |               |           |                   |         |
| DISALE  | DISAD                                 |                               | IE ALE   |               |               |           |                   |         |
|         | Operating Mode                        |                               |          |               |               |           |                   |         |
|         | 0                                     | ALE                           | is emi   | tted at a con | stant rate of | 1/6 the o | scillator fre     | equency |
|         | 1                                     | ALE                           | is acti  | ve only durin | ig a MOVX o   | r MOVC    | instruction       |         |
| DISRTO  | Disab                                 | le/Enab                       | le Rese  | et-out        |               |           |                   |         |
|         | DISR                                  | ТО                            |          |               |               |           |                   |         |
|         | 0                                     | Res                           | et pin i | s driven Higł | n after WDT   | times out |                   |         |
|         | 1 Reset pin is input only             |                               |          |               |               |           |                   |         |
| WDIDLE  | Disable/Enable WDT in IDLE mode       |                               |          |               |               |           |                   |         |
| WDIDLE  |                                       |                               |          |               |               |           |                   |         |
| 0       | WDT continues to count in IDLE mode   |                               |          |               |               |           |                   |         |
| 1       | WD.                                   | T halts                       | counting | g in IDLE mo  | ode           |           |                   |         |

Table 2. AUXR: Auxiliary Register

**Dual Data Pointer Registers:** To facilitate accessing both internal and external data memory, two banks of 16-bit Data Pointer Registers are provided: DP0 at SFR address locations 82H-83H and DP1 at 84H-85H. Bit DPS = 0 in SFR AUXR1 selects DP0 and DPS = 1 selects DP1. The user should **ALWAYS** initialize the DPS bit to the appropriate value before accessing the respective Data Pointer Register.





**Power Off Flag:** The Power Off Flag (POF) is located at bit 4 (PCON.4) in the PCON SFR. POF is set to "1" during power up. It can be set and rest under software control and is not affected by reset.

Table 3. AUXR1: Auxiliary Register 1

|                                                              | AUXR1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Addre                                          | ess = A2H                                                              |                                                                          |                                                             |                                              |                                                                                     | Reset V                 | alue = XXXXXX | X0B   |
|--------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------|-------------------------------------------------------------------------------------|-------------------------|---------------|-------|
|                                                              | Not E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | it Addres                                      | Addressable                                                            |                                                                          |                                                             |                                              |                                                                                     |                         |               |       |
|                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _                                              | _                                                                      | -                                                                        | _                                                           | -                                            | _                                                                                   | _                       | DPS           | ]     |
|                                                              | Bit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7                                              | 6                                                                      | 5                                                                        | 4                                                           | 3                                            | 2                                                                                   | 1                       | 0             |       |
| Memory<br>Organization                                       | –<br>DPS<br>MCS-51 d<br>bytes eacl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Reserv<br>Data Po<br>DPS<br>0<br>1<br>evices h | red for futu<br>binter Reg<br>Selec<br>Selec<br>nave a se<br>rnal Prog | ister Select<br>cts DPTR<br>cts DPTR<br>cts DPTR<br>eparate a<br>ram and | sion<br>ct<br>Registers<br>Registers<br>ddress s<br>Data Me | DP0L, DF<br>DP1L, DF<br>pace for<br>mory can | POH<br>P1H<br>Program<br>be addre                                                   | and Data                | Memory. Up to | o 64K |
| 5                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                |                                                                        |                                                                          |                                                             |                                              |                                                                                     |                         |               |       |
| Program Memory                                               | If the EA p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | oin is cor                                     | nnected to                                                             | o GND, a                                                                 | II prograr                                                  | n fetches                                    | are direc                                                                           | ted to exte             | rnal memory.  |       |
| Data Memory                                                  | On the AT89S51, if EA is connected to V <sub>CC</sub> , program fetches to addresses 0000H through FFFH are directed to internal memory and fetches to addresses 1000H through FFFFH are directed to external memory.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                |                                                                        |                                                                          |                                                             |                                              |                                                                                     | ough<br>I are<br>direct |               |       |
|                                                              | and indirect addressing modes. Stack operations are examples of indirect addressing, so 128 bytes of data RAM are available as stack space.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                |                                                                        |                                                                          |                                                             |                                              | o the                                                                               |                         |               |       |
| Watchdog<br>Timer<br>(One-time<br>Enabled with<br>Reset-out) | The WDT is intended as a recovery method in situations where the CPU may be subjected to software upsets. The WDT consists of a 14-bit counter and the Watchdog Timer Reset (WDTRST) SFR. The WDT is defaulted to disable from exiting reset. To enable the WDT, a user must write 01EH and 0E1H in sequence to the WDTRST register (SFR location 0A6H). When the WDT is enabled, it will increment every machine cycle while the oscillator is running. The WDT timeout period is dependent on the external clock frequency. There is no way to disable the WDT except through reset (either hardware reset or WDT overflow reset). When WDT overflows, it will drive an output RESET HIGH pulse at the RST pin.                                                                                                                                                                                                                                             |                                                |                                                                        |                                                                          |                                                             |                                              |                                                                                     |                         |               |       |
| Using the WDT                                                | To enable the WDT, a user must write 01EH and 0E1H in sequence to the WDTRST regis<br>(SFR location 0A6H). When the WDT is enabled, the user needs to service it by writing 01<br>and 0E1H to WDTRST to avoid a WDT overflow. The 14-bit counter overflows when it reach<br>16383 (3FFFH), and this will reset the device. When the WDT is enabled, it will increm<br>every machine cycle while the oscillator is running. This means the user must reset the W<br>at least every 16383 machine cycles. To reset the WDT the user must write 01EH and 0E<br>to WDTRST. WDTRST is a write-only register. The WDT counter cannot be read or writt<br>When WDT overflows, it will generate an output RESET pulse at the RST pin. The RES<br>pulse duration is 98xTOSC, where TOSC = 1/FOSC. To make the best use of the WDT<br>should be serviced in those sections of code that will periodically be executed within the ti<br>required to prevent a WDT reset. |                                                |                                                                        |                                                                          |                                                             |                                              | gister<br>)1EH<br>Iches<br>ment<br>WDT<br>)E1H<br>itten.<br>SET<br>DT, it<br>e time |                         |               |       |

## AT89S51

#### WDT During In Power-down mode the oscillator stops, which means the WDT also stops. While in Powerdown mode, the user does not need to service the WDT. There are two methods of exiting **Power-down** Power-down mode: by a hardware reset or via a level-activated external interrupt, which is and Idle enabled prior to entering Power-down mode. When Power-down is exited with hardware reset, servicing the WDT should occur as it normally does whenever the AT89S51 is reset. Exiting Power-down with an interrupt is significantly different. The interrupt is held low long enough for the oscillator to stabilize. When the interrupt is brought high, the interrupt is serviced. To prevent the WDT from resetting the device while the interrupt pin is held low, the WDT is not started until the interrupt is pulled high. It is suggested that the WDT be reset during the interrupt service for the interrupt used to exit Power-down mode. To ensure that the WDT does not overflow within a few states of exiting Power-down, it is best to reset the WDT just before entering Power-down mode. Before going into the IDLE mode, the WDIDLE bit in SFR AUXR is used to determine whether the WDT continues to count if enabled. The WDT keeps counting during IDLE (WDIDLE bit = 0) as the default state. To prevent the WDT from resetting the AT89S51 while in IDLE mode, the user should always set up a timer that will periodically exit IDLE, service the WDT, and reenter IDLE mode. With WDIDLE bit enabled, the WDT will stop to count in IDLE mode and resumes the count upon exit from IDLE. UART The UART in the AT89S51 operates the same way as the UART in the AT89C51. For further information on the UART operation, refer to the Atmel Web site (http://www.atmel.com). From the home page, select "Products", then "Microcontrollers", then "8051-Architecture", then "Documentation", and "Other Documents". Open the Adobe® Acrobat® file "AT89 Series Hardware Description". Timer 0 and 1 Timer 0 and Timer 1 in the AT89S51 operate the same way as Timer 0 and Timer 1 in the AT89C51. For further information on the timers' operation, refer to the Atmel Web site (http://www.atmel.com). From the home page, select "Products", then "Microcontrollers", then "8051-Architecture", then "Documentation", and "Other Documents". Open the Adobe Acrobat file "AT89 Series Hardware Description". Interrupts The AT89S51 has a total of five interrupt vectors: two external interrupts (INT0 and INT1), two timer interrupts (Timers 0 and 1), and the serial port interrupt. These interrupts are all shown in Figure 1. Each of these interrupt sources can be individually enabled or disabled by setting or clearing a bit in Special Function Register IE. IE also contains a global disable bit, EA, which disables all interrupts at once. Note that Table 4 shows that bit positions IE.6 and IE.5 are unimplemented. User software should not write 1s to these bit positions, since they may be used in future AT89 products. The Timer 0 and Timer 1 flags, TF0 and TF1, are set at S5P2 of the cycle in which the timers

AIMEL

overflow. The values are then polled by the circuitry in the next cycle.



#### Table 4. Interrupt Enable (IE) Register

| (N | ISB)                                  |   | (LSB) |    |     |     |     |     |  |
|----|---------------------------------------|---|-------|----|-----|-----|-----|-----|--|
|    | EA                                    | - | _     | ES | ET1 | EX1 | ET0 | EX0 |  |
| Е  | Enable Bit = 1 enables the interrupt. |   |       |    |     |     |     |     |  |

Enable Bit = 0 disables the interrupt.

| Symbol                         | Position                 | Function                                                                                                                                                                                     |
|--------------------------------|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EA                             | IE.7                     | Disables all interrupts. If $EA = 0$ , no interrupt is<br>acknowledged. If $EA = 1$ , each interrupt source is<br>individually enabled or disabled by setting or clearing<br>its enable bit. |
| -                              | IE.6                     | Reserved                                                                                                                                                                                     |
| -                              | IE.5                     | Reserved                                                                                                                                                                                     |
| ES                             | IE.4                     | Serial Port interrupt enable bit                                                                                                                                                             |
| ET1                            | IE.3                     | Timer 1 interrupt enable bit                                                                                                                                                                 |
| EX1                            | IE.2                     | External interrupt 1 enable bit                                                                                                                                                              |
| ET0                            | IE.1                     | Timer 0 interrupt enable bit                                                                                                                                                                 |
| EX0                            | IE.0                     | External interrupt 0 enable bit                                                                                                                                                              |
| User software should products. | never write 1s to reserv | ved bits, because they may be used in future AT89                                                                                                                                            |

#### Figure 1. Interrupt Sources



10

## Oscillator Characteristics

XTAL1 and XTAL2 are the input and output, respectively, of an inverting amplifier that can be configured for use as an on-chip oscillator, as shown in Figure 2. Either a quartz crystal or ceramic resonator may be used. To drive the device from an external clock source, XTAL2 should be left unconnected while XTAL1 is driven, as shown in Figure 3. There are no requirements on the duty cycle of the external clock signal, since the input to the internal clocking circuitry is through a divide-by-two flip-flop, but minimum and maximum voltage high and low time specifications must be observed.

Figure 2. Oscillator Connections



Note: C1, C2 =  $30 \text{ pF} \pm 10 \text{ pF}$  for Crystals =  $40 \text{ pF} \pm 10 \text{ pF}$  for Ceramic Resonators

Figure 3. External Clock Drive Configuration



Idle Mode In idle mode, the CPU puts itself to sleep while all the on-chip peripherals remain active. The mode is invoked by software. The content of the on-chip RAM and all the special function registers remain unchanged during this mode. The idle mode can be terminated by any enabled interrupt or by a hardware reset.

Note that when idle mode is terminated by a hardware reset, the device normally resumes program execution from where it left off, up to two machine cycles before the internal reset algorithm takes control. On-chip hardware inhibits access to internal RAM in this event, but access to the port pins is not inhibited. To eliminate the possibility of an unexpected write to a port pin when idle mode is terminated by a reset, the instruction following the one that invokes idle mode should not write to a port pin or to external memory.

#### **Power-down Mode** In the Power-down mode, the oscillator is stopped, and the instruction that invokes Powerdown is the last instruction executed. The on-chip RAM and Special Function Registers retain their values until the Power-down mode is terminated. Exit from Power-down mode can be initiated either by a hardware reset or by activation of an enabled external interrupt (INT0 or INT1). Reset redefines the SFRs but does not change the on-chip RAM. The reset should not be activated before V<sub>CC</sub> is restored to its normal operating level and must be held active long enough to allow the oscillator to restart and stabilize.





| Mode       | Program Memory | ALE | PSEN | PORT0 | PORT1 | PORT2   | PORT3 |
|------------|----------------|-----|------|-------|-------|---------|-------|
| Idle       | Internal       | 1   | 1    | Data  | Data  | Data    | Data  |
| ldle       | External       | 1   | 1    | Float | Data  | Address | Data  |
| Power-down | Internal       | 0   | 0    | Data  | Data  | Data    | Data  |
| Power-down | External       | 0   | 0    | Float | Data  | Data    | Data  |

## Program Memory Lock Bits

The AT89S51 has three lock bits that can be left unprogrammed (U) or can be programmed (P) to obtain the additional features listed in the following table.

|  | Table 6. | Lock Bit P | rotection | Modes |
|--|----------|------------|-----------|-------|
|--|----------|------------|-----------|-------|

| Program Lock Bits |   |   |   |                                                                                                                                                                                                                              |
|-------------------|---|---|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LB1 LB2 LB3       |   |   |   | Protection Type                                                                                                                                                                                                              |
| 1                 | U | U | U | No program lock features                                                                                                                                                                                                     |
| 2                 | Р | U | U | MOVC instructions executed from external program memory are disabled from fetching code bytes from internal memory, $\overline{EA}$ is sampled and latched on reset, and further programming of the Flash memory is disabled |
| 3                 | Р | Р | U | Same as mode 2, but verify is also disabled                                                                                                                                                                                  |
| 4                 | Р | Р | Р | Same as mode 3, but external execution is also disabled                                                                                                                                                                      |

When lock bit 1 is programmed, the logic level at the  $\overline{EA}$  pin is sampled and latched during reset. If the device is powered up without a reset, the latch initializes to a random value and holds that value until reset is activated. The latched value of  $\overline{EA}$  must agree with the current logic level at that pin in order for the device to function properly.

## Programming the Flash – Parallel Mode

The AT89S51 is shipped with the on-chip Flash memory array ready to be programmed. The programming interface needs a high-voltage (12-volt) program enable signal and is compatible with conventional third-party Flash or EPROM programmers.

The AT89S51 code memory array is programmed byte-by-byte.

**Programming Algorithm:** Before programming the AT89S51, the address, data, and control signals should be set up according to the Flash Programming Modes table (Table 7) and Figures 4 and 5. To program the AT89S51, take the following steps:

- 1. Input the desired memory location on the address lines.
- 2. Input the appropriate data byte on the data lines.
- 3. Activate the correct combination of control signals.
- 4. Raise  $\overline{EA}/V_{PP}$  to 12V.
- 5. Pulse ALE/PROG once to program a byte in the Flash array or the lock bits. The bytewrite cycle is self-timed and typically takes no more than 50 µs. Repeat steps 1 through 5, changing the address and data for the entire array or until the end of the object file is reached.

**Data Polling:** The AT89S51 features Data Polling to indicate the end of a byte write cycle. During a write cycle, an attempted read of the last byte written will result in the complement of the written data on P0.7. Once the write cycle has been completed, true data is valid on all outputs, and the next cycle may begin. Data Polling may begin any time after a write cycle has been initiated.

## AT89S51

**Ready/Busy:** The progress of byte programming can also be monitored by the RDY/BSY output signal. P3.0 is pulled low after ALE goes high during programming to indicate BUSY. P3.0 is pulled high again when programming is done to indicate READY.

**Program Verify:** If lock bits LB1 and LB2 have not been programmed, the programmed code data can be read back via the address and data lines for verification. **The status of the individual lock bits can be verified directly by reading them back.** 

**Reading the Signature Bytes:** The signature bytes are read by the same procedure as a normal verification of locations 000H, 100H, and 200H, except that P3.6 and P3.7 must be pulled to a logic low. The values returned are as follows.

(000H) = 1EH indicates manufactured by Atmel (100H) = 51H indicates AT89S51 (200H) = 06H

**Chip Erase:** In the parallel programming mode, a chip erase operation is initiated by using the proper combination of control signals and by pulsing ALE/PROG low for a duration of 200 ns - 500 ns.

In the serial programming mode, a chip erase operation is initiated by issuing the Chip Erase instruction. In this mode, chip erase is self-timed and takes about 500 ms.

During chip erase, a serial read from any address location will return 00H at the data output.

**Programming the Flash** – **Serial Mode Serial Mode** The Code memory array can be programmed using the serial ISP interface while RST is pulled to V<sub>cc</sub>. The serial interface consists of pins SCK, MOSI (input) and MISO (output). After RST is set high, the Programming Enable instruction needs to be executed first before other operations can be executed. Before a reprogramming sequence can occur, a Chip Erase operation is required.

The Chip Erase operation turns the content of every memory location in the Code array into FFH.

Either an external system clock can be supplied at pin XTAL1 or a crystal needs to be connected across pins XTAL1 and XTAL2. The maximum serial clock (SCK) frequency should be less than 1/16 of the crystal frequency. With a 33 MHz oscillator clock, the maximum SCK frequency is 2 MHz.

To program and verify the AT89S51 in the serial programming mode, the following sequence is recommended:

1. Power-up sequence:

Apply power between VCC and GND pins.

Set RST pin to "H".

If a crystal is not connected across pins XTAL1 and XTAL2, apply a 3 MHz to 33 MHz clock to XTAL1 pin and wait for at least 10 milliseconds.

- 2. Enable serial programming by sending the Programming Enable serial instruction to pin MOSI/P1.5. The frequency of the shift clock supplied at pin SCK/P1.7 needs to be less than the CPU clock at XTAL1 divided by 16.
- 3. The Code array is programmed one byte at a time in either the Byte or Page mode. The write cycle is self-timed and typically takes less than 0.5 ms at 5V.
- 4. Any memory location can be verified by using the Read instruction that returns the content at the selected address at serial output MISO/P1.6.
- 5. At the end of a programming session, RST can be set low to commence normal device operation.



Serial

Programming Algorithm



| Power-off sequence (if needed):            |    |
|--------------------------------------------|----|
| Set XTAL1 to "L" (if a crystal is not used | ). |

Set RST to "L".

Turn V<sub>CC</sub> power off.

**Data Polling:** The Data Polling feature is also available in the serial mode. In this mode, during a write cycle an attempted read of the last byte written will result in the complement of the MSB of the serial output byte on MISO.

The Instruction Set for Serial Programming follows a 4-byte protocol and is shown in Table 8.

### Programming Instruction Set

Serial

## Programming<br/>Interface –<br/>Parallel ModeEvery code byte in the Flash array can be programmed by using the appropriate combination<br/>of control signals. The write operation cycle is self-timed and once initiated, will automatically<br/>time itself to completion.<br/>Most major worldwide programming vendors offer worldwide support for the Atmel AT89

Most major worldwide programming vendors offer worldwide support for the Atmel AT89 microcontroller series. Please contact your local programming vendor for the appropriate software revision.

|                           |                 |     |      | ALE/ | EA/                |   |      |      |      |      | P0.7-0                 | P2.3-0 | P1.7-0 |
|---------------------------|-----------------|-----|------|------|--------------------|---|------|------|------|------|------------------------|--------|--------|
| Mode                      | V <sub>cc</sub> | RST | PSEN | PROG | V <sub>PP</sub> P2 |   | P2.7 | P3.3 | P3.6 | P3.7 | Data                   | Add    | ress   |
| Write Code Data           | 5V              | н   | L    | (2)  | 12V                | L | н    | н    | н    | н    | D <sub>IN</sub>        | A11-8  | A7-0   |
| Read Code Data            | 5V              | н   | L    | Н    | Н                  | L | L    | L    | н    | н    | D <sub>OUT</sub>       | A11-8  | A7-0   |
| Write Lock Bit 1          | 5V              | н   | L    | (3)  | 12V                | Н | н    | н    | н    | н    | х                      | х      | х      |
| Write Lock Bit 2          | 5V              | н   | L    | (3)  | 12V                | Н | Н    | Н    | L    | L    | х                      | х      | х      |
| Write Lock Bit 3          | 5V              | н   | L    | (3)  | 12V                | Н | L    | Н    | н    | L    | х                      | х      | х      |
| Read Lock Bits<br>1, 2, 3 | 5V              | н   | L    | Н    | Н                  | н | Н    | L    | н    | L    | P0.2,<br>P0.3,<br>P0.4 | х      | х      |
| Chip Erase                | 5V              | н   | L    | (1)  | 12V                | Н | L    | Н    | L    | L    | х                      | х      | х      |
| Read Atmel ID             | 5V              | н   | L    | Н    | Н                  | L | L    | L    | L    | L    | 1EH                    | 0000   | 00H    |
| Read Device ID            | 5V              | Н   | L    | Н    | Н                  | L | L    | L    | L    | L    | 51H                    | 0001   | 00H    |
| Read Device ID            | 5V              | Н   | L    | Н    | Н                  | L | L    | L    | L    | L    | 06H                    | 0010   | 00H    |

 Table 7.
 Flash Programming Modes

Notes: 1. Each PROG pulse is 200 ns - 500 ns for Chip Erase.

2. Each PROG pulse is 200 ns - 500 ns for Write Code Data.

3. Each PROG pulse is 200 ns - 500 ns for Write Lock Bits.

4. RDY/BSY signal is output on P3.0 during programming.

5. X = don't care.



Figure 4. Programming the Flash Memory (Parallel Mode)

Figure 5. Verifying the Flash Memory (Parallel Mode)







## Flash Programming and Verification Characteristics (Parallel Mode)

 $T_{\rm A}$  = 20°C to 30°C,  $V_{\rm CC}$  = 4.5 to 5.5V

| Symbol              | Parameter                         | Min                 | Max                 | Units |
|---------------------|-----------------------------------|---------------------|---------------------|-------|
| V <sub>PP</sub>     | Programming Supply Voltage        | 11.5                | 12.5                | V     |
| I <sub>PP</sub>     | Programming Supply Current        |                     | 10                  | mA    |
| I <sub>CC</sub>     | V <sub>CC</sub> Supply Current    |                     | 30                  | mA    |
| 1/t <sub>CLCL</sub> | Oscillator Frequency              | 3                   | 33                  | MHz   |
| t <sub>AVGL</sub>   | Address Setup to PROG Low         | 48t <sub>CLCL</sub> |                     |       |
| t <sub>GHAX</sub>   | Address Hold After PROG           | 48t <sub>CLCL</sub> |                     |       |
| t <sub>DVGL</sub>   | Data Setup to PROG Low            | 48t <sub>CLCL</sub> |                     |       |
| t <sub>GHDX</sub>   | Data Hold After PROG              | 48t <sub>CLCL</sub> |                     |       |
| t <sub>EHSH</sub>   | P2.7 (ENABLE) High to $V_{PP}$    | 48t <sub>CLCL</sub> |                     |       |
| t <sub>SHGL</sub>   | V <sub>PP</sub> Setup to PROG Low | 10                  |                     | μs    |
| t <sub>GHSL</sub>   | V <sub>PP</sub> Hold After PROG   | 10                  |                     | μs    |
| t <sub>GLGH</sub>   | PROG Width                        | 0.2                 | 1                   | μs    |
| t <sub>AVQV</sub>   | Address to Data Valid             |                     | 48t <sub>CLCL</sub> |       |
| t <sub>ELQV</sub>   | ENABLE Low to Data Valid          |                     | 48t <sub>CLCL</sub> |       |
| t <sub>EHQZ</sub>   | Data Float After ENABLE           | 0                   | 48t <sub>CLCL</sub> |       |
| t <sub>GHBL</sub>   | PROG High to BUSY Low             |                     | 1.0                 | μs    |
| t <sub>wc</sub>     | Byte Write Cycle Time             |                     | 50                  | μs    |

#### Figure 6. Flash Programming and Verification Waveforms – Parallel Mode



16

Figure 7. Flash Memory Serial Downloading



## Flash Programming and Verification Waveforms – Serial Mode



Figure 8. Serial Programming Waveforms





#### Table 8. Serial Programming Instruction Set

|                                     | Instruction<br>Format |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           |                                               |                                                                                             |
|-------------------------------------|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-----------------------------------------------|---------------------------------------------------------------------------------------------|
| Instruction                         | Byte 1                | Byte 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Byte 3                    | Byte 4                                        | Operation                                                                                   |
| Programming Enable                  | 1010 1100             | 0101 0011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | XXXX XXXX                 | xxxx xxxx<br>0110 1001<br>(Output on<br>MISO) | Enable Serial Programming while RST is high                                                 |
| Chip Erase                          | 1010 1100             | 100x xxxx                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | XXXX XXXX                 | XXXX XXXX                                     | Chip Erase Flash memory array                                                               |
| Read Program Memory<br>(Byte Mode)  | 0010 0000             | A11<br>A00<br>A00<br>A00<br>A00<br>A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | AAAA<br>AAAA 4567<br>0123 | 0000 0000<br>00103 00000<br>00103             | Read data from Program memory in the byte mode                                              |
| Write Program Memory<br>(Byte Mode) | 0100 0000             | AA<br>AA411<br>XXXX CO000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | AAAA 44564<br>01223 45667 | 0000 0000                                     | Write data to Program memory in the byte mode                                               |
| Write Lock Bits <sup>(1)</sup>      | 1010 1100             | 1110 00듑協                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | xxxx xxxx                 | xxxx xxxx                                     | Write Lock bits. See Note (1).                                                              |
| Read Lock Bits                      | 0010 0100             | XXXX XXXX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | XXXX XXXX                 | XX EEE SXXX                                   | Read back current status of<br>the lock bits (a programmed<br>lock bit reads back as a "1") |
| Read Signature Bytes                | 0010 1000             | AAD<br>AAD<br>ABOO<br>BAD<br>ABOO<br>BAD<br>ABOO<br>BAD<br>ABOO<br>BAD<br>ABOO<br>BAD<br>ABOO<br>BAD<br>ABOO<br>BAD<br>ABOO<br>BAD<br>ABOO<br>BAD<br>ABOO<br>BAD<br>ABOO<br>BAD<br>ABOO<br>BAD<br>ABOO<br>BAD<br>ABOO<br>BAD<br>ABOO<br>BAD<br>ABOO<br>BAD<br>ABOO<br>BAD<br>ABOO<br>BAD<br>ABOO<br>BAD<br>ABOO<br>BAD<br>ABOO<br>BAD<br>ABOO<br>BAD<br>ABOO<br>BAD<br>ABOO<br>BAD<br>ABOO<br>BAD<br>ABOO<br>BAD<br>ABOO<br>BAD<br>ABOO<br>BAD<br>ABOO<br>BAD<br>ABOO<br>BAD<br>ABOO<br>BAD<br>ABOO<br>BAD<br>ABOO<br>BAD<br>ABOO<br>BAD<br>ABOO<br>BAD<br>ABOO<br>BAD<br>ABOO<br>BAD<br>ABOO<br>BAD<br>ABOO<br>BAD<br>ABOO<br>BAD<br>ABOO<br>BAD<br>ABOO<br>BAD<br>ABOO<br>BAD<br>ABOO<br>BAD<br>ABOO<br>BAD<br>ABOO<br>BAD<br>ABOO<br>BAD<br>ABOO<br>BAD<br>ABOO<br>BAD<br>ABOO<br>BAD<br>ABOO<br>BAD<br>ABOO<br>BAD<br>ABOO<br>BAD<br>ABOO<br>BAD<br>ABOO<br>BAD<br>ABOO<br>BAD<br>ABOO<br>BAD<br>ABOO<br>BAD<br>ABOO<br>BAD<br>ABOO<br>BAD<br>ABOO<br>BAD<br>ABOO<br>BAD<br>ABOO<br>BAD<br>ABOO<br>BAD<br>ABOO<br>BAD<br>ABOO<br>BAD<br>ABOO<br>BAD<br>ABOO<br>BAD<br>ABOO<br>BAD<br>ABOO<br>BAD<br>ABOO<br>BAD<br>ABOO<br>BAD<br>ABOO<br>BAD<br>ABOO<br>BAD<br>ABOO<br>BAD<br>ABOO<br>BAD<br>ABOO<br>BAD<br>ABOO<br>BAD<br>ABOO<br>BAD<br>ABOO<br>BAD<br>ABOO<br>BAD<br>ABOO<br>BAD<br>ABOO<br>BAD<br>ABOO<br>BAD<br>ABOO<br>BAD<br>ABOO<br>BAD<br>ABOO<br>BAD<br>ABOO<br>BAD<br>ABOO<br>BAD<br>ABOO<br>BAD<br>ABOO<br>BAD<br>ABOO<br>BAD<br>ABOO<br>BAD<br>ABOO<br>BAD<br>ABOO<br>BAD<br>ABOO<br>BAD<br>ABOO<br>BAD<br>ABOO<br>BAD<br>ABOO<br>BAD<br>ABOO<br>BAD<br>ABOO<br>BAD<br>ABOO<br>BAD<br>ABOO<br>BAD<br>ABOO<br>BAD<br>ABOO<br>BAD<br>ABOO<br>BAD<br>ABOO<br>BAD<br>ABOO<br>BAD<br>ABOO<br>BAD<br>ABOO<br>BAD<br>ABOO<br>BAD<br>ABOO<br>BAD<br>ABOO<br>ABOO | rxx xxx0                  | Signature Byte                                | Read Signature Byte                                                                         |
| Read Program Memory<br>(Page Mode)  | 0011 0000             | A41<br>A900<br>A900<br>A900<br>A91<br>A900<br>A91<br>A91<br>A91<br>A91<br>A91<br>A91<br>A91<br>A91<br>A91<br>A91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Byte 0                    | Byte 1<br>Byte 255                            | Read data from Program<br>memory in the Page Mode<br>(256 bytes)                            |
| Write Program Memory<br>(Page Mode) | 0101 0000             | A400<br>A401<br>XXXX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Byte 0                    | Byte 1<br>Byte 255                            | Write data to Program<br>memory in the Page Mode<br>(256 bytes)                             |

Note:

 B1 = 0, B2 = 0 → Mode 1, no lock protection B1 = 0, B2 = 1 → Mode 2, lock bit 1 activated B1 = 1, B2 = 0 → Mode 3, lock bit 2 activated

B1 = 1, B2 = 1  $\rightarrow$  Mode 4, lock bit 3 activated

 $\underline{Each}$  of the lock bit modes need to be activated sequentially before Mode 4 can be executed.

After Reset signal is high, SCK should be low for at least 64 system clocks before it goes high to clock in the enable data bytes. No pulsing of Reset signal is necessary. SCK should be no faster than 1/16 of the system clock at XTAL1.

For Page Read/Write, the data always starts from byte 0 to 255. After the command byte and upper address byte are latched, each byte thereafter is treated as data until all 256 bytes are shifted in/out. Then the next instruction will be ready to be decoded.

## Serial Programming Characteristics

Figure 9. Serial Programming Timing



| Table 9. | Serial Programming Characteristics | T | $= -40^{\circ}$ C to $85^{\circ}$ C, V <sub>CC</sub> $= 4.0 - 5.5$ V | (Unless Otherwise Noted) |
|----------|------------------------------------|---|----------------------------------------------------------------------|--------------------------|
|----------|------------------------------------|---|----------------------------------------------------------------------|--------------------------|

| Symbol              | Parameter                         | Min                 | Тур | Мах                        | Units |
|---------------------|-----------------------------------|---------------------|-----|----------------------------|-------|
| 1/t <sub>CLCL</sub> | Oscillator Frequency              | 3                   |     | 33                         | MHz   |
| t <sub>CLCL</sub>   | Oscillator Period                 | 30                  |     |                            | ns    |
| t <sub>SHSL</sub>   | SCK Pulse Width High              | 8 t <sub>CLCL</sub> |     |                            | ns    |
| t <sub>SLSH</sub>   | SCK Pulse Width Low               | 8 t <sub>CLCL</sub> |     |                            | ns    |
| t <sub>OVSH</sub>   | MOSI Setup to SCK High            | t <sub>CLCL</sub>   |     |                            | ns    |
| t <sub>SHOX</sub>   | MOSI Hold after SCK High          | 2 t <sub>CLCL</sub> |     |                            | ns    |
| t <sub>SLIV</sub>   | SCK Low to MISO Valid             | 10                  | 16  | 32                         | ns    |
| t <sub>ERASE</sub>  | Chip Erase Instruction Cycle Time |                     |     | 500                        | ms    |
| t <sub>SWC</sub>    | Serial Byte Write Cycle Time      |                     |     | 64 t <sub>CLCL</sub> + 400 | μs    |




# **Absolute Maximum Ratings\***

| Operating Temperature                            | +125°C   |
|--------------------------------------------------|----------|
| Storage Temperature65°C to                       | +150°C   |
| Voltage on Any Pin<br>with Respect to Ground1.0V | to +7.0V |
| Maximum Operating Voltage                        | 6.6V     |
| DC Output Current                                | 15.0 mA  |

\*NOTICE: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

# **DC Characteristics**

The values shown in this table are valid for  $T_A = -40^{\circ}$ C to 85°C and  $V_{CC} = 4.0$ V to 5.5V, unless otherwise noted.

| Symbol           | Parameter                                                | Condition                                | Min                      | Max                      | Units |
|------------------|----------------------------------------------------------|------------------------------------------|--------------------------|--------------------------|-------|
| V <sub>IL</sub>  | Input Low Voltage                                        | (Except EA)                              | -0.5                     | 0.2 V <sub>CC</sub> -0.1 | V     |
| V <sub>IL1</sub> | Input Low Voltage (EA)                                   |                                          | -0.5                     | 0.2 V <sub>CC</sub> -0.3 | V     |
| V <sub>IH</sub>  | Input High Voltage                                       | (Except XTAL1, RST)                      | 0.2 V <sub>CC</sub> +0.9 | V <sub>CC</sub> +0.5     | V     |
| V <sub>IH1</sub> | Input High Voltage                                       | (XTAL1, RST)                             | 0.7 V <sub>CC</sub>      | V <sub>CC</sub> +0.5     | V     |
| V <sub>OL</sub>  | Output Low Voltage <sup>(1)</sup> (Ports 1,2,3)          | I <sub>OL</sub> = 1.6 mA                 |                          | 0.45                     | V     |
| V <sub>OL1</sub> | Output Low Voltage <sup>(1)</sup><br>(Port 0, ALE, PSEN) | I <sub>OL</sub> = 3.2 mA                 |                          | 0.45                     | V     |
|                  |                                                          | $I_{OH}$ = -60 µA, $V_{CC}$ = 5V ±10%    | 2.4                      |                          | V     |
| V <sub>OH</sub>  | Output High Voltage<br>(Ports 1 2 3 ALE PSEN)            | I <sub>OH</sub> = -25 μA                 | 0.75 V <sub>CC</sub>     |                          | V     |
|                  |                                                          | I <sub>OH</sub> = -10 μA                 | 0.9 V <sub>CC</sub>      |                          | V     |
|                  | Output High Voltage<br>(Port 0 in External Bus Mode)     | $I_{OH}$ = -800 µA, $V_{CC}$ = 5V ±10%   | 2.4                      |                          | V     |
| V <sub>OH1</sub> |                                                          | I <sub>OH</sub> = -300 μA                | 0.75 V <sub>CC</sub>     |                          | V     |
|                  |                                                          | I <sub>OH</sub> = -80 μA                 | 0.9 V <sub>CC</sub>      |                          | V     |
| I <sub>IL</sub>  | Logical 0 Input Current (Ports 1,2,3)                    | V <sub>IN</sub> = 0.45V                  |                          | -50                      | μA    |
| I <sub>TL</sub>  | Logical 1 to 0 Transition Current<br>(Ports 1,2,3)       | $V_{IN} = 2V, V_{CC} = 5V \pm 10\%$      |                          | -650                     | μA    |
| ILI              | Input Leakage Current (Port 0, $\overline{EA}$ )         | 0.45 < V <sub>IN</sub> < V <sub>CC</sub> |                          | ±10                      | μA    |
| RRST             | Reset Pulldown Resistor                                  |                                          | 50                       | 300                      | KΩ    |
| C <sub>IO</sub>  | Pin Capacitance                                          | Test Freq. = 1 MHz, $T_A = 25^{\circ}C$  |                          | 10                       | pF    |
|                  | Power Supply Current                                     | Active Mode, 12 MHz                      |                          | 25                       | mA    |
| I <sub>CC</sub>  |                                                          | ldle Mode, 12 MHz                        |                          | 6.5                      | mA    |
|                  | Power-down Mode <sup>(2)</sup>                           | $V_{CC} = 5.5 V$                         |                          | 50                       | μA    |

Notes: 1. Under steady state (non-transient) conditions,  $I_{OL}$  must be externally limited as follows: Maximum  $I_{OL}$  per port pin: 10 mA Maximum  $I_{OL}$  per 8-bit port:

Port 0: 26 mA Ports 1, 2, 3: 15 mA

Maximum total  $I_{OL}$  for all output pins: 71 mA

If  $I_{OL}$  exceeds the test condition,  $V_{OL}$  may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test conditions.

2. Minimum  $V_{CC}$  for Power-down is 2V.

# **AC Characteristics**

Under operating conditions, load capacitance for Port 0, ALE/ $\overline{PROG}$ , and  $\overline{PSEN} = 100 \text{ pF}$ ; load capacitance for all other outputs = 80 pF.

# **External Program and Data Memory Characteristics**

|                     |                                                     | 12 MHz | 12 MHz Oscillator |                         | Oscillator              |       |
|---------------------|-----------------------------------------------------|--------|-------------------|-------------------------|-------------------------|-------|
| Symbol              | Parameter                                           | Min    | Max               | Min                     | Мах                     | Units |
| 1/t <sub>CLCL</sub> | Oscillator Frequency                                |        |                   | 0                       | 33                      | MHz   |
| t <sub>LHLL</sub>   | ALE Pulse Width                                     | 127    |                   | 2t <sub>CLCL</sub> -40  |                         | ns    |
| t <sub>AVLL</sub>   | Address Valid to ALE Low                            | 43     |                   | t <sub>CLCL</sub> -25   |                         | ns    |
| t <sub>LLAX</sub>   | Address Hold After ALE Low                          | 48     |                   | t <sub>CLCL</sub> -25   |                         | ns    |
| t <sub>LLIV</sub>   | ALE Low to Valid Instruction In                     |        | 233               |                         | 4t <sub>CLCL</sub> -65  | ns    |
| t <sub>LLPL</sub>   | ALE Low to PSEN Low                                 | 43     |                   | t <sub>CLCL</sub> -25   |                         | ns    |
| t <sub>PLPH</sub>   | PSEN Pulse Width                                    | 205    |                   | 3t <sub>CLCL</sub> -45  |                         | ns    |
| t <sub>PLIV</sub>   | PSEN Low to Valid Instruction In                    |        | 145               |                         | 3t <sub>CLCL</sub> -60  | ns    |
| t <sub>PXIX</sub>   | Input Instruction Hold After PSEN                   | 0      |                   | 0                       |                         | ns    |
| t <sub>PXIZ</sub>   | Input Instruction Float After PSEN                  |        | 59                |                         | t <sub>CLCL</sub> -25   | ns    |
| t <sub>PXAV</sub>   | PSEN to Address Valid                               | 75     |                   | t <sub>CLCL</sub> -8    |                         | ns    |
| t <sub>AVIV</sub>   | Address to Valid Instruction In                     |        | 312               |                         | 5t <sub>CLCL</sub> -80  | ns    |
| t <sub>PLAZ</sub>   | PSEN Low to Address Float                           |        | 10                |                         | 10                      | ns    |
| t <sub>RLRH</sub>   | RD Pulse Width                                      | 400    |                   | 6t <sub>CLCL</sub> -100 |                         | ns    |
| t <sub>wLWH</sub>   | WR Pulse Width                                      | 400    |                   | 6t <sub>CLCL</sub> -100 |                         | ns    |
| t <sub>RLDV</sub>   | RD Low to Valid Data In                             |        | 252               |                         | 5t <sub>CLCL</sub> -90  | ns    |
| t <sub>RHDX</sub>   | Data Hold After RD                                  | 0      |                   | 0                       |                         | ns    |
| t <sub>RHDZ</sub>   | Data Float After RD                                 |        | 97                |                         | 2t <sub>CLCL</sub> -28  | ns    |
| t <sub>LLDV</sub>   | ALE Low to Valid Data In                            |        | 517               |                         | 8t <sub>CLCL</sub> -150 | ns    |
| t <sub>AVDV</sub>   | Address to Valid Data In                            |        | 585               |                         | 9t <sub>CLCL</sub> -165 | ns    |
| t <sub>LLWL</sub>   | ALE Low to $\overline{RD}$ or $\overline{WR}$ Low   | 200    | 300               | 3t <sub>CLCL</sub> -50  | 3t <sub>CLCL</sub> +50  | ns    |
| t <sub>AVWL</sub>   | Address to RD or WR Low                             | 203    |                   | 4t <sub>CLCL</sub> -75  |                         | ns    |
| t <sub>QVWX</sub>   | Data Valid to WR Transition                         | 23     |                   | t <sub>CLCL</sub> -30   |                         | ns    |
| t <sub>QVWH</sub>   | Data Valid to WR High                               | 433    |                   | 7t <sub>CLCL</sub> -130 |                         | ns    |
| t <sub>WHQX</sub>   | Data Hold After WR                                  | 33     |                   | t <sub>CLCL</sub> -25   |                         | ns    |
| t <sub>RLAZ</sub>   | RD Low to Address Float                             |        | 0                 |                         | 0                       | ns    |
| t <sub>WHLH</sub>   | $\overline{RD}$ or $\overline{WR}$ High to ALE High | 43     | 123               | t <sub>CLCL</sub> -25   | t <sub>CLCL</sub> +25   | ns    |





# **External Program Memory Read Cycle**



# **External Data Memory Read Cycle**



22

# **External Data Memory Write Cycle**



# **External Clock Drive Waveforms**



# **External Clock Drive**

| Symbol              | Parameter            | Min | Max | Units |
|---------------------|----------------------|-----|-----|-------|
| 1/t <sub>CLCL</sub> | Oscillator Frequency | 0   | 33  | MHz   |
| t <sub>CLCL</sub>   | Clock Period         | 30  |     | ns    |
| t <sub>CHCX</sub>   | High Time            | 12  |     | ns    |
| t <sub>CLCX</sub>   | Low Time             | 12  |     | ns    |
| t <sub>CLCH</sub>   | Rise Time            |     | 5   | ns    |
| t <sub>CHCL</sub>   | Fall Time            |     | 5   | ns    |





# Serial Port Timing: Shift Register Mode Test Conditions

The values in this table are valid for  $V_{CC}$  = 4.0V to 5.5V and Load Capacitance = 80 pF.

|                   |                                          | 12 MI | Hz Osc | Variable C               |                          |       |
|-------------------|------------------------------------------|-------|--------|--------------------------|--------------------------|-------|
| Symbol            | Parameter                                | Min   | Max    | Min                      | Max                      | Units |
| t <sub>XLXL</sub> | Serial Port Clock Cycle Time             | 1.0   |        | 12t <sub>CLCL</sub>      |                          | μs    |
| t <sub>QVXH</sub> | Output Data Setup to Clock Rising Edge   | 700   |        | 10t <sub>CLCL</sub> -133 |                          | ns    |
| t <sub>XHQX</sub> | Output Data Hold After Clock Rising Edge | 50    |        | 2t <sub>CLCL</sub> -80   |                          | ns    |
| t <sub>XHDX</sub> | Input Data Hold After Clock Rising Edge  | 0     |        | 0                        |                          | ns    |
| t <sub>XHDV</sub> | Clock Rising Edge to Input Data Valid    |       | 700    |                          | 10t <sub>CLCL</sub> -133 | ns    |

## Shift Register Mode Timing Waveforms



# AC Testing Input/Output Waveforms<sup>(1)</sup>



Note: 1. AC Inputs during testing are driven at V<sub>CC</sub> - 0.5V for a logic 1 and 0.45V for a logic 0. Timing measurements are made at V<sub>IH</sub> min. for a logic 1 and V<sub>IL</sub> max. for a logic 0.

# Float Waveforms<sup>(1)</sup>



Note: 1. For timing purposes, a port pin is no longer floating when a 100 mV change from load voltage occurs. A port pin begins to float when a 100 mV change from the loaded V<sub>OH</sub>/V<sub>OL</sub> level occurs.

| Speed<br>(MHz) | Power<br>Supply | Ordering Code | Package | Operation Range   |
|----------------|-----------------|---------------|---------|-------------------|
| 24             | 4.0V to 5.5V    | AT89S51-24AC  | 44A     | Commercial        |
|                |                 | AT89S51-24JC  | 44J     | (0° C to 70° C)   |
|                |                 | AT89S51-24PC  | 40P6    |                   |
|                |                 | AT89S51-24SC  | 42PS6   |                   |
|                |                 | AT89S51-24AI  | 44A     | Industrial        |
|                |                 | AT89S51-24JI  | 44J     | (-40° C to 85° C) |
|                |                 | AT89S51-24PI  | 40P6    |                   |
|                |                 | AT89S51-24SI  | 42PS6   |                   |
| 33             | 4.5V to 5.5V    | AT89S51-33AC  | 44A     | Commercial        |
|                |                 | AT89S51-33JC  | 44J     | (0° C to 70° C)   |
|                |                 | AT89S51-33PC  | 40P6    |                   |
|                |                 | AT89S51-33SC  | 42PS6   |                   |

# **Ordering Information**

| Package Type |                                                         |  |  |  |  |  |
|--------------|---------------------------------------------------------|--|--|--|--|--|
| 44A          | 44-lead, Thin Plastic Gull Wing Quad Flatpack (TQFP)    |  |  |  |  |  |
| 44J          | 44-lead, Plastic J-leaded Chip Carrier (PLCC)           |  |  |  |  |  |
| 40P6         | 40-pin, 0.600" Wide, Plastic Dual Inline Package (PDIP) |  |  |  |  |  |
| 42PS6        | 42-pin, 0.600" Wide, Plastic Dual Inline Package (PDIP) |  |  |  |  |  |





# **Packaging Information**

## 44A – TQFP



AT89S51

## 44J – PLCC







### 40P6 - PDIP



28

AT89S51

### 42PS6 - PDIP







## **Atmel Corporation**

2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 487-2600

#### **Regional Headquarters**

#### Europe

Atmel Sarl Route des Arsenaux 41 Case Postale 80 CH-1705 Fribourg Switzerland Tel: (41) 26-426-5555 Fax: (41) 26-426-5500

#### Asia

Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimshatsui East Kowloon Hong Kong Tel: (852) 2721-9778 Fax: (852) 2722-1369

#### Japan

9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan Tel: (81) 3-3523-3551 Fax: (81) 3-3523-7581

### **Atmel Operations**

Memory

2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 436-4314

#### Microcontrollers

2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 436-4314

La Chantrerie BP 70602 44306 Nantes Cedex 3, France Tel: (33) 2-40-18-18-18 Fax: (33) 2-40-18-19-60

#### ASIC/ASSP/Smart Cards

Zone Industrielle 13106 Rousset Cedex, France Tel: (33) 4-42-53-60-00 Fax: (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906, USA Tel: 1(719) 576-3300 Fax: 1(719) 540-1759

Scottish Enterprise Technology Park Maxwell Building East Kilbride G75 0QR, Scotland Tel: (44) 1355-803-000 Fax: (44) 1355-242-743

#### **RF**/Automotive

Theresienstrasse 2 Postfach 3535 74025 Heilbronn, Germany Tel: (49) 71-31-67-0 Fax: (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906, USA Tel: 1(719) 576-3300 Fax: 1(719) 540-1759

## Biometrics/Imaging/Hi-Rel MPU/

High Speed Converters/RF Datacom Avenue de Rochepleine BP 123 38521 Saint-Egreve Cedex, France Tel: (33) 4-76-58-30-00 Fax: (33) 4-76-58-34-80

*Literature Requests* www.atmel.com/literature

**Disclaimer:** Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company's standard warranty which is detailed in Atmel's Terms and Conditions located on the Company's web site. The Company assumes no responsibility for any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel's products are not authorized for use as critical components in life support devices or systems.

© Atmel Corporation 2003. All rights reserved. Atmel<sup>®</sup> and combinations thereof are the registered trademarks of Atmel Corporation or its subsidiaries. MCS<sup>®</sup> is a registered trademark of Intel Corporation. Adobe<sup>®</sup> and Acrobat<sup>®</sup> are the registered trademarks of Adobe Systems Inc. Other terms and product names may be the trademarks of others.



| DEFAULT - Por      | <b>b1</b><br>Accomble Simu | lata Manitar Ontions Window            | u Helo                   |                                           |             | _           |                |                           |                                                                                                                 |            |                                       |
|--------------------|----------------------------|----------------------------------------|--------------------------|-------------------------------------------|-------------|-------------|----------------|---------------------------|-----------------------------------------------------------------------------------------------------------------|------------|---------------------------------------|
|                    | Assemble Sind              | inate Monitor Options willow           | ം nep<br>പെംപെംപെംപെംപെം |                                           |             |             |                |                           |                                                                                                                 |            |                                       |
|                    | <u> 新 唱</u> 唱              |                                        |                          |                                           |             |             |                |                           |                                                                                                                 |            |                                       |
| 12-04-06 Mici      | ro1 16bitADC i             | rly cal 🔍                              |                          | X                                         | 12-04-06 Mi | cro2 latest |                |                           | 🔍 Regisl                                                                                                        | ter 1      |                                       |
|                    | ORG                        | ОН                                     |                          | <b>_</b>                                  | ;*****      | ******      | *********      | ***                       | A 0                                                                                                             |            |                                       |
|                    | LJMP                       | MAIN                                   |                          |                                           | DELAYLO     | DOP:        | MOV            | RU,#100 ;1SEC = 100X10000 | B U                                                                                                             | 100        |                                       |
|                    | ORG                        | 0003H                                  |                          |                                           | RPT:        |             | MOV            | THU, #HIGH COUNT          | RU                                                                                                              | 100        |                                       |
|                    | LJMP                       | EXUISR                                 |                          |                                           |             |             | MOV            | TLU, #LOW COUNT           | RI                                                                                                              | 0          |                                       |
|                    | ORG                        | 0023H                                  | Communicatio             | ns Microcontroller                        |             |             | SETB           | TRU                       | RZ<br>D2                                                                                                        | 0          |                                       |
|                    | LJMP                       | SPISR                                  | 200                      | ce Code                                   |             |             | JNB            | TEU, DLY                  | R3                                                                                                              | 0          |                                       |
|                    |                            |                                        |                          |                                           |             |             | CLR            | TRO Source Code           | R4                                                                                                              | U<br>0     |                                       |
|                    | ODC                        | 002011                                 |                          |                                           |             |             | CLR<br>DIN7    |                           | R5<br>D6                                                                                                        | 0<br>0     |                                       |
| . + + + + + + +    | URG                        | UUJUH                                  | TITZE T/O DODI           |                                           |             |             | DONZ           | RO, RPT                   | ко<br>р7                                                                                                        | 0<br>0     |                                       |
| 1 C                |                            | COCCOCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC | ILIZE I/O POR.           | 5                                         |             |             | הבה            | Register Display 🗕 🔶      | gD R                                                                                                            | o<br>q     |                                       |
| MATN               | MOV                        | pN #0000100p                           | Simulator Code E         | xecution Identification                   | .*****      | *****       | ********       | ****                      |                                                                                                                 | 482        |                                       |
| main.              | MOV                        | р1 #11111111<br>р1 #1111               | (Indicates the inst      | ruction that is being presently executed) | :           |             | DOWN           | I - LOWER DETECTION UNIT  | DPTR                                                                                                            | 0          |                                       |
|                    | MOV                        | P2, #01111110B                         |                          |                                           | ******      | ****        | ********       | ****                      | ]                                                                                                               |            |                                       |
|                    | MOV                        | P3,#010101111B :                       | (rEC & tRANS             | PORTS SET TO 1), on                       | RUN DWN     | IX: SETB    | EXO            |                           | ConRe                                                                                                           | 201        |                                       |
| ; * * * * * * *    | ******                     | *************                          | ILIZE I/O PORT           | ng ***********************                |             | CLR         | OCH            |                           | DSM                                                                                                             | 0          | and a second second second            |
|                    |                            |                                        |                          |                                           |             | SETB        | P2.7; CL       | ITTENT ON                 | TD                                                                                                              | 1          |                                       |
|                    | SETB                       | P3.5                                   |                          |                                           |             | CALL        | DELAYLOC       | P                         |                                                                                                                 | 133        |                                       |
|                    | 107.179.779749             | 1020202020                             |                          |                                           |             | ;JB         | 06H,DEC        | T 2 ; 25-08               | TCON                                                                                                            | 21         |                                       |
|                    | CLR                        | RSO                                    | ;15                      |                                           |             | MOV         | R1, #HIGH      | COUNT2                    | TMOD                                                                                                            | 17         |                                       |
|                    | SETB                       | RS1                                    |                          |                                           |             | MOV         | R2, #LOW       | COUNT2                    | PCON                                                                                                            | <u>+</u> ( |                                       |
|                    | MOV                        | R6,#50                                 |                          |                                           |             | MOV         | R3,#200        | ;*                        | T2CON                                                                                                           | ñ          |                                       |
| DLY3:              | mov                        | r5,#100                                |                          |                                           |             |             |                |                           | SCON                                                                                                            | 0          |                                       |
| dly:               | mov                        | r4,#100                                |                          |                                           |             | SETB        | P0.3           |                           | SBUF                                                                                                            | 0          |                                       |
| dly2:              | djnz                       | r4,dly2                                |                          |                                           |             | CALL        | DELAYLOC       | )P                        | TO                                                                                                              | 55545      |                                       |
| 10.00              | djnz                       | r5,dly                                 |                          |                                           | TMR2:       | MOV         | тно,#он        |                           | T1                                                                                                              | 0          |                                       |
|                    | DJNZ                       | R6, DLY3                               |                          |                                           |             | MOV         | тьо,#он        |                           | T2                                                                                                              | 0          |                                       |
|                    | CLR                        | RSO                                    |                          |                                           |             | MOV         | TH1,R1         | Special Function Register | RCAP2                                                                                                           | 0          |                                       |
|                    | CLR                        | RS1                                    | ; 1S                     |                                           |             | MOV         | TL1,R2         | Display                   | La constante de |            |                                       |
|                    |                            |                                        |                          |                                           |             | SETB        | TR1            |                           | Q TRAM                                                                                                          | 1          |                                       |
|                    |                            |                                        |                          |                                           |             | SETB        | TRO            |                           | 24.                                                                                                             | 0          |                                       |
|                    | CLR                        | OOH ;CLEARING F                        | LAGS                     |                                           | WAIT_T2     | :JNB        | TF1,WAI1       | '_T2                      | 24.                                                                                                             | 0<br>0     |                                       |
|                    | CLR                        | 01H                                    |                          |                                           |             | clr         | trl            |                           | 26.                                                                                                             | 0          |                                       |
|                    | CLR                        | 02H                                    |                          |                                           |             | CLR         | TRU            |                           | 27.                                                                                                             | n          |                                       |
|                    | CLR                        | USH                                    | Input / Output           | Port Display                              |             | cir         | trl<br>mp0     |                           | 28.                                                                                                             | n<br>n     | · · · · · · · · · · · · · · · · · · · |
|                    | CLR                        | U4H                                    |                          | 1.22                                      |             | CLR         | TEU<br>DO MMDO |                           | 29:                                                                                                             | n<br>n     |                                       |
|                    | CLR                        | USH                                    |                          |                                           |             | CEMP        | RS, TMRZ       |                           | 2A:                                                                                                             | 0          |                                       |
| . + + + + + + +    | *******                    | *****                                  | TITZE ADC                | WY DUN ++++++++++                         |             | SETE        |                |                           | 2B:                                                                                                             | 0          |                                       |
| ,                  | CLD                        | οοοοοοοοοοοοοοιΝΤ.<br>Ο Ω              | IDIZE ADC -              | MI KUN AAAAAAAAAAAA                       |             | OMP         | IMR_0012       |                           | 2C:                                                                                                             | 0          |                                       |
|                    | NOP                        | F2.0                                   |                          |                                           |             |             |                | Internal RAM Display      | 2D:                                                                                                             | 0          |                                       |
|                    | CLR                        | ם א ב                                  |                          |                                           |             |             |                | Internal Islim Display    | 2E:                                                                                                             | 0          |                                       |
|                    | CHK                        | 10.0                                   |                          |                                           | TMR OUT     | '2:;CLR     | EXO            |                           | 2F:                                                                                                             | 0          |                                       |
|                    | CLR                        | RSO                                    | :20us                    |                                           |             | JB          | 08H, NO        | ERR2                      | 30:                                                                                                             | 0          |                                       |
| Port1              |                            |                                        |                          |                                           |             | - ca. 6     |                |                           | 31:                                                                                                             | 0          |                                       |
|                    | 010                        |                                        |                          |                                           |             |             |                |                           | 32:                                                                                                             | 0          |                                       |
| 1 1 1 1 1 1 1      | 111                        |                                        |                          |                                           |             |             |                |                           | 33:                                                                                                             | U          |                                       |
|                    | 000                        |                                        |                          |                                           |             |             |                |                           | 34:                                                                                                             | U          |                                       |
| P3_00011           | 111                        |                                        |                          |                                           |             |             |                |                           | 35:                                                                                                             | 0<br>0     |                                       |
|                    |                            |                                        |                          |                                           |             |             |                |                           | 1 30:                                                                                                           | U          |                                       |
| For Help, press F1 |                            |                                        |                          |                                           |             |             |                |                           | 1                                                                                                               | INS        | Ready //                              |

Type: 8051 Source Document Size: 15.0 KB



## 54LS00/DM54LS00/DM74LS00 Quad 2-Input NAND Gates

#### **General Description**

#### Features

This device contains four independent gates each of which performs the logic NAND function.

 Alternate Military/Aerospace device (54LS00) is available. Contact a National Semiconductor Sales Office/ Distributor for specifications.

## **Connection Diagram**



## **Function Table**

 $\mathbf{Y} = \overline{\mathbf{AB}}$ Inputs Output Y в Α н L L н Н L Н L. Н н н L





54LS00/DM54LS00/DM74LS00 Quad 2-Input NAND Gates

June 1989

© 1995 National Semiconductor Corporation TL/F/6439

RRD-B30M105/Printed in U. S. A.

#### Absolute Maximum Ratings (Note)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

| Supply Voltage                       | 7V              |
|--------------------------------------|-----------------|
| Input Voltage                        | 7V              |
| Operating Free Air Temperature Range |                 |
| DM54LS and 54LS                      | -55°C to +125°C |
| DM74LS                               | 0°C to +70°C    |
| Storage Temperature Range            | -65°C to +150°C |

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

#### **Recommended Operating Conditions**

| Symbol          | Parameter                      | DM54LS00 |     |      |      | Units |      |       |
|-----------------|--------------------------------|----------|-----|------|------|-------|------|-------|
|                 |                                | Min      | Nom | Max  | Min  | Nom   | Max  | onito |
| V <sub>CC</sub> | Supply Voltage                 | 4.5      | 5   | 5.5  | 4.75 | 5     | 5.25 | V     |
| VIH             | High Level Input Voltage       | 2        |     |      | 2    |       |      | V     |
| VIL             | Low Level Input Voltage        |          |     | 0.7  |      |       | 0.8  | V     |
| I <sub>OH</sub> | High Level Output Current      |          |     | -0.4 |      |       | -0.4 | mA    |
| I <sub>OL</sub> | Low Level Output Current       |          |     | 4    |      |       | 8    | mA    |
| T <sub>A</sub>  | Free Air Operating Temperature | -55      |     | 125  | 0    |       | 70   | °C    |

## Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

| Symbol          | Parameter                            | Conditions                            |      | Min | Typ<br>(Note 1) | Max   | Units |
|-----------------|--------------------------------------|---------------------------------------|------|-----|-----------------|-------|-------|
| VI              | Input Clamp Voltage                  | $V_{CC} = Min, I_I = -18 \text{ mA}$  |      |     |                 | -1.5  | V     |
| V <sub>OH</sub> | High Level Output                    | $V_{CC} = Min, I_{OH} = Max,$         | DM54 | 2.5 | 3.4             |       | V     |
|                 | Voltage                              | V <sub>IL</sub> = Max                 | DM74 | 2.7 | 3.4             |       |       |
| VOL             | Low Level Output                     | $V_{CC} = Min, I_{OL} = Max,$         | DM54 |     | 0.25            | 0.4   |       |
|                 | Voltage                              | V <sub>IH</sub> = Min                 | DM74 |     | 0.35            | 0.5   | l v   |
|                 |                                      | $I_{OL} = 4 \text{ mA}, V_{CC} = Min$ | DM74 |     | 0.25            | 0.4   |       |
| lı              | Input Current @ Max<br>Input Voltage | $V_{CC} = Max, V_1 = 7V$              |      |     |                 | 0.1   | mA    |
| I <sub>IH</sub> | High Level Input Current             | $V_{CC} = Max, V_I = 2.7V$            |      |     |                 | 20    | μΑ    |
| IIL             | Low Level Input Current              | $V_{CC} = Max, V_I = 0.4V$            |      |     |                 | -0.36 | mA    |
| IOS             | Short Circuit                        | V <sub>CC</sub> = Max                 | DM54 | -20 |                 | -100  | m۸    |
|                 | Output Current                       | (Note 2)                              | DM74 | -20 |                 | -100  |       |
| ICCH            | Supply Current with<br>Outputs High  | V <sub>CC</sub> = Max                 |      |     | 0.8             | 1.6   | mA    |
| ICCL            | Supply Current with<br>Outputs Low   | V <sub>CC</sub> = Max                 |      |     | 2.4             | 4.4   | mA    |

## Switching Characteristics at $V_{CC} = 5V$ and $T_A = 25^{\circ}C$ (See Section 1 for Test Waveforms and Output Load)

| Symbol               | Parameter                                          | C <sub>L</sub> = | 15 pF | C <sub>L</sub> = | Units |    |
|----------------------|----------------------------------------------------|------------------|-------|------------------|-------|----|
|                      |                                                    | Min              | Max   | Min              | Мах   |    |
| t <sub>PLH</sub>     | Propagation Delay Time<br>Low to High Level Output | 3                | 10    | 4                | 15    | ns |
| t <sub>PHL</sub>     | Propagation Delay Time<br>High to Low Level Output | 3                | 10    | 4                | 15    | ns |
| Note 1. All typicals | are at $V_{CC} = 5V$ T <sub>A</sub> = 25°C         |                  |       |                  |       |    |

**Note 1:** All typicals are at  $V_{CC} = 5V$ ,  $T_A = 25^{\circ}C$ .

Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.









National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.

DM74LS02 Quad 2-Input NOR Gate

# FAIRCHILD

SEMICONDUCTOR

# DM74LS02 Quad 2-Input NOR Gate

## **General Description**

This device contains four independent gates each of which performs the logic NOR function.

## **Ordering Code:**

| Order Number | Package Number | Package Description                                                         |
|--------------|----------------|-----------------------------------------------------------------------------|
| DM74LS02M    | M14A           | 14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-120, 0.150 Narrow |
| DM74LS02SJ   | M14D           | 14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide               |
| DM74LS02N    | N14A           | 14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide       |

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

### **Connection Diagram**



## **Function Table**

 $\mathbf{Y} = \mathbf{\overline{A} + B}$ 

| In | puts | Output |
|----|------|--------|
| A  | В    | Y      |
| L  | L    | Н      |
| L  | н    | L      |
| н  | L    | L      |
| н  | н    | L      |

H = HIGH Logic Level L = LOW Logic Level

www.fairchildsemi.com

## Absolute Maximum Ratings(Note 1)

| Supply Voltage                       | 7V                             |
|--------------------------------------|--------------------------------|
| Input Voltage                        | 7V                             |
| Operating Free Air Temperature Range | $0^{\circ}C$ to $+70^{\circ}C$ |
| Storage Temperature Range            | -65°C to +150°C                |

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

## **Recommended Operating Conditions**

| Symbol          | Parameter                      | Min  | Nom | Max  | Units |
|-----------------|--------------------------------|------|-----|------|-------|
| V <sub>CC</sub> | Supply Voltage                 | 4.75 | 5   | 5.25 | V     |
| VIH             | HIGH Level Input Voltage       | 2    |     |      | V     |
| V <sub>IL</sub> | LOW Level Input Voltage        |      |     | 0.8  | V     |
| I <sub>OH</sub> | HIGH Level Output Current      |      |     | -0.4 | mA    |
| I <sub>OL</sub> | LOW Level Output Current       |      |     | 8    | mA    |
| T <sub>A</sub>  | Free Air Operating Temperature | 0    |     | 70   | °C    |

#### **Electrical Characteristics**

over recommended operating free air temperature range (unless otherwise noted)

| Symbol           | Parameter                         | Conditions                                      | Min | Typ<br>(Note 2) | Max   | Units |
|------------------|-----------------------------------|-------------------------------------------------|-----|-----------------|-------|-------|
| VI               | Input Clamp Voltage               | $V_{CC} = Min, I_I = -18 \text{ mA}$            |     |                 | -1.5  | V     |
| V <sub>OH</sub>  | HIGH Level<br>Output Voltage      | $V_{CC} = Min, I_{OH} = Max,$<br>$V_{IL} = Max$ | 2.7 | 3.4             |       | V     |
| V <sub>OL</sub>  | LOW Level<br>Output Voltage       | $V_{CC} = Min, I_{OL} = Max,$<br>$V_{IH} = Min$ |     | 0.35            | 0.5   | V     |
|                  |                                   | $I_{OL} = 4 \text{ mA}, V_{CC} = Min$           |     | 0.25            | 0.4   |       |
| l <sub>l</sub>   | Input Current @ Max Input Voltage | $V_{CC} = Max, V_I = 7V$                        |     |                 | 0.1   | mA    |
| I <sub>IH</sub>  | HIGH Level Input Current          | $V_{CC} = Max, V_I = 2.7V$                      |     |                 | 20    | μΑ    |
| IIL              | LOW Level Input Current           | $V_{CC} = Max, V_I = 0.4V$                      |     |                 | -0.40 | mA    |
| los              | Short Circuit Output Current      | V <sub>CC</sub> = Max (Note 3)                  | -20 |                 | -100  | mA    |
| I <sub>CCH</sub> | Supply Current with Outputs HIGH  | V <sub>CC</sub> = Max                           |     | 1.6             | 3.2   | mA    |
| I <sub>CCL</sub> | Supply Current with Outputs LOW   | V <sub>CC</sub> = Max                           |     | 2.8             | 5.4   | mA    |

Note 2: All typicals are at  $V_{CC} = 5V$ ,  $T_A = 25^{\circ}C$ .

Note 3: Not more than one output should be shorted at a time, and the duration should not exceed one second.

## **Switching Characteristics**

at  $V_{CC}=5V$  and  $T_A=25^\circ C$ 

| Symbol           | Parameter                | C <sub>L</sub> = 15 pF |     | C <sub>L</sub> = 5 | Units |     |
|------------------|--------------------------|------------------------|-----|--------------------|-------|-----|
|                  |                          | Min                    | Max | Min                | Max   |     |
| t <sub>PLH</sub> | Propagation Delay Time   |                        | 12  |                    | 19    | nc  |
|                  | LOW-to-HIGH Level Output |                        | 13  |                    | 10    | 115 |
| t <sub>PHL</sub> | Propagation Delay Time   |                        | 10  |                    | 15    | nc  |
|                  | HIGH-to-LOW Level Output |                        | 10  |                    | 15    | 115 |

www.fairchildsemi.com





www.fairchildsemi.com



www.fairchildsemi.com

DM74LS02 Quad 2-Input NOR Gate

This datasheet has been downloaded from:

www.DatasheetCatalog.com

Datasheets for electronic components.

#### SN5404, SN54LS04, SN54S04, SN7404, SN74LS04, SN74S04 HEX INVERTERS SDLS029B – DECEMBER 1983 – REVISED FEBRUARY 2002

ruments Quality and SN5404

#### Dependable Texas Instruments Quality and Reliability

### description

These devices contain six independent inverters.

| SN5404                                 | J PACKAGE                             |
|----------------------------------------|---------------------------------------|
| SN54LS04, SN54S                        | 04 J OR W PACKAGE                     |
| SN7404 D,                              | N, OR NS PACKAGE                      |
| SN74LS04 D,                            | DB, N, OR NS PACKAGE                  |
| SN74S04                                | . D OR N PACKAGE                      |
| (T                                     | OP VIEW)                              |
|                                        |                                       |
| 1АЦ 1                                  | <sup>14</sup> V <sub>CC</sub>         |
| 1Y 🛽 2                                 | 13 🛛 6A                               |
| 2A 🛛 3                                 | 12 6Y                                 |
| 2YÎ₄                                   | 11 <b>1</b> 5A                        |
|                                        | 10 1 5Y                               |
| 3/10                                   |                                       |
|                                        | 9 U 4A                                |
|                                        | <sup>8</sup>   <sup>4</sup>           |
|                                        |                                       |
| SN5404                                 |                                       |
| . 110404<br>(T                         |                                       |
| (1                                     |                                       |
|                                        |                                       |
|                                        |                                       |
|                                        |                                       |
| 2A[] 3                                 | 12 <b>[</b> 6Y                        |
| Vcc 4                                  | 11 🛛 GND                              |
| 3A 🚺 5                                 | 10 🛛 5Y                               |
| 3Y 🛙 6                                 | 9 🕇 5A                                |
| 4A 1 7                                 | 8 <b>6</b> 4Y                         |
| ······································ | U                                     |
|                                        |                                       |
| SN54LS04, SN54                         | IS04 FK PACKAGE                       |
| (тс                                    | DP VIEW)                              |
|                                        | U                                     |
| 7 ↓<br>1                               | N N N N N N N N N N N N N N N N N N N |
|                                        |                                       |
| 24 3 2                                 | 1 20 19                               |
|                                        |                                       |
|                                        |                                       |
| 2Y 🛛 6                                 | 16 🛛 5A                               |
| NC 🛛 7                                 | 15 🚺 NC                               |
| 3A 🕇 8                                 | 14 🚺 5Y                               |
| 9_1                                    |                                       |
|                                        |                                       |
| ND 3                                   | N 4 4                                 |
| ("                                     |                                       |

NC - No internal connection



Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.



 $Copyright © 2002, \mbox{Texas Instruments Incorporated} \\ On products compliant to MIL-PRF-3853s, all parameters are tested unless otherwise noted. On all other products, production processing does not necessarily include testing of all parameters.$ 

SDLS029B – DECEMBER 1983 – REVISED FEBRUARY 2002

| ТА                                                                                                                                       | PAC       | KAGE <sup>†</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ORDERABLE<br>PART NUMBER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TOP-SIDE<br>MARKING |
|------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
|                                                                                                                                          |           | Tube                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SN7404N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SN7404N             |
|                                                                                                                                          | PDIP – N  | Tube                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SN74LS04N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SN74LS04N           |
|                                                                                                                                          |           | Tube                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SN74S04N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SN74S04N            |
|                                                                                                                                          |           | Tube                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SN7404D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7404                |
|                                                                                                                                          |           | Tube                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SN74LS04D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.504               |
| 0°C to 70°C                                                                                                                              | SOIC – D  | Tape and reel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SN74LS04DR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1304                |
|                                                                                                                                          |           | Tube                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SN74S04D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 504                 |
|                                                                                                                                          |           | Tape and reel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SN74S04DR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 504                 |
| 0°C to 70°C<br>-55°C to 125°C                                                                                                            |           | Tape and reel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SN7404NSR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SN7404              |
|                                                                                                                                          | 50P - N5  | Tape and reel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SN74LS04NSR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 74LS04              |
|                                                                                                                                          | SSOP – DB | PACKAGETORDERABLE<br>PART NUMBERTOP<br>MARK'DIP - NTubeSN7404NSN7404N'DIP - NTubeSN7404NSN7404NTubeSN74S04NSN74LS04TubeSN74S04NSN74S04NTubeSN7404D7404TubeSN74LS04D7404TubeSN74LS04DT404TubeSN74LS04DLS04TubeSN74S04DRB04TubeSN74S04DRS04TubeSN74S04DRS04Tape and reelSN74S04DRS04GOP - NSTape and reelSN74LS04DRRSOP - DBTape and reelSN74LS04DRRTubeSN5404JSN5404JSOP - DBTape and reelSN74LS04DRTubeSN5404JSN5404JSDIP - JTubeSN5404JSDIP - JTub | LS04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     |
|                                                                                                                                          |           | Tube                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SN5404J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SN5404J             |
|                                                                                                                                          |           | Tube                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SNJ5404J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SNJ5404J            |
|                                                                                                                                          |           | Tube                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SN54LS04J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SN54LS04J           |
|                                                                                                                                          | CDIP – J  | Tube                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SN54S04J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SN54S04J            |
| $-55^{\circ}C \text{ to } 125^{\circ}C \\ I \\ $                                                 | Tube      | SNJ54LS04J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SNJ54LS04J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| –55°C to 125°C                                                                                                                           |           | Tube                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | iethORDERABLE<br>PART NUMBERTOP-SIDE<br>MARKINGieSN7404NSN7404NieSN74LS04NSN7404NieSN74LS04NSN74LS04NieSN7404D7404ieSN74LS04DLS04ieSN74LS04DRBodyieSN74S04DLS04ieSN74S04DRSN7404ieSN74S04DRBodyieSN74S04DRS04ieSN74S04DRS04ieSN74S04DRSN7404ieand reelSN74S04DRieSN74S04DRSN7404ieand reelSN74S04DRieSN74S04DRSN404ieand reelSN74LS04NSRieSN74LS04DRSN5404ieSN5404JSN5404JieSN5404JSN5404JieSN54LS04JSN5404JieSNJ54LS04JSNJ54LS04JieSNJ54S04JSNJ54S04JieSNJ54S04JSNJ5404JieSNJ54S04JSNJ54LS04JieSNJ54LS04WSNJ54LS04WieSNJ54LS04WSNJ54LS04WieSNJ54LS04FKSNJ54LS04FKieSNJ54LS04FKSNJ54S04FK |                     |
|                                                                                                                                          |           | Tube                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SNJ5404W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SNJ5404W            |
| TA РАС   PDIP - N PDIP - N   0°C to 70°C SOIC - D   SOP - NS SOP - NS   SSOP - DB CDIP - J   -55°C to 125°C CFP - W   LCCC - FK CCC - FK | CFP – W   | Tube                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SNJ54LS04W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SNJ54LS04W          |
|                                                                                                                                          | Tube      | SNJ54S04W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SNJ54S04W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     |
|                                                                                                                                          |           | Tube                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SNJ54LS04FK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SNJ54LS04FK         |
|                                                                                                                                          |           | Tube                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SNJ54S04FK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SNJ54S04FK          |

#### ORDERING INFORMATION

<sup>†</sup> Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

#### FUNCTION TABLE (each inverter)

| INPU<br>A | T OUTPUT<br>Y |
|-----------|---------------|
| н         | L             |
| L         | н             |



## logic diagram (positive logic)





SDLS029B – DECEMBER 1983 – REVISED FEBRUARY 2002

#### schematics (each gate)





Resistor values shown are nominal.



SDLS029B - DECEMBER 1983 - REVISED FEBRUARY 2002

#### absolute maximum ratings over operating free-air temperature range (unless otherwise noted)<sup>†</sup>

| Supply voltage, V <sub>CC</sub> (see Note 1)           |            |               |
|--------------------------------------------------------|------------|---------------|
| Input voltage, V <sub>I</sub> : '04, 'S04              |            | 5.5 V         |
| 'LS04                                                  |            |               |
| Package thermal impedance, $\theta_{JA}$ (see Note 2): | D package  | 86°C/W        |
|                                                        | DB package | 96°C/W        |
|                                                        | N package  | 80°C/W        |
|                                                        | NS package | 76°C/W        |
| Storage temperature range, T <sub>sta</sub>            |            | 65°C to 150°C |

<sup>†</sup> Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. This are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. Voltage values are with respect to network ground terminal.

2. The package thermal impedance is calculated in accordance with JESD 51-7.

#### recommended operating conditions

|     |                                |     | SN5404 |      |      | SN7404 |      |      |
|-----|--------------------------------|-----|--------|------|------|--------|------|------|
|     |                                | MIN | NOM    | MAX  | MIN  | NOM    | MAX  | UNIT |
| VCC | Supply voltage                 | 4.5 | 5      | 5.5  | 4.75 | 5      | 5.25 | V    |
| VIH | High-level input voltage       | 2   |        |      | 2    |        |      | V    |
| VIL | Low-level input voltage        |     |        | 0.8  |      |        | 0.8  | V    |
| ЮН  | High-level output current      |     |        | -0.4 |      |        | -0.4 | mA   |
| IOL | Low-level output current       |     |        | 16   |      |        | 16   | mA   |
| TA  | Operating free-air temperature | -55 |        | 125  | 0    |        | 70   | °C   |

# electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

|                 |                        |                          |                           | SN5404 |      |      | SN7404 |      |      |      |
|-----------------|------------------------|--------------------------|---------------------------|--------|------|------|--------|------|------|------|
| PARAMETER       |                        |                          |                           | MIN    | TYP§ | MAX  | MIN    | ΤΥΡ§ | MAX  | UNIT |
| VIK             | $V_{CC} = MIN,$        | lj = –12 mA              |                           |        |      | -1.5 |        |      | -1.5 | V    |
| VOH             | $V_{CC} = MIN,$        | V <sub>IL</sub> = 0.8 V, | I <sub>OH</sub> = -0.4 mA | 2.4    | 3.4  |      | 2.4    | 3.4  |      | V    |
| VOL             | $V_{CC} = MIN,$        | V <sub>IH</sub> = 2 V,   | I <sub>OL</sub> = 16 mA   |        | 0.2  | 0.4  |        | 0.2  | 0.4  | V    |
| Ц               | V <sub>CC</sub> = MAX, | V <sub>I</sub> = 5.5 V   |                           |        |      | 1    |        |      | 1    | mA   |
| Чн              | V <sub>CC</sub> = MAX, | V <sub>I</sub> = 2.4 V   |                           |        |      | 40   |        |      | 40   | μΑ   |
| Ι <sub>ΙL</sub> | V <sub>CC</sub> = MAX, | V <sub>I</sub> = 0.4 V   |                           |        |      | -1.6 |        |      | -1.6 | mA   |
| IOS             | $V_{CC} = MAX$         |                          |                           | -20    |      | -55  | -18    |      | -55  | mA   |
| ІССН            | V <sub>CC</sub> = MAX, | $V_{I} = 0 V$            |                           |        | 6    | 12   |        | 6    | 12   | mA   |
| ICCL            | V <sub>CC</sub> = MAX, | VI = 4.5 V               |                           |        | 18   | 33   |        | 18   | 33   | mA   |

<sup>‡</sup> For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

§ All typical values are at  $V_{CC} = 5 \text{ V}$ ,  $T_A = 25^{\circ}\text{C}$ .

¶ Not more than one output should be shorted at a time.

## switching characteristics, $V_{CC} = 5 V$ , $T_A = 25^{\circ}C$ (see Figure 1)

| PARAMETER        | FROM | OM TO TEST CONDITIONS |                                                   | SN5404<br>SN7404 |     |     | UNIT |
|------------------|------|-----------------------|---------------------------------------------------|------------------|-----|-----|------|
|                  |      | (001-01)              |                                                   | MIN              | TYP | MAX |      |
| <sup>t</sup> PLH | Δ    | v                     | $R_{\rm L} = 400 \Omega$ $C_{\rm L} = 15  \rm pE$ |                  | 12  | 22  | ns   |
| <sup>t</sup> PHL | ~    |                       | ικ <u>μ</u> = 400 32, Ομ = 13 βι                  |                  | 8   | 15  | 113  |



SDLS029B – DECEMBER 1983 – REVISED FEBRUARY 2002

#### recommended operating conditions

|                |                                | SN54LS04 |     | S    | UNIT |     |      |      |
|----------------|--------------------------------|----------|-----|------|------|-----|------|------|
|                |                                |          | NOM | MAX  | MIN  | NOM | MAX  | UNIT |
| VCC            | Supply voltage                 | 4.5      | 5   | 5.5  | 4.75 | 5   | 5.25 | V    |
| VIH            | High-level input voltage       | 2        |     |      | 2    |     |      | V    |
| VIL            | Low-level input voltage        |          |     | 0.7  |      |     | 0.8  | V    |
| IOH            | High-level output current      |          |     | -0.4 |      |     | -0.4 | mA   |
| IOL            | Low-level output current       |          |     | 4    |      |     | 8    | mA   |
| Τ <sub>Α</sub> | Operating free-air temperature | -55      |     | 125  | 0    |     | 70   | °C   |

# electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

| DADAMETED      |                        | TEST CONDITIONS                 |                           | S   | N54LS0 | 4    | SN74LS04 |      |      |      |
|----------------|------------------------|---------------------------------|---------------------------|-----|--------|------|----------|------|------|------|
| PARAMETER      |                        | TEST CONDITIO                   | JNST                      | MIN | TYP‡   | MAX  | MIN      | TYP‡ | MAX  | UNIT |
| VIK            | V <sub>CC</sub> = MIN, | l <sub>l</sub> = –18 mA         |                           |     |        | -1.5 |          |      | -1.5 | V    |
| VOH            | $V_{CC} = MIN,$        | V <sub>IL</sub> = MAX,          | I <sub>OH</sub> = -0.4 mA | 2.5 | 3.4    |      | 2.7      | 3.4  |      | V    |
| Ve             | V <sub>CC</sub> = MIN, | $cc = MIN, \qquad V_{IH} = 2 V$ | $I_{OL} = 4 \text{ mA}$   |     | 0.25   | 0.4  |          |      | 0.4  | V    |
| VOL            |                        |                                 | $I_{OL} = 8 \text{ mA}$   |     |        |      |          | 0.25 | 0.5  | v    |
| lj             | V <sub>CC</sub> = MAX, | V <sub>I</sub> = 7 V            |                           |     |        | 0.1  |          |      | 0.1  | mA   |
| ЧΗ             | V <sub>CC</sub> = MAX, | V <sub>I</sub> = 2.7 V          |                           |     |        | 20   |          |      | 20   | μΑ   |
| Ι <sub>Ι</sub> | V <sub>CC</sub> = MAX, | V <sub>I</sub> = 0.4 V          |                           |     |        | -0.4 |          |      | -0.4 | mA   |
| IOS§           | $V_{CC} = MAX$         |                                 |                           | -20 |        | -100 | -20      |      | -100 | mA   |
| ІССН           | V <sub>CC</sub> = MAX, | V <sub>I</sub> = 0 V            |                           |     | 1.2    | 2.4  |          | 1.2  | 2.4  | mA   |
| ICCL           | V <sub>CC</sub> = MAX, | V <sub>I</sub> = 4.5 V          |                           |     | 3.6    | 6.6  |          | 3.6  | 6.6  | mA   |

<sup>†</sup> For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

<sup>‡</sup> All typical values are at  $V_{CC} = 5 \text{ V}$ ,  $T_A = 25^{\circ}\text{C}$ .

§ Not more than one output should be shorted at a time and the duration of the short-circuit should not exceed one second.

## switching characteristics, $V_{CC} = 5 V$ , $T_A = 25^{\circ}C$ (see Figure 2)

| PARAMETER        | FROM | TO TEST CONDITIONS |                              | TEST CONDITIONS    |     | SN54LS04<br>SN74LS04 |     |     |
|------------------|------|--------------------|------------------------------|--------------------|-----|----------------------|-----|-----|
|                  |      |                    |                              |                    | MIN | TYP                  | MAX |     |
| <sup>t</sup> PLH | Δ    | v                  | $R_1 = 2kO$                  | Cu = 15 pE         |     | 9                    | 15  | ns  |
| <sup>t</sup> PHL | R    |                    | Γ <u>Γ</u> – 2 κ <u>3</u> 2, | 0 <u>L</u> = 13 pr |     | 10                   | 15  | 113 |



#### recommended operating conditions

|     |                                | SN54S04 |     |     | S    |     |      |      |
|-----|--------------------------------|---------|-----|-----|------|-----|------|------|
|     |                                | MIN     | NOM | MAX | MIN  | NOM | MAX  | UNIT |
| VCC | Supply voltage                 | 4.5     | 5   | 5.5 | 4.75 | 5   | 5.25 | V    |
| VIH | High-level input voltage       | 2       |     |     | 2    |     |      | V    |
| VIL | Low-level input voltage        |         |     | 0.8 |      |     | 0.8  | V    |
| IOH | High-level output current      |         |     | -1  |      |     | -1   | mA   |
| IOL | Low-level output current       |         |     | 20  |      |     | 20   | mA   |
| TA  | Operating free-air temperature | -55     |     | 125 | 0    |     | 70   | °C   |

# electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

| DADAMETED       |                        | TEST CONDITIONS          |                         | :   | SN54S04 |      | SN74S04 |      |      | UNIT |
|-----------------|------------------------|--------------------------|-------------------------|-----|---------|------|---------|------|------|------|
| PARAMETER       |                        | TEST CONDITIO            | JNSI                    | MIN | TYP‡    | MAX  | MIN     | TYP‡ | MAX  | UNIT |
| VIK             | V <sub>CC</sub> = MIN, | l <sub>l</sub> = –18 mA  |                         |     |         | -1.2 |         |      | -1.2 | V    |
| VOH             | $V_{CC} = MIN,$        | V <sub>IL</sub> = 0.8 V, | I <sub>OH</sub> = –1 mA | 2.5 | 3.4     |      | 2.7     | 3.4  |      | V    |
| VOL             | $V_{CC} = MIN,$        | V <sub>IH</sub> = 2 V,   | I <sub>OL</sub> = 20 mA |     |         | 0.5  |         |      | 0.5  | V    |
| lį              | V <sub>CC</sub> = MAX, | Vj = 5.5 V               |                         |     |         | 1    |         |      | 1    | mA   |
| ЧΗ              | V <sub>CC</sub> = MAX, | Vj = 2.7 V               |                         |     |         | 50   |         |      | 50   | μΑ   |
| Ι <sub>ΙL</sub> | V <sub>CC</sub> = MAX, | V <sub>I</sub> = 0.5 V   |                         |     |         | -2   |         |      | -2   | mA   |
| IOS§            | $V_{CC} = MAX$         |                          |                         | -40 |         | -100 | -40     |      | -100 | mA   |
| ІССН            | V <sub>CC</sub> = MAX, | V <sub>I</sub> = 0 V     |                         |     | 15      | 24   |         | 15   | 24   | mA   |
| ICCL            | V <sub>CC</sub> = MAX, | V <sub>I</sub> = 4.5 V   |                         |     | 30      | 54   |         | 30   | 54   | mA   |

<sup>†</sup> For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

<sup>‡</sup> All typical values are at V<sub>CC</sub> = 5 V,  $T_A = 25^{\circ}C$ .

§ Not more than one output should be shorted at a time and the duration of the short-circuit should not exceed one second.

## switching characteristics, $V_{CC} = 5 V$ , $T_A = 25^{\circ}C$ (see Figure 1)

| PARAMETER        |   |   | TEST CONDITIONS                       | S<br>S             | N54S04<br>N74S04 |     | UNIT |     |
|------------------|---|---|---------------------------------------|--------------------|------------------|-----|------|-----|
|                  |   |   |                                       |                    | MIN              | TYP | MAX  |     |
| <sup>t</sup> PLH | Δ | v | Ri = 280 0 Ci = 15 pF                 | =                  |                  | 3   | 4.5  | ns  |
| <sup>t</sup> PHL | ~ |   | · · · · · · · · · · · · · · · · · · · | u, o <u>L</u> iopi |                  | 3   | 5    | 115 |
| <sup>t</sup> PLH | Δ | v | Ri = 280.0 Ci = 50.pF                 | =                  |                  | 4.5 |      | ne  |
| <sup>t</sup> PHL | ~ |   |                                       |                    | 5                |     | 115  |     |



SDLS029B - DECEMBER 1983 - REVISED FEBRUARY 2002



PARAMETER MEASUREMENT INFORMATION

B. All diodes are 1N3064 or equivalent.

- C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- D. S1 and S2 are closed for tpLH, tpHL, tpHZ, and tpLZ; S1 is open and S2 is closed for tpZH; S1 is closed and S2 is open for tpZL.
- E. All input pulses are supplied by generators having the following characteristics: PRR  $\leq$  1 MHz, Z<sub>O</sub>  $\approx$  50  $\Omega$ ; t<sub>r</sub> and t<sub>f</sub>  $\leq$  7 ns for Series 54/74 devices and t<sub>r</sub> and t<sub>f</sub>  $\leq$  2.5 ns for Series 54S/74S devices.
- F. The outputs are measured one at a time with one input transition per measurement.





SDLS029B - DECEMBER 1983 - REVISED FEBRUARY 2002

#### PARAMETER MEASUREMENT INFORMATION SERIES 54LS/74LS DEVICES



- B. All diodes are 1N3064 or equivalent.
  - C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
  - D. S1 and S2 are closed for tpLH, tpHL, tpHZ, and tpLZ; S1 is open and S2 is closed for tpZH; S1 is closed and S2 is open for tpZL. E. Phase relationships between inputs and outputs have been chosen arbitrarily for these examples.
  - F. All input pulses are supplied by generators having the following characteristics: PRR  $\leq$  1 MHz, Z<sub>O</sub>  $\approx$  50  $\Omega$ , t<sub>f</sub>  $\leq$  1.5 ns, t<sub>f</sub>  $\leq$  2.6 ns.
  - G. The outputs are measured one at a time with one input transition per measurement.

#### Figure 2. Load Circuits and Voltage Waveforms



#### **IMPORTANT NOTICE**

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third–party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Mailing Address:

Texas Instruments Post Office Box 655303 Dallas, Texas 75265

Copyright © 2002, Texas Instruments Incorporated

## PIN ARRANGEMENT



## ABSOLUTE MAXIMUM RATINGS

| ltern                       | Symbol | Ratings   | Unit |
|-----------------------------|--------|-----------|------|
| Supply voltage              | Vcc    | 7.0       | v    |
| Input voltage               | Vin    | 7.0       | v    |
| Output voltage              | Vout   | 30        | v    |
| Operating temperature range | Topr   | 20 ~ +75  | °C   |
| Storage temperature range   | Tstg   | 65 ~ +150 | °C   |

### RECOMMENDED OPERATING CONDITIONS

| Item                        | Symbol | min  | typ  | max  | Unit |
|-----------------------------|--------|------|------|------|------|
| Supply voltage              | Vcc    | 4.75 | 5.00 | 5.25 | v    |
| High level output voltage   | Voh    | _    | -    | 30   | v    |
| Low level output current    | Iol    | -    | -    | 48   | mA   |
| Operating temperature range | Topr   | -20  | 25   | 75   | °C   |
## ■ ELECTRICAL CHARACTERISTICS (*Ta* = -20 ~ +75°C)

| Item                | Symbol                        |                  | <b>Test Conditions</b>     | i                 | min                                                                                                                                                                                                                                                                                                                                                                                                        | typ* | max     | Unit |
|---------------------|-------------------------------|------------------|----------------------------|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|------|
|                     | VIH                           |                  |                            |                   | 2.0                                                                                                                                                                                                                                                                                                                                                                                                        | -    | -       | v    |
| Input voltage       | VIL                           |                  |                            |                   | -                                                                                                                                                                                                                                                                                                                                                                                                          |      | max<br> | V    |
|                     |                               |                  | Ver OV                     | IOL = 24 mA       | min         typ*           2.0         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         23           -         21                                                                   | 0.4  | V       |      |
| Output voltage      | VOL                           | VCC = 4.75V,     | VIH = ZV                   | <i>Iol</i> = 48mA | -                                                                                                                                                                                                                                                                                                                                                                                                          | -    | 0.5     | V    |
| ·                   | Іін                           | $V_{CC} = 5.25V$ | $V_{I} = 2.7 V$            |                   | -                                                                                                                                                                                                                                                                                                                                                                                                          | -    | 20      | μA   |
| Input current       | III = Vcc = 5.25V,  VI = 0.4V |                  | $V_I = 0.4 V$              |                   | -                                                                                                                                                                                                                                                                                                                                                                                                          | -    | -0.4    | mA   |
|                     | II                            | Vcc = 5.25V,     | <i>VI</i> = 7V             |                   | min         typ*           2.0         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         23           -         21 | 0.1  | mA      |      |
| Output current      | Іон                           | Vcc = 4.75V,     | $V_{IL} = 0.8 \mathrm{V},$ | <i>Vон</i> = 30V  | -                                                                                                                                                                                                                                                                                                                                                                                                          | _    | 250     | μA   |
|                     | Іссн                          | Vcc = 5.25V      |                            |                   |                                                                                                                                                                                                                                                                                                                                                                                                            | 23   | 48      | mA   |
| Supply current      | ICCL                          | Vcc = 5.25V      |                            |                   | -                                                                                                                                                                                                                                                                                                                                                                                                          | 21   | 51      | mA   |
| Input clamp voltage | VIK                           | Vcc = 4.75V,     | IIN = -18 mA               |                   |                                                                                                                                                                                                                                                                                                                                                                                                            | -    | -1.5    | V    |

\*Vcc = 5V, Ta = 25°C

## **SWITCHING CHARACTERISTICS** (Vcc = 5V, $Ta = 25^{\circ}C$ )

| Item                   | Symbol | Test Conditions                      | min | typ | max | Unit |
|------------------------|--------|--------------------------------------|-----|-----|-----|------|
| Propagation delay time | tPLH   | Ct. 15-F. Pr. 1100                   | -   | 10  | 15  | ns   |
|                        | tphl.  | $CL = 15 \text{pF}, RL = 110 \Omega$ | _   | 15  | 23  | ns   |

## TESTING METHOD



Notes) 1. Input puise: PRR = 1MHz, duty cycle 50%, Zout = 50Ω, trLH≤15ns. trHL≤6ns

- 2. CL includes probe and jig capacitance.
- 3. All diodes are 1S2074(H)

#### Unit: mm



| Hitachi Code             | DP-14    |
|--------------------------|----------|
| JEDEC                    | Conforms |
| EIAJ                     | Conforms |
| Weight (reference value) | 0.97 g   |

Unit: mm



\*Dimension including the plating thickness Base material dimension

| Hitachi Code             | FP-14DA  |
|--------------------------|----------|
| JEDEC                    | _        |
| EIAJ                     | Conforms |
| Weight (reference value) | 0.23 g   |

Unit: mm



| Hitachi Code             | FP-14DN  |
|--------------------------|----------|
| JEDEC                    | Conforms |
| EIAJ                     | Conforms |
| Weight (reference value) | 0.13 g   |

\*Pd plating

## Cautions

- 1. Hitachi neither warrants nor grants licenses of any rights of Hitachi's or any third party's patent, copyright, trademark, or other intellectual property rights for information contained in this document. Hitachi bears no responsibility for problems that may arise with third party's rights, including intellectual property rights, in connection with use of the information contained in this document.
- 2. Products and product specifications may be subject to change without notice. Confirm that you have received the latest product standards or specifications before final design, purchase or use.
- 3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However, contact Hitachi's sales office before using the product in an application that demands especially high quality and reliability or where its failure or malfunction may directly threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment or medical equipment for life support.
- 4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly for maximum rating, operating supply voltage range, heat radiation characteristics, installation conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as failsafes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other consequential damage due to operation of the Hitachi product.
- 5. This product is not designed to be radiation resistant.
- 6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without written approval from Hitachi.
- 7. Contact Hitachi's sales office for any questions regarding this document or Hitachi semiconductor products.



Semiconductor & Integrated Circuits. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109 NorthAmerica URL http:semiconductor.hitachi.com/ http://www.hitachi-eu.com/hel/ecg Europe http://www.has.hitachi.com.sg/grp3/sicd/index.htm http://www.hitachi.com.tw/E/Product/SICD\_Frame.htm Asia (Singapore) Asia (Taiwan) Asia (HongKong) http://www.hitachi.com.hk/eng/bo/grp3/index.htm http://www.hitachi.co.jp/Sicd/indx.htm Japan For further information write to: Hitachi Semiconductor Hitachi Europe GmbH Hitachi Asia Pte. Ltd. (America) Inc. Electronic components Group 16 Collyer Quay #20-00 179 East Tasman Drive, Dornacher Stra§e 3 Hitachi Tower San Jose,CA 95134 D-85622 Feldkirchen, Munich Singapore 049318 Tel: <1> (408) 433-1990 Fax: <1>(408) 433-0223 Germany Tel: 535-2100 Tel: <49> (89) 9 9180-0 Fax: 535-1533 Fax: <49> (89) 9 29 30 00 Hitachi Europe Ltd.

Electronic Components Group.

Whitebrook Park

Maidenhead

Lower Cookham Road

Tel: <44> (1628) 585000 Fax: <44> (1628) 778322

Hitachi Asia Ltd. Taipei Branch Office 3F, Hung Kuo Building. No.167, Tun-Hwa North Road, Taipei (105) Tel: <886> (2) 2718-3666 Fax: <886> (2) 2718-8180 Berkshire SL6 8YA, United Kingdom

Hitachi Asia (Hong Kong) Ltd. Group III (Electronic Components) 7/F., North Tower, World Finance Centre, Harbour City, Canton Road, Tsim Sha Tsui, Kowloon, Hong Kong Tel: <852> (2) 735 9218 Fax: <852> (2) 730 0281 Telex: 40815 HITEC HX

Copyright ' Hitachi, Ltd., 1999. All rights reserved. Printed in Japan.

HITACHI



## 54LS08/DM54LS08/DM74LS08 Quad 2-Input AND Gates

#### **General Description**

#### **Features**

This device contains four independent gates each of which performs the logic AND function.

 Alternate Military/Aerospace device (54LS08) is available. Contact a National Semiconductor Sales Office/ Distributor for specifications.

## **Connection Diagram**



TL/F/6347-1 Order Number 54LS08DMQB, 54LS08FMQB, 54LS08LMQB, DM54LS08J, DM54LS08W, DM74LS08M or DM74LS08N See NS Package Number E20A, J14A, M14A, N14A or W14B

. .

## **Function Table**

©1995 National Semiconductor Corporation TL/F/6347

| Y = AB               |   |        |  |  |  |  |
|----------------------|---|--------|--|--|--|--|
| Inputs               |   | Output |  |  |  |  |
| Α                    | В | Y      |  |  |  |  |
| L                    | L | L      |  |  |  |  |
| L                    | н | L      |  |  |  |  |
| н                    | L | L      |  |  |  |  |
| Н                    | Н | Н      |  |  |  |  |
| H = High Logic Level |   |        |  |  |  |  |



RRD-B30M105/Printed in U. S. A.

54LS08/DM54LS08/DM74LS08 Quad 2-Input AND Gates

June 1989

#### Absolute Maximum Ratings (Note)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

| Supply Voltage                       | 7V              |
|--------------------------------------|-----------------|
| Input Voltage                        | 7V              |
| Operating Free Air Temperature Range |                 |
| DM54LS and 54LS                      | -55°C to +125°C |
| DM74LS                               | 0°C to +70°C    |
| Storage Temperature Range            | -65°C to +150°C |

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

## **Recommended Operating Conditions**

| Symbol          | Parameter                      | DM54LS08 |     |      |      | Unite |      |       |
|-----------------|--------------------------------|----------|-----|------|------|-------|------|-------|
| oynibol         | i arameter                     | Min      | Nom | Max  | Min  | Nom   | Max  | onito |
| V <sub>CC</sub> | Supply Voltage                 | 4.5      | 5   | 5.5  | 4.75 | 5     | 5.25 | V     |
| VIH             | High Level Input Voltage       | 2        |     |      | 2    |       |      | V     |
| VIL             | Low Level Input Voltage        |          |     | 0.7  |      |       | 0.8  | V     |
| I <sub>OH</sub> | High Level Output Current      |          |     | -0.4 |      |       | -0.4 | mA    |
| I <sub>OL</sub> | Low Level Output Current       |          |     | 4    |      |       | 8    | mA    |
| T <sub>A</sub>  | Free Air Operating Temperature | -55      |     | 125  | 0    |       | 70   | °C    |

## Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

| Symbol           | Parameter                            | Conditions                            |      | Min | Typ<br>(Note 1) | Max   | Units |
|------------------|--------------------------------------|---------------------------------------|------|-----|-----------------|-------|-------|
| VI               | Input Clamp Voltage                  | $V_{CC} = Min, I_I = -18 \text{ mA}$  |      |     |                 | -1.5  | V     |
| V <sub>OH</sub>  | High Level Output                    | $V_{CC} = Min, I_{OH} = Max,$         | DM54 | 2.5 | 3.4             |       | V     |
|                  | Voltage                              | V <sub>IH</sub> = Min                 | DM74 | 2.7 | 3.4             |       | v     |
| V <sub>OL</sub>  | Low Level Output                     | $V_{CC} = Min, I_{OL} = Max,$         | DM54 |     | 0.25            | 0.4   |       |
|                  | Voltage                              | V <sub>IL</sub> = Max                 | DM74 |     | 0.35            | 0.5   | v     |
|                  |                                      | $I_{OL} = 4 \text{ mA}, V_{CC} = Min$ | DM74 |     | 0.25            | 0.4   |       |
| lj               | Input Current @ Max<br>Input Voltage | $V_{CC} = Max, V_I = 7V$              |      |     |                 | 0.1   | mA    |
| IIH              | High Level Input Current             | $V_{CC} = Max, V_I = 2.7V$            |      |     |                 | 20    | μΑ    |
| Ι <sub>ΙL</sub>  | Low Level Input Current              | $V_{CC} = Max, V_I = 0.4V$            |      |     |                 | -0.36 | mA    |
| los              | Short Circuit                        | V <sub>CC</sub> = Max                 | DM54 | -20 |                 | -100  | m۸    |
|                  | Output Current                       | (Note 2)                              | DM74 | -20 |                 | -100  |       |
| ICCH             | Supply Current with<br>Outputs High  | V <sub>CC</sub> = Max                 |      |     | 2.4             | 4.8   | mA    |
| I <sub>CCL</sub> | Supply Current with<br>Outputs Low   | V <sub>CC</sub> = Max                 |      |     | 4.4             | 8.8   | mA    |

## Switching Characteristics at $V_{CC} = 5V$ and $T_A = 25^{\circ}C$ (See Section 1 for Test Waveforms and Output Load)

|                      |                                                                 | $R_L = 2 k\Omega$ |       |                  |       |    |  |
|----------------------|-----------------------------------------------------------------|-------------------|-------|------------------|-------|----|--|
| Symbol               | Parameter                                                       | C <sub>L</sub> =  | 15 pF | C <sub>L</sub> = | Units |    |  |
|                      |                                                                 | Min               | Max   | Min              | Max   |    |  |
| t <sub>PLH</sub>     | Propagation Delay Time<br>Low to High Level Output              | 4                 | 13    | 6                | 18    | ns |  |
| t <sub>PHL</sub>     | Propagation Delay Time<br>High to Low Level Output              | 3                 | 11    | 5                | 18    | ns |  |
| Note 1: All typicals | Note 1: All typicals are at $V_{CC} = 5V$ T <sub>A</sub> = 25°C |                   |       |                  |       |    |  |

Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.









National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.



©1995 National Semiconductor Corporation TL/F/6361

RRD-B30M105/Printed in U. S. A.

## Absolute Maximum Ratings (Note)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

| Supply Voltage                       | 7V              |
|--------------------------------------|-----------------|
| Input Voltage                        | 7V              |
| Operating Free Air Temperature Range |                 |
| DM54LS and 54LS                      | -55°C to +125°C |
| DM74LS                               | 0°C to +70°C    |
| Storage Temperature Range            | -65°C to +150°C |

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

## **Recommended Operating Conditions**

| Symbol          | Parameter                      | DM54LS32 |     |      |      | Unite |      |      |
|-----------------|--------------------------------|----------|-----|------|------|-------|------|------|
| - Cymbol        | i didiliotoi                   | Min      | Nom | Max  | Min  | Nom   | Max  | onno |
| V <sub>CC</sub> | Supply Voltage                 | 4.5      | 5   | 5.5  | 4.75 | 5     | 5.25 | V    |
| VIH             | High Level Input Voltage       | 2        |     |      | 2    |       |      | V    |
| VIL             | Low Level Input Voltage        |          |     | 0.7  |      |       | 0.8  | V    |
| I <sub>OH</sub> | High Level Output Current      |          |     | -0.4 |      |       | -0.4 | mA   |
| I <sub>OL</sub> | Low Level Output Current       |          |     | 4    |      |       | 8    | mA   |
| Τ <sub>Α</sub>  | Free Air Operating Temperature | -55      |     | 125  | 0    |       | 70   | °C   |

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

| Symbol          | Parameter                            | Conditions                                       |      | Min | Typ<br>(Note 1) | Max   | Units |
|-----------------|--------------------------------------|--------------------------------------------------|------|-----|-----------------|-------|-------|
| VI              | Input Clamp Voltage                  | $V_{CC} = Min, I_I = -18 \text{ mA}$             |      |     |                 | -1.5  | V     |
| V <sub>OH</sub> | High Level Output                    | $V_{CC} = Min, I_{OH} = Max$                     | DM54 | 2.5 | 3.4             |       | V     |
|                 | Voltage                              | $V_{IH} = Min$                                   | DM74 | 2.7 | 3.4             |       | v     |
| V <sub>OL</sub> | Low Level Output                     | V <sub>CC</sub> = Min, I <sub>OL</sub> = Max DM5 |      |     | 0.25            | 0.4   |       |
|                 | Voltage                              | V <sub>IL</sub> = Max                            | DM74 |     | 0.35            | 0.5   | v     |
|                 |                                      | $I_{OL} = 4 \text{ mA}, V_{CC} = \text{Min}$     | DM74 |     | 0.25            | 0.4   |       |
| lj –            | Input Current @ Max<br>Input Voltage | $V_{CC} = Max, V_I = 7V$                         |      |     |                 | 0.1   | mA    |
| I <sub>IH</sub> | High Level Input Current             | $V_{CC} = Max, V_I = 2.7V$                       |      |     |                 | 20    | μΑ    |
| IIL             | Low Level Input Current              | $V_{CC} = Max, V_I = 0.4V$                       |      |     |                 | -0.36 | mA    |
| IOS             | Short Circuit                        | V <sub>CC</sub> = Max                            | DM54 | -20 |                 | -100  | m۸    |
|                 | Output Current                       | (Note 2)                                         | DM74 | -20 |                 | -100  |       |
| ICCH            | Supply Current with<br>Outputs High  | V <sub>CC</sub> = Max                            |      |     | 3.1             | 6.2   | mA    |
| ICCL            | Supply Current with<br>Outputs Low   | V <sub>CC</sub> = Max                            |      |     | 4.9             | 9.8   | mA    |

#### Switching Characteristics at $V_{CC} = 5V$ and $T_A = 25^{\circ}C$ (See Section 1 for Test Waveforms and Output Load)

| Symbol                                                            | Parameter                                          | C <sub>L</sub> = 15 pF |     | C <sub>L</sub> = | Units |    |  |  |
|-------------------------------------------------------------------|----------------------------------------------------|------------------------|-----|------------------|-------|----|--|--|
|                                                                   |                                                    | Min                    | Max | Min              | Max   |    |  |  |
| t <sub>PLH</sub>                                                  | Propagation Delay Time<br>Low to High Level Output | 3                      | 11  | 4                | 15    | ns |  |  |
| t <sub>PHL</sub>                                                  | Propagation Delay Time<br>High to Low Level Output | 3                      | 11  | 4                | 15    | ns |  |  |
| Note 1: All typicals are at $V_{CC} = 5V$ , $T_A = 25^{\circ}$ C. |                                                    |                        |     |                  |       |    |  |  |

VCC. V, IA

Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.







National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications



## 54LS279/DM54LS279/DM74LS279 Quad S-R Latches

## **General Description**

The 'LS279 consists of four individual and independent Set-Reset Latches with active low inputs. Two of the four latches have an additonal  $\overline{S}$  input ANDed with the primary  $\overline{S}$  input. A low on any  $\overline{S}$  input while the  $\overline{R}$  input is high will be stored in the latch and appear on the corresponding Q output as a high. A low on the  $\overline{R}$  input while the  $\overline{S}$  input is high will clear the Q output to a low. Simultaneous transistion of the  $\overline{R}$  and  $\overline{S}$  inputs from low to high will cause the Q output

to be indeterminate. Both inputs are voltage level triggered and are not affected by transition time of the input data.

#### Features

 Alternate military/aerospace device (54LS279) is available. Contact a National Semiconductor Sales Office/ Distributor for specifications.



© 1995 National Semiconductor Corporation TL/F/6420

RRD-B30M105/Printed in U. S. A.

May 1989

## Absolute Maximum Ratings (Note)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

| Supply Voltage                       | 7V              |
|--------------------------------------|-----------------|
| Input Voltage                        | 7V              |
| Operating Free Air Temperature Range |                 |
| DM54LS and 54LS                      | -55°C to +125°C |
| DM74LS                               | 0°C to +70°C    |
| Storage Temperature Range            | -65°C to +150°C |

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

## **Recommended Operating Conditions**

| Symbol          | Parameter                      | DM54LS279 |     |      |      | Unite |      |      |
|-----------------|--------------------------------|-----------|-----|------|------|-------|------|------|
| 0,              | i arameter                     | Min       | Nom | Max  | Min  | Nom   | Max  | onno |
| V <sub>CC</sub> | Supply Voltage                 | 4.5       | 5   | 5.5  | 4.75 | 5     | 5.25 | V    |
| VIH             | High Level Input Voltage       | 2         |     |      | 2    |       |      | V    |
| VIL             | Low Level Input Voltage        |           |     | 0.7  |      |       | 0.8  | V    |
| I <sub>OH</sub> | High Level Output Current      |           |     | -0.4 |      |       | -0.4 | mA   |
| I <sub>OL</sub> | Low Level Output Current       |           |     | 4    |      |       | 8    | mA   |
| T <sub>A</sub>  | Free Air Operating Temperature | -55       |     | 125  | 0    |       | 70   | °C   |

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

| Symbol          | Parameter                            | Conditions                            | Min                                       | Typ<br>(Note 1) | Max  | Units |            |  |
|-----------------|--------------------------------------|---------------------------------------|-------------------------------------------|-----------------|------|-------|------------|--|
| VI              | Input Clamp Voltage                  | $V_{CC} = Min, I_I = -18 \text{ mA}$  | $V_{CC} = Min$ , $I_{I} = -18 \text{ mA}$ |                 |      | - 1.5 | V          |  |
| V <sub>OH</sub> | High Level Output                    | $V_{CC} = Min, I_{OH} = Max$          | DM54                                      | 2.5             | 3.5  |       | V          |  |
|                 | Voltage                              | $V_{IL} = Max, V_{IH} = Min$          | DM74                                      | 2.7             | 3.5  |       | 7 <b>`</b> |  |
| V <sub>OL</sub> | Low Level Output                     | $V_{CC} = Min, I_{OL} = Max$          | DM54                                      |                 | 0.25 | 0.4   |            |  |
|                 | Voltage                              | $V_{IL} = Max, V_{IH} = Min$          |                                           |                 | 0.35 | 0.5   | v          |  |
|                 |                                      | $I_{OL} = 4 \text{ mA}, V_{CC} = Min$ | DM74                                      |                 | 0.25 | 0.4   |            |  |
| I               | Input Current @ Max<br>Input Voltage | $V_{CC} = Max, V_1 = 7V$              |                                           |                 |      | 0.1   | mA         |  |
| I <sub>IH</sub> | High Level Input<br>Current          | $V_{CC} = Max, V_1 = 2.7V$            |                                           |                 |      | 20    | μΑ         |  |
| IIL             | Low Level Input<br>Current           | $V_{CC} = Max, V_I = 0.4V$            |                                           |                 |      | -0.4  | mA         |  |
| los             | Short Circuit                        | V <sub>CC</sub> = Max                 | DM54                                      | -20             |      | -100  | mΔ         |  |
|                 | Output Current                       | (Note 2) DM7                          |                                           | -20             |      | -100  |            |  |
| lcc             | Supply Current                       | V <sub>CC</sub> = Max (Note 3)        |                                           |                 | 3.8  | 7     | mA         |  |

Note 1: All typicals are at V\_{CC}\,=\,5V,\,T\_{A}\,=\,25^{\circ}C.

Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Note 3:  $I_{CC}$  is measured with all  $\overline{R}$  inputs grounded, all  $\overline{S}$  inputs at 4.5V and all outputs open.

|                  |                                                    | From (Input)      |                        | <b>R</b> L = | <b>2 k</b> Ω           |     |       |
|------------------|----------------------------------------------------|-------------------|------------------------|--------------|------------------------|-----|-------|
| Symbol           | Parameter                                          | To (Output)       | C <sub>L</sub> = 15 pF |              | C <sub>L</sub> = 50 pF |     | Units |
|                  |                                                    |                   | Min                    | Max          | Min                    | Max |       |
| t <sub>PLH</sub> | Propagation Delay Time<br>Low to High Level Output | <u></u> S to<br>Q |                        | 22           |                        | 25  | ns    |
| t <sub>PHL</sub> | Propagation Delay Time<br>High to Low Level Output | S to<br>Q         |                        | 15           |                        | 23  | ns    |
| t <sub>PHL</sub> | Propagation Delay Time<br>High to Low Level Output | R to<br>Q         |                        | 27           |                        | 33  | ns    |







National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications

## Features

- Compatible with MCS®-51 Products
- 4K Bytes of In-System Programmable (ISP) Flash Memory – Endurance: 1000 Write/Erase Cycles
- 4.0V to 5.5V Operating Range
- Fully Static Operation: 0 Hz to 33 MHz
- Three-level Program Memory Lock
- 128 x 8-bit Internal RAM
- 32 Programmable I/O Lines
- Two 16-bit Timer/Counters
- Six Interrupt Sources
- Full Duplex UART Serial Channel
- Low-power Idle and Power-down Modes
- Interrupt Recovery from Power-down Mode
- Watchdog Timer
- Dual Data Pointer
- Power-off Flag
- Fast Programming Time
- Flexible ISP Programming (Byte and Page Mode)

## Description

The AT89S51 is a low-power, high-performance CMOS 8-bit microcontroller with 4K bytes of In-System Programmable Flash memory. The device is manufactured using Atmel's high-density nonvolatile memory technology and is compatible with the industry-standard 80C51 instruction set and pinout. The on-chip Flash allows the program memory to be reprogrammed in-system or by a conventional nonvolatile memory programmer. By combining a versatile 8-bit CPU with In-System Programmable Flash on a monolithic chip, the Atmel AT89S51 is a powerful microcontroller which provides a highly-flexible and cost-effective solution to many embedded control applications.

The AT89S51 provides the following standard features: 4K bytes of Flash, 128 bytes of RAM, 32 I/O lines, Watchdog timer, two data pointers, two 16-bit timer/counters, a five-vector two-level interrupt architecture, a full duplex serial port, on-chip oscillator, and clock circuitry. In addition, the AT89S51 is designed with static logic for operation down to zero frequency and supports two software selectable power saving modes. The Idle Mode stops the CPU while allowing the RAM, timer/counters, serial port, and interrupt system to continue functioning. The Power-down mode saves the RAM contents but freezes the oscillator, disabling all other chip functions until the next external interrupt or hardware reset.



8-bit Microcontroller with 4K Bytes In-System Programmable Flash

# AT89S51

2487B-MICRO-12/03





## **Pin Configurations**

## PDIP

|               |    |    | 1            |
|---------------|----|----|--------------|
| P1.0 🗆        | 1  | 40 | □vcc         |
| P1.1 🗆        | 2  | 39 | D P0.0 (AD0) |
| P1.2 🗆        | 3  | 38 | DP0.1 (AD1)  |
| P1.3 🗆        | 4  | 37 | DP0.2 (AD2)  |
| P1.4 🗆        | 5  | 36 | 🗆 P0.3 (AD3) |
| (MOSI) P1.5 🗆 | 6  | 35 | 🗆 P0.4 (AD4) |
| (MISO) P1.6 🗆 | 7  | 34 | 🗆 P0.5 (AD5) |
| (SCK) P1.7 🗆  | 8  | 33 | 🗆 P0.6 (AD6) |
| RST 🗆         | 9  | 32 | 🗆 P0.7 (AD7) |
| (RXD) P3.0 🗆  | 10 | 31 | □ EA/VPP     |
| (TXD) P3.1 🗆  | 11 | 30 | ALE/PROG     |
| (INT0) P3.2 🗆 | 12 | 29 | D PSEN       |
| (INT1) P3.3 🗆 | 13 | 28 | 🗆 P2.7 (A15) |
| (T0) P3.4 🗆   | 14 | 27 | 🗆 P2.6 (A14) |
| (T1) P3.5 🗆   | 15 | 26 | 🗆 P2.5 (A13) |
| (WR) P3.6 🗆   | 16 | 25 | 🗆 P2.4 (A12) |
| (RD) P3.7 🗆   | 17 | 24 | 🗆 P2.3 (A11) |
| XTAL2         | 18 | 23 | 🗆 P2.2 (A10) |
| XTAL1 🗆       | 19 | 22 | 🗆 P2.1 (A9)  |
| GND 🗆         | 20 | 21 | 🗆 P2.0 (A8)  |
|               |    |    |              |





#### PLCC D 1.4 D 1.4 D 1.3 D 1.2 D 1.1 D 1.1 D 1.1 D 1.1 D 1.1 D 1.4 D 1.3 D 1.3 D 1.3 D 1.3 D 1.3 D 1.4 4 9 9 7 9 39 □ P0.4 (AD4) 5 4 3 0 N (MOSI) P1.5 🗆 (MISO) P1.6 28 38 🗆 P0.5 (AD5) (SCK) P1.7 37 🗆 P0.6 (AD6) 19 RST 🗆 10 36 P0.7 (AD7) 35 🗆 EA/VPP (RXD) P3.0 11 NC 12 34 🗆 NC (TXD) P3.1 13 33 ALE/PROG (INT0) P3.2 [ 14 32 🗆 PSEN (INT1) P3.3 [ 15 31 🗆 P2.7 (A15) (T0) P3.4 🗖 16 30 🗆 P2.6 (A14) (WR) P3.6 (112) (RD) P3.6 (121) XTAL2 (121) XTAL2 (121) CND (122) CND (1 (T1) P3.5 🗆

#### PDIP

|               |    |    | 1             |
|---------------|----|----|---------------|
| RST 🗆         | 1  | 42 | □ P1.7 (SCK)  |
| (RXD) P3.0    | 2  | 41 | D P1.6 (MISO) |
| (TXD) P3.1 🗆  | 3  | 40 | D P1.5 (MOSI  |
| (INT0) P3.2   | 4  | 39 | 🗆 P1.4        |
| (INT1) P3.3 🗆 | 5  | 38 | 🗆 P1.3        |
| (T0) P3.4 🗆   | 6  | 37 | 🗆 P1.2        |
| (T1) P3.5 🗆   | 7  | 36 | 🗆 P1.1        |
| (WR) P3.6 🗆   | 8  | 35 | 🗆 P1.0        |
| (RD) P3.7 🗆   | 9  | 34 |               |
| XTAL2 🗆       | 10 | 33 | D PWRVDD      |
| XTAL1 🗆       | 11 | 32 | 🗆 P0.0 (AD0)  |
| GND 🗆         | 12 | 31 | 🗆 P0.1 (AD1)  |
| PWRGND 🗆      | 13 | 30 | 🗆 P0.2 (AD2)  |
| (A8) P2.0 🗆   | 14 | 29 | 🗆 P0.3 (AD3)  |
| (A9) P2.1 🗆   | 15 | 28 | 🗆 P0.4 (AD4)  |
| (A10) P2.2 🗆  | 16 | 27 | 🗆 P0.5 (AD5)  |
| (A11) P2.3 🗆  | 17 | 26 | DP0.6 (AD6)   |
| (A12) P2.4 🗆  | 18 | 25 | DP0.7 (AD7)   |
| (A13) P2.5 🗆  | 19 | 24 | □ EA/VPP      |
| (A14) P2.6 🗆  | 20 | 23 | ALE/PROG      |
| (A15) P2.7 🗆  | 21 | 22 | D PSEN        |
|               |    |    |               |

## **Block Diagram**







## **Pin Description**

| Supply voltage (all packages except 42-PDIP).                                                                                                                                                                                                                                                                                                                             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ground (all packages except 42-PDIP; for 42-PDIP GND connects only the logic core and the embedded program memory).                                                                                                                                                                                                                                                       |
| Supply voltage for the 42-PDIP which connects only the logic core and the embedded program memory.                                                                                                                                                                                                                                                                        |
| Supply voltage for the 42-PDIP which connects only the I/O Pad Drivers. The application board <b>MUST</b> connect both VDD and PWRVDD to the board supply voltage.                                                                                                                                                                                                        |
| Ground for the 42-PDIP which connects only the I/O Pad Drivers. PWRGND and GND are weakly connected through the common silicon substrate, but not through any metal link. The application board <b>MUST</b> connect both GND and PWRGND to the board ground.                                                                                                              |
| Port 0 is an 8-bit open drain bi-directional I/O port. As an output port, each pin can sink eight TTL inputs. When 1s are written to port 0 pins, the pins can be used as high-impedance inputs.                                                                                                                                                                          |
| Port 0 can also be configured to be the multiplexed low-order address/data bus during accesses to external program and data memory. In this mode, P0 has internal pull-ups.                                                                                                                                                                                               |
| Port 0 also receives the code bytes during Flash programming and outputs the code bytes during program verification. <b>External pull-ups are required during program verification</b> .                                                                                                                                                                                  |
| Port 1 is an 8-bit bi-directional I/O port with internal pull-ups. The Port 1 output buffers can sink/source four TTL inputs. When 1s are written to Port 1 pins, they are pulled high by the internal pull-ups and can be used as inputs. As inputs, Port 1 pins that are externally being pulled low will source current ( $I_{IL}$ ) because of the internal pull-ups. |
| Port 1 also receives the low-order address bytes during Flash programming and verification.                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                           |

| Port Pin | Alternate Functions                   |
|----------|---------------------------------------|
| P1.5     | MOSI (used for In-System Programming) |
| P1.6     | MISO (used for In-System Programming) |
| P1.7     | SCK (used for In-System Programming)  |

**Port 2** Port 2 is an 8-bit bi-directional I/O port with internal pull-ups. The Port 2 output buffers can sink/source four TTL inputs. When 1s are written to Port 2 pins, they are pulled high by the internal pull-ups and can be used as inputs. As inputs, Port 2 pins that are externally being pulled low will source current ( $I_{II}$ ) because of the internal pull-ups.

Port 2 emits the high-order address byte during fetches from external program memory and during accesses to external data memory that use 16-bit addresses (MOVX @ DPTR). In this application, Port 2 uses strong internal pull-ups when emitting 1s. During accesses to external data memory that use 8-bit addresses (MOVX @ RI), Port 2 emits the contents of the P2 Special Function Register.

Port 2 also receives the high-order address bits and some control signals during Flash programming and verification.

# AT89S51

Port 3

Port 3 is an 8-bit bi-directional I/O port with internal pull-ups. The Port 3 output buffers can sink/source four TTL inputs. When 1s are written to Port 3 pins, they are pulled high by the internal pull-ups and can be used as inputs. As inputs, Port 3 pins that are externally being pulled low will source current ( $I_{II}$ ) because of the pull-ups.

Port 3 receives some control signals for Flash programming and verification.

Port 3 also serves the functions of various special features of the AT89S51, as shown in the following table.

| Port Pin | Alternate Functions                    |
|----------|----------------------------------------|
| P3.0     | RXD (serial input port)                |
| P3.1     | TXD (serial output port)               |
| P3.2     | INT0 (external interrupt 0)            |
| P3.3     | INT1 (external interrupt 1)            |
| P3.4     | T0 (timer 0 external input)            |
| P3.5     | T1 (timer 1 external input)            |
| P3.6     | WR (external data memory write strobe) |
| P3.7     | RD (external data memory read strobe)  |

**RST** Reset input. A high on this pin for two machine cycles while the oscillator is running resets the device. This pin drives High for 98 oscillator periods after the Watchdog times out. The DISRTO bit in SFR AUXR (address 8EH) can be used to disable this feature. In the default state of bit DISRTO, the RESET HIGH out feature is enabled.

ALE/PROG Address Latch Enable (ALE) is an output pulse for latching the low byte of the address during accesses to external memory. This pin is also the program pulse input (PROG) during Flash programming.

In normal operation, ALE is emitted at a constant rate of 1/6 the oscillator frequency and may be used for external timing or clocking purposes. Note, however, that one ALE pulse is skipped during each access to external data memory.

If desired, ALE operation can be disabled by setting bit 0 of SFR location 8EH. With the bit set, ALE is active only during a MOVX or MOVC instruction. Otherwise, the pin is weakly pulled high. Setting the ALE-disable bit has no effect if the microcontroller is in external execution mode.

**PSEN** Program Store Enable (PSEN) is the read strobe to external program memory.

When the AT89S51 is executing code from external program memory, PSEN is activated twice each machine cycle, except that two PSEN activations are skipped during each access to external data memory.

**EA/VPP** External Access Enable. EA must be strapped to GND in order to enable the device to fetch code from external program memory locations starting at 0000H up to FFFFH. Note, however, that if lock bit 1 is programmed, EA will be internally latched on reset.

 $\overline{EA}$  should be strapped to V<sub>CC</sub> for internal program executions.

This pin also receives the 12-volt programming enable voltage ( $V_{PP}$ ) during Flash programming.

**XTAL1** Input to the inverting oscillator amplifier and input to the internal clock operating circuit.

XTAL2 Output from the inverting oscillator amplifier





# Special<br/>FunctionA map of the on-chip memory area called the Special Function Register (SFR) space is shown<br/>in Table 1.RegistersNote that not all of the addresses are occupied, and unoccupied addresses may not be imple-<br/>mented on the chip. Read accesses to these addresses will in general return random data,<br/>and write accesses will have an indeterminate effect.

| 0F8H |                  |                  |                   |                  |                  |                  |                    |                  | 0FFH |
|------|------------------|------------------|-------------------|------------------|------------------|------------------|--------------------|------------------|------|
| 0F0H | B<br>00000000    |                  |                   |                  |                  |                  |                    |                  | 0F7H |
| 0E8H |                  |                  |                   |                  |                  |                  |                    |                  | 0EFH |
| 0E0H | ACC<br>00000000  |                  |                   |                  |                  |                  |                    |                  | 0E7H |
| 0D8H |                  |                  |                   |                  |                  |                  |                    |                  | 0DFH |
| 0D0H | PSW<br>00000000  |                  |                   |                  |                  |                  |                    |                  | 0D7H |
| 0C8H |                  |                  |                   |                  |                  |                  |                    |                  | 0CFH |
| 0C0H |                  |                  |                   |                  |                  |                  |                    |                  | 0C7H |
| 0B8H | IP<br>XX000000   |                  |                   |                  |                  |                  |                    |                  | 0BFH |
| 0B0H | P3<br>11111111   |                  |                   |                  |                  |                  |                    |                  | 0B7H |
| 0A8H | IE<br>0X000000   |                  |                   |                  |                  |                  |                    |                  | 0AFH |
| 0A0H | P2<br>11111111   |                  | AUXR1<br>XXXXXXX0 |                  |                  |                  | WDTRST<br>XXXXXXXX |                  | 0A7H |
| 98H  | SCON<br>00000000 | SBUF<br>XXXXXXXX |                   |                  |                  |                  |                    |                  | 9FH  |
| 90H  | P1<br>11111111   |                  |                   |                  |                  |                  |                    |                  | 97H  |
| 88H  | TCON<br>00000000 | TMOD<br>00000000 | TL0<br>00000000   | TL1<br>00000000  | TH0<br>00000000  | TH1<br>00000000  | AUXR<br>XXX00XX0   |                  | 8FH  |
| 80H  | P0<br>11111111   | SP<br>00000111   | DP0L<br>00000000  | DP0H<br>00000000 | DP1L<br>00000000 | DP1H<br>00000000 |                    | PCON<br>0XXX0000 | 87H  |

Table 1. AT89S51 SFR Map and Reset Values

6

AT89S51

User software should not write 1s to these unlisted locations, since they may be used in future products to invoke new features. In that case, the reset or inactive values of the new bits will always be 0.

**Interrupt Registers:** The individual interrupt enable bits are in the IE register. Two priorities can be set for each of the five interrupt sources in the IP register.

| AUXR    | Address = 8EH Reset Value = XXX00XX0B          |                                                                     |          |              |        |   |   |        |
|---------|------------------------------------------------|---------------------------------------------------------------------|----------|--------------|--------|---|---|--------|
| Not Bit | t Addressable                                  |                                                                     |          |              |        |   |   |        |
|         | _                                              | -                                                                   | I        | WDIDLE       | DISRTO | - | _ | DISALE |
| Bit     | 7                                              | 6                                                                   | 5        | 4            | 3      | 2 | 1 | 0      |
|         | Rese                                           | ved for                                                             | future e | expansion    |        |   |   |        |
| DISALE  | DISAD                                          |                                                                     |          |              |        |   |   |        |
|         | Operating Mode                                 |                                                                     |          |              |        |   |   |        |
|         | 0                                              | 0 ALE is emitted at a constant rate of 1/6 the oscillator frequency |          |              |        |   |   |        |
|         | 1                                              | 1 ALE is active only during a MOVX or MOVC instruction              |          |              |        |   |   |        |
| DISRTO  | Disable/Enable Reset-out                       |                                                                     |          |              |        |   |   |        |
|         | DISR                                           | ТО                                                                  |          |              |        |   |   |        |
|         | 0 Reset pin is driven High after WDT times out |                                                                     |          |              |        |   |   |        |
|         | 1 Reset pin is input only                      |                                                                     |          |              |        |   |   |        |
| WDIDLE  | Disable/Enable WDT in IDLE mode                |                                                                     |          |              |        |   |   |        |
| WDIDLE  |                                                |                                                                     |          |              |        |   |   |        |
| 0       | WDT continues to count in IDLE mode            |                                                                     |          |              |        |   |   |        |
| 1       | WD.                                            | T halts                                                             | counting | g in IDLE mo | ode    |   |   |        |

Table 2. AUXR: Auxiliary Register

**Dual Data Pointer Registers:** To facilitate accessing both internal and external data memory, two banks of 16-bit Data Pointer Registers are provided: DP0 at SFR address locations 82H-83H and DP1 at 84H-85H. Bit DPS = 0 in SFR AUXR1 selects DP0 and DPS = 1 selects DP1. The user should **ALWAYS** initialize the DPS bit to the appropriate value before accessing the respective Data Pointer Register.





**Power Off Flag:** The Power Off Flag (POF) is located at bit 4 (PCON.4) in the PCON SFR. POF is set to "1" during power up. It can be set and rest under software control and is not affected by reset.

Table 3. AUXR1: Auxiliary Register 1

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | AUXR1                                                                                                                                                                                                       | Addr                                                                                    | ess = A2H                                                                                      |                                                                                                |                                                                                                                                                                                      |                                                                                                     |                                                                                                        | Reset V                                                                                              | alue = XXXXXX                                                                                                                 | X0B                                                         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Not E                                                                                                                                                                                                       | it Addres                                                                               | sable                                                                                          |                                                                                                |                                                                                                                                                                                      |                                                                                                     |                                                                                                        |                                                                                                      |                                                                                                                               |                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                             | _                                                                                       | _                                                                                              | -                                                                                              | _                                                                                                                                                                                    | -                                                                                                   | _                                                                                                      | _                                                                                                    | DPS                                                                                                                           | ]                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Bit                                                                                                                                                                                                         | 7                                                                                       | 6                                                                                              | 5                                                                                              | 4                                                                                                                                                                                    | 3                                                                                                   | 2                                                                                                      | 1                                                                                                    | 0                                                                                                                             |                                                             |
| Memory<br>Organization                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | –<br>DPS<br>MCS-51 d<br>bytes each                                                                                                                                                                          | Reserv<br>Data Po<br>DPS<br>0<br>1<br>evices h                                          | red for futu<br>binter Reg<br>Selec<br>Selec<br>nave a se<br>rnal Prog                         | ire expans<br>ister Selec<br>cts DPTR<br>cts DPTR<br>eparate a<br>iram and                     | sion<br>ct<br>Registers<br>Registers<br>ddress s<br>Data Me                                                                                                                          | DP0L, DF<br>DP1L, DF<br>pace for<br>mory can                                                        | юн<br>ин<br>Program<br>be addre                                                                        | and Data                                                                                             | Memory. Up to                                                                                                                 | o 64K                                                       |
| U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                             |                                                                                         |                                                                                                |                                                                                                |                                                                                                                                                                                      |                                                                                                     |                                                                                                        |                                                                                                      |                                                                                                                               |                                                             |
| Program Memory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | If the EA p                                                                                                                                                                                                 | oin is cor                                                                              | nnected to                                                                                     | o GND, a                                                                                       | II program                                                                                                                                                                           | n fetches                                                                                           | are direc                                                                                              | ted to exte                                                                                          | rnal memory.                                                                                                                  |                                                             |
| Data Memory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | On the AT89S51, if EA is connected to V <sub>CC</sub> , program fetches to addresses 0000H th FFFH are directed to internal memory and fetches to addresses 1000H through FFFF directed to external memory. |                                                                                         |                                                                                                |                                                                                                |                                                                                                                                                                                      | ses 0000H thr<br>through FFFF<br>accessible via o                                                   | ough<br>-l are<br>direct                                                                               |                                                                                                      |                                                                                                                               |                                                             |
| and indirect addressing modes. Stack operations are examples of indirect add 128 bytes of data RAM are available as stack space.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                             |                                                                                         |                                                                                                |                                                                                                | addressing, s                                                                                                                                                                        | o the                                                                                               |                                                                                                        |                                                                                                      |                                                                                                                               |                                                             |
| Watchdog<br>Timer<br>(One-time<br>Enabled with<br>Reset-out)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | The WDT<br>software<br>(WDTRST<br>user must<br>When the<br>The WDT<br>able the V<br>WDT over                                                                                                                | is intend<br>upsets.<br>) SFR.<br>write 01<br>WDT is<br>timeout<br>VDT exc<br>flows, it | ded as a i<br>The WD<br>The WDT<br>EH and<br>enabled,<br>period is<br>cept throu<br>will drive | recovery<br>T consis<br>is defau<br>0E1H in<br>it will incu<br>depende<br>ugh rese<br>an outpu | method i<br>ats of a 1<br>ulted to d<br>sequence<br>rement ev<br>nt on the<br>t (either<br>ut RESET                                                                                  | n situatio<br>4-bit cou<br>isable frc<br>e to the V<br>very mack<br>external<br>hardward<br>HIGH pu | ns where<br>unter and<br>om exiting<br>VDTRST<br>hine cycle<br>clock frec<br>e reset of<br>ulse at the | the CPU r<br>the Watc<br>reset. To<br>register (S<br>while the<br>quency. The<br>WDT ove<br>RST pin. | nay be subject<br>hdog Timer R<br>enable the WI<br>FR location 04<br>oscillator is run<br>ere is no way to<br>rflow reset). V | ed to<br>teset<br>OT, a<br>\6H).<br>ning.<br>o dis-<br>Vhen |
| <b>Jsing the WDT</b> To enable the WDT, a user must write 01EH and 0E1H in sequence to the WDT (SFR location 0A6H). When the WDT is enabled, the user needs to service it by and 0E1H to WDTRST to avoid a WDT overflow. The 14-bit counter overflows wh 16383 (3FFFH), and this will reset the device. When the WDT is enabled, it we very machine cycle while the oscillator is running. This means the user must write 01I to WDTRST. WDTRST is a write-only register. The WDT counter cannot be rewhen WDT overflows, it will generate an output RESET pulse at the RST pin pulse duration is 98xTOSC, where TOSC = 1/FOSC. To make the best use of should be serviced in those sections of code that will periodically be executed we required to prevent a WDT reset. |                                                                                                                                                                                                             |                                                                                         |                                                                                                |                                                                                                | e WDTRST reg<br>e it by writing (<br>ows when it rea<br>ed, it will incre<br>nust reset the<br>ite 01EH and (<br>be read or wr<br>ST pin. The RE<br>use of the WI<br>uted within the | gister<br>)1EH<br>Iches<br>ment<br>WDT<br>)E1H<br>itten.<br>SET<br>OT, it<br>e time                 |                                                                                                        |                                                                                                      |                                                                                                                               |                                                             |

# AT89S51

## WDT During In Power-down mode the oscillator stops, which means the WDT also stops. While in Powerdown mode, the user does not need to service the WDT. There are two methods of exiting **Power-down** Power-down mode: by a hardware reset or via a level-activated external interrupt, which is and Idle enabled prior to entering Power-down mode. When Power-down is exited with hardware reset, servicing the WDT should occur as it normally does whenever the AT89S51 is reset. Exiting Power-down with an interrupt is significantly different. The interrupt is held low long enough for the oscillator to stabilize. When the interrupt is brought high, the interrupt is serviced. To prevent the WDT from resetting the device while the interrupt pin is held low, the WDT is not started until the interrupt is pulled high. It is suggested that the WDT be reset during the interrupt service for the interrupt used to exit Power-down mode. To ensure that the WDT does not overflow within a few states of exiting Power-down, it is best to reset the WDT just before entering Power-down mode. Before going into the IDLE mode, the WDIDLE bit in SFR AUXR is used to determine whether the WDT continues to count if enabled. The WDT keeps counting during IDLE (WDIDLE bit = 0) as the default state. To prevent the WDT from resetting the AT89S51 while in IDLE mode, the user should always set up a timer that will periodically exit IDLE, service the WDT, and reenter IDLE mode. With WDIDLE bit enabled, the WDT will stop to count in IDLE mode and resumes the count upon exit from IDLE. UART The UART in the AT89S51 operates the same way as the UART in the AT89C51. For further information on the UART operation, refer to the Atmel Web site (http://www.atmel.com). From the home page, select "Products", then "Microcontrollers", then "8051-Architecture", then "Documentation", and "Other Documents". Open the Adobe® Acrobat® file "AT89 Series Hardware Description". Timer 0 and 1 Timer 0 and Timer 1 in the AT89S51 operate the same way as Timer 0 and Timer 1 in the AT89C51. For further information on the timers' operation, refer to the Atmel Web site (http://www.atmel.com). From the home page, select "Products", then "Microcontrollers", then "8051-Architecture", then "Documentation", and "Other Documents". Open the Adobe Acrobat file "AT89 Series Hardware Description". Interrupts The AT89S51 has a total of five interrupt vectors: two external interrupts (INT0 and INT1), two timer interrupts (Timers 0 and 1), and the serial port interrupt. These interrupts are all shown in Figure 1. Each of these interrupt sources can be individually enabled or disabled by setting or clearing a bit in Special Function Register IE. IE also contains a global disable bit, EA, which disables all interrupts at once. Note that Table 4 shows that bit positions IE.6 and IE.5 are unimplemented. User software should not write 1s to these bit positions, since they may be used in future AT89 products. The Timer 0 and Timer 1 flags, TF0 and TF1, are set at S5P2 of the cycle in which the timers

AIMEL

overflow. The values are then polled by the circuitry in the next cycle.



## Table 4. Interrupt Enable (IE) Register

| (N | ISB)                                  |   |   |    | (LSB) |     |     |     |
|----|---------------------------------------|---|---|----|-------|-----|-----|-----|
|    | EA                                    | - | _ | ES | ET1   | EX1 | ET0 | EX0 |
| E  | Enable Bit = 1 enables the interrupt. |   |   |    |       |     |     |     |

Enable Bit = 0 disables the interrupt.

| Symbol                                                                                                  | Position | Function                                                                                                                                                                                     |  |  |  |
|---------------------------------------------------------------------------------------------------------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| EA                                                                                                      | IE.7     | Disables all interrupts. If $EA = 0$ , no interrupt is<br>acknowledged. If $EA = 1$ , each interrupt source is<br>individually enabled or disabled by setting or clearing<br>its enable bit. |  |  |  |
| -                                                                                                       | IE.6     | Reserved                                                                                                                                                                                     |  |  |  |
| -                                                                                                       | IE.5     | Reserved                                                                                                                                                                                     |  |  |  |
| ES                                                                                                      | IE.4     | Serial Port interrupt enable bit                                                                                                                                                             |  |  |  |
| ET1                                                                                                     | IE.3     | Timer 1 interrupt enable bit                                                                                                                                                                 |  |  |  |
| EX1                                                                                                     | IE.2     | External interrupt 1 enable bit                                                                                                                                                              |  |  |  |
| ET0                                                                                                     | IE.1     | Timer 0 interrupt enable bit                                                                                                                                                                 |  |  |  |
| EX0                                                                                                     | IE.0     | External interrupt 0 enable bit                                                                                                                                                              |  |  |  |
| User software should never write 1s to reserved bits, because they may be used in future AT89 products. |          |                                                                                                                                                                                              |  |  |  |

## Figure 1. Interrupt Sources



10

## Oscillator Characteristics

XTAL1 and XTAL2 are the input and output, respectively, of an inverting amplifier that can be configured for use as an on-chip oscillator, as shown in Figure 2. Either a quartz crystal or ceramic resonator may be used. To drive the device from an external clock source, XTAL2 should be left unconnected while XTAL1 is driven, as shown in Figure 3. There are no requirements on the duty cycle of the external clock signal, since the input to the internal clocking circuitry is through a divide-by-two flip-flop, but minimum and maximum voltage high and low time specifications must be observed.

Figure 2. Oscillator Connections



Note: C1, C2 =  $30 \text{ pF} \pm 10 \text{ pF}$  for Crystals =  $40 \text{ pF} \pm 10 \text{ pF}$  for Ceramic Resonators

Figure 3. External Clock Drive Configuration



Idle Mode In idle mode, the CPU puts itself to sleep while all the on-chip peripherals remain active. The mode is invoked by software. The content of the on-chip RAM and all the special function registers remain unchanged during this mode. The idle mode can be terminated by any enabled interrupt or by a hardware reset.

Note that when idle mode is terminated by a hardware reset, the device normally resumes program execution from where it left off, up to two machine cycles before the internal reset algorithm takes control. On-chip hardware inhibits access to internal RAM in this event, but access to the port pins is not inhibited. To eliminate the possibility of an unexpected write to a port pin when idle mode is terminated by a reset, the instruction following the one that invokes idle mode should not write to a port pin or to external memory.

#### **Power-down Mode** In the Power-down mode, the oscillator is stopped, and the instruction that invokes Powerdown is the last instruction executed. The on-chip RAM and Special Function Registers retain their values until the Power-down mode is terminated. Exit from Power-down mode can be initiated either by a hardware reset or by activation of an enabled external interrupt (INT0 or INT1). Reset redefines the SFRs but does not change the on-chip RAM. The reset should not be activated before V<sub>CC</sub> is restored to its normal operating level and must be held active long enough to allow the oscillator to restart and stabilize.





| Mode       | Program Memory | ALE | PSEN | PORT0 | PORT1 | PORT2   | PORT3 |
|------------|----------------|-----|------|-------|-------|---------|-------|
| Idle       | Internal       | 1   | 1    | Data  | Data  | Data    | Data  |
| ldle       | External       | 1   | 1    | Float | Data  | Address | Data  |
| Power-down | Internal       | 0   | 0    | Data  | Data  | Data    | Data  |
| Power-down | External       | 0   | 0    | Float | Data  | Data    | Data  |

## Program Memory Lock Bits

The AT89S51 has three lock bits that can be left unprogrammed (U) or can be programmed (P) to obtain the additional features listed in the following table.

|  | Table 6. | Lock Bit P | rotection | Modes |
|--|----------|------------|-----------|-------|
|--|----------|------------|-----------|-------|

| Program Lock Bits |     |     |     |                                                                                                                                                                                                                              |
|-------------------|-----|-----|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                   | LB1 | LB2 | LB3 | Protection Type                                                                                                                                                                                                              |
| 1                 | U   | U   | U   | No program lock features                                                                                                                                                                                                     |
| 2                 | Р   | U   | U   | MOVC instructions executed from external program memory are disabled from fetching code bytes from internal memory, $\overline{EA}$ is sampled and latched on reset, and further programming of the Flash memory is disabled |
| 3                 | Р   | Р   | U   | Same as mode 2, but verify is also disabled                                                                                                                                                                                  |
| 4                 | Р   | Р   | Р   | Same as mode 3, but external execution is also disabled                                                                                                                                                                      |

When lock bit 1 is programmed, the logic level at the  $\overline{EA}$  pin is sampled and latched during reset. If the device is powered up without a reset, the latch initializes to a random value and holds that value until reset is activated. The latched value of  $\overline{EA}$  must agree with the current logic level at that pin in order for the device to function properly.

## Programming the Flash – Parallel Mode

The AT89S51 is shipped with the on-chip Flash memory array ready to be programmed. The programming interface needs a high-voltage (12-volt) program enable signal and is compatible with conventional third-party Flash or EPROM programmers.

The AT89S51 code memory array is programmed byte-by-byte.

**Programming Algorithm:** Before programming the AT89S51, the address, data, and control signals should be set up according to the Flash Programming Modes table (Table 7) and Figures 4 and 5. To program the AT89S51, take the following steps:

- 1. Input the desired memory location on the address lines.
- 2. Input the appropriate data byte on the data lines.
- 3. Activate the correct combination of control signals.
- 4. Raise  $\overline{EA}/V_{PP}$  to 12V.
- 5. Pulse ALE/PROG once to program a byte in the Flash array or the lock bits. The bytewrite cycle is self-timed and typically takes no more than 50 µs. Repeat steps 1 through 5, changing the address and data for the entire array or until the end of the object file is reached.

**Data Polling:** The AT89S51 features Data Polling to indicate the end of a byte write cycle. During a write cycle, an attempted read of the last byte written will result in the complement of the written data on P0.7. Once the write cycle has been completed, true data is valid on all outputs, and the next cycle may begin. Data Polling may begin any time after a write cycle has been initiated.

# AT89S51

**Ready/Busy:** The progress of byte programming can also be monitored by the RDY/BSY output signal. P3.0 is pulled low after ALE goes high during programming to indicate BUSY. P3.0 is pulled high again when programming is done to indicate READY.

**Program Verify:** If lock bits LB1 and LB2 have not been programmed, the programmed code data can be read back via the address and data lines for verification. **The status of the individual lock bits can be verified directly by reading them back.** 

**Reading the Signature Bytes:** The signature bytes are read by the same procedure as a normal verification of locations 000H, 100H, and 200H, except that P3.6 and P3.7 must be pulled to a logic low. The values returned are as follows.

(000H) = 1EH indicates manufactured by Atmel (100H) = 51H indicates AT89S51 (200H) = 06H

**Chip Erase:** In the parallel programming mode, a chip erase operation is initiated by using the proper combination of control signals and by pulsing ALE/PROG low for a duration of 200 ns - 500 ns.

In the serial programming mode, a chip erase operation is initiated by issuing the Chip Erase instruction. In this mode, chip erase is self-timed and takes about 500 ms.

During chip erase, a serial read from any address location will return 00H at the data output.

**Programming the Flash** – **Serial Mode Serial Mode** The Code memory array can be programmed using the serial ISP interface while RST is pulled to V<sub>cc</sub>. The serial interface consists of pins SCK, MOSI (input) and MISO (output). After RST is set high, the Programming Enable instruction needs to be executed first before other operations can be executed. Before a reprogramming sequence can occur, a Chip Erase operation is required.

The Chip Erase operation turns the content of every memory location in the Code array into FFH.

Either an external system clock can be supplied at pin XTAL1 or a crystal needs to be connected across pins XTAL1 and XTAL2. The maximum serial clock (SCK) frequency should be less than 1/16 of the crystal frequency. With a 33 MHz oscillator clock, the maximum SCK frequency is 2 MHz.

To program and verify the AT89S51 in the serial programming mode, the following sequence is recommended:

1. Power-up sequence:

Apply power between VCC and GND pins.

Set RST pin to "H".

If a crystal is not connected across pins XTAL1 and XTAL2, apply a 3 MHz to 33 MHz clock to XTAL1 pin and wait for at least 10 milliseconds.

- 2. Enable serial programming by sending the Programming Enable serial instruction to pin MOSI/P1.5. The frequency of the shift clock supplied at pin SCK/P1.7 needs to be less than the CPU clock at XTAL1 divided by 16.
- 3. The Code array is programmed one byte at a time in either the Byte or Page mode. The write cycle is self-timed and typically takes less than 0.5 ms at 5V.
- 4. Any memory location can be verified by using the Read instruction that returns the content at the selected address at serial output MISO/P1.6.
- 5. At the end of a programming session, RST can be set low to commence normal device operation.



Serial

Programming Algorithm


| Power-off sequence (if needed):            |    |
|--------------------------------------------|----|
| Set XTAL1 to "L" (if a crystal is not used | ). |

Set RST to "L".

Turn V<sub>CC</sub> power off.

**Data Polling:** The Data Polling feature is also available in the serial mode. In this mode, during a write cycle an attempted read of the last byte written will result in the complement of the MSB of the serial output byte on MISO.

The Instruction Set for Serial Programming follows a 4-byte protocol and is shown in Table 8.

## Programming Instruction Set

Serial

# Programming<br/>Interface –<br/>Parallel ModeEvery code byte in the Flash array can be programmed by using the appropriate combination<br/>of control signals. The write operation cycle is self-timed and once initiated, will automatically<br/>time itself to completion.<br/>Most major worldwide programming vendors offer worldwide support for the Atmel AT89

Most major worldwide programming vendors offer worldwide support for the Atmel AT89 microcontroller series. Please contact your local programming vendor for the appropriate software revision.

|                           |                 |     |      | ALE/ | EA/             |      |      |      |      |      | P0.7-0                 | P2.3-0 | P1.7-0 |
|---------------------------|-----------------|-----|------|------|-----------------|------|------|------|------|------|------------------------|--------|--------|
| Mode                      | V <sub>cc</sub> | RST | PSEN | PROG | V <sub>PP</sub> | P2.6 | P2.7 | P3.3 | P3.6 | P3.7 | Data                   | Add    | ress   |
| Write Code Data           | 5V              | н   | L    | (2)  | 12V             | L    | н    | н    | н    | н    | D <sub>IN</sub>        | A11-8  | A7-0   |
| Read Code Data            | 5V              | н   | L    | Н    | Н               | L    | L    | L    | н    | н    | D <sub>OUT</sub>       | A11-8  | A7-0   |
| Write Lock Bit 1          | 5V              | н   | L    | (3)  | 12V             | Н    | н    | н    | н    | Н    | х                      | х      | х      |
| Write Lock Bit 2          | 5V              | н   | L    | (3)  | 12V             | н    | Н    | н    | L    | L    | х                      | х      | х      |
| Write Lock Bit 3          | 5V              | н   | L    | (3)  | 12V             | Н    | L    | Н    | н    | L    | х                      | х      | х      |
| Read Lock Bits<br>1, 2, 3 | 5V              | н   | L    | Н    | Н               | н    | н    | L    | н    | L    | P0.2,<br>P0.3,<br>P0.4 | х      | х      |
| Chip Erase                | 5V              | н   | L    | (1)  | 12V             | Н    | L    | Н    | L    | L    | х                      | х      | х      |
| Read Atmel ID             | 5V              | н   | L    | Н    | Н               | L    | L    | L    | L    | L    | 1EH                    | 0000   | 00H    |
| Read Device ID            | 5V              | Н   | L    | Н    | Н               | L    | L    | L    | L    | L    | 51H                    | 0001   | 00H    |
| Read Device ID            | 5V              | Н   | L    | Н    | Н               | L    | L    | L    | L    | L    | 06H                    | 0010   | 00H    |

 Table 7.
 Flash Programming Modes

Notes: 1. Each PROG pulse is 200 ns - 500 ns for Chip Erase.

2. Each PROG pulse is 200 ns - 500 ns for Write Code Data.

3. Each PROG pulse is 200 ns - 500 ns for Write Lock Bits.

4. RDY/BSY signal is output on P3.0 during programming.

5. X = don't care.



Figure 4. Programming the Flash Memory (Parallel Mode)

Figure 5. Verifying the Flash Memory (Parallel Mode)







# Flash Programming and Verification Characteristics (Parallel Mode)

 $T_{\rm A}$  = 20°C to 30°C,  $V_{\rm CC}$  = 4.5 to 5.5V

| Symbol              | Parameter                         | Min                 | Max                 | Units |
|---------------------|-----------------------------------|---------------------|---------------------|-------|
| V <sub>PP</sub>     | Programming Supply Voltage        | 11.5                | 12.5                | V     |
| I <sub>PP</sub>     | Programming Supply Current        |                     | 10                  | mA    |
| I <sub>CC</sub>     | V <sub>CC</sub> Supply Current    |                     | 30                  | mA    |
| 1/t <sub>CLCL</sub> | Oscillator Frequency              | 3                   | 33                  | MHz   |
| t <sub>AVGL</sub>   | Address Setup to PROG Low         | 48t <sub>CLCL</sub> |                     |       |
| t <sub>GHAX</sub>   | Address Hold After PROG           | 48t <sub>CLCL</sub> |                     |       |
| t <sub>DVGL</sub>   | Data Setup to PROG Low            | 48t <sub>CLCL</sub> |                     |       |
| t <sub>GHDX</sub>   | Data Hold After PROG              | 48t <sub>CLCL</sub> |                     |       |
| t <sub>EHSH</sub>   | P2.7 (ENABLE) High to $V_{PP}$    | 48t <sub>CLCL</sub> |                     |       |
| t <sub>SHGL</sub>   | V <sub>PP</sub> Setup to PROG Low | 10                  |                     | μs    |
| t <sub>GHSL</sub>   | V <sub>PP</sub> Hold After PROG   | 10                  |                     | μs    |
| t <sub>GLGH</sub>   | PROG Width                        | 0.2                 | 1                   | μs    |
| t <sub>AVQV</sub>   | Address to Data Valid             |                     | 48t <sub>CLCL</sub> |       |
| t <sub>ELQV</sub>   | ENABLE Low to Data Valid          |                     | 48t <sub>CLCL</sub> |       |
| t <sub>EHQZ</sub>   | Data Float After ENABLE           | 0                   | 48t <sub>CLCL</sub> |       |
| t <sub>GHBL</sub>   | PROG High to BUSY Low             |                     | 1.0                 | μs    |
| t <sub>wc</sub>     | Byte Write Cycle Time             |                     | 50                  | μs    |

## Figure 6. Flash Programming and Verification Waveforms – Parallel Mode



16

Figure 7. Flash Memory Serial Downloading



# Flash Programming and Verification Waveforms – Serial Mode



Figure 8. Serial Programming Waveforms





## Table 8. Serial Programming Instruction Set

|                                     | Instruction<br>Format |                                                                                  |                                 |                                                                                              |                                                                                             |
|-------------------------------------|-----------------------|----------------------------------------------------------------------------------|---------------------------------|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| Instruction                         | Byte 1                | Byte 2                                                                           | Byte 3                          | Byte 4                                                                                       | Operation                                                                                   |
| Programming Enable                  | 1010 1100             | 0101 0011                                                                        | XXXX XXXX                       | xxxx xxxx<br>0110 1001<br>(Output on<br>MISO)                                                | Enable Serial Programming while RST is high                                                 |
| Chip Erase                          | 1010 1100             | 100x xxxx                                                                        | XXXX XXXX                       | XXXX XXXX                                                                                    | Chip Erase Flash memory array                                                               |
| Read Program Memory<br>(Byte Mode)  | 0010 0000             | A11<br>A11<br>8900<br>800<br>800<br>800<br>800<br>800<br>800<br>800<br>800<br>80 | 4444 4464<br>4564 4564          |                                                                                              | Read data from Program memory in the byte mode                                              |
| Write Program Memory<br>(Byte Mode) | 0100 0000             | AA<br>AA411<br>XXXX 2000                                                         | 4444 4464<br>7473 44567<br>0123 | 0000 0000                                                                                    | Write data to Program memory in the byte mode                                               |
| Write Lock Bits <sup>(1)</sup>      | 1010 1100             | 1110 00듑協                                                                        | xxxx xxxx                       | xxxx xxxx                                                                                    | Write Lock bits. See Note (1).                                                              |
| Read Lock Bits                      | 0010 0100             | XXXX XXXX                                                                        | XXXX XXXX                       | XX EB2<br>B12<br>XXX EB2<br>B12<br>B12<br>B12<br>B12<br>B12<br>B12<br>B12<br>B12<br>B12<br>B | Read back current status of<br>the lock bits (a programmed<br>lock bit reads back as a "1") |
| Read Signature Bytes                | 0010 1000             | A411<br>A400<br>A800<br>A                                                        | ⊱ xxx xxx0                      | Signature Byte                                                                               | Read Signature Byte                                                                         |
| Read Program Memory<br>(Page Mode)  | 0011 0000             | Add Add XXXX                                                                     | Byte 0                          | Byte 1<br>Byte 255                                                                           | Read data from Program<br>memory in the Page Mode<br>(256 bytes)                            |
| Write Program Memory<br>(Page Mode) | 0101 0000             | A400<br>A101<br>XXXX                                                             | Byte 0                          | Byte 1<br>Byte 255                                                                           | Write data to Program<br>memory in the Page Mode<br>(256 bytes)                             |

Note:

 B1 = 0, B2 = 0 → Mode 1, no lock protection B1 = 0, B2 = 1 → Mode 2, lock bit 1 activated B1 = 1, B2 = 0 → Mode 3, lock bit 2 activated

B1 = 1, B2 = 1  $\rightarrow$  Mode 4, lock bit 3 activated

 $\underline{Each}$  of the lock bit modes need to be activated sequentially before Mode 4 can be executed.

After Reset signal is high, SCK should be low for at least 64 system clocks before it goes high to clock in the enable data bytes. No pulsing of Reset signal is necessary. SCK should be no faster than 1/16 of the system clock at XTAL1.

For Page Read/Write, the data always starts from byte 0 to 255. After the command byte and upper address byte are latched, each byte thereafter is treated as data until all 256 bytes are shifted in/out. Then the next instruction will be ready to be decoded.

# Serial Programming Characteristics

Figure 9. Serial Programming Timing



| Table 9. | Serial Programming Characteristics | , Τ <sub>4</sub> | $= -40^{\circ}$ C to $85^{\circ}$ C, V <sub>CC</sub> $= 4.0 - 5.5$ V | (Unless Otherwise Noted) |
|----------|------------------------------------|------------------|----------------------------------------------------------------------|--------------------------|
|----------|------------------------------------|------------------|----------------------------------------------------------------------|--------------------------|

| Symbol              | Parameter                         | Min                 | Тур | Мах                        | Units |
|---------------------|-----------------------------------|---------------------|-----|----------------------------|-------|
| 1/t <sub>CLCL</sub> | Oscillator Frequency              | 3                   |     | 33                         | MHz   |
| t <sub>CLCL</sub>   | Oscillator Period                 | 30                  |     |                            | ns    |
| t <sub>SHSL</sub>   | SCK Pulse Width High              | 8 t <sub>CLCL</sub> |     |                            | ns    |
| t <sub>SLSH</sub>   | SCK Pulse Width Low               | 8 t <sub>CLCL</sub> |     |                            | ns    |
| t <sub>OVSH</sub>   | MOSI Setup to SCK High            | t <sub>CLCL</sub>   |     |                            | ns    |
| t <sub>SHOX</sub>   | MOSI Hold after SCK High          | 2 t <sub>CLCL</sub> |     |                            | ns    |
| t <sub>SLIV</sub>   | SCK Low to MISO Valid             | 10                  | 16  | 32                         | ns    |
| t <sub>ERASE</sub>  | Chip Erase Instruction Cycle Time |                     |     | 500                        | ms    |
| t <sub>SWC</sub>    | Serial Byte Write Cycle Time      |                     |     | 64 t <sub>CLCL</sub> + 400 | μs    |





# **Absolute Maximum Ratings\***

| Operating Temperature55°C to +125°C                       |  |
|-----------------------------------------------------------|--|
| Storage Temperature                                       |  |
| Voltage on Any Pin<br>with Respect to Ground1.0V to +7.0V |  |
| Maximum Operating Voltage 6.6V                            |  |
| DC Output Current 15.0 mA                                 |  |

\*NOTICE: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

# **DC Characteristics**

The values shown in this table are valid for  $T_A = -40^{\circ}$ C to 85°C and  $V_{CC} = 4.0$ V to 5.5V, unless otherwise noted.

| Symbol           | Parameter                                                | Condition                                | Min                      | Max                      | Units |
|------------------|----------------------------------------------------------|------------------------------------------|--------------------------|--------------------------|-------|
| V <sub>IL</sub>  | Input Low Voltage                                        | (Except EA)                              | -0.5                     | 0.2 V <sub>CC</sub> -0.1 | V     |
| V <sub>IL1</sub> | Input Low Voltage (EA)                                   |                                          | -0.5                     | 0.2 V <sub>CC</sub> -0.3 | V     |
| V <sub>IH</sub>  | Input High Voltage                                       | (Except XTAL1, RST)                      | 0.2 V <sub>CC</sub> +0.9 | V <sub>CC</sub> +0.5     | V     |
| V <sub>IH1</sub> | Input High Voltage                                       | (XTAL1, RST)                             | 0.7 V <sub>CC</sub>      | V <sub>CC</sub> +0.5     | V     |
| V <sub>OL</sub>  | Output Low Voltage <sup>(1)</sup> (Ports 1,2,3)          | I <sub>OL</sub> = 1.6 mA                 |                          | 0.45                     | V     |
| V <sub>OL1</sub> | Output Low Voltage <sup>(1)</sup><br>(Port 0, ALE, PSEN) | I <sub>OL</sub> = 3.2 mA                 |                          | 0.45                     | V     |
|                  |                                                          | $I_{OH}$ = -60 µA, $V_{CC}$ = 5V ±10%    | 2.4                      |                          | V     |
| V <sub>OH</sub>  | Output High Voltage<br>(Ports 1,2,3, ALE, PSEN)          | I <sub>OH</sub> = -25 μA                 | 0.75 V <sub>CC</sub>     |                          | V     |
|                  |                                                          | I <sub>OH</sub> = -10 μA                 | 0.9 V <sub>CC</sub>      |                          | V     |
|                  |                                                          | $I_{OH}$ = -800 µA, $V_{CC}$ = 5V ±10%   | 2.4                      |                          | V     |
| V <sub>OH1</sub> | Output High Voltage<br>(Port 0 in External Bus Mode)     | I <sub>OH</sub> = -300 μA                | 0.75 V <sub>CC</sub>     |                          | V     |
|                  |                                                          | I <sub>OH</sub> = -80 μA                 | 0.9 V <sub>CC</sub>      |                          | V     |
| I <sub>IL</sub>  | Logical 0 Input Current (Ports 1,2,3)                    | V <sub>IN</sub> = 0.45V                  |                          | -50                      | μA    |
| I <sub>TL</sub>  | Logical 1 to 0 Transition Current<br>(Ports 1,2,3)       | $V_{IN} = 2V, V_{CC} = 5V \pm 10\%$      |                          | -650                     | μA    |
| ILI              | Input Leakage Current (Port 0, $\overline{EA}$ )         | 0.45 < V <sub>IN</sub> < V <sub>CC</sub> |                          | ±10                      | μA    |
| RRST             | Reset Pulldown Resistor                                  |                                          | 50                       | 300                      | KΩ    |
| C <sub>IO</sub>  | Pin Capacitance                                          | Test Freq. = 1 MHz, $T_A = 25^{\circ}C$  |                          | 10                       | pF    |
|                  | Power Supply Current                                     | Active Mode, 12 MHz                      |                          | 25                       | mA    |
| I <sub>CC</sub>  |                                                          | ldle Mode, 12 MHz                        |                          | 6.5                      | mA    |
|                  | Power-down Mode <sup>(2)</sup>                           | $V_{CC} = 5.5 V$                         |                          | 50                       | μA    |

Notes: 1. Under steady state (non-transient) conditions,  $I_{OL}$  must be externally limited as follows: Maximum  $I_{OL}$  per port pin: 10 mA Maximum  $I_{OL}$  per 8-bit port:

Port 0: 26 mA Ports 1, 2, 3: 15 mA

Maximum total  $I_{OL}$  for all output pins: 71 mA

If  $I_{OL}$  exceeds the test condition,  $V_{OL}$  may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test conditions.

2. Minimum  $V_{CC}$  for Power-down is 2V.

# **AC Characteristics**

Under operating conditions, load capacitance for Port 0, ALE/ $\overline{PROG}$ , and  $\overline{PSEN} = 100 \text{ pF}$ ; load capacitance for all other outputs = 80 pF.

# **External Program and Data Memory Characteristics**

|                     |                                                     | 12 MHz | Oscillator | Variable                |                         |       |
|---------------------|-----------------------------------------------------|--------|------------|-------------------------|-------------------------|-------|
| Symbol              | Parameter                                           | Min    | Max        | Min                     | Мах                     | Units |
| 1/t <sub>CLCL</sub> | Oscillator Frequency                                |        |            | 0                       | 33                      | MHz   |
| t <sub>LHLL</sub>   | ALE Pulse Width                                     | 127    |            | 2t <sub>CLCL</sub> -40  |                         | ns    |
| t <sub>AVLL</sub>   | Address Valid to ALE Low                            | 43     |            | t <sub>CLCL</sub> -25   |                         | ns    |
| t <sub>LLAX</sub>   | Address Hold After ALE Low                          | 48     |            | t <sub>CLCL</sub> -25   |                         | ns    |
| t <sub>LLIV</sub>   | ALE Low to Valid Instruction In                     |        | 233        |                         | 4t <sub>CLCL</sub> -65  | ns    |
| t <sub>LLPL</sub>   | ALE Low to PSEN Low                                 | 43     |            | t <sub>CLCL</sub> -25   |                         | ns    |
| t <sub>PLPH</sub>   | PSEN Pulse Width                                    | 205    |            | 3t <sub>CLCL</sub> -45  |                         | ns    |
| t <sub>PLIV</sub>   | PSEN Low to Valid Instruction In                    |        | 145        |                         | 3t <sub>CLCL</sub> -60  | ns    |
| t <sub>PXIX</sub>   | Input Instruction Hold After PSEN                   | 0      |            | 0                       |                         | ns    |
| t <sub>PXIZ</sub>   | Input Instruction Float After PSEN                  |        | 59         |                         | t <sub>CLCL</sub> -25   | ns    |
| t <sub>PXAV</sub>   | PSEN to Address Valid                               | 75     |            | t <sub>CLCL</sub> -8    |                         | ns    |
| t <sub>AVIV</sub>   | Address to Valid Instruction In                     |        | 312        |                         | 5t <sub>CLCL</sub> -80  | ns    |
| t <sub>PLAZ</sub>   | PSEN Low to Address Float                           |        | 10         |                         | 10                      | ns    |
| t <sub>RLRH</sub>   | RD Pulse Width                                      | 400    |            | 6t <sub>CLCL</sub> -100 |                         | ns    |
| t <sub>wLWH</sub>   | WR Pulse Width                                      | 400    |            | 6t <sub>CLCL</sub> -100 |                         | ns    |
| t <sub>RLDV</sub>   | RD Low to Valid Data In                             |        | 252        |                         | 5t <sub>CLCL</sub> -90  | ns    |
| t <sub>RHDX</sub>   | Data Hold After RD                                  | 0      |            | 0                       |                         | ns    |
| t <sub>RHDZ</sub>   | Data Float After RD                                 |        | 97         |                         | 2t <sub>CLCL</sub> -28  | ns    |
| t <sub>LLDV</sub>   | ALE Low to Valid Data In                            |        | 517        |                         | 8t <sub>CLCL</sub> -150 | ns    |
| t <sub>AVDV</sub>   | Address to Valid Data In                            |        | 585        |                         | 9t <sub>CLCL</sub> -165 | ns    |
| t <sub>LLWL</sub>   | ALE Low to $\overline{RD}$ or $\overline{WR}$ Low   | 200    | 300        | 3t <sub>CLCL</sub> -50  | 3t <sub>CLCL</sub> +50  | ns    |
| t <sub>AVWL</sub>   | Address to RD or WR Low                             | 203    |            | 4t <sub>CLCL</sub> -75  |                         | ns    |
| t <sub>QVWX</sub>   | Data Valid to WR Transition                         | 23     |            | t <sub>CLCL</sub> -30   |                         | ns    |
| t <sub>QVWH</sub>   | Data Valid to WR High                               | 433    |            | 7t <sub>CLCL</sub> -130 |                         | ns    |
| t <sub>WHQX</sub>   | Data Hold After WR                                  | 33     |            | t <sub>CLCL</sub> -25   |                         | ns    |
| t <sub>RLAZ</sub>   | RD Low to Address Float                             |        | 0          |                         | 0                       | ns    |
| t <sub>WHLH</sub>   | $\overline{RD}$ or $\overline{WR}$ High to ALE High | 43     | 123        | t <sub>CLCL</sub> -25   | t <sub>CLCL</sub> +25   | ns    |





# **External Program Memory Read Cycle**



# **External Data Memory Read Cycle**



22

# **External Data Memory Write Cycle**



# **External Clock Drive Waveforms**



# **External Clock Drive**

| Symbol              | Parameter            | Parameter Min |    | Units |  |
|---------------------|----------------------|---------------|----|-------|--|
| 1/t <sub>CLCL</sub> | Oscillator Frequency | 0             | 33 | MHz   |  |
| t <sub>CLCL</sub>   | Clock Period         | 30            |    | ns    |  |
| t <sub>CHCX</sub>   | High Time            | 12            |    | ns    |  |
| t <sub>CLCX</sub>   | Low Time             | 12            |    | ns    |  |
| t <sub>CLCH</sub>   | Rise Time            |               | 5  | ns    |  |
| t <sub>CHCL</sub>   | Fall Time            |               | 5  | ns    |  |





# Serial Port Timing: Shift Register Mode Test Conditions

The values in this table are valid for  $V_{CC}$  = 4.0V to 5.5V and Load Capacitance = 80 pF.

|                   |                                          | 12 MHz Osc |     | Variable C               |                          |       |
|-------------------|------------------------------------------|------------|-----|--------------------------|--------------------------|-------|
| Symbol            | Parameter                                | Min        | Мах | Min                      | Max                      | Units |
| t <sub>XLXL</sub> | Serial Port Clock Cycle Time             | 1.0        |     | 12t <sub>CLCL</sub>      |                          | μs    |
| t <sub>QVXH</sub> | Output Data Setup to Clock Rising Edge   | 700        |     | 10t <sub>CLCL</sub> -133 |                          | ns    |
| t <sub>xHQX</sub> | Output Data Hold After Clock Rising Edge | 50         |     | 2t <sub>CLCL</sub> -80   |                          | ns    |
| t <sub>XHDX</sub> | Input Data Hold After Clock Rising Edge  | 0          |     | 0                        |                          | ns    |
| t <sub>XHDV</sub> | Clock Rising Edge to Input Data Valid    |            | 700 |                          | 10t <sub>CLCL</sub> -133 | ns    |

## Shift Register Mode Timing Waveforms



# AC Testing Input/Output Waveforms<sup>(1)</sup>



Note: 1. AC Inputs during testing are driven at V<sub>CC</sub> - 0.5V for a logic 1 and 0.45V for a logic 0. Timing measurements are made at V<sub>IH</sub> min. for a logic 1 and V<sub>IL</sub> max. for a logic 0.

# Float Waveforms<sup>(1)</sup>



Note: 1. For timing purposes, a port pin is no longer floating when a 100 mV change from load voltage occurs. A port pin begins to float when a 100 mV change from the loaded V<sub>OH</sub>/V<sub>OL</sub> level occurs.

| Speed<br>(MHz) | Power<br>Supply | Ordering Code | Package | Operation Range   |
|----------------|-----------------|---------------|---------|-------------------|
| 24             | 4.0V to 5.5V    | AT89S51-24AC  | 44A     | Commercial        |
|                |                 | AT89S51-24JC  | 44J     | (0° C to 70° C)   |
|                |                 | AT89S51-24PC  | 40P6    |                   |
|                |                 | AT89S51-24SC  | 42PS6   |                   |
|                |                 | AT89S51-24AI  | 44A     | Industrial        |
|                |                 | AT89S51-24JI  | 44J     | (-40° C to 85° C) |
|                |                 | AT89S51-24PI  | 40P6    |                   |
|                |                 | AT89S51-24SI  | 42PS6   |                   |
| 33             | 4.5V to 5.5V    | AT89S51-33AC  | 44A     | Commercial        |
|                |                 | AT89S51-33JC  | 44J     | (0° C to 70° C)   |
|                |                 | AT89S51-33PC  | 40P6    |                   |
|                |                 | AT89S51-33SC  | 42PS6   |                   |

# **Ordering Information**

|       | Package Type                                            |  |  |  |  |  |
|-------|---------------------------------------------------------|--|--|--|--|--|
| 44A   | 44-lead, Thin Plastic Gull Wing Quad Flatpack (TQFP)    |  |  |  |  |  |
| 44J   | 44-lead, Plastic J-leaded Chip Carrier (PLCC)           |  |  |  |  |  |
| 40P6  | 40-pin, 0.600" Wide, Plastic Dual Inline Package (PDIP) |  |  |  |  |  |
| 42PS6 | 42-pin, 0.600" Wide, Plastic Dual Inline Package (PDIP) |  |  |  |  |  |





# **Packaging Information**

## 44A – TQFP



AT89S51

## 44J – PLCC







## 40P6 - PDIP



28

AT89S51

## 42PS6 - PDIP







## **Atmel Corporation**

2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 487-2600

## **Regional Headquarters**

## Europe

Atmel Sarl Route des Arsenaux 41 Case Postale 80 CH-1705 Fribourg Switzerland Tel: (41) 26-426-5555 Fax: (41) 26-426-5500

## Asia

Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimshatsui East Kowloon Hong Kong Tel: (852) 2721-9778 Fax: (852) 2722-1369

## Japan

9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan Tel: (81) 3-3523-3551 Fax: (81) 3-3523-7581

## **Atmel Operations**

Memory

2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 436-4314

## Microcontrollers

2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 436-4314

La Chantrerie BP 70602 44306 Nantes Cedex 3, France Tel: (33) 2-40-18-18-18 Fax: (33) 2-40-18-19-60

## ASIC/ASSP/Smart Cards

Zone Industrielle 13106 Rousset Cedex, France Tel: (33) 4-42-53-60-00 Fax: (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906, USA Tel: 1(719) 576-3300 Fax: 1(719) 540-1759

Scottish Enterprise Technology Park Maxwell Building East Kilbride G75 0QR, Scotland Tel: (44) 1355-803-000 Fax: (44) 1355-242-743

#### **RF**/Automotive

Theresienstrasse 2 Postfach 3535 74025 Heilbronn, Germany Tel: (49) 71-31-67-0 Fax: (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906, USA Tel: 1(719) 576-3300 Fax: 1(719) 540-1759

## Biometrics/Imaging/Hi-Rel MPU/

High Speed Converters/RF Datacom Avenue de Rochepleine BP 123 38521 Saint-Egreve Cedex, France Tel: (33) 4-76-58-30-00 Fax: (33) 4-76-58-34-80

*Literature Requests* www.atmel.com/literature

**Disclaimer:** Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company's standard warranty which is detailed in Atmel's Terms and Conditions located on the Company's web site. The Company assumes no responsibility for any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel's products are not authorized for use as critical components in life support devices or systems.

© Atmel Corporation 2003. All rights reserved. Atmel<sup>®</sup> and combinations thereof are the registered trademarks of Atmel Corporation or its subsidiaries. MCS<sup>®</sup> is a registered trademark of Intel Corporation. Adobe<sup>®</sup> and Acrobat<sup>®</sup> are the registered trademarks of Adobe Systems Inc. Other terms and product names may be the trademarks of others.





# LM555/LM555C Timer

## **General Description**

The LM555 is a highly stable device for generating accurate time delays or oscillation. Additional terminals are provided for triggering or resetting if desired. In the time delay mode of operation, the time is precisely controlled by one external resistor and capacitor. For astable operation as an oscillator, the free running frequency and duty cycle are accurately controlled with two external resistors and one capacitor. The circuit may be triggered and reset on falling waveforms, and the output circuit can source or sink up to 200 mA or drive TTL circuits.

#### Features

- Direct replacement for SE555/NE555
- Timing from microseconds through hours
- Operates in both astable and monostable modes

- Adjustable duty cycle
- Output can source or sink 200 mA
- Output and supply TTL compatible
- Temperature stability better than 0.005% per °C
- Normally on and normally off output

## **Applications**

- Precision timing
- Pulse generation
- Sequential timing
- Time delay generation
- Pulse width modulation
- Pulse position modulation
- Linear ramp generator



©1995 National Semiconductor Corporation TL/H/7851

RRD-B30M115/Printed in U. S. A.

LM555/LM555C Timer

February 1995

| Absolute Maximum F              | latings               |                                     |                                     |
|---------------------------------|-----------------------|-------------------------------------|-------------------------------------|
| If Military/Aerospace specified | devices are required, | Storage Temperature Range           | $-65^{\circ}$ C to $+150^{\circ}$ C |
| please contact the National     | Semiconductor Sales   | Soldering Information               |                                     |
|                                 | y and specifications. | Dual-In-Line Package                |                                     |
| Supply Voltage                  | + 18V                 | Soldering (10 Seconds)              | 260°C                               |
| Power Dissipation (Note 1)      |                       | Small Outline Package               |                                     |
| LM555H. LM555CH                 | 760 mW                | Vapor Phase (60 Seconds)            | 215°C                               |
| LM555, LM555CN                  | 1180 mW               | Infrared (15 Seconds)               | 220°C                               |
| Operating Temperature Ranges    |                       | See AN-450 "Surface Mounting M      | lethods and Their Effect            |
| LM555C                          | 0°C to +70°C          | on Product Reliability" for other m | ethods of soldering sur-            |
| LM555                           | -55°C to + 125°C      | face mount devices.                 |                                     |

| Ε | lectrica |  | haracteristics ( | $T_A = 25^{\circ}C$ , $V_{CC} = +5V$ to $+15V$ , unless othewise s | pecified) |
|---|----------|--|------------------|--------------------------------------------------------------------|-----------|
|---|----------|--|------------------|--------------------------------------------------------------------|-----------|

|                                                                                                                          |                                                                                                                  |             |                          | Lin         | nits     |                       |         |                         |
|--------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-------------|--------------------------|-------------|----------|-----------------------|---------|-------------------------|
| Parameter                                                                                                                | Conditions                                                                                                       |             | LM555                    |             |          | LM555C                |         | Units                   |
|                                                                                                                          |                                                                                                                  | Min         | Тур                      | Мах         | Min      | Тур                   | Мах     |                         |
| Supply Voltage                                                                                                           |                                                                                                                  | 4.5         |                          | 18          | 4.5      |                       | 16      | V                       |
| Supply Current                                                                                                           | $V_{CC} = 5V, R_L = \infty$ $V_{CC} = 15V, R_L = \infty$ (Low State) (Note 2)                                    |             | 3<br>10                  | 5<br>12     |          | 3<br>10               | 6<br>15 | mA<br>mA                |
| Timing Error, Monostable<br>Initial Accuracy<br>Drift with Temperature<br>Accuracy over Temperature<br>Drift with Supply | $\label{eq:RA} \begin{split} R_{A} &= 1k \ to \ 100 \ k\Omega, \\ C &= 0.1 \ \muF, \ (Note 3) \end{split}$       |             | 0.5<br>30<br>1.5<br>0.05 |             |          | 1<br>50<br>1.5<br>0.1 |         | %<br>ppm/°C<br>%<br>%/V |
| Timing Error, Astable<br>Initial Accuracy<br>Drift with Temperature                                                      | $\label{eq:RA} \begin{split} R_A, R_B &= 1k \text{ to } 100  k\Omega, \\ C &= 0.1 \; \muF, (Note 3) \end{split}$ |             | 1.5<br>90                |             |          | 2.25<br>150           |         | %<br>ppm/°C             |
| Accuracy over Temperature<br>Drift with Supply                                                                           |                                                                                                                  |             | 2.5<br>0.15              |             |          | 0.30                  |         | %<br>%/V                |
| Threshold Voltage                                                                                                        |                                                                                                                  |             | 0.667                    |             |          | 0.667                 |         | x V <sub>CC</sub>       |
| Trigger Voltage                                                                                                          | $V_{CC} = 15V$ $V_{CC} = 5V$                                                                                     | 4.8<br>1.45 | 5<br>1.67                | 5.2<br>1.9  |          | 5<br>1.67             |         | V<br>V                  |
| Trigger Current                                                                                                          |                                                                                                                  |             | 0.01                     | 0.5         |          | 0.5                   | 0.9     | μΑ                      |
| Reset Voltage                                                                                                            |                                                                                                                  | 0.4         | 0.5                      | 1           | 0.4      | 0.5                   | 1       | V                       |
| Reset Current                                                                                                            |                                                                                                                  |             | 0.1                      | 0.4         |          | 0.1                   | 0.4     | mA                      |
| Threshold Current                                                                                                        | (Note 4)                                                                                                         |             | 0.1                      | 0.25        |          | 0.1                   | 0.25    | μΑ                      |
| Control Voltage Level                                                                                                    | $V_{CC} = 15V$<br>$V_{CC} = 5V$                                                                                  | 9.6<br>2.9  | 10<br>3.33               | 10.4<br>3.8 | 9<br>2.6 | 10<br>3.33            | 11<br>4 | V<br>V                  |
| Pin 7 Leakage Output High                                                                                                |                                                                                                                  |             | 1                        | 100         |          | 1                     | 100     | nA                      |
| Pin 7 Sat (Note 5)<br>Output Low<br>Output Low                                                                           | $V_{CC} = 15V, I_7 = 15 \text{ mA}$<br>$V_{CC} = 4.5V, I_7 = 4.5 \text{ mA}$                                     |             | 150<br>70                | 100         |          | 180<br>80             | 200     | mV<br>mV                |

|                            |                                                                   |       |      | Li   | mits   |      |      |       |
|----------------------------|-------------------------------------------------------------------|-------|------|------|--------|------|------|-------|
| Parameter                  | Conditions                                                        | LM555 |      |      | LM555C |      |      | Units |
|                            |                                                                   | Min   | Тур  | Max  | Min    | Тур  | Max  |       |
| Output Voltage Drop (Low)  | $V_{CC} = 15V$                                                    |       |      |      |        |      |      |       |
| ,                          | $I_{SINK} = 10 \text{ mA}$                                        |       | 0.1  | 0.15 |        | 0.1  | 0.25 | V     |
|                            | $I_{SINK} = 50 \text{ mA}$                                        |       | 0.4  | 0.5  |        | 0.4  | 0.75 | V     |
|                            | $I_{SINK} = 100 \text{ mA}$                                       |       | 2    | 2.2  |        | 2    | 2.5  | V     |
|                            | $I_{SINK} = 200 \text{ mA}$                                       |       | 2.5  |      |        | 2.5  |      | V     |
|                            | $V_{CC} = 5V$                                                     |       |      |      |        |      |      |       |
|                            | $I_{SINK} = 8 \text{ mA}$                                         |       | 0.1  | 0.25 |        |      |      | V     |
|                            | $I_{SINK} = 5 \text{ mA}$                                         |       |      |      |        | 0.25 | 0.35 | V     |
| Output Voltage Drop (High) | $I_{\text{SOUBCE}} = 200 \text{ mA}, V_{\text{CC}} = 15 \text{V}$ |       | 12.5 |      |        | 12.5 |      | V     |
|                            | $I_{SOURCE} = 100 \text{ mA}, V_{CC} = 15V$                       | 13    | 13.3 |      | 12.75  | 13.3 |      | V     |
|                            | $V_{CC} = 5V$                                                     | 3     | 3.3  |      | 2.75   | 3.3  |      | V     |
| Rise Time of Output        |                                                                   |       | 100  |      |        | 100  |      | ns    |
| Fall Time of Output        |                                                                   |       | 100  |      |        | 100  |      | ns    |

Note 1: For operating at elevated temperatures the device must be derated above 25°C based on a +150°C maximum junction temperature and a thermal resistance of 164°c/w (T0-5), 106°c/w (DIP) and 170°c/w (S0-8) junction to ambient.

Note 2: Supply current when output high typically 1 mA less at V\_{CC} = 5V.

Note 3: Tested at  $V_{CC}\,=\,5V$  and  $V_{CC}\,=\,15V.$ 

Note 4: This will determine the maximum value of R<sub>A</sub> + R<sub>B</sub> for 15V operation. The maximum total (R<sub>A</sub> + R<sub>B</sub>) is 20 M $\Omega$ .

Note 5: No protection against excessive pin 7 current is necessary providing the package dissipation rating will not be exceeded.

Note 6: Refer to RETS555X drawing of military LM555H and LM555J versions for specifications.

## **Connection Diagrams**



TL/H/7851-2

Top View Order Number LM555H or LM555CH See NS Package Number H08C



TL/H/7851-3

Order Number LM555J, LM555CJ, LM555CM or LM555CN See NS Package Number J08A, M08A or N08E

**Top View** 



## **Applications Information**

#### MONOSTABLE OPERATION

In this mode of operation, the timer functions as a one-shot (*Figure 1*). The external capacitor is initially held discharged by a transistor inside the timer. Upon application of a negative trigger pulse of less than 1/3 V<sub>CC</sub> to pin 2, the flip-flop is set which both releases the short circuit across the capacitor and drives the output high.



FIGURE 1. Monostable

The voltage across the capacitor then increases exponentially for a period of t = 1.1 R<sub>A</sub> C, at the end of which time the voltage equals 2/3 V<sub>CC</sub>. The comparator then resets the flip-flop which in turn discharges the capacitor and drives the output to its low state. *Figure 2* shows the waveforms generated in this mode of operation. Since the charge and the threshold level of the comparator are both directly proportional to supply voltage, the timing internal is independent of supply.





Top Trace: Input 5V/Div. Middle Trace: Output 5V/Div. Bottom Trace: Capacitor Voltage 2V/Div.

TL/H/7851-6

#### FIGURE 2. Monostable Waveforms

During the timing cycle when the output is high, the further application of a trigger pulse will not effect the circuit so long as the trigger input is returned high at least 10  $\mu$ s before the end of the timing interval. However the circuit can be reset during this time by the application of a negative pulse to the reset terminal (pin 4). The output will then remain in the low state until a trigger pulse is again applied.

When the reset function is not in use, it is recommended that it be connected to  $\mathsf{V}_{CC}$  to avoid any possibility of false triggering.

*Figure 3* is a nomograph for easy determination of R, C values for various time delays.

**NOTE:** In monostable operation, the trigger should be driven high before the end of timing cycle.



#### FIGURE 3. Time Delay

#### ASTABLE OPERATION

If the circuit is connected as shown in *Figure 4* (pins 2 and 6 connected) it will trigger itself and free run as a multivibrator. The external capacitor charges through  $R_A + R_B$  and discharges through  $R_B$ . Thus the duty cycle may be precisely set by the ratio of these two resistors.



#### FIGURE 4. Astable

In this mode of operation, the capacitor charges and discharges between 1/3  $V_{CC}$  and 2/3  $V_{CC}$ . As in the triggered mode, the charge and discharge times, and therefore the frequency are independent of the supply voltage.



#### PULSE POSITION MODULATOR

This application uses the timer connected for astable operation, as in *Figure 10*, with a modulating signal again applied to the control voltage terminal. The pulse position varies with the modulating signal, since the threshold voltage and hence the time delay is varied. *Figure 11* shows the waveforms generated for a triangle wave modulation signal.



#### LINEAR RAMP

When the pullup resistor,  $\mathsf{R}_\mathsf{A},$  in the monostable circuit is replaced by a constant current source, a linear ramp is generated. *Figure 12* shows a circuit configuration that will perform this function.



Figure 13 shows waveforms generated by the linear ramp. The time interval is given by:

$$T = \frac{2/3 V_{CC} R_E (R_1 + R_2) C}{R_1 V_{CC} - V_{BE} (R_1 + R_2)}$$
$$V_{BE} \approx 0.6V$$



#### FIGURE 13. Linear Ramp

#### **50% DUTY CYCLE OSCILLATOR**

For a 50% duty cycle, the resistors  ${\sf R}_{\sf A}$  and  ${\sf R}_{\sf B}$  may be connected as in Figure 14. The time period for the out-



 $1/2 R_A$  because the junction of  $R_A$  and  $R_B$  cannot bring pin

associated circuitry. Minimum recommended is 0.1  $\mu F$  in

when pin 2 is driven fully to ground for triggering. This limits







National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.



## 54LS74/DM54LS74A/DM74LS74A Dual Positive-Edge-Triggered D Flip-Flops with Preset, Clear and Complementary Outputs

#### **General Description**

This device contains two independent positive-edge-triggered D flip-flops with complementary outputs. The information on the D input is accepted by the flip-flops on the positive going edge of the clock pulse. The triggering occurs at a voltage level and is not directly related to the transition time of the rising edge of the clock. The data on the D input may be changed while the clock is low or high without affecting the outputs as long as the data setup and hold times are not violated. A low logic level on the preset or clear inputs will set or reset the outputs regardless of the logic levels of the other inputs.

#### Features

 Alternate military/aerospace device (54LS74) is available. Contact a National Semiconductor Sales Office/ Distributor for specifications.

## **Connection Diagram**



Order Number 54LS74DMQB, 54LS74FMQB, 54LS74LMQB, DM54LS74AJ, DM54LS74AW, DM74LS74AM or DM74LS74AN See NS Package Number E20A, J14A, M14A, N14A or W14B

## **Function Table**

|    | Inpu | Out | outs |                |                  |
|----|------|-----|------|----------------|------------------|
| PR | CLR  | CLK | D    | Q              | Q                |
| L  | Н    | х   | x    | н              | L                |
| н  | L    | Х   | X    | L              | Н                |
| L  | L    | Х   | X    | H*             | H*               |
| н  | н    | 1   | н    | н              | L                |
| н  | н    | 1   | L    | L              | Н                |
| н  | Н    | L   | X    | Q <sub>0</sub> | $\overline{Q}_0$ |

H = High Logic Level

X = Either Low or High Logic Level

L = Low Logic Level

↑ = Positive-going Transition

= This configuration is nonstable; that is, it will not persist when either the preset

and/or clear inputs return to their inactive (high) level.

 $\mathsf{Q}_0$  = The output logic level of  $\mathsf{Q}$  before the indicated input conditions were established.

©1995 National Semiconductor Corporation TL/F/6373

RRD-B30M105/Printed in U. S. A.

**ე** თ Flip-Flops with Preset, Clear and Complementary Outputs LS74/DM54LS74A/DM74LS74A Dual Positive-Edge**i** riggered

June 1989

## Absolute Maximum Ratings (Note)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

| Supply Voltage                       | 7V              |
|--------------------------------------|-----------------|
| Input Voltage                        | 7V              |
| Operating Free Air Temperature Range |                 |
| DM54LS and 54LS                      | -55°C to +125°C |
| DM74LS                               | 0°C to +70°C    |
| Storage Temperature Range            | -65°C to +150°C |

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

## **Recommended Operating Conditions**

| Symbol           | Ba               | ramator        | Г    | OM54LS74 | A    | 1    | DM74LS74 | Α    | Unite |
|------------------|------------------|----------------|------|----------|------|------|----------|------|-------|
| Symbol           | Falameter        |                | Min  | Nom      | Мах  | Min  | Nom      | Max  | Onits |
| V <sub>CC</sub>  | Supply Voltage   |                | 4.5  | 5        | 5.5  | 4.75 | 5        | 5.25 | V     |
| VIH              | High Level Input | Voltage        | 2    |          |      | 2    |          |      | V     |
| V <sub>IL</sub>  | Low Level Input  | Voltage        |      |          | 0.7  |      |          | 0.8  | V     |
| I <sub>OH</sub>  | High Level Outp  | ut Current     |      |          | -0.4 |      |          | -0.4 | mA    |
| I <sub>OL</sub>  | Low Level Outp   | ut Current     |      |          | 4    |      |          | 8    | mA    |
| f <sub>CLK</sub> | Clock Frequenc   | y (Note 2)     | 0    |          | 25   | 0    |          | 25   | MHz   |
| f <sub>CLK</sub> | Clock Frequenc   | y (Note 3)     | 0    |          | 20   | 0    |          | 20   | MHz   |
| tw               | Pulse Width      | Clock High     | 18   |          |      | 18   |          |      |       |
|                  | (Note 2)         | Preset Low     | 15   |          |      | 15   |          |      | ns    |
|                  |                  | Clear Low      | 15   |          |      | 15   |          |      | 1     |
| t <sub>W</sub>   | Pulse Width      | Clock High     | 25   |          |      | 25   |          |      |       |
|                  | (Note 3)         | Preset Low     | 20   |          |      | 20   |          |      | ns    |
|                  |                  | Clear Low      | 20   |          |      | 20   |          |      |       |
| t <sub>SU</sub>  | Setup Time (Not  | tes 1 and 2)   | 20 ↑ |          |      | 20 ↑ |          |      | ns    |
| t <sub>SU</sub>  | Setup Time (Not  | tes 1 and 3)   | 25 ↑ |          |      | 25 ↑ |          |      | ns    |
| t <sub>H</sub>   | Hold Time (Note  | e 1 and 4)     | 0↑   |          |      | 0↑   |          |      | ns    |
| Τ <sub>Δ</sub>   | Free Air Operati | ng Temperature | -55  |          | 125  | 0    |          | 70   | °C    |

Note 1: The symbol (  $\uparrow$  ) indicates the rising edge of the clock pulse is used for reference.

Note 2:  $C_L$  = 15 pF,  $R_L$  = 2 k $\Omega,\,T_A$  = 25°C, and  $V_{CC}$  = 5V.

Note 3:  $C_L = 50$  pF,  $R_L = 2$  k $\Omega$ ,  $T_A = 25^{\circ}C$ , and  $V_{CC} = 5V$ . Note 4:  $T_A = 25^{\circ}C$  and  $V_{CC} = 5V$ .

| Symbol                                                                                                                                                                                                                                                              | Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                    | Conditions                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                          | Min                                                                                                                                                               | Typ<br>(Note 1)                                                                                                                                                   | Max                                                                                                                     | Units                                                                                               |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| VI                                                                                                                                                                                                                                                                  | Input Clamp Voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | V <sub>CC</sub> = I                                                                                                                                                                                                                                                | Min, $I_I = -18 \text{ mA}$                                                                                                                                                                                                                                                                                                      |                                                                                                                                                          |                                                                                                                                                                   |                                                                                                                                                                   | -1.5                                                                                                                    | V                                                                                                   |
| V <sub>OH</sub>                                                                                                                                                                                                                                                     | High Level Output                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | V <sub>CC</sub> = I                                                                                                                                                                                                                                                | Min, I <sub>OH</sub> = Max                                                                                                                                                                                                                                                                                                       | DM54                                                                                                                                                     | 2.5                                                                                                                                                               | 3.4                                                                                                                                                               |                                                                                                                         | v                                                                                                   |
|                                                                                                                                                                                                                                                                     | Voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $V_{IL} = M$                                                                                                                                                                                                                                                       | lax, V <sub>IH</sub> = Min                                                                                                                                                                                                                                                                                                       | DM74                                                                                                                                                     | 2.7                                                                                                                                                               | 3.4                                                                                                                                                               |                                                                                                                         | ľ                                                                                                   |
| V <sub>OL</sub>                                                                                                                                                                                                                                                     | Low Level Output                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | V <sub>CC</sub> = I                                                                                                                                                                                                                                                | Min, I <sub>OL</sub> = Max                                                                                                                                                                                                                                                                                                       | DM54                                                                                                                                                     |                                                                                                                                                                   | 0.25                                                                                                                                                              | 0.4                                                                                                                     |                                                                                                     |
|                                                                                                                                                                                                                                                                     | Voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $V_{IL} = M$                                                                                                                                                                                                                                                       | lax, V <sub>IH</sub> = Min                                                                                                                                                                                                                                                                                                       | DM74                                                                                                                                                     |                                                                                                                                                                   | 0.35                                                                                                                                                              | 0.5                                                                                                                     | V                                                                                                   |
|                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $I_{OL} = 4$                                                                                                                                                                                                                                                       | $I_{OL} = 4$ mA, $V_{CC} = Min$                                                                                                                                                                                                                                                                                                  |                                                                                                                                                          |                                                                                                                                                                   | 0.25                                                                                                                                                              | 0.4                                                                                                                     |                                                                                                     |
| li                                                                                                                                                                                                                                                                  | Input Current @Max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $V_{\rm CC} = I$                                                                                                                                                                                                                                                   | Max                                                                                                                                                                                                                                                                                                                              | Data                                                                                                                                                     |                                                                                                                                                                   |                                                                                                                                                                   | 0.1                                                                                                                     |                                                                                                     |
|                                                                                                                                                                                                                                                                     | Input Voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $v_1 = 7v$                                                                                                                                                                                                                                                         | $V_{I} = 7V$                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                          |                                                                                                                                                                   |                                                                                                                                                                   | 0.1                                                                                                                     | - mA                                                                                                |
|                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                  | Preset                                                                                                                                                   |                                                                                                                                                                   |                                                                                                                                                                   | 0.2                                                                                                                     | _                                                                                                   |
|                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                  | Clear                                                                                                                                                    |                                                                                                                                                                   |                                                                                                                                                                   | 0.2                                                                                                                     |                                                                                                     |
| Iн                                                                                                                                                                                                                                                                  | High Level Input                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $V_{CC} = I$                                                                                                                                                                                                                                                       | $V_{CC} = Max$                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                          |                                                                                                                                                                   |                                                                                                                                                                   | 20                                                                                                                      | _                                                                                                   |
|                                                                                                                                                                                                                                                                     | Guirent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | v  - 2.7                                                                                                                                                                                                                                                           | v                                                                                                                                                                                                                                                                                                                                | Clock                                                                                                                                                    |                                                                                                                                                                   |                                                                                                                                                                   | 20                                                                                                                      | μA                                                                                                  |
|                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                          |                                                                                                                                                                   |                                                                                                                                                                   | 40                                                                                                                      | _                                                                                                   |
|                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                          |                                                                                                                                                                   |                                                                                                                                                                   | 40                                                                                                                      |                                                                                                     |
| IIL                                                                                                                                                                                                                                                                 | Low Level Input                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $V_{CC} = I$<br>$V_{L} = 0.4$                                                                                                                                                                                                                                      | $V_{CC} = Max$<br>$V_{I} = 0.4V$                                                                                                                                                                                                                                                                                                 |                                                                                                                                                          |                                                                                                                                                                   |                                                                                                                                                                   | -0.4                                                                                                                    | -                                                                                                   |
|                                                                                                                                                                                                                                                                     | Gunon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | vi 0                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                          |                                                                                                                                                                   |                                                                                                                                                                   | -0.4                                                                                                                    | - mA                                                                                                |
|                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                  | Preset                                                                                                                                                   |                                                                                                                                                                   |                                                                                                                                                                   | -0.8                                                                                                                    | -                                                                                                   |
|                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                          |                                                                                                                                                                   |                                                                                                                                                                   | -0.8                                                                                                                    |                                                                                                     |
| IOS                                                                                                                                                                                                                                                                 | Short Circuit<br>Output Current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | V <sub>CC</sub> = 1<br>(Note 2)                                                                                                                                                                                                                                    | Max                                                                                                                                                                                                                                                                                                                              | DM54                                                                                                                                                     | -20                                                                                                                                                               |                                                                                                                                                                   | -100                                                                                                                    | mA                                                                                                  |
|                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                  | DM74                                                                                                                                                     | -20                                                                                                                                                               |                                                                                                                                                                   | -100                                                                                                                    |                                                                                                     |
| Note 1: All typ                                                                                                                                                                                                                                                     | picals are at $V_{CC} = 5V$ , $T_A = 25$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5°C.                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                          |                                                                                                                                                                   | -                                                                                                                                                                 |                                                                                                                         |                                                                                                     |
| Note 1: All typ<br>Note 2: Not m<br>shorting the o<br>DM74 series,<br>equipment.<br>Note 3: With a<br>Switch                                                                                                                                                        | bicals are at $V_{CC} = 5V$ , $T_A = 25$<br>ore than one output should be shoutputs to ground may cause the erespectively, with the minimum a<br>all outputs open, $I_{CC}$ is measured<br>bing Characteris                                                                                                                                                                                                                                                                                                                                                                                                                                              | soc.<br>orted at a time,<br>outputs to char<br>and maximum I<br>d with CLOCK of<br>tics at V <sub>C</sub>                                                                                                                                                          | and the duration should<br>nge logic state an equi<br>limits reduced by one<br>grounded after setting to<br>$_{\rm CC} = 5V$ and $T_{\rm A} =$                                                                                                                                                                                   | d not exceed one<br>valent test may<br>half from their s<br>the Q and $\overline{Q}$ out<br>$25^{\circ}C$ (See S                                         | e second. For de<br>be performed w<br>tated values. T<br>puts high in turn<br>fection 1 for                                                                       | evices, with feedb<br>there V <sub>O</sub> = 2.25 <sup>v</sup><br>his is very useful<br>n.<br>Test Wavefor                                                        | ack from the out<br>/ and 2.125V fo<br>when using au<br>ms and Outp                                                     | puts, where<br>r DM54 and<br>tomatic test<br>ut Load)                                               |
| Note 1: All typ<br>Note 2: Not m<br>shorting the o<br>DM74 series,<br>equipment.<br>Note 3: With<br>Switch                                                                                                                                                          | bicals are at $V_{CC} = 5V$ , $T_A = 25$<br>ore than one output should be shoutputs to ground may cause the erespectively, with the minimum and all outputs open, $I_{CC}$ is measured <b>ing Characteris</b>                                                                                                                                                                                                                                                                                                                                                                                                                                            | rsc.<br>oorted at a time,<br>outputs to char<br>and maximum I<br>d with CLOCK ç<br>tiCS at V <sub>C</sub>                                                                                                                                                          | and the duration should<br>nge logic state an equi<br>limits reduced by one<br>grounded after setting to<br>$_{C} = 5V$ and $T_{A} =$<br>From (Input)                                                                                                                                                                            | d not exceed ond<br>valent test may<br>half from their s<br>the Q and $\overline{Q}$ out<br>25°C (See S                                                  | e second. For du<br>be performed w<br>tated values. T<br>puts high in turn<br>section 1 for<br>RL =                                                               | evices, with feedby<br>there $V_0 = 2.25^{\circ}$<br>his is very useful<br>h.<br>Test Wavefor<br><b>2</b> k $\Omega$                                              | ack from the out<br>/ and 2.125V fo<br>when using au<br>ms and Outp                                                     | puts, where<br>r DM54 and<br>tomatic test<br>ut Load)                                               |
| Note 1: All typ<br>Note 2: Not m<br>shorting the o<br>DM74 series,<br>equipment.<br>Note 3: With a<br>Switch<br>Symbol                                                                                                                                              | bicals are at $V_{CC} = 5V$ , $T_A = 25$<br>ore than one output should be shoutputs to ground may cause the erespectively, with the minimum a<br>all outputs open, $I_{CC}$ is measured<br><b>hing Characteris</b><br>Parameter                                                                                                                                                                                                                                                                                                                                                                                                                          | soc.<br>orted at a time,<br>outputs to char<br>and maximum I<br>t with CLOCK €<br>tiCS at V <sub>C</sub>                                                                                                                                                           | and the duration should<br>nge logic state an equi<br>limits reduced by one<br>grounded after setting 1<br>$_{CC} = 5V$ and $T_A =$<br>From (Input)<br>To (Output)                                                                                                                                                               | d not exceed one<br>valent test may<br>half from their s<br>the Q and Q out<br>25°C (See S<br>CL =                                                       | e second. For d<br>be performed w<br>tated values. T<br>puts high in turn<br>section 1 for<br>R <sub>L</sub> =<br>15 pF                                           | evices, with feedb<br>here $V_{O} = 2.25$<br>his is very useful<br>n.<br>Test Wavefor<br><b>2</b> k $\Omega$<br><b>C</b> <sub>L</sub> =                           | ack from the out<br>/ and 2.125V fo<br>when using au<br>ms and Outp<br>50 pF                                            | puts, where<br>r DM54 and<br>tomatic test<br>ut Load)<br>Units                                      |
| Note 1: All typ<br>Note 2: Not m<br>shorting the o<br>DM74 series,<br>equipment.<br>Note 3: With a<br>Switch<br>Symbol                                                                                                                                              | bicals are at V <sub>CC</sub> = 5V, T <sub>A</sub> = 25<br>ore than one output should be sho<br>utputs to ground may cause the e<br>respectively, with the minimum a<br>all outputs open, I <sub>CC</sub> is measured<br><b>ing Characteris</b><br>Parameter                                                                                                                                                                                                                                                                                                                                                                                             | sec.<br>orted at a time,<br>outputs to char<br>and maximum I<br>d with CLOCK g<br>tiCS at V <sub>C</sub>                                                                                                                                                           | and the duration should<br>nge logic state an equi<br>limits reduced by one<br>grounded after setting to<br>$_{CC} = 5V$ and $T_A =$<br>From (Input)<br>To (Output)                                                                                                                                                              | d not exceed ond<br>valent test may<br>half from their s<br>the Q and Q out<br>25°C (See S<br>C <sub>L</sub> =<br><u>Min</u>                             | e second. For d<br>be performed w<br>tated values. T<br>puts high in turn<br>section 1 for<br>RL =<br>15 pF<br>Max                                                | evices, with feedby<br>there $V_0 = 2.25^{\circ}$<br>his is very useful<br>n.<br>Test Wavefor<br><b>2</b> k\Omega<br><b>C</b> <sub>L</sub> =<br><b>Min</b>        | ack from the out<br>/ and 2.125V fo<br>when using au<br>ms and Outp<br>50 pF<br>Max                                     | puts, where<br>r DM54 and<br>tomatic test<br>ut Load)<br>Units                                      |
| Note 1: All typ<br>Note 2: Not m<br>shorting the o<br>DM74 series,<br>equipment.<br>Note 3: With a<br>Switch<br>Symbol                                                                                                                                              | bicals are at V <sub>CC</sub> = 5V, T <sub>A</sub> = 25<br>ore than one output should be sho<br>utputs to ground may cause the<br>respectively, with the minimum a<br>all outputs open, I <sub>CC</sub> is measured<br>ing Characteris<br>Parameter<br>Maximum Clock Frequ                                                                                                                                                                                                                                                                                                                                                                               | Jency                                                                                                                                                                                                                                                              | and the duration should<br>nge logic state an equi<br>limits reduced by one<br>grounded after setting to<br>$_{\rm CC} = 5V$ and $T_{\rm A} =$<br>From (Input)<br>To (Output)                                                                                                                                                    | d not exceed on<br>valent test may<br>half from their s<br>the Q and $\overline{Q}$ out<br>25°C (See S<br>$C_L =$<br><u>Min</u><br>25                    | e second. For d<br>be performed w<br>tated values. T<br>puts high in turn<br>section 1 for<br>RL =<br>15 pF<br>Max                                                | evices, with feedb<br>there $V_O = 2.25^{\circ}$<br>his is very useful<br>n.<br>Test Wavefor<br><b>2</b> k\Omega<br><b>C</b> <sub>L</sub> =<br><u>Min</u><br>20   | ack from the out<br>/ and 2.125V fo<br>when using au<br>ms and Outp<br>50 pF<br>Max                                     | puts, where<br>r DM54 and<br>tomatic test<br>ut Load)<br>Units<br>MHz                               |
| Note 1: All typ<br>Note 2: Not m<br>Shorting the o<br>DM74 series,<br>equipment.<br>Note 3: With a<br>Switch<br>Symbol<br>f <sub>MAX</sub><br>t <sub>PLH</sub>                                                                                                      | bicals are at V <sub>CC</sub> = 5V, T <sub>A</sub> = 25<br>ore than one output should be sho<br>utputs to ground may cause the<br>respectively, with the minimum a<br>all outputs open, I <sub>CC</sub> is measured<br><b>ing Characteris</b><br><b>Parameter</b><br>Maximum Clock Frequ<br>Propagation Delay Tin<br>Low to High Level Out                                                                                                                                                                                                                                                                                                               | rec.<br>orted at a time,<br>outputs to char<br>and maximum I<br>d with CLOCK of<br>tics at V <sub>C</sub><br>uency<br>ne<br>tput                                                                                                                                   | and the duration should<br>nge logic state an equi<br>limits reduced by one<br>grounded after setting to<br>$_{CC} = 5V$ and $T_A =$<br>From (Input)<br>To (Output)<br>Clock to<br>Q or $\overline{Q}$                                                                                                                           | d not exceed one<br>valent test may<br>half from their s<br>the Q and $\overline{Q}$ out<br>$25^{\circ}C$ (See S<br>C <sub>L</sub> =<br><u>Min</u><br>25 | e second. For d<br>be performed w<br>tated values. T<br>puts high in turn<br>section 1 for<br>R <sub>L</sub> =<br>15 pF<br>Max<br>25                              | evices, with feedb<br>here $V_O = 2.25^{\circ}$<br>his is very useful<br>n.<br>Test Wavefor<br><b>2</b> k $\Omega$<br><b>C</b> <sub>L</sub> =<br><b>Min</b><br>20 | ack from the out<br>/ and 2.125V fo<br>when using au<br>ms and Outp<br>50 pF<br>Max<br>35                               | puts, where<br>r DM54 and<br>tomatic test<br>ut Load)<br>Units<br>MHz<br>ns                         |
| Note 1: All typ<br>Note 2: Not m<br>Shorting the o<br>DM74 series,<br>equipment.<br>Note 3: With a<br>Switch<br>Symbol<br>f <sub>MAX</sub><br>t <sub>PLH</sub>                                                                                                      | Dicals are at V <sub>CC</sub> = 5V, T <sub>A</sub> = 25<br>ore than one output should be sho<br>utputs to ground may cause the e<br>respectively, with the minimum a<br>all outputs open, I <sub>CC</sub> is measured<br><b>ing Characteris</b><br><b>Parameter</b><br>Maximum Clock Frequ<br>Propagation Delay Tin<br>Low to High Level Out<br>Propagation Delay Tin<br>High to Low Level Out                                                                                                                                                                                                                                                           | sec.<br>orted at a time,<br>outputs to char<br>and maximum I<br>d with CLOCK of<br>tics at V <sub>C</sub><br>uency<br>ne<br>tput<br>ne<br>tput                                                                                                                     | and the duration should<br>nge logic state an equi<br>limits reduced by one<br>grounded after setting to<br>$_{CC} = 5V$ and $T_A =$<br>From (Input)<br>To (Output)<br>Clock to<br>Q or $\overline{Q}$<br>Clock to<br>Q or $\overline{Q}$                                                                                        | d not exceed one<br>valent test may<br>half from their s<br>the Q and $\overline{Q}$ out<br>25°C (See S<br>C <sub>L</sub> =<br><u>Min</u><br>25          | e second. For de<br>be performed w<br>tated values. T<br>puts high in turn<br>iection 1 for<br>R <sub>L</sub> =<br>15 pF<br>Max<br>25<br>30                       | evices, with feedb<br>here $V_0 = 2.25^{\circ}$<br>his is very useful<br>h.<br>Test Wavefor<br><b>2</b> k $\Omega$<br><b>C</b> <sub>L</sub> =<br><u>Min</u><br>20 | ack from the out<br>/ and 2.125V fo<br>when using au<br>ms and Outp<br>50 pF<br>Max<br>35<br>35                         | puts, where<br>r DM54 and<br>tomatic test<br>ut Load)<br>Units<br>MHz<br>ns<br>ns                   |
| Note 1: All typ<br>Note 2: Not m<br>shorting the solution<br>DM74 series,<br>equipment.<br>Note 3: With a<br>Switch<br>Symbol<br>f <sub>MAX</sub><br>t <sub>PLH</sub><br>t <sub>PLH</sub>                                                                           | Dicals are at V <sub>CC</sub> = 5V, T <sub>A</sub> = 25<br>ore than one output should be sho<br>utputs to ground may cause the e<br>respectively, with the minimum a<br>all outputs open, I <sub>CC</sub> is measured<br><b>hing Characteris</b><br><b>Parameter</b><br>Maximum Clock Frequ<br>Propagation Delay Tin<br>Low to High Level Out<br>Propagation Delay Tin<br>High to Low Level Out<br>Propagation Delay Tin<br>Low to High Level Out                                                                                                                                                                                                        | sec.<br>orted at a time,<br>outputs to char<br>and maximum I<br>d with CLOCK of<br>tics at V <sub>C</sub><br>tics at V <sub>C</sub><br>uency<br>ne<br>tput<br>ne<br>tput<br>ne<br>tput                                                                             | and the duration should<br>nge logic state an equi<br>limits reduced by one<br>grounded after setting 1<br>$C = 5V$ and $T_A =$<br>From (Input)<br>To (Output)<br>Clock to<br>Q or Q<br>Clock to<br>Q or Q<br>Preset<br>to Q                                                                                                     | d not exceed one<br>valent test may<br>half from their s<br>the Q and Q out<br>25°C (See S<br>C <sub>L</sub> =<br><u>Min</u><br>25                       | e second. For de<br>be performed w<br>tated values. T<br>puts high in turn<br>iection 1 for<br>RL =<br>15 pF<br>Max<br>25<br>30<br>25                             | evices, with feedb<br>here $V_0 = 2.25$<br>his is very useful<br>h.<br>Test Wavefor<br>$2 k\Omega$<br>$C_L =$<br><u>Min</u><br>20                                 | ack from the out<br>/ and 2.125V fo<br>when using au<br>ms and Outp<br>50 pF<br>Max<br>35<br>35<br>35                   | puts, where<br>r DM54 and<br>tomatic test<br>ut Load)<br>Units<br>MHz<br>ns<br>ns<br>ns             |
| Note 1: All typ<br>Note 2: Not m<br>shorting the o<br>DM74 series,<br>equipment.<br>Note 3: With a<br>Switch<br>Symbol<br>f <sub>MAX</sub><br>tPLH<br>tPHL<br>tPHL                                                                                                  | Dicals are at V <sub>CC</sub> = 5V, T <sub>A</sub> = 25<br>ore than one output should be sho<br>utputs to ground may cause the e<br>respectively, with the minimum a<br>all outputs open, I <sub>CC</sub> is measured<br><b>ing Characteris</b><br><b>Parameter</b><br>Maximum Clock Frequ<br>Propagation Delay Tin<br>Low to High Level Out<br>Propagation Delay Tin<br>High to Low Level Out<br>Propagation Delay Tin<br>Low to High Level Out<br>Propagation Delay Tin<br>Low to High Level Out<br>Propagation Delay Tin<br>Low to High Level Out                                                                                                     | sec.<br>orted at a time,<br>outputs to char<br>and maximum I<br>d with CLOCK of<br>tiCS at V <sub>C</sub><br>tiCS at V <sub>C</sub><br>uency<br>ne<br>tput<br>ne<br>tput<br>ne<br>tput<br>ne<br>tput<br>ne<br>tput                                                 | and the duration should<br>nge logic state an equi<br>limits reduced by one<br>grounded after setting 1<br>$C = 5V$ and $T_A =$<br>From (Input)<br>To (Output)<br>Clock to<br>Q or $\overline{Q}$<br>Clock to<br>Q or $\overline{Q}$<br>Preset<br>to Q<br>Preset<br>to $\overline{Q}$                                            | d not exceed one<br>valent test may<br>half from their s<br>the Q and Q out<br>25°C (See S<br>C <sub>L</sub> =<br><u>Min</u><br>25                       | e second. For de<br>be performed w<br>tated values. T<br>puts high in turn<br>section 1 for<br><b>R</b> L =<br><b>15 pF</b><br><b>Max</b><br>25<br>30<br>25<br>30 | evices, with feedb<br>here $V_0 = 2.25$<br>his is very useful<br>n.<br>Test Wavefor<br>$2 k\Omega$<br>$C_L =$<br><u>Min</u><br>20                                 | ack from the out<br>/ and 2.125V fo<br>when using au<br>ms and Outp<br>50 pF<br>Max<br>35<br>35<br>35<br>35<br>35       | puts, where<br>r DM54 and<br>tomatic test<br>ut Load)<br>Units<br>MHz<br>ns<br>ns<br>ns<br>ns       |
| Note 1: All typ           Note 2: Not m           Shorting the o           DM74 series,           equipment.           Note 3: With a           Switch           Symbol           f <sub>MAX</sub> tPLH           tPHL           tPHL           tPHL           tPHL | Dicals are at V <sub>CC</sub> = 5V, T <sub>A</sub> = 25<br>ore than one output should be sho<br>utputs to ground may cause the e<br>respectively, with the minimum a<br>all outputs open, I <sub>CC</sub> is measured<br><b>ing Characteris</b><br><b>Parameter</b><br>Maximum Clock Frequ<br>Propagation Delay Tin<br>Low to High Level Out<br>Propagation Delay Tin<br>High to Low Level Out<br>Propagation Delay Tin<br>Low to High Level Out<br>Propagation Delay Tin<br>High to Low Level Out | sec.<br>orted at a time,<br>outputs to char<br>and maximum I<br>d with CLOCK of<br>tiCS at V <sub>C</sub><br>tiCS at V <sub>C</sub><br>uency<br>ne<br>tput<br>ne<br>tput<br>ne<br>tput<br>ne<br>tput<br>ne<br>tput<br>ne<br>tput<br>ne<br>tput<br>ne<br>tput<br>ne | and the duration should<br>nge logic state an equi<br>limits reduced by one<br>grounded after setting 1<br>$C = 5V$ and $T_A =$<br>From (Input)<br>To (Output)<br>Clock to<br>Q or $\overline{Q}$<br>Clock to<br>Q or $\overline{Q}$<br>Preset<br>to $\overline{Q}$<br>Preset<br>to $\overline{Q}$<br>Clear<br>to $\overline{Q}$ | d not exceed one<br>valent test may<br>half from their s<br>the Q and Q out<br>25°C (See S<br>C <sub>L</sub> =<br><u>Min</u><br>25                       | e second. For do<br>be performed w<br>tated values. T<br>puts high in turn<br>section 1 for<br>$R_L =$<br>15 pF<br>Max<br>25<br>30<br>25<br>30<br>25              | evices, with feedb<br>there $V_0 = 2.25$<br>this is very useful<br>Test Wavefor<br>$2 k\Omega$<br>$C_L =$<br><u>Min</u><br>20                                     | ack from the out<br>/ and 2.125V fo<br>when using au<br>ms and Outp<br>50 pF<br>Max<br>35<br>35<br>35<br>35<br>35<br>35 | puts, where<br>r DM54 and<br>tomatic test<br>ut Load)<br>Units<br>MHz<br>ns<br>ns<br>ns<br>ns<br>ns |







National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.



## Simple and Easy

- Easy operation.
- LED display for incident level.
- Long sensing distance (200 mm with reflective models) double that of standard E3X-NA models.
- High resolution 7 times that of previous models (e.g., E3X-NA11).
- "Easy wiring" connector.
- Same design as E3X-DA-N Digital Fiber Amplifier.





# Ordering Information: Amplifier Units, Connectors and Accessories

# Amplifier Units

## **Amplifier Units with Cables**

| Itom                        | Appearance | Appearance Control output |            | Model      |  |  |
|-----------------------------|------------|---------------------------|------------|------------|--|--|
| item                        |            | Control output            | NPN output | PNP output |  |  |
| Standard models             | STA /      | ON/OFF output             | E3X-NA11   | E3X-NA41   |  |  |
| High-speed detection models |            |                           | E3X-NA11F  | E3X-NA41F  |  |  |
| Mark-detecting models       | 6 24       |                           | E3X-NAG11  | E3X-NAG41  |  |  |
| Water-resistant<br>models   |            |                           | E3X-NA11V  | E3X-NA41V  |  |  |

## **Amplifier Units with Connectors**

| Itom                                         | Appearance | Applicable                   | Applicable Connector |                | Мо         | del        |
|----------------------------------------------|------------|------------------------------|----------------------|----------------|------------|------------|
| nem                                          | Appearance | (order separately)           |                      | Control output | NPN output | PNP output |
| Standard models                              |            | Master                       | E3X-CN11             | ON/OFF output  | E3X-NA6    | E3X-NA8    |
|                                              |            | Slave                        | E3X-CN12             |                |            |            |
| Water-resistant<br>models<br>(M8 connectors) |            | XS3F-M421-4(<br>XS3F-M422-4( | 0⊡-A<br>0⊡-A         |                | E3X-NA14V  | E3X-NA44V  |

## ■ Amplifier Unit Connectors (Order Separately)

**Note** Stickers for Connectors are included as accessories.

| Item             | Appearance | Cable length | No. of conductors | Model    |
|------------------|------------|--------------|-------------------|----------|
| Master Connector | 6          | 2 m          | 3                 | E3X-CN11 |
| Slave Connector  | 1          |              | 1                 | E3X-CN12 |
# ■ Combining Amplifier Units and Connectors

Refer to the following tables when placing an order. Basically, Amplifier Units and Connectors are sold separately.

| Amplifier Units |         |         |  |  |  |  |  |
|-----------------|---------|---------|--|--|--|--|--|
| Туре            | NPN     | PNP     |  |  |  |  |  |
| Standard models | E3X-NA6 | E3X-NA8 |  |  |  |  |  |

| Applicable Connectors (Order Separately) |                   |  |  |  |  |  |  |
|------------------------------------------|-------------------|--|--|--|--|--|--|
| Master Connector Slave Connector         |                   |  |  |  |  |  |  |
| E3X-CN11 (3-wire)                        | E3X-CN12 (1-wire) |  |  |  |  |  |  |

When Using 5 Amplifier Units Amplifier Units (5 Units)

1 Master Connector + 4 Slave Connectors

## Sensor I/O Connectors (Order Separately)

| Size | Cable specifications | Appearance         | Cable | e type          | Model           |
|------|----------------------|--------------------|-------|-----------------|-----------------|
| M8   | Standard cable       | Straight connector | 2 m   | Four-core cable | XS3F-M421-402-A |
|      |                      | 5 m                | 5 m   |                 | XS3F-M421-405-A |
|      |                      | L-shaped connector | 2 m   |                 | XS3F-M422-402-A |
|      |                      |                    | 5 m   |                 | XS3F-M422-405-A |

÷

÷

# ■ Accessories (Order Separately)

### **Mounting Brackets**

| Appearance  | Applicable<br>models            | Model    | Quantity |
|-------------|---------------------------------|----------|----------|
|             | E3X-NA□<br>E3X-NA□F<br>E3X-NAG□ | E39-L143 | 1        |
| and a start | E3X-NA⊡V                        | E39-L148 |          |

## End Plate

| Appearance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Model | Quantity |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------|
| and the second sec | PFP-M | 1        |

# Specifications: Amplifier Units

## ■ Ratings/Characteristics

|                                    |                   |                                                                                                                                                                                                                                              | Amplifier Units with Cables                      |                                                                                                 |                                                      |                                                      | Amplifier Units with Connectors                        |  |  |
|------------------------------------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------|--|--|
| lt                                 | em                | Standard models                                                                                                                                                                                                                              | High-speed<br>detection<br>models                | Mark-detecting<br>models                                                                        | Water-resistant<br>models                            | Standard<br>models                                   | Water-resistant<br>models (M8<br>connectors)           |  |  |
| NPN output                         |                   | E3X-NA11                                                                                                                                                                                                                                     | E3X-NA11F                                        | E3X-NAG11                                                                                       | E3X-NA11V                                            | E3X-NA6                                              | E3X-NA14V                                              |  |  |
| Output type                        | PNP output        | E3X-NA41                                                                                                                                                                                                                                     | E3X-NA41F                                        | E3X-NAG41                                                                                       | E3X-NA41V                                            | E3X-NA8                                              | E3X-NA44V                                              |  |  |
| Light source (wa                   | avelength)        | Red LED (680 nm)                                                                                                                                                                                                                             |                                                  | Green LED<br>(520 nm)                                                                           | Red LED (680 nm                                      | )                                                    |                                                        |  |  |
| Supply voltage                     |                   | 12 to 24 VDC ±10%, ripple                                                                                                                                                                                                                    | ə (p-p): 10% max.                                |                                                                                                 |                                                      |                                                      |                                                        |  |  |
| Current consum                     | nption            | 35 mA max.                                                                                                                                                                                                                                   | 35 mA max.<br>(for 24-VDC<br>power supply)       | 35 mA max.                                                                                      |                                                      |                                                      |                                                        |  |  |
| Control output                     |                   | NPN/PNP (depends on mo<br>selector                                                                                                                                                                                                           | odel) open collect                               | or; load current: 50                                                                            | mA max.; residual v                                  | oltage: 1 V max.;                                    | Light ON/Dark ON mode                                  |  |  |
| Response time                      |                   | $200\mu s$ max. for operation and reset respectively (See note.)                                                                                                                                                                             | Operation:<br>20 μs max.<br>Reset:<br>30 μs max. | 200 $\mu s$ max. for op                                                                         | peration and reset re                                | espectively (See n                                   | ote.)                                                  |  |  |
| Sensitivity adjust                 | stment            | 8-turn sensitivity adjuster (                                                                                                                                                                                                                | with indicator)                                  |                                                                                                 |                                                      |                                                      |                                                        |  |  |
| Circuit protection                 |                   | Reverse polarity, output<br>short-circuit, mutual inter-<br>ference prevention (opti-<br>cally synchronized)                                                                                                                                 | Reverse polari-<br>ty, output short-<br>circuit  | Reverse polarity, output short-circuit, mutual interference prevention (optically synchronized) |                                                      |                                                      |                                                        |  |  |
| Timer function                     |                   | OFF-delay timer: 40 ms (fixed)                                                                                                                                                                                                               |                                                  |                                                                                                 |                                                      |                                                      |                                                        |  |  |
| Ambient illumin<br>(receiver side) | ation             | Incandescent lamp:10,000 lux max.<br>Sunlight: 20,000 lux max.                                                                                                                                                                               |                                                  |                                                                                                 |                                                      |                                                      |                                                        |  |  |
| Ambient temper                     | ature             | Operating: Groups of 1 to 3 Amplifiers: -25°C to 55°C<br>Groups of 4 to11 Amplifiers: -25°C to 50°C<br>Groups of 12 to16 Amplifiers: -25°C to 45°C (with no icing or condensation)<br>Storage: -30°C to 70°C (with no icing or condensation) |                                                  |                                                                                                 |                                                      |                                                      |                                                        |  |  |
| Ambient humidi                     | ty                | Operating and storage: 35% to 85% (with no condensation)                                                                                                                                                                                     |                                                  |                                                                                                 |                                                      |                                                      |                                                        |  |  |
| Insulation resist                  | tance             | 20 MΩ min. (at 500 VDC)                                                                                                                                                                                                                      |                                                  |                                                                                                 |                                                      |                                                      |                                                        |  |  |
| Dielectric streng                  | gth (destruction) | 1,000 VAC at 50/60 Hz for 1 minute 500 VAC at 50/60 Hz for 1 minute                                                                                                                                                                          |                                                  |                                                                                                 |                                                      |                                                      |                                                        |  |  |
| Vibration resista<br>(destruction) | ance              | 10 to 55 Hz with a 1.5-mm double amplitude for 2 hrs each in X, Y and Z directions                                                                                                                                                           |                                                  |                                                                                                 |                                                      |                                                      |                                                        |  |  |
| Shock resistance                   | e (destruction)   | 500 m/s <sup>2</sup> , for 3 times each                                                                                                                                                                                                      | in X, Y and Z dire                               | ections                                                                                         |                                                      |                                                      |                                                        |  |  |
| Enclosure rating                   | 9                 | IEC60529 IP50 (with Prote                                                                                                                                                                                                                    | ective Cover attac                               | hed)                                                                                            | IEC60529 IP66<br>(with Protective<br>Cover attached) | IEC60529 IP50<br>(with Protective<br>Cover attached) | IEC60529 IP66 (with<br>Protective Cover at-<br>tached) |  |  |
| Connection met                     | hod               | Pre-wired (standard cable                                                                                                                                                                                                                    | length: 2 m)                                     |                                                                                                 |                                                      | Connector                                            | M8 connector                                           |  |  |
| Weight (packed                     | state)            | Approx. 100 g                                                                                                                                                                                                                                |                                                  |                                                                                                 | Approx. 110 g                                        | Approx. 55 g                                         | Approx. 65 g                                           |  |  |
| Material                           | Case              | Polybutylene terephthalate                                                                                                                                                                                                                   | ∋ (PBT)                                          |                                                                                                 |                                                      |                                                      |                                                        |  |  |
|                                    | Cover             | Polycarbonate                                                                                                                                                                                                                                |                                                  |                                                                                                 | Polyethersulfone (PES)                               | Polycarbonate                                        | Polyethersulfone (PES)                                 |  |  |
| Accessories                        |                   | Instruction Sheet                                                                                                                                                                                                                            |                                                  |                                                                                                 |                                                      |                                                      |                                                        |  |  |

Note  $\$  When there are 8 or more Units mounted side-by-side, the response time will be 350  $\mu$ s max.

## ■ Amplifier Unit Connectors

| Item                         |          | E3X-CN11                                                                                                                                                                                               | E3X-CN12     |  |  |
|------------------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--|--|
| Rated current                |          | 2.5 A                                                                                                                                                                                                  |              |  |  |
| Rated voltage                |          | 50 V                                                                                                                                                                                                   |              |  |  |
| Contact resista              | nce      | 20 m $\Omega$ max. (20 mVDC max., 100 mA max.)<br>(The above figure is for connection to the Amplifier Unit and the adjacent Connector. It does not include the co<br>ductor resistance of the cable.) |              |  |  |
| Number of inse (destruction) | rtions   | 50 times (for connection to the Amplifier Unit and the adjacent Connector)                                                                                                                             |              |  |  |
| Material                     | Housing  | Polybutylene terephthalate (PBT)                                                                                                                                                                       |              |  |  |
|                              | Contact  | Phosphor bronze/gold-plated nickel                                                                                                                                                                     |              |  |  |
| Weight (packed               | l state) | Approx. 55 g                                                                                                                                                                                           | Approx. 25 g |  |  |

# Ordering Information: Fiber Units

## ■ Through-beam Fiber Units

Refer to the end of the following table for notes and precautions.

 $\overbrace{\text{Free-cut}} \text{Indicates models that allow free cutting.} Models without this mark do not allow free cutting.}$ 

: Red light : Green light

| Applica-<br>tion    | Features                                       |            | Appearance       | Applicable<br>Amplifier<br>Unit | Sensing distance (mm)<br>(Values in parentheses: wher<br>using the E39-F1 Lens Unit) | Standard object<br>(see notes)<br>(min. sensing<br>object: opaque) | Model      | Permissi-<br>ble bend-<br>ing radius |
|---------------------|------------------------------------------------|------------|------------------|---------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------|------------|--------------------------------------|
| Long<br>distance    | M4                                             | Free-cut   |                  | E3X-NAC (V)                     | 700 (2,000)                                                                          | 1.4-mm dia.<br>(0.03-mm dia.)                                      | E32-T11L   | 25 mm                                |
|                     |                                                |            | M4 screw         | E3X-NAOF                        | 210 (600)                                                                            | 1.4-mm dia.                                                        |            |                                      |
|                     | 3-mm dia.                                      | Free-cut   |                  | E3X-NA (V)                      | 700                                                                                  | 1.4-mm dia.<br>(0.03-mm dia.)                                      | E32-T12L   | -                                    |
|                     |                                                |            | 3-mm dia.        | E3X-NAG                         | 130                                                                                  |                                                                    |            |                                      |
|                     |                                                |            |                  | E3X-NADF                        | 210                                                                                  | 1.4-mm dia.<br>(0.5-mm dia.)                                       |            |                                      |
|                     | M3                                             | Free-cut   |                  | E3X-NAL (V)                     | 200                                                                                  | 0.9-mm dia.<br>(0.03-mm dia.)                                      | E32-T21L   | 10 mm                                |
|                     |                                                |            | M3 screw         |                                 | 40                                                                                   | 0.9-mm dia                                                         |            |                                      |
|                     | 2-mm dia · small                               | $\bigcirc$ |                  |                                 |                                                                                      | (0.2-mm dia.)                                                      |            | -                                    |
|                     | diameter                                       | (Free-cut) | <del></del> → == | E3X-NAG                         | □ 40                                                                                 | (0.03-mm dia.)                                                     | E32-T22L   |                                      |
|                     |                                                |            | 2-mm dia.        | E3X-NA□F                        | 60                                                                                   | 0.9-mm dia.<br>(0.2-mm dia.)                                       |            |                                      |
|                     | M14; with lens;<br>ideal for explo-            | Free-cut   |                  | E3X-NA (V)                      | 14,000                                                                               | 10-mm dia.<br>(0.1-mm dia.)                                        | E32-T17L   | 25 mm                                |
|                     | cations                                        |            | M14 screw        | E3X-NA□F                        | 4,200                                                                                | 10-mm dia.<br>(1.5-mm dia.)                                        |            |                                      |
| General-<br>purpose | M4                                             | Free-cut   |                  | E3X-NA (V)                      | 400 (3,000)                                                                          | 1.0-mm dia.<br>(0.03-mm dia.)                                      | E32-TC200  | 25 mm                                |
|                     |                                                |            |                  |                                 | 75 (550)                                                                             | 4.0                                                                | +          |                                      |
|                     |                                                |            |                  |                                 | 120 (900)                                                                            | 1.0-mm dia.<br>(0.2-mm dia.)                                       |            | 4                                    |
|                     | W14                                            | Free-cut)  |                  | E3X-NAG                         | 280 (2,100)                                                                          | (0.03-mm dia.)                                                     | E32-T11R   | 1 mm                                 |
|                     |                                                |            | M4 screw         | E3X-NA□F                        | 80 (600)                                                                             | 1.0-mm dia.<br>(0.2-mm dia.)                                       | -          |                                      |
|                     | 3-mm dia.                                      | Free-cut   |                  | E3X-NA (V)                      | 280                                                                                  | 1.0-mm dia.<br>(0.03-mm dia.)                                      | E32-T12R   |                                      |
|                     |                                                |            |                  | E3X-NAG                         | 50                                                                                   |                                                                    |            |                                      |
|                     |                                                |            |                  | E3X-NA□F                        | 80                                                                                   | 1.0-mm dia.<br>(0.2-mm dia.)                                       |            |                                      |
|                     | M3; possible to<br>mount the reflec-           | Free-cut   | -0 0-            | E3X-NA□ (V)                     | 360                                                                                  | 1.0-mm dia.<br>(0.03-mm dia.)                                      | E32-TC200A | 25 mm                                |
|                     | conversion attachm<br>E39-F5                   | nent       |                  | E3X-NAG                         | □ 65                                                                                 |                                                                    |            |                                      |
|                     |                                                |            |                  |                                 | 100                                                                                  | 1.0-mm dia.<br>(0.2-mm dia.)                                       |            | 40                                   |
|                     | M3; for detecting<br>minute sensing<br>objects | Free-cut   |                  |                                 | 100                                                                                  | (0.03-mm dia.)                                                     | E32-TC200E | 10 mm                                |
|                     |                                                |            | M3 screw         | E3X-NADF                        | 30                                                                                   | 0.5-mm dia.                                                        | ļ          |                                      |
|                     | M3; small diame-                               | Free-cut   |                  | E3X-NA (V)                      | 60                                                                                   | (0.1-mm dia.)<br>0.5-mm dia.                                       | E32-T21R   | 1 mm                                 |
|                     | ter                                            |            | <br>₩2           | E3X-NAG                         | 12                                                                                   | (0.03-mm dia.)                                                     |            |                                      |
|                     |                                                |            | WI3 SCREW        | E3X-NA□F                        | 18                                                                                   | 1.0-mm dia.<br>(0.1-mm dia.)                                       |            |                                      |

# Super Manual Fiber Amplifier E3X-NA

| Applica-<br>tion     | Features                                              |           | Appearance                             | Applicable<br>Amplifier<br>Unit | Sensing distance (mm)<br>(Values in parentheses: when<br>using the E39-F1 Lens Unit) | Standard object<br>(see notes)<br>(min. sensing<br>object: opaque) | Model                     | Permissi-<br>ble bend-<br>ing radius |
|----------------------|-------------------------------------------------------|-----------|----------------------------------------|---------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------|--------------------------------------|
| Thin<br>fiber        | 2-mm dia.; for<br>detecting minute<br>sensing objects | Free-cut  |                                        | E3X-NAC                         | 100                                                                                  | 0.5-mm dia.<br>(0.03-mm dia.)                                      | E32-T22                   | 10 mm                                |
|                      |                                                       |           | 2-mm dia.                              |                                 | ] 20                                                                                 | 0.5 mm dia                                                         |                           |                                      |
|                      | 0                                                     |           |                                        |                                 |                                                                                      | (0.1-mm dia.)                                                      |                           | 4                                    |
|                      | diameter                                              | Free-cut  |                                        |                                 | 60 i i i                                                                             | 0.5-mm dia.<br>(0.03-mm dia.)                                      | E32-T22R                  | 1 mm                                 |
|                      |                                                       |           | 2-mm dia.                              |                                 | 18                                                                                   | (0.1-mm dia.)                                                      |                           |                                      |
|                      | 1.2-mm dia.; with sleeve                              | Free-cut  | 90 mm (40 mm)                          | E3X-NALL (V)                    | 400                                                                                  | 1.0-mm dia.<br>(0.03-mm dia.)                                      | E32-TC200B<br>E32-TC200B4 | 25 mm                                |
|                      |                                                       |           |                                        | E3X-NAG                         | 75                                                                                   |                                                                    |                           |                                      |
|                      |                                                       |           | (): E32-1C200B4                        | E3X-NA□F                        | 120                                                                                  | 1.0-mm dia.<br>(0.2-mm dia.)                                       |                           |                                      |
|                      | 0.9-mm dia.; with sleeve                              | Free-cut  | 90 mm (40 mm)                          | E3X-NA□ (V)                     | 100                                                                                  | 0.5-mm dia.<br>(0.03-mm dia.)                                      | E32-TC200F<br>E32-TC200F4 | 10 mm                                |
|                      |                                                       |           | M3 screw 0.9-mm dia.                   | E3X-NAG                         | ] 20                                                                                 |                                                                    |                           |                                      |
|                      |                                                       |           | (): E32-1C200F4                        | E3X-NA□F                        | 30                                                                                   | 0.5-mm dia.<br>(0.1-mm dia.)                                       |                           |                                      |
| Flexible<br>(resists | Ideal for mount-<br>ing on moving                     | Free-cut  |                                        | E3X-NA□ (V)                     | 360                                                                                  | 1.0-mm dia.<br>(0.03-mm dia.)                                      | E32-T11                   | 4 mm                                 |
| break-<br>ing) (R4)  | sections (R4)                                         |           | — <b>—∰</b> —→ <b>4∰——</b><br>M4 screw | E3X-NAG                         | □ 65                                                                                 |                                                                    |                           |                                      |
|                      |                                                       |           |                                        | E3X-NA□F                        | 100                                                                                  | 1.0-mm dia.<br>(0.2-mm dia.)                                       |                           |                                      |
|                      |                                                       |           |                                        | E3X-NA□ (V)                     | 100                                                                                  | 0.5-mm dia.<br>(0.03-mm dia.)                                      | E32-T21                   |                                      |
|                      |                                                       |           | — <b>—⊕</b> → <b>⊕</b> ——<br>M3 screw  | E3X-NAG                         | ] 18                                                                                 |                                                                    |                           |                                      |
|                      |                                                       |           |                                        | E3X-NA□F                        | 30                                                                                   | 0.5-mm dia.<br>(0.1-mm dia.)                                       |                           |                                      |
|                      |                                                       |           |                                        | E3X-NA (V)                      | 100                                                                                  | 0.5-mm dia.<br>(0.03-mm dia.)                                      | E32-T22B                  |                                      |
|                      |                                                       |           | 15-mm dia                              | E3X-NAG                         | ] 18                                                                                 |                                                                    |                           |                                      |
|                      |                                                       |           |                                        | E3X-NA□F                        | 30                                                                                   | 0.5-mm dia.<br>(0.1-mm dia.)                                       |                           |                                      |
| Side-<br>view        | Long distance;<br>space-saving                        | Free-cut  | B → D                                  | E3X-NA (V)                      | 240                                                                                  | 1.0-mm dia.<br>(0.03-mm dia.)                                      | E32-T14L                  | 25 mm                                |
|                      |                                                       |           | 3-mm dia. <del>-</del> -               | E3X-NAG                         | □ 45                                                                                 |                                                                    |                           |                                      |
|                      |                                                       |           | I I                                    | E3X-NA□F                        | 70                                                                                   | 1.0-mm dia.<br>(0.2-mm dia.)                                       |                           |                                      |
|                      | Space-saving                                          | Free-cut  | 3-mm dia. → 🕂                          | E3X-NA□ (V)                     | 110                                                                                  | 1.0-mm dia.<br>(0.03-mm dia.)                                      | E32-T14LR                 | 1 mm                                 |
|                      |                                                       |           | 11                                     | E3X-NA□F                        | 33                                                                                   | 1.0-mm dia.<br>(0.2-mm dia.)                                       |                           |                                      |
|                      | Suitable for de-<br>tecting minute                    | Free-cut  |                                        | E3X-NA□ (V)                     | 90                                                                                   | 0.5-mm dia.<br>(0.03-mm dia.)                                      | E32-T24                   | 10 mm                                |
|                      | sensing objects                                       |           | 1-mm dia1-                             | E3X-NAG                         | ] 12                                                                                 |                                                                    |                           |                                      |
|                      |                                                       |           |                                        | E3X-NA□F                        | 27                                                                                   | 0.5-mm dia.<br>(0.3-mm dia.)                                       |                           |                                      |
|                      | Suitable for de-<br>tecting minute                    | Free-cut) | 1-mm dia. → 🕂 🕂                        | E3X-NA (V)                      | 30                                                                                   | 0.5-mm dia.<br>(0.03-mm dia.)                                      | E32-T24R                  | 1 mm                                 |
|                      | sensing objects<br>(small diameter)                   |           | ĬĬ                                     | E3X-NA□F                        | 9                                                                                    | 0.5-mm dia.<br>(0.3-mm dia.)                                       |                           |                                      |
|                      | Screw-mounting type                                   | Free-cut  |                                        | E3X-NA□ (V)                     | 1,800                                                                                | 4.0-mm dia.<br>(0.03-mm dia.)                                      | E32-T14                   | 25 mm                                |
|                      |                                                       |           | l ti it                                | E3X-NAG                         | 330                                                                                  |                                                                    |                           |                                      |
|                      |                                                       |           |                                        | E3X-NA□F                        | 540                                                                                  | 4.0-mm dia.<br>(0.2-mm dia.)                                       |                           |                                      |

| Applica-<br>tion             | Features                                                                                                     | Appearance          | Applicable<br>Amplifier<br>Unit | Sensing distance (mm)<br>(Values in parentheses: when<br>using the E39-F1 Lens Unit) | Standard object<br>(see notes)<br>(min. sensing<br>object: opaque) | Model    | Permissi-<br>ble bend-<br>ing radius |
|------------------------------|--------------------------------------------------------------------------------------------------------------|---------------------|---------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------|----------|--------------------------------------|
| Chemi-<br>cal-re-<br>sistant | Teflon-covered<br>*1; withstands<br>chemicals and<br>harsh environments (oper-<br>ating ambient temperature: | 5-mm dia            | E3X-NA (V)<br>E3X-NAG           | 300                                                                                  | 4.0-mm dia.<br>(0.2-mm dia.)                                       | E32-T12F | 40 mm                                |
|                              | –30°C to 70°C)                                                                                               | S-min dia.          | E3X-NA□F                        | 480                                                                                  | 4.0-mm dia.<br>(0.7-mm dia.)                                       |          |                                      |
|                              | Teflon-covered<br>*1; side-view;<br>withstands                                                               | 5-mm dia + I + I    | E3X-NA (V)                      | 200                                                                                  | 3.0-mm dia.<br>(0.2-mm dia.)                                       | E32-T14F |                                      |
|                              | chemicals and harsh envi-<br>ronments (operating ambi-<br>ent temperature:                                   |                     |                                 | 37                                                                                   | 2.0 mm dia                                                         |          |                                      |
|                              | –30°C to 70°C)                                                                                               |                     | E3X-NALIF                       | <b>6</b> 0                                                                           | (0.7-mm dia.)                                                      |          |                                      |
|                              | Teflon *1; withstands<br>chemicals and harsh envi-<br>ronments (operating ambi-                              | -==+→==-            | E3X-NA (V)                      | 350                                                                                  | 1.0-mm dia.<br>(0.2-mm dia.)                                       | E32-T81F | 10 mm                                |
|                              | ent temperature:<br>–40°C to 200°C)                                                                          | 6-mm dia.           | E3X-NA□F                        | 100                                                                                  | 1.0-mm dia.<br>(0.5-mm dia.)                                       |          |                                      |
| Heat-re-<br>sistant          | Resists 200°C; flexible<br>(R10); fiber sheath materi-<br>al: Teflon *1 (operating am-                       | ─ <b>──</b> ₽→ @─── | E3X-NA□ (V)                     | 180                                                                                  | 1.0-mm dia.<br>(0.2-mm dia.)                                       | E32-T81R | 10 mm                                |
|                              | bient temperature: -40°C<br>to 200°C)                                                                        | M4 screw            | E3X-NA□F                        | <b>■</b> 50                                                                          | 1.0-mm dia.<br>(0.5-mm dia.)                                       |          |                                      |
|                              | Resists 150°C *2;<br>fiber sheath ma-<br>terial: fluororesin                                                 | —⊕-⊕—               | E3X-NA (V)                      | 400                                                                                  | 1.5-mm dia.<br>(0.03-mm dia.)                                      | E32-T51  | 35 mm                                |
|                              | (operating ambient temper-<br>ature: -40°C to 150°C)                                                         | M4 screw            | E3X-NA□F                        | 120                                                                                  | 1.5-mm dia.<br>(1.0-mm dia.)                                       |          |                                      |
|                              | Resists 300°C *3, with spi-<br>ral tube; high mechanical<br>strength; fiber sheath ma-                       | <u>┉</u><br>        | E3X-NA (V)                      | 300 (3,000)                                                                          | 1.0-mm dia.<br>(0.03-mm dia.)                                      | E32-T61  | 25 mm                                |
|                              | terial: stainless steel (oper-<br>ating ambient temperature:<br>-40°C to 300°C)                              | M4 screw            | E3X-NA□F                        | 90                                                                                   | 1.0-mm dia.<br>(0.5-mm dia.)                                       |          |                                      |
|                              | Side-view; re-<br>sists 150°C *2;<br>suitable for de-<br>tecting minute sensing ob-                          | 2-mm dia. + +       | E3X-NA (V)                      | 130                                                                                  | 1.0-mm dia.<br>(0.03-mm dia.)                                      | E32-T54  | 35 mm                                |
|                              | fluororesin (operating am-<br>bient temperature:<br>-40°C to 150°C)                                          | ĬĬ                  | E3X-NA□F                        | ■35 · · · ·                                                                          | 1.0-mm dia.<br>(0.3-mm dia.)                                       |          |                                      |
|                              | Resists 200°C *3;<br>L-shaped; fiber sheath ma-                                                              |                     | E3X-NA (V)                      | 700                                                                                  | 1.7-mm dia.<br>(0.03-mm dia.)                                      | E32-T84S | 25 mm                                |
|                              |                                                                                                              |                     | E3X-NA□F                        | 210                                                                                  | 1.7-mm dia.<br>(0.4-mm dia.)                                       |          |                                      |
| Slot sen-<br>sor             | Suitable for film sheet detection;                                                                           |                     | E3X-NA (V)                      | 10                                                                                   | 4.0-mm dia.<br>(0.1-mm dia.)                                       | E32-G14  | 25 mm                                |
|                              | adjustment required; easy to mount                                                                           |                     | E3X-NAG                         | 10                                                                                   |                                                                    |          |                                      |
|                              |                                                                                                              |                     | E3X-NA□F                        | 10                                                                                   | 4.0-mm dia.<br>(1.0-mm dia.)                                       |          |                                      |
| Narrow<br>vision<br>field    | Suitable for de-<br>tecting wafers                                                                           |                     | E3X-NA (V)                      | 1,000                                                                                | 1.7-mm dia.<br>(0.5-mm dia.)                                       | E32-T22S | 10 mm                                |
| neiu                         |                                                                                                              | 3-mm dia.           | E3X-NA□F                        | 300                                                                                  |                                                                    |          |                                      |
|                              | Side-view; suit-<br>able for detecting                                                                       | 3.5 mm dia. x 3 +   | E3X-NA (V)                      | 700                                                                                  | 2.0-mm dia.<br>(0.03-mm dia.)                                      | E32-T24S | 1                                    |
|                              | Waltis                                                                                                       |                     | E3X-NA□F                        | 210                                                                                  | 2.0-mm dia.<br>(0.5-mm dia.)                                       |          |                                      |

# Super Manual Fiber Amplifier E3X-NA

| Applica-<br>tion                                     | Features                                                    | Appearance  | Applicable<br>Amplifier<br>Unit | Sensing distance (mm)<br>(Values in parentheses: when<br>using the E39-F1 Lens Unit) | Standard object<br>(see notes)<br>(min. sensing<br>object: opaque) | Model     | Permissi-<br>ble bend-<br>ing radius |
|------------------------------------------------------|-------------------------------------------------------------|-------------|---------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------|-----------|--------------------------------------|
| Area<br>sensing                                      | Multi-point detection<br>(4-head)                           |             | E3X-NA□ (V)                     | 300                                                                                  | 2.0-mm dia.<br>(0.03-mm dia.)                                      | E32-M21   | 25 mm                                |
|                                                      |                                                             | M3 screw    | E3X-NA□F                        | 90                                                                                   | 2.0-mm dia.<br>(0.3-mm dia.)                                       |           |                                      |
|                                                      | Detects in a 30-mm area                                     |             | E3X-NA□ (V)                     | 920                                                                                  | (0.5-mm dia.)<br>*4                                                | E32-T16W  | 10 mm                                |
|                                                      |                                                             | 30 mm       | E3X-NAG                         | 170                                                                                  |                                                                    |           |                                      |
|                                                      |                                                             |             | E3X-NA□F                        | 270                                                                                  | (4.0-mm dia.)<br>*4                                                |           |                                      |
|                                                      | Detects in a<br>30-mm area                                  | •           | E3X-NA□ (V)                     | 690                                                                                  | (0.5-mm dia.)<br>*4                                                | E32-T16WR | 1 mm                                 |
|                                                      |                                                             | 30 mm       | E3X-NA□F                        | 200                                                                                  | (4.0-mm dia.)<br>*4                                                |           |                                      |
|                                                      | Side-view; suit-<br>able for applica-<br>tions with limited |             | E3X-NA□ (V)                     | 520                                                                                  | (0.3-mm dia.)<br>*4                                                | E32-T16J  | 10 mm                                |
|                                                      | spatial depth                                               | 11 mm       | E3X-NAG                         | 95                                                                                   |                                                                    | -         |                                      |
|                                                      |                                                             |             | E3X-NADF                        | 150                                                                                  | (2.0-mm dia.)<br>*4                                                |           |                                      |
|                                                      | Side-view; suit-<br>able for applica-<br>tions with limited |             | E3X-NAL (V)                     | 390                                                                                  | (0.3-mm dia.)<br>*4                                                | E32-T16JR | 1 mm                                 |
|                                                      | spatial depth                                               | 11 mm       | E3X-NALIF                       | 110                                                                                  | (2.0-mm dia.)<br>*4                                                |           |                                      |
|                                                      | tecting over a<br>10-mm area; long                          | F           |                                 | 1,500                                                                                | (0.9-mm dia.)<br>*4                                                | E32-T16   | 25 mm                                |
|                                                      | distance                                                    | ے۔<br>10 mm |                                 | 275                                                                                  | (4.5                                                               |           |                                      |
|                                                      |                                                             |             |                                 | 450                                                                                  | (1.5-mm dia.)<br>*4                                                |           | 10                                   |
|                                                      | ing minute sens-<br>ing objects in a                        |             | E3X-NAL (V)                     | 600                                                                                  | (0.3-mm dia.)<br>*4                                                | E32-T16P  | 10 mm                                |
| wide area; degree of pro-<br>tection: IEC 60529 IP50 | • 11 mm                                                     | E3X-NAG     | 110                             |                                                                                      |                                                                    |           |                                      |
|                                                      |                                                             |             | E3X-NA□F                        | 180                                                                                  | (2.0-mm dia.)<br>*4                                                |           |                                      |
|                                                      | Stable for detect-<br>ing minute sens-<br>ing objects in a  |             | E3X-NA                          | 450                                                                                  | (0.3-mm dia.)<br>*4                                                | E32-T16PR | 1 mm                                 |
|                                                      | wide area; degree of pro-<br>tection: IEC60529 IP50         | 11 mm       | E3X-NA□F                        | 130                                                                                  | (2.0-mm dia.)<br>*4                                                |           |                                      |

\*1 Teflon is a registered trademark of the Dupont Company and the Mitsui Dupont Chemical Company for their fluoride resin.

 $^{\star 2}~$  For continuous operation, use the products within a temperature range of –40°C to 130°C.

 $^{\star 3}$   $\,$  Indicates the heat-resistant temperature at the fiber tip.

\*4 These figures are for a sensing distance of 100 mm. (Diameters of sensing objects are ones at a stationary state.)

Note: 1. The size of standard sensing object is the same as the fiber core diameter (lens diameter for models with lens).

- 2. The values of the minimum sensing object for E3X-NA<sup>(V)</sup> and E3X-NAG<sup>(V)</sup> through-beam models indicate those obtained where the sensing distance and sensitivity are set to optimum values.
- 3. The value of the minimum sensing object for E3X-NA□F through-beam models indicates that obtained at the rated sensing distance with the sensitivity set to the optimum value.

## ■ Fiber Units with Reflective Sensors

Refer to the end of the following table for notes and precautions.

(Free-cut) Indicates models that allow free cutting. Models without this mark do not allow free cutting.

: Red light : Green light

| Applica-<br>tion    | Features                     | Appearance             | Applicable<br>Amplifier<br>Unit | Sensing distance (mm) *1 | Standard object<br>(see note) (min.<br>sensing object:<br>Gold wire) | Model      | Permis-<br>sible<br>bending<br>radius |
|---------------------|------------------------------|------------------------|---------------------------------|--------------------------|----------------------------------------------------------------------|------------|---------------------------------------|
| Long<br>distance    | M6 Free-cut                  |                        | E3X-NA (V)                      | 200                      | 250×250<br>(0.01-mm dia.)                                            | E32-D11L   | 25 mm                                 |
|                     |                              | <b>⊏∰⊅</b><br>M6 screw | E3X-NAG                         | 35                       | 50×50<br>(0.1-mm dia.)                                               |            |                                       |
|                     |                              |                        | E3X-NA□F                        | 65                       | 100×100<br>(0.015-mm dia.)                                           |            |                                       |
|                     | 3-mm dia.;<br>small diameter |                        | E3X-NA (V)                      | 120                      | 150×150<br>(0.01-mm dia.)                                            | E32-D12    |                                       |
|                     |                              |                        | E3X-NAG                         | ] 20                     | 25×25<br>(0.1-mm dia.)                                               |            |                                       |
|                     |                              |                        | E3X-NA□F                        | 40                       | 50×50<br>(0.015-mm dia.)                                             |            |                                       |
|                     | M4 Free-cut                  |                        | E3X-NA (V)                      | <b>5</b> 0               | 100×100<br>(0.01-mm dia.)                                            | E32-D21L   | 10 mm                                 |
|                     |                              | M4 screw               | E3X-NAG                         | ] 10                     | 25×25<br>(0.1-mm dia.)                                               |            |                                       |
|                     |                              |                        | E3X-NA□F                        | 17                       | 25×25<br>(0.015-mm dia.)                                             |            |                                       |
|                     | 3-mm dia.;<br>small diameter |                        | E3X-NA (V)                      | 50                       | 100×100<br>(0.01-mm dia.)                                            | E32-D22L   |                                       |
|                     |                              | 3-mm dia.              | E3X-NAG                         | ] 10                     | 25×25<br>(0.1-mm dia.)                                               |            |                                       |
|                     |                              |                        | E3X-NA□F                        | 17                       | 25×25<br>(0.015-mm dia.)                                             |            |                                       |
| General-<br>purpose | M6 Free-cut                  |                        | E3X-NA (V)                      | 150                      | 200×200<br>(0.01-mm dia.)                                            | E32-DC200  | 25 mm                                 |
|                     |                              | M6 screw               | E3X-NAG                         | 25                       | 50×50<br>(0.1-mm dia.)                                               |            |                                       |
|                     |                              |                        | E3X-NA□F                        | 50                       | 75×75<br>(0.015-mm dia.)                                             |            |                                       |
|                     | M6 Free-cut                  | ł                      | E3X-NA (V)                      | 90                       | 150×150<br>(0.01-mm dia.)                                            | E32-D11R   | 1 mm                                  |
|                     |                              | M6 screw               | E3X-NAG                         | 15                       | 25×25<br>(0.1-mm dia.)                                               |            |                                       |
|                     |                              |                        | E3X-NA□F                        | <b>3</b> 0               | 50×50<br>(0.02-mm dia.)                                              |            |                                       |
|                     | 3-mm dia.                    |                        | E3X-NA (V)                      | 90                       | 150×150<br>(0.01-mm dia.)                                            | E32-D12R   |                                       |
|                     |                              | 3-mm dia.              | E3X-NAG                         | 15                       | 25×25<br>(0.1-mm dia.)                                               |            |                                       |
|                     |                              |                        | E3X-NA□F                        | ∎ 30                     | 50×50<br>(0.02-mm dia.)                                              |            |                                       |
|                     | M3; small diam-<br>eter      |                        | E3X-NA (V)                      | ∎ 36                     | 50×50<br>(0.01-mm dia.)                                              | E32-DC200E | 10 mm                                 |
|                     |                              | M3 screw               | E3X-NAG                         | 6                        | 25×25<br>(0.1-mm dia.)                                               |            |                                       |
|                     |                              |                        | E3X-NA□F                        | ] 12                     | 25×25<br>(0.02-mm dia.)                                              |            |                                       |
|                     | M3; small diam-<br>eter      | M2 corour              | E3X-NA (V)                      | 15                       | 25×25<br>(0.01-mm dia.)                                              | E32-D21R   | 1 mm                                  |
|                     |                              | IVIS SCIEW             | E3X-NA                          | 5                        | 25×25<br>(0.03-mm dia.)                                              |            |                                       |
|                     | 3-mm dia.;<br>small diameter |                        | E3X-NA (V)                      | 15                       | 25×25<br>(0.01-mm dia.)                                              | E32-D22R   |                                       |
|                     |                              | 3-mm dia.              | E3X-NA□F                        | 15                       | 25×25<br>(0.03-mm dia.)                                              |            |                                       |

# Super Manual Fiber Amplifier E3X-NA

| Applica-<br>tion               | Features                                          | Features Appearance  |             | Sensing distance (mm) *1 | Standard object<br>(see note) (min.<br>sensing object:<br>Gold wire) | Model                     | Permis-<br>sible<br>bending<br>radius |
|--------------------------------|---------------------------------------------------|----------------------|-------------|--------------------------|----------------------------------------------------------------------|---------------------------|---------------------------------------|
| Thin fi-<br>ber                | 2.5-mm dia.; Free-cut                             | 90 mm (40 mm)        | E3X-NA (V)  | 150                      | 200×200<br>(0.01-mm dia.)                                            | E32-DC200B<br>E32-DC200B4 | 25 mm                                 |
|                                |                                                   | M6 screw 2.5-mm dia. | E3X-NAG     | 25                       | 50×50<br>(0.1-mm dia.)                                               |                           |                                       |
|                                |                                                   | ( ): E32-DC200B4     | E3X-NA□F    | 50                       | 75×75<br>(0.015-mm dia.)                                             |                           |                                       |
|                                | 1.2-mm dia.; Free-cut                             | 90 mm (40 mm)        | E3X-NA□ (V) | ∎ 36                     | 50×50<br>(0.01-mm dia.)                                              | E32-DC200F<br>E32-DC200F4 | 10 mm                                 |
|                                |                                                   | M3 screw 1.2-mm dia. | E3X-NAG     | 6                        | 25×25<br>(0.1-mm dia.)                                               |                           |                                       |
|                                |                                                   | (): E32-DC200F4      | E3X-NA□F    | ] 12                     | 25×25<br>(0.02-mm dia.)                                              |                           |                                       |
|                                | 0.8-mm dia.; for<br>detecting<br>minute sensing   | 3-mm dia.            | E3X-NA□ (V) | ] 10                     | 25×25<br>(0.01-mm dia.)                                              | E32-D33                   | 4 mm                                  |
|                                | objects                                           | 0.8-mm dia.          | E3X-NA□F    | 3.3                      | 25×25<br>(0.03-mm dia.)                                              |                           |                                       |
|                                | 0.5-mm dia.; for detecting minute sensing objects | 0.5-mm dia.          | E3X-NA      | 1.5                      | 25×25<br>(0.01-mm dia.)                                              | E32-D331                  | 4 mm                                  |
|                                |                                                   | 2-mm dia.            | E3X-NA□F    | 0.5                      | 25×25<br>(0.05-mm dia.)                                              |                           |                                       |
| Flexible<br>(resists<br>break- | Ideal for mounting on<br>moving sections (R4)     |                      | E3X-NA (V)  | 90                       | 150×150<br>(0.01-mm dia.)                                            | E32-D11                   | 4 mm                                  |
| ing) (R4)                      | Free-cut                                          | M6 screw             | E3X-NAG     | ] 15                     | 25×25<br>(0.1-mm dia.)                                               |                           |                                       |
|                                |                                                   |                      | E3X-NA□F    | 30                       | 50×50<br>(0.015-mm dia.)                                             |                           |                                       |
|                                |                                                   | @                    | E3X-NA□ (V) | 15                       | 25×25<br>(0.01-mm dia.)                                              | E32-D21                   |                                       |
|                                | Free-cut                                          | IVIS SCIEW           | E3X-NA□F    | 15                       | 25×25<br>(0.02-mm dia.)                                              |                           |                                       |
|                                |                                                   |                      | E3X-NA□ (V) | 15                       | 25×25<br>(0.01-mm dia.)                                              | E32-D21B                  |                                       |
|                                | Free-cut                                          | M4 screw             | E3X-NAG     | 2.4                      | 25×25<br>(0.1-mm dia.)                                               |                           |                                       |
|                                |                                                   |                      | E3X-NA□F    | 15                       | 25×25<br>(0.02-mm dia.)                                              |                           |                                       |
|                                |                                                   | <del>_</del>         | E3X-NA (V)  | 7                        | 25×25<br>(0.01-mm dia.)                                              | E32-D22B                  |                                       |
|                                |                                                   | 1.5-mm dia.          | E3X-NA□F    | 12.3                     | 25×25<br>(0.02-mm dia.)                                              |                           |                                       |

| Applica-<br>tion             | Features                                                                       | Appearance                  | Applicable<br>Amplifier<br>Unit | Sensing distance (mm) *1 | Standard object<br>(see note) (min.<br>sensing object:<br>Gold wire) | Model     | Permis-<br>sible<br>bending<br>radius |
|------------------------------|--------------------------------------------------------------------------------|-----------------------------|---------------------------------|--------------------------|----------------------------------------------------------------------|-----------|---------------------------------------|
| Coaxial                      | M6 coaxial;<br>high-precision                                                  |                             | E3X-NA (V)                      | 150                      | 200×200<br>(0.01-mm dia.)                                            | E32-CC200 | 25 mm                                 |
|                              | positioning                                                                    | ── <b>─</b> ⊂∰⊐<br>M6 screw | E3X-NAG                         | ] 25                     | 50×50<br>(0.1-mm dia.)                                               |           |                                       |
|                              |                                                                                |                             | E3X-NA□F                        | 50                       | 75≍75<br>(0.015-mm dia.)                                             |           |                                       |
|                              | 3-mm dia. coaxi-<br>al; small diame-                                           |                             | E3X-NA (V)                      | 80                       | 100×100<br>(0.01-mm dia.)                                            | E32-D32L  |                                       |
|                              | precision positioning                                                          | 3-mm dia.                   | E3X-NAG                         | ] 12                     | 25×25<br>(0.1-mm dia.)                                               |           |                                       |
|                              |                                                                                |                             | E3X-NA□F                        | 25                       | 50×50<br>(0.02-mm dia.)                                              |           |                                       |
|                              | M3 coaxial;<br>high-precision                                                  |                             | E3X-NA (V)                      | <b>4</b> 0               | 50×50<br>(0.01-mm dia.)                                              | E32-C31   |                                       |
|                              | possible to mount small-<br>spot lens (E39-F3A-5/<br>E38/F3C)                  | M3 screw                    | E3X-NAG                         | ]6                       | 25×25<br>(0.1-mm dia.)                                               |           |                                       |
|                              | F3B/F3C)                                                                       |                             | E3X-NA□F                        | 13                       | 25×25<br>(0.02-mm dia.)                                              |           |                                       |
|                              | M3 coaxial; high-preci-<br>sion positioning; possi-<br>ble to mount small–spot |                             | E3X-NA□ (V)                     | 15                       | 25×25<br>(0.01-mm dia.)                                              | E32-C41   |                                       |
|                              | lens (E39-F3A-5/F3B/F3C)                                                       | M3 screw                    | E3X-NA□F                        | 5                        | 25×25<br>(0.02-mm dia.)                                              |           |                                       |
|                              | 2-mm dia. coaxial; high-<br>precision positioning;<br>possible to mount small- | <del></del>                 | E3X-NA (V)                      | 15                       | 25×25<br>(0.01-mm dia.)                                              | E32-C42   |                                       |
|                              | spot (0.1 to 0.6 dia.) lens<br>(E39-F3A)                                       | 2-mm dia.                   | E3X-NA□F                        | 15                       | 25×25<br>(0.02-mm dia.)                                              |           |                                       |
|                              | 2-mm dia. coaxi-<br>al; high-preci-                                            |                             | E3X-NA (V)                      | 40                       | 50×50<br>(0.01-mm dia.)                                              | E32-D32   |                                       |
|                              | positioning; possible to<br>mount small-spot (0.5 to 1                         | <br>2-mm dia.               | E3X-NAG                         | ]6                       | 25×25<br>(0.1-mm dia.)                                               |           |                                       |
|                              | dia.) iens (E39-F3A)                                                           |                             | E3X-NA□F                        | 13                       | 25×25<br>(0.02-mm dia.)                                              |           |                                       |
| Side-<br>view                | 6-mm dia.; long<br>distance                                                    |                             | E3X-NA (V)                      | 40                       | 50×50<br>(0.03-mm dia.)                                              | E32-D14L  | 25 mm                                 |
|                              |                                                                                | 6-mm dia. + +               | E3X-NAG                         | ] 10                     | 25×25<br>(0.3-mm dia.)                                               |           |                                       |
|                              |                                                                                | _                           | E3X-NA□F                        | 13                       | 25×25<br>(0.03-mm dia.)                                              |           |                                       |
|                              | 6-mm dia.                                                                      | 6-mm dia. →[]+              | E3X-NA□ (V)                     | 16                       | 25×25<br>(0.03-mm dia.)                                              | E32-D14LR | 1 mm                                  |
|                              |                                                                                | ¥                           | E3X-NA□F                        | 5                        |                                                                      |           |                                       |
|                              | 2-mm dia.; small<br>diameter space-<br>saving                                  | . a mm dia                  | E3X-NA□ (V)                     | 15                       | 25×25<br>(0.03-mm dia.)                                              | E32-D24   | 10 mm                                 |
|                              | g                                                                              | 2-mm dia.                   | E3X-NAG                         | 2.4                      | 25×25<br>(0.3-mm dia.)                                               |           |                                       |
|                              |                                                                                |                             | E3X-NA□F                        | 5                        | 25×25<br>(0.03-mm dia.)                                              |           |                                       |
|                              | 2-mm dia.; small<br>diameter space-<br>saving                                  | - <b>-</b> 2-mm dia.        | E3X-NA□ (V)                     | 7                        | 25×25<br>(0.03-mm dia.)                                              | E32-D24R  | 1 mm                                  |
|                              |                                                                                | Y                           | E3X-NA□F                        | 2.3                      |                                                                      |           |                                       |
| Chemi-<br>cal-re-<br>sistant | Teflon-covered<br>*3; withstands<br>chemicals and                              |                             | E3X-NA□ (V)                     | <b>5</b> 0               | 100×100<br>(0.03-mm dia.)                                            | E32-D12F  | 40 mm                                 |
|                              | harsh environments (op-<br>erating ambient tempera-<br>ture:                   | 6-mm dia.                   | E3X-NAG                         | ]8                       | 25×25<br>(0.3-mm dia.)                                               |           |                                       |
|                              | -30°C to 70°C)                                                                 |                             | E3X-NA□F                        | 16                       | 25×25<br>(0.03-mm dia.)                                              |           |                                       |

# Super Manual Fiber Amplifier E3X-NA

| Applica-<br>tion           | Features                                                                                                                                | Appearance            | Applicable<br>Amplifier<br>Unit | Sensing distance (mm) *1    | Standard object<br>(see note) (min.<br>sensing object:<br>Gold wire) | Model                              | Permis-<br>sible<br>bending<br>radius |
|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-----------------------|---------------------------------|-----------------------------|----------------------------------------------------------------------|------------------------------------|---------------------------------------|
| Heat-re-<br>sistant        | Resists 150°C<br>*2; fiber sheath<br>material: fluo-                                                                                    |                       | E3X-NA (V)                      | 120                         | 150×150<br>(0.03-mm dia.)                                            | E32-D51                            | 35 mm                                 |
|                            | roresin (operating ambi-<br>ent temperature:<br>–40°C to 150°C)                                                                         | M6 screw              | E3X-NA□F                        | 40                          | 50×50<br>(0.03-mm dia.)                                              |                                    |                                       |
|                            | Resists 300°C *4; fiber<br>sheath material: stainless<br>steel (operating ambient                                                       |                       | E3X-NA (V)                      | <b>4</b> 5                  | 100×100<br>(0.03-mm dia.)                                            | E32-D61                            | 25 mm                                 |
|                            | temperature:<br>-40°C to 300°C)                                                                                                         | M6 screw              | E3X-NA□F                        | 15                          | 25×25<br>(0.03-mm dia.)                                              |                                    |                                       |
|                            | Resists 400°C *4; fiber<br>sheath material: stainless<br>steel (operating ambient<br>temperature:                                       | 1.25-mm dia.          | E3X-NA□ (V)                     | ∎ 30                        | 50×50<br>(0.03-mm dia.)                                              | E32-D73                            |                                       |
|                            | -40°C to 400°C)                                                                                                                         | M4 screw              | E3X-NA□F                        | 10                          | 25×25<br>(0.03-mm dia.)                                              |                                    |                                       |
| Area<br>sensing            | Side-view; de-<br>tection over<br>wide areas                                                                                            |                       | E3X-NA (V)                      | 75                          | 100×100<br>(0.03-mm dia.)                                            | E32-D36P1                          | 25 mm                                 |
|                            | wide areas                                                                                                                              |                       | E3X-NA□F                        | 25                          | 50×50<br>(0.03-mm dia.)                                              |                                    |                                       |
| Retrore-<br>flective       | Transparent object detection                                                                                                            | M6 screw<br>——व्य∰ —— | E3X-NA□ (V)                     | 10 to 250                   | 35-mm dia.<br>(0.3-mm dia.)                                          | E32-R21<br>+E39-R3                 | 10 mm                                 |
|                            | _                                                                                                                                       | Reflector<br>E39-R3   | E3X-NADF                        | 10 to 250                   | 35-mm dia.<br>(0.5-mm dia.)                                          | (Attachment)                       |                                       |
|                            | Transparent ob-<br>ject detection<br>(operating ambi-<br>ent temperature:<br>-25°C to 55°C); degree of<br>protection: IEC 60529<br>IP66 |                       | E3X-NA∐ (V)                     | 150<br>to<br>1,500          | 35-mm dia.<br>(0.6-mm dia.)                                          | E32-R16<br>+E39-R1<br>(Attachment) | 25 mm                                 |
|                            |                                                                                                                                         | E3X-NA□F              | 150<br>to<br>1,000              | 35-mm dia.<br>(4.0-mm dia.) |                                                                      |                                    |                                       |
| Limited<br>reflec-<br>tive | Suitable for po-<br>sitioning crystal<br>glass                                                                                          |                       | E3X-NA□ (V)                     | 4 to12                      |                                                                      | E32-L56E1<br>E32-L56E2             | 35 mm                                 |
|                            |                                                                                                                                         |                       | E3X-NA□F                        | 4 to12                      |                                                                      |                                    |                                       |
|                            | Detects wafers<br>and small differ-<br>ences in height;                                                                                 | <b>V</b> = <b>1</b>   | E3X-NA                          | 4±2                         | 25×25<br>(0.015-mm dia.)                                             | E32-L24L                           | 10 mm                                 |
|                            | (operating ambient tem-<br>perature:<br>-40°C to 105°C); degree                                                                         |                       | E3X-NA                          | 4±2                         | 25×25<br>(0.03-mm dia.)                                              |                                    |                                       |
|                            | of protection: IEC 60529<br>IP50                                                                                                        |                       |                                 | 7. <u>2±</u> 1.8            | 25×25<br>(0.015-mm dia.)                                             | E32-L25L                           |                                       |
|                            | Detects waters                                                                                                                          |                       |                                 | 7.2±1.8                     | 25×25<br>(0.03-mm dia.)                                              |                                    | 25 mm                                 |
|                            | and small differ-<br>ences in height;                                                                                                   | 0<br>0                |                                 | 3.3                         | (0.015-mm dia.)                                                      | E32-L25                            | 25 1111                               |
|                            | IEC 60529 IP50                                                                                                                          |                       | E3X-NA                          | 3.3                         | (0.03-mm dia.)<br>25×25                                              | E22   25 A                         |                                       |
|                            |                                                                                                                                         |                       | E3X-NADF                        |                             | (0.015-mm dia.)<br>25×25                                             | E32-L25A                           |                                       |
| Fluid-                     | Fluid contact type: un-                                                                                                                 |                       | E3X-NA (V)                      |                             | (0.03-mm dia.)                                                       | E32-D82F1                          | 40 mm                                 |
| tection                    | L=150 mm, 350 mm (two<br>types)                                                                                                         |                       | E3X-NA□F                        |                             |                                                                      | LJZ-DOZFZ                          |                                       |
|                            | Tube-mounting<br>type                                                                                                                   | alta                  | E3X-NA (V)                      |                             |                                                                      | E32-L25T                           | 10 mm                                 |
|                            |                                                                                                                                         |                       | E3X-NA□F                        |                             |                                                                      |                                    |                                       |

\*1 Sensing distance indicates values for white paper.

 $^{*2}$  For continuous operation, use the products within a temperature range of  $-40^{\circ}$ C to  $130^{\circ}$ C.

\*<sup>3</sup> Teflon is a registered trademark of the Dupont Company and the Mitsui Dupont Chemical Company for their fluoride resin.

\*<sup>4</sup> Indicates the heat-resistant temperature at the fiber tip.

Note The values of the minimum sensing object indicate those obtained at a distance where the smallest object can be sensed with the Reflective Fiber Unit.

# Operation

# ■ Output Circuits

| Output | Model                                                                                | Mode<br>selector   | Timing chart                                                                                                                                                                 | State of<br>output<br>transistor | Output circuit                                                                                                                                      |
|--------|--------------------------------------------------------------------------------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| NPN    | E3X-NA11<br>E3X-NA6<br>E3X-NA611<br>E3X-NA11F<br>E3X-NA11V<br>E3X-NA11V<br>E3X-NA14V | LIGHT ON<br>(L/ON) | Incident light<br>No incident light<br>Operation indicator ON<br>(orange) OFF<br>Output ON<br>transistor OFF<br>Load (relay) Operate<br>Release<br>(Between brown and black) | Light ON                         | Operation<br>indicator<br>(orange)<br>Photo-<br>electric<br>Sensor<br>main<br>circuit<br>Black<br>Black<br>Control output<br>3<br>U<br>Blue<br>Blue |
|        |                                                                                      | DARK ON<br>(D/ON)  | Incident light<br>No incident light<br>Operation indicator ON<br>(orange) OFF<br>Output ON<br>transistor OFF<br>Load (relay) Operate<br>Release<br>(Between brown and black) | Dark ON                          | M8 Connector Pin Arrangement                                                                                                                        |
| PNP    | E3X-NA41<br>E3X-NA8<br>E3X-NA641<br>E3X-NA41F<br>E3X-NA41V<br>E3X-NA41V<br>E3X-NA44V | LIGHT ON<br>(L/ON) | Incident light<br>No incident light<br>Operation indicator ON<br>(orange) OFF<br>Output<br>transistor OFF<br>Load (relay) Operate<br>Release<br>(Between brown and black)    | Light ON                         | Photo-<br>electric<br>Sensor<br>circuit                                                                                                             |
|        |                                                                                      | DARK ON<br>(D/ON)  | Incident light<br>No incident light<br>Operation indicator ON<br>(orange) OFF<br>Output ON<br>transistor OFF<br>Load (relay) Operate<br>Release<br>(Between brown and black  | Dark ON                          | M8 Connector Pin Arrangement                                                                                                                        |

### **Connectors (Sensor I/O Connectors)**



| Classification | Color of cable<br>conductors | Connection<br>pin number | Application           |
|----------------|------------------------------|--------------------------|-----------------------|
| DC             | Brown                        | 1                        | Power supply (+V)     |
|                | White                        | 2                        |                       |
|                | Blue                         | 3                        | Power supply<br>(0 V) |
|                | Black                        | 4                        | Output                |

Note Pin 2 is not used.

# Engineering Data (Typical)

## Parallel Operating Range

At max. sensitivity. (Use for optical axis adjustment at installation.)



#### **Operating Range**

With standard sensing object at max. sensitivity. (Use for the positioning of the object and Sensor.)



## Number of Turns of Sensitivity Adjuster vs. Sensing Distance





Sensing Distance vs. Hysteresis





# Application

## ■ Wiring Precautions

Read the following before using the Amplifier Unit and Sensor to ensure safety.

#### **Power Supply Voltage**

Do not impose any voltage exceeding the rated voltage on the E3X-NA. Do not impose AC power (100 VAC) on models that operate with DC. In both cases, the E3X-NA may rupture or burn.

#### Load Short-circuits

Do not short-circuit the load connected to the E3X-NA, otherwise the E3X-NA may rupture or burn.

#### Polarity

When supplying power to the E3X-NA, make sure that the polarity of the power is correct, otherwise the E3X-NA may rupture or burn.

## Amplifier Units

#### Nomenclature



#### Installation

#### **Turning Power ON**

The Sensor is ready to operate within 100 ms after the power supply is turned ON. If the Sensor and load are connected to power supplies separately, be sure to turn ON the power supply to the Sensor first.

#### **Turning Power OFF**

Pulses may be output when the power is turned OFF. Always turn OFF the power to the load or the load line first.

#### **Power Supply Type**

A full or half-wave rectifying power supply without a smoothing circuit cannot be used.

#### **Communications Hole**

The hole on the side of the Amplifier Unit is a communications hole for preventing mutual interference when Amplifier Units are mounted side-by-side. The E3X-MC11 Mobile Console (sold separately) cannot be used.

If an excessive amount of light is received via the Sensor, the mutual interference prevention function may not work. In this case, make the appropriate adjustments using the sensitivity adjuster.

The mutual interference prevention function will not operate when the E3X-NA is used side-by-side with E3X-DA-N models.

#### **No-load Operation**

A load must be connected to the E3X-NA during operation, otherwise internal elements may rupture or burn. Always wire through a load.

#### **Operating Environment**

- Do not use the Amplifier Unit or Sensor in places with flammable or explosive gas.
- Do not use the Amplifier Unit or Sensor underwater.
- Do not disassemble, repair, or modify the Amplifier Unit or Sensor.

#### Wiring

#### Cable

The cable can be extended, provided that the extension wire applied is at least  $0.3 \text{ mm}^2$  thick and the total distance no more than 100 m.

Do not pull the cable with a force exceeding 30N.

#### Separation from Power or High-tension Lines

Do not wire power lines or high-tension lines alongside the lines of the Amplifier Unit in the same conduit, otherwise the Amplifier Unit may be damaged or malfunction due to induction. Be sure to wire the lines of the Amplifier Unit separated as far as possible from power lines or high-tension lines or laid in an exclusive, shielded conduit.



#### **Power Supply**

If a standard switching regulator is used as a power supply, the frame ground (FG) terminal and the ground (G) terminal must be grounded, otherwise faulty operation may result from the switching noise of the power supply.

#### M8 Metal Connectors (Water-resistant Models)

Turn OFF the power before inserting or removing the connector.

Hold the connector cover when inserting or removing the connector.

Tighten the fixing screws by hand. Using tools such as pliers may cause damage.

The applicable tightening torque range is 0.3 to 0.4 N·m. If tightening is insufficient, the enclosure rating may not be maintained, and vibrations may cause the connector to come loose.

#### Mounting

#### Joining Amplifier Units

1. Mount the Amplifier Units one at a time onto the DIN track.



2. Slide the Amplifier Units together, line up the clips, and press the Amplifier Units together until they click into place.



#### Separating Amplifier Units

Slide Amplifier Units away from each other, and remove from the DIN track one at a time. (Do not attempt to remove Amplifier Units from the DIN track without separating them first.)

- **Note:** 1. The specifications for ambient temperature will vary according to the number of Amplifier Units used together. For details, refer to *Ratings/Characteristics*.
  - 2. Always turn OFF the power supply before joining or separating Amplifier Units.

#### Mounting

- 1. Mount the front part on the mounting bracket (ordered separately) or a DIN track.
- 2. Press the back part onto the mounting bracket or the DIN track.
- **Note** Do not mount the back of the Amplifier Unit onto the mounting bracket or the DIN track first, otherwise the mounting strength of the Amplifier Unit may be reduced. Always mount the front of the Amplifier Unit first.



#### Dismounting

By pressing the Amplifier Unit in direction (3) and lifting the fiber insertion part in direction (4) as shown in the following diagram, the Amplifier Unit can be dismounted with ease.



When side-mounting using a mounting bracket, secure the mounting bracket to the Amplifier Unit and then mount using M3 screws. Use plain washers of diameter 6 mm or less when mounting.



#### Adjustment

#### Indicators

In addition to an operation indicator (orange), the E3X-NA also has incident level indicators (4 green and 1 red). Use these indicators for optical axis adjustments and maintenance.

| Status of indicators<br>(in L/ON mode)        | Operation<br>indicator<br>(in L/ON<br>mode) | Incident level                                  |
|-----------------------------------------------|---------------------------------------------|-------------------------------------------------|
| Operation indicator Incident level indicators | Not lit                                     | Approx.<br>80% max. of op-<br>erating level     |
| Not lit Lit (See note.)                       |                                             |                                                 |
|                                               | Not lit                                     | Approx. 80% to<br>90% of operat-<br>ing level   |
|                                               | Not lit or lit                              | Approx. 90% to<br>110% of operat-<br>ing level  |
|                                               | Lit                                         | Approx. 110% to<br>120% of operat-<br>ing level |
|                                               | Lit                                         | Approx. 120%<br>min. of operating<br>level      |

Note The rightmost indicator will be lit even if the incident level is 0.

#### **Operating Environment**

#### Ambient Conditions

If dust or dirt adhere to the hole for optical communications, it may prevent normal communications. Be sure to remove any dust or dirt before using the Units.

#### Miscellaneous

#### **Ratings and Specifications**

The ratings and performance specifications for items such as the minimum sensing object and characteristics are based on products taken at random from certain production lots. Use this data as reference only.

#### **Protective Cover**

Be sure to mount the Protective Cover before use.

## Fiber Unit

#### Mounting

#### **Tightening Force**

The tightening force applied to the Fiber Unit should be as follows:

#### **Screw-mounting Model**





| Fiber Units                                                                                    | Clamping torque                                                                    |
|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| M3/M4 screw                                                                                    | 0.78 N·m max.                                                                      |
| M6 screw/<br>6-mm dia. cylinder                                                                | 0.98 N·m max.                                                                      |
| 1.5-mm dia. cylinder                                                                           | 0.2 N·m max.                                                                       |
| 2-mm dia./3-mm dia.<br>cylinder                                                                | 0.29 N·m max.                                                                      |
| E32-T12F 5-mm dia.<br>Teflon model                                                             | 0.78 N m mox                                                                       |
| E32-D12F 6-mm dia.<br>Teflon model                                                             | U.70 NHH HIdX.                                                                     |
| E32-T16                                                                                        | 0.49 N·m max.                                                                      |
| E32-R21                                                                                        | 0.59 N·m max.                                                                      |
| E32-M21                                                                                        | Up to 5 mm to the tip: 0.49 N·m max.<br>More than 5 mm from the tip: 0.78 N·m max. |
| E32-L25A                                                                                       | 0.78 N·m max.                                                                      |
| E32-T16P<br>E32-T16PR<br>E32-T24S<br>E32-L24L<br>E32-L25L<br>E32-L25L<br>E32-T16J<br>E32-T16JR | 0.29 N⋅m max.                                                                      |
| E32-T16W<br>E32-T16WR                                                                          | 0.3 N·m max.                                                                       |

Use a proper-sized wrench.



#### **Fiber Connection and Disconnection**

The E3X Amplifier Unit has a lock button. Connect or disconnect the fibers to or from the E3X Amplifier Unit using the following procedures:

1. Connection

Open the protective cover, insert the fibers according to the fiber insertion marks on the side of the Amplifier Unit, and lower the lock button.



2. Disconnection

Remove the protective cover and raise the lock button to pull out the fiber.



- **Note** To maintain the fiber properties, confirm that the lock is released before removing the fiber.
  - 3. Precautions for Fiber Connection/Disconnection

Be sure to lock or unlock the lock button within an ambient temperature range between  $-10^\circ C$  and  $40^\circ C.$ 

#### **Cutting Fiber**

Insert a fiber into the Fiber Cutter and determine the length of the fiber to be  $\ensuremath{\mathsf{cut}}$  .

Press down the Fiber Cutter in a single stroke to cut the fiber.

The cutting holes cannot be used twice. If the same hole is used twice, the cutting face of the fiber will be rough and the sensing distance will be reduced. Always use an unused hole.

Cut a thin fiber as follows:

1. An attachment is temporarily fitted to a thin fiber before shipment.



2. Secure the attachment after adjusting the position of it in the direction indicated by the arrow.



3. Insert the fiber to be cut into the E39-F4.



4. Finished state (proper cutting state)



Note Insert the fiber in the direction indicated by the arrow.

#### Connection

Do not pull or press the Fiber Units. The Fiber Units have a withstand force of 9.8 N or 29.4 N maximum (pay utmost attention because the fibers are thin).

Do not bend the Fiber Unit beyond the permissible bending radius given under *Specifications: Amplifier Units* on page 3.

Do not bend the edge of the Fiber Units (excluding the E32-T $\Box$ R and E32-D $\Box$ R).



Do not apply excess force on the Fiber Units.





Incorrect

The Fiber Head could be broken by excessive vibration. To prevent this, the following is effective:



## **Bending Radius**

#### E39-F11 Sleeve Bender

The bending radius of the stainless steel tube should be as large as possible. The smaller the bending radius becomes, the shorter the sensing distance will be.

Insert the tip of the stainless steel tube to the Sleeve Bender and bend the stainless steel tube slowly along the curve of the Sleeve Bender (refer to the figure).



Amplifier Units with Connectors

#### Mounting

#### **Mounting Connectors**

1. Insert the Master or Slave Connector into the Amplifier Unit until it clicks into place.



- 2. Join Amplifier Units together as required after all the Master and Slave Connectors have been inserted.
- 3. Attach the stickers (provided as accessories) to the sides of Master and Slave Connectors that are not connected to other Connectors.





#### **Removing Connectors**

- 1. Slide the slave Amplifier Unit for which the Connector is to be removed away from the rest of the group.
- 2. After the Amplifier Unit has been separated, press down on the lever on the Connector and remove it. (Do not attempt to remove Connectors without separating them from other Amplifier Units first.)



#### Mounting End Plate (PFP-M)

Depending on how it is mounted, an Amplifier Unit may move during operation. In this case, use an End Plate.

Before mounting an End Plate, remove the clip from the master Amplifier Unit using a nipper or similar tool.



The clip can also be removed using the following mechanism, which is incorporated in the construction of the section underneath the clip.

1. Insert the clip to be removed into the slit underneath the clip on another Amplifier Unit.



## Reflector

#### Use of E39-R3 Reflector

Use detergent, etc., to remove any dust or oil from the surfaces where tape is applied. Adhesive tape will not be attached properly if oil or dust remains on the surface.

The E39-R3 cannot be used in places where it is exposed to oil or chemicals.

#### E39-F32 Protective Spiral Tubes

Insert a fiber to the Protective Spiral Tube from the head connector side (screwed) of the tube.

Protective Spiral Fiber Unit

Push the fiber into the Protective Spiral Tube. The tube should be straight so that the fiber is not twisted when inserted. Then turn the end cap of the spiral tube.





Pull Strengths for Connectors (Including Cables) E3X-CN11: 30 N max. E3X-CN12: 12 N max.

Secure the Protective Spiral Tube on a suitable place with the attached  $\operatorname{nut}\nolimits$ 



Use the attached saddle to secure the end cap of the Protective Spiral Tube. To secure the Protective Spiral Tube at a position other than the end cap, apply tape to the tube so that the portion becomes thicker in diameter.



#### E39-F10 Fiber Connector

Mount the Fiber Connector as shown in the following illustrations.



The Fiber Units should be as close as possible when they are connected.

Sensing distance will be reduced by approximately 25% when fibers are connected.

Only 2.2-mm-dia. fibers can be connected.

# Dimensions

Note All units are in millimeters unless otherwise indicated.

## Amplifier Units

### Amplifier Units with Cables (with Mounting Bracket Attached)



Note: 1. The mounting bracket can also be used on side A.
 With these models, a 4-dia., 3-conductor, vinyl-insulated round cable (conductor cross-sectional area: 0.2 mm<sup>2</sup>; insulation diameter: 1.1 mm) is used. Standard length: 2 m.

3. The hole for optical communications is for preventing mutual interference. There is no hole for E3X-NA□F models.

#### Amplifier Units with Cables, Water-resistant Models (with Mounting Bracket Attached)



Note: 1. The mounting bracket can also be used on side A.

 With these models, a 4-dia., 3-conductor, vinyl-insulated round cable (conductor cross-sectional area: 0.2 mm<sup>2</sup>; insulation diameter: 1.1 mm) is used. Standard length: 2 m.

#### **Amplifier Units with Connectors**



#### **Dimensions with Master Connector Connected**

Dimensions with Slave Connector Connected



#### Amplifier Units with Connectors, Water-resistant Models (with Mounting Bracket Attached)



## ■ Amplifier Unit Connectors



Note: A 4-dia., 3-conductor, vinyl-insulated round cable (conductor cross-sectional area: 0.2 mm<sup>2</sup>; insulation diameter: 1.1 mm) is used.



Note: A 2.6-dia., single-conductor, vinyl-insulated round cable (conductor cross-sectional area: 0.2 mm<sup>2</sup>; insulation diameter: 1.1 mm) is used.

## Sensor I/O Connectors

Straight Connector (at One End of Cable) XS3F-M421-402-A (L=2 m) XS3F-M421-405-A (L=5 m)



L-shaped Connector (at One End of Cable) XS3F-M422-402-A (L=2 m) XS3F-M422-405-A (L=5 m)





# ■ Accessories (Order Separately)

## Mounting Bracket for E3X-NA , E3X-NA F, and E3X-NAG Models

E39-L143



R1.7



#### Mounting Bracket for E3X-NA V Models

E39-L148



Material: Stainless steel (SUS 304)







#### **End Plate**







ALL DIMENSIONS SHOWN ARE IN MILLIMETERS. To convert millimeters into inches, multiply by 0.03937. To convert grams into ounces, multiply by 0.03527.

Cat. No. E318-E1-02A In the interest of product improvement, specifications are subject to change without notice.

## **OMRON** Corporation

Industrial Automation Company

Application Sensors Division Sensing Devices and Components Division H.Q. Shiokoji Horikawa, Shimogyo-ku, Kyoto, 600-8530 Japan Tel: (81)75-344-7068/Fax: (81)75-344-7107

Printed in Japan 0102-2M (0601) (A)



Sense Different, Make Difference!

Simple to Use



**Just Open It!** 



You don't need a manual anymore. Super Manual Fiber Amplifiers The E3X-NA Series

# The E3X-NA debut! Following on from our best-seller E3X-A/F Amplifiers, OMRON now presents the ultimate in ease and simplicity.



We were highly praised for the simplicity of the E3X-A/F Fiber Amplifiers when they were released in the '90's. Now, at the beginning of 21st century, we present the E3X-NA Series of Super Manual Fiber Amplifiers. Based on the concept that anyone should be able to use the amplifiers without an instruction manual, we pursued the bare essentials required of manual fiber amplifiers. Removing all unnecessary functions, we achieved simplicity in an amplifier that could be used immediately by anyone. The Millennium Sensor.



# **Instinctively** Simple





# **Selecting State-of-the-Art Fiber Amplifiers**

Select the E3X-NA Series of Super Manual Fiber Amplifiers for the Ultimate in Simplicity.



# For Complete Functionality, select the E3X-DA-N Series of Digital Fiber Amplifiers



# The E3X-NA Series - a new lineup of Fiber Amplifiers that enable simple manual operation.

# **Ordering Information**

Amplifier Units

**Amplifier Units with Cables** 

| Itom                        | Annearance | Control output | Model      |            |  |
|-----------------------------|------------|----------------|------------|------------|--|
| nem                         | Appearance | Control output | NPN output | PNP output |  |
| Standard models             | AT I       | ON/OFF output  | E3X-NA11   | E3X-NA41   |  |
| High-speed detection models |            |                | E3X-NA11F  | E3X-NA41F  |  |
| Mark-detecting models       |            |                | E3X-NAG11  | E3X-NAG41  |  |
| Water-resistant models      |            |                | E3X-NA11V  | E3X-NA41V  |  |

#### **Amplifier Units with Connectors**

| Itom                                         | Appoaranco | Applicable Connector |                              | Control output | Model      |            |
|----------------------------------------------|------------|----------------------|------------------------------|----------------|------------|------------|
| nem                                          | Appearance |                      | der separately)              | Control output | NPN output | PNP output |
| Standard models                              |            | Master               | E3X-CN11                     | ON/OFF output  | E3X-NA6    | E3X-NA8    |
|                                              |            | Slave                | E3X-CN12                     |                |            |            |
| Water-resistant<br>models<br>(M8 connectors) |            | XS3F-M<br>XS3F-M     | 1421-40 □ -A<br>1422-40 □ -A |                | E3X-NA14V  | E3X-NA44V  |

## Amplifier Unit Connectors (Order Separately)

| Item                | Appearance | Cable length | No. of<br>conductors | Model    |
|---------------------|------------|--------------|----------------------|----------|
| Master<br>Connector | Í          | 2 m          | 3                    | E3X-CN11 |
| Slave<br>Connector  |            |              | 1                    | E3X-CN12 |

## Sensor I/O Connectors (Order Separately)

| Cable specifications | Appearance | Type of cable |           | Model           |
|----------------------|------------|---------------|-----------|-----------------|
| Standard             | Straight   | 2 m           | Four-core | XS3F-M421-402-A |
| cable                | C Miles    | 5 m           | cable     | XS3F-M421-405-A |
|                      | L-shape    | 2 m           |           | XS3F-M422-402-A |
|                      |            | 5 m           |           | XS3F-M422-405-A |

# Combining Amplifier Units and Connectors

When ordering Connector-type Amplifier Units, refer to the following tables. Basically, Amplifier Units and Connectors are sold separately.

| Amplifier Units             |                                 |     |   | Applicable Connectors (Order Separately) |                   |  |
|-----------------------------|---------------------------------|-----|---|------------------------------------------|-------------------|--|
| Туре                        | NPN                             | PNP |   | Master Connector                         | Slave Connector   |  |
| Standard models             | Standard models E3X-NA6 E3X-NA8 |     | + | E3X-CN11 (3-wire)                        | E3X-CN21 (1-wire) |  |
| When Using 5 Amplifier Unit | ts                              |     |   |                                          |                   |  |
| Amplifier Units (5 Units)   |                                 |     |   | 1 Master Connector + 4 Slave Connectors  |                   |  |

| OMRON Corporation<br>Industrial Automation Company                                                                                                                                                      |                                                        |                                                       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------|
| Industrial Sensors Division<br>Sensing Devices and Components Division H.Q.<br>Shiokoji Horikawa, Shimogyo-ku, Kyoto, 600-8530 Japan<br>Tel: (81)75-344-7068/Fax: (81)75-344-7107                       | Authorized Distributor:                                |                                                       |
| Regional Headquarters                                                                                                                                                                                   |                                                        |                                                       |
| OMRON EUROPE B.V.<br>Sensor Business Unit, Carl-Benz-Str. 4, D-71154 Nufringen, Germany<br>Tel: (49)7032-811-0/Fax: (49)7032-811-199                                                                    |                                                        |                                                       |
| OMRON ELECTRONICS LLC<br>1 East Commerce Drive, Schaumburg, IL 60173 U.S.A.<br>Tel: (1)847-843-7900/Fax: (1)847-843-8568                                                                                |                                                        |                                                       |
| OMRON ASIA PACIFIC PTE. LTD.<br>83 Clemenceau Avenue,<br>#11-01, UE Square, 239920 Singapore<br>Tel: (65)835-3011/Fax: (65)835-2711                                                                     |                                                        |                                                       |
| OMRON CHINA CO., LTD.<br>BEJJING OFFICE<br>Room 1028, Office Building, Beijing Capital Times Square,<br>No. 88 West Chang'an Road, Beijing, 100031 China<br>Tel: (86)10-8391-3005/Fax: (86)10-8391-3688 | Note: Specifications subject to change without notice. | Cat. No. E317-E1-2<br>Printed in Japan<br>0601-2M (A) |

# OMRON

# Photoelectric Sensor with Built-in Amplifier

E3Z

- Photoelectric Sensor with built-in amplifier is applicable to a wide variety of lines and ensures a longer sensing distance than any other model.
- User-friendly Sensor takes all installation and on-site conditions into consideration.
- Eliminates the influence of installation and on-site conditions, thus increasing the reliability of the line.
- OMRON has been making efforts towards environmental protection by adopting user and environment-friendly measures.
- Greatly saves energy and resources. The economy-oriented age has evolved into the ecology-oriented age.
- Meets a variety of international standards, thus allowing use in any country.

# Ordering Information

## List of Models

|                                        |                                                                                             |                        | Red li                          | ght Infi   | rared light |
|----------------------------------------|---------------------------------------------------------------------------------------------|------------------------|---------------------------------|------------|-------------|
| Sensing method Appearance              |                                                                                             | Connection method      | Sensing distance                | Model      |             |
|                                        |                                                                                             |                        |                                 | NPN output | PNP output  |
| Through-beam                           |                                                                                             | Pre-wired (see note 3) |                                 | E3Z-T61    | E3Z-T81     |
|                                        |                                                                                             | Connector              | <u>}</u> ism-                   | E3Z-T66    | E3Z-T86     |
| Retroreflective<br>(with MSR function) | (see note 1)                                                                                | Pre-wired (see note 3) | 4 m<br>(100 mm)<br>(see note 2) | E3Z-R61    | E3Z-R81     |
|                                        |                                                                                             | Connector              |                                 | E3Z-R66    | E3Z-R86     |
| Diffuse-reflective                     |                                                                                             | Pre-wired (see note 3) |                                 | E3Z-D61    | E3Z-D81     |
|                                        | ,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>, | Connector              | (wide view)                     | E3Z-D66    | E3Z-D86     |
|                                        |                                                                                             | Pre-wired (see note 3) |                                 | E3Z-D62    | E3Z-D82     |
|                                        |                                                                                             | Connector              |                                 | E3Z-D67    | E3Z-D87     |

Note: 1. The Reflector is sold separately. Select the Reflector model most suited to the application.

- 2. The sensing distance specified is possible when the E39-R1S used. Figure in parentheses indicate the minimum required distance between the Sensor and Reflector.
- 3. Models provided with a 0.5-m cable are available. When ordering, specify the cable length by adding the code "0.5M" to the model number (e.g., E3Z-T61 0.5M).

#### Nomenclature

Through-beam Models E3Z-T6 Receiver Retroreflective Models

E3Z-R6

Diffuse-reflective Models E3Z-D6





# Accessories (Order Separately)

## Slit for Through-beam Models

| Slit width                 | Sensing distance<br>(typical) | Minimum sensing<br>object (typical) | Model    | Quantity required                      | Remarks                                 |
|----------------------------|-------------------------------|-------------------------------------|----------|----------------------------------------|-----------------------------------------|
| 0.5 mm dia.                | 50 mm                         | 0.5 mm dia.                         | E39-S65A | One each for the emitter and receiver. | These Slits are available for the E3Z-T |
| 1 mm dia.                  | 200 mm                        | 1 mm dia.                           | E39-S65B |                                        |                                         |
| 2 mm dia.                  | 800 mm                        | 2 mm dia.                           | E39-S65C |                                        |                                         |
| $0.5 \times 10 \text{ mm}$ | 1 m                           | 0.7 mm dia.                         | E39-S65D |                                        |                                         |
| $1 \times 10 \text{ mm}$   | 2.2 m                         | 1.2 mm dia.                         | E39-S65E |                                        |                                         |
| 2×10 mm                    | 5 m                           | 2.4 mm dia.                         | E39-S65F |                                        |                                         |

#### **Reflectors for Retroreflective Models**

| Name                | Sensing distance (typical)   | Model   | Remarks                        |
|---------------------|------------------------------|---------|--------------------------------|
| Reflector           | <b>3 m</b> (100 mm)          | E39-R1  | Retroreflective models are not |
|                     | 4 m (100 mm)                 | E39-R1S | provided with Reflectors.      |
|                     | 5 m (100 mm) (see note 2)    | E39-R2  | The MSR function is available. |
| Miniature Reflector | 1.5 m (50 mm) (see note 2)   | E39-R3  |                                |
| Tape Reflector      | 700 mm (150 mm) (see note 2) | E39-RS1 |                                |
|                     | 1.1 m (150 mm) (see note 2)  | E39-RS2 |                                |
|                     | 1.4 m (150 mm) (see note 2)  | E39-RS3 |                                |

**Note:** 1. Figure in parentheses indicates the minimum required distance between the Sensor and Reflector.

The actual sensing distance may be reduced to approximately 70% of the typical sensing distance when using a Reflector other than E39-R1 or E39-R1S.

#### **Mounting Brackets**

| Appearance | Model    |
|------------|----------|
|            | E39-L104 |
|            | E39-L43  |
|            | E39-L44  |

| Appearance | Model   | Remarks                                                                    |
|------------|---------|----------------------------------------------------------------------------|
|            | E39-L93 | For Sensor adjustment use.                                                 |
|            |         | Mounted to the aluminum frame rails of conveyors and adjustable with ease. |
|            | E39-L98 | Vertical protective cover<br>bracket                                       |

Note: If a through-beam model is used, order two Mounting Brackets for the emitter and receiver respectively.

#### Sensor I/O Connectors

| Cable    | Appearance | Cab | le type        | Model           |
|----------|------------|-----|----------------|-----------------|
| Standard | Straight   | 2 m | Four-wire type | XS3F-M421-402-A |
|          | 6 Mar      | 5 m |                | XS3F-M421-405-A |
|          | L-shaped   | 2 m |                | XS3F-M422-402-A |
|          | <b>S</b>   | 5 m |                | XS3F-M422-405-A |

# Specifications —

# Ratings/Characteristics

| Item                          | Sensing method             | Through-beam                                                                                              | Retroreflective with MSR<br>function                                                                       | Diffuse-reflective                     |                                       |  |
|-------------------------------|----------------------------|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|----------------------------------------|---------------------------------------|--|
|                               | NPN output                 | E3Z-T61/T66                                                                                               | E3Z-R61/R66                                                                                                | E3Z-D61/D66                            | E3Z-D62/D67                           |  |
|                               | PNP output<br>(see note 3) | E3Z-T81/T86                                                                                               | E3Z-R81/R86                                                                                                | E3Z-D81/D86                            | E3Z-D82/D87                           |  |
| Sensing dist                  | tance                      | 15 m                                                                                                      | 4 m (100 mm)*<br>(when using E39-R1S)<br>3 m (100 mm)*<br>(when using E39-R1)                              | White paper<br>(100×100 mm): 100<br>mm | White paper<br>(300 × 300 mm):<br>1 m |  |
| Standard se                   | nsing object               | Opaque: 12-mm dia.<br>min.                                                                                | Opaque: 75-mm dia. min.                                                                                    |                                        | I                                     |  |
| Hysteresis                    |                            |                                                                                                           |                                                                                                            |                                        | 20% max. of setting distance          |  |
| Directional a                 | angle                      | Both emitter and receiver: 3 to $15^{\circ}$                                                              | 2 to 10°                                                                                                   |                                        |                                       |  |
| Light source                  | e (wave length)            | Infrared LED (860 nm)                                                                                     | Red LED (680 nm)                                                                                           | Infrared LED (860 nm)                  |                                       |  |
| Power supp                    | ly voltage                 | 12 to 24 VDC ±10% inclu                                                                                   | iding 10% (p-p) max. ripple                                                                                |                                        |                                       |  |
| Current con                   | sumption                   | Emitter: 15 mA<br>Receiver: 20 mA                                                                         | 30 mA max.                                                                                                 |                                        |                                       |  |
| Control outp                  | but                        | Load power supply voltag<br>Load current:<br>Open collector output (NI<br>L-ON/D-ON selectable            | age: 26.4 V max.<br>100 mA max. (Residual voltage: 1 V max.)<br>NPN or PNP depending on model)             |                                        |                                       |  |
| Circuit prote                 | ection                     | Protection from load<br>short-circuit and<br>reversed power supply<br>connection                          | Protection from reversed power supply connection, output short-circuit, and mutual interference protection |                                        |                                       |  |
| Response ti                   | me                         | Operation or reset: 1 ms max.                                                                             |                                                                                                            |                                        |                                       |  |
| Sensitivity a                 | djustment                  | One-turn adjuster                                                                                         |                                                                                                            |                                        |                                       |  |
| Ambient illu<br>(receiver sid | mination<br>le)            | Incandescent lamp: 3,00<br>Sunlight: 10,0                                                                 | 0 ℓx max.<br>00 ℓx max.                                                                                    |                                        |                                       |  |
| Ambient tem                   | nperature                  | Operating: -25°C to 55°C                                                                                  | C/Storage: -40°C to 70°C (with                                                                             | th no icing or condensat               | ion)                                  |  |
| Ambient hur                   | nidity                     | Operating: 35% to 85%/S                                                                                   | Storage: 35% to 95% (with no                                                                               | condensation)                          |                                       |  |
| Insulation re                 | esistance                  | 20 $M\Omega$ min. at 500 VDC                                                                              |                                                                                                            |                                        |                                       |  |
| Dielectric st                 | rength                     | 1,000 VAC, 50/60 Hz for                                                                                   | 1 min                                                                                                      |                                        |                                       |  |
| Vibration res                 | sistance                   | 10 to 55 Hz, 1.5-mm double amplitude or 300 m/s <sup>2</sup> for 2 hours each in X, Y, and Z directions   |                                                                                                            |                                        | nd Z directions                       |  |
| Shock resist                  | tance                      | Destruction: 500 m/s <sup>2</sup> 3 times each in X, Y, and Z directions                                  |                                                                                                            |                                        |                                       |  |
| Degree of pr                  | otection                   | IP67 (IEC60529)                                                                                           |                                                                                                            |                                        |                                       |  |
| Connection                    | method                     | 500-mm-thick pre-wired cable (standard length: 2 m) with M8 connector                                     |                                                                                                            |                                        |                                       |  |
| Indicator                     |                            | Operation indicator (orange)<br>Stability indicator (green)<br>Emitter has power indicator (orange) only. |                                                                                                            |                                        |                                       |  |
| Weight<br>(packed             | Pre-wired cable (2 m)      | Approx. 120 g                                                                                             | Approx. 65 g                                                                                               |                                        |                                       |  |
| state)                        | Connector                  | Approx. 30 g                                                                                              | Approx. 20 g                                                                                               |                                        |                                       |  |
| Material                      | Case                       | PBT (polybutylene terephthalate)                                                                          |                                                                                                            |                                        |                                       |  |
|                               | Lens                       | Methacrylate resin                                                                                        |                                                                                                            |                                        |                                       |  |
| Accessories                   | <b>i</b>                   | Instruction manual (The Reflector or Mounting Bracket is not provided with any of the above models.)      |                                                                                                            |                                        |                                       |  |

Note: \*Figures in parentheses indicate the minimum required distances between the Sensors and Reflectors.

# Engineering Data -

# Parallel Operating Range (Typical)

# Through-beam Models E3Z-T 1 (T 6)



# Through-beam Models E3Z-T 1 (T 6) and Slit



Retroreflective Models E3Z-R 1 (R 6) and Reflector



## Operating Range (Typical)

Diffuse-reflective Models E3Z-D\_1 (D\_6)



# Diffuse-reflective Models E3Z-D 2 (D 7)



**Retroreflective Models** 

## ■ Excess Gain Ratio vs. Distance (Typical)

#### **Through-beam Models**

#### E3Z-T⊡1 (T⊡6)

E3Z -





# Diffuse-reflective Models E3Z-D 1 (D 6)



Diffuse-reflective Model E3Z-D\_2 (D\_7)



## ■ Sensing Object Size vs. Sensing Distance (Typical)

#### Diffuse-reflective Models E3Z-D\_1 (D\_6)



## Diffuse-reflective Models



E3Z-D\_2 (D\_7)




**INA118** 

# Precision, Low Power INSTRUMENTATION AMPLIFIER

### FEATURES

- LOW OFFSET VOLTAGE: 50µV max
- LOW DRIFT: 0.5μV/°C max
- LOW INPUT BIAS CURRENT: 5nA max
- HIGH CMR: 110dB min
- INPUTS PROTECTED TO ±40V
- WIDE SUPPLY RANGE: ±1.35 to ±18V
- LOW QUIESCENT CURRENT: 350µA
- 8-PIN PLASTIC DIP, SO-8

## **APPLICATIONS**

- BRIDGE AMPLIFIER
- THERMOCOUPLE AMPLIFIER
- RTD SENSOR AMPLIFIER
- MEDICAL INSTRUMENTATION
- DATA ACQUISITION

# DESCRIPTION

The INA118 is a low power, general purpose instrumentation amplifier offering excellent accuracy. Its versatile 3-op amp design and small size make it ideal for a wide range of applications. Current-feedback input circuitry provides wide bandwidth even at high gain (70kHz at G = 100).

A single external resistor sets any gain from 1 to 10,000. Internal input protection can withstand up to  $\pm 40V$  without damage.

The INA118 is laser trimmed for very low offset voltage (50 $\mu$ V), drift (0.5 $\mu$ V/°C) and high common-mode rejection (110dB at G = 1000). It operates with power supplies as low as ±1.35V, and quiescent current is only 350 $\mu$ A—ideal for battery operated systems.

The INA118 is available in 8-pin plastic DIP, and SO-8 surface-mount packages, specified for the  $-40^{\circ}$ C to  $+85^{\circ}$ C temperature range.



International Airport Industrial Park • Mailing Address: PO Box 11400, Tucson, AZ 85734 • Street Address: 6730 S. Tucson Blvd., Tucson, AZ 85706 • Tel: (520) 746-1111 • Twx: 910-952-1111 Internet: http://www.burr-brown.com/ • FAXLine: (800) 548-6133 (US/Canada Only) • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

# SPECIFICATIONS

#### ELECTRICAL

At  $T_{A}$  = +25°C,  $V_{S}$  =  $\pm 15V,~R_{L}$  = 10k $\Omega$  unless otherwise noted.

|                                                                                                                                                                                                   |                                                                                                                                                                         |                                      | INA118PB, UB                                                                                                                                                                       |                                                                                                                                       | INA118P, U            |                                                |                                          |                                                                                                          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------------------------------------------------|------------------------------------------|----------------------------------------------------------------------------------------------------------|
| PARAMETER                                                                                                                                                                                         | CONDITIONS                                                                                                                                                              | MIN                                  | TYP                                                                                                                                                                                | MAX                                                                                                                                   | MIN                   | TYP                                            | MAX                                      | UNITS                                                                                                    |
| INPUT<br>Offset Voltage, RTI<br>Initial<br>vs Temperature<br>vs Power Supply<br>Long-Term Stability<br>Impedance, Differential<br>Common-Mode<br>Linear Input Voltage Range<br>Safe Input Voltage | $T_{A} = +25^{\circ}C$ $T_{A} = T_{MIN} \text{ to } T_{MAX}$ $V_{S} = \pm 1.35V \text{ to } \pm 18V$                                                                    | (V+) – 1<br>(V–) + 1.1               | $\begin{array}{c} \pm 10 \pm 50/G \\ \pm 0.2 \pm 2/G \\ \pm 1 \pm 10/G \\ \pm 0.4 \pm 5/G \\ 10^{10} \parallel 1 \\ 10^{10} \parallel 4 \\ (V+) - 0.65 \\ (V-) + 0.95 \end{array}$ | $\pm 50 \pm 500/G$<br>$\pm 0.5 \pm 20/G$<br>$\pm 5 \pm 100/G$<br>$\pm 40$                                                             | *<br>*                | ±25±100/G<br>±0.2±5/G<br>*<br>*<br>*<br>*<br>* | ±125±1000/G<br>±1±20/G<br>±10±100/G<br>* | μV<br>μV/°C<br>μV/ν<br>Ω    pF<br>Ω    pF<br>V<br>V<br>V                                                 |
| Common-Mode Rejection                                                                                                                                                                             | $V_{CM} = \pm 10V, \Delta R_S = 1 \kappa \Omega$<br>G = 1<br>G = 10<br>G = 100<br>G = 1000                                                                              | 80<br>97<br>107<br>110               | 90<br>110<br>120<br>125                                                                                                                                                            |                                                                                                                                       | 73<br>89<br>98<br>100 | *<br>*<br>*<br>*                               |                                          | dB<br>dB<br>dB<br>dB                                                                                     |
| BIAS CURRENT<br>vs Temperature                                                                                                                                                                    |                                                                                                                                                                         |                                      | ±1<br>±40                                                                                                                                                                          | ±5                                                                                                                                    |                       | * *                                            | ±10                                      | nA<br>pA/°C                                                                                              |
| OFFSET CURRENT                                                                                                                                                                                    |                                                                                                                                                                         |                                      | ±1<br>+40                                                                                                                                                                          | ±5                                                                                                                                    |                       | *                                              | ±10                                      | nA<br>⊳A/°C                                                                                              |
| NOISE VOLTAGE, RTI<br>f = 10Hz<br>f = 10Hz<br>f = 10Hz<br>f = 1kHz<br>$f_B = 0.1Hz$ to 10Hz<br>Noise Current<br>f=10Hz<br>f=1kHz                                                                  | G = 1000, R <sub>S</sub> = 0Ω                                                                                                                                           |                                      | 11<br>10<br>10<br>0.28<br>2.0<br>0.3                                                                                                                                               |                                                                                                                                       |                       | * * * * * *                                    |                                          | nV/ <u>/Hz</u><br>nV/ <u>/Hz</u><br>nV/ <u>/Hz</u><br>μVp-p<br>pA/ <del>/Hz</del><br>pA/ <del>/</del> Hz |
| $f_B = 0.1$ Hz to 10Hz                                                                                                                                                                            |                                                                                                                                                                         |                                      | 80                                                                                                                                                                                 |                                                                                                                                       |                       | *                                              |                                          | рАр-р                                                                                                    |
| Gain Equation<br>Range of Gain<br>Gain Error<br>Gain vs Temperature<br>50kΩ Resistance <sup>(1)</sup><br>Nonlinearity                                                                             | $\begin{array}{c} G = 1 \\ G = 10 \\ G = 100 \\ G = 1000 \\ G = 1 \\ \end{array}$ $\begin{array}{c} G = 1 \\ G = 10 \\ G = 100 \\ G = 1000 \\ \end{array}$              | 1                                    | $\begin{array}{c} 1 + (50 k \Omega / R_G) \\ \pm 0.01 \\ \pm 0.02 \\ \pm 0.05 \\ \pm 0.5 \\ \pm 1 \\ \pm 25 \\ \pm 0.0003 \\ \pm 0.0005 \\ \pm 0.0005 \\ \pm 0.002 \end{array}$    | $\begin{array}{c} 10000\\ \pm 0.024\\ \pm 0.5\\ \pm 1\\ \pm 10\\ \pm 0.001\\ \pm 0.001\\ \pm 0.002\\ \pm 0.002\\ \pm 0.01\end{array}$ | *                     | * ****                                         |                                          | V/V<br>V/V<br>%<br>%<br>%<br>ppm/°C<br>ppm/°C<br>% of FSR<br>% of FSR<br>% of FSR<br>% of FSR            |
| OUTPUT<br>Voltage: Positive<br>Negative<br>Single Supply High<br>Single Supply Low<br>Load Capacitance Stability<br>Short Circuit Current                                                         | $\begin{array}{l} R_L = 10k\Omega \\ R_L = 10k\Omega \\ V_S = +2.7 V/0 V^{(2)}, \ R_L = 10k\Omega \\ V_S = +2.7 V/0 V^{(2)}, \ R_L = 10k\Omega \end{array}$             | (V+) – 1<br>(V–) + 0.35<br>1.8<br>60 | (V+) - 0.8<br>(V-) + 0.2<br>2.0<br>35<br>1000<br>+5/-12                                                                                                                            |                                                                                                                                       | *<br>*<br>*           | * * * * * * *                                  |                                          | V<br>V<br>mV<br>pF<br>mA                                                                                 |
| FREQUENCY RESPONSE                                                                                                                                                                                |                                                                                                                                                                         |                                      | 067                                                                                                                                                                                |                                                                                                                                       |                       |                                                |                                          |                                                                                                          |
| Bandwidth, –3dB<br>Slew Rate<br>Settling Time, 0.01%<br>Overload Recovery                                                                                                                         | $\begin{array}{c} G = 1 \\ G = 10 \\ G = 100 \\ G = 1000 \\ V_{O} = \pm 10V, \ G = 10 \\ G = 1 \\ G = 10 \\ G = 100 \\ G = 1000 \\ 50\% \ \text{Overdrive} \end{array}$ |                                      | 800<br>500<br>70<br>7<br>15<br>15<br>21<br>210<br>20                                                                                                                               |                                                                                                                                       |                       | * * * * * * * *                                |                                          | kHz<br>kHz<br>kHz<br>V/μs<br>μs<br>μs<br>μs<br>μs                                                        |
| POWER SUPPLY<br>Voltage Range<br>Current                                                                                                                                                          | V <sub>IN</sub> = 0V                                                                                                                                                    | ±1.35                                | ±15<br>±350                                                                                                                                                                        | ±18<br>±385                                                                                                                           | *                     | * *                                            | * *                                      | V<br>μA                                                                                                  |
| TEMPERATURE RANGE           Specification           Operating $\theta_{JA}$                                                                                                                       |                                                                                                                                                                         | -40<br>-40                           | 80                                                                                                                                                                                 | 85<br>125                                                                                                                             | * *                   | *                                              | *<br>*                                   | °C<br>°C<br>W\Q°                                                                                         |

\* Specification same as INA118PB, UB.

NOTE: (1) Temperature coefficient of the "50kΩ" term in the gain equation. (2) Common-mode input voltage range is limited. See text for discussion of low power supply and single power supply operation.



#### **PIN CONFIGURATION**



#### **ABSOLUTE MAXIMUM RATINGS**

| Supply Voltage                    | ±18V           |
|-----------------------------------|----------------|
| Analog Input Voltage Range        | ±40V           |
| Output Short-Circuit (to ground)  | Continuous     |
| Operating Temperature             | 40°C to +125°C |
| Storage Temperature               | 40°C to +125°C |
| Junction Temperature              | +150°C         |
| Lead Temperature (soldering, 10s) | +300°C         |



This integrated circuit can be damaged by ESD. Burr-Brown recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

#### **ORDERING INFORMATION**

| PRODUCT  | PACKAGE            | PACKAGE<br>DRAWING<br>NUMBER <sup>(1)</sup> | TEMPERATURE<br>RANGE |
|----------|--------------------|---------------------------------------------|----------------------|
| INA118P  | 8-Pin Plastic DIP  | 006                                         | -40°C to +85°C       |
| INA118PB | 8-Pin Plastic DIP  | 006                                         | –40°C to +85°C       |
| INA118U  | SO-8 Surface-Mount | 182                                         | –40°C to +85°C       |
| INA118UB | SO-8 Surface-Mount | 182                                         | –40°C to +85°C       |

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.



### **TYPICAL PERFORMANCE CURVES**

At  $T_{A}$  = +25°C,  $V_{S}$  =  $\pm 15V,$  unless otherwise noted.



### **TYPICAL PERFORMANCE CURVES (CONT)**

At  $T_A = +25^{\circ}C$ ,  $V_S = \pm 15V$ , unless otherwise noted.





**INPUT- REFERRED NOISE VOLTAGE** vs FREQUENCY 1k 100 Input-Referred Noise Voltage (nV/VHz) Input Bias Current Noise (pA/VHz) G = 1 100 10 G = 10 G = 100, 1000 10 1 G = 1000 BW Limit ╞┼┼┼╢╢┎╼╡┼ Current Noise (All Gains) 1 0.1 1 10 100 1k 10k Frequency (Hz)





INPUT BIAS CURRENT vs INPUT OVERLOAD VOLTAGE 10 8 6 4 2 G = 1000 0 G = 1 -2 G = 1000 G = 1 -4 -6 -8

0

Overload Voltage (V)

**INA118** 



40

Input Bias Current (mA)

-10

-40

### **TYPICAL PERFORMANCE CURVES (CONT)**

At T<sub>A</sub> = +25°C, V<sub>S</sub> =  $\pm$ 15V, unless otherwise noted.



## **TYPICAL PERFORMANCE CURVES (CONT)**

At  $T_A = +25^{\circ}C$ ,  $V_S = \pm 15V$ , unless otherwise noted.



INPUT-REFERRED NOISE, 0.1Hz to 10Hz



1s/div

SMALL-SIGNAL RESPONSE G = 1 G = 10 20mV/div  $10\mu s/div$ 









### **APPLICATION INFORMATION**

Figure 1 shows the basic connections required for operation of the INA118. Applications with noisy or high impedance power supplies may require decoupling capacitors close to the device pins as shown.

The output is referred to the output reference (Ref) terminal which is normally grounded. This must be a low-impedance connection to assure good common-mode rejection. A resistance of  $12\Omega$  in series with the Ref pin will cause a typical device to degrade to approximately 80dB CMR (G = 1).

#### SETTING THE GAIN

Gain of the INA118 is set by connecting a single external resistor,  $R_G$ , connected between pins 1 and 8:

$$G = 1 + \frac{50k\Omega}{R_G}$$
(1)

Commonly used gains and resistor values are shown in Figure 1.

The 50k $\Omega$  term in Equation 1 comes from the sum of the two internal feedback resistors of A<sub>1</sub> and A<sub>2</sub>. These on-chip metal film resistors are laser trimmed to accurate absolute values. The accuracy and temperature coefficient of these resistors are included in the gain accuracy and drift specifications of the INA118.

The stability and temperature drift of the external gain setting resistor,  $R_G$ , also affects gain.  $R_G$ 's contribution to gain accuracy and drift can be directly inferred from the gain equation (1). Low resistor values required for high gain can make wiring resistance important. Sockets add to the wiring resistance which will contribute additional gain error (possibly an unstable gain error) in gains of approximately 100 or greater.

#### DYNAMIC PERFORMANCE

The typical performance curve "Gain vs Frequency" shows that, despite its low quiescent current, the INA118 achieves wide bandwidth, even at high gain. This is due to the current-feedback topology of the INA118. Settling time also remains excellent at high gain.

The INA118 exhibits approximately 3dB peaking at 500kHz in unity gain. This is a result of its current-feedback topology and is not an indication of instability. Unlike an op amp with poor phase margin, the rise in response is a predictable +6dB/octave due to a response zero. A simple pole at 300kHz or lower will produce a flat passband unity gain response.



FIGURE 1. Basic Connections.



#### NOISE PERFORMANCE

The INA118 provides very low noise in most applications. For differential source impedances less than  $1k\Omega$ , the INA103 may provide lower noise. For source impedances greater than  $50k\Omega$ , the INA111 FET-Input Instrumentation Amplifier may provide lower noise.

Low frequency noise of the INA118 is approximately  $0.28\mu$ Vp-p measured from 0.1 to 10Hz (G $\geq$ 100). This provides dramatically improved noise when compared to state-of-the-art chopper-stabilized amplifiers.

#### **OFFSET TRIMMING**

The INA118 is laser trimmed for low offset voltage and drift. Most applications require no external offset adjustment. Figure 2 shows an optional circuit for trimming the output offset voltage. The voltage applied to Ref terminal is summed at the output. The op amp buffer provides low impedance at the Ref terminal to preserve good commonmode rejection.



FIGURE 2. Optional Trimming of Output Offset Voltage.

#### **INPUT BIAS CURRENT RETURN PATH**

The input impedance of the INA118 is extremely high approximately  $10^{10}\Omega$ . However, a path must be provided for the input bias current of both inputs. This input bias current is approximately  $\pm 5nA$ . High input impedance means that this input bias current changes very little with varying input voltage.

Input circuitry must provide a path for this input bias current for proper operation. Figure 3 shows various provisions for an input bias current path. Without a bias current path, the inputs will float to a potential which exceeds the commonmode range of the INA118 and the input amplifiers will saturate.

If the differential source resistance is low, the bias current return path can be connected to one input (see the thermocouple example in Figure 3). With higher source impedance, using two equal resistors provides a balanced input with possible advantages of lower input offset voltage due to bias current and better high-frequency common-mode rejection.



FIGURE 3. Providing an Input Common-Mode Current Path.

#### INPUT COMMON-MODE RANGE

The linear input voltage range of the input circuitry of the INA118 is from approximately 0.6V below the positive supply voltage to 1V above the negative supply. As a differential input voltage causes the output voltage to increase, however, the linear input range will be limited by the output voltage swing of amplifiers  $A_1$  and  $A_2$ . Thus, the linear common-mode input range is related to the output voltage of the complete amplifier. This behavior also depends on supply voltage—see performance curves "Input Common-Mode Range vs Output Voltage".

Input-overload can produce an output voltage that appears normal. For example, if an input overload condition drives both input amplifiers to their positive output swing limit, the difference voltage measured by the output amplifier will be near zero. The output of the INA118 will be near 0V even though both inputs are overloaded.

#### LOW VOLTAGE OPERATION

The INA118 can be operated on power supplies as low as  $\pm 1.35$ V. Performance of the INA118 remains excellent with power supplies ranging from  $\pm 1.35$ V to  $\pm 18$ V. Most parameters vary only slightly throughout this supply voltage range—see typical performance curves. Operation at very low supply voltage requires careful attention to assure that the input voltages remain within their linear range. Voltage swing requirements of internal nodes limit the input common-mode range with low power supply voltage. Typical performance curves, "Input Common-Mode Range vs Output Voltage" show the range of linear operation for a various supply voltages and gains.



#### SINGLE SUPPLY OPERATION

The INA118 can be used on single power supplies of +2.7V to +36V. Figure 5 shows a basic single supply circuit. The output Ref terminal is connected to ground. Zero differential input voltage will demand an output voltage of 0V (ground). Actual output voltage swing is limited to approximately 35mV above ground, when the load is referred to ground as shown. The typical performance curve "Output Voltage vs Output Current" shows how the output voltage swing varies with output current.

With single supply operation,  $V_{IN}^+$  and  $V_{IN}^-$  must both be 0.98V above ground for linear operation. You cannot, for instance, connect the inverting input to ground and measure a voltage connected to the non-inverting input.

To illustrate the issues affecting low voltage operation, consider the circuit in Figure 5. It shows the INA118, operating from a single 3V supply. A resistor in series with the low side of the bridge assures that the bridge output

voltage is within the common-mode range of the amplifier's inputs. Refer to the typical performance curve "Input Common-Mode Range vs Output Voltage" for 3V single supply operation.

#### INPUT PROTECTION

The inputs of the INA118 are individually protected for voltages up to  $\pm 40$ V. For example, a condition of -40V on one input and +40V on the other input will not cause damage. Internal circuitry on each input provides low series impedance under normal signal conditions. To provide equivalent protection, series input resistors would contribute excessive noise. If the input is overloaded, the protection circuitry limits the input current to a safe value of approximately 1.5 to 5mA. The typical performance curve "Input Bias Current vs Input Overload Voltage" shows this input current limit behavior. The inputs are protected even if the power supplies are disconnected or turned off.

#### **INSIDE THE INA118**

Figure 1 shows a simplified representation of the INA118. The more detailed diagram shown here provides additional insight into its operation.

Each input is protected by two FET transistors that provide a low series resistance under normal signal conditions, preserving excellent noise performance. When excessive voltage is applied, these transistors limit input current to approximately 1.5 to 5mA.

The differential input voltage is buffered by  $Q_1$  and  $Q_2$ and impressed across  $R_G$ , causing a signal current to flow through  $R_G$ ,  $R_1$  and  $R_2$ . The output difference amp,  $A_3$ , removes the common-mode component of the input signal and refers the output signal to the Ref terminal.

Equations in the figure describe the output voltages of  $A_1$  and  $A_2$ . The  $V_{BE}$  and IR drop across  $R_1$  and  $R_2$  produce output voltages on  $A_1$  and  $A_2$  that are approximately 1V lower than the input voltages.





FIGURE 4. INA118 Simplified Circuit Diagram.





FIGURE 5. Single-Supply Bridge Amplifier.



FIGURE 6. AC-Coupled Instrumentation Amplifier.



FIGURE 7. Thermocouple Amplifier With Cold Junction Compensation.



FIGURE 8. Differential Voltage to Current Converter.



FIGURE 9. ECG Amplifier With Right-Leg Drive.



# International

- Surface Mount (IRLR120N)
- Straight Lead (IRLU120N)
- Advanced Process Technology
- Fast Switching
- Fully Avalanche Rated

#### Description

Fifth Generation HEXFETs from International Rectifier utilize advanced processing techniques to achieve the lowest possible on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET Power MOSFETs are well known for, provides the designer with an extremely efficient device for use in a wide variety of applications.

The D-PAK is designed for surface mounting using vapor phase, infrared, or wave soldering techniques. The straight lead version (IRFU series) is for through-hole mounting applications. Power dissipation levels up to 1.5 watts are possible in typical surface mount applications.

#### **Absolute Maximum Ratings**

### IRLR/U120N HEXFET<sup>®</sup> Power MOSFET





|                                        | Parameter                                             | Max.                   | Units |
|----------------------------------------|-------------------------------------------------------|------------------------|-------|
| I <sub>D</sub> @ T <sub>C</sub> = 25°C | Continuous Drain Current, V <sub>GS</sub> @ 10V       | 10                     |       |
| $I_D @ T_C = 100^{\circ}C$             | Continuous Drain Current, V <sub>GS</sub> @ 10V       | 7.0                    | A     |
| I <sub>DM</sub>                        | Pulsed Drain Current 106                              | 35                     |       |
| $P_{D} @ T_{C} = 25^{\circ}C$          | Power Dissipation                                     | 48                     | W     |
|                                        | Linear Derating Factor                                | 0.32                   | W/°C  |
| V <sub>GS</sub>                        | Gate-to-Source Voltage                                | ± 16                   | V     |
| E <sub>AS</sub>                        | Single Pulse Avalanche Energy@6                       | 85                     | mJ    |
| I <sub>AR</sub>                        | Avalanche Current <sup>1</sup> 6                      | 6.0                    | A     |
| E <sub>AR</sub>                        | Repetitive Avalanche Energy <sup>①</sup> <sup>©</sup> | 4.8                    | mJ    |
| dv/dt                                  | Peak Diode Recovery dv/dt 3                           | 5.0                    | V/ns  |
| TJ                                     | Operating Junction and                                | -55 to + 175           |       |
| T <sub>STG</sub>                       | Storage Temperature Range                             |                        | °C    |
|                                        | Soldering Temperature, for 10 seconds                 | 300 (1.6mm from case ) |       |

#### Thermal Resistance

|                  | Parameter                          | Тур. | Max. | Units |
|------------------|------------------------------------|------|------|-------|
| R <sub>0JC</sub> | Junction-to-Case                   |      | 3.1  |       |
| R <sub>0JA</sub> | Junction-to-Ambient (PCB mount) ** |      | 50   | °C/W  |
| R <sub>0JA</sub> | Junction-to-Ambient                |      | 110  |       |
| www.irf.com      |                                    |      |      | 1     |

PD - 91541B

# International

|                                 | Parameter                            | Min. | Тур. | Max.  | Units | Conditions                                        |
|---------------------------------|--------------------------------------|------|------|-------|-------|---------------------------------------------------|
| V <sub>(BR)DSS</sub>            | Drain-to-Source Breakdown Voltage    | 100  |      |       | V     | $V_{GS} = 0V, I_D = 250\mu A$                     |
| $\Delta V_{(BR)DSS}/\Delta T_J$ | Breakdown Voltage Temp. Coefficient  |      | 0.12 |       | V/°C  | Reference to $25^{\circ}$ C, $I_{D} = 1$ mA       |
|                                 |                                      |      |      | 0.185 |       | V <sub>GS</sub> = 10V, I <sub>D</sub> = 6.0A ④    |
| R <sub>DS(on)</sub>             | Static Drain-to-Source On-Resistance |      |      | 0.225 | W     | $V_{GS} = 5.0V, I_D = 6.0A$ (4)                   |
|                                 |                                      |      |      | 0.265 |       | V <sub>GS</sub> = 4.0V, I <sub>D</sub> = 5.0A ④   |
| V <sub>GS(th)</sub>             | Gate Threshold Voltage               | 1.0  |      | 2.0   | V     | $V_{DS} = V_{GS}, I_D = 250 \mu A$                |
| 9 <sub>fs</sub>                 | Forward Transconductance             | 3.1  |      |       | S     | $V_{DS} = 25V, I_D = 6.0A$                        |
|                                 | Drain to Source Lookage Current      |      |      | 25    |       | $V_{DS} = 100V, V_{GS} = 0V$                      |
| IDSS                            | Drain-to-Source Leakage Current      |      |      | 250   | μΑ    | $V_{DS} = 80V, V_{GS} = 0V, T_{J} = 150^{\circ}C$ |
| 1                               | Gate-to-Source Forward Leakage       |      |      | 100   | ~^    | V <sub>GS</sub> = 16V                             |
| IGSS                            | Gate-to-Source Reverse Leakage       |      |      | -100  | nA    | V <sub>GS</sub> = -16V                            |
| Qg                              | Total Gate Charge                    |      |      | 20    |       | I <sub>D</sub> = 6.0A                             |
| Q <sub>gs</sub>                 | Gate-to-Source Charge                |      |      | 4.6   | nC    | V <sub>DS</sub> = 80V                             |
| Q <sub>gd</sub>                 | Gate-to-Drain ("Miller") Charge      |      |      | 10    |       | V <sub>GS</sub> = 5.0V, See Fig. 6 and 13 @6      |
| t <sub>d(on)</sub>              | Turn-On Delay Time                   |      | 4.0  |       |       | $V_{DD} = 50V$                                    |
| tr                              | Rise Time                            |      | 35   |       | no    | $I_{D} = 6.0A$                                    |
| t <sub>d(off)</sub>             | Turn-Off Delay Time                  |      | 23   |       | ns    | $R_{G} = 11\Omega, V_{GS} = 5.0V$                 |
| t <sub>f</sub>                  | Fall Time                            |      | 22   |       |       | R <sub>D</sub> = 8.2Ω, See Fig. 10 ④⑥             |
|                                 | latera el Ducia la ductora en        |      | 4.5  |       |       | Between lead,                                     |
| LD                              | Internal Drain Inductance            |      | 4.5  |       | nH    | 6mm (0.25in.)                                     |
|                                 | Internal Course Inductorses          |      | 75   |       |       | from package                                      |
| LS                              |                                      |      | 7.5  |       |       | and center of die contacts                        |
| C <sub>iss</sub>                | Input Capacitance                    |      | 440  |       |       | $V_{GS} = 0V$                                     |
| Coss                            | Output Capacitance                   |      | 97   |       | pF    | $V_{DS} = 25V$                                    |
| C <sub>rss</sub>                | Reverse Transfer Capacitance         |      | 50   |       | 1     | f = 1.0MHz, See Fig. 56                           |

#### Electrical Characteristics @ T<sub>J</sub> = 25°C (unless otherwise specified)

#### **Source-Drain Ratings and Characteristics**

|                 | Parameter                 | Min. | Тур.     | Max.      | Units    | Conditions                                                         |  |  |  |
|-----------------|---------------------------|------|----------|-----------|----------|--------------------------------------------------------------------|--|--|--|
| I <sub>S</sub>  | Continuous Source Current |      |          | 10        |          | MOSFET symbol                                                      |  |  |  |
|                 | (Body Diode)              |      |          | 10        | Δ        | showing the                                                        |  |  |  |
| I <sub>SM</sub> | Pulsed Source Current     |      |          | 25        |          | integral reverse                                                   |  |  |  |
|                 | (Body Diode) ①⑥           |      |          |           |          | p-n junction diode.                                                |  |  |  |
| V <sub>SD</sub> | Diode Forward Voltage     |      |          | 1.3       | V        | $T_J = 25^{\circ}C, I_S = 6.0A, V_{GS} = 0V$ (4)                   |  |  |  |
| t <sub>rr</sub> | Reverse Recovery Time     |      | 110      | 160       | ns       | $T_J = 25^{\circ}C, I_F = 6.0A$                                    |  |  |  |
| Q <sub>rr</sub> | Reverse RecoveryCharge    |      | 410      | 620       | nC       | di/dt = 100A/µs ⊕©                                                 |  |  |  |
| t <sub>on</sub> | Forward Turn-On Time      | Intr | insic tu | irn-on ti | me is ne | gligible (turn-on is dominated by L <sub>S</sub> +L <sub>D</sub> ) |  |  |  |

#### Notes:

① Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11)

④ Pulse width  $\leq$  300µs; duty cycle  $\leq$  2%.

 $\ensuremath{\textcircled{S}}$  This is applied for I-PAK, L\_S of D-PAK is measured between lead and center of die contact

 $I_{SD} \leq$  6.0A, di/dt  $\leq$  340A/µs,  $V_{DD} \leq V_{(BR)DSS}, ~ \textcircled{B}$  Uses IRL520N data and test conditions.  $T_J \leq 175^{\circ}C$ 

\*\* When mounted on 1" square PCB (FR-4 or G-10 Material ) .

For recommended footprint and soldering techniques refer to application note #AN-994

# International **IOR** Rectifier



Fig 1. Typical Output Characteristics





Fig 3. Typical Transfer Characteristics



Fig 4. Normalized On-Resistance Vs. Temperature

www.irf.com

and

International



Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 8. Maximum Safe Operating Area

# International **IOR** Rectifier







Fig 10a. Switching Time Test Circuit



Fig 10b. Switching Time Waveforms



Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

# International



Fig 12a. Unclamped Inductive Test Circuit



Fig 12b. Unclamped Inductive Waveforms



Fig 13a. Basic Gate Charge Waveform







Fig 13b. Gate Charge Test Circuit



#### Peak Diode Recovery dv/dt Test Circuit

\*  $V_{GS} = 5V$  for Logic Level Devices

Fig 14. For N-Channel HEXFETS

# International

#### Package Outline

#### **TO-252AA Outline**

Dimensions are shown in millimeters (inches)



SOLDER DIP MAX. +0.16 (.006).

#### Part Marking Information TO-252AA (D-PARK)



#### International **IOR** Rectifier

#### Package Outline

#### **TO-251AA Outline**

Dimensions are shown in millimeters (inches)



#### Part Marking Information TO-251AA (I-PARK)



9

# International

#### Tape & Reel Information

#### TO-252AA



NOTES : 1. OUTLINE CONFORMS TO EIA-481.

# International

 WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 322 3331

 EUROPEAN HEADQUARTERS: Hurst Green, Oxted, Surrey RH8 9BB, UK Tel: ++ 44 1883 732020

 IR CANADA: 15 Lincoln Court, Brampton, Ontario L6T 3Z2, Tel: (905) 453 2200

 IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 6172 96590

 IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 11 451 0111

 IR FAR EAST: 171 (K&H Bldg.) 30-4 Nishi-ikebukuro 3-chome, Toshima-ku, Tokyo Japan Tel: 81 33 983 0086

 IR SOUTHEAST ASIA: 315 Outram Road, #10-02 Tan Boon Liat Building, Singapore 16907 Tel: 65 221 8371

 Data and specifications subject to change without notice.

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.

National Semiconductor

### LM741 Operational Amplifier

#### **General Description**

The LM741 series are general purpose operational amplifiers which feature improved performance over industry standards like the LM709. They are direct, plug-in replacements for the 709C, LM201, MC1439 and 748 in most applications. The amplifiers offer many features which make their application nearly foolproof: overload protection on the input and

output, no latch-up when the common mode range is exceeded, as well as freedom from oscillations.

The LM741C/LM741E are identical to the LM741/LM741A except that the LM741C/LM741E have their performance guaranteed over a 0°C to +70°C temperature range, instead of -55°C to +125°C.



LM741 Operational Amplifier

November 1994

#### **Absolute Maximum Ratings** If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications. (Note 5) LM741A LM741E LM741 LM741C Supply Voltage $\pm$ 22V $\pm 22V$ $\pm$ 22V $\pm\,18V$ 500 mW Power Dissipation (Note 1) 500 mW 500 mW 500 mW $\pm 30V$ $\pm 30 V$ $\pm 30 V$ $\pm 30 V$ Differential Input Voltage $\pm 15V$ $\pm 15V$ $\pm 15V$ $\pm 15V$ Input Voltage (Note 2) Continuous Output Short Circuit Duration Continuous Continuous Continuous Operating Temperature Range $-55^{\circ}$ C to $+125^{\circ}$ C 0°C to +70°C -55°C to +125°C $0^{\circ}C$ to $+70^{\circ}C$ Storage Temperature Range -65°C to +150°C $-65^{\circ}$ C to $+150^{\circ}$ C -65°C to +150°C -65°C to +150°C 150°C 150°C 100°C Junction Temperature 100°C Soldering Information 260°C 260°C N-Package (10 seconds) 260°C 260°C J- or H-Package (10 seconds) 300°C 300°C 300°C 300°C M-Package Vapor Phase (60 seconds) 215°C 215°C 215°C 215°C 215°C Infrared (15 seconds) 215°C 215°C 215°C See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices. ESD Tolerance (Note 6) 400V 400V 400V 400V **Electrical Characteristics (Note 3)**

| Parameter                                | meter Conditions                                                                                                                                                                           | LM74     | 41A/L | M741E | IE LM74 |     | 1741 |     | LM741C |     |                      |
|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------|-------|---------|-----|------|-----|--------|-----|----------------------|
| Farameter                                | Conditions                                                                                                                                                                                 | Min      | Тур   | Max   | Min     | Тур | Max  | Min | Тур    | Max | Onits                |
| Input Offset Voltage                     | $\begin{array}{l} T_{A}=25^\circC\\ R_{S}\leq 10\ k\Omega\\ R_{S}\leq 50\Omega \end{array}$                                                                                                |          | 0.8   | 3.0   |         | 1.0 | 5.0  |     | 2.0    | 6.0 | mV<br>mV             |
|                                          | $ \begin{array}{l} T_{AMIN} \leq T_A \leq T_{AMAX} \\ R_S \leq 50 \Omega \\ R_S \leq 10 \ \text{k} \Omega \end{array} $                                                                    |          |       | 4.0   |         |     | 6.0  |     |        | 7.5 | mV<br>mV             |
| Average Input Offset<br>Voltage Drift    |                                                                                                                                                                                            |          |       | 15    |         |     |      |     |        |     | μV/°C                |
| Input Offset Voltage<br>Adjustment Range | $T_{A}=25^{\circ}C, V_{S}=\pm 20V$                                                                                                                                                         | ±10      |       |       |         | ±15 |      |     | ±15    |     | mV                   |
| Input Offset Current                     | $T_A = 25^{\circ}C$                                                                                                                                                                        |          | 3.0   | 30    |         | 20  | 200  |     | 20     | 200 | nA                   |
|                                          | $T_{AMIN} \leq T_A \leq T_{AMAX}$                                                                                                                                                          |          |       | 70    |         | 85  | 500  |     |        | 300 | nA                   |
| Average Input Offset<br>Current Drift    |                                                                                                                                                                                            |          |       | 0.5   |         |     |      |     |        |     | nA/°C                |
| Input Bias Current                       | $T_A = 25^{\circ}C$                                                                                                                                                                        |          | 30    | 80    |         | 80  | 500  |     | 80     | 500 | nA                   |
|                                          | $T_{AMIN} \leq T_{A} \leq T_{AMAX}$                                                                                                                                                        |          |       | 0.210 |         |     | 1.5  |     |        | 0.8 | μΑ                   |
| Input Resistance                         | $T_A = 25^{\circ}C, V_S = \pm 20V$                                                                                                                                                         | 1.0      | 6.0   |       | 0.3     | 2.0 |      | 0.3 | 2.0    |     | MΩ                   |
|                                          | $ \begin{array}{l} T_{AMIN} \leq T_A \leq T_{AMAX}, \\ V_S = \ \pm 20V \end{array} $                                                                                                       | 0.5      |       |       |         |     |      |     |        |     | MΩ                   |
| Input Voltage Range                      | $T_A = 25^{\circ}C$                                                                                                                                                                        |          |       |       |         |     |      | ±12 | ±13    |     | V                    |
|                                          | $T_{AMIN} \leq T_{A} \leq T_{AMAX}$                                                                                                                                                        |          |       |       | ±12     | ±13 |      |     |        |     | V                    |
| Large Signal Voltage Gain                | $ \begin{array}{l} T_{A}=25^{\circ}C,R_{L}\geq2k\Omega\\ V_{S}=\pm20V,V_{O}=\pm15V\\ V_{S}=\pm15V,V_{O}=\pm10V \end{array} $                                                               | 50       |       |       | 50      | 200 |      | 20  | 200    |     | V/mV<br>V/mV         |
|                                          | $ \begin{array}{l} T_{AMIN} \leq T_A \leq T_{AMAX}, \\ R_L \geq 2  k\Omega, \\ V_S = \pm 20V,  V_O = \pm 15V \\ V_S = \pm 15V,  V_O = \pm 10V \\ V_S = \pm 5V,  V_O = \pm 2V \end{array} $ | 32<br>10 |       |       | 25      |     |      | 15  |        |     | V/mV<br>V/mV<br>V/mV |

| Paramotor                                    | Conditions                                                                                                                                                                   | LM74       | 1A/LM       | 741E       |            | LM741      |           | 1          | LM741C     |     | Unito    |
|----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------|------------|------------|------------|-----------|------------|------------|-----|----------|
| i ulumotor                                   | Conditions                                                                                                                                                                   | Min        | Тур         | Max        | Min        | Тур        | Max       | Min        | Тур        | Max |          |
| Output Voltage Swing                         | $\label{eq:VS} \begin{split} V_S &= \pm 20V \\ R_L \geq 10 \ \text{k}\Omega \\ R_L \geq 2 \ \text{k}\Omega \end{split}$                                                      | ±16<br>±15 |             |            |            |            |           |            |            |     | V<br>V   |
|                                              | $\begin{split} V_S &= \pm 15V \\ R_L &\geq 10 \ \text{k}\Omega \\ R_L &\geq 2 \ \text{k}\Omega \end{split}$                                                                  |            |             |            | ±12<br>±10 | ±14<br>±13 |           | ±12<br>±10 | ±14<br>±13 |     | v<br>v   |
| Output Short Circuit<br>Current              | $\begin{array}{l} T_A = 25^{\circ}C \\ T_{AMIN} \leq T_A \leq T_{AMAX} \end{array} \end{array} \label{eq:tau}$                                                               | 10<br>10   | 25          | 35<br>40   |            | 25         |           |            | 25         |     | mA<br>mA |
| Common-Mode<br>Rejection Ratio               | $ \begin{split} & T_{AMIN} \leq T_A \leq T_{AMAX} \\ & R_S \leq 10 \ k\Omega, \ V_{CM} = \pm 12 V \\ & R_S \leq 50 \Omega, \ V_{CM} = \pm 12 V \end{split} $                 | 80         | 95          |            | 70         | 90         |           | 70         | 90         |     | dB<br>dB |
| Supply Voltage Rejection<br>Ratio            | $\label{eq:tau} \begin{array}{l} T_{AMIN} \leq T_A \leq T_{AMAX}, \\ V_S = \pm 20V \mbox{ to } V_S = \pm 5V \\ R_S \leq 50\Omega \\ R_S \leq 10 \mbox{ k}\Omega \end{array}$ | 86         | 96          |            | 77         | 96         |           | 77         | 96         |     | dB<br>dB |
| Transient Response<br>Rise Time<br>Overshoot | $T_A = 25^{\circ}C$ , Unity Gain                                                                                                                                             |            | 0.25<br>6.0 | 0.8<br>20  |            | 0.3<br>5   |           |            | 0.3<br>5   |     | μs<br>%  |
| Bandwidth (Note 4)                           | $T_A = 25^{\circ}C$                                                                                                                                                          | 0.437      | 1.5         |            |            |            |           |            |            |     | MHz      |
| Slew Rate                                    | T <sub>A</sub> = 25°C, Unity Gain                                                                                                                                            | 0.3        | 0.7         |            |            | 0.5        |           |            | 0.5        |     | V/µs     |
| Supply Current                               | $T_A = 25^{\circ}C$                                                                                                                                                          |            |             |            |            | 1.7        | 2.8       |            | 1.7        | 2.8 | mA       |
| Power Consumption                            | $\begin{array}{l} T_{A} = 25^{\circ}C \\ V_{S} = \pm 20V \\ V_{S} = \pm 15V \end{array}$                                                                                     |            | 80          | 150        |            | 50         | 85        |            | 50         | 85  | mW<br>mW |
| LM741A                                       |                                                                                                                                                                              |            |             | 165<br>135 |            |            |           |            |            |     | mW<br>mW |
| LM741E                                       |                                                                                                                                                                              |            |             | 150<br>150 |            |            |           |            |            |     | mW<br>mW |
| LM741                                        | $ \begin{array}{l} V_S = \pm 15V \\ T_A = T_{AMIN} \\ T_A = T_{AMAX} \end{array} $                                                                                           |            |             |            |            | 60<br>45   | 100<br>75 |            |            |     | mW<br>mW |

Note 1: For operation at elevated temperatures, these devices must be derated based on thermal resistance, and  $T_j$  max. (listed under "Absolute Maximum Ratings").  $T_j = T_A + (\theta_{jA} P_D)$ .

| Thermal Resistance                  | Cerdip (J) | DIP (N) | HO8 (H) | SO-8 (M) |
|-------------------------------------|------------|---------|---------|----------|
| $\theta_{jA}$ (Junction to Ambient) | 100°C/W    | 100°C/W | 170°C/W | 195°C/W  |
| $\theta_{jC}$ (Junction to Case)    | N/A        | N/A     | 25°C/W  | N/A      |

Note 2: For supply voltages less than  $\pm$  15V, the absolute maximum input voltage is equal to the supply voltage.

Note 3: Unless otherwise specified, these specifications apply for  $V_S = \pm 15V$ ,  $-55^{\circ}C \le T_A \le +125^{\circ}C$  (LM741/LM741A). For the LM741C/LM741E, these specifications are limited to  $0^{\circ}C \le T_A \le +70^{\circ}C$ .

Note 4: Calculated value from: BW (MHz) = 0.35/Rise Time( $\mu$ s).

Note 5: For military specifications see RETS741X for LM741 and RETS741AX for LM741A.

Note 6: Human body model, 1.5 k $\Omega$  in series with 100 pF.











National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.

# LM211, LM311

Pb–Free Packages are Available

# **Single Comparators**

The ability to operate from a single power supply of 5.0 V to 30 V or  $\pm 15$  V split supplies, as commonly used with operational amplifiers, makes the LM211/LM311 a truly versatile comparator. Moreover, the inputs of the device can be isolated from system ground while the output can drive loads referenced either to ground, the V<sub>CC</sub> or the V<sub>EE</sub> supply. This flexibility makes it possible to drive DTL, RTL, TTL, or MOS logic. The output can also switch voltages to 50 V at currents to 50 mA, therefore, the LM211/LM311 can be used to drive relays, lamps or solenoids.

#### Features



Input polarity is reversed when GND pin is used as an output.

VEE

Ground–Referred Load



GND pin is used as an output.

Load Referred to Negative Supply





Figure 1. Typical Comparator Design Configurations



#### ORDERING & DEVICE MARKING INFORMATION

See detailed ordering and shipping information and marking information in the package dimensions section on page 7 of this data sheet.

#### MAXIMUM RATINGS (T<sub>A</sub> = +25°C, unless otherwise noted.)

| Rating                                                                                              | Symbol                             | LM211                                 | LM311                   | Unit |
|-----------------------------------------------------------------------------------------------------|------------------------------------|---------------------------------------|-------------------------|------|
| Total Supply Voltage                                                                                | V <sub>CC</sub> +  V <sub>EE</sub> | 36                                    | 36                      | Vdc  |
| Output to Negative Supply Voltage                                                                   | V <sub>O</sub> –V <sub>EE</sub>    | 50                                    | 40                      | Vdc  |
| Ground to Negative Supply Voltage                                                                   | V <sub>EE</sub>                    | 30                                    | 30                      | Vdc  |
| Input Differential Voltage                                                                          | V <sub>ID</sub>                    | ±30                                   | ±30                     | Vdc  |
| Input Voltage (Note 2)                                                                              | V <sub>in</sub>                    | ±15                                   | ±15                     | Vdc  |
| Voltage at Strobe Pin                                                                               | -                                  | V <sub>CC</sub> to V <sub>CC</sub> -5 | $V_{CC}$ to $V_{CC}$ –5 | Vdc  |
| Power Dissipation and Thermal Characteristics<br>Plastic DIP<br>Derate Above T <sub>A</sub> = +25°C | P <sub>D</sub><br>R <sub>θJA</sub> | 62<br>5.                              | mW<br>mW/°C             |      |
| Operating Ambient Temperature Range                                                                 | T <sub>A</sub>                     | -25 to +85                            | 0 to +70                | °C   |
| Operating Junction Temperature                                                                      | T <sub>J(max)</sub>                | +150                                  | +150                    | °C   |
| Storage Temperature Range                                                                           | T <sub>stg</sub>                   | -65 to +150                           | -65 to +150             | °C   |

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

#### **ELECTRICAL CHARACTERISTICS** ( $V_{CC}$ = +15 V, $V_{EE}$ = -15 V, $T_A$ = 25°C, unless otherwise noted) Note 1

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | LM211 LM311 |                        |                      |             |                        |                      |                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------|------------------------|----------------------|-------------|------------------------|----------------------|----------------|
| Characteristic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Symbol           | Min         | Тур                    | Max                  | Min         | Тур                    | Max                  | Unit           |
| $ \begin{array}{l} \mbox{Input Offset Voltage (Note 3)} \\ \mbox{R}_S \leq \ 50 \ \mbox{k}\Omega, \ \mbox{T}_A = +25^\circ\mbox{C} \\ \mbox{R}_S \leq \ 50 \ \mbox{k}\Omega, \ \mbox{T}_{low} \leq \ \mbox{T}_A \leq \mbox{T}_{high}^* \end{array} $                                                                                                                                                                                                                                                                                                                           | V <sub>IO</sub>  | -           | 0.7                    | 3.0<br>4.0           | -           | 2.0<br>_               | 7.5<br>10            | mV             |
| Input Offset Current (Note 3) $T_A = +25^{\circ}C$<br>$T_{low} \le T_A \le T_{high}^*$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | l <sub>IO</sub>  | -           | 1.7<br>-               | 10<br>20             | -           | 1.7<br>-               | 50<br>70             | nA             |
| Input Bias Current $T_A = +25^{\circ}C$<br>$T_{low} \le T_A \le T_{high}^{*}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ι <sub>ΙΒ</sub>  | -           | 45<br>-                | 100<br>150           | -           | 45<br>-                | 250<br>300           | nA             |
| Voltage Gain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | A <sub>V</sub>   | 40          | 200                    | -                    | 40          | 200                    | -                    | V/mV           |
| Response Time (Note 4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  | -           | 200                    | -                    | -           | 200                    | -                    | ns             |
| $ \begin{array}{l} \mbox{Saturation Voltage} \\ V_{ID} \leq -5.0 \mbox{ mV, } I_{O} = 50 \mbox{ mA, } T_{A} = 25^{\circ}\mbox{C} \\ V_{ID} \leq -10 \mbox{ mV, } I_{O} = 50 \mbox{ mA, } T_{A} = 25^{\circ}\mbox{C} \\ V_{CC} \geq 4.5 \mbox{ V, } V_{EE} = 0,  T_{Iow} \leq T_{A} \leq T_{high}^{*} \\ V_{ID} \end{tabular} \leq 6.0 \mbox{ mV, } I_{sink} \leq 8.0 \mbox{ mA} \\ V_{ID} \end{tabular} \leq 10 \mbox{ mV, } I_{sink} \leq 8.0 \mbox{ mA} \end{array} $                                                                                                        | V <sub>OL</sub>  |             | 0.75<br>-<br>0.23<br>- | 1.5<br>-<br>0.4<br>- | -<br>-<br>- | _<br>0.75<br>_<br>0.23 | -<br>1.5<br>-<br>0.4 | V              |
| Strobe "On" Current (Note 5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ۱ <sub>S</sub>   | -           | 3.0                    | -                    | _           | 3.0                    | -                    | mA             |
| $\begin{array}{l} \text{Output Leakage Current} \\ \text{V}_{\text{ID}} \geq 5.0 \text{ mV}, \text{V}_{\text{O}} = 35 \text{ V},  \text{T}_{\text{A}} = 25^{\circ}\text{C},  \text{I}_{\text{strobe}} = 3.0 \text{ mA} \\ \text{V}_{\text{ID}} \geq 10 \text{ mV}, \text{V}_{\text{O}} = 35 \text{ V},  \text{T}_{\text{A}} = 25^{\circ}\text{C},  \text{I}_{\text{strobe}} = 3.0 \text{ mA} \\ \text{V}_{\text{ID}} \geq 5.0 \text{ mV}, \text{V}_{\text{O}} = 35 \text{ V},  \text{T}_{\text{how}} \leq \text{T}_{\text{A}} \leq \text{T}_{\text{high}}^{\star} \end{array}$ |                  | -<br>-<br>- | 0.2<br>-<br>0.1        | 10<br>-<br>0.5       | -<br>-<br>- | _<br>0.2<br>_          | -<br>50<br>-         | nA<br>nA<br>μA |
| Input Voltage Range ( $T_{low} \le T_A \le T_{high}^*$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | V <sub>ICR</sub> | -14.5       | -14.7<br>to<br>13.8    | +13.0                | -14.5       | -14.7<br>to<br>13.8    | +13.0                | V              |
| Positive Supply Current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | I <sub>CC</sub>  | -           | +2.4                   | +6.0                 | -           | +2.4                   | +7.5                 | mA             |
| Negative Supply Current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | I <sub>EE</sub>  | -           | -1.3                   | -5.0                 | _           | -1.3                   | -5.0                 | mA             |

\* LM211:  $T_{low} = -25^{\circ}C$ ,  $T_{high} = +85^{\circ}C$ LM311:  $T_{low} = 0^{\circ}C$ ,  $T_{high} = +70^{\circ}C$ 

 Offset voltage, offset current and bias current specifications apply for a supply voltage range from a single 5.0 V supply up to ±15 V supplies.
 This rating applies for ±15 V supplies. The positive input voltage limit is 30 V above the negative supply. The negative input voltage limit is equal to the negative supply voltage or 30 V below the positive supply, whichever is less.

3. The offset voltages and offset currents given are the maximum values required to drive the output within a volt of either supply with a 1.0 mA load. Thus, these parameters define an error band and take into account the "worst case" effects of voltage gain and input impedance.

4. The response time specified is for a 100 mV input step with 5.0 mV overdrive.

5. Do not short the strobe pin to ground; it should be current driven at 3.0 mA to 5.0 mA.









#### LM211, LM311










#### TECHNIQUES FOR AVOIDING OSCILLATIONS IN COMPARATOR APPLICATIONS

When a high speed comparator such as the LM211 is used with high speed input signals and low source impedances, the output response will normally be fast and stable, providing the power supplies have been bypassed (with  $0.1 \,\mu\text{F}$  disc capacitors), and that the output signal is routed well away from the inputs (Pins 2 and 3) and also away from Pins 5 and 6.

However, when the input signal is a voltage ramp or a slow sine wave, or if the signal source impedance is high (1.0 k $\Omega$  to 100 k $\Omega$ ), the comparator may burst into oscillation near the crossing–point. This is due to the high gain and wide bandwidth of comparators like the LM211 series. To avoid oscillation or instability in such a usage, several precautions are recommended, as shown in Figure 16.

The trim pins (Pins 5 and 6) act as unwanted auxiliary inputs. If these pins are not connected to a trim–pot, they should be shorted together. If they are connected to a trim–pot, a 0.01  $\mu$ F capacitor (C1) between Pins 5 and 6 will minimize the susceptibility to AC coupling. A smaller capacitor is used if Pin 5 is used for positive feedback as in Figure 16. For the fastest response time, tie both balance pins to V<sub>CC</sub>.

Certain sources will produce a cleaner comparator output waveform if a 100 pF to 1000 pF capacitor (C2) is connected directly across the input pins. When the signal source is applied through a resistive network, R1, it is usually advantageous to choose R2 of the same value, both for DC and for dynamic (AC) considerations. Carbon, tin–oxide, and metal–film resistors have all been used with good results in comparator input circuitry, but inductive wirewound resistors should be avoided.

When comparator circuits use input resistors (e.g., summing resistors), their value and placement are particularly important. In all cases the body of the resistor should be close to the device or socket. In other words, there should be a very short lead length or printed–circuit foil run between comparator and resistor to radiate or pick up signals. The same applies to capacitors, pots, etc. For example, if  $R1 = 10 \text{ k}\Omega$ , as little as 5 inches of lead between the resistors and the input pins can result in oscillations that are very hard to dampen. Twisting these input leads tightly is the best alternative to placing resistors close to the comparator.

Since feedback to almost any pin of a comparator can result in oscillation, the printed-circuit layout should be engineered thoughtfully. Preferably there should be a groundplane under the LM211 circuitry (e.g., one side of a double layer printed circuit board). Ground, positive supply or negative supply foil should extend between the output and the inputs to act as a guard. The foil connections for the inputs should be as small and compact as possible, and should be essentially surrounded by ground foil on all sides to guard against capacitive coupling from any fast high-level signals (such as the output). If Pins 5 and 6 are not used, they should be shorted together. If they are connected to a trim-pot, the trim-pot should be located no more than a few inches away from the LM211, and a 0.01 µF capacitor should be installed across Pins 5 and 6. If this capacitor cannot be used, a shielding printed-circuit foil may be advisable between Pins 6 and 7. The power supply bypass capacitors should be located within a couple inches of the LM211.

A standard procedure is to add hysteresis to a comparator to prevent oscillation, and to avoid excessive noise on the output. In the circuit of Figure 17, the feedback resistor of  $510 \text{ k}\Omega$  from the output to the positive input will cause about 3.0 mV of hysteresis. However, if R2 is larger than 100  $\Omega$ , such as 50 k $\Omega$ , it would not be practical to simply increase the value of the positive feedback resistor proportionally above 510 k $\Omega$  to maintain the same amount of hysteresis.

When both inputs of the LM211 are connected to active signals, or if a high–impedance signal is driving the positive input of the LM211 so that positive feedback would be disruptive, the circuit of Figure 16 is ideal. The positive feedback is applied to Pin 5 (one of the offset adjustment pins). This will be sufficient to cause 1.0 mV to 2.0 mV hysteresis and sharp transitions with input triangle waves from a few Hz to hundreds of kHz. The positive–feedback signal across the 82  $\Omega$  resistor swings 240 mV below the positive supply. This signal is centered around the nominal voltage at Pin 5, so this feedback does not add to the offset voltage can be trimmed out, using the 5.0 k $\Omega$  pot and 3.0 k $\Omega$  resistor as shown.







Figure 19. Relay Driver with Strobe Capability

#### **ORDERING INFORMATION**

| Device    | Package             | Shipping <sup>†</sup> |  |  |
|-----------|---------------------|-----------------------|--|--|
| LM211D    | SOIC-8              |                       |  |  |
| LM211DR2  | SOIC-8              | 98 Units / Rail       |  |  |
| LM211DR2G | SOIC-8<br>(Pb-Free) |                       |  |  |
| LM311D    | SOIC-8              | 2500 Units / Reel     |  |  |
| LM311DG   | SOIC-8<br>(Pb-Free) | 98 Units / Rail       |  |  |
| LM311DR2  | SOIC-8              |                       |  |  |
| LM311DR2G | SOIC-8<br>(Pb-Free) | 2500 Units / Reel     |  |  |
| LM311N    | PDIP-8              |                       |  |  |
| LM311NG   | PDIP-8<br>(Pb-Free) | 50 Units / Rail       |  |  |

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

#### MARKING DIAGRAMS

| PDIP-8<br>N SUFFIX<br>CASE 626 |                         |                                        | SOIC-8<br>D SUFFIX<br>CASE 751        |
|--------------------------------|-------------------------|----------------------------------------|---------------------------------------|
|                                | X<br>A                  | = 2 or 3<br>= Assembly Lo              | 8 A A A A<br>LMx11<br>ALYW<br>1 U U U |
|                                | WL, L<br>YY, Y<br>WW, W | = Wafer Lot<br>= Year<br>/ = Work Week |                                       |

### LM211, LM311

#### PACKAGE DIMENSIONS

PDIP-8 **N SUFFIX** CASE 626-05 ISSUE L



NOTES: 1. DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL. 2. PACKAGE CONTOUR OPTIONAL (ROUND OR SQUARE CORNERS). 3. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

|     | MILLIN | IETERS | INC       | HES   |  |
|-----|--------|--------|-----------|-------|--|
| DIM | MIN    | MAX    | MIN       | MAX   |  |
| Α   | 9.40   | 10.16  | 0.370     | 0.400 |  |
| В   | 6.10   | 6.60   | 0.240     | 0.260 |  |
| С   | 3.94   | 4.45   | 0.155     | 0.175 |  |
| D   | 0.38   | 0.51   | 0.015     | 0.020 |  |
| F   | 1.02   | 1.78   | 0.040     | 0.070 |  |
| G   | 2.54   | BSC    | 0.100 BSC |       |  |
| Н   | 0.76   | 1.27   | 0.030     | 0.050 |  |
| J   | 0.20   | 0.30   | 0.008     | 0.012 |  |
| K   | 2.92   | 3.43   | 0.115     | 0.135 |  |
| L   | 7.62   | BSC    | 0.300     | BSC   |  |
| М   |        | 10°    |           | 10°   |  |
| N   | 0.76   | 1.01   | 0.030     | 0.040 |  |

SOIC-8 D SUFFIX CASE 751-07 **ISSUE AC** 



NOTES:

- NOTES:
   DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
   CONTROLLING DIMENSION: MILLIMETER.
   DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
   MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
   DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.
   751–01 THRU 751–06 ARE OBSOLETE. NEW STANDARD IS 751–07.

|     | MILLIN | IETERS | INC   | HES   |  |  |  |  |
|-----|--------|--------|-------|-------|--|--|--|--|
| DIM | MIN    | MAX    | MIN   | MAX   |  |  |  |  |
| Α   | 4.80   | 5.00   | 0.189 | 0.197 |  |  |  |  |
| В   | 3.80   | 4.00   | 0.150 | 0.157 |  |  |  |  |
| С   | 1.35   | 1.75   | 0.053 | 0.069 |  |  |  |  |
| D   | 0.33   | 0.51   | 0.013 | 0.020 |  |  |  |  |
| G   | 1.27   | 7 BSC  | 0.05  | 0 BSC |  |  |  |  |
| н   | 0.10   | 0.25   | 0.004 | 0.010 |  |  |  |  |
| J   | 0.19   | 0.25   | 0.007 | 0.010 |  |  |  |  |
| κ   | 0.40   | 1.27   | 0.016 | 0.050 |  |  |  |  |
| М   | 0 °    | 8 °    | 0 °   | 8 °   |  |  |  |  |
| Ν   | 0.25   | 0.50   | 0.010 | 0.020 |  |  |  |  |
| S   | 5.80   | 6.20   | 0.228 | 0.244 |  |  |  |  |

**SOLDERING FOOTPRINT\*** 





#### LM211, LM311

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters which may be provided in solut. C adta sheets and/or specifications can and do vary in different applications of actual performance may vary over time. All operating parameters which may be provided in solut. C and the solut. C products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application in which the failure of the SCILLC product cauld create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is

#### PUBLICATION ORDERING INFORMATION

#### LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 61312, Phoenix, Arizona 85082–1312 USA Phone: 480–829–7710 or 800–344–3860 Toll Free USA/Canada Fax: 480–829–7709 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800–282–9855 Toll Free USA/Canada

Japan: ON Semiconductor, Japan Customer Focus Center 2–9–1 Kamimeguro, Meguro–ku, Tokyo, Japan 153–0051 Phone: 81–3–5773–3850 ON Semiconductor Website: http://onsemi.com

Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative.

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.



# MC78XX/LM78XX/MC78XXA 3-Terminal 1A Positive Voltage Regulator

### Features

- Output Current up to 1A
- Output Voltages of 5, 6, 8, 9, 10, 12, 15, 18, 24V
- Thermal Overload Protection
- Short Circuit Protection
- Output Transistor Safe Operating Area Protection

### Description

The MC78XX/LM78XX/MC78XXA series of three terminal positive regulators are available in the TO-220/D-PAK package and with several fixed output voltages, making them useful in a wide range of applications. Each type employs internal current limiting, thermal shut down and safe operating area protection, making it essentially indestructible. If adequate heat sinking is provided, they can deliver over 1A output current. Although designed primarily as fixed voltage regulators, these devices can be used with external components to obtain adjustable voltages and currents.



### **Internal Block Digram**



### **Absolute Maximum Ratings**

| Parameter                                                   | Symbol            | Value      | Unit   |
|-------------------------------------------------------------|-------------------|------------|--------|
| Input Voltage (for $V_O = 5V$ to 18V)<br>(for $V_O = 24V$ ) | Vi<br>Vi          | 35<br>40   | V<br>V |
| Thermal Resistance Junction-Cases (TO-220)                  | R <sub>θ</sub> JC | 5          | °C/W   |
| Thermal Resistance Junction-Air (TO-220)                    | RθJA              | 65         | °C/W   |
| Operating Temperature Range                                 | TOPR              | 0 ~ +125   | °C     |
| Storage Temperature Range                                   | TSTG              | -65 ~ +150 | °C     |

### **Electrical Characteristics (MC7805/LM7805)**

(Refer to test circuit ,0°C < TJ < 125°C, IO = 500mA, VI = 10V, CI=  $0.33\mu$ F, CO=  $0.1\mu$ F, unless otherwise specified)

| Baramatar                 | Symbol                  | Conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                             | MC7  | 805/LM | 7805 | Unit   |
|---------------------------|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|------|--------|------|--------|
| Farameter                 | Symbol                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                             | Min. | Тур.   | Max. | Unit   |
|                           |                         | TJ =+25 <sup>o</sup> C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                             | 4.8  | 5.0    | 5.2  |        |
| Output Voltage            | Vo                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                             | 4.75 | 5.0    | 5.25 | V      |
| Line Regulation (Note1)   | Poglino                 | $\begin{array}{c c} T_{J}=+25 \ ^{\circ}C & \hline V_{I} \\ \hline V_{I} \\ ad & T_{J}=+25 \ ^{\circ}C & \hline I_{O} \\ 75 \\ \hline T_{J}=+25 \ ^{\circ}C & \hline I_{O} \\ 75 \\ \hline T_{J}=+25 \ ^{\circ}C & \hline I_{O} \\ 75 \\ \hline T_{J}=+25 \ ^{\circ}C & \hline T_{J}=+25 \ ^{\circ}C \\ \hline T_{J}=+25 \ ^{\circ}C & \hline T_{J}=+25 \ ^{\circ}C \\ \hline T_{J}=+25 \ ^{\circ}C & \hline T_{J}=+25 \ ^{\circ}C \\ \hline T_{J}=+25 \ ^{\circ}C & \hline T_{J}=+25 \ ^{\circ}C \\ \hline T_{J}=+25 \ ^{\circ}C & \hline T_{J}=+25 \ ^{\circ}C \\ \hline T_{J}=+25 \ ^{\circ}C & \hline T_{J}=+25 \ ^{\circ}C \\ \hline T_{J}=+25 \ ^{\circ}C & \hline T_{J}=+25 \ ^{\circ}C \\ \hline T_{J}=+25 \ ^{\circ}C & \hline T_{J}=+25 \ ^{\circ}C \\ \hline T_{J}=+25 \ ^{\circ}C & \hline T_{J}=+25 \ ^{\circ}C \\ \hline T_{J}=+25 \ ^{\circ}C & \hline T_{J}=+25 \ ^{\circ}C \\ \hline T_{J}=+25 \ ^{\circ}C & \hline T_{J}=+25 \ ^{\circ}C \\ \hline T_{J}=+25 \ ^{\circ}C & \hline T_{J}=+25 \ ^{\circ}C \\ \hline T_{J}=+25 \ ^{\circ}C & \hline T_{J}=+25 \ ^{\circ}C \\ \hline T_{J}=+25 \$ | Vo = 7V to 25V              | -    | 4.0    | 100  | m\/    |
|                           | Regime                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | VI = 8V to 12V              | -    | 1.6    | 50   |        |
|                           |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | IO = 5.0mA to1.5A           | -    | 9      | 100  |        |
| Load Regulation (Note1) F | Regload                 | Tj=+25 °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | IO =250mA to<br>750mA       | -    | 4      | 50   | mV     |
| Quiescent Current         | lQ                      | TJ =+25 °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TJ =+25 °C                  |      | 5.0    | 8.0  | mA     |
| Quiescent Current Change  |                         | IO = 5mA to 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0A                          | -    | 0.03   | 0.5  | m۸     |
| Quiescent Current Change  | ΔIQ                     | V <sub>I</sub> = 7V to 25V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                             | -    | 0.3    | 1.3  |        |
| Output Voltage Drift      | $\Delta V_O / \Delta T$ | IO= 5mA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                             | -    | -0.8   | -    | mV/ °C |
| Output Noise Voltage      | VN                      | f = 10Hz to 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0KHz, TA=+25 <sup>o</sup> C | -    | 42     | -    | μV/Vo  |
| Ripple Rejection          | RR                      | f = 120Hz<br>Vo = 8V to 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | V                           | 62   | 73     | -    | dB     |
| Dropout Voltage           | VDrop                   | I <sub>O</sub> = 1A, T <sub>J</sub> =+25 <sup>o</sup> C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                             | -    | 2      | -    | V      |
| Output Resistance         | rO                      | f = 1KHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                             | -    | 15     | -    | mΩ     |
| Short Circuit Current     | ISC                     | VI = 35V, TA =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | +25 °C                      | -    | 230    | -    | mA     |
| Peak Current              | IPK                     | TJ =+25 °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                             | -    | 2.2    | -    | A      |

#### Note:

### **Electrical Characteristics (MC7806)**

(Refer to test circuit ,0°C < TJ < 125°C, IO = 500mA, VI =11V, CI= 0.33µF, CO= 0.1µF, unless otherwise specified)

| Parameter                | Parameter Symbol Conditions |                                                                                                                                                 |                             | MC7806 | i    | Unit |        |
|--------------------------|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------|------|------|--------|
| Farameter                | Symbol                      |                                                                                                                                                 | manions                     | Min.   | Тур. | Max. | Unit   |
|                          |                             | TJ =+25 °C                                                                                                                                      |                             | 5.75   | 6.0  | 6.25 |        |
| Output Voltage           | Vo                          | $\begin{array}{l} \text{5.0mA} \leq \text{I}_{O} \leq \text{1.0A}, \text{P}_{O} \leq \text{15W} \\ \text{VI} = 8.0 \text{V to 21V} \end{array}$ |                             | 5.7    | 6.0  | 6.3  | V      |
| Line Regulation (Note1)  | Doglino                     | T + + 25 °C                                                                                                                                     | VI = 8V to 25V              | -      | 5    | 120  | m\/    |
| Line Regulation (Note I) | Regime                      | 1J=+25 C                                                                                                                                        | VI = 9V to 13V              | -      | 1.5  | 60   | mv     |
| Lood Dogulation (Note1)  | Doglood                     | TJ =+25 °C -                                                                                                                                    | IO =5mA to 1.5A             | -      | 9    | 120  | m\/    |
| Load Regulation (Note I) | Regioau                     |                                                                                                                                                 | IO =250mA to750A            | -      | 3    | 60   | mv     |
| Quiescent Current        | lq                          | TJ =+25 °C                                                                                                                                      | ·                           | -      | 5.0  | 8.0  | mA     |
| Quiescent Current Change | 410                         | IO = 5mA to 1A                                                                                                                                  |                             | -      | -    | 0.5  | m۸     |
| Quescent Current Change  | ΔIQ                         | $V_I = 8V$ to 25V                                                                                                                               |                             | -      | -    | 1.3  |        |
| Output Voltage Drift     | $\Delta V_O / \Delta T$     | IO = 5mA                                                                                                                                        |                             | -      | -0.8 | -    | mV/ °C |
| Output Noise Voltage     | VN                          | f = 10Hz to 100K                                                                                                                                | Ήz, TA =+25 <sup>o</sup> C  | -      | 45   | -    | μV/Vo  |
| Ripple Rejection         | RR                          | f = 120Hz<br>VI = 9V to 19V                                                                                                                     | f = 120Hz<br>VI = 9V to 19V |        | 75   | -    | dB     |
| Dropout Voltage          | VDrop                       | IO = 1A, TJ =+25 °C                                                                                                                             |                             | -      | 2    | -    | V      |
| Output Resistance        | rO                          | f = 1KHz                                                                                                                                        |                             | -      | 19   | -    | mΩ     |
| Short Circuit Current    | ISC                         | VI= 35V, TA=+2                                                                                                                                  | 25 °C                       | -      | 250  | -    | mA     |
| Peak Current             | IPK                         | TJ =+25 °C                                                                                                                                      |                             | -      | 2.2  | -    | А      |

#### Note:

### **Electrical Characteristics (MC7808)**

(Refer to test circuit ,0°C < TJ < 125°C, IO = 500mA, VI =14V, CI= 0.33µF, CO= 0.1µF, unless otherwise specified)

| Barameter                | Symbol                  | Conditions                                                                                                      |                         |      | MC7808 |      |        |
|--------------------------|-------------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------|------|--------|------|--------|
| Farameter                | Symbol                  |                                                                                                                 | Diamons                 | Min. | Тур.   | Max. | Unit   |
|                          |                         | TJ =+25 °C                                                                                                      |                         | 7.7  | 8.0    | 8.3  |        |
| Output Voltage           | Vo                      | $\begin{array}{l} \text{5.0mA} \leq \text{I}_{O} \leq 1\\ \text{VI} = 10.5 \text{V} \text{ to } 23 \end{array}$ | .0A, $P_O \le 15W$<br>V | 7.6  | 8.0    | 8.4  | V      |
| Line Demulation (Nated)  | Dealiae                 | TJ =+25 °C                                                                                                      | VI = 10.5V to 25V       | -    | 5.0    | 160  |        |
| Line Regulation (Note1)  | Regline                 | 1J=+25°C                                                                                                        | VI = 11.5V to 17V       | -    | 2.0    | 80   | mv     |
| Load Regulation (Note1)  | Doglood                 | $T_J = +25 ^{\circ}C \qquad \frac{I}{I}$                                                                        | IO = 5.0mA to 1.5A      | -    | 10     | 160  | m\/    |
| Load Regulation (Note1)  | Regioad                 |                                                                                                                 | IO= 250mA to 750mA      | -    | 5.0    | 80   | mv     |
| Quiescent Current        | lQ                      | TJ =+25 °C                                                                                                      | ·                       | -    | 5.0    | 8.0  | mA     |
| Quiescent Current Change | 410                     | IO = 5mA to 1.04                                                                                                | ł                       | -    | 0.05   | 0.5  | m۸     |
| Quiescent Current Change | ΔIQ                     | VI = 10.5A to 25                                                                                                | V                       | -    | 0.5    | 1.0  | IIIA   |
| Output Voltage Drift     | $\Delta V_O / \Delta T$ | IO = 5mA                                                                                                        |                         | -    | -0.8   | -    | mV/ °C |
| Output Noise Voltage     | VN                      | f = 10Hz to 100KH                                                                                               | lz, ΤΑ =+25 °C          | -    | 52     | -    | μV/Vo  |
| Ripple Rejection         | RR                      | f = 120Hz, VI= 1                                                                                                | 1.5V to 21.5V           | 56   | 73     | -    | dB     |
| Dropout Voltage          | VDrop                   | IO = 1A, TJ=+25                                                                                                 | Oo                      | -    | 2      | -    | V      |
| Output Resistance        | rO                      | f = 1KHz                                                                                                        | f = 1KHz                |      | 17     | -    | mΩ     |
| Short Circuit Current    | Isc                     | VI= 35V, TA =+2                                                                                                 | 5 °C                    | -    | 230    | -    | mA     |
| Peak Current             | IPK                     | TJ =+25 °C                                                                                                      |                         | -    | 2.2    | -    | Α      |

#### Note:

### **Electrical Characteristics (MC7809)**

(Refer to test circuit ,0°C < TJ < 125°C, IO = 500mA, VI =15V, CI= 0.33µF, CO= 0.1µF, unless otherwise specified)

| Parameter Symbol         |                         | Conditions                                                           |                     | MC7809 |      |      | Unit   |
|--------------------------|-------------------------|----------------------------------------------------------------------|---------------------|--------|------|------|--------|
| Farameter                | Symbol                  |                                                                      | onations            | Min.   | Тур. | Max. | Onic   |
|                          |                         | TJ =+25°C                                                            |                     | 8.65   | 9    | 9.35 |        |
| Output Voltage           | Vo                      | 5.0mA≤ I <sub>O</sub> ≤1.0A, P <sub>O</sub> ≤15W<br>VI= 11.5V to 24V |                     | 8.6    | 9    | 9.4  | V      |
| Line Regulation (Note1)  | Poglino                 | T 1- 1 25°C                                                          | VI = 11.5V to 25V   | -      | 6    | 180  | m\/    |
| Line Regulation (Note I) | Regime                  | 1 J=+25 °C                                                           | VI = 12V to 17V     | -      | 2    | 90   | mv     |
| Lood Dogulation (Nato1)  | Declard                 | d TJ=+25°C -                                                         | IO = 5mA to 1.5A    | -      | 12   | 180  | m\/    |
| Load Regulation (Note I) | Regioad                 |                                                                      | IO = 250mA to 750mA | -      | 4    | 90   | mv     |
| Quiescent Current        | lq                      | TJ=+25°C                                                             |                     | -      | 5.0  | 8.0  | mA     |
| Quiescent Current Change |                         | IO = 5mA to 1.0A                                                     | ł                   | -      | -    | 0.5  | m۸     |
| Quescent Current Change  | ΔIQ                     | VI = 11.5V to 26                                                     | V                   | -      | -    | 1.3  | IIIA   |
| Output Voltage Drift     | $\Delta V_O / \Delta T$ | IO = 5mA                                                             |                     | -      | -1   | -    | mV/ °C |
| Output Noise Voltage     | VN                      | f = 10Hz to 100KH                                                    | lz, TA =+25 °C      | -      | 58   | -    | μV/Vo  |
| Ripple Rejection         | RR                      | f = 120Hz<br>VI = 13V to 23V                                         |                     | 56     | 71   | -    | dB     |
| Dropout Voltage          | VDrop                   | IO = 1A, TJ=+25                                                      | °C                  | -      | 2    | -    | V      |
| Output Resistance        | rO                      | f = 1KHz                                                             |                     | -      | 17   | -    | mΩ     |
| Short Circuit Current    | ISC                     | VI= 35V, TA =+2                                                      | 5°C                 | -      | 250  | -    | mA     |
| Peak Current             | IPK                     | TJ= +25°C                                                            |                     | -      | 2.2  | -    | Α      |

#### Note:

### **Electrical Characteristics (MC7810)**

(Refer to test circuit ,0°C< TJ < 125°C, IO = 500mA, VI =16V, CI =  $0.33\mu$ F, CO= $0.1\mu$ F, unless otherwise specified)

| Paramotor                                   | Symbol                  | Conditions                                                                              |                   | MC7810 |      | Unit |       |
|---------------------------------------------|-------------------------|-----------------------------------------------------------------------------------------|-------------------|--------|------|------|-------|
| Farameter                                   | Symbol                  |                                                                                         | Diamons           | Min.   | Тур. | Max. | Unit  |
|                                             |                         | TJ =+25 °C                                                                              |                   | 9.6    | 10   | 10.4 |       |
| Output Voltage                              | Vo                      | 5.0mA $\leq$ I <sub>O</sub> $\leq$ 1.0A, P <sub>O</sub> $\leq$ 15W<br>VI = 12.5V to 25V |                   | 9.5    | 10   | 10.5 | V     |
| Line Regulation (Note1)                     | Doglino                 | T                                                                                       | VI = 12.5V to 25V | -      | 10   | 200  | m\/   |
| Line Regulation (Note I)                    | Regime                  | 1J =+25°C                                                                               | VI = 13V to 25V   | -      | 3    | 100  | mv    |
| Lood Dogulation (Note1)                     | Declard                 | T.I =+25°C                                                                              | IO = 5mA to 1.5A  | -      | 12   | 200  | m\/   |
| Load Regulation (Note1) Regioad   1J =+25°C | 1J =+25°C               | IO = 250mA to 750mA                                                                     | -                 | 4      | 400  | mv   |       |
| Quiescent Current                           | lq                      | TJ =+25°C                                                                               |                   | -      | 5.1  | 8.0  | mA    |
| Quiescent Current Change                    | 410                     | IO = 5mA to 1.04                                                                        | ł                 | -      | -    | 0.5  | m۸    |
| Quescent Current Change                     | ΔIQ                     | VI = 12.5V to 29                                                                        | V                 | -      | -    | 1.0  |       |
| Output Voltage Drift                        | $\Delta V_O / \Delta T$ | IO = 5mA                                                                                |                   | -      | -1   | -    | mV/°C |
| Output Noise Voltage                        | VN                      | f = 10Hz to 100KH                                                                       | lz, TA =+25 °C    | -      | 58   | -    | μV/Vo |
| Ripple Rejection                            | RR                      | f = 120Hz<br>VI = 13V to 23V                                                            |                   | 56     | 71   | -    | dB    |
| Dropout Voltage                             | VDrop                   | IO = 1A, TJ=+25 °C                                                                      |                   | -      | 2    | -    | V     |
| Output Resistance                           | rO                      | f = 1KHz                                                                                |                   | -      | 17   | -    | mΩ    |
| Short Circuit Current                       | ISC                     | VI = 35V, TA=+2                                                                         | 5 ℃               | -      | 250  | -    | mA    |
| Peak Current                                | lрк                     | TJ =+25 °C                                                                              |                   | -      | 2.2  | -    | А     |

#### Note:

### **Electrical Characteristics (MC7812)**

(Refer to test circuit ,0°C < TJ < 125°C, IO = 500mA, VI =19V, CI= 0.33µF, CO=0.1µF, unless otherwise specified)

| Baramotor Symbol C       |                         | Conditions                                                 |                            | Conditions MC7 |      | <b>//C781</b> | 2      | Unit |
|--------------------------|-------------------------|------------------------------------------------------------|----------------------------|----------------|------|---------------|--------|------|
| Farameter                | Symbol                  | Conditions                                                 |                            | Min.           | Тур. | Max.          | Unit   |      |
|                          |                         | TJ =+25 °C                                                 |                            | 11.5           | 12   | 12.5          |        |      |
| Output Voltage           | Vo                      | $5.0mA \le I_O \le 1.0A, P_O \le 15W$<br>VI = 14.5V to 27V |                            | 11.4           | 12   | 12.6          | V      |      |
| Line Regulation (Note1)  | Poglino                 | $T_{1} = 125^{\circ}C$                                     | VI = 14.5V to 30V          | -              | 10   | 240           | m\/    |      |
|                          | Regime                  | 1J =+25 C                                                  | VI = 16V to 22V            | -              | 3.0  | 120           |        |      |
| Load Pagulation (Noto1)  | Pogload                 | TJ =+25 °C                                                 | IO = 5mA to 1.5A           | -              | 11   | 240           | m\/    |      |
| Load Regulation (Note I) | Regioau                 |                                                            | IO = 250mA to 750mA        | -              | 5.0  | 120           | IIIV   |      |
| Quiescent Current        | lQ                      | TJ =+25 °C                                                 |                            | -              | 5.1  | 8.0           | mA     |      |
| Quiescent Current Change | 410                     | IO = 5mA to 1.0A                                           | N .                        | -              | 0.1  | 0.5           | m۸     |      |
| Quescent Current Change  | ΔIQ                     | VI = 14.5V to 30V                                          | V                          | -              | 0.5  | 1.0           | IIIA   |      |
| Output Voltage Drift     | $\Delta V_O / \Delta T$ | IO = 5mA                                                   |                            | -              | -1   | -             | mV/ °C |      |
| Output Noise Voltage     | VN                      | f = 10Hz to 100KH                                          | lz, TA =+25 <sup>o</sup> C | -              | 76   | -             | μV/Vo  |      |
| Ripple Rejection         | RR                      | f = 120Hz<br>VI = 15V to 25V                               |                            | 55             | 71   | -             | dB     |      |
| Dropout Voltage          | VDrop                   | IO = 1A, TJ=+25 °C                                         |                            | -              | 2    | -             | V      |      |
| Output Resistance        | rO                      | f = 1KHz                                                   |                            | -              | 18   | -             | mΩ     |      |
| Short Circuit Current    | ISC                     | VI = 35V, TA=+2                                            | 5°C                        | -              | 230  | -             | mA     |      |
| Peak Current             | IPK                     | TJ = +25 <sup>o</sup> C                                    |                            | -              | 2.2  | -             | Α      |      |

#### Note:

### **Electrical Characteristics (MC7815)**

(Refer to test circuit ,0°C < TJ < 125°C, IO = 500mA, VI =23V, CI=  $0.33\mu$ F, CO= $0.1\mu$ F, unless otherwise specified)

| Baramotor                       | Symbol                  | Co                                                                                                                                        | nditions                                | l     | MC7815 | 5     | Unit   |    |
|---------------------------------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-------|--------|-------|--------|----|
| Farameter                       | Symbol                  |                                                                                                                                           | Min.                                    | Тур.  | Max.   | Unit  |        |    |
|                                 |                         | $\label{eq:states} \begin{array}{l} T_J =+25 \ ^oC \\ \hline 5.0mA \le I_O \le 1.0A, \ P_O \le 15W \\ V_I = 17.5V \ to \ 30V \end{array}$ |                                         | 14.4  | 15     | 15.6  |        |    |
| Output Voltage                  | Vo                      |                                                                                                                                           |                                         | 14.25 | 15     | 15.75 | V      |    |
| Line Regulation (Nate1)         | Doglino                 | TL 125 %C                                                                                                                                 | VI = 17.5V to 30V                       | -     | 11     | 300   | m\/    |    |
|                                 | Regime                  | 1J =+25 C                                                                                                                                 | VI = 20V to 26V                         | -     | 3      | 150   | mv     |    |
|                                 |                         |                                                                                                                                           | $I_{O} = 5mA \text{ to } 1.5A$          | -     | 12     | 300   |        |    |
| Load Regulation (Note1) Regload | TJ =+25 °C              | IO = 250mA to<br>750mA                                                                                                                    | -                                       | 4     | 150    | mV    |        |    |
| Quiescent Current               | lQ                      | TJ =+25 °C                                                                                                                                | ·                                       | -     | 5.2    | 8.0   | mA     |    |
| Quiescent Current Change        |                         |                                                                                                                                           | IO = 5mA to 1.0A                        |       | -      | -     | 0.5    | m۸ |
|                                 | ΔIQ                     | VI = 17.5V to 3                                                                                                                           | 30V                                     | -     | -      | 1.0   | ma     |    |
| Output Voltage Drift            | $\Delta V_O / \Delta T$ | IO = 5mA                                                                                                                                  |                                         | -     | -1     | -     | mV/ °C |    |
| Output Noise Voltage            | VN                      | f = 10Hz to 100                                                                                                                           | KHz, T <sub>A</sub> =+25 <sup>o</sup> C | -     | 90     | -     | μV/Vo  |    |
| Ripple Rejection                | RR                      | f = 120Hz<br>VI = 18.5V to 2                                                                                                              | 28.5V                                   | 54    | 70     | -     | dB     |    |
| Dropout Voltage                 | VDrop                   | I <sub>O</sub> = 1A, T <sub>J</sub> =+25 <sup>o</sup> C                                                                                   |                                         | -     | 2      | -     | V      |    |
| Output Resistance               | rO                      | f = 1KHz                                                                                                                                  |                                         | -     | 19     | -     | mΩ     |    |
| Short Circuit Current           | ISC                     | VI = 35V, TA=                                                                                                                             | +25 °C                                  | -     | 250    | -     | mA     |    |
| Peak Current                    | IPK                     | TJ =+25 °C                                                                                                                                |                                         | -     | 2.2    | -     | А      |    |

#### Note:

### **Electrical Characteristics (MC7818)**

(Refer to test circuit ,0°C < TJ < 125°C, IO = 500mA, VI =27V, CI= 0.33µF, CO=0.1µF, unless otherwise specified)

| Parameter                | Symbol Conditions       |                                                                   | Ν                                                                    | MC7818 |      | Unit |        |
|--------------------------|-------------------------|-------------------------------------------------------------------|----------------------------------------------------------------------|--------|------|------|--------|
| Farameter                | Symbol                  |                                                                   | Diations                                                             | Min.   | Тур. | Max. | Unit   |
|                          |                         | TJ =+25 °C                                                        |                                                                      | 17.3   | 18   | 18.7 |        |
| Output Voltage           | Vo                      | $5.0 \text{mA} \le \text{IO} \le 1.0 \text{A}$<br>VI = 21V to 33V | 5.0mA ≤ I <sub>O</sub> ≤1.0A, P <sub>O</sub> ≤15W<br>VI = 21V to 33V |        | 18   | 18.9 | V      |
| Line Degulation (Note1)  | Doglino                 | T , , 25 °C                                                       | VI = 21V to 33V                                                      | -      | 15   | 360  | m\/    |
|                          | Regime                  | 1J =+25 C                                                         | VI = 24V to 30V                                                      | -      | 5    | 180  | mv     |
| Load Pagulation (Noto1)  | Pogload                 | T 25 °C                                                           | $I_{O} = 5 mA to 1.5 A$                                              | -      | 15   | 360  | m\/    |
| Load Regulation (Note I) | Regioau                 | 1J =+25 C                                                         | IO = 250mA to 750mA                                                  | -      | 5.0  | 180  | IIIV   |
| Quiescent Current        | lQ                      | TJ =+25 °C                                                        |                                                                      | -      | 5.2  | 8.0  | mA     |
| Quiescent Current Change | 410                     | IO = 5mA to 1.0A                                                  |                                                                      | -      | -    | 0.5  | m۸     |
| Quescent Current Change  | ΔIQ                     | VI = 21V to 33V                                                   |                                                                      | -      | -    | 1    | IIIA   |
| Output Voltage Drift     | $\Delta V_O / \Delta T$ | IO = 5mA                                                          |                                                                      | -      | -1   | -    | mV/ °C |
| Output Noise Voltage     | VN                      | f = 10Hz to 100KH                                                 | z, TA =+25 <sup>o</sup> C                                            | -      | 110  | -    | μV/Vo  |
| Ripple Rejection         | RR                      | f = 120Hz<br>VI = 22V to 32V                                      |                                                                      | 53     | 69   | -    | dB     |
| Dropout Voltage          | VDrop                   | IO = 1A, TJ=+25                                                   | °C                                                                   | -      | 2    | -    | V      |
| Output Resistance        | rO                      | f = 1KHz                                                          |                                                                      | -      | 22   | -    | mΩ     |
| Short Circuit Current    | Isc                     | $V_I = 35V, T_A = +25 ^{o}C$                                      |                                                                      | -      | 250  | -    | mA     |
| Peak Current             | Iрк                     | TJ =+25 <sup>o</sup> C                                            |                                                                      | -      | 2.2  | -    | Α      |

#### Note:

### **Electrical Characteristics (MC7824)**

(Refer to test circuit ,0°C < TJ < 125°C, IO = 500mA, VI =33V, CI= 0.33µF, CO=0.1µF, unless otherwise specified)

| Parameter                | Symbol                  | Conditions                       |                        | MC7824 |      | Unit  |        |
|--------------------------|-------------------------|----------------------------------|------------------------|--------|------|-------|--------|
| Falameter                | Symbol                  |                                  | Julions                | Min.   | Тур. | Max.  | Unit   |
|                          |                         | TJ =+25 °C                       |                        | 23     | 24   | 25    |        |
| Output Voltage           | Vo                      |                                  |                        | 22.8   | 24   | 25.25 | V      |
| Line Regulation (Note1)  | Poglino                 | $T_{1} = 125^{\circ}C$           | VI = 27V to 38V        | -      | 17   | 480   | m\/    |
|                          | Regime                  | 1J =+25 C                        | VI = 30V to 36V        | -      | 6    | 240   | IIIV   |
| Load Population (Noto1)  | Pogload                 | $T_{1} = 125^{\circ}C$           | $I_{O} = 5 mA$ to 1.5A | -      | 15   | 480   | m\/    |
| Load Regulation (Noter)  | Regioau                 | 1J =+25 C                        | IO = 250mA to 750mA    | -      | 5.0  | 240   | IIIV   |
| Quiescent Current        | lQ                      | TJ =+25 °C                       |                        | -      | 5.2  | 8.0   | mA     |
| Quieceent Current Change |                         | IO = 5mA to 1.0A                 |                        | -      | 0.1  | 0.5   | m۸     |
| Quiescent Current Change | ΔIQ                     | VI = 27V to 38V                  |                        | -      | 0.5  | 1     | IIIA   |
| Output Voltage Drift     | $\Delta V_O / \Delta T$ | IO = 5mA                         |                        | -      | -1.5 | -     | mV/ °C |
| Output Noise Voltage     | VN                      | f = 10Hz to 100KH                | lz, TA =+25 °C         | -      | 60   | -     | μV/Vo  |
| Ripple Rejection         | RR                      | f = 120Hz<br>VI = 28V to 38V     |                        | 50     | 67   | -     | dB     |
| Dropout Voltage          | VDrop                   | IO = 1A, TJ=+25 °C               |                        | -      | 2    | -     | V      |
| Output Resistance        | rO                      | f = 1KHz                         |                        | -      | 28   | -     | mΩ     |
| Short Circuit Current    | ISC                     | VI = 35V, T <sub>A</sub> =+25 °C |                        | -      | 230  | -     | mA     |
| Peak Current             | lрк                     | TJ =+25 °C                       |                        | -      | 2.2  | -     | A      |

#### Note:

## **Electrical Characteristics (MC7805A)**

(Refer to the test circuits. 0°C < TJ < 125°C, I<sub>0</sub> =1A, V I = 10V, C I=0.33µF, C O=0.1µF, unless otherwise specified)

| Parameter               | Symbol                | Co                                       | onditions                  | Min. | Тур. | Max. | Unit   |
|-------------------------|-----------------------|------------------------------------------|----------------------------|------|------|------|--------|
|                         |                       | TJ =+25 °C                               |                            | 4.9  | 5    | 5.1  |        |
| Output Voltage          | Vo                    | IO = 5mA to 1<br>VI = 7.5V to 2          | A, PO ≤ 15W<br>0V          | 4.8  | 5    | 5.2  | V      |
|                         |                       | VI = 7.5V to 25V<br>IO = 500mA           |                            | -    | 5    | 50   |        |
| Line Regulation (Note1) | Regline               | $V_{I} = 8V$ to 12V                      | /                          | -    | 3    | 50   | mV     |
|                         |                       | T                                        | VI= 7.3V to 20V            | -    | 5    | 50   | -      |
|                         |                       | 1J=+25 C                                 | VI= 8V to 12V              | -    | 1.5  | 25   |        |
| Load Regulation (Note1) |                       | TJ =+25 °C<br>IO = 5mA to 1.5A           |                            | -    | 9    | 100  |        |
|                         | Regload               | IO = 5mA to 1                            | IO = 5mA to 1A             |      | 9    | 100  | mV     |
|                         |                       | IO = 250mA to 750mA                      |                            | -    | 4    | 50   |        |
| Quiescent Current       | lQ                    | T <sub>J</sub> =+25 <sup>o</sup> C       |                            | -    | 5.0  | 6    | mA     |
|                         |                       | IO = 5mA to 1                            | A                          | -    | -    | 0.5  |        |
| Quiescent Current       | ΔlQ                   | VI = 8 V to 25                           | V, IO = 500mA              | -    | -    | 0.8  | mA     |
| Change                  |                       | VI = 7.5V to 2                           | 0V, TJ =+25 <sup>o</sup> C | -    | -    | 0.8  | 1      |
| Output Voltage Drift    | $\Delta V / \Delta T$ | lo = 5mA                                 |                            | -    | -0.8 | -    | mV/ °C |
| Output Noise Voltage    | VN                    | f = 10Hz to 10<br>T <sub>A</sub> =+25 °C | 00KHz                      | -    | 10   | -    | μV/Vo  |
| Ripple Rejection        | RR                    | f = 120Hz, IO = 500mA<br>VI = 8V to 18V  |                            | -    | 68   | -    | dB     |
| Dropout Voltage         | VDrop                 | IO = 1A, TJ =-                           | +25 °C                     | -    | 2    | -    | V      |
| Output Resistance       | rO                    | f = 1KHz                                 |                            | -    | 17   | -    | mΩ     |
| Short Circuit Current   | ISC                   | VI= 35V, TA =                            | VI= 35V, TA =+25 °C        |      | 250  | -    | mA     |
| Peak Current            | lрк                   | TJ= +25 °C                               |                            | -    | 2.2  | -    | A      |

#### Note:

### **Electrical Characteristics (MC7806A)**

(Refer to the test circuits. 0°C < TJ < 125°C, Io =1A, V I =11V, C I=0.33µF, C O=0.1µF, unless otherwise specified)

| Parameter                       | Symbol                | Co                                                       | onditions                     | Min. | Тур. | Max. | Unit   |
|---------------------------------|-----------------------|----------------------------------------------------------|-------------------------------|------|------|------|--------|
|                                 |                       | TJ =+25 °C                                               |                               | 5.58 | 6    | 6.12 |        |
| Output VoltageVOIO = 5mVI = 8.6 |                       | IO = 5mA to 1<br>VI = 8.6V to 2                          | A, PO ≤ 15W<br>1V             | 5.76 | 6    | 6.24 | V      |
|                                 |                       | VI= 8.6V to 25<br>IO = 500mA                             | VI= 8.6V to 25V<br>IO = 500mA |      | 5    | 60   |        |
| Line Regulation (Note1)         | Regline               | VI= 9V to 13V                                            | /                             | -    | 3    | 60   | mV     |
|                                 |                       | T                                                        | VI= 8.3V to 21V               | -    | 5    | 60   |        |
|                                 |                       | VI= 9V to 13                                             | VI= 9V to 13V                 | -    | 1.5  | 30   |        |
| Load Regulation (Note1)         |                       | $T_J = +25 ^{\circ}C$<br>IO = 5mA to 1.5A                |                               | -    | 9    | 100  |        |
|                                 | Regload               | I <sub>O</sub> = 5mA to 1                                | A                             | -    | 4    | 100  | mV     |
|                                 |                       | IO = 250mA to 750mA                                      |                               | -    | 5.0  | 50   |        |
| Quiescent Current               | lQ                    | TJ =+25 °C                                               |                               | -    | 4.3  | 6    | mA     |
|                                 |                       | IO = 5mA  to  1A                                         |                               | -    | -    | 0.5  |        |
| Quiescent Current Change        | ΔlQ                   | VI = 9V to 25V, IO = 500mA                               |                               | -    | -    | 0.8  | mA     |
|                                 |                       | VI= 8.5V to 21V, TJ =+25 °C                              |                               | -    | -    | 0.8  |        |
| Output Voltage Drift            | $\Delta V / \Delta T$ | IO = 5mA                                                 |                               | -    | -0.8 | -    | mV/ °C |
| Output Noise Voltage            | VN                    | f = 10Hz to 100KHz<br>T <sub>A</sub> =+25 <sup>o</sup> C |                               | -    | 10   | -    | μV/Vo  |
| Ripple Rejection                | RR                    | f = 120Hz, IO = 500mA<br>VI = 9V to 19V                  |                               | -    | 65   | -    | dB     |
| Dropout Voltage                 | VDrop                 | IO = 1A, TJ =+25 °C                                      |                               | -    | 2    | -    | V      |
| Output Resistance               | rO                    | f = 1KHz                                                 |                               | -    | 17   | -    | mΩ     |
| Short Circuit Current           | ISC                   | VI= 35V, TA =+25 °C                                      |                               | -    | 250  | -    | mA     |
| Peak Current                    | IPK                   | TJ=+25 °C                                                |                               | -    | 2.2  | -    | A      |

#### Note:

### **Electrical Characteristics (MC7808A)**

(Refer to the test circuits.  $0^{\circ}C < T_J < 125^{\circ}C$ ,  $I_0 = 1A$ ,  $V_I = 14V$ ,  $C_I = 0.33\mu$ F,  $C_O = 0.1\mu$ F, unless otherwise specified)

| Parameter                | Symbol                | Co                                                                                  | onditions                      | Min. | Тур. | Max. | Unit   |
|--------------------------|-----------------------|-------------------------------------------------------------------------------------|--------------------------------|------|------|------|--------|
|                          |                       | TJ =+25 °C                                                                          |                                | 7.84 | 8    | 8.16 |        |
| Output Voltage           | Vo                    | IO = 5mA  to  1<br>V <sub>I</sub> = 10.6V to                                        | A, PO ≤15W<br>23V              | 7.7  | 8    | 8.3  |        |
|                          |                       | VI= 10.6V to 2<br>IO = 500mA                                                        | VI= 10.6V to 25V<br>IO = 500mA |      | 6    | 80   |        |
| Line Regulation (Note1)  | Regline               | VI= 11V to 17                                                                       | 'V                             | -    | 3    | 80   | mV     |
|                          |                       | T                                                                                   | VI= 10.4V to 23V               | -    | 6    | 80   | Ī      |
|                          |                       | 1J=+25°C                                                                            | VI= 11V to 17V                 | -    | 2    | 40   |        |
| Load Regulation (Note1)  |                       | $T_{J} = +25 °C$ $I_{O} = 5mA to 1.5A$ $I_{O} = 5mA to 1A$ $I_{O} = 250mA to 750mA$ |                                | -    | 12   | 100  |        |
|                          | Regload               |                                                                                     |                                | -    | 12   | 100  | mV     |
|                          |                       |                                                                                     |                                | -    | 5    | 50   |        |
| Quiescent Current        | lQ                    | TJ =+25 °C                                                                          |                                | -    | 5.0  | 6    | mA     |
|                          | ΔlQ                   | IO = 5mA to 1                                                                       | A                              | -    | -    | 0.5  |        |
| Quiescent Current Change |                       | VI = 11V to 2                                                                       | 5V, I <u>O</u> = 500mA         | -    | -    | 0.8  | mA     |
|                          |                       | V <sub>I</sub> = 10.6V to 23V, T <sub>J</sub> =+25 °C                               |                                | -    | -    | 0.8  | Ť      |
| Output Voltage Drift     | $\Delta V / \Delta T$ | IO = 5mA                                                                            |                                | -    | -0.8 | -    | mV/ °C |
| Output Noise Voltage     | VN                    | f = 10Hz to 100KHz<br>T <sub>A</sub> =+25 <sup>o</sup> C                            |                                | -    | 10   | -    | μV/Vo  |
| Ripple Rejection         | RR                    | f = 120Hz, IO = 500mA<br>VI = 11.5V to 21.5V                                        |                                | -    | 62   | -    | dB     |
| Dropout Voltage          | VDrop                 | IO = 1A, TJ =+25 °C                                                                 |                                | -    | 2    | -    | V      |
| Output Resistance        | rO                    | f = 1KHz                                                                            |                                | -    | 18   | -    | mΩ     |
| Short Circuit Current    | ISC                   | V <sub>I</sub> = 35V, T <sub>A</sub> =+25 °C                                        |                                | -    | 250  | -    | mA     |
| Peak Current             | lрк                   | TJ=+25 °C                                                                           |                                | -    | 2.2  | -    | А      |

#### Note:

### **Electrical Characteristics (MC7809A)**

(Refer to the test circuits. 0°C < TJ < 125°C, I<sub>0</sub> =1A, V I = 15V, C I=0.33µF, C O=0.1µF, unless otherwise specified)

| Parameter                | Symbol                | Co                                                       | onditions                                           | Min. | Тур. | Max. | Unit   |
|--------------------------|-----------------------|----------------------------------------------------------|-----------------------------------------------------|------|------|------|--------|
|                          |                       | TJ =+25°C                                                |                                                     | 8.82 | 9.0  | 9.18 |        |
| Output Voltage           | Vo                    | IO = 5mA  to  1<br>V <sub>I</sub> = 11.2V to 2           | $IO = 5mA$ to 1A, $PO \le 15W$<br>VI = 11.2V to 24V |      | 9.0  | 9.35 | V      |
|                          |                       | VI= 11.7V to 2<br>IO = 500mA                             | VI= 11.7V to 25V<br>IO = 500mA                      |      | 6    | 90   |        |
| Line Regulation (Note1)  | Regline               | VI= 12.5V to 1                                           | 19V                                                 | -    | 4    | 45   | mV     |
|                          |                       | T + -+25°C                                               | VI= 11.5V to 24V                                    | -    | 6    | 90   |        |
|                          |                       | 15 = 125 0                                               | VI= 12.5V to 19V                                    | -    | 2    | 45   |        |
| Load Regulation (Note1)  |                       | $T_J = +25^{\circ}C$<br>IO = 5mA to 1.0A                 |                                                     | -    | 12   | 100  |        |
|                          | Regload               | IO = 5mA to 1                                            | .0A                                                 | -    | 12   | 100  | mV     |
|                          |                       | IO = 250mA to 750mA                                      |                                                     | -    | 5    | 50   |        |
| Quiescent Current        | lq                    | T <sub>J</sub> =+25 °C                                   |                                                     | -    | 5.0  | 6.0  | mA     |
|                          |                       | VI = 11.7V to 25V, TJ=+25 <sup>°</sup> C                 |                                                     | -    | -    | 0.8  |        |
| Quiescent Current Change | $\Delta I_Q$          | VI = 12V to 25V, IO = 500mA                              |                                                     | -    | -    | 0.8  | mA     |
|                          |                       | IO = 5mA to 1.0A                                         |                                                     | -    | -    | 0.5  |        |
| Output Voltage Drift     | $\Delta V / \Delta T$ | IO = 5mA                                                 |                                                     | -    | -1.0 | -    | mV/ °C |
| Output Noise Voltage     | VN                    | f = 10Hz to 100KHz<br>T <sub>A</sub> =+25 <sup>°</sup> C |                                                     | -    | 10   | -    | μV/Vo  |
| Ripple Rejection         | RR                    | f = 120Hz, IO = 500mA<br>VI = 12V to 22V                 |                                                     | -    | 62   | -    | dB     |
| Dropout Voltage          | VDrop                 | IO = 1A, TJ =+25 °C                                      |                                                     | -    | 2.0  | -    | V      |
| Output Resistance        | rO                    | f = 1KHz                                                 |                                                     | -    | 17   | -    | mΩ     |
| Short Circuit Current    | ISC                   | VI= 35V, TA =+25 °C                                      |                                                     | -    | 250  | -    | mA     |
| Peak Current             | IPK                   | TJ=+25°C                                                 |                                                     | -    | 2.2  | -    | A      |

#### Note:

## **Electrical Characteristics (MC7810A)**

(Refer to the test circuits. 0°C < TJ < 125°C, I<sub>0</sub> =1A, V I = 16V, C I=0.33µF, C O=0.1µF, unless otherwise specified)

| Parameter                                                                                                  | Symbol                         | Co                                                                                | onditions                  | Min. | Тур. | Max. | Unit   |
|------------------------------------------------------------------------------------------------------------|--------------------------------|-----------------------------------------------------------------------------------|----------------------------|------|------|------|--------|
|                                                                                                            |                                | TJ =+25 <sup>°</sup> C                                                            |                            | 9.8  | 10   | 10.2 |        |
| Output Voltage         VO         IO = 5mA to 1A, Pe           VI = 12.8V to 25V         VI = 12.8V to 25V |                                | IA, PO≤15W<br>25V                                                                 | 9.6                        | 10   | 10.4 | V    |        |
|                                                                                                            | VI= 12.8V to 26V<br>IO = 500mA |                                                                                   | -                          | 8    | 100  |      |        |
| Line Regulation (Note1)                                                                                    | Regline                        | VI= 13V to 20                                                                     | V                          | -    | 4    | 50   | mV     |
|                                                                                                            |                                | T 25 °C                                                                           | VI= 12.5V to 25V           | -    | 8    | 100  |        |
|                                                                                                            | IJ=+25 C                       |                                                                                   | VI= 13V to 20V             | -    | 3    | 50   |        |
| Load Regulation (Note1)                                                                                    |                                | $T_J = +25 \degree C$ $IO = 5mA$ to 1.5A $IO = 5mA$ to 1.0A $IO = 250mA$ to 750mA |                            | -    | 12   | 100  |        |
| ,                                                                                                          | Regload                        |                                                                                   |                            | -    | 12   | 100  | mV     |
|                                                                                                            |                                |                                                                                   |                            | -    | 5    | 50   |        |
| Quiescent Current                                                                                          | lQ                             | T <sub>J</sub> =+25 °C                                                            |                            | -    | 5.0  | 6.0  | mA     |
|                                                                                                            |                                | VI = 13V to 2                                                                     | VI = 13V to 26V, TJ=+25 °C |      | -    | 0.5  |        |
| Quiescent Current Change                                                                                   | ΔlQ                            | VI = 12.8V to 25V, IO = 500mA                                                     |                            | -    | -    | 0.8  | mA     |
|                                                                                                            |                                | IO = 5mA to 1.0A                                                                  |                            | -    | -    | 0.5  |        |
| Output Voltage Drift                                                                                       | $\Delta V / \Delta T$          | IO = 5mA                                                                          |                            | -    | -1.0 | -    | mV/ °C |
| Output Noise Voltage                                                                                       | VN                             | f = 10Hz to 100KHz<br>T <sub>A</sub> =+25 °C                                      |                            | -    | 10   | -    | μV/Vo  |
| Ripple Rejection                                                                                           | RR                             | f = 120Hz, IO = 500mA<br>VI = 14V to 24V                                          |                            | -    | 62   | -    | dB     |
| Dropout Voltage                                                                                            | VDrop                          | IO = 1A, TJ =+25°C                                                                |                            | -    | 2.0  | -    | V      |
| Output Resistance                                                                                          | rO                             | f = 1KHz                                                                          |                            | -    | 17   | -    | mΩ     |
| Short Circuit Current                                                                                      | ISC                            | VI= 35V, TA =+25 °C                                                               |                            | -    | 250  | -    | mA     |
| Peak Current                                                                                               | IPK                            | TJ=+25 °C                                                                         |                            | -    | 2.2  | -    | A      |

#### Note:

### **Electrical Characteristics (MC7812A)**

(Refer to the test circuits. 0°C < TJ < 125°C, Io =1A, V I = 19V, C I=0.33µF, C O=0.1µF, unless otherwise specified)

| Parameter                | Symbol                | Co                                                                                                                      | onditions                 | Min.  | Тур. | Max.  | Unit  |
|--------------------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------|---------------------------|-------|------|-------|-------|
|                          |                       | TJ =+25 °C                                                                                                              |                           | 11.75 | 12   | 12.25 |       |
| Output Voltage           | Vo                    | IO = 5mA to 1A, PO ≤15W<br>VI = 14.8V to 27V                                                                            |                           | 11.5  | 12   | 12.5  | V     |
|                          | Regline               | VI= 14.8V to 30V<br>IO = 500mA                                                                                          |                           | -     | 10   | 120   |       |
| Line Regulation (Note1)  |                       | VI= 16V to 22                                                                                                           | 2V                        | -     | 4    | 120   | mV    |
|                          |                       | T 25 °C                                                                                                                 | VI= 14.5V to 27V          | -     | 10   | 120   |       |
|                          |                       | 1J=+25 C                                                                                                                | VI= 16V to 22V            | -     | 3    | 60    |       |
| Load Regulation (Note1)  |                       | $T_{J} = +25 \degree C$ $I_{O} = 5mA \text{ to } 1.5A$ $I_{O} = 5mA \text{ to } 1.0A$ $I_{O} = 250mA \text{ to } 750mA$ |                           | -     | 12   | 100   |       |
|                          | Regload               |                                                                                                                         |                           | -     | 12   | 100   | mV    |
|                          |                       |                                                                                                                         |                           | -     | 5    | 50    |       |
| Quiescent Current        | lQ                    | TJ =+25°C                                                                                                               |                           | -     | 5.1  | 6.0   | mA    |
|                          |                       | VI = 15V to 3                                                                                                           | 0V, TJ=+25 <sup>°</sup> C | -     |      | 0.8   |       |
| Quiescent Current Change | ΔlQ                   | VI = 14V to 27V, IO = 500mA                                                                                             |                           | -     |      | 0.8   | mA    |
|                          |                       | IO = 5mA to 1.0A                                                                                                        |                           | -     |      | 0.5   | 1     |
| Output Voltage Drift     | $\Delta V / \Delta T$ | IO = 5mA                                                                                                                |                           | -     | -1.0 | -     | mV/°C |
| Output Noise Voltage     | VN                    | f = 10Hz to 100KHz<br>T <sub>A</sub> =+25 <sup>°</sup> C                                                                |                           | -     | 10   | -     | μV/Vo |
| Ripple Rejection         | RR                    | f = 120Hz, IO = 500mA<br>VI = 14V to 24V                                                                                |                           | -     | 60   | -     | dB    |
| Dropout Voltage          | VDrop                 | IO = 1A, TJ =+25°C                                                                                                      |                           | -     | 2.0  | -     | V     |
| Output Resistance        | rO                    | f = 1KHz                                                                                                                |                           | -     | 18   | -     | mΩ    |
| Short Circuit Current    | ISC                   | VI= 35V, TA =+25 °C                                                                                                     |                           | -     | 250  | -     | mA    |
| Peak Current             | IPK                   | Tj=+25 °C                                                                                                               |                           | -     | 2.2  | -     | Α     |

#### Note:

### **Electrical Characteristics (MC7815A)**

(Refer to the test circuits. 0°C < TJ < 125°C, Io =1A, V I =23V, C I=0.33µF, C O=0.1µF, unless otherwise specified)

| Parameter                | Symbol                | Co                                                                                | onditions                                    | Min. | Тур. | Max. | Unit  |
|--------------------------|-----------------------|-----------------------------------------------------------------------------------|----------------------------------------------|------|------|------|-------|
|                          |                       | TJ =+25 °C                                                                        |                                              | 14.7 | 15   | 15.3 |       |
| Output Voltage           | Vo                    | IO = 5mA to 7<br>VI = 17.7V to                                                    | IO = 5mA to 1A, PO ≤15W<br>VI = 17.7V to 30V |      | 15   | 15.6 | V     |
|                          |                       | VI= 17.9V to<br>IO = 500mA                                                        | 30V                                          | -    | 10   | 150  |       |
| Line Regulation (Note1)  | Regline               | VI= 20V to 26                                                                     | 3V                                           | -    | 5    | 150  | mV    |
|                          |                       | T 25°C                                                                            | VI= 17.5V to 30V                             | -    | 11   | 150  |       |
|                          |                       | 1J=+25 C                                                                          | VI= 20V to 26V                               | -    | 3    | 75   |       |
| Load Regulation (Note1)  |                       | $T_J = +25 \degree C$ $IO = 5mA$ to 1.5A $IO = 5mA$ to 1.0A $IO = 250mA$ to 750mA |                                              | -    | 12   | 100  |       |
|                          | Regload               |                                                                                   |                                              | -    | 12   | 100  | mV    |
|                          |                       |                                                                                   |                                              | -    | 5    | 50   |       |
| Quiescent Current        | lq                    | TJ =+25 °C                                                                        |                                              | -    | 5.2  | 6.0  | mA    |
|                          |                       | VI = 17.5V to                                                                     | 30V, TJ =+25 °C                              | -    | -    | 0.8  |       |
| Quiescent Current Change | ΔlQ                   | VI = 17.5V to                                                                     | 30V, IO = 500mA                              | -    | -    | 0.8  | mA    |
|                          |                       | IO = 5mA to 1.0A                                                                  |                                              | -    | -    | 0.5  |       |
| Output Voltage Drift     | $\Delta V / \Delta T$ | $I_{O} = 5mA$                                                                     |                                              | -    | -1.0 | -    | mV/°C |
| Output Noise Voltage     | VN                    | f = 10Hz to 100KHz<br>T <sub>A</sub> =+25 <sup>°</sup> C                          |                                              | -    | 10   | -    | μV/Vo |
| Ripple Rejection         | RR                    | f = 120Hz, IO = 500mA<br>VI = 18.5V to 28.5V                                      |                                              | -    | 58   | -    | dB    |
| Dropout Voltage          | VDrop                 | IO = 1A, TJ =+25 °C                                                               |                                              | -    | 2.0  | -    | V     |
| Output Resistance        | rO                    | f = 1KHz                                                                          |                                              | -    | 19   | -    | mΩ    |
| Short Circuit Current    | ISC                   | VI= 35V, TA =+25 <sup>°</sup> C                                                   |                                              | -    | 250  | -    | mA    |
| Peak Current             | IPK                   | Tj=+25°℃                                                                          |                                              | -    | 2.2  | -    | А     |

#### Note:

## **Electrical Characteristics (MC7818A)**

(Refer to the test circuits. 0°C < TJ < 125°C, I<sub>0</sub> =1A, V I = 27V, C I=0.33µF, C O=0.1µF, unless otherwise specified)

| Parameter                | Symbol                | Co                                                                                                                                            | onditions                  | Min.  | Тур. | Max.  | Unit   |
|--------------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-------|------|-------|--------|
|                          |                       | TJ =+25 °C                                                                                                                                    |                            | 17.64 | 18   | 18.36 |        |
| Output Voltage           | Vo                    | IO = 5mA to 1<br>VI = 21V to 3                                                                                                                | IA, PO ≤15W<br>3V          | 17.3  | 18   | 18.7  | V      |
|                          |                       | VI= 21V to 33<br>IO = 500mA                                                                                                                   | 3V                         | -     | 15   | 180   |        |
| Line Regulation (Note1)  | Regline               | VI= 21V to 33                                                                                                                                 | 3V                         | -     | 5    | 180   | mV     |
|                          |                       | T 25 °C                                                                                                                                       | VI= 20.6V to 33V           | -     | 15   | 180   |        |
|                          |                       | 1J =+25 C                                                                                                                                     | VI= 24V to 30V             | -     | 5    | 90    |        |
| Load Regulation (Note1)  |                       | gload $\begin{array}{c} T_J =+25^{\circ}C\\ IO = 5mA \text{ to } 1.5A\\ IO = 5mA \text{ to } 1.0A\\ IO = 250mA \text{ to } 750mA \end{array}$ |                            | -     | 15   | 100   |        |
|                          | Regload               |                                                                                                                                               |                            | -     | 15   | 100   | mV     |
|                          |                       |                                                                                                                                               |                            | -     | 7    | 50    |        |
| Quiescent Current        | lQ                    | T <sub>J</sub> =+25 °C                                                                                                                        |                            | -     | 5.2  | 6.0   | mA     |
|                          |                       | VI = 21V to 3                                                                                                                                 | VI = 21V to 33V, TJ=+25 °C |       | -    | 0.8   |        |
| Quiescent Current Change | $\Delta I_Q$          | VI = 21V to 33V, IO = 500mA                                                                                                                   |                            | -     | -    | 0.8   | mA     |
|                          |                       | IO = 5mA to 1.0A                                                                                                                              |                            | -     | -    | 0.5   |        |
| Output Voltage Drift     | $\Delta V / \Delta T$ | IO = 5mA                                                                                                                                      |                            | -     | -1.0 | -     | mV/ °C |
| Output Noise Voltage     | VN                    | f = 10Hz to 100KHz<br>T <sub>A</sub> =+25 <sup>°</sup> C                                                                                      |                            | -     | 10   | -     | μV/Vo  |
| Ripple Rejection         | RR                    | f = 120Hz, IO = 500mA<br>VI = 22V to 32V                                                                                                      |                            | -     | 57   | -     | dB     |
| Dropout Voltage          | VDrop                 | IO = 1A, TJ =+25 <sup>°</sup> C                                                                                                               |                            | -     | 2.0  | -     | V      |
| Output Resistance        | rO                    | f = 1KHz                                                                                                                                      |                            | -     | 19   | -     | mΩ     |
| Short Circuit Current    | ISC                   | VI= 35V, TA =+25°C                                                                                                                            |                            | -     | 250  | -     | mA     |
| Peak Current             | IPK                   | TJ=+25 °C                                                                                                                                     |                            | -     | 2.2  | -     | A      |

#### Note:

### **Electrical Characteristics (MC7824A)**

(Refer to the test circuits. 0°C < TJ < 125°C, I<sub>0</sub> =1A, V I = 33V, C I=0.33µF, C O=0.1µF, unless otherwise specified)

| Parameter                | Symbol                | Co                                                                                                                             | onditions                                    | Min. | Тур. | Max. | Unit   |
|--------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|------|------|------|--------|
|                          |                       | TJ =+25 °C                                                                                                                     |                                              | 23.5 | 24   | 24.5 |        |
| Output Voltage           | Vo                    | IO = 5mA  to  7<br>$V_I = 27.3V \text{ to } 7$                                                                                 | IO = 5mA to 1A, PO ≤15W<br>VI = 27.3V to 38V |      | 24   | 25   | V      |
|                          |                       | VI= 27V to 38<br>IO = 500mA                                                                                                    | VI= 27V to 38V<br>IO = 500mA                 |      | 18   | 240  |        |
| Line Regulation (Note1)  | Regline               | VI= 21V to 33                                                                                                                  | 3V                                           | -    | 6    | 240  | mV     |
|                          |                       | T1 = +25 °C                                                                                                                    | VI= 26.7V to 38V                             | -    | 18   | 240  |        |
|                          |                       | VI= 30V to 36V                                                                                                                 | -                                            | 6    | 120  |      |        |
| Load Regulation (Note1)  |                       | T <sub>J</sub> =+25 °C<br>IO = 5mA to 1.5A                                                                                     |                                              | -    | 15   | 100  |        |
|                          | Regload               | $I_{O} = 5mA$ to $2$                                                                                                           | 1.0A                                         | -    | 15   | 100  | mV     |
|                          |                       | IO = 250mA to 750mA                                                                                                            |                                              | -    | 7    | 50   |        |
| Quiescent Current        | lQ                    | T <sub>J</sub> =+25 °C                                                                                                         |                                              | -    | 5.2  | 6.0  | mA     |
|                          |                       | $V_{I} = 27.3V \text{ to } 38V, T_{J} = +25 \degree C$<br>$\Delta I_{Q}$ $V_{I} = 27.3V \text{ to } 38V, I_{O} = 500\text{mA}$ |                                              | -    | -    | 0.8  |        |
| Quiescent Current Change | ΔlQ                   |                                                                                                                                |                                              | -    | -    | 0.8  | mA     |
|                          |                       | IO = 5mA to 1.0A                                                                                                               |                                              | -    | -    | 0.5  |        |
| Output Voltage Drift     | $\Delta V / \Delta T$ | IO = 5mA                                                                                                                       |                                              | -    | -1.5 | -    | mV/ °C |
| Output Noise Voltage     | VN                    | f = 10Hz to 100KHz<br>T <sub>A</sub> = 25 °C                                                                                   |                                              | -    | 10   | -    | μV/Vo  |
| Ripple Rejection         | RR                    | f = 120Hz, IO = 500mA<br>VI = 28V to 38V                                                                                       |                                              | -    | 54   | -    | dB     |
| Dropout Voltage          | VDrop                 | IO = 1A, TJ =+25 °C                                                                                                            |                                              | -    | 2.0  | -    | V      |
| Output Resistance        | rO                    | f = 1KHz                                                                                                                       |                                              | -    | 20   | -    | mΩ     |
| Short Circuit Current    | ISC                   | VI= 35V, TA =+25 °C                                                                                                            |                                              | -    | 250  | -    | mA     |
| Peak Current             | IPK                   | Tj=+25 °C                                                                                                                      |                                              | -    | 2.2  | -    | A      |

#### Note:





Figure 1. Quiescent Current



Figure 3. Output Voltage



Figure 2. Peak Output Current



Figure 4. Quiescent Current

## **Typical Applications**















Figure 8. Fixed Output Regulator



Figure 9. Constant Current Regulator

#### Notes:

- (1) To specify an output voltage. substitute voltage value for "XX." A common ground is required between the input and the Output voltage. The input voltage must remain typically 2.0V above the output voltage even during the low point on the input ripple voltage.
- (2) CI is required if regulator is located an appreciable distance from power Supply filter.
- (3) Co improves stability and transient response.



I<sub>RI</sub>≥5IQ

 $V_O = V_{XX}(1+R_2/R_1) + I_QR_2 \label{eq:VO}$  Figure 10. Circuit for Increasing Output Voltage



$$\label{eq:VO} \begin{split} & I_{RI} \geq 5 \ I_Q \\ & V_O = V_{XX}(1+R_2/R_1) + I_QR_2 \\ & \mbox{Figure 11. Adjustable Output Regulator (7 to 30V)} \end{split}$$



Figure 12. High Current Voltage Regulator



Figure 13. High Output Current with Short Circuit Protection



Figure 14. Tracking Voltage Regulator



Figure 15. Split Power Supply ( ±15V-1A)



Figure 16. Negative Output Voltage Circuit



Figure 17. Switching Regulator

### **Mechanical Dimensions**

### Package





**TO-220** 

### Mechancal Dimensions (Continued)

### Package



**D-PAK** 

## **Ordering Information**

| Product Number | Output Voltage Tolerance | Package | Operating Temperature |  |  |
|----------------|--------------------------|---------|-----------------------|--|--|
| LM7805CT       | ±4%                      | TO-220  | 0 ~ + 125°C           |  |  |

| Product Number | Output Voltage Tolerance | Package | Operating Temperature |
|----------------|--------------------------|---------|-----------------------|
| MC7805CT       |                          |         |                       |
| MC7806CT       |                          |         |                       |
| MC7808CT       |                          |         |                       |
| MC7809CT       |                          |         |                       |
| MC7810CT       |                          | TO-220  |                       |
| MC7812CT       |                          |         |                       |
| MC7815CT       |                          |         |                       |
| MC7818CT       | ±4%                      |         |                       |
| MC7824CT       |                          |         |                       |
| MC7805CDT      |                          |         |                       |
| MC7806CDT      |                          |         |                       |
| MC7808CDT      |                          |         | 0 - + 125°C           |
| MC7809CDT      |                          | DIAN    | 0~+1250               |
| MC7810CDT      |                          |         |                       |
| MC7812CDT      |                          |         |                       |
| MC7805ACT      |                          |         |                       |
| MC7806ACT      |                          |         |                       |
| MC7808ACT      |                          |         |                       |
| MC7809ACT      |                          |         |                       |
| MC7810ACT      | ±2%                      | TO-220  |                       |
| MC7812ACT      |                          |         |                       |
| MC7815ACT      | ]                        |         |                       |
| MC7818ACT      |                          |         |                       |
| MC7824ACT      |                          |         |                       |

#### DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

#### LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com

September 2001



# LM79XX Series 3-Terminal Negative Regulators General Description

The LM79XX series of 3-terminal regulators is available with fixed output voltages of -5V, -12V, and -15V. These devices need only one external component—a compensation capacitor at the output. The LM79XX series is packaged in the TO-220 power package and is capable of supplying 1.5A of output current.

These regulators employ internal current limiting safe area protection and thermal shutdown for protection against virtually all overload conditions.

Low ground pin current of the LM79XX series allows output voltage to be easily boosted above the preset value with a

**Connection Diagrams** 



Front View Order Number LM7905CT, LM7912CT or LM7915CT See NS Package Number TO3B

resistor divider. The low quiescent current drain of these devices with a specified maximum change with line and load ensures good regulation in the voltage boosted mode.

For applications requiring other voltages, see LM137 datasheet.

### **Features**

- Thermal, short circuit and safe area protection
- High ripple rejection
- 1.5A output current
- 4% tolerance on preset output voltage

# Typical Applications



\*Required if regulator is separated from filter capacitor by more than 3". For value given, capacitor must be solid tantalum. 25µF aluminum electrolytic may be substituted.

<sup>†</sup>Required for stability. For value given, capacitor must be solid tantalum. 25µF aluminum electrolytic may be substituted. Values given may be increased without limit.

For output capacitance in excess of  $100\mu$ F, a high current diode from input to output (1N4001, etc.) will protect the regulator from momentary input shorts.

### Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

| Input-Output | Differential |
|--------------|--------------|
|--------------|--------------|

| $(V_o = -5V)$                         | 25V                |
|---------------------------------------|--------------------|
| $(V_o = -12V \text{ and } -15V)$      | 30V                |
| Power Dissipation (Note 2)            | Internally Limited |
| Operating Junction Temperature Range  | 0°C to +125°C      |
| Storage Temperature Range             | –65°C to +150°C    |
| Lead Temperature (Soldering, 10 sec.) | 230°C              |

### Input Voltage

| put voltage                      |      |
|----------------------------------|------|
| $(V_{o} = -5V)$                  | –25V |
| $(V_o = -12V \text{ and } -15V)$ | -35V |

### **Electrical Characteristics**

Conditions unless otherwise noted:  $I_{OUT}$  = 500mA,  $C_{IN}$  = 2.2 $\mu$ F,  $C_{OUT}$  = 1 $\mu$ F, 0°C  $\leq$  T<sub>J</sub>  $\leq$  +125°C, Power Dissipation  $\leq$  1.5W.

| Part Number       |                       |                                                                  | Units                     |                           |       |       |  |
|-------------------|-----------------------|------------------------------------------------------------------|---------------------------|---------------------------|-------|-------|--|
| Output Voltage    |                       |                                                                  |                           |                           |       |       |  |
|                   | Input Voltage (unless | otherwise specified)                                             | -10V                      |                           |       |       |  |
| Symbol            | Parameter             | Conditions                                                       | Min                       | Тур                       | Max   |       |  |
| Vo                | Output Voltage        | $T_{\rm J} = 25^{\circ}C$                                        | -4.8                      | -5.0                      | -5.2  | V     |  |
|                   |                       | $5mA \le I_{OUT} \le 1A$ ,                                       | -4.75                     |                           | -5.25 | V     |  |
|                   |                       | P ≤ 15W                                                          |                           | $(-20 \le V_{IN} \le -7)$ |       |       |  |
| $\Delta V_{O}$    | Line Regulation       | $T_{\rm J} = 25^{\circ}$ C, (Note 3)                             |                           | 8                         | 50    | mV    |  |
|                   |                       |                                                                  |                           | $(-25 \le V_{IN} \le -7)$ | )     | V     |  |
|                   |                       |                                                                  |                           | 2                         | 15    | mV    |  |
|                   |                       |                                                                  | $(-12 \le V_{IN} \le -8)$ |                           |       | V     |  |
| $\Delta V_{O}$    | Load Regulation       | $T_{J} = 25^{\circ}C$ , (Note 3)                                 |                           |                           |       |       |  |
|                   |                       | $5mA \le I_{OUT} \le 1.5A$                                       |                           | 15                        | 100   | mV    |  |
|                   |                       | $250 \text{mA} \le I_{OUT} \le 750 \text{mA}$                    |                           | 5                         | 50    | mV    |  |
| IQ                | Quiescent Current     | $T_{\rm J} = 25^{\circ}C$                                        |                           | 1                         | 2     | mA    |  |
| $\Delta I_Q$      | Quiescent Current     | With Line                                                        |                           |                           | 0.5   | mA    |  |
|                   | Change                |                                                                  |                           | $(-25 \le V_{IN} \le -7)$ | )     | V     |  |
|                   |                       | With Load, $5mA \le I_{OUT} \le 1A$                              |                           |                           | 0.5   | mA    |  |
| V <sub>n</sub>    | Output Noise Voltage  | $T_A = 25^{\circ}C$ , $10Hz \le f \le 100Hz$                     |                           | 125                       |       | μV    |  |
|                   | Ripple Rejection      | f = 120Hz                                                        | 54                        | 66                        |       | dB    |  |
|                   |                       |                                                                  |                           | $(-18 \le V_{IN} \le -8)$ | )     | V     |  |
|                   | Dropout Voltage       | $T_{\rm J} = 25^{\circ} {\rm C}, \ {\rm I}_{\rm OUT} = 1{\rm A}$ |                           | 1.1                       |       | V     |  |
| I <sub>OMAX</sub> | Peak Output Current   | $T_{\rm J} = 25^{\circ}C$                                        |                           | 2.2                       |       | A     |  |
|                   | Average Temperature   | I <sub>OUT</sub> = 5mA,                                          |                           | 0.4                       |       | mV/°C |  |
|                   | Coefficient of        | $0 \text{ C} \le \text{T}_{\text{J}} \le 100^{\circ}\text{C}$    |                           |                           |       |       |  |
|                   | Output Voltage        |                                                                  |                           |                           |       |       |  |

#### **Electrical Characteristics**

Conditions unless otherwise noted:  $I_{OUT}$  = 500mA,  $C_{IN}$  = 2.2µF,  $C_{OUT}$  = 1µF, 0°C ≤  $T_J$  ≤ +125°C, Power Dissipation ≤ 1.5W.

| Part Number Output Voltage |                       |                                  | LM7912C<br>-12V |                              |        | LM7915C<br>-15V                           |                    |        |    |
|----------------------------|-----------------------|----------------------------------|-----------------|------------------------------|--------|-------------------------------------------|--------------------|--------|----|
|                            |                       |                                  |                 |                              |        |                                           |                    |        |    |
|                            | Input Voltage (unless | otherwise specified)             | -19V -23V       |                              |        |                                           |                    |        |    |
| Symbol                     | Parameter             | Conditions                       | Min             | Тур                          | Max    | Min                                       | Тур                | Max    |    |
| Vo                         | Output Voltage        | $T_J = 25^{\circ}C$              | -11.5           | -12.0                        | -12.5  | -14.4                                     | -15.0              | -15.6  | V  |
|                            |                       | $5mA \le I_{OUT} \le 1A$ ,       | -11.4           |                              | -12.6  | -14.25                                    |                    | -15.75 | V  |
|                            |                       | P ≤ 15W                          | (-27            | $\leq V_{IN} \leq$           | –14.5) | (-30                                      | $\leq V_{IN} \leq$ | –17.5) | V  |
| $\Delta V_{O}$             | Line Regulation       | $T_{J} = 25^{\circ}C$ , (Note 3) |                 | 5                            | 80     |                                           | 5                  | 100    | mV |
|                            |                       |                                  | (-30            | $(-30 \le V_{IN} \le -14.5)$ |        | (-30 $\leq$ V <sub>IN</sub> $\leq$ -17.5) |                    | –17.5) | V  |
|                            |                       |                                  |                 | 3                            | 30     |                                           | 3                  | 50     | mV |
|                            |                       |                                  | (-22            | $(-22 \le V_{IN} \le -16)$   |        | $(-26 \le V_{IN} \le -20)$                |                    | ≦–20)  | V  |
| $\Delta V_{O}$             | Load Regulation       | $T_{J} = 25^{\circ}C$ , (Note 3) |                 |                              |        |                                           |                    |        |    |
|                            |                       |                                  |                 |                              |        |                                           |                    |        |    |
#### Electrical Characteristics (Continued)

| Conditio          | ns unless otherwise noted: | $I_{OUT} = 500$ mA, $C_{IN} = 2.2\mu$ F, $C_{OUT}$              | - = 1μF, | $0^{\circ}C \leq T$    | J ≤ +12 | 5°C, Pow | er Dissip            | pation $\leq 1$ | 1.5W. |  |  |
|-------------------|----------------------------|-----------------------------------------------------------------|----------|------------------------|---------|----------|----------------------|-----------------|-------|--|--|
|                   | Part Number                |                                                                 |          |                        | LM7912C |          |                      | LM7915C         |       |  |  |
|                   | Output Vo                  | oltage                                                          | -12V     |                        |         |          | –15V                 |                 | 1     |  |  |
|                   | Input Voltage (unless o    | therwise specified)                                             |          | –19V                   |         | -23V     |                      |                 | 1     |  |  |
| Symbol            | Parameter                  | Conditions                                                      | Min      | Тур                    | Max     | Min      | Тур                  | Max             | ]     |  |  |
|                   |                            | $5mA \le I_{OUT} \le 1.5A$                                      |          | 15                     | 200     |          | 15                   | 200             | mV    |  |  |
|                   |                            | $250mA \le I_{OUT} \le 750mA$                                   |          | 5                      | 75      |          | 5                    | 75              | mV    |  |  |
| l <sub>Q</sub>    | Quiescent Current          | $T_J = 25^{\circ}C$                                             |          | 1.5                    | 3       |          | 1.5                  | 3               | mA    |  |  |
| $\Delta I_Q$      | Quiescent Current          | With Line                                                       |          |                        | 0.5     |          |                      | 0.5             | mA    |  |  |
|                   | Change                     |                                                                 | (-30 ±   | $\leq V_{IN} \leq 1$   | –14.5)  | (-30     | $\leq V_{IN} \leq -$ | -17.5)          | V     |  |  |
|                   |                            | With Load, $5mA \le I_{OUT} \le 1A$                             |          |                        | 0.5     |          |                      | 0.5             | mA    |  |  |
| V <sub>n</sub>    | Output Noise Voltage       | $T_A = 25^{\circ}C$ , $10Hz \le f \le 100Hz$                    |          | 300                    |         |          | 375                  |                 | μV    |  |  |
|                   | Ripple Rejection           | f = 120 Hz                                                      | 54       | 70                     |         | 54       | 70                   |                 | dB    |  |  |
|                   |                            |                                                                 | (-25     | $\leq V_{\rm IN} \leq$ | –15)    | (-30     | $\leq V_{IN} \leq -$ | -17.5)          | V     |  |  |
|                   | Dropout Voltage            | $T_{J} = 25^{\circ}C, I_{OUT} = 1A$                             |          | 1.1                    |         |          | 1.1                  |                 | V     |  |  |
| I <sub>OMAX</sub> | Peak Output Current        | $T_J = 25^{\circ}C$                                             |          | 2.2                    |         |          | 2.2                  |                 | A     |  |  |
|                   | Average Temperature        | I <sub>OUT</sub> = 5mA,                                         |          | -0.8                   |         |          | -1.0                 |                 | mV/°C |  |  |
|                   | Coefficient of             | $0 \text{ C} \leq \text{T}_{\text{J}} \leq 100^{\circ}\text{C}$ |          |                        |         |          |                      |                 |       |  |  |
|                   | Output Voltage             |                                                                 |          |                        |         |          |                      |                 |       |  |  |

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but do not guarantee Specific Performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. Note 2: Refer to Typical Performance Characteristics and Design Considerations for details.

Note 3: Regulation is measured at a constant junction temperature by pulse testing with a low duty cycle. Changes in output voltage due to heating effects must be taken into account.

#### **Design Considerations**

The LM79XX fixed voltage regulator series has thermal overload protection from excessive power dissipation, internal short circuit protection which limits the circuit's maximum current, and output transistor safe-area compensation for reducing the output current as the voltage across the pass transistor is increased.

Although the internal power dissipation is limited, the junction temperature must be kept below the maximum specified temperature ( $125^{\circ}C$ ) in order to meet data sheet specifications. To calculate the maximum junction temperature or heat sink required, the following thermal resistance values should be used:

|         | Тур             | Max                             | Тур  | Max           |
|---------|-----------------|---------------------------------|------|---------------|
| Package | θ <sub>JC</sub> | θ <sub>JC</sub> θ <sub>JA</sub> |      | $\theta_{JA}$ |
|         | °C/W            | °C/W                            | °C/W | °C/W          |
| TO-220  | 3.0             | 5.0                             | 60   | 40            |

$$P_{D MAX} = \frac{T_{J Max} - T_{A}}{\theta_{JC} + \theta_{CA}} \text{ or } \frac{T_{J Max} T_{A}}{\theta_{JA}}$$

 $\theta_{CA} = \theta_{CS} + \theta_{SA}$  (without heat sink)

Solving for  $T_J$ :

 $T_J = T_A + P_D (\theta_{JC} + \theta_{CA})$  or

=  $T_A + P_D \theta_{JA}$  (without heat sink)

Where:

- T<sub>J</sub> = Junction Temperature
- T<sub>A</sub> = Ambient Temperature
- $P_D$  = Power Dissipation

 $\theta_{JA}$  = Junction-to-Ambient Thermal Resistance

 $\theta_{JC}$  = Junction-to-Case Thermal Resistance

 $\theta_{CA}$  = Case-to-Ambient Thermal Resistance

 $\theta_{CS}$  = Case-to-Heat Sink Thermal Resistance

 $\theta_{SA}$  = Heat Sink-to-Ambient Thermal Resistance

#### **Typical Applications**

Bypass capacitors are necessary for stable operation of the LM79XX series of regulators over the input voltage and output current ranges. Output bypass capacitors will improve the transient response by the regulator.

high frequency characteristics. If aluminum electrolytics are used, their values should be  $10\mu$ F or larger. The bypass capacitors should be mounted with the shortest leads, and if possible, directly across the regulator terminals.

The bypass capacitors, (2.2 $\mu F$  on the input, 1.0 $\mu F$  on the output) should be ceramic or solid tantalum which have good





#### Typical Applications (Continued)





#### Schematic Diagrams (Continued)



www.national.com



LM79XX Series 3-Terminal Negative Regulators

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

Français Tel: +33 (0) 1 41 91 8790

www.national.com

SLLS047I - FEBRUARY 1989 - REVISED OCTOBER 2002

- Meet or Exceed TIA/EIA-232-F and ITU Recommendation V.28
- Operate With Single 5-V Power Supply
- Operate Up to 120 kbit/s
- Two Drivers and Two Receivers
- ±30-V Input Levels
- Low Supply Current . . . 8 mA Typical
- Designed to be Interchangeable With Maxim MAX232
- ESD Protection Exceeds JESD 22

   2000-V Human-Body Model (A114-A)
- Applications
  - TIA/EIA-232-F Battery-Powered Systems Terminals Modems Computers

| MAX232 D, DW, N, OR NS PACKAGE<br>MAX232I D, DW, OR N PACKAGE<br>(TOP VIEW) |   |    |         |  |  |  |  |
|-----------------------------------------------------------------------------|---|----|---------|--|--|--|--|
|                                                                             |   | T  | -       |  |  |  |  |
| С1+ Ц                                                                       | 1 | 16 | Vcc     |  |  |  |  |
| V <sub>S+</sub> [                                                           | 2 | 15 | ] GND   |  |  |  |  |
| C1– [                                                                       | 3 | 14 | ] T1OUT |  |  |  |  |
| C2+ [                                                                       | 4 | 13 | ] R1IN  |  |  |  |  |
| C2- [                                                                       | 5 | 12 | ] R1OUT |  |  |  |  |
| V <sub>S-</sub> [                                                           | 6 | 11 | ] T1IN  |  |  |  |  |
| T2OUT                                                                       | 7 | 10 | ] T2IN  |  |  |  |  |
| R2IN [                                                                      | 8 | 9  |         |  |  |  |  |

#### description/ordering information

The MAX232 is a dual driver/receiver that includes a capacitive voltage generator to supply EIA-232 voltage levels from a single 5-V supply. Each receiver converts EIA-232 inputs to 5-V TTL/CMOS levels. These receivers have a typical threshold of 1.3 V and a typical hysteresis of 0.5 V, and can accept ±30-V inputs. Each driver converts TTL/CMOS input levels into EIA-232 levels. The driver, receiver, and voltage-generator functions are available as cells in the Texas Instruments LinASIC<sup>™</sup> library.

| TA                              | PAC        | KAGE <sup>†</sup> | ORDERABLE<br>PART NUMBER | TOP-SIDE<br>MARKING |  |
|---------------------------------|------------|-------------------|--------------------------|---------------------|--|
|                                 | PDIP (N)   | Tube              | MAX232N                  | MAX232N             |  |
|                                 |            | Tube              | MAX232D                  | MAY222              |  |
| 0°C to 70°C                     | 30IC (D)   | Tape and reel     | MAX232DR                 | IVIAA232            |  |
| 0010700                         |            | Tube              | MAX232DW                 | MAY222              |  |
|                                 | 30IC (DVV) | Tape and reel     | MAX232DWR                | IVIAA232            |  |
|                                 | SOP (NS)   | Tape and reel     | MAX232NSR                | MAX232              |  |
|                                 | PDIP (N)   | Tube              | MAX232IN                 | MAX232IN            |  |
|                                 |            | Tube              | MAX232ID                 | MAX2221             |  |
| $-40^{\circ}C$ to $85^{\circ}C$ | 30IC (D)   | Tape and reel     | MAX232IDR                | IVIAA2321           |  |
|                                 |            | Tube              | MAX232IDW                |                     |  |
|                                 |            | Tape and reel     | MAX232IDWR               | 101472321           |  |

#### **ORDERING INFORMATION**

Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.



Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

LinASIC is a trademark of Texas Instruments.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.



SLLS047I - FEBRUARY 1989 - REVISED OCTOBER 2002

#### **Function Tables**

| EACH |        |
|------|--------|
| ЕАСП | DRIVER |
|      |        |

| INPUT<br>TIN            | OUTPUT<br>TOUT |  |  |
|-------------------------|----------------|--|--|
| L                       | Н              |  |  |
| н                       | L              |  |  |
| H = high level, I = low |                |  |  |

H = high level, L = lo

#### EACH RECEIVER

| INPUT<br>RIN | OUTPUT<br>ROUT |
|--------------|----------------|
| L            | Н              |
| н            | L              |
| U _ high I   |                |

H = high level, L = low level

#### logic diagram (positive logic)





SLLS047I - FEBRUARY 1989 - REVISED OCTOBER 2002

#### absolute maximum ratings over operating free-air temperature range (unless otherwise noted)<sup>†</sup>

| Input supply voltage range, V <sub>CC</sub> (see Note 1) . |                  | –0.3 V to 6 V                      |
|------------------------------------------------------------|------------------|------------------------------------|
| Positive output supply voltage range, V <sub>S+</sub>      |                  | V <sub>CC</sub> – 0.3 V to 15 V    |
| Negative output supply voltage range, $V_{S_{-}}$          |                  | –0.3 V to –15 V                    |
| Input voltage range, VI: Driver                            |                  | -0.3 V to V <sub>CC</sub> + 0.3 V  |
| Receiver                                                   |                  | ±30 V                              |
| Output voltage range, VO: T1OUT, T2OUT                     | V <sub>S</sub>   | - 0.3 V to V <sub>S+</sub> + 0.3 V |
| R1OUT, R2OUT                                               | ·····            | -0.3 V to V <sub>CC</sub> + 0.3 V  |
| Short-circuit duration: T1OUT, T2OUT                       |                  | Unlimited                          |
| Package thermal impedance, $\theta_{JA}$ (see Note 2):     | D package        | 73°C/W                             |
|                                                            | DW package       | 57°C/W                             |
|                                                            | N package        | 67°C/W                             |
|                                                            | NS package       | 64°C/W                             |
| Lead temperature 1,6 mm (1/16 inch) from case              | e for 10 seconds | 260°C                              |
| Storage temperature range, T <sub>sto</sub>                |                  | –65°C to 150°C                     |

<sup>†</sup> Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: All voltage values are with respect to network ground terminal.

2. The package thermal impedance is calculated in accordance with JESD 51-7.

#### recommended operating conditions

|                 |                                      |         | MIN | NOM | MAX | UNIT |
|-----------------|--------------------------------------|---------|-----|-----|-----|------|
| V <sub>CC</sub> | Supply voltage                       |         | 4.5 | 5   | 5.5 | V    |
| VIH             | High-level input voltage (T1IN,T2IN) |         | 2   |     |     | V    |
| VIL             | Low-level input voltage (T1IN, T2IN) |         |     |     | 0.8 | V    |
| R1IN, R2IN      | Receiver input voltage               |         |     |     | ±30 | V    |
| т.              | Operating free air temperature       | MAX232  | 0   |     | 70  | ŝ    |
| IA              | Operating nee-an temperature         | MAX232I | -40 |     | 85  | C    |

#### electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Note 3 and Figure 4)

| PARAMETER                      | TEST CONDITIONS                                                           | MIN | түр‡ | MAX | UNIT |
|--------------------------------|---------------------------------------------------------------------------|-----|------|-----|------|
| I <sub>CC</sub> Supply current | $V_{CC} = 5.5 \text{ V},$ All outputs open,<br>$T_A = 25^{\circ}\text{C}$ |     | 8    | 10  | mA   |

<sup>‡</sup> All typical values are at V<sub>CC</sub> = 5 V and T<sub>A</sub> = 25°C. NOTE 3: Test conditions are C1–C4 = 1  $\mu$ F at V<sub>CC</sub> = 5 V ± 0.5 V.



SLLS047I - FEBRUARY 1989 - REVISED OCTOBER 2002

#### DRIVER SECTION

#### electrical characteristics over recommended ranges of supply voltage and operating free-air temperature range (see Note 3)

| PARAMETER      |                                       | TEST CONDITIONS | MIN                                         | түр† | MAX | UNIT |    |
|----------------|---------------------------------------|-----------------|---------------------------------------------|------|-----|------|----|
| VOH            | High-level output voltage             | T1OUT, T2OUT    | $R_L = 3 k\Omega$ to GND                    | 5    | 7   |      | V  |
| VOL            | Low-level output voltage <sup>‡</sup> | T1OUT, T2OUT    | $R_L = 3 k\Omega$ to GND                    |      | -7  | -5   | V  |
| r <sub>o</sub> | Output resistance                     | T1OUT, T2OUT    | $V_{S+} = V_{S-} = 0, \qquad V_O = \pm 2 V$ | 300  |     |      | Ω  |
| los§           | Short-circuit output current          | T1OUT, T2OUT    | $V_{CC} = 5.5 V$ , $V_{O} = 0$              |      | ±10 |      | mA |
| IIS            | Short-circuit input current           | T1IN, T2IN      | $V_{I} = 0$                                 |      |     | 200  | μΑ |

<sup>†</sup> All typical values are at  $V_{CC} = 5 \text{ V}$ ,  $T_A = 25^{\circ}\text{C}$ .

<sup>‡</sup> The algebraic convention, in which the least positive (most negative) value is designated minimum, is used in this data sheet for logic voltage levels only.

§ Not more than one output should be shorted at a time.

NOTE 3: Test conditions are C1–C4 = 1  $\mu$ F at V<sub>CC</sub> = 5 V ± 0.5 V.

#### switching characteristics, $V_{CC} = 5 V$ , $T_A = 25^{\circ}C$ (see Note 3)

|       | PARAMETER                          | TEST CONDITIONS                                     | MIN | TYP | MAX | UNIT   |
|-------|------------------------------------|-----------------------------------------------------|-----|-----|-----|--------|
| SR    | Driver slew rate                   | $R_L = 3 k\Omega$ to 7 k $\Omega$ ,<br>See Figure 2 |     |     | 30  | V/µs   |
| SR(t) | Driver transition region slew rate | See Figure 3                                        |     | 3   |     | V/µs   |
|       | Data rate                          | One TOUT switching                                  |     | 120 |     | kbit/s |

NOTE 3: Test conditions are C1–C4 = 1  $\mu$ F at V<sub>CC</sub> = 5 V ± 0.5 V.

#### **RECEIVER SECTION**

#### electrical characteristics over recommended ranges of supply voltage and operating free-air temperature range (see Note 3)

| PARAMETER        |                                                 |              | TEST CONDITIONS          |                     | MIN | TYP† | MAX | UNIT |
|------------------|-------------------------------------------------|--------------|--------------------------|---------------------|-----|------|-----|------|
| VOH              | High-level output voltage                       | R1OUT, R2OUT | I <sub>OH</sub> = -1 mA  |                     | 3.5 |      |     | V    |
| VOL              | Low-level output voltage <sup>‡</sup>           | R1OUT, R2OUT | I <sub>OL</sub> = 3.2 mA |                     |     |      | 0.4 | V    |
| VIT+             | Receiver positive-going input threshold voltage | R1IN, R2IN   | V <sub>CC</sub> = 5 V,   | $T_A = 25^{\circ}C$ |     | 1.7  | 2.4 | V    |
| VIT-             | Receiver negative-going input threshold voltage | R1IN, R2IN   | V <sub>CC</sub> = 5 V,   | $T_A = 25^{\circ}C$ | 0.8 | 1.2  |     | V    |
| V <sub>hys</sub> | Input hysteresis voltage                        | R1IN, R2IN   | $V_{CC} = 5 V$           |                     | 0.2 | 0.5  | 1   | V    |
| ri               | Receiver input resistance                       | R1IN, R2IN   | V <sub>CC</sub> = 5,     | $T_A = 25^{\circ}C$ | 3   | 5    | 7   | kΩ   |

<sup>†</sup> All typical values are at  $V_{CC} = 5 V$ ,  $T_A = 25^{\circ}C$ .

<sup>‡</sup> The algebraic convention, in which the least positive (most negative) value is designated minimum, is used in this data sheet for logic voltage levels only.

NOTE 3: Test conditions are C1–C4 = 1  $\mu$ F at V<sub>CC</sub> = 5 V ± 0.5 V.

#### switching characteristics, $V_{CC} = 5 V$ , $T_A = 25^{\circ}C$ (see Note 3 and Figure 1)

|                     | PARAMETER                                                  | TYP | UNIT |
|---------------------|------------------------------------------------------------|-----|------|
| <sup>t</sup> PLH(R) | Receiver propagation delay time, low- to high-level output | 500 | ns   |
| <sup>t</sup> PHL(R) | Receiver propagation delay time, high- to low-level output | 500 | ns   |

NOTE 3: Test conditions are C1–C4 = 1  $\mu$ F at V<sub>CC</sub> = 5 V  $\pm$  0.5 V.



SLLS047I - FEBRUARY 1989 - REVISED OCTOBER 2002



- NOTES: A. The pulse generator has the following characteristics:  $Z_0 = 50 \Omega$ , duty cycle  $\leq 50\%$ .
  - B. CL includes probe and jig capacitance.
  - C. All diodes are 1N3064 or equivalent.

#### Figure 1. Receiver Test Circuit and Waveforms for $t_{\mbox{PHL}}$ and $t_{\mbox{PLH}}$ Measurements



SLLS047I - FEBRUARY 1989 - REVISED OCTOBER 2002



#### PARAMETER MEASUREMENT INFORMATION

- NOTES: A. The pulse generator has the following characteristics:  $Z_O = 50 \Omega$ , duty cycle  $\leq 50\%$ .
  - B.  $C_L$  includes probe and jig capacitance.

#### Figure 2. Driver Test Circuit and Waveforms for tPHL and tPLH Measurements (5-µs Input)



#### WAVEFORMS

NOTE A: The pulse generator has the following characteristics:  $Z_0 = 50 \ \Omega$ , duty cycle  $\leq 50\%$ .

Figure 3. Test Circuit and Waveforms for  $t_{THL}$  and  $t_{TLH}$  Measurements (20- $\mu s$  Input)



SLLS047I - FEBRUARY 1989 - REVISED OCTOBER 2002



 $^{\dagger}$  C3 can be connected to V<sub>CC</sub> or GND.





#### **IMPORTANT NOTICE**

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third–party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Mailing Address:

Texas Instruments Post Office Box 655303 Dallas, Texas 75265

Copyright © 2002, Texas Instruments Incorporated

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.

## Power-Supply Monitor with Reset

#### Features

#### **General Description**

The MAX700/701/702 are supervisory circuits used to monitor the power supplies in  $\mu$ P and digital systems. The RESET/RESET outputs of the MAX700/701/702 are guaranteed to be in the correct state for V<sub>CC</sub> voltages down to +1V (Figure 4). They provide excellent circuit reliability and low cost by eliminating external components and adjustments when used with +5V powered circuits.

The MAX702 is the simplest part in the family. When VCC falls to 4.65V, RESET goes low. The MAX702 also provides a debounced manual reset input. The MAX701 performs the same functions but has both RESET and RESET outputs. Their primary function is to provide a system reset. Accordingly, an active reset signal is supplied for low supply voltages and for at least 200ms after the supply voltage reaches its operating value.

In addition to the features of the MAX701 and MAX702, the MAX700 provides preset or adjustable voltage detection so thresholds other than 4.65V can be selected, and adjustable hysteresis. All parts are supplied in 8-pin Plastic DIP and Narrow SO packages in commercial and extended temperature ranges.

| <br>Applications             |
|------------------------------|
| Computers                    |
| Controllers                  |
| Intelligent Instruments      |
| Automotive Systems           |
| Critical µP Power Monitoring |
|                              |

- Min 200ms RESET Pulse on Power-Up, Power-Down, and During Low-Voltage Conditions
- Reset Threshold Factory Trimmed for +5V Systems
- No External Components or Adjustments With +5V Powered Circuits
- Debounced Manual Reset Input
- Preset or Adjustable Voltage Detection (MAX700)
- ♦ Adjustable Hysteresis (MAX700)
- ♦ 8-Pin Plastic DIP and Narrow SO Packages
  - Ordering Information

| PART      | TEMP. RANGE    | PIN-PACKAGE   |
|-----------|----------------|---------------|
| MAX700CPA | 0°C to +70°C   | 8 Plastic DIP |
| MAX700CSA | 0°C to +70°C   | 8 Narrow SO   |
| MAX700C/D | 0°C to +70°C   | Dice          |
| MAX700EPA | -40°C to +85°C | 8 Plastic DIP |
| MAX700ESA | -40°C to +85°C | 8 Narrow SO   |
| MAX701CPA | 0°C to +70°C   | 8 Plastic DIP |
| MAX701CSA | 0°C to +70°C   | 8 Narrow SO   |
| MAX701C/D | 0°C to +70°C   | Dice          |
| MAX701EPA | -40°C to +85°C | 8 Plastic DIP |
| MAX701ESA | -40°C to +85°C | 8 Narrow SO   |
| MAX702CPA | 0°C to +70°C   | 8 Plastic DIP |
| MAX702CSA | 0°C to +70°C   | 8 Narrow SO   |
| MAX702C/D | 0°C to +70°C   | Dice          |
| MAX702EPA | -40°C to +85°C | 8 Plastic DIP |
| MAX702ESA | -40°C to +85°C | 8 Narrow SO   |

#### **Pin Configurations**



Call toll free 1-800-998-8800 for free samples or literature.

#### **Power-Supply Monitor with Reset**

#### **ABSOLUTE MAXIMUM RATINGS**

-0.3V to +15.5V

| Rate of Rise, V <sub>CC</sub>         | 100V/µs |
|---------------------------------------|---------|
| Power Dissipation, any package        | 380mW   |
| Storage Temperature Range65°C to      | +150°C  |
| Lead Temperature (Soldering, 10 sec.) | 300°C   |

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect the device reliability.

#### **ELECTRICAL CHARACTERISTICS**

 $(T_A = 25^{\circ}C, V_{CC} = +5V, CTL = GND \text{ on MAX700, unless otherwise noted.})$ 

| PARAMETER                                                        | CONDITIONS                                                                                                                                                                                              | MIN                                          | ТҮР          | MAX               | UNITS |
|------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|--------------|-------------------|-------|
| Vcc Monitor Voltage Range<br>MAX700 Only                         | TA = T <sub>MIN</sub> to T <sub>MAX</sub><br>CTL = V <sub>CC</sub>                                                                                                                                      | 3                                            |              | 15                | V     |
| Min VCC For Valid Reset<br>Output, Declining Supply              | $\frac{T_A = T_{MIN} \text{ to } T_{MAX}}{\text{RESET} \le 0.4V \text{ when sinking 1mA}}$                                                                                                              | 1.5                                          | 1            |                   | V     |
| Supply Current                                                   |                                                                                                                                                                                                         |                                              | 100          | 200               | μA    |
| Reset Threshold<br>Power-up<br>Power-down                        | TA = TMIN to TMAX                                                                                                                                                                                       | 4.5<br>4.5                                   | 4.65<br>4.62 | 4.75<br>4.75      | V     |
| Internal Hysteresis                                              | HYST not connected                                                                                                                                                                                      |                                              | 30           |                   | mV    |
| Reset Output Pulse Width                                         |                                                                                                                                                                                                         | 200                                          | 350          | 500               | ms    |
| RESET Fall Time                                                  | MAX700/701 Only, CLOAD = 100pF                                                                                                                                                                          |                                              | 200          |                   | ns    |
| V <sub>CC</sub> Pulse Duration Guaranteeing<br>No Reset<br>Reset | 5V to 4V VCC Pulse                                                                                                                                                                                      | 100                                          | 10<br>10     | 1                 | μs    |
| MR Input Threshold                                               |                                                                                                                                                                                                         |                                              | 0.7          |                   | V     |
| MR Pullup Current                                                |                                                                                                                                                                                                         |                                              | -5           | -30               | μA    |
| MAX700                                                           |                                                                                                                                                                                                         |                                              | -            |                   |       |
| RESET Output Low<br>RESET Output High                            | ISINK = 3.2mA, VCC = 5V<br>ISINK = 1.6mA, VCC = 3V<br>ISOURCE = 3.2mA, VCC = 4.25V<br>ISOURCE = 1.6mA, VCC = 3V<br>ISOURCE = 0.5mA, VCC = 1.5V                                                          | Vcc-0.4<br>Vcc-0.4<br>Vcc-0.4                |              | 0.4<br>0.4        | V     |
| RESET Output Low                                                 | ISINK = 16mA, V <sub>CC</sub> = 4.25V<br>ISINK = 1.6mA, V <sub>CC</sub> = 3V<br>ISINK = 0.4mA, V <sub>CC</sub> = 1.5V<br>ISOURCE = 3.2mA, V <sub>CC</sub> = 5V<br>ISOURCE = 1.6mA, V <sub>CC</sub> = 3V | V <sub>CC</sub> -0.4<br>V <sub>CC</sub> -0.4 |              | 0.4<br>0.4<br>0.4 | V     |
| MAX701                                                           |                                                                                                                                                                                                         | •                                            |              |                   |       |
| RESET Output Low<br>RESET Output High                            |                                                                                                                                                                                                         | Vcc-0.4<br>Vcc-0.4<br>Vcc-0.4                |              | 0.4               | V     |
| RESET Output Low                                                 |                                                                                                                                                                                                         | Vcc-0.4                                      |              | 0.4<br>0.4<br>0.4 | V     |

MAX700/701/702

2

#### **Power-Supply Monitor with Reset**

#### **ELECTRICAL CHARACTERISTICS (continued)** $(T_A = 25^{\circ}C, V_{CC} = +5V, CTL = GND on MAX700, unless otherwise noted.)$

| PARAMETER                    | CONDITIONS                                                                                                      | MIN                  | IYP  | MAX               | UNITS |  |
|------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------|------|-------------------|-------|--|
| MAX702                       |                                                                                                                 |                      |      |                   |       |  |
| RESET Output Low             | ISINK = 3.2mA, VCC = 4.25V<br>ISINK = 1.6mA, VCC = 3V<br>ISINK = 0.4mA, VCC = 1.5V<br>ISOURCE = 3.2mA, VCC = 5V | V <sub>CC</sub> -0.4 |      | 0.4<br>0.4<br>0.4 | v     |  |
| MAX700 ONLY (CTL = Vcc, unle | ess otherwise noted.)                                                                                           |                      |      |                   |       |  |
| SENSE Input Threshold        | TA = TMIN to TMAX                                                                                               | 1.25                 | 1.29 | 1.35              | V     |  |
| SENSE Input Current          |                                                                                                                 |                      | 0.1  |                   | nA    |  |
| HYST Input On Resistance     |                                                                                                                 |                      | 0.5  |                   | kΩ    |  |
| CTL Input Threshold          |                                                                                                                 |                      | 2    |                   | V     |  |
| CTL Pulldown Current         |                                                                                                                 |                      | 30   | 100               | μA    |  |

# MAX700/701/702

| NAME  | FUNCTION                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Vcc   | Chip power and +5V sensing input (when CTL<br>= GND on MAX700).                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |
| GND   | Ground                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |
| RESET | Goes low when $V_{CC}$ falls below 4.65V, or when CTL = $V_{CC}$ on the MAX700 goes low when SENSE falls below 1.9V.                                                                                                                                                                                                                                                      |  |  |  |  |  |
| RESET | MAX700, 701 only – Inverted Version of RESET.                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
| MR    | Input for manual push button reset. Has inter-<br>nal 5µA pull up. Low input activates the<br>RESET/RESET outputs.                                                                                                                                                                                                                                                        |  |  |  |  |  |
| CTL   | MAX700 only – When CTL = GND, VCC is moni-<br>tored by the reset circuit. When CTL = VCC, VCC<br>is ignored and SENSE is monitored, allowing the<br>threshold to be set with external resistors.                                                                                                                                                                          |  |  |  |  |  |
| HYST  | MAX700 only – Normally NOT used when voltage is monitored through V <sub>CC</sub> (CTL = GND). When monitoring through SENSE (CTL = V <sub>CC</sub> ), HYST allows hysteresis to be added, reducing noise and spurious reset activity (Figure 3). HYST turns on 5µs before the RESET/RESET outputs are activated, and its on resistance to GND is typically 1k $\Omega$ . |  |  |  |  |  |
| SENSE | MAX700 only – The voltage sense input when CTL = $V_{CC}$ . Its threshold is 1.29V. Sense always remains connected to the internal comparator. So, when $V_{CC}$ is being monitored internally (CTL = GND), SENSE should be left open circuit.                                                                                                                            |  |  |  |  |  |

#### **Pin Description**

-----



1

HYST \_

GND

//// 1ΜΩ

1.29V REF.

JÆL

COMPARATOR

≶

MR

SENSE

#### **Power-Supply Monitor with Reset**

MAX700

R RC

 $\overline{R}$  OSC

ĭ50k ≲

8\_Vcc

7 CTL

6 RESET

5 RESET



Figure 1. MAX700 Block Diagram

┍╾┥┝┥



Figure 3. MAX700 Connected for External Sense and Hysteresis

Figure 2. MAX700 Typical Connection Diagram



Figure 4. Typical MAX700/701/702 RESET Output vs. Vcc

Figure 4 shows the  $\overrightarrow{\text{RESET}}$  output of the MAX700/701/702 in the correct state for V<sub>CC</sub> voltages down to 0V. Note the effect of the built-in hysteresis on the trigger level of  $\overrightarrow{\text{RESET}}$ .

4

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 (408) 737-7600 \_

©1990 Maxim Integrated Products Printed USA is a registered trademark of Maxim Integrated Products.

### 

#### Low-Power, 16-Bit Analog-to-Digital Converters with Parallel Interface

#### **General Description**

The MAX1165/MAX1166 16-bit, low-power, successiveapproximation analog-to-digital converters (ADCs) feature automatic power-down, factory-trimmed internal clock, and a 16-bit wide (MAX1165) or byte wide (MAX1166) parallel interface. The devices operate from a single +4.75V to +5.25V analog supply and a +2.7V to +5.25V digital supply.

The MAX1165/MAX1166 use an internal 4.096V reference or an external reference. The MAX1165/MAX1166 consume only 1.8mA at a sampling rate of 165ksps with external reference and 2.7mA with internal reference. AutoShutdown<sup>™</sup> reduces supply current to 0.1mA at 10ksps.

The MAX1165/MAX1166 are ideal for high-performance, battery-powered, data-acquisition applications. Excellent dynamic performance and low power consumption in a small package make the MAX1165/ MAX1166 ideal for circuits with demanding power consumption and space requirements.

The 16-bit wide MAX1165 is available in a 28-pin TSSOP package and the byte wide MAX1166 is available in a 20-pin TSSOP package. Both devices are available in either the 0°C to +70°C commercial, or the -40°C to +85°C extended temperature range.

AutoShutdown is a trademark of Maxim Integrated Products, Inc.

#### Applications

Temperature Sensor/Monitor

Industrial Process Control

I/O Boards

Data-Acquisition Systems

Cable/Harness Tester

Accelerometer Measurements

Digital Signal Processing

Pin Configurations appear at end of data sheet. Functional Diagram appears at end of data sheet.

#### Features

- 16-Bit Wide (MAX1165) and Byte Wide (MAX1166) Parallel Interface
- High Speed: 165ksps Sample Rate
- Accurate: ±2LSB INL, 16 Bit No Missing Codes
- ♦ 4.096V, 35ppm/°C Internal Reference
- ♦ External Reference Range: +3.8V to +5.25V
- Single +4.75V to +5.25V Analog Supply Voltage
- ♦ +2.7V to +5.25V Digital Supply Voltage
- Low Supply Current

   1.8mA (External Reference)
   2.7mA (Internal Reference)
   0.1µA (10ksps, External Reference)
- Small Footprint 28-Pin TSSOP Package (16-Bit Wide) 20-Pin TSSOP Package (Byte Wide)

#### **Ordering Information**

| PART         | TEMP RANGE     | PIN-PACKAGE | INL |
|--------------|----------------|-------------|-----|
| MAX1165ACUI* | 0°C to +70°C   | 28 TSSOP    | ±2  |
| MAX1165BCUI  | 0°C to +70°C   | 28 TSSOP    | ±2  |
| MAX1165CCUI  | 0°C to +70°C   | 28 TSSOP    | ±4  |
| MAX1165AEUI* | -40°C to +85°C | 28 TSSOP    | ±2  |
| MAX1165BEUI* | -40°C to +85°C | 28 TSSOP    | ±2  |
| MAX1165CEUI* | -40°C to +85°C | 28 TSSOP    | ±4  |
|              |                |             |     |

\*Future product—contact factory for availability.

#### Ordering Information continued at end of data sheet.

#### **Typical Operating Circuit**



#### 

Maxim Integrated Products 1

For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

#### **ABSOLUTE MAXIMUM RATINGS**

| AV <sub>DD</sub> to AGND          | 0.3V to +6V                       |
|-----------------------------------|-----------------------------------|
| DV <sub>DD</sub> to DGND          | 0.3V to (AV <sub>DD</sub> + 0.3V) |
| AGND to DGND                      | 0.3V to +0.3V                     |
| AIN, REF, REFADJ to AGND          | 0.3V to (AV <sub>DD</sub> + 0.3V) |
| CS, HBEN, R/C, RESET to DGND      | 0.3V to +6V                       |
| Digital Output (D15–D0, EOC)      |                                   |
| to DGND                           | 0.3V to (DV <sub>DD</sub> + 0.3V) |
| Maximum Continuous Current Into A | Any Pin50mA                       |

| Continuous Power Dissipation ( $T_A = +70^\circ$ | °C)              |
|--------------------------------------------------|------------------|
| 20-Pin TSSOP (derate 10.9mW/°C abo               | ve+70°C)879mW    |
| 28-Pin TSSOP (derate 12.8mW/°C abo               | ve +70°C) 1026mW |
| Operating Temperature Ranges                     |                  |
| MAX116CU                                         | 0°C to +70°C     |
| MAX116EU                                         | 40°C to +85°C    |
| Storage Temperature Range                        | 65°C to +150°C   |
| Junction Temperature                             | +150°C           |
| Lead Temperature (soldering, 10s)                | +300°C           |

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

#### **ELECTRICAL CHARACTERISTICS**

 $(AV_{DD} = DV_{DD} = +5V)$ , external reference = +4.096V,  $C_{REF} = 4.7\mu$ F,  $C_{REFADJ} = 0.1\mu$ F,  $T_A = T_{MIN}$  to  $T_{MAX}$ , unless otherwise noted. Typical values are at  $T_A = +25^{\circ}$ C.)

| PARAMETER                       | SYMBOL          | CONI                                            | DITIONS            | MIN | ТҮР    | MAX   | UNITS              |
|---------------------------------|-----------------|-------------------------------------------------|--------------------|-----|--------|-------|--------------------|
| DC ACCURACY                     | •               |                                                 |                    | •   |        |       |                    |
| Resolution                      | Ν               |                                                 |                    | 16  |        |       | Bits               |
|                                 |                 | MAX116_A                                        |                    |     |        | ±2    |                    |
| Relative Accuracy               | INL             | MAX116_B                                        |                    |     |        | ±2    | LSB                |
|                                 |                 | MAX116_C                                        |                    |     |        | ±4    |                    |
|                                 |                 | No missing codes                                | MAX116_A           |     |        | ±1    |                    |
| Differential Nonlinearity       | DNL             | over temperature                                | MAX116_B           | -1  |        | ±1.5  | LSB                |
|                                 |                 | MAX116_C                                        |                    |     |        | ±2    |                    |
| Transition Noise                |                 | RMS noise, external re<br>quantization noise    | eference, includes |     | 0.65   |       | LSB <sub>RMS</sub> |
|                                 |                 | Internal reference                              |                    |     | 0.7    |       | LSB <sub>RMS</sub> |
| Offset Error                    |                 |                                                 |                    |     | 0.05   | 1     | mV                 |
| Gain Error                      |                 | (Note 2)                                        |                    |     | ±0.002 | ±0.02 | %FSR               |
| Offset Drift                    |                 |                                                 |                    |     | 0.6    |       | ppm/°C             |
| Gain Drift                      |                 |                                                 |                    |     | 0.2    |       | ppm/°C             |
| DYNAMIC PERFORMANCE (fIN(SI     | NE-WAVE) =      | 1kHz, V <sub>IN</sub> = 4.096V <sub>P-P</sub> , | 165ksps)           |     |        |       |                    |
| Signal-to-Noise Plus Distortion | SINAD           |                                                 |                    | 86  | 90     |       | dB                 |
| Signal-to-Noise Ratio           | SNR             |                                                 |                    | 87  | 90     |       | dB                 |
| Total Harmonic Distortion       | THD             |                                                 |                    |     | -102   | -90   | dB                 |
| Spurious-Free Dynamic Range     | SFDR            |                                                 |                    | 92  | 105    |       | dB                 |
| Full-Power Bandwidth            |                 | -3dB point                                      |                    |     | 4      |       | MHz                |
| Full-Linear Bandwidth           |                 | SINAD > 81dB                                    |                    |     | 33     |       | kHz                |
| CONVERSION RATE                 |                 |                                                 |                    |     |        |       |                    |
| Sample Rate                     | <b>f</b> SAMPLE |                                                 |                    |     |        | 165   | ksps               |
| Aperture Delay                  |                 |                                                 |                    |     | 27     |       | ns                 |
| Aperture Jitter                 |                 |                                                 |                    |     | <100   |       | ps                 |
| ANALOG INPUT                    |                 |                                                 |                    |     |        |       |                    |
| Input Range                     | VAIN            |                                                 |                    | 0   |        | VREF  | V                  |
| Input Capacitance               | CAIN            |                                                 |                    |     | 40     |       | pF                 |

#### **ELECTRICAL CHARACTERISTICS (continued)**

 $(AV_{DD} = DV_{DD} = +5V)$ , external reference = +4.096V,  $C_{REF} = 4.7\mu$ F,  $C_{REFADJ} = 0.1\mu$ F,  $T_A = T_{MIN}$  to  $T_{MAX}$ , unless otherwise noted. Typical values are at  $T_A = +25^{\circ}$ C.)

| PARAMETER                       | SYMBOL           | CONDITIONS                                                                                         |              | MIN                       | ТҮР                       | МАХ                       | UNITS  |
|---------------------------------|------------------|----------------------------------------------------------------------------------------------------|--------------|---------------------------|---------------------------|---------------------------|--------|
| INTERNAL REFERENCE              |                  | •                                                                                                  |              |                           |                           |                           |        |
| REF Output Voltage              | V <sub>REF</sub> |                                                                                                    |              | 4.056                     | 4.096                     | 4.136                     | V      |
| REF Output Tempco               | TCREF            |                                                                                                    |              |                           | ±25                       |                           | ppm/°C |
| REF Short-Circuit Current       | IREFSC           |                                                                                                    |              |                           | ±10                       |                           | mA     |
| Capacitive Bypass at REFADJ     | Crefadj          |                                                                                                    |              | 0.1                       |                           |                           | μF     |
| Capacitive Bypass at REF        | CREF             |                                                                                                    |              | 1                         |                           |                           | μF     |
| REFADJ Input Leakage Current    | IREFADJ          |                                                                                                    |              |                           | 20                        |                           | μA     |
| EXTERNAL REFERENCE              |                  |                                                                                                    |              |                           |                           |                           |        |
| REFADJ Buffer Disable Threshold |                  | To power down the interna                                                                          | al reference | AV <sub>DD</sub> -<br>0.4 |                           | AV <sub>DD</sub> -<br>0.1 | V      |
| REF Input Voltage Range         |                  | Internal reference disable                                                                         | b            | 3.8                       |                           | AVDD                      | V      |
| REF Input Current               | I <sub>REF</sub> | V <sub>REF</sub> = +4.096V, f <sub>SAMPLE</sub> = 165ksps                                          |              |                           | 50<br>+0.1                | 120                       | μA     |
| DIGITAL INPUTS/OUTPUTS          |                  |                                                                                                    |              |                           | 20.1                      |                           |        |
| Input High Voltage              | VIH              |                                                                                                    |              | 0.7 ×<br>DV <sub>DD</sub> |                           |                           | V      |
| Input Low Voltage               | VIL              |                                                                                                    |              |                           | 0.3 ×<br>DV <sub>DD</sub> | V                         |        |
| Input Leakage Current           | I <sub>IN</sub>  | $V_{IH} = 0 \text{ or } DV_{DD}$                                                                   |              |                           | ±0.1                      | ±1                        | μA     |
| Input Hysteresis                | VHYST            |                                                                                                    |              |                           | 0.1                       |                           | V      |
| Input Capacitance               | CIN              |                                                                                                    |              |                           | 15                        |                           | рF     |
| Output High Voltage             | V <sub>OH</sub>  | $I_{SOURCE} = 0.5 \text{mA}, DV_{DD} = +2.7 \text{V to } +5.25 \text{V}, AV_{DD} = +5.25 \text{V}$ |              | DV <sub>DD</sub> -<br>0.4 |                           |                           | V      |
| Output Low Voltage              | V <sub>OL</sub>  | $I_{SINK} = 1.6mA$ , $DV_{DD} = +2.7V$ to +5.25V,<br>$AV_{DD} = +5.25V$                            |              |                           |                           | 0.4                       | V      |
| Three-State Leakage Current     | Ioz              | D0-D15                                                                                             | D0-D15       |                           | ±0.1                      | ±10                       | μA     |
| Three-State Output Capacitance  | C <sub>OZ</sub>  |                                                                                                    |              |                           | 15                        |                           | рF     |
| POWER REQUIREMENTS              |                  |                                                                                                    |              |                           |                           |                           |        |
| Analog Supply Voltage           | AVDD             |                                                                                                    |              | 4.75                      |                           | 5.25                      | V      |
| Digital Supply                  | DVDD             |                                                                                                    |              | 2.7                       |                           | AVDD                      | V      |
| Analog Supply Current           |                  |                                                                                                    | 165ksps      |                           | 2.7                       | 3.2                       |        |
|                                 |                  |                                                                                                    | 100ksps      |                           | 2.0                       |                           |        |
|                                 |                  | Internal reference                                                                                 | 10ksps       |                           | 1.0                       |                           |        |
|                                 | 1                |                                                                                                    | 1ksps        |                           | 1.0                       |                           |        |
|                                 | IAVDD            | External reference                                                                                 | 165ksps      |                           | 1.8                       | 2.3                       | mA     |
|                                 |                  |                                                                                                    | 100ksps      |                           | 1.1                       |                           |        |
|                                 |                  |                                                                                                    | 10ksps       |                           | 0.1                       |                           |        |
|                                 |                  |                                                                                                    | 1ksps        |                           | 0.01                      |                           |        |
|                                 |                  |                                                                                                    |              |                           |                           |                           |        |

#### ELECTRICAL CHARACTERISTICS (continued)

 $(AV_{DD} = DV_{DD} = +5V)$ , external reference = +4.096V,  $C_{REF} = 4.7\mu$ F,  $C_{REFADJ} = 0.1\mu$ F,  $T_A = T_{MIN}$  to  $T_{MAX}$ , unless otherwise noted. Typical values are at  $T_A = +25^{\circ}$ C.)

| PARAMETER                    | SYMBOL | CONDITIONS                                          |                               | MIN | ТҮР   | MAX | UNITS |
|------------------------------|--------|-----------------------------------------------------|-------------------------------|-----|-------|-----|-------|
| Digital Supply Current       | IDVDD  | D0-D15 = all zeros                                  | 165ksps                       |     | 0.5   | 0.7 | - mA  |
|                              |        |                                                     | 100ksps                       |     | 0.3   |     |       |
|                              |        |                                                     | 10ksps                        |     | 0.03  |     |       |
|                              |        |                                                     | 1ksps                         |     | 0.003 |     |       |
| Shutdown Supply Current      |        |                                                     | IAVDD                         |     | 0.5   | 5   | μA    |
|                              |        | Full power-down                                     | IDVDD                         |     | 0.5   | 5   |       |
|                              | ISHDN  |                                                     | IAVDD                         |     | 1.0   | 1.2 | mA    |
|                              |        | KEF and KEF butter enabled (standby mode)           | I <sub>DVDD</sub><br>(Note 3) |     | 0.5   | 5   | μΑ    |
| Power-Supply Rejection Ratio | PSRR   | $AV_{DD} = +5V \pm 5\%$ , full-scale input (Note 4) |                               |     | 68    |     | dB    |

#### TIMING CHARACTERISTICS (Figures 1 and 2)

 $(AV_{DD} = +4.75V \text{ to } +5.25V, DV_{DD} = +2.7V \text{ to } AV_{DD}, \text{ external reference} = +4.096V, C_{REF} = 4.7\mu\text{F}, C_{REFADJ} = 0.1\mu\text{F}, C_{LOAD} = 20\text{pF}, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted}.$  Typical values are at T<sub>A</sub>= +25°C.)

| PARAMETER                                                   | SYMBOL          | CONDITIONS                         | MIN | ТҮР | МАХ | UNITS                                                          |
|-------------------------------------------------------------|-----------------|------------------------------------|-----|-----|-----|----------------------------------------------------------------|
| Acquisition Time                                            | tacq            |                                    | 1.1 |     |     |                                                                |
| Conversion Time                                             | tCONV           |                                    |     |     | 4.7 | μs                                                             |
| CS Pulse Width High                                         | tCSH            | (Note 5)                           | 40  |     |     | ns                                                             |
| $\overline{CS}$ Bulas Width Low (Note 5)                    |                 | $V_{DVDD} = 4.75V$ to 5.25V        | 40  |     |     |                                                                |
| CS Puise width LOW (Note 5)                                 | ICSL            | V <sub>DVDD</sub> = 2.7V to 5.25V  | 60  |     |     | ns                                                             |
| $R/\overline{C}$ to $\overline{CS}$ Fall Setup Time         | t <sub>DS</sub> |                                    | 0   |     |     | ns                                                             |
|                                                             | <b>h</b> =      | $V_{DVDD} = 4.75V$ to 5.25V        | 40  |     |     |                                                                |
| R/C to CS Fall Hold Time                                    | чDН             | V <sub>DVDD</sub> = 2.7V to 5.25V  | 60  |     |     | - ns                                                           |
| Contract Data Valid                                         | 4               | $V_{DVDD} = 4.75V$ to 5.25V        |     |     | 40  |                                                                |
| CS to Output Data Valid                                     | ٢DO             | V <sub>DVDD</sub> = 2.7V to 5.25V  |     |     | 80  | ns                                                             |
| HBEN Transition to Output Data<br>Valid (MAX1166 Only)      |                 | V <sub>DVDD</sub> = 4.75V to 5.25V |     |     | 40  | ns<br>ns<br>ns<br>ns<br>ns<br>ns<br>ns<br>ns<br>ns<br>ns<br>ns |
|                                                             | LDO1            | V <sub>DVDD</sub> = 2.7V to 5.25V  |     |     | 80  |                                                                |
| $\overline{\text{EOC}}$ Fall to $\overline{\text{CS}}$ Fall | t <sub>DV</sub> |                                    | 0   |     |     | ns                                                             |
| $\overline{\text{CS}}$ Rise to $\overline{\text{EOC}}$ Rise | traa            | $V_{DVDD} = 4.75V$ to 5.25V        |     |     | 40  | 20                                                             |
|                                                             | LOC             | V <sub>DVDD</sub> = 2.7V to 5.25V  |     |     | 80  | ns                                                             |
| Bus Relinquish Time (Note 5)                                | taa             | V <sub>DVDD</sub> = 4.75V to 5.25V |     |     | 40  | 20                                                             |
|                                                             | ıВК             | V <sub>DVDD</sub> = 2.7V to 5.25V  |     |     | 80  | 115                                                            |

Note 1: Relative accuracy is the deviation of the analog value at any code from its theoretical value after offset and gain errors have been removed.

Note 2: Offset nulled.

Note 3: Shutdown supply currents are typically 0.5µA, maximum specification is limited by automated test equipment.

Note 4: Defined as the change in positive full scale caused by a ±5% variation in the nominal supply.

Note 5: To ensure best performance, finish reading the data and wait  $t_{BR}$  before starting a new acquisition.





#### Typical Operating Characteristics

(AV<sub>DD</sub> = DV<sub>DD</sub> = +5V, external reference = +4.096V, C<sub>REF</sub> = 4.7µF, C<sub>REFADJ</sub> = 0.1µF, T<sub>A</sub> = +25°C, unless otherwise noted.)

5

#### Typical Operating Characteristics (continued)

 $(AV_{DD} = DV_{DD} = +5V, \text{ external reference} = +4.096V, C_{REF} = 4.7\mu\text{F}, C_{REFADJ} = 0.1\mu\text{F}, T_A = +25^{\circ}\text{C}, \text{ unless otherwise noted.})$ 











#### **Pin Description**

| PIN     |         | NAME    |                                                  | FUNCTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
|---------|---------|---------|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| MAX1165 | MAX1166 | MAX1165 | MAX1166                                          | FUNCTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| 1       | 1       | D8      | D4/D12                                           | Three-State Digital Data Output                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| 2       | 2       | D9      | D5/D13                                           | Three-State Digital Data Output                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| 3       | 3       | D10     | D6/D14                                           | Three-State Digital Data Output                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| 4       | 4       | D11     | D7/D15                                           | Three-State Digital Data Output. D15 is the MSB.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| 5       |         | D12     | —                                                | Three-State Digital Data Output                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| 6       |         | D13     | —                                                | Three-State Digital Data Output                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| 7       | —       | D14     | —                                                | Three-State Digital Data Output                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| 8       |         | D15     | —                                                | Three-State Digital Data Output (MSB)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| 9       | 5       | R/C     |                                                  | Read/Convert Input. Power up and put the MAX1165/MAX1166 in acquisition mode<br>by holding R/C low during the first falling edge of $\overline{CS}$ . During the second falling<br>edge of $\overline{CS}$ , the level on R/C determines whether the reference and reference<br>buffer power down or remain on after conversion. Set R/C high during the second<br>falling edge of $\overline{CS}$ to power down the reference and buffer, or set R/C low to leave<br>the reference and buffer powered up. Set R/C high during the third falling edge of<br>$\overline{CS}$ to put valid data on the bus. |  |  |
| 10      | 6       | Ē       | DC                                               | End of Conversion. EOC drives low when conversion is complete.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| 11      | 7       | AV      | DD                                               | Analog Supply Input. Bypass with a 0.1µF capacitor to AGND.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| 12      | 8       | AG      | iND                                              | Analog Ground. Primary analog ground (star ground).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| 13      | 9       | A       | IN                                               | Analog Input                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| 14      | 10      | AGND    |                                                  | Analog Ground. Connect pin 14 to pin 12 (MAX1165). Connect pin 10 to pin 8 (MAX1166).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| 15      | 11      | REFADJ  |                                                  | Reference Buffer Output. Bypass REFADJ with a $0.1\mu$ F capacitor to AGND for internal reference mode. Connect REFADJ to AV <sub>DD</sub> to select external reference mode.                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| 16      | 12      | REF     |                                                  | Reference Input/Output. Bypass REF with a 4.7µF capacitor to AGND for internal reference mode. External reference input when in external reference mode.                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| 17      | _       | RE      | RESET Reset Input. Logic high resets the device. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| _       | 13      | HBEN    |                                                  | High-Byte Enable Input. Used to multiplex the 14-bit conversion result:<br>1: Most significant byte available on the data bus.<br>0: Least significant byte available on the data bus.                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| 18      | 14      | CS      |                                                  | Convert Start. The first falling edge of $\overline{CS}$ powers up the device and enables acquire mode when $R/\overline{C}$ is low. The second falling edge of $\overline{CS}$ starts conversion. The third falling edge of $\overline{CS}$ loads the result onto the bus when $R/\overline{C}$ is high.                                                                                                                                                                                                                                                                                                 |  |  |
| 19      | 15      | DGND    |                                                  | Digital Ground                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| 20      | 16      | D٧      | /DD                                              | Digital Supply Voltage. Bypass with a 0.1µF capacitor to DGND.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| 21      | 17      | D0      | D0/D8                                            | Three-State Digital Data Output                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| 22      | 18      | D1      | D1/D9                                            | Three-State Digital Data Output                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| 23      | 19      | D2      | D2/D10                                           | Three-State Digital Data Output                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| 24      | 20      | D3      | D3/D11                                           | Three-State Digital Data Output                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| 25      |         | D4      |                                                  | Three-State Digital Data Output                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| 26      |         | D5      |                                                  | Three-State Digital Data Output                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| 27      |         | D6      | —                                                | - Three-State Digital Data Output                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| 28      | _       | D7      | —                                                | - Three-State Digital Data Output                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |





Figure 1. Load Circuits

MAX1165/MAX1166

#### **Detailed Description**

#### **Converter Operation**

The MAX1165/MAX1166 use a successive-approximation (SAR) conversion technique with an inherent trackand-hold (T/H) stage to convert an analog input into a 16-bit digital output. Parallel outputs provide a highspeed interface to most microprocessors ( $\mu$ Ps). The *Functional Diagram* shows a simplified internal architecture of the MAX1165/MAX1166. Figure 3 shows a typical application circuit for the MAX1166.

#### Analog Input

The equivalent input circuit is shown in Figure 4. A switched capacitor digital-to-analog converter (DAC) provides an inherent T/H function. The single-ended input is connected between AIN and AGND.

#### Input Bandwidth

The ADC's input-tracking circuitry has a 4MHz smallsignal bandwidth, so it is possible to digitize highspeed transient events and measure periodic signals with bandwidths exceeding the ADC's sampling rate by using undersampling techniques. To avoid aliasing of unwanted high-frequency signals into the frequency band of interest, use anti-alias filtering.

#### **Analog Input Protection**

Internal protection diodes, which clamp the analog input to  $AV_{DD}$  and/or AGND, allow the input to swing from AGND - 0.3V to  $AV_{DD}$  + 0.3V, without damaging the device.

If the analog input exceeds 300mV beyond the supplies, limit the input current to 10mA.





Figure 3. Typical Application Circuit for the MAX1166

#### Track and Hold (T/H)

In track mode, the analog signal is acquired on the internal hold capacitor. In hold mode, the T/H switches open and the capacitive DAC samples the analog input.

During the acquisition, the analog input (AIN) charges capacitor  $C_{DAC}$ . The acquisition ends on the second falling edge of  $\overline{CS}$ . At this instant, the T/H switches open. The retained charge on  $C_{DAC}$  represents a sample of the input.

In hold mode, the capacitive DAC adjusts during the remainder of the conversion time to restore node ZERO to zero within the limits of 16-bit resolution. Force  $\overline{CS}$  low to put valid data on the bus at the end of the conversion.

The time required for the T/H to acquire an input signal is a function of how quickly its input capacitance is charged. If the input signal's source impedance is high, the acquisition time lengthens and more time must be allowed between conversions. The acquisition time ( $t_{ACQ}$ ) is the maximum time the device takes to acquire the signal. Use the following formula to calculate acquisition time:

#### $t_{ACQ} = 11 (R_S + R_{IN}) \times 35 pF$

where  $R_{IN} = 800\Omega$ ,  $R_S =$  the input signal's source impedance, and  $t_{ACQ}$  is never less than 1.1µs. A source impedance less than 1k $\Omega$  does not significantly affect the ADC's performance.

To improve the input signal bandwidth under AC conditions, drive AIN with a wideband buffer (>4MHz) that can drive the ADC's input capacitance and settle quickly.



Figure 4. Equivalent Input Circuit

#### **Power-Down Modes**

Select standby mode or shutdown mode with the R/C bit during the second falling edge of  $\overline{CS}$  (see the *Selecting Standby or Shutdown Mode* section). The MAX1165/MAX1166 automatically enter either standby mode (reference and buffer on) or shutdown (reference and buffer off) after each conversion depending on the status of R/C during the second falling edge of  $\overline{CS}$ .

#### **Internal Clock**

The MAX1165/MAX1166 generate an internal conversion clock. This frees the microprocessor from the burden of running the SAR conversion clock. Total conversion time after entering hold mode (second falling edge of  $\overline{CS}$ ) to end of conversion (EOC) falling is 4.7µs (max).

#### Applications Information

#### Starting a Conversion

 $\overline{\text{CS}}$  and  $\overline{\text{R/C}}$  control acquisition and conversion in the MAX1165/MAX1166 (Figure 2). The first falling edge of  $\overline{\text{CS}}$  powers up the device and puts it in acquire mode if  $\overline{\text{R/C}}$  is low. The convert start is ignored if  $\overline{\text{R/C}}$  is high. The MAX1165/MAX1166 need at least 10ms (CREFADJ = 0.1µF, CREF = 4.7µF) for the internal reference to wake up and settle before starting the conversion if powering up from shutdown. The ADC can wake up, from shutdown, to an unknown state. Put the ADC in a known state by completing one "dummy" conversion. The MAX1165/MAX1166 are in a known state, ready for actual data acquisition, after the completion of the dummy conversion. A dummy conversion consists of one full conversion cycle.

The MAX1165 provides an alternative reset function to reset the device (see the *RESET* section).

M/X/M



Figure 5. Selecting Standby Mode

Selecting Standby or Shutdown Mode

The MAX1165/MAX1166 have a selectable standby or low-power shutdown mode. In standby mode, the ADC's internal reference and reference buffer do not power down between conversions, eliminating the need to wait for the reference to power up before performing the next conversion. Shutdown mode powers down the reference and reference buffer after completing a conversion. The reference and reference buffer require a minimum of 10ms ( $C_{REFADJ} = 0.1\mu$ F,  $C_{REF} = 4.7\mu$ F) to power up and settle from shutdown.

The state of  $R/\overline{C}$  at the second falling edge of  $\overline{CS}$  selects which power-down mode the MAX1165/ MAX1166 enter upon conversion completion. Holding  $R/\overline{C}$  low causes the MAX1165/MAX1166 to enter standby mode. The reference and buffer are left on after the conversion completes.  $R/\overline{C}$  high causes the MAX1165/ MAX1166 to enter shutdown mode and shut down the reference and buffer after conversion (Figures 5 and 6). When using an external reference, set the REF powerdown bit high for lowest current operation.

#### **Standby Mode**

While in standby mode, the supply current is reduced to less than 1mA (typ). The next falling edge of  $\overline{CS}$  with  $R/\overline{C}$  low causes the MAX1165/MAX1166 to exit standby mode and begin acquisition. The reference and reference buffer remain active to allow quick turn-on time. Standby mode allows significant power savings while running at the maximum sample rate.

#### Shutdown Mode

In shutdown mode, the reference and reference buffer are shut down between conversions. Shutdown mode reduces supply current to 0.5 $\mu$ A (typ) immediately after the conversion. The falling edge of  $\overline{CS}$  with R/C low



Figure 6. Selecting Shutdown Mode

causes the reference and buffer to wake up and enter acquisition mode. To achieve 16-bit accuracy, allow 10ms (CREFADJ =  $0.1\mu$ F, CREF =  $4.7\mu$ F) for the internal reference to wake up.

#### **Internal and External Reference**

#### Internal Reference

The internal reference of the MAX1165/MAX1166 is internally buffered to provide +4.096V output at REF. Bypass REF to AGND and REFADJ to AGND with 4.7 $\mu$ F and 0.1 $\mu$ F, respectively.

Fine adjustments can be made to the internal reference voltage by sinking or sourcing current at REFADJ. The input impedance of REFADJ is nominally  $5k\Omega$ . The internal reference voltage is adjustable to  $\pm 1.5\%$  with the circuit of Figure 7.



Figure 7. MAX1165/MAX1166 Reference Adjust Circuit

#### External Reference

An external reference can be placed at either the input (REFADJ) or the output (REF) of the MAX1165/ MAX1166s' internal buffer amplifier. When connecting an



external reference to REFADJ, the input impedance is typically 5k $\Omega$ . Using the buffered REFADJ input makes buffering the external reference unnecessary; however, the internal buffer output must be bypassed at REF with a 1  $\mu$ F capacitor.

Connect REFADJ to AV<sub>DD</sub> to disable the internal buffer. Directly drive REF using an external reference. During conversion the external reference must be able to drive 100µA of DC load current and have an output impedance of 10 $\Omega$  or less. REFADJ's impedance is typically 5k $\Omega$ . The DC input impedance of REF is a minimum 40k $\Omega$ .

For optimal performance, buffer the reference through an op amp and bypass REF with a 1 $\mu$ F capacitor. Consider the MAX1165/MAX1166s' equivalent input noise (38 $\mu$ V<sub>RMS</sub>) when choosing a reference.

#### **Reading a Conversion Result**

EOC is provided to flag the microprocessor when a conversion is complete. The falling edge of EOC signals that the data is valid and ready to be output to the bus.

D0–D15 are the parallel outputs of the MAX1165/ MAX1166. These three-state outputs allow for direct connection to a microcontroller I/O bus. The outputs remain high-impedance during acquisition and conversion. Data is loaded onto the bus with the third falling edge of  $\overline{CS}$  with R/C high after t<sub>DO</sub>. Bringing  $\overline{CS}$  high forces the output bus back to high impedance. The MAX1165/MAX1166 then wait for the next falling edge of  $\overline{CS}$  to start the next conversion cycle (Figure 2).

The MAX1165 loads the conversion result onto a 16-bit wide data bus while the MAX1166 has a byte-wide output format. HBEN toggles the output between the most/least significant byte. The least significant byte is loaded onto the output bus when HBEN is low and the most significant byte is on the bus when HBEN is high (Figure 2).

#### RESET

Toggle RESET with  $\overline{CS}$  high. The next falling edge of  $\overline{CS}$  begins acquisition. This reset is an alternative to the dummy conversion explained in the *Starting a Conversion* section.

#### **Transfer Function**

Figure 8 shows the MAX1165/MAX1166 output transfer function. The output is coded in standard binary.

#### **Input Buffer**

Most applications require an input buffer amplifier to achieve 16-bit accuracy. If the input signal is multi-



Figure 8. MAX1165/MAX1166 Transfer Function

plexed, the input channel should be switched immediately after acquisition, rather than near the end of or after a conversion. This allows more time for the input buffer amplifier to respond to a large step change in input signal. The input amplifier must have a high enough slew rate to complete the required output voltage change before the beginning of the acquisition time. At the beginning of acquisition, the internal sampling capacitor array connects to AIN (the amplifier output), causing some output disturbance. Ensure that the sampled voltage has settled to within the required limits before the end of the acquisition time. If the frequency of interest is low, AIN can be bypassed with a large enough capacitor to charge the internal sampling capacitor with very little ripple. However, for AC use, AIN must be driven by a wideband buffer (at least 10MHz), which must be stable with the ADC's capacitive load (in parallel with any AIN bypass capacitor used) and also settle quickly. An example of this circuit using the MAX4434 is given in Figure 9.



Figure 9. MAX1165/MAX1166 Fast Settling Input Buffer

#### Layout, Grounding, and Bypassing

For best performance, use printed circuit boards. Do not run analog and digital lines parallel to each other, and do not lay out digital signal paths underneath the ADC package. Use separate analog and digital ground planes with only one point connecting the two ground systems (analog and digital) as close to the device as possible.

Route digital signals far away from sensitive analog and reference inputs. If digital lines must cross analog lines, do so at right angles to minimize coupling digital noise onto the analog lines. If the analog and digital sections share the same supply, then isolate the digital and analog supply by connecting them with a low-value ( $10\Omega$ ) resistor or ferrite bead.

The ADC is sensitive to high-frequency noise on the AV<sub>DD</sub> supply. Bypass AV<sub>DD</sub> to AGND with a  $0.1\mu$ F capacitor in parallel with a  $1\mu$ F to  $10\mu$ F low-ESR capacitor with the smallest capacitor closest to the device. Keep capacitor leads short to minimize stray inductance.

#### \_Definitions

#### **Integral Nonlinearity**

Integral nonlinearity (INL) is the deviation of the values on an actual transfer function from a straight line. This straight line can be either a best-straight-line fit or a line drawn between the end points of the transfer function, once offset and gain errors have been nullified. The static linearity parameters for the MAX1165/MAX1166 are measured using the end-point method.

#### **Differential Nonlinearity**

Differential nonlinearity (DNL) is the difference between an actual step width and the ideal value of 1 LSB. A DNL error specification of  $\pm 1$  LSB guarantees no missing codes and a monotonic transfer function.

#### **Aperture Jitter and Delay**

Aperture jitter is the sample-to-sample variation in the time between samples. Aperture delay is the time between the rising edge of the sampling clock and the instant when the actual sample is taken.

#### Signal-to-Noise Ratio

For a waveform perfectly reconstructed from digital samples, signal-to-noise ratio (SNR) is the ratio of the full-scale analog input (RMS value) to the RMS quantization error (residual error). The ideal, theoretical minimum analog-to-digital noise is caused by quantization noise error only and results directly from the ADC's resolution (N bits):

#### $SNR = (6.02 \times N + 1.76) dB$

where N = 16 bits.

In reality, there are other noise sources besides quantization noise: thermal noise, reference noise, clock jitter, etc. SNR is computed by taking the ratio of the RMS signal to the RMS noise, which includes all spectral components minus the fundamental, the first five harmonics, and the DC offset.

#### **Signal-to-Noise Plus Distortion**

Signal-to-noise plus distortion (SINAD) is the ratio of the fundamental input frequency's RMS amplitude to the RMS equivalent of all the other ADC output signals:

SINAD (dB) = 
$$20 \times \log \left[ \frac{\text{Signal}_{\text{RMS}}}{(\text{Noise} + \text{Distortion})_{\text{RMS}}} \right]$$

#### **Effective Number of Bits**

Effective number of bits (ENOB) indicates the global accuracy of an ADC at a specific input frequency and sampling rate. An ideal ADC's error consists of quantization noise only. With an input range equal to the full-scale range of the ADC, calculate the effective number of bits as follows:

$$\mathsf{ENOB} = \frac{\mathsf{SINAD} - 1.76}{6.02}$$

#### **Total Harmonic Distortion**

Total harmonic distortion (THD) is the ratio of the RMS sum of the first five harmonics of the input signal to the fundamental itself. This is expressed as:

THD = 20 × log 
$$\left[\frac{\left(\sqrt{V_2^2 + V_3^2 + V_4^2 + V_5^2}\right)}{V_1}\right]$$

where  $V_1$  is the fundamental amplitude and  $V_2$  through  $V_5$  are the 2nd- through 5th-order harmonics.

#### **Spurious-Free Dynamic Range**

Spurious-free dynamic range (SFDR) is the ratio of the RMS amplitude of the fundamental (maximum signal component) to the RMS value of the next largest frequency component.

#### Functional Diagram



#### \_Ordering Information (continued)

| PART         | TEMP RANGE     | PIN-PACKAGE | INL |
|--------------|----------------|-------------|-----|
| MAX1166ACUP* | 0°C to +70°C   | 20 TSSOP    | ±2  |
| MAX1166BCUP  | 0°C to +70°C   | 20 TSSOP    | ±2  |
| MAX1166CCUP  | 0°C to +70°C   | 20 TSSOP    | ±4  |
| MAX1166AEUP* | -40°C to +85°C | 20 TSSOP    | ±2  |
| MAX1166BEUP* | -40°C to +85°C | 20 TSSOP    | ±2  |
| MAX1166CEUP* | -40°C to +85°C | 20 TSSOP    | ±4  |

\*Future product—contact factory for availability.

**Chip Information** 

TRANSISTOR COUNT: 15,140 PROCESS: BICMOS



MAX1165/MAX1166

#### **Package Information**

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to **www.maxim-ic.com/packages**.)



MAX1165/MAX1166

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

#### Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 \_

© 2002 Maxim Integrated Products

Printed USA

is a registered trademark of Maxim Integrated Products.

\_ 15

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.
# **μ** Dual, 5Ω Analog Switches

### **General Description**

The MAX4621/MAX4622/MAX4623 are precision, dual, high-speed analog switches. The single-pole/single-throw (SPST) MAX4621 and double-pole/single-throw (DPST) MAX4623 dual switches are normally open (NO). The single-pole/double-throw (SPDT) MAX4622 has two normally closed (NC) and two NO poles. All three parts offer low  $5\Omega$  on-resistance guaranteed to match to within 0.5 $\Omega$  between channels and to remain flat over the full analog signal range ( $\Delta 0.5\Omega$  max). They also offer low leakage (<500pA at +25°C, <5nA at +85°C) and fast switching times (turn-on time <250ns, turn-off time <200ns).

These analog switches are ideal in low-distortion applications and are the preferred solution over mechanical relays in automatic test equipment or applications where current switching is required. They have low power requirements, use less board space, and are more reliable than mechanical relays.

The MAX4621/MAX4622/MAX4623 are pin-compatible replacements for the DG401/DG403/DG405, respectively, offering improved overall performance. These monolithic switches operate from a single positive supply (+4.5V to +36V) or with bipolar supplies ( $\pm$ 4.5V to  $\pm$ 18V) while retaining CMOS-logic input compatibility.

Rail-to-Rail is a registered trademark of Nippon Motorola, Ltd.

#### Features

- Low On-Resistance: 3 $\Omega$  (typ), 5 $\Omega$  (max)
- Guaranteed Ron Match Between Channels (0.5Ω max)
- Guaranteed Break-Before-Make Operation (MAX4622)
- ♦ Guaranteed Off-Channel Leakage <5nA at +85°C
- Single-Supply Operation (+4.5V to +36V) Bipolar-Supply Operation (±4.5V to ±18V)
- TTL/CMOS-Logic Compatible
- ♦ Rail-to-Rail<sup>®</sup> Analog Signal Handling Capability
- Pin Compatible with DG401/DG403/DG405

#### **Applications**

| Reed Relay Replacement   | Mi |
|--------------------------|----|
| Test Equipment           | PB |
| Communication Systems    | Au |
| Data-Acquisition Systems | Av |

Pin Configurations/Functional Diagrams/Truth Tables

Military Radios PBX, PABX Systems Audio-Signal Routing Avionics

#### **Ordering Information**

| PART       | TEMP. RANGE  | PIN-PACKAGE    |
|------------|--------------|----------------|
| MAX4621CSE | 0°C to +70°C | 16 Narrow SO   |
| MAX4621CPE | 0°C to +70°C | 16 Plastic DIP |

Ordering Information continued at end of data sheet.



#### 

Maxim Integrated Products 1

For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800. For small orders, phone 1-800-835-8769.

#### **ABSOLUTE MAXIMUM RATINGS**

(Voltages Referenced to GND) V+ to GND.....-0.3V to +44V

| V+ to V0.3V to +4                                    | 4V  |
|------------------------------------------------------|-----|
| VL to GND0.3V to (V+ + 0.3                           | 3V) |
| All Other Pins to GND (Note 1) (V 0.3V) to (V+ + 0.3 | 3V) |
| Continuous Current (COM_, NO_, NC_)±100r             | nÁ  |
| Peak Current (COM_, NO_, NC_)                        |     |
| (pulsed at 1ms, 10% duty cycle) ±300r                | nΑ  |

| Continuous Power Dissipation (T <sub>A</sub> = | +70°C)            |
|------------------------------------------------|-------------------|
| Narrow SO (derate 8.70mW/°C ab                 | ove +70°C)696mW   |
| Narrow DIP (derate 10.53mW/°C a                | above +70°C)842mW |
| Operating Temperature Ranges                   |                   |
| MAX462_C                                       | 0°C to +70°C      |
| MAX462_E                                       | 40°C to +85°C     |
| Storage Temperature Range                      | 65°C to +150°C    |
| Lead Temperature (soldering, 10se              | c)+300°C          |
|                                                |                   |

Note 1: Signals on NO\_, NC\_, or COM\_ exceeding V+ or V- are clamped by internal diodes. Limit forward-diode current to maximum current rating.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

### **ELECTRICAL CHARACTERISTICS**—Dual Supplies

(V+ = +15V, V- = -15V, V<sub>L</sub> = +5V, GND = 0, V<sub>INH</sub> = +2.4V, V<sub>INL</sub> = +0.8V, T<sub>A</sub> = T<sub>MIN</sub> to T<sub>MAX</sub>, unless otherwise noted. Typical values are at T<sub>A</sub> = +25°C.) (Note 2)

| PARAMETER                                | SYMBOL                                                         | CONDITIONS                                                                                                      |                                                  | MIN                  | TYP                  | MAX    | UNITS |     |    |
|------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------|----------------------|----------------------|--------|-------|-----|----|
| ANALOG SWITCH                            |                                                                |                                                                                                                 |                                                  | •                    |                      |        |       |     |    |
| Input Voltage Range<br>(Note 3)          | V <sub>COM</sub> _,<br>V <sub>NO</sub> _,<br>V <sub>NC</sub> _ |                                                                                                                 |                                                  | V-                   |                      | V+     | V     |     |    |
| On-Resistance                            | R <sub>ON</sub>                                                | $I_{COM} = 10mA,$<br>V <sub>NO</sub> or V <sub>NC</sub> = ±10V                                                  | $T_A = +25^{\circ}C$<br>$T_A = T_{MIN}$ to T_MAX |                      | 3                    | 5<br>7 | Ω     |     |    |
| On-Resistance Match                      |                                                                | $I_{COM} = 10 \text{mA},$                                                                                       | $T_{A} = +25^{\circ}C$                           |                      | 0.25                 | 0.5    |       |     |    |
| (Notes 3, 4)                             | ΔHON                                                           | $V_{NO}$ or $V_{NC}$ = ±10V                                                                                     | TA = TMIN to TMAX                                |                      |                      | 0.7    | Ω     |     |    |
| On-Resistance Flatness                   |                                                                | $I_{COM} = 10mA;$<br>VNO or VNC = -5V                                                                           | $T_A = +25^{\circ}C$                             |                      | 0.2                  | 0.5    | 0     |     |    |
| Notes 3, 5)                              | THEAT(ON)                                                      | $\begin{bmatrix} 0, 5V \end{bmatrix} \begin{bmatrix} 0, 0, 0 \end{bmatrix} $                                    | $T_A = T_{MIN}$ to $T_{MAX}$                     |                      |                      | 0.7    | 22    |     |    |
| Off-Leakage Current                      |                                                                | $V_{NO_{-}}$ or $V_{NC_{-}} = \pm 10V$ ,                                                                        | $T_A = +25^{\circ}C$                             | -0.5                 | 0.01                 | 0.5    | nΑ    |     |    |
| (NO_ or NC_) (Note 6)                    | ·INO_, ·INO_                                                   | V <sub>COM</sub> _ = ∓10V                                                                                       | $T_A = T_{MIN}$ to $T_{MAX}$                     | -5                   |                      | 5      | 10.0  |     |    |
| COM_ Off-Leakage Current                 |                                                                |                                                                                                                 | ff-Leakage Current $V_{COM} = \pm 10V$ ,         | $V_{COM} = \pm 10V,$ | $T_A = +25^{\circ}C$ | -0.5   | 0.01  | 0.5 | nΔ |
| (Note 6)                                 |                                                                | $V_{NO}$ or $V_{NC}$ = $\mp 10V$                                                                                | $T_A = T_{MIN}$ to $T_{MAX}$                     | -5                   |                      | 5      |       |     |    |
| COM_ On-Leakage Current                  |                                                                | $\begin{array}{l} V_{COM} = \pm 10V, \\ V_{NO} \text{ or } V_{NC} = \mp 10V \\ \text{ or floating} \end{array}$ | $T_A = +25^{\circ}C$                             | -1                   | 0.02                 | 1      | nA    |     |    |
| (Note 6)                                 |                                                                |                                                                                                                 | TA = TMIN to TMAX                                | -10                  |                      | 10     |       |     |    |
| LOGIC INPUT                              |                                                                |                                                                                                                 |                                                  |                      |                      |        |       |     |    |
| Input Current with Input<br>Voltage High | linh                                                           | $V_{IN} = 2.4V$                                                                                                 |                                                  | -0.5                 | 0.001                | 0.5    | μA    |     |    |
| Input Current with Input<br>Voltage Low  | linl                                                           | VIN_ = 0.8V                                                                                                     |                                                  | -0.5                 | 0.001                | 0.5    | μA    |     |    |
| Logic Input Voltage High                 | Vinh                                                           |                                                                                                                 |                                                  | 2.4                  |                      |        | V     |     |    |
| Logic Input Voltage Low                  | VINL                                                           |                                                                                                                 |                                                  |                      |                      | 0.8    | V     |     |    |

### **ELECTRICAL CHARACTERISTICS—Dual Supplies (continued)**

(V+ = +15V, V- = -15V, V<sub>L</sub> = +5V, GND = 0, V<sub>INH</sub> = +2.4V, V<sub>INL</sub> = +0.8V, T<sub>A</sub> = T<sub>MIN</sub> to T<sub>MAX</sub>, unless otherwise noted. Typical values are at T<sub>A</sub> = +25°C.) (Note 2)

| PARAMETER                                      | SYMBOL    | CONDITIONS                                              |                                                                                   | MIN  | TYP   | MAX   | UNITS |
|------------------------------------------------|-----------|---------------------------------------------------------|-----------------------------------------------------------------------------------|------|-------|-------|-------|
| POWER SUPPLY                                   |           |                                                         |                                                                                   |      |       |       | I     |
| Power-Supply Range                             |           |                                                         |                                                                                   | ±4.5 |       | ±20.0 | V     |
| Desitive Supply Current                        | 1.        | V/w O or EV/                                            | $T_A = +25^{\circ}C$                                                              | -0.5 | 0.001 | 0.5   |       |
| Positive Supply Current                        | 1+        | VIN = 0.012                                             | $T_A = T_{MIN}$ to $T_{MAX}$                                                      | -5   |       | 5     | μΑ    |
| Nagativo Supply Current                        | 1         | $V_{\rm INI} = 0 \text{ or } 5V_{\rm I}$                | $T_A = +25^{\circ}C$                                                              | -0.5 | 0.001 | 0.5   |       |
| Negative Supply Current                        | 1-        | VIN_ = 0 01 3 V                                         | $T_A = T_{MIN}$ to $T_{MAX}$                                                      | -5   |       | 5     | μΑ    |
| Logic Supply Current                           | h         | $V_{\rm INI} = 0 \text{ or } 5V_{\rm I}$                | $T_A = +25^{\circ}C$                                                              | -0.5 | 0.001 | 0.5   |       |
| Logic Supply Current                           | IL.       |                                                         | $T_A = T_{MIN}$ to $T_{MAX}$                                                      | -5   |       | 5     | μΑ    |
| Ground Current                                 |           | $V_{\rm INI} = 0 \text{ or } 5V$                        | $T_A = +25^{\circ}C$                                                              | -0.5 | 0.001 | 0.5   | μA    |
|                                                | GND       | VIN_ = 0 01 3V                                          | $T_A = T_{MIN}$ to $T_{MAX}$                                                      | -5   |       | 5     | μΑ    |
| SWITCH DYNAMIC CHARAC                          | TERISTICS |                                                         |                                                                                   |      |       |       | •     |
|                                                | toN       | $V_{COM_} = \pm 10V,$<br>Figure 2                       | $T_A = +25^{\circ}C$                                                              |      | 120   | 250   | ns    |
|                                                | UN        |                                                         | $T_A = T_{MIN}$ to $T_{MAX}$                                                      |      |       | 325   |       |
| Turn-Off Time                                  | tore      | $V_{COM} = \pm 10V,$                                    | $T_A = +25^{\circ}C$                                                              |      | 90    | 200   | ns    |
|                                                | UFF       | Figure 2                                                | $T_A = T_{MIN}$ to $T_{MAX}$                                                      |      |       | 275   |       |
| Break-Before-Make Time<br>Delay (MAX4622 only) | tD        | $V_{COM} = \pm 10V$ , Figure                            | $V_{COM} = \pm 10V$ , Figure 3, $T_A = +25^{\circ}C$                              |      | 25    |       | ns    |
| Charge Injection                               | Q         | $C_L = 1.0$ nF, $V_{GEN} = 0$<br>T <sub>A</sub> = +25°C | $C_L = 1.0nF$ , $V_{GEN} = 0$ , $R_{GEN} = 0$ , Figure 4,<br>$T_A = +25^{\circ}C$ |      | 480   |       | рС    |
| Off-Isolation (Note 7)                         | Viso      | $R_L = 50\Omega$ , f = 1MHz, F                          | Figure 5, TA = +25°C                                                              |      | -62   |       | dB    |
| Crosstalk (Note 8)                             | VCT       | $R_L = 50\Omega$ , f = 1MHz, F                          | $R_L = 50\Omega$ , f = 1MHz, Figure 6, $T_A = +25^{\circ}C$                       |      | -60   |       | dB    |
| NC_ or NO_ Capacitance                         | COFF      | f = 1MHz, Figure 7, T <sub>A</sub>                      | λ = +25°C                                                                         |      | 34    |       | pF    |
| COM_ Off-Capacitance                           | Ссом      | f = 1MHz, Figure 7, T <sub>A</sub>                      | λ = +25°C                                                                         |      | 34    |       | pF    |
| On-Capacitance                                 | Ссом      | f = 1MHz, Figure 8, TA                                  | λ = +25°C                                                                         |      | 150   |       | pF    |

### ELECTRICAL CHARACTERISTICS—Single Supply

(V+ = +12V, V- = 0, V<sub>L</sub> = +5V, GND = 0, V<sub>INH</sub> = +2.4V, V<sub>INL</sub> = +0.8V, T<sub>A</sub> = T<sub>MIN</sub> to T<sub>MAX</sub>, unless otherwise noted. Typical values are T<sub>A</sub> = +25°C.) (Note 2)

| PARAMETER                                               | SYMBOL                                                         | CONDITIONS                                                                   |                               | MIN  | ТҮР   | MAX  | UNITS |
|---------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------|------|-------|------|-------|
| ANALOG SWITCH                                           |                                                                |                                                                              |                               |      |       |      |       |
| Input Voltage Range<br>(Note 3)                         | V <sub>COM</sub> _,<br>V <sub>NO</sub> _,<br>V <sub>NC</sub> _ |                                                                              |                               | GND  |       | V+   | V     |
| On-Besistance                                           | BON                                                            | ICOM_ = 10mA,                                                                | $T_A = +25^{\circ}C$          |      | 5.5   | 8    | 0     |
| On-nesistance                                           | HON                                                            | $V_{NO}$ or $V_{NC}$ = 10V                                                   | $T_A = T_{MIN}$ to $T_{MAX}$  |      |       | 10   | 32    |
| On-Resistance Match<br>Between Channels<br>(Notes 3, 4) | ΔRon                                                           | $I_{COM}$ = 10mA, $V_{NO}$ or<br>T <sub>A</sub> = +25°C                      | V <sub>NC</sub> _ = 10V,      |      | 0.2   | 0.5  | Ω     |
| On-Resistance Flatness<br>(Notes 3, 5)                  | RFLAT(ON)                                                      | $I_{COM}$ = 10mA; $V_{NO}$ or<br>T <sub>A</sub> = +25°C                      | V <sub>NC</sub> = 3V, 6V, 9V; |      | 0.9   | 1.3  | Ω     |
| NO_ or NC_ Off-Leakage                                  | INO_(OFF),                                                     | VCOM_ = 1V, 10V;                                                             | $T_A = +25^{\circ}C$          | -0.5 | 0.01  | 0.5  | n۸    |
| Current (Notes 6, 9)                                    | INC_(OFF)                                                      | $V_{NO}$ or $V_{NC}$ = 10V, 1V                                               | $T_A = T_{MIN}$ to $T_{MAX}$  | -5   |       | 5    | na    |
| COM_ Off-Leakage Current                                |                                                                | F) $V_{COM_{-}} = 10V, 1V;$<br>$V_{NO_{-}} \text{ or } V_{NC_{-}} = 1V, 10V$ | $T_A = +25^{\circ}C$          | -0.5 | 0.01  | 0.5  | - nA  |
| Notes 6, 9)                                             |                                                                |                                                                              | $T_A = T_{MIN}$ to $T_{MAX}$  | -5   |       | 5    |       |
| COM_ On-Leakage Current<br>(Notes 6, 9)                 |                                                                | $V_{COM} = 10V, 1V;$<br>VNO or VNC = 10V                                     | T <sub>A</sub> = +25°C        | -1   | 0.02  | 1    | – nA  |
|                                                         | .00m_(0N)                                                      | 1V, or floating                                                              | $T_A = T_{MIN}$ to $T_{MAX}$  | -10  |       | 10   |       |
| LOGIC INPUT                                             |                                                                |                                                                              | L                             |      |       |      |       |
| Input Current with Input<br>Voltage High                | linh                                                           | V <sub>IN_</sub> = 2.4V                                                      |                               | -0.5 | 0.001 | 0.5  | μA    |
| Input Current with Input<br>Voltage Low                 | I <sub>INL</sub>                                               | V <sub>IN_</sub> = 0.8V                                                      |                               | -0.5 | 0.001 | 0.5  | μA    |
| Logic Input Voltage High                                | Vinh                                                           |                                                                              |                               | 2.4  |       |      | V     |
| Logic Input Voltage Low                                 | Vinl                                                           |                                                                              |                               |      |       | 0.8  | V     |
| POWER SUPPLY                                            |                                                                |                                                                              |                               |      |       |      |       |
| Power-Supply Range                                      |                                                                |                                                                              |                               | 4.5  |       | 36.0 | V     |
| Positive Supply Current                                 | 1+                                                             | $V_{\rm INI} = 0 \text{ or } 5V$                                             | TA = +25°C                    | -0.5 | 0.001 | 0.5  | μΑ    |
|                                                         |                                                                |                                                                              | $T_A = T_{MIN}$ to $T_{MAX}$  | -5   |       | 5    |       |
| Logic Supply Current                                    | li li                                                          | $V_{INI} = 0 \text{ or } 5V$                                                 | $T_A = +25^{\circ}C$          | -0.5 | 0.001 | 0.5  | Δ     |
| ouppi, ourout                                           | ·L                                                             | · · · · · · · · · · · · · · · · · · ·                                        | TA = TMIN to TMAX             | -5   |       | 5    | P"' ' |
| Ground Current                                          | IGND                                                           | $V_{IN} = 0 \text{ or } 5V$                                                  | $T_A = +25^{\circ}C$          | -0.5 | 0.001 | 0.5  | μA    |
|                                                         | GIND                                                           | ····                                                                         | $T_A = T_{MIN}$ to $T_{MAX}$  | -5   |       | 5    | 5     |

#### ELECTRICAL CHARACTERISTICS—Single Supply (continued)

(V+ = +12V, V- = 0, V<sub>L</sub> = +5V, GND = 0, V<sub>INH</sub> = +2.4V, V<sub>INL</sub> = +0.8V, T<sub>A</sub> = T<sub>MIN</sub> to T<sub>MAX</sub>, unless otherwise noted. Typical values are T<sub>A</sub> = +25°C.) (Note 2)

| PARAMETER                                                  | SYMBOL    | CONDITIONS                                                                              |                              | MIN | TYP | MAX | UNITS |
|------------------------------------------------------------|-----------|-----------------------------------------------------------------------------------------|------------------------------|-----|-----|-----|-------|
| SWITCH DYNAMIC CHARAC                                      | TERISTICS |                                                                                         |                              |     |     |     |       |
| Turn-On Time (Note 3)                                      | ton       | $V_{COM} = 10V$ Figure 2                                                                | $T_A = +25^{\circ}C$         |     | 200 | 350 | ne    |
|                                                            | LON       | $v_{COM} = 100$ , Figure 2                                                              | $T_A = T_{MIN}$ to $T_{MAX}$ |     |     | 475 | - 115 |
| Turn-Off Time (Note 3)                                     | torr      | $V_{COM}$ = 10V, Figure 2 $T_A$ = +25°C<br>$T_A$ = T <sub>MIN</sub> to T <sub>MAX</sub> | $T_A = +25^{\circ}C$         |     | 100 | 200 | ne    |
|                                                            | UFF       |                                                                                         |                              |     | 300 | 115 |       |
| Break-Before-Make Time<br>Delay (MAX4622 only)<br>(Note 3) | tD        | $R_L = 100\Omega$ , $C_L = 35pF$ , Figure 3, $T_A = +25^{\circ}C$                       |                              | 10  | 75  |     | ns    |
| Charge Injection                                           | Q         | CL = 1.0nF, VGEN = 0, RGEN = 0, Figure 4                                                |                              |     | 45  |     | рС    |
| Off-Isolation (Note 7)                                     | VISO      | $R_L = 50\Omega$ , f = 1MHz, Figure 5                                                   |                              |     | -62 |     | dB    |
| Crosstalk (Note 8)                                         | VCT       | $R_L = 50\Omega$ , f = 1MHz, Fig                                                        | jure 6                       |     | -60 |     | dB    |

**Note 2:** The algebraic convention, where the most negative value is a minimum and the most positive value is a maximum, is used in this data sheet.

Note 3: Guaranteed by design.

**Note 4:**  $\Delta R_{ON} = R_{ON}MAX - R_{ON}MIN$ .

**Note 5:** Flatness is defined as the difference between the maximum and minimum values of on-resistance as measured over the specified analog signal range.

Note 6: Leakage currents are 100% tested at the maximum-rated hot temperature and guaranteed by correlation at +25°C.

Note 7: Off-isolation =  $20\log_{10} [V_{COM_{-}} (V_{NC_{-}} \text{ or } V_{NO_{-}}]]$ .  $V_{COM_{-}} = \text{output}$ ,  $V_{NC_{-}} \text{ or } V_{NO_{-}} = \text{input to off switch}$ .

Note 8: Between any two switches.

Note 9: Leakage testing for single-supply operation is guaranteed by testing with dual supplies.



M/IXI/N

MAX4621/MAX4622/MAX4623

### \_Applications Information

#### Operation with Supply Voltages Other than ±15V

The MAX4621/MAX4622/MAX4623 switches operate with  $\pm$ 4.5V to  $\pm$ 18V bipolar supplies and a +4.5V to +36V single supply. In either case, analog signals ranging from V+ to V- can be switched. The *Typical Operating Characteristics* graphs show the typical on-resistance variation with analog signal and supply voltage.

#### **Overvoltage Protection**

Proper power-supply sequencing is recommended for all CMOS devices. It is important not to exceed the absolute maximum ratings because stresses beyond the listed ratings may cause permanent damage to the devices. Always sequence V+ on first, followed by V<sub>L</sub>, V-, and logic inputs. If power-supply sequencing is not possible, add two small signal diodes in series with the supply pins and a Schottky diode between V+ and V<sub>L</sub> (Figure 1). Adding diodes reduces the analog signal range to 1V below V+ and 1V above V-, but low switch resistance and low leakage characteristics are unaffected. The difference between V+ and V- should not exceed +44V.



Figure 1. Overvoltage Protection Using Blocking Diodes

| PIN         | NAME          | FUNCTION                                |  |
|-------------|---------------|-----------------------------------------|--|
| MAX4621     |               |                                         |  |
| 1, 8        | COM1,<br>COM2 | Switch Common Terminal                  |  |
| 2–7         | N.C.          | Not internally connected                |  |
| 9, 16       | NO2, NO1      | Switch Normally Open<br>Terminal        |  |
| 10, 15      | IN2, IN1      | Digital Logic Inputs                    |  |
| 11          | V+            | Positive Supply-Voltage Input           |  |
| 12          | VL            | Logic Supply-Voltage Input              |  |
| 13          | GND           | Ground                                  |  |
| 14          | V-            | Negative Supply Voltage<br>Input        |  |
| MAX4622     |               |                                         |  |
| 1, 3, 6, 8  | COM_          | Switch Common Terminal                  |  |
| 2, 7        | N.C.          | Not internally connected                |  |
| 4, 5, 9, 16 | NC_, NO_      | Switch Normally Closed/Open<br>Terminal |  |
| 10, 15      | IN2, IN1      | Digital Logic Inputs                    |  |
| 11          | V+            | Positive Supply-Voltage Input           |  |
| 12          | VL            | Logic Supply-Voltage Input              |  |
| 13          | GND           | Ground                                  |  |
| 14          | V-            | Negative Supply Voltage<br>Input        |  |
| MAX4623     |               |                                         |  |
| 1, 3, 6, 8  | COM_          | Switch Common Terminal                  |  |
| 2, 7        | N.C.          | Not internally connected                |  |
| 4, 5, 9, 16 | NO_           | Switch Normally Open<br>Terminal        |  |
| 10, 15      | IN2, IN1      | Digital Logic Inputs                    |  |
| 11          | V+            | Positive Supply-Voltage Input           |  |
| 12          | VL            | Logic Supply-Voltage Input              |  |
| 13          | GND           | Ground                                  |  |
| 14          | V-            | Negative Supply Voltage                 |  |

#### **Pin Description**

MAX4621/MAX4622/MAX4623



 $C_{L2}$ 

 $R_L = 100 \Omega$ 

 $C_I = 35 pF$ 

C<sub>L1</sub>

0

0

 $V_{02}$ 

tp

V<sub>COM</sub>

SWITCH

OUTPUT

SWITCH

OUTPUT

Figure 3. MAX4622 Break-Before-Make Test Circuit

LOGIC 0 INPUT.

GND

0

V-

-15V

CL INCLUDES FIXTURE AND STRAY CAPACITANCE.

IN\_

Л

LOGIC

INPUT



Figure 4. Charge-Injection Test Circuit

M/X/M

0.9V<sub>0</sub>

tn

0.9V<sub>0</sub>



-15V

-

±

Figure 8. Channel-Off Capacitance

Figure 7. Channel-On Capacitance



-15V

-

| PART       | TEMP. RANGE    | PIN-PACKAGE    |
|------------|----------------|----------------|
| MAX4621ESE | -40°C to +85°C | 16 Narrow SO   |
| MAX4621EPE | -40°C to +85°C | 16 Plastic DIP |
| MAX4622CSE | 0°C to +70°C   | 16 Narrow SO   |
| MAX4622CPE | 0°C to +70°C   | 16 Plastic DIP |
| MAX4622ESE | -40°C to +85°C | 16 Narrow SO   |
| MAX4622EPE | -40°C to +85°C | 16 Plastic DIP |
| MAX4623CSE | 0°C to +70°C   | 16 Narrow SO   |
| MAX4623CPE | 0°C to +70°C   | 16 Plastic DIP |
| MAX4623ESE | -40°C to +85°C | 16 Narrow SO   |
| MAX4623EPE | -40°C to +85°C | 16 Plastic DIP |
|            |                |                |

### **Ordering Information (continued)**

**Chip Information** 

TRANSISTOR COUNT: 82

# Package Information



MAX4621/MAX4622/MAX4623

M/IXI/M



### Package Information (continued)

NOTES

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

12

\_\_\_\_Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

© 1999 Maxim Integrated Products

Printed USA

is a registered trademark of Maxim Integrated Products.

### Flags Used from Bit Addressable Ram Communications Microcontroller

| Flag | Description                                                            |
|------|------------------------------------------------------------------------|
| 00H  | Set after first reading is stored as a reference value                 |
| 011  | Set when the last cycle, for the high register for the number of bars, |
| 0111 | are to be run                                                          |
| 02H  | Indicates that the system was paused                                   |
| 03H  | Indicates to the "Wait for reading signal" loop that an error occurred |
|      | Indicates to Reading Sub that the system is in manual mode & the       |
| 04H  | Communications Microcontroller must not try to communicate with        |
|      | the Automation Microcontroller                                         |
|      | Indicates to the Reading subroutine that multiple readings are being   |
| 05H  | taken and therefore the Communications Microcontroller must not try    |
|      | to communicate with the Automation Microcontroller                     |

| Flag           | Description                                                              |
|----------------|--------------------------------------------------------------------------|
| 00H            | FOR 3 <sup>rd</sup> BAR PROCESS                                          |
| 01H            | FOR 3 <sup>rd</sup> BAR PROCESS                                          |
| 02H            | FOR 3 <sup>rd</sup> BAR PROCESS                                          |
| 03H            | FOR TIMER CYCLE COMPLETE – INDICATES ERROR1                              |
| 04H            | FLAG - EXTERNAL INTERRUPT 1                                              |
| 05H            | TAKE TIMER READING ON 3 <sup>RD</sup> BAR IN EX1ISR                      |
| <del>06H</del> | -ON 1 <sup>ST</sup> -LOWERING OF DETECTION UNIT.                         |
| 07H            | FOR TIMER CYCLE COMPLETE – INDICATES ERROR2                              |
| 08H            | EXTERNAL INTERRUPT 0                                                     |
| 09H            | To Indicate Pause has been entered                                       |
| 0AH            | To indicate to the Error 4 subroutine that Error 2 has occurred          |
| 0BH            | To indicate to Error 2 subroutine that Error 4 has occurred              |
| 0CH            | To Indicate to External Interrupt 0 that Run_Up subroutine was running   |
|                | when interrupted, and the timer value must not be logged.                |
| 0DH            | To indicate that error3 occurred and if there is a Run up error (error4) |
|                | It must be ignored, so that power down is entered                        |
|                | Set in ERROR READING PROCEDURE Subroutine to indicate to                 |
| 0EH            | EX0 that interrupt was triggered in this subroutine, and must be         |
|                | ignored.                                                                 |

### Flags Used from Bit Addressable Ram Automation Microcontroller

Flag 06H was used because a stored value was reloaded for both the up and down count. On the first down count there is no stored value, so this flag is not set, and the 10s default value is loaded. But now a value is stored on the down count and reloaded for the up count. The flag is therefore no longer needed.

### **Input / Output Port Utilization** Communications Microcontroller – Communication & Signaling

| Communications Microcontroller (CM) – Communication & Signaling |       |                                                                             |  |  |  |
|-----------------------------------------------------------------|-------|-----------------------------------------------------------------------------|--|--|--|
|                                                                 |       |                                                                             |  |  |  |
| Port N                                                          | umber | Utilization                                                                 |  |  |  |
| D0.0                                                            | (20)  | Port U                                                                      |  |  |  |
| P0.0                                                            | (39)  | O – Start / Analogue Switch on ADC line                                     |  |  |  |
| P0.1                                                            | (38)  | U - End                                                                     |  |  |  |
| P0.2                                                            | (37)  | 1 – Over-voltage Detection on the ADC in line                               |  |  |  |
| P0.3                                                            | (36)  | $\mathbf{O}$ – Take Reading (Manual)                                        |  |  |  |
| P0.4                                                            | (35)  | O – Continue After Reading (Manual) & Communication with AM                 |  |  |  |
| P0.5                                                            | (34)  | O – Emergency Stop from GUI                                                 |  |  |  |
| P0.6                                                            | (33)  | <b>O</b> – Automatic / Manual Toggle To $u^2 \rightarrow 0 = MAN, 1 = AUTO$ |  |  |  |
| P0.7                                                            | (32)  | <b>O</b> – Continue After Reading (Automatic)                               |  |  |  |
| <b>D1</b> 0                                                     | (4)   | Port 1                                                                      |  |  |  |
| P1.0                                                            | (1)   | I – A to D line                                                             |  |  |  |
| P1.1                                                            | (2)   | I – A to D line                                                             |  |  |  |
| P1.2                                                            | (3)   | I – A to D line                                                             |  |  |  |
| P1.3                                                            | (4)   | I – A to D line                                                             |  |  |  |
| P1.4                                                            | (5)   | $\mathbf{I} - \mathbf{A}$ to D line                                         |  |  |  |
| P1.5                                                            | (6)   | $\mathbf{I} - \mathbf{A}$ to D line                                         |  |  |  |
| P1.6                                                            | (7)   | $\mathbf{I} - \mathbf{A}$ to D line                                         |  |  |  |
| P1.7                                                            | (8)   | $\mathbf{I} - \mathbf{A}$ to D line                                         |  |  |  |
|                                                                 |       | Port 2                                                                      |  |  |  |
| P2.0                                                            | (21)  | O – ADC R/C pin                                                             |  |  |  |
| P2.1                                                            | (22)  | I – ADC Waits for Low pulse from EOC – conversion complete                  |  |  |  |
| P2.2                                                            | (23)  | I – Take Reading (Automatic) & Communication with AM                        |  |  |  |
| P2.3                                                            | (24)  | I – Increment No. Of Bars                                                   |  |  |  |
| P2.4                                                            | (25)  | I – Error 1 – Pair Not Detected.                                            |  |  |  |
| P2.5                                                            | (26)  | I – Error 2 – Test Probes Not Lowered.                                      |  |  |  |
| P2.6                                                            | (27)  | I – Error 3 – Current On-Time Exceeded.                                     |  |  |  |
| P2.7                                                            | (28)  | O – Not Last Pair                                                           |  |  |  |
|                                                                 |       | Port 3                                                                      |  |  |  |
| P3.0                                                            | (10)  | Serial Communication                                                        |  |  |  |
| P3.1                                                            | (11)  | Serial Communication                                                        |  |  |  |
|                                                                 |       | I – External Interrupt 0 – All Error Inputs Connected here as well/         |  |  |  |
| P3.2                                                            | (12)  | manual emergency stop & Safety Interlocks connected to AM P1.5              |  |  |  |
|                                                                 |       | as well.                                                                    |  |  |  |
| P3.3                                                            | (13)  | O – ADC HBEN pin                                                            |  |  |  |
| P3.4                                                            | (14)  | I – Error 4 – Test Probes Not Raised                                        |  |  |  |
| P3.5                                                            | (15)  | O – ADC CS pin                                                              |  |  |  |
| P3.6                                                            | (16)  | I – Take Manual Reading Switch                                              |  |  |  |
| D2 7                                                            | (17)  | O – Led to indicate that the system is ready after power on and             |  |  |  |
| г <i>э.1</i>                                                    | (17)  | ADC initialization                                                          |  |  |  |

### **Input / Output Port Utilization** Automation Microcontroller – Automation Control

| Auton  | nation Mi | crocontroller (AM) – Automation Control                                  |
|--------|-----------|--------------------------------------------------------------------------|
|        |           |                                                                          |
| Port 1 | Number    | Utilization                                                              |
|        |           | Port 0                                                                   |
| P0.0   | (39)      | <b>O</b> – Take Reading (Automatic)                                      |
| P0.1   | (38)      | <b>O</b> – Increment No. Of Bars                                         |
| P0.2   | (37)      | <b>O</b> – Detection Unit Motor (Up)                                     |
| P0.3   | (36)      | <b>O</b> – Detection Unit Motor (Down)                                   |
| P0.4   | (35)      | <b>O</b> – Armature Drive Motor                                          |
| P0.5   | (34)      | <b>O</b> – Set to clear D-FF on test detection signal (connected to CLR) |
| P0.6   | (33)      |                                                                          |
| P0.7   | (32)      |                                                                          |
|        |           | Port 1                                                                   |
| P1.0   | (1)       | I – Start                                                                |
| P1.1   | (2)       | I – End                                                                  |
| P1.2   | (3)       |                                                                          |
| P1.3   | (4)       | I – Take Reading (Manual)                                                |
| P1.4   | (5)       | I – Continue Test (Manual)                                               |
| P1.5   | (6)       | I – Emergency Stop & Safety Interlocks (Connect to ex0 of this uC        |
|        |           | as well)                                                                 |
| P1.6   | (7)       | I – Automatic / Manual Toggle From u1                                    |
| P1.7   | (8)       | I – Continue After Reading (Automatic)                                   |
|        |           | Port 2                                                                   |
| P2.0   | (21)      | O – Led to indicate probes r on the com b4 the current is to be          |
|        |           | switched on                                                              |
| P2.1   | (22)      | O - Led to indicate probes r on the com b4 the current is to be          |
|        |           | switched off                                                             |
| P2.2   | (23)      |                                                                          |
| P2.3   | (24)      |                                                                          |
| P2.4   | (25)      |                                                                          |
| P2.5   | (26)      |                                                                          |
| P2.6   | (27)      | O – Error 4 – Test Probes Not Raised.                                    |
| P2.7   | (28)      | O – Switch Test Current                                                  |
|        |           | Port 3                                                                   |
| P3.0   | (10)      | I – Not Last Pair                                                        |
| P3.1   | (11)      | I – Current On-Time Exceeded                                             |
| P3.2   | (12)      | I – External Interrupt 0 – Test Probe Switch (Lowered) &                 |
|        |           | Emergency Stop from CM and AM P1.5                                       |
| P3.3   | (13)      | I – External Interrupt 1 – Bar Detection                                 |
| P3.4   | (14)      |                                                                          |
| P3.5   | (15)      | <b>O</b> – Error 1 – Pair Not Detected.                                  |
| P3.6   | (16)      | <b>O</b> – Error 2 – Test Probes Not Lowered.                            |
| P3.7   | (17)      | <b>O</b> – Error 3 – Current On-Time Exceeded.                           |

| Register Bank 0 |                                                               |  |  |
|-----------------|---------------------------------------------------------------|--|--|
| Register – R0   | High byte for number of bars                                  |  |  |
| Register – R1   | Low byte for number of bars                                   |  |  |
| Register – R2   | Value for percentage variance from first reading              |  |  |
| Register – R3   | Holds the low byte 8-bit word from the A-D converter          |  |  |
| Register – R4   | Holds the reference value (i.e. the first reading)            |  |  |
| Register – R5   | Holds the high byte from adc                                  |  |  |
| Register – R6   | Holds reference value minus the specified percentage variance |  |  |
| Register – R7   |                                                               |  |  |
| Register Bank 1 |                                                               |  |  |
| Register – R0   | Holds P0 values when the system is paused                     |  |  |
| Register – R1   | Holds P1 values when the system is paused                     |  |  |
| Register – R2   | Holds P2 values when the system is paused                     |  |  |
| Register – R3   | Holds P3 values when the system is paused                     |  |  |
| Register – R4   | Used for > 10ms delay for ADC's internal ref to "Wake"        |  |  |
| Register – R5   | Used for > 10ms delay for ADC's internal ref to "Wake"        |  |  |
| Register – R6   | Used along with R4 and R5 to create a 1s delay after uC1      |  |  |
|                 | starts. This is for the tri-state buffers                     |  |  |
| Register – R7   |                                                               |  |  |

### **Register Utilization** Communications Microcontroller

# **<u>Registers Used – Microcontroller 2 – Automation</u>**

|                                                                   | Register Bank 0                                        |
|-------------------------------------------------------------------|--------------------------------------------------------|
| Register – R0                                                     | DELAYLOOP, LOOP COUNT                                  |
| Register – R1                                                     | LOAD TIMER HIGH REGISTER, SAFETY &                     |
|                                                                   | RECORDING ON 3 <sup>RD</sup> BAR                       |
| Register – R2                                                     | LOAD TIMER LOW REGISTER, SAFETY & RECORDING            |
|                                                                   | ON 3 <sup>RD</sup> BAR                                 |
| Register – R3                                                     | LOOP COUNT SAFETY AND RECORDING ON 3 <sup>RD</sup> BAR |
| Register – R4                                                     | HIGH BYTE OF TIMER VALUE TAKEN ON 3 <sup>RD</sup> BAR  |
| Register – R5                                                     | LOW BYTE OF TIMER VALUE TAKEN ON 3 <sup>RD</sup> BAR   |
| Register – R6                                                     | LOOP COUNT FOR RECORDING ON 3 <sup>RD</sup> BAR        |
| Register – R7                                                     | LOOP COUNT FOR THE DETECTION UNIT                      |
|                                                                   | Register Bank 1                                        |
| Register – R0                                                     | LOAD TIMER HIGH REGISTER, FOR THE DETECTION            |
|                                                                   | UNIT                                                   |
| Register – R1                                                     | LOAD TIMER LOW REGISTER, FOR THE DETECTION             |
|                                                                   | UNIT                                                   |
| Register – R2                                                     | Holds P0 values when the system is paused              |
| Register – R3                                                     | Holds P1 values when the system is paused              |
| Register – R4                                                     | Holds P2 values when the system is paused              |
| Register – R5                                                     | Holds P3 values when the system is paused              |
| Register – R6                                                     | LOAD TIMER HIGH REGISTER, FOR THE DETECTION            |
| -                                                                 | UNIT                                                   |
| Register – R7                                                     | LOAD TIMER LOW REGISTER, FOR THE DETECTION             |
|                                                                   |                                                        |
| Desister DO                                                       | Register Bank 2                                        |
| Register – RU                                                     |                                                        |
| Register – RI                                                     |                                                        |
| Register $- R2$                                                   |                                                        |
| Register – R3                                                     |                                                        |
| Register – R4                                                     |                                                        |
| Register – RS                                                     |                                                        |
| Register – Ro                                                     |                                                        |
| Register – K/                                                     | Pogistor Bonk 3                                        |
| Register RO                                                       | Kegister Dalik 5                                       |
| Register $R1$                                                     |                                                        |
| $\frac{Register - R}{R}$                                          |                                                        |
| $\frac{\text{Register} - \text{R2}}{\text{Register} - \text{R3}}$ |                                                        |
| Register $= R4$                                                   |                                                        |
| Register $- R5$                                                   |                                                        |
| Register – R6                                                     |                                                        |
| Register $= R7$                                                   |                                                        |
|                                                                   | 1                                                      |

| 12-04                                     | -06 Micr                                                 | ol 16bitAD                                                                        | OC rly cal                                                                    |                                      |                                     |                                        |                |
|-------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------|-------------------------------------|----------------------------------------|----------------|
| ;Date<br>;Date<br>;Date<br>;Date<br>;Date | Last mc<br>Last mc<br>Last mo<br>Last mo<br>Last mo      | dified : 0<br>dified : 0<br>dified : 0<br>dified : 2<br>dified : 2                | 9-01-06<br>7-03-06<br>8-03-06<br>3-03-06<br>1-04-06                           |                                      |                                     | • • • • • • • • • • • • • • • • • • •  |                |
|                                           | ORG<br>LJMP<br>ORG<br>LJMP<br>ORG<br>LJMP                | OH<br>MAIN<br>0003H<br>EXOISR<br>0023H<br>SPISR                                   |                                                                               |                                      |                                     |                                        |                |
| • * * * * *                               | ORG                                                      | 0030H                                                                             | * * * * * * 110777770                                                         |                                      |                                     |                                        |                |
| MAIN:                                     | MOV<br>MOV<br>MOV<br>MOV                                 | P0,#0000<br>P1,#1111<br>P2,#0111<br>P3,#0101                                      | *****iNTILIZE<br>D0100B<br>11111B<br>11110B<br>10111B ; (rEC<br>*****iNTILIZE | I/O PORTS<br>& tRANS PC<br>I/O PORTS | *********<br>RTS SET T(<br>******** | ************************************** | :****<br>: sim |
|                                           | SETB                                                     | P3.5                                                                              |                                                                               |                                      |                                     |                                        |                |
| DLY3:<br>dly:<br>dly2:                    | CLR<br>SETB<br>MOV<br>mov<br>djnz<br>djnz<br>DJNZ<br>CLR | RS0<br>RS1<br>R6,#50<br>r5,#100<br>r4,#100<br>r4,dly2<br>r5,dly<br>R6,DLY3<br>RS0 | ;15                                                                           |                                      |                                     |                                        |                |
|                                           | CLR                                                      | RS1                                                                               | ; 1S                                                                          |                                      |                                     |                                        |                |
|                                           | CLR<br>CLR<br>CLR<br>CLR<br>CLR<br>CLR                   | 00H ;CLE;<br>01H<br>02H<br>03H<br>04H<br>05H                                      | ARING FLAGS                                                                   |                                      |                                     |                                        |                |
| ;*****                                    | *******,<br>CLR<br>NOP                                   | **********<br>P2.0                                                                | ****iNTILIZE ,                                                                | ADC - DUMMY                          | ( RUN ****;                         | * * * * * * * * * * * * * * * *        | * * * *        |
|                                           | CLR                                                      | P3.5                                                                              |                                                                               |                                      |                                     |                                        |                |
| D1:                                       | CLR<br>SETB<br>MOV<br>DJNZ<br>CLR                        | RS0<br>RS1<br>R6,#20<br>R6,D1<br>RS0                                              | ;20US                                                                         |                                      |                                     |                                        |                |
|                                           | CLR                                                      | RS1                                                                               | ;20US                                                                         |                                      |                                     |                                        |                |

| RDG SI   | JB DUMMY        | NOP                 |                                                                   |
|----------|-----------------|---------------------|-------------------------------------------------------------------|
| Program. | CLR             | RS0                 | ;TIME 4 INTERNAL REF TO "WAKE UP" AFTER SP                        |
|          | SETB            | RS1                 |                                                                   |
| ada 2r   | mov             | r5,#1               |                                                                   |
| adc_21   | lu:mov          | $r_4, \#_1$         |                                                                   |
| uuc_u    | dinz            | r5 ad               | c_ary                                                             |
|          | CLR             | RS0                 | 2_2110                                                            |
|          | CLR             | RS1                 | TIME 4 INTERNAL REF TO "WAKE HO" AFTED OF                         |
|          |                 |                     | A STATEMENT AND THE TO WHICH OF AFTER SP                          |
|          |                 |                     |                                                                   |
|          |                 |                     |                                                                   |
|          | SETB            | P3.5:               | CS                                                                |
|          |                 | ,                   |                                                                   |
|          |                 |                     |                                                                   |
|          | CLR             | P2.0                |                                                                   |
|          | NOP<br>CLR      | D3 5.               | ; EXTRA TIME BEFORE CS IS FORCED LOW, NOT REALLY N                |
|          |                 | rJ.J;               | AQUISITATION MODE, p3,5 cleared lus after p2.0 (lmach             |
|          |                 |                     |                                                                   |
| ADC_W_   | DUMMY:          | JB                  | P2.1, ADC W DUMMY ;EOC'                                           |
|          | <b>OD</b> ED    | <b>D</b> 0 <b>F</b> |                                                                   |
|          | SETB            | 23.5<br>D3 7        |                                                                   |
|          | JUID            | E3.1                |                                                                   |
|          | CLR             | RS0                 | :20US                                                             |
|          | SETB            | RS1                 | ,                                                                 |
| 50       | MOV             | R6,#20              |                                                                   |
| D2:      | DJNZ            | R6,D2               |                                                                   |
|          | CLR             | RSU<br>DG1          | . 0.0110                                                          |
|          | CEIC            | I/D T               | ;2005                                                             |
|          |                 |                     |                                                                   |
|          | SETB            | P2.0;               | FO PUT DATA OUT                                                   |
|          | NOP             |                     | ; EXTRA TIME BEFORE CS IS FORCED LOW, NOT REALLY NI               |
|          | CLK             | P3.5;**             | **(CS fALLING eDGE 3)                                             |
|          | CLR             | RS0                 | :20115                                                            |
|          | SETB            | RS1                 | , 2000                                                            |
| - 0      | MOV             | R6,#20              |                                                                   |
| D3:      | DJNZ            | R6,D3               |                                                                   |
|          | CLR             | RS0                 |                                                                   |
|          | CLK             | RSI                 | ;20US                                                             |
|          | NOP             |                     | WAIT FOR VALID DATA THOSE day (they - 0)                          |
|          | CLR             | P3.3;               | ;HBEN - LOW BYTE                                                  |
|          | NOP             |                     | ;tdol, MAY NEED MORE TIME                                         |
|          | NOP             |                     |                                                                   |
|          | NOP             | P3.3                | ;HBEN - HIGH BYTE                                                 |
|          | NOP             |                     | ; UGOI, MAT NEED MORE TIME                                        |
|          | SETB            | P3.5;               | *** (CS 1ST RISING EDGE AFTER FAILTNE ODER 2)                     |
| ;*****   | * * * * * * * * | ******              | *****iNTILIZE ADC - DUMMY RUN *********************************** |

MAIN - SERIAL INITIALIZITION - no PARITY - IN/OUT CHAR MAIN2: MOV SCON, #01010000B MOV TMOD, #20H MOV TH1, #-13 SETB TR1 MOV IE,#1000000B IP,#00010000B; SET SP AT HIGHER PRIORIYY THAN EX0 MOV SETB ITO ;NEGATIVE EDE TRIGGERED ; SETB TR1 ;SETB P2.0 SETB ES JMP START CH OUT: CLR ES MOV SBUF, A ACC.7 ; may not need 21/11, but check ;CLR TX2: JNB TI,TX2 CLR ΤI SETB ES ; COME BACK TO THIS RET RECIEVING TEST DATA START: A,#'A',CAL ; SRL1, wait for all the data to be in the nb bcjne JMP NB AM CAL: CJNE A, #'H', START ; 4 CALIB CLR P0.6 ; IN MAN MODE FOR CALIBRATION SETB 04H CALL RDG SUB CLR 04H SETB P0.6 JMP START ; 4 CALIB NB AM: MOV A, #'b'; SEND PROMPT, FOR MAN/AUTO CALL CH OUT SRL2: CJNE A, #'G', X ; G->MAN ; reading is taken each time the man sw is pressed and exits when end is p: CLR P0.6 manRsub:NOP W ENDX: CJNE A, #'B', TK RDx LJMP FINISH

TK RDx: JNB P3.6, manRsub ; MAN SWITCH TK RDx2:JB P3.6, TK RDx2' SETB 04H MOV A, #'I' ; INC BARS CALL CH OUT CALL RDG SUB jmp manRsub X: CJNE A, #'g', SRL2 CLR C; A should hold 'g' SETB P0.6 MOV A, #'d'; SEND PROMPT & WAIT FOR START PULSE CALL CH OUT WT STRT:CJNE A, #'A', WT\_STRT ; START PULSE TO U2 jmp fstbar WT U2ST:JNB P2.3,WT\_U2ST ; LOOP STARTS fstbar: JMP BARS ; INC BARS; using the nb BARS: MOV A,#'I' ; INC BARS CALL CH OUT A, $\overline{\#}$ 'p',sa ;not last bar W END: CJNE JMP GO sa: A, #'P', W\_END ;LAST BAR REACHED cine CLR P2.7 ; to u2 to signal last bar jmp Finish ;DEC NO OF BARS FROM THE TOTAL IN UI HERE ;ALSO CHECK FOR LAST BAR - IF YES, ALLERT NB ;THEN WAIT FOR THE "END"PULSE FROM NB AND JUMP TO END GO: SETB P0.0; START TO U2 / ANA SW ON SETB P2.7 ;NOT LAST BAR BGN TW: P2.2, BGN\_TW ; WAIT TO CHECK IF PULSE WAS RECIEVED JNB P2.7 ; to u2 to signal last bar CLR CLR PO.O, ANA SW OFF SETB EX0 NOP NOP NOP NOP WT RDNG:JNB P2.2, WT\_RDNGE ; WAIT FOR TAKE READING PULSE PO.7; TO U2 TO CONT AFTER READING TAKEN SETB NOP NOP NOP CLR P0.7

CALL RDG\_SUB JMP WT\_U2ST; LOOP ENDS NORMALLY WT\_RDNGE:JNB 03H,WT\_RDNG CLR 03H

JMP WT\_U2ST; LOOP ENDS AFTER ERROR 1 ND 2

| EX0ISR:                 | JNB<br>CALL                        | P2.4,ERR2<br>ER1 SUB                                                                                |
|-------------------------|------------------------------------|-----------------------------------------------------------------------------------------------------|
| ERR2:                   | SETB<br>JMP<br>JNB<br>CALL<br>SETB | 03H; FLAG TO INDICATE TO WT_RDNG LOOP THAT EN ERROR OCCURE<br>EXOOUT<br>P2.5,ERR3<br>ER2_SUB<br>03H |
| ERR3:                   | JMP<br>JNB<br>CALL<br>JMP          | EXOOUT<br>P2.6, ERR4<br>ER3_SUB<br>EXOOUT                                                           |
| ERR4:                   | JNB                                | P3.4, EXOOUT                                                                                        |
| EX0OUT:                 | CALL<br>MOV<br>CALL<br>JMP<br>RETI | ER4_SUB<br>A,#'O' ;MANUAL EMERGENCY STOP<br>CH_OUT<br>EXT                                           |
| ;******                 | *****                              | * * * * * * * * * * * * * * * * * * * *                                                             |
| ;******<br>;<br>;****** | ******                             | **************************************                                                              |
| RDG_SUB:                | NOP                                |                                                                                                     |

| ;NEG_TST | [:JB | P3.6,NO NEG                  |
|----------|------|------------------------------|
| ;        | MOV  | A,#'N'                       |
| ;        | CALL | CH OUT                       |
| ;NEG_R:  | CJNE | $A, \overline{\#}'C', NEG R$ |
| ;        | JMP  | NEG_TST                      |

NO\_NEG: JB 04H, NO\_COM

| 12-04-                    | 06 Micro                               | 1 16bitADC rly cal                                                                                                                                      |
|---------------------------|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| WT_RD:                    | JB<br>JNB<br>SETB<br>NOP<br>NOP<br>CLR | 05H,NO_COM<br>P2.2,WT_RD ; WAIT FOR CURRENT TO BE SWITCHED BY U2<br>P0.7; TO U2 TO SIGNAL READY TO TAKE READING<br>P0.7                                 |
| NO_COM                    | : NOP                                  |                                                                                                                                                         |
| ;EXTRA                    | 1S DELAY                               | ( IN UC2 (X) 4 INPUT CCTRY                                                                                                                              |
| OV_CHK<br>DWN:<br>FET_ON: | : JNB<br>JMP<br>LJMP<br>: SETB         | P0.2,DWN ; for pcb, for tst cct, jb p0.2<br>FET_ON<br>OVRVOL<br>P0.0 ; ANA SW ON                                                                        |
|                           | CLR                                    | P2.0                                                                                                                                                    |
| D4:                       | CLR<br>SETB<br>MOV<br>DJNZ<br>CLR      | RS0 ;20US<br>RS1<br>R6,#24<br>R6,D4<br>RS0                                                                                                              |
|                           | CLR                                    | RS1 ;20US                                                                                                                                               |
|                           | CLR                                    | P3.5; AQUISITAION MODE, p3,5 cleared lus after p2.0 (1mach                                                                                              |
| D5:                       | CLR<br>SETB<br>MOV<br>DJNZ<br>CLR      | RS0 ;20US<br>RS1<br>R6,#20<br>R6,D5<br>RS0                                                                                                              |
|                           | CLR<br>NOP<br>SETB                     | RS1 ;20US<br>;Tcsl and tdh<br>P3.5                                                                                                                      |
| D6:                       | CLR<br>SETB<br>MOV<br>DJNZ<br>CLR      | RS0 ;20US<br>RS1<br>R6,#24<br>R6,D6<br>RS0                                                                                                              |
|                           | CLR                                    | RS1 ;20US                                                                                                                                               |
|                           | CLR                                    | P3.5; FOR STANDBY MODE ***(CS fALLING eDGE 2)                                                                                                           |
| ADC_W:                    | JB                                     | P2.1,ADC_W ;EOC'                                                                                                                                        |
|                           | SETB<br>SETB<br>CLR<br>NOP<br>CLR      | P3.5<br>P2.0; TO PUT DATA OUT<br>P3.3; ;HBEN - LOW BYTE nu 28/11<br>; EXTRA TIME BEFORE CS IS FORCED LOW, NOT REALLY NI<br>P3.5; ***(CS FALLING eDGE 3) |

|         | NOP<br>CLR                                              | ;WAIT FOR VALID DATA,Tdo+Tdv (tdv = 0)<br>P3.3; ;HBEN - LOW BYTE redundancy                              |
|---------|---------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| D7:     | CLR<br>SETB<br>MOV<br>DJNZ<br>CLR<br>CLR                | RSO ;20US<br>RS1<br>R6,#10<br>R6,D7<br>RS0<br>RS1 ;20US nop                                              |
| D8:     | MOV<br>SETB<br>CLR<br>SETB<br>MOV<br>DJNZ<br>CLR<br>CLR | R3,P1 ;HOLD L BYT<br>P3.3 ;HBEN - HIGH BYTE<br>RS0 ;20US<br>RS1<br>R6,#10<br>R6,D8<br>RS0<br>RS1 ;20US   |
|         | MOV<br>SETB                                             | R5,P1 ;HOLD H BYT<br>P3.5; ***(CS 1ST RISING EDGE AFTER fALLING eDGE 3)                                  |
| NA_CK:  | CJNE<br>CJNE<br>MOV<br>MOV                              | R5,#11111111B,OUT_RNG ;CHECK IF NOT ALLOWED CODE<br>R3,#1111110B,OUT_RNG<br>R5,#1111111B<br>R3,#1111111B |
| OUT_RNO | G:MOV                                                   | A,#'z'                                                                                                   |
| OUT_H:  | CALL<br>MOV<br>CALL<br>MOV                              | CH_OUT<br>A,R5<br>CH_OUT<br>A,#'y'                                                                       |
| OUT_L:  | MOV                                                     | A,R3                                                                                                     |
| WT_NBCI | CALL<br>CJNE<br>SETB                                    | CH_OUT<br>A,#'E',WT_100C; WAIT FOR CONTINUE FROM NB<br>05H<br>RDC_SUD                                    |
| WT_100C | CLR                                                     | A,#'S',WT_NBCT; WAIT FOR end of 100 reading cycle FROM NB<br>05H                                         |
| RDG_END | :JB<br>JB                                               | 04H,NO_COM2<br>05H,NO_COM2                                                                               |
| RG_END: | JNB<br>CLR<br>CLR<br>JMP                                | P0.7; TO U2 TO CONT AFTER READING TAKEN<br>P2.2,RG_END<br>P0.7<br>P0.0 ;ANA SW OFF<br>NO_COM2            |
| OVRVOL: | MOV<br>CALL<br>MOV<br>CALL<br>MOV<br>CALL<br>MOV        | A, #'z'<br>CH_OUT<br>A, #11111111B<br>CH_OUT<br>A, #'y'<br>CH_OUT<br>A, #1111110B                        |

|                   | CALL                        | CH_OUT                                                                             |
|-------------------|-----------------------------|------------------------------------------------------------------------------------|
| WT_NBC            | : CJNE<br>SETB<br>JMP       | A,#'E',WT_100E ; WAIT FOR CONTINUE FROM NB<br>05H<br>BDG SUB                       |
| WT_100            | E:CJNE<br>CLR               | A,#'S',WT_NBC; WAIT FOR end of 100 reading cycle FROM NB                           |
| RDG_ED            | S:JB<br>JB                  | 04H,NO_COM2<br>05H,NO_COM2                                                         |
| RG_EDS            | SETB<br>: JNB<br>CLR<br>CLR | P0.7; TO U2 TO CONT AFTER READING TAKEN<br>P2.2,RG_EDS<br>P0.7<br>P0.0 ;ANA SW OFF |
| NO_COM2           | 2:RET<br>*******            | ***                                                                                |
| ,                 |                             | ~ ~ ~ <del>~ ~ * * * * * * * * * * * * * * *</del>                                 |
| • * * * * * *     | *******                     | * * * * * * * * * * * * * * * * * * * *                                            |
| ; ;*****          | ERROR 1                     | SUB<br>*****                                                                       |
|                   | NOT                         |                                                                                    |
| ERI_SUE           | CALL                        | A,#'J'<br>Ch out                                                                   |
| E1E2:<br>MAN PDC  | NOP                         |                                                                                    |
|                   | ;SETB                       | P3.7                                                                               |
| TK RDG.           | SETB                        | PO.3                                                                               |
| TK_RDG2           | :JB                         | P3.6, TK_RDG2 ; MAN RDNG SWITCH, wait for switch to be pres                        |
|                   | SETB                        | P0.4 ;TEL U2 SWITCH I ON                                                           |
| E1_CK1:           | JNB<br>JB                   | P2.2, E1_CK1                                                                       |
|                   | CLR                         | P0.4                                                                               |
| E3_RDNG           | :JNB                        | P2.2, E3_RDNG ; WAIT FOR TAKE READING PULSE                                        |
|                   | SETB<br>NOP<br>NOP          | P0.7; TO U2 TO CONT AFTER READING TAKEN                                            |
|                   | NOP                         |                                                                                    |
|                   | CALL                        | RDG_SUB                                                                            |
|                   | ;CLR<br>CLR                 | P3.7<br>P0 3                                                                       |
| E_CON:            | CJNE                        | A, #'C', E_CON ;29/01/06                                                           |
| E1 WT:            | SETB<br>JNB                 | PO.4<br>P2.2.E1 WT : CHECK IE U2 RECIEVED EVIT DUICE                               |
|                   | CLR                         | PO.4                                                                               |
|                   | NOP                         |                                                                                    |
| • * * * * * * + + | RET *****                   | ***                                                                                |
| <b>,</b>          |                             | ~~ ^ ^ ^ ^ ^ * * * * * * * * * * * * * *                                           |
| ;******<br>: F    | *******<br>RRAP 2 9         | ***************************************                                            |
| ;******           | *******                     | ····<br>* * * * * * * * * * * * * * * * * *                                        |

ER2 SUB:MOV A,#'m' CH OUT CALL CALL E1E2 RET ERROR 3 SUB ER3 SUB:MOV A,#'L' CALL CH OUT CRNT\_E ; IN SPISR TO ENTER POWERDOWN IF CURRENT ON TIME IS JMP RET ;SEE PREV VERSION FOR NOTES ; ERROR 4 SUB ER4 SUB:MOV A,#'Q' CALL CH OUT E3E4: NOP A,#'C',E3E4 ; WAIT FOR CONTINUE FROM NB WT NBC3:CJNE SETB P0.4 E3 WT: JNB P2.2,E3 WT ; CHECK IF U2 RECIEVED EXIT PULSE CLR P0.4 RET SERIAL PORT ISR SPISR: EX0 ;? needed? 06/12 CLR JNB TI, REC ;CLR TI; cleared in ch out JMP SP OUT REC: NOP SLCH IN: JNB RI,\$ CLR RI MOV A, SBUF CJNE A, #'B', SPNXT ; END ENDD: SETB P0.1; END TO U2 SP END: JNB P3.4, SP END; ERROR 4 PULSE USED TO ; ENSURE THAT U2 IS ABOUT TO END CLR P0.1 MOV PO,#OH MOV P1,#0H MOV P2,#0H MOV P3,#00000011B MOV PCON, #00000010B; POWER DOWN, ONLY EXIT IS RESET NOP

| 12-04-0                      | )6 Microl                                                                                        | 16bitADC rly cal                                                                                                                                                                                                                               |
|------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SPNXT:<br>CRNT_E:<br>SP_ENDX | JMP<br>CJNE<br>SETB<br>CLR<br>MOV<br>MOV<br>MOV<br>MOV<br>MOV<br>MOV<br>MOV<br>MOV<br>MOV<br>MOV | ED<br>A,#'F',SP_END3 ;SP_END2 EMERGENCY STOP<br>P0.5<br>P3.4,SP_ENDx; ERROR 4 PULSE USED TO<br>; ENSURE THAT U2 IS ABOUT TO END<br>P0.5<br>P0,#0H<br>P1,#0H<br>P2,#0H<br>P3,#00000011B<br>PCON,#00000010B;POWER DOWN, ONLY EXIT IS RESET<br>ED |
| SP_END3<br>SP_OUT:           | :JMP<br>SETB<br>RETI                                                                             | SP_OUT<br>EX0;? needed?06/12                                                                                                                                                                                                                   |
| ;*****                       | * * * * * * * * *                                                                                | *****************                                                                                                                                                                                                                              |
| FINISH:                      | CLR<br>SETB<br>CLR                                                                               | EX0<br>P0.1; END TO U2<br>EA ; DISABLE INTERUPT AS THE P3.4 IS USED FOR SIGNALLING                                                                                                                                                             |
| WX_END:                      | JNB                                                                                              | P3.4,WX_END; ERROR 4 PULSE USED TO<br>; ENSURE THAT U2 IS ABOUT TO END                                                                                                                                                                         |
| EXT:                         | MOV<br>MOV<br>MOV<br>MOV<br>MOV                                                                  | P0,#0H<br>P1,#0H<br>P2,#0H<br>P3,#00000011B<br>PCON,#00000010B;POWER DOWN, ONLY EXIT IS RESET                                                                                                                                                  |
| ;<br>ED:                     | MOV<br>NOP<br>END                                                                                | PCON, #00000001B ; IDLE MODE, system remains in idle mode un                                                                                                                                                                                   |

| 12-04                                     | -06 Micr                                                 | ol 16bitADC                                                                       | rly cal                                                                                                                                 |
|-------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| ;Date<br>;Date<br>;Date<br>;Date<br>;Date | Last mc<br>Last mc<br>Last mc<br>Last mc<br>Last mc      | odified : 09-<br>odified : 07-<br>odified : 08-<br>odified : 23-<br>dified : 21-  | -01-06<br>-03-06<br>-03-06<br>-04-06                                                                                                    |
|                                           | ORG<br>LJMP<br>ORG<br>LJMP<br>ORG<br>LJMP                | OH<br>MAIN<br>OOO3H<br>EXOISR<br>OO23H<br>SPISR                                   |                                                                                                                                         |
| • * * * * *                               | ORG                                                      | 0030H<br>*******                                                                  |                                                                                                                                         |
| MAIN:<br>;****                            | MOV<br>MOV<br>MOV<br>MOV                                 | P0,#00000<br>P1,#11111<br>P2,#01111<br>P3,#01010                                  | 100B<br>111B<br>110B<br>111B ; (rEC & tRANS PORTS SET TO 1), only for sim<br>***iNTILIZE I/O PORTS ************************************ |
|                                           | SETB                                                     | P3.5                                                                              |                                                                                                                                         |
| DLY3:<br>dly:<br>dly2:                    | CLR<br>SETB<br>MOV<br>mov<br>djnz<br>djnz<br>DJNZ<br>CLR | RS0<br>RS1<br>R6,#50<br>r5,#100<br>r4,#100<br>r4,dly2<br>r5,dly<br>R6,DLY3<br>RS0 | ;15                                                                                                                                     |
|                                           | CLR                                                      | RS1                                                                               | ; 1S                                                                                                                                    |
|                                           | CLR<br>CLR<br>CLR<br>CLR<br>CLR<br>CLR                   | 00H ;CLEAH<br>01H<br>02H<br>03H<br>04H<br>05H                                     | ING FLAGS                                                                                                                               |
| ;*****                                    | *******<br>CLR<br>NOP                                    | **********<br>P2.0                                                                | **iNTILIZE ADC - DUMMY RUN ***********************************                                                                          |
|                                           | CLR                                                      | P3.5                                                                              |                                                                                                                                         |
| D1:                                       | CLR<br>SETB<br>MOV<br>DJNZ<br>CLR                        | RS0<br>RS1<br>R6,#20<br>R6,D1<br>RS0<br>RS1                                       | ;20US                                                                                                                                   |
|                                           | СПК                                                      | K2T                                                                               | ;20US                                                                                                                                   |

| RDG SU           | JB DUMMY                               | :NOP                                     |                                                                                                                |
|------------------|----------------------------------------|------------------------------------------|----------------------------------------------------------------------------------------------------------------|
|                  | CLR<br>SETB<br>mov                     | RSO<br>RS1<br>r5,#10                     | ;TIME 4 INTERNAL REF TO "WAKE UP" AFTER SH                                                                     |
| adc_2n<br>adc_dl | nd:mov<br>y:djnz<br>djnz<br>CLR<br>CLR | r4,#10<br>r4,adc<br>r5,adc<br>RS0<br>RS1 | 00<br>dly<br>2nd<br>;TIME 4 INTERNAL REF TO "WAKE UP" AFTER SH                                                 |
|                  | SETB                                   | P3.5;                                    | CS                                                                                                             |
|                  | CLR<br>NOP                             | P2.0                                     | · FYTRA TIME REFORE CO IC FORCED LOU NOT DESERVICE                                                             |
|                  | CLR                                    | P3.5;                                    | AQUISITAION MODE, p3,5 cleared lus after p2.0 (1mach                                                           |
| ADC_W_I          | DUMMY:                                 | JB                                       | P2.1, ADC_W_DUMMY ;EOC'                                                                                        |
|                  | SETB<br>SETB                           | P3.5<br>P3.7                             |                                                                                                                |
|                  | CLR<br>SETB<br>MOV                     | RSO<br>RS1<br>R6,#20                     | ;20US                                                                                                          |
| D2:              | DJNZ<br>CLR<br>CLR                     | R6,D2<br>RS0<br>RS1                      | ;20US                                                                                                          |
|                  | SETB<br>NOP<br>CLR                     | P2.0; 1<br>P3.5;**                       | O PUT DATA OUT<br>; EXTRA TIME BEFORE CS IS FORCED LOW, NOT REALLY NI<br>*(CS fALLING eDGE 3)                  |
| D3:              | CLR<br>SETB<br>MOV<br>DJNZ<br>CLR      | RS0<br>RS1<br>R6,#20<br>R6,D3<br>PS0     | ;20US                                                                                                          |
|                  | CLR                                    | RS1                                      | ;20US                                                                                                          |
|                  | NOP<br>CLR<br>NOP<br>NOP               | P3.3;                                    | ;WAIT FOR VALID DATA,Tdo+Tdv (tdv = 0)<br>;HBEN - LOW BYTE<br>;tdol, MAY NEED MORE TIME                        |
|                  | SETB<br>NOP<br>NOP                     | P3.3                                     | ;HBEN - HIGH BYTE<br>;tdol, MAT NEED MORE TIME                                                                 |
| ;*****           | SETB<br>*******                        | P3.5;                                    | ***(CS 1ST RISING EDGE AFTER fALLING eDGE 3) *****iNTILIZE ADC - DUMMY RUN *********************************** |

MAIN - SERIAL INITIALIZITION - no PARITY - IN/OUT CHAR ; SCON, #01010000B MAIN2: MOV MOV TMOD, #20H MOV TH1, #-13 SETB TR1 MOV IE,#1000000B IP,#00010000B; SET SP AT HIGHER PRIORIYY THAN EXO MOV ITO ;NEGATIVE EDE TRIGGERED SETB ;SETB TR1 ;SETB P2.0 SETB ES JMP START CH OUT: CLR ES MOV SBUF, A ;CLR ACC.7 ; may not need 21/11, but check TX2: JNB TI,TX2 CLR ΤI SETB ES ; COME BACK TO THIS RET RECIEVING TEST DATA START: A, #'A', CAL ; SRL1, wait for all the data to be in the nb b. cjne JMP NB AM CAL: CJNE A, #'H', START ; 4 CALIB CLR P0.6 ; IN MAN MODE FOR CALIBRATION SETB 04H CALL RDG SUB CLR 04H SETB P0.6 JMP START ; 4 CALIB A, #'b'; SEND PROMPT, FOR MAN/AUTO NB AM: MOV CALL CH OUT SRL2: A, #'G', X ; G->MAN CJNE ; reading is taken each time the man sw is pressed and exits when end is p: CLR P0.6 manRsub:NOP W ENDX: CJNE A, #'B', TK RDx LJMP FINISH

TK RDx: JNB P3.6, manRsub ; MAN SWITCH TK RDx2:JB P3.6, TK RDx2' SETB 04H MOV A,#'I' ; INC BARS CALL CH OUT CALL RDG SUB jmp manRsub Χ: CJNE A, #'g', SRL2 CLR C; A should hold 'g' SETB P0.6 MOV A, #'d'; SEND PROMPT & WAIT FOR START PULSE CALL CH OUT WT STRT:CJNE A, #'A', WT STRT ; START PULSE TO U2 fstbar jmp WT U2ST: JNB P2.3,WT U2ST ; LOOP STARTS fstbar: JMP BARS INC BARS; using the nb BARS: MOV A,#'I' ; INC BARS CALL CH OUT A, $\overline{\#}$ 'p',sa ;not last bar W END: CJNE JMP GO sa: cjne A, #'P', W END ;LAST BAR REACHED P2.7 ; to u2 to signal last bar CLR jmp Finish ; DEC NO OF BARS FROM THE TOTAL IN UI HERE ;ALSO CHECK FOR LAST BAR - IF YES, ALLERT NB ;THEN WAIT FOR THE "END"PULSE FROM NB AND JUMP TO END GO: SETB PO.0; START TO U2 / ANA SW ON SETB P2.7 ;NOT LAST BAR BGN TW: JNB P2.2, BGN\_TW ; WAIT TO CHECK IF PULSE WAS RECIEVED CLR P2.7 ; to u2 to signal last bar CLR PO.O, ANA SW OFF SETB EX0 NOP NOP NOP NOP WT RDNG: JNB P2.2, WT\_RDNGE ; WAIT FOR TAKE READING PULSE P0.7; TO U2 TO CONT AFTER READING TAKEN SETB NOP NOP NOP CLR P0.7

CALL RDG\_SUB JMP WT\_U2ST; LOOP ENDS NORMALLY WT\_RDNGE:JNB 03H,WT\_RDNG CLR 03H

JMP WT\_U2ST; LOOP ENDS AFTER ERROR 1 ND 2

| EX0ISR:  | JNB    | P2.4, ERR2                                                 |
|----------|--------|------------------------------------------------------------|
|          | CALL   | ER1_SUB                                                    |
|          | SETB   | 03H; FLAG TO INDICATE TO WT RDNG LOOP THAT EN ERROR OCCURE |
|          | JMP    | EXOOUT                                                     |
| ERRZ:    | JNB    | P2.5, ERR3                                                 |
|          | CALL   | ER2_SUB                                                    |
|          | SETB   | 03H                                                        |
|          | JMP    | EXUOUT                                                     |
| ERR3:    | JNB    | P2.6, ERR4                                                 |
|          | CALL   | ER3_SUB                                                    |
| PDD4.    | JMP    | EXUOUT                                                     |
| LKK4:    | UNB    | P3.4, EXOOUT                                               |
| FYAAIm.  | CALL   |                                                            |
| EAUUUI.  | CATT   | A, #'O' ;MANUAL EMERGENCY STOP                             |
|          | .TMP   |                                                            |
|          | RETT   |                                                            |
|          |        |                                                            |
| ******   | ****** | ****                                                       |
|          |        | ······································                     |
|          |        |                                                            |
| ;******  | ****** | *****                                                      |
| ;        |        | READING SUBPROGRAM                                         |
| ;*****   | ****** | ******                                                     |
|          |        |                                                            |
| RDG_SUB: | NOP    |                                                            |
|          |        |                                                            |
| ;NEG_TST | :JB    | P3.6, NO_NEG                                               |
| ;        | MOV    | A, #'N'                                                    |
| INEC D.  | CALL   | CH_OUT                                                     |
| , NEG_K: | CUNE   | A, #'C', NEG_R                                             |
| ,        | OWF    | NEG_TST                                                    |
|          |        |                                                            |

NO\_NEG: JB 04H, NO\_COM

| 12-04-                   | 06 Micro                                 | 1 16bitADC rly cal                                                                                                                                     |
|--------------------------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| WT_RD:                   | JB<br>JNB<br>SETB<br>NOP<br>NOP<br>CLR   | 05H,NO_COM<br>P2.2,WT_RD ; WAIT FOR CURRENT TO BE SWITCHED BY U2<br>P0.7; TO U2 TO SIGNAL READY TO TAKE READING<br>P0.7                                |
| NO_COM                   | : NOP                                    |                                                                                                                                                        |
| ;EXTRA                   | 1S DELA                                  | Y IN UC2 (X) 4 INPUT CCTRY                                                                                                                             |
| OV_CHK<br>DWN:<br>FET_ON | : JNB<br>JMP<br>LJMP<br>: SETB           | P0.2,DWN ; for pcb, for tst cct, jb p0.2<br>FET_ON<br>OVRVOL<br>P0.0 ; ANA SW ON                                                                       |
|                          | CLR                                      | P2.0                                                                                                                                                   |
| D4:                      | CLR<br>SETB<br>MOV<br>DJNZ<br>CLR<br>CLR | RS0 ;20US<br>RS1<br>R6,#24<br>R6,D4<br>RS0<br>RS1 ;20US                                                                                                |
|                          | CLR                                      | P3.5; AQUISITAION MODE, p3,5 cleared lus after p2.0 (1mach                                                                                             |
| D5:                      | CLR<br>SETB<br>MOV<br>DJNZ<br>CLR        | RSO ;20US<br>RS1<br>R6,#20<br>R6,D5<br>RS0                                                                                                             |
|                          | CLR<br>NOP<br>SETB                       | RS1 ;20US<br>;Tcsl and tdh<br>P3.5                                                                                                                     |
| D6:                      | CLR<br>SETB<br>MOV<br>DJNZ<br>CLR        | RS0 ;20US<br>RS1<br>R6,#24<br>R6,D6<br>RS0                                                                                                             |
|                          | CLR                                      | RSI ;20US                                                                                                                                              |
|                          |                                          | LO.O, LON STANDET MODE AAA (CS TALLING EDGE 2)                                                                                                         |
| ADC_W:                   | JB                                       | P2.1, ADC_W ; EOC'                                                                                                                                     |
|                          | SETB<br>SETB<br>CLR<br>NOP<br>CLR        | <pre>P3.5 P2.0; TO PUT DATA OUT P3.3; ;HBEN - LOW BYTE nu 28/11 ; EXTRA TIME BEFORE CS IS FORCED LOW, NOT REALLY NH P3.5; ***(CS fALLING eDGE 3)</pre> |

|         | NOP<br>CLR                                       | ;WAIT FOR VALID DATA,Tdo+Tdv (tdv = 0)<br>P3.3; ;HBEN - LOW BYTE redundancy                                |
|---------|--------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| D7:     | CLR<br>SETB<br>MOV<br>DJNZ<br>CLR<br>CLR         | RS0 ;20US<br>RS1<br>R6,#10<br>R6,D7<br>RS0<br>RS1 :20US pop                                                |
|         | MOV                                              | R3.P1 :HOLD L BYT                                                                                          |
| D8:     | SETB<br>CLR<br>SETB<br>MOV<br>DJNZ<br>CLR<br>CLR | P3.3 ;HBEN - HIGH BYTE<br>RS0 ;20US<br>RS1<br>R6,#10<br>R6,D8<br>RS0<br>RS1 ;20US                          |
|         | MOV<br>SETB                                      | R5,P1 ;HOLD H BYT<br>P3.5; ***(CS 1ST RISING EDGE AFTER fALLING eDGE 3)                                    |
| NA_CK:  | CJNE<br>CJNE<br>MOV<br>MOV                       | R5,#11111111B,OUT_RNG ;CHECK IF NOT ALLOWED CODE<br>R3,#1111110B,OUT_RNG<br>R5,#11111111B<br>R3,#11111111B |
| OUT RNG | G:MOV                                            | A. # ' z '                                                                                                 |
|         | CALL                                             | CH_OUT                                                                                                     |
| 001_11. | CALL<br>MOV                                      | A, K5<br>CH_OUT<br>A, #'y'                                                                                 |
| OUT_L:  | MOV                                              | CH_OUT<br>A, R3                                                                                            |
| WT_NBCT | CALL<br>CJNE<br>SETB                             | CH_OUT<br>A,#'E',WT_100C; WAIT FOR CONTINUE FROM NB<br>05H                                                 |
| WT_100C | JMP<br>:CJNE<br>CLR                              | RDG_SUB<br>A,#'S',WT_NBCT; WAIT FOR end of 100 reading cycle FROM NB<br>05H                                |
| RDG_END | :JB<br>JB                                        | 04H,NO_COM2<br>05H,NO_COM2                                                                                 |
| RG_END: | SETB<br>JNB<br>CLR<br>CLR<br>JMP                 | P0.7; TO U2 TO CONT AFTER READING TAKEN<br>P2.2,RG_END<br>P0.7<br>P0.0 ;ANA SW OFF<br>NO_COM2              |
| OVRVOL: | MOV<br>CALL<br>MOV<br>CALL<br>MOV<br>CALL<br>MOV | A, #'z'<br>CH_OUT<br>A, #11111111B<br>CH_OUT<br>A, #'y'<br>CH_OUT<br>A, #1111110B                          |
| <pre>WT_NBC: CJNE A, #'E', WT_100E; WAIT FOR CONTINUE FROM NB<br/>SETB 05H<br/>JMP RCG SUB<br/>WT_100E:CJNE A, #'S', WT_NBC; WAIT FOR end of 100 reading cycle FROM NB<br/>CLR 05H<br/>05H, 05H<br/>05H, 00CM2<br/>JB 05H, 00CM2<br/>SETB P0.7; TO U2 TO CONT AFTER READING TAKEN<br/>RG_EDS: JNB P2.2, RG_EDS<br/>CLR P0.7 TO U2 TO CONT AFTER READING TAKEN<br/>P0.0; ANA SW OFF<br/>NO_CCM2:RET<br/>;************************************</pre>                                                                         |                       | CALL                              | CH_OUT                                                                                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------------------------|---------------------------------------------------------------------------------------|
| <pre>WT_100E:CUNE A, #TS', WT_NBC; WAIT FOR end of 100 reading cycle FROM NB<br/>CLR 05H<br/>RDG_EDS:JB 04H, NO_COM2<br/>JB 05H, NO_COM2<br/>SETB P0.7; TO UZ TO CONT AFTER READING TAKEN<br/>RG_EDS: JNB P2.2, RG_EDS<br/>CLR P0.7<br/>CLR P0.7<br/>CLR P0.0 ; ANA SW OFF<br/>NO_COM2:RET<br/>;************************************</pre>                                                                                                                                                                                 | WT_NBC                | : CJNE<br>SETB<br>JMP             | A,#'E',WT_100E ; WAIT FOR CONTINUE FROM NB<br>05H<br>BDG_SUB                          |
| RDG_EDS:JB 04H,NO_COM2<br>JB 05H,NO_COM2<br>SETB P0.7; TO U2 TO CONT AFTER READING TAKEN<br>RG_EDS: JNB P2.2,RG_EDS<br>CLR P0.7<br>CLR P0.0 ;ANA SW OFF<br>NO_COM2:RET<br>;************************************                                                                                                                                                                                                                                                                                                            | WT_100                | E:CJNE<br>CLR                     | A,#'S',WT_NBC; WAIT FOR end of 100 reading cycle FROM NB                              |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | RDG_ED:               | S:JB<br>JB                        | 04H,NO_COM2<br>05H,NO_COM2                                                            |
| NO_COM2:RET<br>;************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | RG_EDS                | SETB<br>: JNB<br>CLR<br>CLR       | P0.7; TO U2 TO CONT AFTER READING TAKEN<br>P2.2,RG_EDS<br>P0.7<br>P0.0 :ANA SW OFF    |
| <pre>;************************************</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NO_COM2<br>;*****     | 2:RET<br>*******                  | *****                                                                                 |
| <pre>;************************************</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       |                                   |                                                                                       |
| ER1_SUB:MOV A, #'J'<br>CALL CH_OUT<br>E1E2: NOP<br>MAN_RDG:CJNE A, #'D', E1E2<br>;SETB P0.3<br>TK_RDG: JNB P3.6, TK_RDG ; MAN RDNG SWITCH, wait for switch to be pres.<br>TK_RDG2:JB P3.6, TK_RDG2<br>E1_CK1: SETB P0.4 ;TEL U2 SWITCH I ON<br>E1_CK1: JNB P2.2, E1_CK1<br>JB P2.2, S<br>CLR P0.4<br>E3_RDNG:JNB P2.2, E3_RDNG ; WAIT FOR TAKE READING PULSE<br>SETB P0.7; TO U2 TO CONT AFTER READING TAKEN<br>NOP<br>NOP<br>NOP<br>CLR P0.7<br>CLR P0.7<br>CLR P0.3<br>E_CON: CJNE A, #'C', E_CON ;29/01/06<br>SETB P0.4 | ;*****<br>;<br>;***** | ERROR 1                           | **************************************                                                |
| CALL CH_OUT<br>CALL CH_OUT<br>E1E2: NOP<br>MAN_RDG:CJNE A, #'D', E1E2<br>;SETB P3.7<br>SETB P0.3<br>TK_RDG: JNB P3.6, TK_RDG ; MAN RDNG SWITCH, wait for switch to be pres:<br>TK_RDG2: JB P3.6, TK_RDG2<br>E1_CK1: JNB P2.2, E1_CK1<br>JB P2.2, S<br>CLR P0.4<br>E3_RDNG: JNB P2.2, E3_RDNG ; WAIT FOR TAKE READING PULSE<br>SETB P0.7; TO U2 TO CONT AFTER READING TAKEN<br>NOP<br>NOP<br>CLR P0.7<br>CALL RDG SUB<br>;CLR P0.3<br>E_CON: CJNE A, #'C', E_CON ;29/01/06<br>SETB P0.4                                     | ER1 SUB               | S:MOV                             |                                                                                       |
| MAN_RDG:CJNE A, #'D', E1E2<br>;SETB P0.3<br>TK_RDG: JNB P3.6, TK_RDG ; MAN RDNG SWITCH, wait for switch to be pres:<br>TK_RDG2:JB P3.6, TK_RDG2<br>E1_CK1: JNB P2.2, E1_CK1<br>JB P2.2, \$<br>CLR P0.4<br>E3_RDNG:JNB P2.2, E3_RDNG ; WAIT FOR TAKE READING PULSE<br>SETB P0.7; TO U2 TO CONT AFTER READING TAKEN<br>NOP<br>NOP<br>NOP<br>CLR P0.7<br>CALL RDG_SUB<br>;CLR P0.3<br>E_CON: CJNE A, #'C', E_CON ;29/01/06<br>SETB P0.4                                                                                       | E1E0.                 | CALL                              | CH_OUT                                                                                |
| <pre>;SETB P3.7<br/>SETB P0.3<br/>TK_RDG: JNB P3.6,TK_RDG ; MAN RDNG SWITCH, wait for switch to be pres:<br/>TK_RDG2:JB P3.6,TK_RDG2<br/>E1_CK1: JNB P2.2,E1_CK1<br/>JB P2.2,S<br/>CLR P0.4<br/>E3_RDNG:JNB P2.2,E3_RDNG ; WAIT FOR TAKE READING PULSE<br/>SETB P0.7; TO U2 TO CONT AFTER READING TAKEN<br/>NOP<br/>NOP<br/>CLR P0.7<br/>CALL RDG_SUB<br/>;CLR P0.3<br/>E_CON: CJNE A,#'C',E_CON ;29/01/06<br/>SETB P0.4</pre>                                                                                             | MAN_RDG               | CJNE                              | A,#'D',E1E2                                                                           |
| TK_RDG: JNBP3.6,TK_RDG ; MAN RDNG SWITCH, wait for switch to be pres:TK_RDG2: JBP3.6,TK_RDG2E1_CK1: JNBP2.2,E1_CK1JBP2.2,SCLRP0.4E3_RDNG: JNBP2.2,E3_RDNG ; WAIT FOR TAKE READING PULSESETBP0.7; TO U2 TO CONT AFTER READING TAKENNOPNOPNOPCLRNOPCLRCLRP0.7CLRP3.7CLRP3.7CLRP0.3E_CON:CJNEA, #'C', E_CON ;29/01/06SETBP0.4                                                                                                                                                                                                 |                       | ;SETB<br>SETB                     | P3.7                                                                                  |
| E1_CK1: $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TK_RDG:<br>TK_RDG2    | JNB<br>:JB                        | P3.6, TK_RDG ; MAN RDNG SWITCH, wait for switch to be press<br>P3.6, TK_RDG2          |
| E3_RDNG:JNB P2.2,E3_RDNG ; WAIT FOR TAKE READING PULSE<br>SETB P0.7; TO U2 TO CONT AFTER READING TAKEN<br>NOP<br>NOP<br>CLR P0.7<br>CALL RDG_SUB<br>;CLR P3.7<br>CLR P0.3<br>E_CON: CJNE A,#'C',E_CON ;29/01/06<br>SETB P0.4                                                                                                                                                                                                                                                                                               | E1_CK1:               | SETB<br>JNB<br>JB<br>CLR          | P0.4 ;TEL U2 SWITCH I ON<br>P2.2,E1_CK1<br>P2.2,\$<br>P0.4                            |
| CLR P0.7<br>CALL RDG_SUB<br>;CLR P3.7<br>CLR P0.3<br>E_CON: CJNE A,#'C',E_CON ;29/01/06<br>SETB P0.4                                                                                                                                                                                                                                                                                                                                                                                                                       | E3_RDNG               | :JNB<br>SETB<br>NOP<br>NOP<br>NOP | P2.2,E3_RDNG ; WAIT FOR TAKE READING PULSE<br>P0.7; TO U2 TO CONT AFTER READING TAKEN |
| E_CON: CJNE A, #'C', E_CON ;29/01/06<br>SETB P0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       | CLR<br>CALL<br>;CLR<br>CLR        | P0.7<br>RDG_SUB<br>P3.7<br>P0.3                                                       |
| SETB PO.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | E_CON:                | CJNE .                            | A,#'C',E_CON ;29/01/06                                                                |
| E1_WT: JNB P2.2,E1_WT; CHECK IF U2 RECIEVED EXIT PULSE<br>CLR P0.4<br>NOP<br>NOP                                                                                                                                                                                                                                                                                                                                                                                                                                           | E1_WT:                | JNB<br>CLR<br>NOP<br>NOP          | PU.4<br>P2.2,E1_WT ; CHECK IF U2 RECIEVED EXIT PULSE<br>P0.4                          |
| 」<br>・<br>・<br>・<br>・<br>・<br>・<br>・<br>・<br>・<br>・<br>・<br>・<br>・                                                                                                                                                                                                                                                                                                                                                                                                                                                         | • * * * * * * * *     | NG1<br>*******                    | *********                                                                             |
| *********                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ;******               | ******                            | ****                                                                                  |
| ; ERROR 2 SUB<br>;************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ; E                   | RROR 2 SU                         | JB<br>************************************                                            |

ER2 SUB:MOV A,#'m' CALL CH OUT CALL E1E2 RET ; ERROR 3 SUB ER3 SUB:MOV A,#'L' CALL CH OUT CRNT\_E ; IN SPISE TO ENTER POWERDOWN IF CURRENT ON TIME IS JMP RET ;SEE PREV VERSION FOR NOTES ERROR 4 SUB ; ER4 SUB:MOV A,#'Q' CALL CH OUT E3E4: NOP WT NBC3:CJNE A,#'C',E3E4 ; WAIT FOR CONTINUE FROM NB SETB P0.4 E3 WT: P2.2, E3 WT ; CHECK IF U2 RECIEVED EXIT PULSE JNB CLR P0.4 RET SERIAL PORT ISR ; SPISR: EX0 ;? needed? 06/12 CLR JNB TI,REC ;CLR TI; cleared in ch out JMP SP OUT REC: NOP SLCH IN: JNB RI,\$ CLR RI MOV A, SBUF CJNE A, #'B', SPNXT ; END ENDD: SETB P0.1; END TO U2 SP END: JNB P3.4, SP END; ERROR 4 PULSE USED TO ; ENSURE THAT U2 IS ABOUT TO END CLR P0.1 MOV PO,#OH MOV P1,#0H MOV P2,#0H MOV P3,#00000011B PCON, #00000010B; POWER DOWN, ONLY EXIT IS RESET MOV NOP

# 12-04-06 Microl 16bitADC rly cal

| SPNXT:             | JMP<br>CJNE<br>SETB                           | ED<br>A,#'F',SP_END3 ;SP_END2 EMERGENCY STOP                                                                |
|--------------------|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| SP_END:            | x:JNB                                         | PO.S<br>P3.4,SP_ENDx; ERROR 4 PULSE USED TO<br>; ENSURE THAT U2 IS ABOUT TO END                             |
|                    | CLR<br>MOV<br>MOV<br>MOV<br>MOV<br>NOP<br>JMP | P0.5<br>P0,#0H<br>P1,#0H<br>P2,#0H<br>P3,#00000011B<br>PCON,#00000010B;POWER DOWN, ONLY EXIT IS RESET<br>ED |
| SP_END3<br>SP_OUT: | SETB<br>RETI                                  | SP_OUT<br>EX0;? needed?06/12                                                                                |
| ;*****             | ******                                        | ****************                                                                                            |
| FINISH:            | CLR<br>SETB<br>CLR                            | EXO<br>PO.1; END TO U2<br>EA ; DISABLE INTERUPT AS THE P3.4 IS USED FOR SIGNALLING                          |
| WX_END:            | JNB                                           | P3.4,WX_END; ERROR 4 PULSE USED TO<br>; ENSURE THAT U2 IS ABOUT TO END                                      |
| EXT:               | MOV<br>MOV<br>MOV<br>MOV<br>MOV               | P0,#0H<br>P1,#0H<br>P2,#0H<br>P3,#00000011B<br>PCON,#00000010B;POWER DOWN, ONLY FXIT IS PESET               |
| ;<br>ED:           | MOV<br>NOP<br>END                             | PCON,#00000001B ;IDLE MODE, system remains in idle mode un                                                  |

| 12-04-             | -06 Micro    | b2 latest                                                                                                              |
|--------------------|--------------|------------------------------------------------------------------------------------------------------------------------|
| ·                  |              |                                                                                                                        |
| ;Date              | Last mod     | dified : 09-01-06                                                                                                      |
| ;Date              | Last mod     | dified : 07-03-06                                                                                                      |
| ;                  | <del>.</del> |                                                                                                                        |
| ;Date<br>·Date     | Last mod     | lified : 23-03-06                                                                                                      |
| , Date             |              | arried . 21-04-06                                                                                                      |
| ;****              | ******       | ***************************************                                                                                |
| ;                  | *            | ************* MICROCONTROLLER 2 - AUTOMATION .v2 ******                                                                |
| ,****              | ******       | ***************************************                                                                                |
|                    | ORG          | ОН                                                                                                                     |
|                    | LJMP         | MAIN                                                                                                                   |
|                    | ORG          | 0003H                                                                                                                  |
|                    | LJMP         |                                                                                                                        |
|                    | LJMP         | EX1ISR                                                                                                                 |
|                    |              |                                                                                                                        |
| COUNT              | EQU          | -10000 ; DELAY LOOP                                                                                                    |
| COUNTZ             | EQU          | -50000 ;SAFTY TIME                                                                                                     |
|                    | ORG          | 0030H                                                                                                                  |
| MAIN:              | MOV          | TMOD,#00010001B                                                                                                        |
|                    | MOV          | IP,#0000001B                                                                                                           |
|                    | MOV          | TE'#00000101B                                                                                                          |
| ;*****             | ******       | **************************************                                                                                 |
|                    | MOV          | P0,#0H ; only for sim, input ports must be set to 1                                                                    |
|                    | MOV          | P1,#11111111B; only for sim, input ports must be set to 1                                                              |
|                    | MOV          | P2,#00001000H; only for sim, input ports must be set to 1<br>P3,#00011111B: only for sim, input ports must be set to 1 |
| ;*****             | ******       | **************************************                                                                                 |
|                    |              |                                                                                                                        |
| ; ciear            | CLR          | 11ags                                                                                                                  |
|                    | CLR          | 01H                                                                                                                    |
|                    | CLR          | 02н                                                                                                                    |
|                    | CLR          | 03H                                                                                                                    |
|                    | CLR          | 04H<br>05H                                                                                                             |
|                    | CLR          | 06H                                                                                                                    |
|                    | CLR          | 07H                                                                                                                    |
|                    | CLR          | 08H                                                                                                                    |
|                    | CLR          | 09H<br>07H                                                                                                             |
|                    | CLR          | OBH                                                                                                                    |
|                    | CLR          | OCH                                                                                                                    |
|                    | CLR          | ODH                                                                                                                    |
|                    | CLR          | OEH                                                                                                                    |
|                    | SETB         | EA                                                                                                                     |
|                    | SETB         | IT1                                                                                                                    |
| λ <b>('Τ</b> λλ' - | SETB         | ITO                                                                                                                    |
| AGIAN:<br>START·   | SETB<br>JNR  | EXI; ENABLE EX INT1<br>Pl O START                                                                                      |
| ~ + ( 4 +          | JB           | P1.6, AUTO ; $(1 = AUTO, 0 = MAN)$                                                                                     |
|                    | MOV          | PCON, #00000010B ;                                                                                                     |

| AUTO:                                      | SETB<br>nop<br>nop<br>nop<br>CLR<br>SETB<br>SETB                         | P0.5;<br>;<br>;<br>P0.5;<br>EX1<br>EX0                                                                                                                                   |
|--------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ;*****<br>;<br>;<br>;<br>;SAFE_;<br>;***** | CALL<br>CALL<br>JB<br>SETB<br>SJMP<br>R: CALL<br>SETB                    | Safety Range Check*******(SIRC)<br>RUN_DWN<br>DELAYLOOP<br>P2.2,SAFE_R<br>P2.3; OUT OF RANGE ALLERT<br>\$<br>RUN_UP<br>P2.4; SWITCH ON INPUT RELAY<br>END CHECK********* |
| NLBAR:<br>LBAR:                            | SETB<br>CLR<br>CALL<br>JNB<br>JMP<br>JNB<br>CLR<br>LJMP                  | P0.1<br>OCH<br>DELAYLOOP<br>P3.0,LBAR<br>CONT<br>P1.1,NLBAR<br>P0.1<br>END                                                                                               |
| CONT:<br>PW:                               | SETB<br>JNB<br>NOP<br>NOP<br>NOP<br>CLR<br>CLR                           | P0.0<br>P3.0,PW<br>P0.0<br>P0.1                                                                                                                                          |
| ONE:<br>TWO:                               | JB<br>JB<br>SETB<br>JMP<br>JB<br>SETB<br>JMP<br>JB<br>SETB<br>CLR<br>CLR | 02H,LOAD; *nu<br>00H,ONE<br>00H<br>LOAD<br>01H,TWO<br>01H<br>LOAD<br>02H,LOAD<br>02H<br>00H                                                                              |
| LOAD:<br>NTRD:                             | JMP<br>JB<br>MOV<br>MOV<br>MOV                                           | NTRD<br>02H, THIRD<br>R1, #HIGH COUNT2<br>R2, #LOW COUNT2<br>R3, #200 ;*                                                                                                 |

|           | JMP            | BEGIN                                                                                                                                                                                                                            |
|-----------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| חמדטייי.  | MOTZ           |                                                                                                                                                                                                                                  |
| INIKD:    | MOV            | A, K4                                                                                                                                                                                                                            |
|           | MOV            | RI, A                                                                                                                                                                                                                            |
|           | MOV            | A,R5                                                                                                                                                                                                                             |
|           | MOV            | R2, A                                                                                                                                                                                                                            |
|           | MOV            | A, R6                                                                                                                                                                                                                            |
|           | MOV            | R3, A                                                                                                                                                                                                                            |
|           | MOV            | A,#200 ;*                                                                                                                                                                                                                        |
|           | CALL           | CALC_TIME                                                                                                                                                                                                                        |
|           | SETB           | P0.4                                                                                                                                                                                                                             |
|           | CALL           | DELAYLOOP                                                                                                                                                                                                                        |
| CNT RT    | : MOV          | TH1, #HIGH COUNT2                                                                                                                                                                                                                |
|           | MOV            | TL1, #LOW COUNT2                                                                                                                                                                                                                 |
|           | SETB           | TR1                                                                                                                                                                                                                              |
| WAIT R    | : JNB          | TF1.WATT R                                                                                                                                                                                                                       |
|           | clr            | tr1                                                                                                                                                                                                                              |
|           | clr            | t.f1                                                                                                                                                                                                                             |
|           | D.TNZ          | R3. CNT BT                                                                                                                                                                                                                       |
|           | JR             | 04H TMR OUT                                                                                                                                                                                                                      |
|           | MOV            | ΨH1 D1                                                                                                                                                                                                                           |
|           | MOV            |                                                                                                                                                                                                                                  |
|           | CEUD           |                                                                                                                                                                                                                                  |
|           | JEID<br>V. TND |                                                                                                                                                                                                                                  |
| WATT      |                | IFI, WAIT_KX                                                                                                                                                                                                                     |
|           |                |                                                                                                                                                                                                                                  |
|           | CIT            |                                                                                                                                                                                                                                  |
|           | SETB           | U3H                                                                                                                                                                                                                              |
|           | JMP            | 'I'MR_OUT                                                                                                                                                                                                                        |
| BEGIN:    | SETB           | P0.4                                                                                                                                                                                                                             |
|           | CALL           | DELAYLOOP                                                                                                                                                                                                                        |
| TMR •     | MOV            |                                                                                                                                                                                                                                  |
| T 1.11/ • | MOV            |                                                                                                                                                                                                                                  |
|           | V Ott          | עעג, אין ארטע, אין א<br>ארטע גענען אין ארטע, |
|           |                | іпі, КІ<br>ШІ ро                                                                                                                                                                                                                 |
|           |                | TLI,KZ                                                                                                                                                                                                                           |
|           | SETB           | TKL                                                                                                                                                                                                                              |
|           | SETB           | TKU                                                                                                                                                                                                                              |
| WAIT_TI   | .: JNR         | TF1,WAIT_T1                                                                                                                                                                                                                      |
|           | CLT            | tri                                                                                                                                                                                                                              |
|           | CLR            | TRO                                                                                                                                                                                                                              |
|           | clr            | tfl                                                                                                                                                                                                                              |
|           | CLR            | TFO                                                                                                                                                                                                                              |
|           | DJNZ           | R3,TMR                                                                                                                                                                                                                           |
|           | SETB           | 03H                                                                                                                                                                                                                              |
|           | JMP            | TMR_OUT                                                                                                                                                                                                                          |
| *****     | *****          | ****                                                                                                                                                                                                                             |
| ;         |                | CALC TIME                                                                                                                                                                                                                        |
| ******    | ******         | **************************************                                                                                                                                                                                           |
| CALC TT   | ME ·           | CLR C                                                                                                                                                                                                                            |
|           | • تسلال ا      |                                                                                                                                                                                                                                  |
|           |                |                                                                                                                                                                                                                                  |
|           |                | MUV KJ,A                                                                                                                                                                                                                         |
|           |                |                                                                                                                                                                                                                                  |
|           |                | CLK AC                                                                                                                                                                                                                           |

| 12-04-                                  | -06 Micro                                       | 2 latest                                             |                                                           |                                                |                               |                           |       |               |         |
|-----------------------------------------|-------------------------------------------------|------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------|-------------------------------|---------------------------|-------|---------------|---------|
|                                         |                                                 | · ·                                                  |                                                           | -                                              |                               |                           |       |               |         |
|                                         |                                                 | CLR                                                  | VO                                                        |                                                |                               |                           |       |               |         |
|                                         |                                                 | MOV                                                  | A,R2                                                      |                                                |                               |                           |       |               |         |
|                                         |                                                 | CPL<br>ADD<br>MOV                                    | A<br>A,#1<br>R2,A                                         |                                                |                               |                           |       |               |         |
| SUM:                                    |                                                 | MOV<br>CPL<br>JNC<br>CLR<br>ADD<br>JNC<br>MOV<br>MOV | A,R1<br>A<br>SUM<br>C;<br>A,#1<br>SUM;<br>A,#255;<br>R1,A | ;08/12<br>;08/12<br>;08/12                     |                               |                           |       |               |         |
|                                         |                                                 | CLR<br>CLR<br>CLR                                    | C<br>AC<br>OV                                             |                                                |                               |                           |       |               |         |
| G01:                                    | MOV<br>MOV<br>DIV<br>ADD<br>JNC<br>MOV          | A,R3<br>B,#5<br>AB<br>A,R3<br>TOLL<br>R3,#255        |                                                           |                                                |                               |                           |       |               |         |
| TOLL:                                   | CLR<br>MOV<br>CLR<br>CLR<br>RET                 | C<br>R3,A<br>OV<br>AC                                |                                                           |                                                |                               |                           |       |               |         |
| TMR_OUT                                 | :CLR                                            | EX1                                                  |                                                           |                                                |                               |                           |       |               |         |
|                                         | JB (<br>CALL                                    | )4H, NO_E<br>ERROR1                                  | RR1                                                       |                                                |                               |                           |       |               |         |
| NO_ERR1                                 | :CLR<br>SETB<br>JMP                             | 04H<br>EX1<br>AUTO                                   |                                                           |                                                |                               |                           |       |               |         |
| ; * * * * * * *<br>;<br>; * * * * * * * | * * * * * * * * *                               | *******<br>EXTER<br>******                           | ********<br>NAL INTE<br>*******                           | * * * * * * * *<br>RUPT 1 -<br>* * * * * * * * | *******<br>- ISR -<br>******* | ********<br>v2<br>******* | ***** | * * * * * * * | * * * * |
| EX1ISR:                                 | CLR<br>SETB<br>nop<br>nop<br>nop<br>CLR<br>CALL | P0.4<br>P0.5;<br>;<br>;<br>P0.5;<br>DELAYLOOP        | 2                                                         |                                                |                               |                           |       |               |         |

| CLR  | TR1 ;04/06  |
|------|-------------|
| CLR  | TRO ;04/06  |
| SETB | 04H         |
| JNB  | 02H,RUN DWN |
| JB   | 05H,RUN DWN |
| MOV  | R4,TH0 —    |
| MOV  | R5,TL0      |
| MOV  | B,R3        |
| MOV  | R6,B        |
| SETB | 05H         |

| ; | ****** | ** |
|---|--------|----|
| ; | DOWN   |    |
| ; | *****  | ** |

RUN\_DWN:CALL RUN DWNX

CALL READING

| ; | ****** | * * * |
|---|--------|-------|
| ; | RUN UP |       |
| ; | ****** | * * * |

CALL RUN UP

| EXR1OUT:MOV | TH1,#-10 |
|-------------|----------|
| MOV         | TL1,#-10 |
| MOV         | R3,#1    |
| SETB        | TR1      |
| RETI        |          |

| EX0ISR: | jnb<br>limn | P1.5,no_stop      |
|---------|-------------|-------------------|
| no_stop | :JB         | OEH,IG            |
|         | CLR         | P0.2              |
|         | CLR         | P0.3              |
|         | JNB         | OCH,S             |
|         | CLR         | P2.7 ;CURRENT OFF |
| S:      | CLR         | TR1 ;04/06        |
|         | CLR         | TRO ;04/06        |
|         | CALL        | DELAYLOOP         |
|         | SETB        | 08H               |
|         | JB          | OCH, EXROOUT      |
|         | ;SETB       | 06H               |
|         | ;SETB       | 06H ;06/12        |
|         | MOV         | B, R3             |
|         | MOV         | R7, В             |

CLR RS0 ; SETB RS1 ; REG BANK 1 MOV R1, THO MOV R2,TL0 CLR RS0 ; CLR RS1 ;REG BANK 0 ;MOV R3,#1H EXROOUT:CLR 0CH MOV TH1, #-10 MOV TL1,#-10 MOV R3,#1 SETB TR1 IG: RETI ; DELAY LOOP DELAYLOOP: MOV R0, #100; 1SEC = 100X10000 RPT: MOV THO, #HIGH COUNT MOV TLO, #LOW COUNT SETB TR0 DLY: JNB TFO, DLY CLR TR0 CLR TF0 DJNZ RO, RPT RET ; DOWN - LOWER DETECTION UNIT RUN DWNX:SETB EX0 CLR 0CH SETB P2.7; CUTTENT ON CALL DELAYLOOP ;JB 06H,DECT 2 ; 25-08 MOV R1, #HIGH COUNT2 MOV R2, #LOW COUNT2 MOV R3,#200 ;\* SETB P0.3 CALL DELAYLOOP TMR2: MOV TH0,#0H MOV TLO,#OH MOV TH1,R1 MOV TL1, R2 SETB TR1 SETB TR0 WAIT T2:JNB TF1,WAIT T2 clr tr1 CLR TR0 clr tf1 CLR TF0 DJNZ R3, TMR2

| 12-04-   | -06 Micro         | 02 latest                                       |
|----------|-------------------|-------------------------------------------------|
|          | ·· .              |                                                 |
|          | CETO              | 0.711                                           |
|          | JEIB<br>.TMP      |                                                 |
|          | OFF               |                                                 |
|          |                   |                                                 |
|          | _                 |                                                 |
| TMR_OU   | T2:;CLR           | EXO                                             |
|          | UB                | U8H, NO_ERR2                                    |
|          | SETB              | EKRORZ<br>EX ()                                 |
|          | JMP               | EXRIOUT                                         |
|          |                   |                                                 |
| NO_ERR   | 2:SETB            | EXO                                             |
|          | CLR               | 08H                                             |
| *****    | 107<br>*******    | * * * * * * * * * * * * * * * * * * * *         |
| ;        |                   | RUN UP SUB - PAISE DETECTION UNIT               |
| ;*****   | * * * * * * * * * | **************************************          |
| RUN_UP:  | : SETB            | EXO                                             |
|          | SETB              | OCH                                             |
| DECT_3   | CLR<br>CETTD      | RSU;                                            |
|          | SEID              | KSI; REG BANKI                                  |
|          | MOV               | A, R1                                           |
|          | MOV               | B, R2                                           |
|          | <b></b>           |                                                 |
|          | CLR               | RSU;                                            |
|          | CUK               | KSI; REG BANKU                                  |
|          |                   |                                                 |
|          | MOV               | R1,A                                            |
|          | MOV               | R2,B                                            |
|          | MOV               |                                                 |
|          | MOV               | A.#200 ·*                                       |
|          | CALL              | CALC TIME                                       |
|          |                   |                                                 |
|          | SETB              | P0.2                                            |
|          | CALL              | DELAYLOOP                                       |
| CNT DN:  | MOV               | TH1. #HIGH COUNT?                               |
|          | MOV               | TL1, #LOW COUNT2                                |
|          | SETB              | TR1                                             |
| WAIT_D:  | JNB               | TF1,WAIT_D                                      |
|          | clr               | trl                                             |
|          | CLY<br>DIN7       |                                                 |
|          | JB                | NS, CHI_UN<br>08H TMR OUT3, FXO OCCUPED CO OKID |
|          | MOV               | TH1,R1                                          |
|          | MOV               | TL1,R2                                          |
|          | SETB              | TR1                                             |
| WAIT_DX: | JNB               | TF1,WAIT_DX                                     |
|          | clr               | trl                                             |
|          | CIT<br>SETR       |                                                 |
|          |                   | U / 11                                          |

TMR\_OUT3:

| <pre>NO_ERR3:CLR 09H<br/>CLR 0DH<br/>OUT2: SETE EX0<br/>CLR 0CH<br/>CLR 0DH<br/>CLR 08H<br/>***********************************</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |                                                     | JB<br>JB<br>CALL<br>SETB<br>JMP               | 08H,NO_<br>0DH,NO_<br>ERROR4<br>EX0<br>OUT2 | ERR3<br>ERR3                                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------------------------------------------------|-----------------------------------------------|---------------------------------------------|---------------------------------------------|
| OUT2: SETB EX0<br>CLR OCH<br>CLR ODH<br>CLR 08H<br>RET<br>;************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NO_ERR      | 3:CLR<br>CLR                                        | 08H<br>0DH                                    |                                             |                                             |
| RET<br>RET<br>READING<br>READING<br>READING:SETE P0.0<br>RD_WT: JNB P1.7, RD_WT<br>CLR P0.0<br>;SETB P2.7<br>;CALL DELAYLOOP<br>SETB P0.6<br>NOP<br>NOP<br>CALL DELAYLOOP<br>SETB P0.0<br>CLR P0.0<br>CLR P0.0<br>CLR P0.0<br>CLR P1.7, RDNG0<br>CLR P0.0<br>CALL DELAYLOOP<br>RDNG0: JNB P1.7, RDNG0<br>CLR P0.0<br>CALL DELAYLOOP<br>RDNGS: JB P3.1, RDNG; 555 output is high for thr preset time ofte<br>CALL ERROR3<br>CLR P0.0<br>JMP OUT2<br>RDNGOK: SETB P0.0<br>NOP<br>NOP<br>CLR P0.0<br>JMP OUT2<br>RDNGOK: SETB P0.0<br>NOP<br>NOP<br>CLR P0.0<br>JMP OUT2<br>RDNGOK: SETB P0.0<br>NOP<br>NOP<br>CLR P0.0<br>JMP OUT2<br>RDNGOK: BETB P0.0<br>NOP<br>NOP<br>CLR P0.0<br>JMP OUT2<br>RDNGOK: BETB P0.0<br>NOP<br>NOP<br>CLR P0.1<br>;CLR P2.7<br>;CALL DELAYLOOP<br>JB P3.1, cnt_chk<br>CALL ERROR3 | OUT2:       | SETB<br>CLR<br>CLR<br>CLR<br>CLR                    | EX0<br>0CH<br>0DH<br>08H                      |                                             |                                             |
| <pre>;************************************</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             | RET                                                 |                                               |                                             |                                             |
| <pre>KEADING KEADING:SETE P0.0 KD_WT: JNB P1.7, RD_WT CLR P0.0 KDP CALL DELAYLOOP SETB P0.6 NOP CALL DELAYLOOP SETB P0.0 CLR P0.0 CALL DELAYLOOP RDNG: JNB P1.7, RDNG0 CLR P0.0 CALL DELAYLOOP RDNG: JB P3.1, RDNG; 555 output is high for thr preset time ofte CALL ERROR3 CLR P0.0 JMP OUT2 RDNGOK: SETB P0.0 NOP NOP CLR P0.0 NOP NOP CLR P0.6 NOP NOP SCLR P2.7 ;CALL DELAYLOOP JB P3.1, cnt_chk CALL ERROR3</pre>                                                                                                                                                                                                                                                                                                                                                                                        | ;*****      | ******                                              | *******                                       | *******                                     | * * * * * * * * * * * * * * * * * * * *     |
| READING:SETB P0.0<br>RD_WT: JNB P1.7, RD_WT<br>CLR P0.0<br>;SETB P2.7<br>;CALL DELAYLOOP<br>;SETB P0.6<br>NOP<br>CALL DELAYLOOP<br>SETB P0.0<br>CLR P0.0<br>CALL DELAYLOOP<br>RDNG0: JNB P1.7, RDNG0<br>CLR P0.0<br>CALL DELAYLOOP<br>RDNGX: JB P3.1, RDNG ; 555 output is high for thr preset time ofte<br>CALL ERROR3<br>CLR P0.0<br>JMP OUT2<br>RDNGOK: SETB P0.0<br>NOP<br>NOP<br>NOP<br>CLR P0.0<br>;CLR P0.0<br>;CLR P0.6<br>NOP<br>NOP<br>NOP<br>NOP<br>NOP<br>SETB P0.6<br>NOP<br>NOP<br>NOP<br>NOP<br>NOP<br>NOP<br>NOP<br>NOP                                                                                                                                                                                                                                                                       | ;<br>:***** | ******                                              | ****                                          | REAI<br>*******                             | DING                                        |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | READING     | G:SETB                                              | P0.0                                          |                                             | · · · · · · · · · · · · · · · · · · ·       |
| CALL DELAYLOOP<br>SETB P0.0<br>RDNG0: JNB P1.7, RDNG0<br>CLR P0.0<br>CALL DELAYLOOP<br>RDNG: JNB P1.7, RDNGX<br>JMP RDNGOK<br>RDNGX: JB P3.1, RDNG ; 555 output is high for thr preset time ofte<br>CALL ERROR3<br>CLR P0.0<br>JMP OUT2<br>RDNGOK: SETB P0.0<br>NOP<br>NOP<br>CLR P0.0<br>;CLR P0.6<br>NOP<br>NOP<br>;CLR P0.6<br>NOP<br>NOP<br>;CLR P2.7<br>;CALL DELAYLOOP<br>JB P3.1, cnt_chk<br>CALL ERROR3                                                                                                                                                                                                                                                                                                                                                                                               | RD_WT:      | JNB<br>CLR<br>;SETB<br>;CALL<br>;SETB<br>NOP<br>NOP | P1.7,RD_1<br>P0.0<br>P2.7<br>DELAYLO0<br>P0.6 | WT<br>OP                                    |                                             |
| SETB P0.0<br>RDNG0: JNB P1.7,RDNG0<br>CLR P0.0<br>CALL DELAYLOOP<br>RDNG: JNB P1.7,RDNGX<br>JMP RDNGOK<br>RDNGX: JB P3.1,RDNG; 555 output is high for thr preset time ofte<br>CALL ERROR3<br>CLR P0.0<br>JMP OUT2<br>RDNGOK: SETB P0.0<br>NOP<br>NOP<br>CLR P0.0<br>;CLR P0.6<br>NOP<br>NOP<br>;CLR P2.7<br>;CALL DELAYLOOP<br>JB P3.1,cnt_chk<br>CALL ERROR3                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             | CALL                                                | DELAYLOOI                                     | P                                           |                                             |
| <pre>KDNG0: JNB P1.7, RDNG0<br/>CLR P0.0<br/>CALL DELAYLOOP<br/>RDNG: JNB P1.7, RDNGX<br/>JMP RDNGOK<br/>RDNGX: JB P3.1, RDNG ; 555 output is high for thr preset time ofte<br/>CALL ERROR3<br/>CLR P0.0<br/>JMP OUT2<br/>RDNGOK: SETB P0.0<br/>NOP<br/>CLR P0.0<br/>;CLR P0.6<br/>NOP<br/>NOP<br/>;CLR P0.6<br/>NOP<br/>NOP<br/>;CLR P2.7<br/>;CALL DELAYLOOP<br/>JB P3.1, cnt_chk<br/>CALL ERROR3</pre>                                                                                                                                                                                                                                                                                                                                                                                                     | DDNCO.      | SETB                                                | P0.0                                          | 2.0                                         |                                             |
| CALL DELAYLOOP<br>RDNG: JNB P1.7, RDNGX<br>JMP RDNGOK<br>RDNGX: JB P3.1, RDNG ; 555 output is high for thr preset time ofte<br>CALL ERROR3<br>CLR P0.0<br>JMP OUT2<br>RDNGOK: SETB P0.0<br>NOP<br>NOP<br>CLR P0.0<br>; CLR P0.6<br>NOP<br>NOP<br>; CLR P2.7<br>; CALL DELAYLOOP<br>JB P3.1, cnt_chk<br>CALL ERROR3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | KDNGU:      | JNB<br>CLR                                          | P1.7, RDNC<br>P0.0                            | <u>-0</u>                                   |                                             |
| RDNG: JNB P1.7, RDNGX<br>JMP RDNGOK<br>RDNGX: JB P3.1, RDNG ; 555 output is high for thr preset time ofte<br>CALL ERROR3<br>CLR P0.0<br>JMP OUT2<br>RDNGOK: SETB P0.0<br>NOP<br>CLR P0.0<br>;CLR P0.6<br>NOP<br>NOP<br>;CLR P2.7<br>;CALL DELAYLOOP<br>JB P3.1, cnt_chk<br>CALL ERROR3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             | CALL                                                | DELAYLOOP                                     | 2                                           |                                             |
| JMP RDNGOK<br>RDNGX: JB P3.1, RDNG ; 555 output is high for thr preset time ofte<br>CALL ERROR3<br>CLR P0.0<br>JMP OUT2<br>RDNGOK: SETB P0.0<br>NOP<br>CLR P0.0<br>; CLR P0.6<br>NOP<br>NOP<br>; CLR P2.7<br>; CALL DELAYLOOP<br>JB P3.1, cnt_chk<br>CALL ERROR3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RDNG:       | JNB                                                 | P1.7,RDNG                                     | ΞX                                          |                                             |
| <pre>RDNOA. 0B F3.1, RDNG; 555 output is high for thr preset time ofte<br/>CALL ERROR3<br/>CLR P0.0<br/>JMP OUT2<br/>RDNGOK: SETB P0.0<br/>NOP<br/>CLR P0.0<br/>;CLR P0.6<br/>NOP<br/>NOP<br/>;CLR P2.7<br/>;CALL DELAYLOOP<br/>JB P3.1, cnt_chk<br/>CALL ERROR3</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RDNCX.      | JMP<br>.TB                                          | RDNGOK                                        | ·                                           |                                             |
| RDNGOK: SETB P0.0<br>NOP<br>NOP<br>CLR P0.0<br>;CLR P0.6<br>NOP<br>NOP<br>;CLR P2.7<br>;CALL DELAYLOOP<br>JB P3.1, cnt_chk<br>CALL ERROR3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ildilon.    | CALL<br>CLR<br>JMP                                  | ERROR3<br>P0.0<br>OUT2                        |                                             | output is nigh for thr preset time ofter t: |
| CLR P0.0<br>;CLR P0.6<br>NOP<br>NOP<br>;CLR P2.7<br>;CALL DELAYLOOP<br>JB P3.1,cnt_chk<br>CALL ERROR3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RDNGOK:     | SETB<br>NOP<br>NOP                                  | P0.0                                          |                                             |                                             |
| ;CLR P2.7<br>;CALL DELAYLOOP<br>JB P3.1,cnt_chk<br>CALL ERROR3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | CLR<br>;CLR<br>NOP<br>NOP                           | P0.0<br>P0.6                                  |                                             |                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             | ;CLR<br>;CALL<br>JB                                 | P2.7<br>DELAYLOO<br>P3.1,cnt_                 | P<br>chk                                    |                                             |
| cnt chk:RET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | cnt chk     | RET                                                 | ERROR3                                        |                                             |                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             | * , 1-1-1 - 1-                                      |                                               |                                             |                                             |
| ;*************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ;*****      | *****                                               | ********<br>ERROI                             | ******<br>R 1 - BA                          | **************************************      |

| ERROR                 | L: CLR<br>JB<br>JNB<br>MOV<br>MOV<br>MOV<br>MOV<br>CLR | P0.4<br>05H,S1 ;<br>02H,S1 ;<br>R4,#HIGH COUNT2 ;<br>R5,#LOW COUNT2 ;<br>B,#200 ;<br>R6,B<br>05H ; *DU IF ERR OCCURS ON 3RD PAIR THEN TIME READING |
|-----------------------|--------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
|                       | CLR                                                    | 02H ; "                                                                                                                                            |
|                       | SETB                                                   | 00H ; "<br>01H ; ABOVE 4 ERROR ON 3RD BAR, BUT NOT REALLY REQUIRED                                                                                 |
| S1:                   | SETB<br>nop                                            | P0.5 ;                                                                                                                                             |
|                       | nop                                                    | ;                                                                                                                                                  |
|                       | nop<br>nop                                             |                                                                                                                                                    |
|                       | nop                                                    | ;                                                                                                                                                  |
|                       | nop<br>nop                                             | ;                                                                                                                                                  |
|                       | CLR                                                    | P0.5 ;                                                                                                                                             |
|                       | CALL                                                   | ER I SW                                                                                                                                            |
|                       | CLR<br>RET                                             | P3.5                                                                                                                                               |
| ;<br>;*****<br>ERROR2 | ********<br>CLR<br>CLR<br>CALL<br>SETB                 | ERROR 2 - TEST PROBES NOT LOWERED<br>***********************************                                                                           |
|                       | JB<br>CLR                                              | 08H,NO_RELD ;23-03-06 reload values for run_up<br>TR1 :cos EX0 is not triggered on Error 2                                                         |
|                       | CLR                                                    | TRO                                                                                                                                                |
|                       | MOV<br>MOV                                             | B, R3<br>R7, B                                                                                                                                     |
|                       | CLR                                                    | RSO ;                                                                                                                                              |
|                       | MOV                                                    | RSI ;REG BANK I<br>R1,THO                                                                                                                          |
|                       | MOV                                                    | R2,TLO                                                                                                                                             |
|                       | CLR                                                    | RS0 ;<br>RS1 ;REG BANK 0 ;23-03-06 reload values for run up                                                                                        |
| NO RELE               | CALL                                                   | RIIN IIP                                                                                                                                           |
| ;SEE NO               | TE HERE                                                | IN PREVIOUS VERSIONS OF CODE                                                                                                                       |
|                       | JB<br>SETB                                             | 08H,E2_00T<br>P3.6 ;TO MIC1                                                                                                                        |
|                       | CALL                                                   | ER_I_SW                                                                                                                                            |
| E2_OUT:               | CLR                                                    | OAH                                                                                                                                                |
|                       | CLR<br>RET                                             | ОВН                                                                                                                                                |

12-04-06 Micro2 latest

ERROR 3 - TEST CUTTENT TIME EXCEEDED ; ERROR3: SETB 0 D H CALL RUN UP CLR P2.7 ;CALL DELAYLOOP; NOT NEEDED SETB P3.7 nop CALL DELAYLOOP CLR P3.7 E3 HLD: JNB P1.4, E3 HLD SETB P0.0 NOP NOP CLR P0.0 CLR 0 DH RET ERROR 4 - TEST PROBES NOT RAISED ERROR4: JB ODH, E4 OUT CLR P0.2 CLR P2.7 CALL DELAYLOOP SETB P2.6 nop CALL DELAYLOOP CLR P2.6 E4 HLD: JNB P1.4,E4 HLD SETB P0.0 NOP NOP CLR P0.0 JNB OAH, E4 OUT SETB 0BH SETB P3.6 ; TO MIC1 CALL ER I SW CLR P3.6 CLR 0AH E4 OUT: RET ERROR READING PROCEDURE \*\*\*\*\*\*\*\*\* \*\*\*\*\*\*\* ER I SW:SETB 0EH E1 CK1: JNB P1.4,E1 CK1 ;CLR EX0;? needed?06/12 AGN: JB P3.2, ON I SETB P2.0 JMP AGN ON I: CALL DELAYLOOP SETB P2.7

| PRBS_WT                                                             | CLR<br>:JB<br>CALL<br>JB<br>;CALL<br>SETB<br>NOP<br>NOP | P2.0<br>P3.2,PRBS_WT<br>DELAYLOOP<br>P3.2,PRBS_WT<br>DELAYLOOP<br>P0.0 |
|---------------------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------------------------|
|                                                                     | CLR                                                     | P0.0                                                                   |
| -1                                                                  | CALL                                                    | READING                                                                |
| ET_HTD:                                                             | JNB                                                     | P1.4, E1_HLD                                                           |
|                                                                     | SETB                                                    | 20.0                                                                   |
|                                                                     | NOP                                                     |                                                                        |
|                                                                     | CLR                                                     | P0.0                                                                   |
| AGN2:                                                               | JB                                                      | P3.2,OF I                                                              |
|                                                                     | SETB                                                    | P2.1                                                                   |
|                                                                     | JMP                                                     | AGN2                                                                   |
| OF_I:                                                               | CALL                                                    | DELAYLOOP                                                              |
|                                                                     | CLR                                                     | P2.7                                                                   |
|                                                                     | CLR                                                     | P2.1                                                                   |
|                                                                     | CALL                                                    | DELAYLOOP                                                              |
|                                                                     | ;SETB                                                   | EX0 ;? needed?06/12                                                    |
|                                                                     | CLR                                                     | OEH                                                                    |
|                                                                     | RET                                                     |                                                                        |
| $;$ $\land$ $\land$ $\land$ $\land$ $\land$ $\land$ $\land$ $\land$ | *******                                                 | ·*************************************                                 |
| END:                                                                | MOV                                                     | P0,#0H                                                                 |
|                                                                     | MOV                                                     |                                                                        |
|                                                                     | MOV                                                     | P3 #0H                                                                 |
|                                                                     | SETR                                                    | P2 6                                                                   |
|                                                                     | MOV                                                     | $PCON_{\pm}$ #0000010B · POWER DOWN                                    |
|                                                                     | NOP<br>END                                              |                                                                        |

| 12-04-                          | -06 Micro                                                                     | 2 latest                                                                                                         |
|---------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| ;Date<br>;Date<br>:             | Last mod<br>Last mod                                                          | dified : 09-01-06<br>dified : 07-03-06                                                                           |
| ;Date<br>;Date                  | Last moc<br>Last moc                                                          | lified : 23-03-06<br>lified : 21-04-06                                                                           |
| ; * * * * *<br>;<br>; * * * * * | * * * * * * * *<br>*<br>* * * * * * *                                         | **************************************                                                                           |
|                                 | ORG<br>LJMP<br>ORG<br>LJMP<br>ORG<br>LJMP                                     | OH<br>MAIN<br>OOO3H<br>EXOISR<br>OO13H<br>EX1ISR                                                                 |
| COUNT<br>COUNT2                 | EQU<br>EQU                                                                    | -10000 ;DELAY LOOP<br>-50000 ;SAFTY TIME                                                                         |
| MAIN:                           | ORG<br>MOV<br>MOV<br>MOV                                                      | 0030H<br>TMOD,#00010001B<br>IP,#0000001B<br>IE,#00000101B                                                        |
| ;*****<br>;*****                | MOV<br>MOV<br>MOV<br>MOV<br>MOV                                               | <pre>************************************</pre>                                                                  |
| ; clear                         | ing all<br>CLR<br>CLR<br>CLR<br>CLR<br>CLR<br>CLR<br>CLR<br>CLR<br>CLR<br>CLR | flags<br>00H<br>01H<br>02H<br>03H<br>04H<br>05H<br>06H<br>07H<br>08H<br>09H<br>0AH<br>0BH<br>0CH<br>0CH<br>0DH   |
| AGIAN:<br>START:                | SETB<br>SETB<br>SETB<br>JNB<br>JB<br>MOV                                      | EA<br>IT1<br>IT0<br>EX1; ENABLE EX INT1<br>P1.0, START<br>P1.6, AUT0 ; (1 = AUTO, 0 = MAN)<br>PCON, #00000010B ; |

| 12-04                                        | -06 Micro                                               | 2 latest                                                                                                                                                                    |  |
|----------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| AUTO:                                        | SETB<br>nop<br>nop<br>nop<br>CLR<br>SETB<br>SETB        | P0.5;<br>;<br>;<br>;<br>P0.5;<br>EX1<br>EX0                                                                                                                                 |  |
| ;*****<br>;<br>;<br>;<br>; SAFE_;<br>; ***** | CALL<br>CALL<br>JB<br>SETB<br>SJMP<br>R: CALL<br>SETB   | Safety Range Check*******(SIRC)<br>RUN_DWN<br>DELAYLOOP<br>P2.2,SAFE_R<br>P2.3; OUT OF RANGE ALLERT<br>\$<br>RUN_UP<br>P2.4; SWITCH ON INPUT RELAY<br>END CHECK************ |  |
| NLBAR:<br>LBAR:                              | SETB<br>CLR<br>CALL<br>JNB<br>JMP<br>JNB<br>CLR<br>LJMP | P0.1<br>OCH<br>DELAYLOOP<br>P3.0,LBAR<br>CONT<br>P1.1,NLBAR<br>P0.1<br>END                                                                                                  |  |
| CONT:<br>PW:                                 | SETB<br>JNB<br>NOP<br>NOP<br>NOP<br>CLR<br>CLR          | P0.0<br>P3.0,PW<br>P0.0<br>P0.1                                                                                                                                             |  |
| ONE:                                         | JB<br>JB<br>SETB<br>JMP<br>JB                           | 02H,LOAD; *nu<br>00H,ONE<br>00H<br>LOAD<br>01H,TWO                                                                                                                          |  |
| TWO:                                         | SETB<br>JMP<br>JB<br>SETB<br>CLR<br>CLR<br>JMP          | 01H<br>LOAD<br>02H,LOAD<br>02H<br>00H<br>01H<br>NTRD                                                                                                                        |  |
| LOAD:<br>NTRD:                               | JB<br>MOV<br>MOV<br>MOV                                 | 02H,THIRD<br>R1,#HIGH COUNT2<br>R2,#LOW COUNT2<br>R3,#200 ;*                                                                                                                |  |

|          | JMP        | BEGIN                                   |
|----------|------------|-----------------------------------------|
| ТНТВО.   | MOV        |                                         |
| ININD.   | MOV        | л, П4<br>Л Л                            |
|          | MOV        |                                         |
|          | MOV        | A, KO                                   |
|          | MOV        | KZ, A                                   |
|          | MOV        | A, R6                                   |
|          | MOV        | R3, A                                   |
|          | MOV        | A,#200 ;*                               |
|          | CALL       | CALC_TIME                               |
|          | SETB       | P0.4                                    |
|          | CALL       | DELAYLOOP                               |
| CNT RT   | : MOV      | TH1, #HIGH COUNT2                       |
|          | MOV        | $TI_1$ , $\#I_1OW$ COUNT?               |
|          | SETB       | TR1                                     |
| WATT R   | TNR        | ТКІ<br>ТГІ МАТТ Р                       |
|          | clr        | +r1                                     |
|          | clr        | L I<br>+ F 1                            |
|          |            |                                         |
|          | DONZ<br>TD | RS, CNT_RT                              |
|          | NOV        | U4H, TMR_OUT                            |
|          | MOV        | THI, RI                                 |
|          | MOV        | TL1, R2                                 |
|          | SETB       | TRI                                     |
| WALT_RX  | :JNB       | TF1,WAIT_RX                             |
|          | clr        | tr1                                     |
|          | clr        | tf1                                     |
|          | SETB       | 03H                                     |
|          | JMP        | TMR_OUT                                 |
| BEGIN:   | SETB       | P0_4                                    |
|          | CALL       | DELAYLOOP                               |
|          |            |                                         |
| TMR:     | MOV        | ТНО, #ОН                                |
|          | MOV        | TLO,#OH                                 |
|          | MOV        | TH1,R1                                  |
|          | MOV        | TL1,R2                                  |
|          | SETB       | TR1                                     |
|          | SETB       | TRO                                     |
| WAIT T1  | :JNB       | TF1,WAIT T1                             |
|          | clr        | tr1 -                                   |
|          | CLR        | TRO                                     |
|          | clr        | tf1                                     |
|          | CLR        | TFO                                     |
|          | DJN7       | R3. TMR                                 |
|          | SETR       | <u>ЛЭ, тих</u><br>ЛЗН                   |
|          | TMD        | ΨΜΡ ΟΠΨ                                 |
|          | OME        |                                         |
| ;*****   | ******     | ***************                         |
| ;        |            | CALC_TIME                               |
| ;*****   | *****      | * * * * * * * * * * * * * * * * * * * * |
| CALC_TIM | 1E:        | CLR C                                   |
|          |            | SUBB A,R3                               |
|          |            | MOV R3.A                                |
|          |            | CLR C                                   |
|          |            | CLR AC                                  |
|          |            |                                         |

| 12-04-                              | -06 Micro2                             | 2 latest                                             |                                                           |                                |                              |                          |                     |       |
|-------------------------------------|----------------------------------------|------------------------------------------------------|-----------------------------------------------------------|--------------------------------|------------------------------|--------------------------|---------------------|-------|
|                                     |                                        | CLR                                                  | ΟV                                                        |                                | ···                          |                          |                     |       |
|                                     |                                        |                                                      | 0,                                                        |                                |                              |                          |                     |       |
|                                     |                                        | MOV                                                  | A,R2                                                      |                                |                              |                          |                     |       |
|                                     |                                        | CPL<br>ADD<br>MOV                                    | A<br>A,#1<br>R2,A                                         |                                |                              |                          |                     |       |
| SUM:                                |                                        | MOV<br>CPL<br>JNC<br>CLR<br>ADD<br>JNC<br>MOV<br>MOV | A,R1<br>A<br>SUM<br>C;<br>A,#1<br>SUM;<br>A,#255;<br>R1,A | ;08/12<br>;08/12<br>;08/12     |                              |                          |                     |       |
|                                     |                                        | CLR<br>CLR<br>CLR                                    | C<br>AC<br>OV                                             |                                |                              |                          |                     |       |
| G01:                                | MOV<br>MOV<br>DIV<br>ADD<br>JNC<br>MOV | A,R3<br>B,#5<br>AB<br>A,R3<br>TOLL<br>R3,#255        |                                                           |                                |                              |                          |                     |       |
| TOLL:                               | MOV<br>CLR<br>CLR<br>RET               | R3,A<br>OV<br>AC                                     |                                                           |                                |                              |                          |                     |       |
| TMR_OU'I                            | ':CLR<br>JB (<br>CALL                  | EX1<br>)4H, NO_E<br>ERROR1                           | CRR1                                                      |                                |                              |                          |                     |       |
| NO_ERR1                             | :CLR<br>SETB<br>JMP                    | 04H<br>EX1<br>AUTO                                   |                                                           |                                |                              |                          |                     |       |
| ; * * * * * *<br>;<br>; * * * * * * | * * * * * * * * * *                    | *******<br>EXTER<br>******                           | *******<br>NAL INTE:<br>******                            | *******<br>RUPT 1 -<br>******* | *******<br>ISR - 1<br>****** | *******<br>72<br>******* | * * * * * * * * * * | ***** |
| EX1ISR:                             | CLR<br>SETB<br>nop<br>nop              | P0.4<br>P0.5;<br>;                                   |                                                           |                                |                              |                          |                     |       |
|                                     | nop                                    | ;                                                    |                                                           |                                |                              |                          |                     |       |
|                                     | CLR                                    | P0.5;                                                | D                                                         |                                |                              |                          |                     |       |
|                                     | CALL .                                 | ОБТАТГООТ                                            | r -                                                       |                                |                              |                          |                     |       |

| CLR  | TR1 ;04/06  |
|------|-------------|
| CLR  | TRO ;04/06  |
| SETB | 04H         |
| JNB  | 02H,RUN DWN |
| JB   | 05H,RUN DWN |
| MOV  | R4,TH0 —    |
| MOV  | R5,TL0      |
| MOV  | B,R3        |
| MOV  | R6,B        |
| SETB | 05H         |

| ; | ****** |
|---|--------|
| ; | DOWN   |
| ; | *****  |

RUN\_DWN:CALL RUN DWNX

CALL READING

| ; | ********* |
|---|-----------|
| ; | RUN UP    |
| ; | *****     |

CALL RUN UP

| EXR1OUT:MOV | TH1,#-10 |
|-------------|----------|
| MOV         | TL1,#-10 |
| MOV         | R3,#1    |
| SETB        | TR1      |
| RETI        |          |

| jnb<br>ljmp | P1.5,no_stop<br>end                                                                                               |
|-------------|-------------------------------------------------------------------------------------------------------------------|
| JB          | OEH,IG                                                                                                            |
| CLR         | P0.2                                                                                                              |
| CLR         | P0.3                                                                                                              |
| JNB         | OCH,S                                                                                                             |
| CLR         | P2.7 ;CURRENT OFF                                                                                                 |
| CLR         | TR1 ;04/06                                                                                                        |
| CLR         | TRO ;04/06                                                                                                        |
| CALL        | DELAYLOOP                                                                                                         |
| SETB        | 08H                                                                                                               |
| JB          | OCH,EXROOUT                                                                                                       |
| ;SETB       | 06H                                                                                                               |
| ;SETB       | 06H ;06/12                                                                                                        |
| MOV         | B,R3                                                                                                              |
| MOV         | R7,B                                                                                                              |
|             | jnb<br>ljmp<br>JB<br>CLR<br>CLR<br>CLR<br>CLR<br>CLR<br>CLR<br>CALL<br>SETB<br>JB<br>;SETB<br>;SETB<br>MOV<br>MOV |

|                  | CLR               | RSO                 | ;                                       |
|------------------|-------------------|---------------------|-----------------------------------------|
|                  | SETB              | RS1                 | ;REG BANK 1                             |
|                  | MOV               | RI, THO             |                                         |
|                  | CIP               | RZ,TLU              |                                         |
|                  | CLR               | RSU<br>RS1          | ,<br>DEC DANK O                         |
|                  | CHIC              | IND 1               | , REG BANK U                            |
|                  | ;MOV              | R3,#1H              | Ι                                       |
| EXR00            | UT:CLR            | ОСН                 |                                         |
|                  | MOV               | TH1,#−1             | 0                                       |
|                  | MOV               | TL1,#-1             | 0                                       |
|                  | MOV               | R3,#1               |                                         |
| IG:              | SETB<br>RETI      | TRI                 |                                         |
| ;****            | * * * * * * * * * | * * * * * * * * * * | *****                                   |
| ;                |                   |                     | DELAY LOOP                              |
| ;****>           | ********          | *********           | *************************************** |
| DELAII           | -00F:             | MOV                 | R0, #100; 1SEC = 100X10000              |
| IXE I •          |                   | MOV                 | THU, #HIGH COUNT<br>TIO #LOW COUNT      |
|                  |                   | SETB                | TRO                                     |
| DLY:             |                   | JNB                 | TFO, DLY                                |
|                  |                   | CLR                 | TRO                                     |
|                  |                   | CLR                 | TFO                                     |
|                  |                   | DJNZ                | RO, RPT                                 |
|                  |                   | RET                 |                                         |
| ;****            | *****             | *******             | * * * * * * * * * * * * * * * * * * * * |
| ;<br>• * * * * * | +++++++           | DOWN                | N - LOWER DETECTION UNIT                |
| RIN DW           | NY•SETE           |                     | *************************************** |
|                  | CLR               | 0CH                 |                                         |
|                  | SETB              | P2.7: CI            |                                         |
|                  | CALL              | DELAYLOC            | )P                                      |
|                  | ;JB               | 06H,DEC             | CT 2 ; 25-08                            |
|                  | MOV               | R1,#HIGH            | I COUNT2                                |
|                  | MOV               | R2,#LOW             | COUNT2                                  |
|                  | MOV               | R3,#200             | ;*                                      |
|                  | SETB              | P0.3                |                                         |
|                  | CALL              | DELAYLOC            | P                                       |
| MR2:             | MOV               | тно,#ОН             |                                         |
|                  | MOV               | TLO,#OH             |                                         |
|                  | MOV               | TH1,R1              |                                         |
|                  | MUV<br>Sete       | TLL, RZ             |                                         |
|                  | SETB              | TRO                 |                                         |
| AIT T2           | 2:JNB             | TF1.WATT            | Ψ2                                      |
| ·                | clr               | trl                 |                                         |
|                  | CLR               | TRO                 |                                         |
|                  | clr               | tf1                 |                                         |
|                  | CLR               | TFO                 |                                         |
|                  | DJNZ              | R3,TMR2             |                                         |

| 12-04-        | 06 Micro                       | 02 latest                               |                                       |
|---------------|--------------------------------|-----------------------------------------|---------------------------------------|
|               |                                |                                         |                                       |
|               |                                |                                         |                                       |
|               | SETB                           | 07H                                     |                                       |
|               | JMP                            | TMR_OUT2                                |                                       |
|               |                                |                                         |                                       |
|               |                                |                                         |                                       |
| TMP OUT       |                                | EVO                                     |                                       |
| 1141(_00)     | JTR                            | OSH NO FR                               | 200                                   |
|               | CALL                           | ERROR2                                  |                                       |
|               | SETB                           | EXO                                     |                                       |
|               | JMP                            | EXR1OUT                                 |                                       |
|               |                                |                                         |                                       |
| NO_ERR2       | SETB                           | EXO                                     |                                       |
|               | CLR                            | 08H                                     |                                       |
| • * * * * * * | . <b>* * * * * *</b> * * * * * | ****                                    |                                       |
| •             | ~ ~ ~ ~ ~ ~ ~ ~ ~              | ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ |                                       |
| :*****        | ******                         | *****                                   | RUN_UP SUB - TAISE DETECTION UNIT     |
| RUN UP:       | SETB                           | EX0                                     | · · · · · · · · · · · · · · · · · · · |
|               | SETB                           | OCH                                     |                                       |
| DECT_3:       | CLR                            | RS0;                                    |                                       |
|               | SETB                           | RS1; REG                                | G BANK1                               |
|               |                                |                                         |                                       |
|               | MOV                            | A, R1                                   |                                       |
|               | MOV                            | B,R2                                    |                                       |
|               | CIP                            | DCO.                                    |                                       |
|               | CLR                            | RSI, BEC                                | C RANKO                               |
|               | 0111                           |                                         |                                       |
|               |                                |                                         |                                       |
|               | MOV                            | R1,A                                    |                                       |
|               | MOV                            | R2,B                                    |                                       |
|               | MOV                            | A, R7                                   |                                       |
|               | MOV                            | R3,A                                    |                                       |
|               | MOV                            | A,#200                                  | ;*                                    |
|               | CALL                           | CALC_TIME                               |                                       |
|               | SETB                           | P0 2                                    |                                       |
|               | CALL                           | DELAYLOOP                               |                                       |
|               |                                |                                         |                                       |
| CNT_DN:       | MOV                            | TH1,#HIGH C                             | COUNT2                                |
|               | MOV                            | TL1, #LOW CO                            | OUNT2                                 |
|               | SETB                           | TR1                                     |                                       |
| WAIT_D:       | JNB                            | TF1,WAIT_D                              |                                       |
|               | cir                            | trl                                     |                                       |
|               | D.TN7                          |                                         |                                       |
|               | JR                             | AS, CNI_DN<br>ASH TMP AUT               | 2. EVO OCCUPED CO GRED                |
|               | MOV                            | TH1.R1                                  | 2, HVA ACCOVED 20 2VIL                |
|               | MOV                            | TL1,R2                                  |                                       |
|               | SETB                           | TR1                                     |                                       |
| WAIT_DX:      | JNB                            | TF1,WAIT DX                             |                                       |
|               | clr                            | tr1 -                                   |                                       |
|               | clr                            | tfl                                     |                                       |
|               | SETB                           | 07H                                     |                                       |

TMR\_OUT3:

|                    |                                                     | JB (<br>JB (<br>CALL H<br>SETB H<br>JMP (     | D8H,NO<br>DDH,NO<br>ERROR4<br>EXO<br>DUT2 | _ERR3<br>_ERR3                                           |
|--------------------|-----------------------------------------------------|-----------------------------------------------|-------------------------------------------|----------------------------------------------------------|
| NO_ERR             | 3:CLR<br>CLR                                        | 08H<br>0DH                                    |                                           |                                                          |
| OUT2:              | SETB<br>CLR<br>CLR<br>CLR                           | EX0<br>0CH<br>0DH<br>08H                      |                                           |                                                          |
|                    | RET                                                 |                                               |                                           |                                                          |
| ;*****             | ******                                              | *******                                       | *****                                     | * * * * * * * * * * * * * * * * * * * *                  |
| ;<br>• * * * * * * | ******                                              | ****                                          | REA                                       | DING                                                     |
| READING            | G:SETB                                              | P0.0                                          |                                           | ^ ^ ^ * * * * * * * * * * * * * * * * *                  |
| RD_WT:             | JNB<br>CLR<br>;SETB<br>;CALL<br>;SETB<br>NOP<br>NOP | P1.7,RD_W<br>P0.0<br>P2.7<br>DELAYLOO<br>P0.6 | T<br>P                                    |                                                          |
|                    | CALL                                                | DELAYLOOP                                     |                                           |                                                          |
| RDNG0:             | SETB<br>JNB<br>CLR<br>CALL                          | P0.0<br>P1.7,RDNG<br>P0.0                     | 0                                         |                                                          |
| RDNG:              | JNB<br>JMP                                          | P1.7, RDNGX                                   | X                                         |                                                          |
| RDNGX:             | JB<br>CALL<br>CLR<br>JMP                            | P3.1, RDNG<br>ERROR3<br>P0.0<br>OUT2          | ; 555                                     | output is high for thr preset time ofter t               |
| RDNGOK:            | SETB<br>NOP<br>NOP                                  | P0.0                                          |                                           |                                                          |
|                    | CLR<br>;CLR<br>NOP<br>NOP                           | P0.0<br>P0.6                                  |                                           |                                                          |
|                    | ;CLR<br>;CALL<br>JB                                 | P2.7<br>DELAYLOOP<br>P3.1,cnt_c               | hk                                        |                                                          |
| cnt_chk:           | CALL<br>RET                                         | ERROR3                                        |                                           |                                                          |
| •******            | *****                                               | ****                                          | * * * * * *                               | * * * * * * * * * * * * * * * * * * * *                  |
| ;<br>;*******      | ******                                              | ERROR<br>****                                 | 1 - BA                                    | ARS NOT DETECTED<br>************************************ |

| 12-04-                  | 06 Micr                                                                                     | o2 latest                                                                                                                                                                  |
|-------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ERROR1                  | : CLR<br>JB<br>JNB<br>MOV<br>MOV<br>MOV<br>MOV<br>CLR                                       | P0.4<br>05H,S1 ;<br>02H,S1 ;<br>R4,#HIGH COUNT2 ;<br>R5,#LOW COUNT2 ;<br>B,#200 ;<br>R6,B<br>05H ; *nu IF ERR OCCURS ON 3RD PAIR, THEN TIME READING                        |
| S1:                     | SETB<br>SETB<br>NOP<br>NOP<br>NOP<br>NOP<br>NOP<br>NOP<br>CLR<br>SETB<br>CALL<br>CLR<br>BET | 02H ; "<br>00H ; "<br>01H ; ABOVE 4 ERROR ON 3RD BAR, BUT NOT REALLY REQUIRED<br>P0.5 ;<br>;<br>;<br>P0.5 ;<br>P3.5 ;TO MIC1<br>ER I_SW<br>P3.5                            |
| ; *****<br>;<br>; ***** | *******                                                                                     | **************************************                                                                                                                                     |
| ERROR2:                 | CLR<br>CLR<br>CALL<br>SETB                                                                  | P0.3<br>P2.7<br>DELAYLOOP<br>OAH                                                                                                                                           |
|                         | JB<br>CLR<br>CLR<br>MOV<br>MOV<br>CLR<br>SETB<br>MOV<br>MOV<br>CLR                          | 08H,NO_RELD ;23-03-06 reload values for run_up<br>TR1 ;cos EXO is not triggered on Error 2<br>TR0<br>B,R3<br>R7,B<br>RS0 ;<br>RS1 ;REG BANK 1<br>R1,TH0<br>R2,TL0<br>PS0 ; |
|                         | CLR                                                                                         | RS0 ;<br>RS1 ;REG BANK 0 ;23-03-06 reload values for run_up                                                                                                                |
| NO_RELD<br>;SEE NO?     | CALL<br>FE HERE<br>JB<br>SETB<br>CALL<br>CLR                                                | RUN_UP<br>IN PREVIOUS VERSIONS OF CODE<br>OBH,E2_OUT<br>P3.6 ;TO MIC1<br>ER_I_SW<br>P3.6                                                                                   |
| E2_OUT:                 | CLR<br>CLR<br>RET                                                                           | 0AH<br>0BH                                                                                                                                                                 |

12-04-06 Micro2 latest ERROR 3 - TEST CUTTENT TIME EXCEEDED ; ERROR3: SETB 0 DH CALL RUN UP P2.7 CLR ;CALL DELAYLOOP; NOT NEEDED SETB P3.7 nop CALL DELAYLOOP CLR P3.7 E3 HLD: JNB P1.4, E3\_HLD SETB P0.0 NOP NOP CLR P0.0 CLR 0 DH RET ERROR 4 - TEST PROBES NOT RAISED ERROR4: JB ODH, E4 OUT CLR P0.2 CLR P2.7 CALL DELAYLOOP SETB P2.6 nop DELAYLOOP CALL CLR P2.6 E4 HLD: JNB P1.4,E4 HLD SETB P0.0 NOP NOP CLR P0.0 JNB OAH, E4 OUT SETB 0BH SETB P3.6 ; TO MIC1 CALL ER I SW CLR P3.6 CLR 0AH E4 OUT: RET ERROR READING PROCEDURE \*\*\*\*\* ER I SW:SETB 0EH E1 CK1: JNB P1.4,E1 CK1 ;CLR EX0;? needed?06/12 AGN: JΒ P3.2, ON I SETB P2.0 JMP AGN ON I: CALL DELAYLOOP

SETB P2.7

| PRBS_WT         | CLR<br>;JB<br>CALL<br>JB<br>;CALL<br>SETB<br>NOP<br>NOP | P2.0<br>P3.2,PRBS_WT<br>DELAYLOOP<br>P3.2,PRBS_WT<br>DELAYLOOP<br>P0.0     |
|-----------------|---------------------------------------------------------|----------------------------------------------------------------------------|
| E1_HLD:         | CLR<br>CALL<br>JNB<br>SETB<br>NOP<br>NOP                | P0.0<br>READING<br>P1.4,E1_HLD<br>P0.0                                     |
| AGN2:           | CLR<br>JB<br>SETB                                       | P0.0<br>P3.2,OF_I<br>P2.1                                                  |
| OF_I:           | CALL<br>CLR<br>CLR<br>CALL<br>;SETB<br>CLR<br>RET       | DELAYLOOP<br>P2.7<br>P2.1<br>DELAYLOOP<br>EX0 ;? needed?06/12<br>OEH       |
| ;******<br>END: | MOV<br>MOV<br>MOV<br>MOV<br>SETB<br>MOV<br>NOP<br>END   | P0,#0H<br>P1,#0H<br>P2,#0H<br>P3,#0H<br>P2.6<br>PCON,#00000010B;POWER DOWN |













İ

\_

| Reading : 1 [10mV +/- 1mV]                                    | Reading : 21 [210mV +/- 1mV]         □                         |
|---------------------------------------------------------------|----------------------------------------------------------------|
| Reading : 2 [20mV +/- 1mV]                                    | Reading : 22 [220mV +/- 1mV]                                   |
| Reading : 3 [30mV +/- 1mV]                                    | Reading : 23 [230mV +/- 1mV]                                   |
| Reading : 4 [40mV +/- 1mV]                                    | Reading : 24 [240mV +/- 1mV]                                   |
| Reading : 5 [50mV +/- 1mV]                                    | Reading : 25 [250mV +/- 1mV]                                   |
| Reading : 6 [60mV +/- 1mV]                                    | Reading : 26 [260mV +/- 1mV]                                   |
| Reading : 7 [70mV +/- 1mV]                                    | Reading : 27 [270mV +/- 1mV]                                   |
| Reading : 8 [80mV +/- 1mV]                                    | Reading : 28 [280mV +/- 1mV]                                   |
| Reading : 9 [90mV +/- 1mV]                                    | Reading : 29 [290mV +/- 1mV]                                   |
| Reading : 10 [100mV +/- 1mV]                                  | Reading : 30 [300mV +/- 1mV]                                   |
| Reading : 11 [110mV +/- 1mV]                                  | Reading : 31 [310mV +/- 1mV]                                   |
| Reading : 12 [120mV +/- 1mV]                                  | Reading : 32 [320mV +/- 1mV]                                   |
| Reading : 13 [130mV +/- 1mV]                                  | Reading : 33 [330mV +/- 1mV]                                   |
| Reading : 14 [140mV +/- 1mV]                                  | Reading : 34 [340mV +/- 1mV]         Image: 10 minute          |
| Reading : 15 [150mV +/- 1mV]                                  | Reading : 35 [350mV +/- 1mV]                                   |
| Reading : 16 (160mV +/- 1mV)                                  | Reading : 36 [360mV +/- 1mV]         Image: 10 (360mV +/- 1mV) |
| Reading : 17 [170mV +/- 1mV]                                  | Reading : 37 [370mV +/- 1mV]                                   |
| Reading : 18 [180mV +/- 1mV]                                  | Reading : 38 [380mV +/- 1mV]                                   |
| Reading : 19 [190mV +/- 1mV]                                  | Reading : 39 [390mV +/- 1mV]                                   |
| Reading : 20 [200mV +/- 1mV]                                  | Reading : 40 [400mV +/- 1mV]                                   |
|                                                               |                                                                |
| Close Calibration Screen View Spread Sheet Re-Take Reading(s) | Calculate And Save                                             |



# 54LS00/DM54LS00/DM74LS00 Quad 2-Input NAND Gates

#### **General Description**

#### Features

This device contains four independent gates each of which performs the logic NAND function.

 Alternate Military/Aerospace device (54LS00) is available. Contact a National Semiconductor Sales Office/ Distributor for specifications.

## **Connection Diagram**



### **Function Table**

 $\mathbf{Y} = \overline{\mathbf{AB}}$ Inputs Output Y в Α н L L н Н L Н L. Н н н L





54LS00/DM54LS00/DM74LS00 Quad 2-Input NAND Gates

June 1989

© 1995 National Semiconductor Corporation TL/F/6439

RRD-B30M105/Printed in U. S. A.

#### Absolute Maximum Ratings (Note)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

| Supply Voltage                       | 7V              |
|--------------------------------------|-----------------|
| Input Voltage                        | 7V              |
| Operating Free Air Temperature Range |                 |
| DM54LS and 54LS                      | -55°C to +125°C |
| DM74LS                               | 0°C to +70°C    |
| Storage Temperature Range            | -65°C to +150°C |

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

#### **Recommended Operating Conditions**

| Symbol          | Parameter                      | DM54LS00 |     |      | DM74LS00 |     |      | Unite  |
|-----------------|--------------------------------|----------|-----|------|----------|-----|------|--------|
|                 | i arameter                     | Min      | Nom | Max  | Min      | Nom | Max  | •••••• |
| V <sub>CC</sub> | Supply Voltage                 | 4.5      | 5   | 5.5  | 4.75     | 5   | 5.25 | V      |
| VIH             | High Level Input Voltage       | 2        |     |      | 2        |     |      | V      |
| VIL             | Low Level Input Voltage        |          |     | 0.7  |          |     | 0.8  | V      |
| I <sub>OH</sub> | High Level Output Current      |          |     | -0.4 |          |     | -0.4 | mA     |
| I <sub>OL</sub> | Low Level Output Current       |          |     | 4    |          |     | 8    | mA     |
| T <sub>A</sub>  | Free Air Operating Temperature | -55      |     | 125  | 0        |     | 70   | °C     |

# Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

| Symbol          | Parameter                            | Conditions                            |      | Min | Typ<br>(Note 1) | Max   | Units |
|-----------------|--------------------------------------|---------------------------------------|------|-----|-----------------|-------|-------|
| VI              | Input Clamp Voltage                  | $V_{CC} = Min, I_I = -18 \text{ mA}$  |      |     |                 | -1.5  | V     |
| V <sub>OH</sub> | High Level Output                    | $V_{CC} = Min, I_{OH} = Max,$         | DM54 | 2.5 | 3.4             |       | v     |
|                 | Voltage                              | V <sub>IL</sub> = Max                 | DM74 | 2.7 | 3.4             |       |       |
| VOL             | Low Level Output                     | $V_{CC} = Min, I_{OL} = Max,$         | DM54 |     | 0.25            | 0.4   | V     |
|                 | Voltage                              | V <sub>IH</sub> = Min                 | DM74 |     | 0.35            | 0.5   |       |
|                 |                                      | $I_{OL} = 4 \text{ mA}, V_{CC} = Min$ | DM74 |     | 0.25            | 0.4   |       |
| lı              | Input Current @ Max<br>Input Voltage | $V_{CC} = Max, V_1 = 7V$              |      |     |                 | 0.1   | mA    |
| I <sub>IH</sub> | High Level Input Current             | $V_{CC} = Max, V_I = 2.7V$            |      |     |                 | 20    | μΑ    |
| IIL             | Low Level Input Current              | $V_{CC} = Max, V_I = 0.4V$            |      |     |                 | -0.36 | mA    |
| IOS             | Short Circuit                        | V <sub>CC</sub> = Max                 | DM54 | -20 |                 | -100  | mA    |
|                 | Output Current                       | (Note 2)                              | DM74 | -20 |                 | -100  |       |
| ICCH            | Supply Current with<br>Outputs High  | V <sub>CC</sub> = Max                 |      |     | 0.8             | 1.6   | mA    |
| ICCL            | Supply Current with<br>Outputs Low   | V <sub>CC</sub> = Max                 |      |     | 2.4             | 4.4   | mA    |

# Switching Characteristics at $V_{CC} = 5V$ and $T_A = 25^{\circ}C$ (See Section 1 for Test Waveforms and Output Load)

| Symbol               | Parameter                                                     | C <sub>L</sub> = | 15 pF | C <sub>L</sub> = | Units |    |  |  |  |
|----------------------|---------------------------------------------------------------|------------------|-------|------------------|-------|----|--|--|--|
|                      |                                                               | Min              | Max   | Min              | Мах   |    |  |  |  |
| t <sub>PLH</sub>     | Propagation Delay Time<br>Low to High Level Output            | 3                | 10    | 4                | 15    | ns |  |  |  |
| t <sub>PHL</sub>     | Propagation Delay Time<br>High to Low Level Output            | 3                | 10    | 4                | 15    | ns |  |  |  |
| Note 1. All typicals | Note 1. All traineds are at $V_{00} = 5V$ T. $= 25^{\circ}$ C |                  |       |                  |       |    |  |  |  |

**Note 1:** All typicals are at  $V_{CC} = 5V$ ,  $T_A = 25^{\circ}C$ .

Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.








National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.

DM74LS02 Quad 2-Input NOR Gate

## FAIRCHILD

SEMICONDUCTOR

## DM74LS02 Quad 2-Input NOR Gate

## **General Description**

This device contains four independent gates each of which performs the logic NOR function.

## **Ordering Code:**

| Order Number | Package Number | Package Description                                                         |
|--------------|----------------|-----------------------------------------------------------------------------|
| DM74LS02M    | M14A           | 14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-120, 0.150 Narrow |
| DM74LS02SJ   | M14D           | 14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide               |
| DM74LS02N    | N14A           | 14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide       |

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

## **Connection Diagram**



## **Function Table**

 $\mathbf{Y} = \mathbf{\overline{A} + B}$ 

| In | puts | Output |
|----|------|--------|
| A  | В    | Y      |
| L  | L    | Н      |
| L  | н    | L      |
| н  | L    | L      |
| н  | н    | L      |

H = HIGH Logic Level L = LOW Logic Level

## Absolute Maximum Ratings(Note 1)

| Supply Voltage                       | 7V                             |
|--------------------------------------|--------------------------------|
| Input Voltage                        | 7V                             |
| Operating Free Air Temperature Range | $0^{\circ}C$ to $+70^{\circ}C$ |
| Storage Temperature Range            | -65°C to +150°C                |

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

## **Recommended Operating Conditions**

| Symbol          | Parameter                      | Min  | Nom | Max  | Units |
|-----------------|--------------------------------|------|-----|------|-------|
| V <sub>CC</sub> | Supply Voltage                 | 4.75 | 5   | 5.25 | V     |
| V <sub>IH</sub> | HIGH Level Input Voltage       | 2    |     |      | V     |
| V <sub>IL</sub> | LOW Level Input Voltage        |      |     | 0.8  | V     |
| I <sub>OH</sub> | HIGH Level Output Current      |      |     | -0.4 | mA    |
| I <sub>OL</sub> | LOW Level Output Current       |      |     | 8    | mA    |
| T <sub>A</sub>  | Free Air Operating Temperature | 0    |     | 70   | °C    |

### **Electrical Characteristics**

over recommended operating free air temperature range (unless otherwise noted)

| Symbol           | Parameter                         | Conditions                                      | Min | Typ<br>(Note 2) | Max   | Units |
|------------------|-----------------------------------|-------------------------------------------------|-----|-----------------|-------|-------|
| VI               | Input Clamp Voltage               | $V_{CC} = Min, I_I = -18 mA$                    |     |                 | -1.5  | V     |
| V <sub>OH</sub>  | HIGH Level<br>Output Voltage      | $V_{CC} = Min, I_{OH} = Max,$<br>$V_{IL} = Max$ | 2.7 | 3.4             |       | V     |
| V <sub>OL</sub>  | LOW Level<br>Output Voltage       | $V_{CC} = Min, I_{OL} = Max,$<br>$V_{IH} = Min$ |     | 0.35            | 0.5   | V     |
|                  |                                   | $I_{OL} = 4 \text{ mA}, V_{CC} = \text{Min}$    |     | 0.25            | 0.4   |       |
| l <sub>l</sub>   | Input Current @ Max Input Voltage | $V_{CC} = Max, V_I = 7V$                        |     |                 | 0.1   | mA    |
| I <sub>IH</sub>  | HIGH Level Input Current          | $V_{CC} = Max, V_I = 2.7V$                      |     |                 | 20    | μΑ    |
| Ι <sub>ΙL</sub>  | LOW Level Input Current           | $V_{CC} = Max, V_I = 0.4V$                      |     |                 | -0.40 | mA    |
| los              | Short Circuit Output Current      | V <sub>CC</sub> = Max (Note 3)                  | -20 |                 | -100  | mA    |
| I <sub>CCH</sub> | Supply Current with Outputs HIGH  | V <sub>CC</sub> = Max                           |     | 1.6             | 3.2   | mA    |
| I <sub>CCL</sub> | Supply Current with Outputs LOW   | V <sub>CC</sub> = Max                           |     | 2.8             | 5.4   | mA    |

Note 2: All typicals are at  $V_{CC} = 5V$ ,  $T_A = 25^{\circ}C$ .

Note 3: Not more than one output should be shorted at a time, and the duration should not exceed one second.

## **Switching Characteristics**

at  $V_{CC}=5V$  and  $T_A=25^\circ C$ 

| Symbol           | Parameter                | C <sub>L</sub> = 15 pF |     | <b>C</b> <sub>L</sub> = | Units |     |
|------------------|--------------------------|------------------------|-----|-------------------------|-------|-----|
|                  |                          | Min                    | Max | Min                     | Max   |     |
| t <sub>PLH</sub> | Propagation Delay Time   |                        | 12  |                         | 19    | nc  |
|                  | LOW-to-HIGH Level Output |                        | 15  |                         | 10    | 115 |
| t <sub>PHL</sub> | Propagation Delay Time   |                        | 10  |                         | 15    | nc  |
|                  | HIGH-to-LOW Level Output |                        | 10  |                         | 15    | 115 |







www.fairchildsemi.com

DM74LS02 Quad 2-Input NOR Gate

This datasheet has been downloaded from:

www.DatasheetCatalog.com

Datasheets for electronic components.

### SN5404, SN54LS04, SN54S04, SN7404, SN74LS04, SN74S04 HEX INVERTERS SDLS029B – DECEMBER 1983 – REVISED FEBRUARY 2002

ruments Quality and SN5404

### Dependable Texas Instruments Quality and Reliability

## description

These devices contain six independent inverters.

| SN5404                                 | J PACKAGE                             |
|----------------------------------------|---------------------------------------|
| SN54LS04, SN54S                        | 04 J OR W PACKAGE                     |
| SN7404 D,                              | N, OR NS PACKAGE                      |
| SN74LS04 D,                            | DB, N, OR NS PACKAGE                  |
| SN74S04                                | . D OR N PACKAGE                      |
| (T                                     | OP VIEW)                              |
|                                        |                                       |
| 1АЦ 1                                  | <sup>14</sup> V <sub>CC</sub>         |
| 1Y 🛽 2                                 | 13 🛛 6A                               |
| 2A 🛛 3                                 | 12 6Y                                 |
| 2YÎ₄                                   | 11 <b>1</b> 5A                        |
|                                        | 10 1 5Y                               |
| 3/10                                   |                                       |
|                                        | 9 U 4A                                |
|                                        | <sup>8</sup>   <sup>4</sup>           |
|                                        |                                       |
| SN5404                                 |                                       |
| . 110404<br>(T                         |                                       |
| (1                                     |                                       |
|                                        |                                       |
|                                        |                                       |
|                                        |                                       |
| 2A[] 3                                 | 12 <b>[</b> 6Y                        |
| Vcc 4                                  | 11 🛛 GND                              |
| 3A 🚺 5                                 | 10 🛛 5Y                               |
| 3Y 🛙 6                                 | 9 🕇 5A                                |
| 4A 1 7                                 | 8 <b>6</b> 4Y                         |
| ······································ | U                                     |
|                                        |                                       |
| SN54LS04, SN54                         | IS04 FK PACKAGE                       |
| (тс                                    | DP VIEW)                              |
|                                        | U                                     |
| 7 ↓<br>1                               | N N N N N N N N N N N N N N N N N N N |
|                                        |                                       |
| 24 3 2                                 | 1 20 19                               |
|                                        |                                       |
|                                        |                                       |
| 2Y 🛛 6                                 | 16 🛛 5A                               |
| NC 🛛 7                                 | 15 🚺 NC                               |
| 3A 🕇 8                                 | 14 🚺 5Y                               |
| 9_1                                    |                                       |
|                                        |                                       |
| ND 3                                   | N 4 4                                 |
| ("                                     |                                       |

NC - No internal connection



Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.



 $Copyright © 2002, \mbox{Texas Instruments Incorporated} \\ On products compliant to MIL-PRF-3853s, all parameters are tested unless otherwise noted. On all other products, production processing does not necessarily include testing of all parameters.$ 

SDLS029B – DECEMBER 1983 – REVISED FEBRUARY 2002

| ТА                                                                                                                                                                                                             | PAC       | KAGE <sup>†</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ORDERABLE<br>PART NUMBER | TOP-SIDE<br>MARKING |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|---------------------|
|                                                                                                                                                                                                                |           | Tube                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SN7404N                  | SN7404N             |
|                                                                                                                                                                                                                | PDIP – N  | Tube                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SN74LS04N                | SN74LS04N           |
|                                                                                                                                                                                                                |           | Tube                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SN74S04N                 | SN74S04N            |
|                                                                                                                                                                                                                |           | Tube                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SN7404D                  | 7404                |
|                                                                                                                                                                                                                |           | Tube                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SN74LS04D                | 1.504               |
| 0°C to 70°C                                                                                                                                                                                                    | SOIC – D  | Tape and reel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SN74LS04DR               | 1304                |
|                                                                                                                                                                                                                |           | Tube                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SN74S04D                 | 504                 |
| TA         F           0°C to 70°C         5           -55°C to 125°C         C           L         L                                                                                                          |           | Tape and reel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SN74S04DR                | 504                 |
|                                                                                                                                                                                                                |           | Tape and reel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SN7404NSR                | SN7404              |
|                                                                                                                                                                                                                | 50P - N5  | Tape and reel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SN74LS04NSR              | 74LS04              |
|                                                                                                                                                                                                                | SSOP – DB | PACKAGE1ORDERABLE<br>PART NUMBERTOP<br>MARPDIP - NTubeSN7404NSN7404NPDIP - NTubeSN74LS04NSN7404NTubeSN74S04NSN74LS04NTubeSN74S04NSN74S04NSOIC - DTubeSN74LS04DTubeSN74LS04D7404TubeSN74LS04DT404TubeSN74LS04DLS04SOIC - DTape and reelSN74S04DRTubeSN74S04DRS04Tape and reelSN74S04DRS04SOP - NSTape and reelSN7404NSRSOP - DBTape and reelSN74LS04DSRSOP - DBTape and reelSN74LS04DSRSOP - DBTape and reelSN5404JSOP - DBTape and reelSN5404JSOP - DBTape and reelSN5404JSN5404JSN5404JSN5404JTubeSN5404JSN5404JTubeSNJ54LS04JSNJ54LS04TubeSNJ54LS04JSNJ54LS04TubeSNJ54LS04JSNJ54LS04TubeSNJ54LS04JSNJ54LS04CFP - WTubeSNJ54LS04WTubeSNJ54LS04WSNJ54LS04TubeSNJ54LS04WSNJ54LS04TubeSNJ54LS04WSNJ54LS04TubeSNJ54LS04FKSNJ54LS04TubeSNJ54LS04FKSNJ54LS04TubeSNJ54S04FKSNJ54S04 | LS04                     |                     |
|                                                                                                                                                                                                                |           | Tube                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SN5404J                  | SN5404J             |
|                                                                                                                                                                                                                |           | Tube                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SNJ5404J                 | SNJ5404J            |
|                                                                                                                                                                                                                |           | Tube                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SN54LS04J                | SN54LS04J           |
|                                                                                                                                                                                                                | CDIP – J  | Tube                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SN54S04J                 | SN54S04J            |
| $PDIP - N$ $O^{\circ}C to 70^{\circ}C$ $SOIC - D$ $SOP - NS$ $SSOP - DB$ $CDIP - J$ $CDIP - J$ $CFP - W$ $LCCC - FK$                                                                                           | Tube      | SNJ54LS04J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SNJ54LS04J               |                     |
| –55°C to 125°C                                                                                                                                                                                                 |           | KAGE1ORDERABLE<br>PART NUMBERTOP-SIDE<br>MARKINGTubeSN7404NSN7404NTubeSN74LS04NSN74LS04NTubeSN74S04NSN74LS04NTubeSN7404D7404TubeSN74LS04D7404TubeSN74LS04DLS04TubeSN74S04DS04TubeSN74S04DRS04Tape and reelSN74S04DRS04Tape and reelSN74S04DRS04Tape and reelSN74S04DRS04Tape and reelSN74LS04DRS04Tape and reelSN74S04DRSN404Tape and reelSN74US04DRSN404Tape and reelSN74LS04DRSN404TubeSN5404JSN5404TubeSN5404JSN5404TubeSN5404JSN5404JTubeSN54S04JSN54S04JTubeSNJ54LS04JSNJ54LS04JTubeSNJ54S04JSNJ54S04JTubeSNJ54S04JSNJ5404JTubeSNJ54S04JSNJ54S04JTubeSNJ54S04JSNJ54S04JTubeSNJ54S04WSNJ54LS04WTubeSNJ54S04WSNJ54LS04WTubeSNJ54LS04FKSNJ54LS04FKTubeSNJ54S04FKSNJ54S04FK                                                                                                  |                          |                     |
|                                                                                                                                                                                                                |           | Tube                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SNJ5404W                 | SNJ5404W            |
| TA         PDIP – N           0°C to 70°C         SOIC – D           SOP – NS         SOP – NS           SSOP – D         CDIP – J           -55°C to 125°C         CFP – W           LCCC – F         CCC – F | CFP – W   | Tube                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SNJ54LS04W               | SNJ54LS04W          |
|                                                                                                                                                                                                                |           | Tube                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SNJ54S04W                | SNJ54S04W           |
|                                                                                                                                                                                                                |           | Tube                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SNJ54LS04FK              | SNJ54LS04FK         |
|                                                                                                                                                                                                                |           | Tube                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SNJ54S04FK               | SNJ54S04FK          |

### ORDERING INFORMATION

<sup>†</sup> Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

#### FUNCTION TABLE (each inverter)

| INPU<br>A | T OUTPUT<br>Y |
|-----------|---------------|
| н         | L             |
| L         | н             |



## logic diagram (positive logic)





SDLS029B – DECEMBER 1983 – REVISED FEBRUARY 2002

### schematics (each gate)





Resistor values shown are nominal.



SDLS029B - DECEMBER 1983 - REVISED FEBRUARY 2002

### absolute maximum ratings over operating free-air temperature range (unless otherwise noted)<sup>†</sup>

| Supply voltage, V <sub>CC</sub> (see Note 1)           |            |               |
|--------------------------------------------------------|------------|---------------|
| Input voltage, V <sub>I</sub> : '04, 'S04              |            | 5.5 V         |
| 'LS04                                                  |            |               |
| Package thermal impedance, $\theta_{JA}$ (see Note 2): | D package  | 86°C/W        |
|                                                        | DB package | 96°C/W        |
|                                                        | N package  | 80°C/W        |
|                                                        | NS package | 76°C/W        |
| Storage temperature range, T <sub>sta</sub>            |            | 65°C to 150°C |

<sup>†</sup> Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. This are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. Voltage values are with respect to network ground terminal.

2. The package thermal impedance is calculated in accordance with JESD 51-7.

### recommended operating conditions

|     |                                |     | SN5404 |      |      | SN7404 |      |      |
|-----|--------------------------------|-----|--------|------|------|--------|------|------|
|     |                                | MIN | NOM    | MAX  | MIN  | NOM    | MAX  | UNIT |
| VCC | Supply voltage                 | 4.5 | 5      | 5.5  | 4.75 | 5      | 5.25 | V    |
| VIH | High-level input voltage       | 2   |        |      | 2    |        |      | V    |
| VIL | Low-level input voltage        |     |        | 0.8  |      |        | 0.8  | V    |
| ЮН  | High-level output current      |     |        | -0.4 |      |        | -0.4 | mA   |
| IOL | Low-level output current       |     |        | 16   |      |        | 16   | mA   |
| TA  | Operating free-air temperature | -55 |        | 125  | 0    |        | 70   | °C   |

# electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

|                 |                        |                          |                           | SN5404 |      |      | SN7404 |      | LINIT |      |
|-----------------|------------------------|--------------------------|---------------------------|--------|------|------|--------|------|-------|------|
| PARAMETER       |                        |                          |                           | MIN    | ΤΥΡ§ | MAX  | MIN    | ΤΥΡ§ | MAX   | UNIT |
| VIK             | $V_{CC} = MIN,$        | lj = –12 mA              |                           |        |      | -1.5 |        |      | -1.5  | V    |
| VOH             | $V_{CC} = MIN,$        | V <sub>IL</sub> = 0.8 V, | I <sub>OH</sub> = -0.4 mA | 2.4    | 3.4  |      | 2.4    | 3.4  |       | V    |
| VOL             | $V_{CC} = MIN,$        | V <sub>IH</sub> = 2 V,   | I <sub>OL</sub> = 16 mA   |        | 0.2  | 0.4  |        | 0.2  | 0.4   | V    |
| Ц               | V <sub>CC</sub> = MAX, | V <sub>I</sub> = 5.5 V   |                           |        |      | 1    |        |      | 1     | mA   |
| Чн              | V <sub>CC</sub> = MAX, | V <sub>I</sub> = 2.4 V   |                           |        |      | 40   |        |      | 40    | μΑ   |
| Ι <sub>ΙL</sub> | V <sub>CC</sub> = MAX, | V <sub>I</sub> = 0.4 V   |                           |        |      | -1.6 |        |      | -1.6  | mA   |
| IOS             | $V_{CC} = MAX$         |                          |                           | -20    |      | -55  | -18    |      | -55   | mA   |
| ІССН            | V <sub>CC</sub> = MAX, | $V_{I} = 0 V$            |                           |        | 6    | 12   |        | 6    | 12    | mA   |
| ICCL            | V <sub>CC</sub> = MAX, | VI = 4.5 V               |                           |        | 18   | 33   |        | 18   | 33    | mA   |

<sup>‡</sup> For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

§ All typical values are at  $V_{CC} = 5 \text{ V}$ ,  $T_A = 25^{\circ}\text{C}$ .

¶ Not more than one output should be shorted at a time.

## switching characteristics, $V_{CC} = 5 V$ , $T_A = 25^{\circ}C$ (see Figure 1)

| PARAMETER        | FROM | FROM TO TEST CONDITIONS |                                                   | SN5404<br>SN7404 |     |     | UNIT |
|------------------|------|-------------------------|---------------------------------------------------|------------------|-----|-----|------|
|                  |      | (001-01)                |                                                   | MIN              | TYP | MAX |      |
| <sup>t</sup> PLH | Δ    | v                       | $R_{\rm L} = 400 \Omega$ $C_{\rm L} = 15  \rm pE$ |                  | 12  | 22  | ns   |
| <sup>t</sup> PHL | ~    |                         | ικ <u>μ</u> = 400 32, Ομ = 13 βι                  |                  | 8   | 15  | 113  |



SDLS029B – DECEMBER 1983 – REVISED FEBRUARY 2002

### recommended operating conditions

|                |                                | SN54LS04 |     | S    | 4    |     |      |      |
|----------------|--------------------------------|----------|-----|------|------|-----|------|------|
|                |                                | MIN      | NOM | MAX  | MIN  | NOM | MAX  | UNIT |
| VCC            | Supply voltage                 | 4.5      | 5   | 5.5  | 4.75 | 5   | 5.25 | V    |
| VIH            | High-level input voltage       | 2        |     |      | 2    |     |      | V    |
| VIL            | Low-level input voltage        |          |     | 0.7  |      |     | 0.8  | V    |
| IOH            | High-level output current      |          |     | -0.4 |      |     | -0.4 | mA   |
| IOL            | Low-level output current       |          |     | 4    |      |     | 8    | mA   |
| Τ <sub>Α</sub> | Operating free-air temperature | -55      |     | 125  | 0    |     | 70   | °C   |

# electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

| DADAMETED      |                        |                         | avet.                     | S   | N54LS0 | 4    | SN74LS04 |      |      | LINUT |
|----------------|------------------------|-------------------------|---------------------------|-----|--------|------|----------|------|------|-------|
| PARAMETER      |                        | TEST CONDITIONS         |                           | MIN | TYP‡   | MAX  | MIN      | TYP‡ | MAX  | UNIT  |
| VIK            | V <sub>CC</sub> = MIN, | l <sub>l</sub> = –18 mA |                           |     |        | -1.5 |          |      | -1.5 | V     |
| VOH            | $V_{CC} = MIN,$        | $V_{IL} = MAX,$         | I <sub>OH</sub> = -0.4 mA | 2.5 | 3.4    |      | 2.7      | 3.4  |      | V     |
| Ve             |                        | $\lambda = 2 \lambda$   | $I_{OL} = 4 \text{ mA}$   |     | 0.25   | 0.4  |          |      | 0.4  | V     |
| VOL            | $v_{CC} = winn,$       | VIH = 2 ∨               | $I_{OL} = 8 \text{ mA}$   |     |        |      |          | 0.25 | 0.5  | v     |
| lj             | V <sub>CC</sub> = MAX, | V <sub>I</sub> = 7 V    |                           |     |        | 0.1  |          |      | 0.1  | mA    |
| ЧΗ             | V <sub>CC</sub> = MAX, | V <sub>I</sub> = 2.7 V  |                           |     |        | 20   |          |      | 20   | μΑ    |
| Ι <sub>Ι</sub> | V <sub>CC</sub> = MAX, | V <sub>I</sub> = 0.4 V  |                           |     |        | -0.4 |          |      | -0.4 | mA    |
| IOS§           | V <sub>CC</sub> = MAX  |                         |                           | -20 |        | -100 | -20      |      | -100 | mA    |
| ІССН           | V <sub>CC</sub> = MAX, | V <sub>I</sub> = 0 V    |                           |     | 1.2    | 2.4  |          | 1.2  | 2.4  | mA    |
| ICCL           | V <sub>CC</sub> = MAX, | V <sub>I</sub> = 4.5 V  |                           |     | 3.6    | 6.6  |          | 3.6  | 6.6  | mA    |

<sup>†</sup> For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

<sup>‡</sup> All typical values are at  $V_{CC} = 5 \text{ V}$ ,  $T_A = 25^{\circ}\text{C}$ .

§ Not more than one output should be shorted at a time and the duration of the short-circuit should not exceed one second.

## switching characteristics, $V_{CC} = 5 V$ , $T_A = 25^{\circ}C$ (see Figure 2)

| PARAMETER        | FROM |          | TEST CONDITIONS              |                    | SI<br>SI | N54LS04<br>N74LS04 | 1<br>1 | UNIT |
|------------------|------|----------|------------------------------|--------------------|----------|--------------------|--------|------|
|                  |      | (001-01) |                              |                    | MIN      | TYP                | MAX    |      |
| <sup>t</sup> PLH | Δ    | v        | $R_1 = 2kO$                  | Cu = 15 pE         |          | 9                  | 15     | ns   |
| <sup>t</sup> PHL | R    |          | Γ <u>Γ</u> – 2 κ <u>3</u> 2, | 0 <u>L</u> = 13 pr |          | 10                 | 15     | 113  |



### recommended operating conditions

|     |                                | SN54S04 |     |     | S    |     | LINIT |      |
|-----|--------------------------------|---------|-----|-----|------|-----|-------|------|
|     |                                | MIN     | NOM | MAX | MIN  | NOM | MAX   | UNIT |
| VCC | Supply voltage                 | 4.5     | 5   | 5.5 | 4.75 | 5   | 5.25  | V    |
| VIH | High-level input voltage       | 2       |     |     | 2    |     |       | V    |
| VIL | Low-level input voltage        |         |     | 0.8 |      |     | 0.8   | V    |
| ЮН  | High-level output current      |         |     | -1  |      |     | -1    | mA   |
| IOL | Low-level output current       |         |     | 20  |      |     | 20    | mA   |
| TA  | Operating free-air temperature | -55     |     | 125 | 0    |     | 70    | °C   |

# electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

| DADAMETED       |                        | TEAT CONDITI             | wot                     |     | SN54S04 |      | ę   | SN74S04 |      | LINIT |
|-----------------|------------------------|--------------------------|-------------------------|-----|---------|------|-----|---------|------|-------|
| PARAMETER       |                        | TEST CONDITIONS          |                         | MIN | TYP‡    | MAX  | MIN | TYP‡    | MAX  | UNIT  |
| VIK             | V <sub>CC</sub> = MIN, | l <sub>l</sub> = –18 mA  |                         |     |         | -1.2 |     |         | -1.2 | V     |
| VOH             | $V_{CC} = MIN,$        | V <sub>IL</sub> = 0.8 V, | I <sub>OH</sub> = –1 mA | 2.5 | 3.4     |      | 2.7 | 3.4     |      | V     |
| VOL             | $V_{CC} = MIN,$        | V <sub>IH</sub> = 2 V,   | I <sub>OL</sub> = 20 mA |     |         | 0.5  |     |         | 0.5  | V     |
| lį              | V <sub>CC</sub> = MAX, | Vj = 5.5 V               |                         |     |         | 1    |     |         | 1    | mA    |
| ЧΗ              | V <sub>CC</sub> = MAX, | Vj = 2.7 V               |                         |     |         | 50   |     |         | 50   | μΑ    |
| Ι <sub>ΙL</sub> | V <sub>CC</sub> = MAX, | V <sub>I</sub> = 0.5 V   |                         |     |         | -2   |     |         | -2   | mA    |
| IOS§            | $V_{CC} = MAX$         |                          |                         | -40 |         | -100 | -40 |         | -100 | mA    |
| ІССН            | V <sub>CC</sub> = MAX, | $V_{I} = 0 V$            |                         |     | 15      | 24   |     | 15      | 24   | mA    |
| ICCL            | V <sub>CC</sub> = MAX, | V <sub>I</sub> = 4.5 V   |                         |     | 30      | 54   |     | 30      | 54   | mA    |

<sup>†</sup> For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

<sup>‡</sup> All typical values are at V<sub>CC</sub> = 5 V,  $T_A = 25^{\circ}C$ .

§ Not more than one output should be shorted at a time and the duration of the short-circuit should not exceed one second.

## switching characteristics, $V_{CC} = 5 V$ , $T_A = 25^{\circ}C$ (see Figure 1)

| PARAMETER        |   | TO TEST CONDITION |                                        | FROM TO TEST CONDITIONS |     |     | S<br>S | N54S04<br>N74S04 |  | UNIT |
|------------------|---|-------------------|----------------------------------------|-------------------------|-----|-----|--------|------------------|--|------|
|                  |   |                   |                                        |                         | MIN | TYP | MAX    |                  |  |      |
| <sup>t</sup> PLH | Δ | v                 | Ri = 280 0 Ci = 15 n                   | F                       |     | 3   | 4.5    | ns               |  |      |
| <sup>t</sup> PHL | ~ |                   |                                        | - 10 pi                 |     | 3   | 5      | 110              |  |      |
| <sup>t</sup> PLH | Δ | v                 | $R_{\rm L} = 280.0$ $C_{\rm L} = 50.0$ | F                       |     | 4.5 |        | ne               |  |      |
| <sup>t</sup> PHL | ~ |                   |                                        | 0L = 00 bi              |     | 5   |        | 115              |  |      |



SDLS029B - DECEMBER 1983 - REVISED FEBRUARY 2002



PARAMETER MEASUREMENT INFORMATION

B. All diodes are 1N3064 or equivalent.

- C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- D. S1 and S2 are closed for tpLH, tpHL, tpHZ, and tpLZ; S1 is open and S2 is closed for tpZH; S1 is closed and S2 is open for tpZL.
- E. All input pulses are supplied by generators having the following characteristics: PRR  $\leq$  1 MHz, Z<sub>O</sub>  $\approx$  50  $\Omega$ ; t<sub>r</sub> and t<sub>f</sub>  $\leq$  7 ns for Series 54/74 devices and t<sub>r</sub> and t<sub>f</sub>  $\leq$  2.5 ns for Series 54S/74S devices.
- F. The outputs are measured one at a time with one input transition per measurement.





SDLS029B - DECEMBER 1983 - REVISED FEBRUARY 2002

### PARAMETER MEASUREMENT INFORMATION SERIES 54LS/74LS DEVICES



- B. All diodes are 1N3064 or equivalent.
  - C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
  - D. S1 and S2 are closed for tpLH, tpHL, tpHZ, and tpLZ; S1 is open and S2 is closed for tpZH; S1 is closed and S2 is open for tpZL. E. Phase relationships between inputs and outputs have been chosen arbitrarily for these examples.
  - F. All input pulses are supplied by generators having the following characteristics: PRR  $\leq$  1 MHz, Z<sub>O</sub>  $\approx$  50  $\Omega$ , t<sub>f</sub>  $\leq$  1.5 ns, t<sub>f</sub>  $\leq$  2.6 ns.
  - G. The outputs are measured one at a time with one input transition per measurement.

### Figure 2. Load Circuits and Voltage Waveforms



#### **IMPORTANT NOTICE**

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third–party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Mailing Address:

Texas Instruments Post Office Box 655303 Dallas, Texas 75265

Copyright © 2002, Texas Instruments Incorporated

## PIN ARRANGEMENT



## ABSOLUTE MAXIMUM RATINGS

| ltern                       | Symbol | Ratings   | Unit |
|-----------------------------|--------|-----------|------|
| Supply voltage              | Vcc    | 7.0       | v    |
| Input voltage               | Vin    | 7.0       | v    |
| Output voltage              | Vout   | 30        | v    |
| Operating temperature range | Topr   | 20 ~ +75  | °C   |
| Storage temperature range   | Tstg   | 65 ~ +150 | °C   |

## RECOMMENDED OPERATING CONDITIONS

| Item                        | Symbol | min  | typ  | max  | Unit |
|-----------------------------|--------|------|------|------|------|
| Supply voltage              | Vcc    | 4.75 | 5.00 | 5.25 | v    |
| High level output voltage   | Voh    | _    | -    | 30   | v    |
| Low level output current    | Iol    | -    | -    | 48   | mA   |
| Operating temperature range | Topr   | -20  | 25   | 75   | °C   |

## ■ ELECTRICAL CHARACTERISTICS (*Ta* = -20 ~ +75°C)

| Item                | Symbol |                  | <b>Test Conditions</b>     | i                 | min | typ* | max  | Unit |
|---------------------|--------|------------------|----------------------------|-------------------|-----|------|------|------|
|                     | VIH    |                  |                            |                   | 2.0 | -    | -    | v    |
| Input voltage       | VIL    |                  |                            |                   | -   |      | 0.8  | V    |
|                     |        |                  | Ver OV                     | IOL = 24 mA       |     |      | 0.4  | V    |
| Output voltage      | VOL    | VCC = 4.75V,     | VIH = ZV                   | <i>Iol</i> = 48mA | -   | -    | 0.5  | V    |
| ·                   | Іін    | $V_{CC} = 5.25V$ | $V_{I} = 2.7 V$            |                   | -   | -    | 20   | μA   |
| Input current       | In     | Vcc = 5.25V,     | $V_I = 0.4 V$              |                   | -   | -    | -0.4 | mA   |
|                     | II     | Vcc = 5.25V,     | <i>VI</i> = 7V             |                   | _   |      | 0.1  | mA   |
| Output current      | Іон    | Vcc = 4.75V,     | $V_{IL} = 0.8 \mathrm{V},$ | <i>Vон</i> = 30V  | -   | _    | 250  | μA   |
|                     | Іссн   | Vcc = 5.25V      |                            |                   |     | 23   | 48   | mA   |
| Supply current      | ICCL   | Vcc = 5.25V      |                            |                   | -   | 21   | 51   | mA   |
| Input clamp voltage | VIK    | Vcc = 4.75V,     | IIN = -18 mA               |                   |     | -    | -1.5 | V    |

\*Vcc = 5V, Ta = 25°C

### **SWITCHING CHARACTERISTICS** (Vcc = 5V, $Ta = 25^{\circ}C$ )

| Item                   | Symbol             | Test Conditions           | min | typ | max | Unit |
|------------------------|--------------------|---------------------------|-----|-----|-----|------|
| трин                   | Ct. 15-F. Pr. 1100 | -                         | 10  | 15  | ns  |      |
| Propagation delay time | tphl.              | CL = 13  pr, RL = 110  sz | _   | 15  | 23  | ns   |

### TESTING METHOD



Notes) 1. Input puise: PRR = 1MHz, duty cycle 50%, Zout = 50Ω, trLH≤15ns. trHL≤6ns

- 2. CL includes probe and jig capacitance.
- 3. All diodes are 1S2074(H)

### Unit: mm



| Hitachi Code             | DP-14    |
|--------------------------|----------|
| JEDEC                    | Conforms |
| EIAJ                     | Conforms |
| Weight (reference value) | 0.97 g   |

Unit: mm



\*Dimension including the plating thickness Base material dimension

| Hitachi Code             | FP-14DA  |
|--------------------------|----------|
| JEDEC                    | _        |
| EIAJ                     | Conforms |
| Weight (reference value) | 0.23 g   |

Unit: mm



| Hitachi Code             | FP-14DN  |
|--------------------------|----------|
| JEDEC                    | Conforms |
| EIAJ                     | Conforms |
| Weight (reference value) | 0.13 g   |

\*Pd plating

## Cautions

- 1. Hitachi neither warrants nor grants licenses of any rights of Hitachi's or any third party's patent, copyright, trademark, or other intellectual property rights for information contained in this document. Hitachi bears no responsibility for problems that may arise with third party's rights, including intellectual property rights, in connection with use of the information contained in this document.
- 2. Products and product specifications may be subject to change without notice. Confirm that you have received the latest product standards or specifications before final design, purchase or use.
- 3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However, contact Hitachi's sales office before using the product in an application that demands especially high quality and reliability or where its failure or malfunction may directly threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment or medical equipment for life support.
- 4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly for maximum rating, operating supply voltage range, heat radiation characteristics, installation conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as failsafes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other consequential damage due to operation of the Hitachi product.
- 5. This product is not designed to be radiation resistant.
- 6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without written approval from Hitachi.
- 7. Contact Hitachi's sales office for any questions regarding this document or Hitachi semiconductor products.



Semiconductor & Integrated Circuits. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109 NorthAmerica URL http:semiconductor.hitachi.com/ http://www.hitachi-eu.com/hel/ecg Europe http://www.has.hitachi.com.sg/grp3/sicd/index.htm http://www.hitachi.com.tw/E/Product/SICD\_Frame.htm Asia (Singapore) Asia (Taiwan) Asia (HongKong) http://www.hitachi.com.hk/eng/bo/grp3/index.htm http://www.hitachi.co.jp/Sicd/indx.htm Japan For further information write to: Hitachi Semiconductor Hitachi Europe GmbH Hitachi Asia Pte. Ltd. (America) Inc. Electronic components Group 16 Collyer Quay #20-00 179 East Tasman Drive, Dornacher Stra§e 3 Hitachi Tower San Jose,CA 95134 D-85622 Feldkirchen, Munich Singapore 049318 Tel: <1> (408) 433-1990 Fax: <1>(408) 433-0223 Germany Tel: 535-2100 Tel: <49> (89) 9 9180-0 Fax: 535-1533 Fax: <49> (89) 9 29 30 00 Hitachi Europe Ltd.

Electronic Components Group.

Whitebrook Park

Maidenhead

Lower Cookham Road

Tel: <44> (1628) 585000 Fax: <44> (1628) 778322

Hitachi Asia Ltd. Taipei Branch Office 3F, Hung Kuo Building. No.167, Tun-Hwa North Road, Taipei (105) Tel: <886> (2) 2718-3666 Fax: <886> (2) 2718-8180 Berkshire SL6 8YA, United Kingdom

Hitachi Asia (Hong Kong) Ltd. Group III (Electronic Components) 7/F., North Tower, World Finance Centre, Harbour City, Canton Road, Tsim Sha Tsui, Kowloon, Hong Kong Tel: <852> (2) 735 9218 Fax: <852> (2) 730 0281 Telex: 40815 HITEC HX

Copyright ' Hitachi, Ltd., 1999. All rights reserved. Printed in Japan.

HITACHI



# 54LS08/DM54LS08/DM74LS08 Quad 2-Input AND Gates

### **General Description**

#### **Features**

This device contains four independent gates each of which performs the logic AND function.

 Alternate Military/Aerospace device (54LS08) is available. Contact a National Semiconductor Sales Office/ Distributor for specifications.

### **Connection Diagram**



TL/F/6347-1 Order Number 54LS08DMQB, 54LS08FMQB, 54LS08LMQB, DM54LS08J, DM54LS08W, DM74LS08M or DM74LS08N See NS Package Number E20A, J14A, M14A, N14A or W14B

. .

## **Function Table**

©1995 National Semiconductor Corporation TL/F/6347

| $\mathbf{Y} = \mathbf{A}\mathbf{B}$ |     |        |  |  |  |  |
|-------------------------------------|-----|--------|--|--|--|--|
| Inp                                 | uts | Output |  |  |  |  |
| Α                                   | В   | Y      |  |  |  |  |
| L                                   | L   | L      |  |  |  |  |
| L                                   | н   | L      |  |  |  |  |
| н                                   | L   | L      |  |  |  |  |
| н н н                               |     |        |  |  |  |  |
| H = High Logic Level                |     |        |  |  |  |  |



RRD-B30M105/Printed in U. S. A.

54LS08/DM54LS08/DM74LS08 Quad 2-Input AND Gates

June 1989

### Absolute Maximum Ratings (Note)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

| Supply Voltage                       | 7V              |
|--------------------------------------|-----------------|
| Input Voltage                        | 7V              |
| Operating Free Air Temperature Range |                 |
| DM54LS and 54LS                      | -55°C to +125°C |
| DM74LS                               | 0°C to +70°C    |
| Storage Temperature Range            | -65°C to +150°C |

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

### **Recommended Operating Conditions**

| Symbol          | Parameter                      | DM54LS08 |     |      |      | Unite |      |       |
|-----------------|--------------------------------|----------|-----|------|------|-------|------|-------|
| oynibol         | ratameter                      | Min      | Nom | Max  | Min  | Nom   | Max  | onito |
| V <sub>CC</sub> | Supply Voltage                 | 4.5      | 5   | 5.5  | 4.75 | 5     | 5.25 | V     |
| VIH             | High Level Input Voltage       | 2        |     |      | 2    |       |      | V     |
| VIL             | Low Level Input Voltage        |          |     | 0.7  |      |       | 0.8  | V     |
| I <sub>OH</sub> | High Level Output Current      |          |     | -0.4 |      |       | -0.4 | mA    |
| I <sub>OL</sub> | Low Level Output Current       |          |     | 4    |      |       | 8    | mA    |
| T <sub>A</sub>  | Free Air Operating Temperature | -55      |     | 125  | 0    |       | 70   | °C    |

### Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

| Symbol           | Parameter                            | Conditions                            |      | Min | Typ<br>(Note 1) | Max   | Units |
|------------------|--------------------------------------|---------------------------------------|------|-----|-----------------|-------|-------|
| VI               | Input Clamp Voltage                  | $V_{CC} = Min, I_I = -18 \text{ mA}$  |      |     |                 | -1.5  | V     |
| V <sub>OH</sub>  | High Level Output                    | $V_{CC} = Min, I_{OH} = Max,$         | DM54 | 2.5 | 3.4             |       | V     |
|                  | Voltage                              | V <sub>IH</sub> = Min                 | DM74 | 2.7 | 3.4             |       | v     |
| V <sub>OL</sub>  | Low Level Output                     | $V_{CC} = Min, I_{OL} = Max,$         | DM54 |     | 0.25            | 0.4   |       |
|                  | Voltage                              | $V_{IL} = Max$                        | DM74 |     | 0.35            | 0.5   | v     |
|                  |                                      | $I_{OL} = 4 \text{ mA}, V_{CC} = Min$ | DM74 |     | 0.25            | 0.4   |       |
| lj               | Input Current @ Max<br>Input Voltage | $V_{CC} = Max, V_I = 7V$              |      |     |                 | 0.1   | mA    |
| IIH              | High Level Input Current             | $V_{CC} = Max, V_I = 2.7V$            |      |     |                 | 20    | μΑ    |
| IIL              | Low Level Input Current              | $V_{CC} = Max, V_I = 0.4V$            |      |     |                 | -0.36 | mA    |
| los              | Short Circuit                        | V <sub>CC</sub> = Max                 | DM54 | -20 |                 | -100  | m۸    |
|                  | Output Current                       | (Note 2)                              | DM74 | -20 |                 | -100  |       |
| ICCH             | Supply Current with<br>Outputs High  | V <sub>CC</sub> = Max                 |      |     | 2.4             | 4.8   | mA    |
| I <sub>CCL</sub> | Supply Current with<br>Outputs Low   | V <sub>CC</sub> = Max                 |      |     | 4.4             | 8.8   | mA    |

### Switching Characteristics at $V_{CC} = 5V$ and $T_A = 25^{\circ}C$ (See Section 1 for Test Waveforms and Output Load)

|                      | Parameter                                          |                        |     |                  |       |    |
|----------------------|----------------------------------------------------|------------------------|-----|------------------|-------|----|
| Symbol               |                                                    | C <sub>L</sub> = 15 pF |     | C <sub>L</sub> = | Units |    |
|                      |                                                    | Min                    | Max | Min              | Max   |    |
| t <sub>PLH</sub>     | Propagation Delay Time<br>Low to High Level Output | 4                      | 13  | 6                | 18    | ns |
| t <sub>PHL</sub>     | Propagation Delay Time<br>High to Low Level Output | 3                      | 11  | 5                | 18    | ns |
| Note 1: All typicals | are at $V_{CC} = 5V$ , $T_A = 25^{\circ}C$ .       |                        |     |                  |       |    |

Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.









National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.



©1995 National Semiconductor Corporation TL/F/6361

RRD-B30M105/Printed in U. S. A.

### Absolute Maximum Ratings (Note)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

| Supply Voltage                       | 7V              |
|--------------------------------------|-----------------|
| Input Voltage                        | 7V              |
| Operating Free Air Temperature Range |                 |
| DM54LS and 54LS                      | -55°C to +125°C |
| DM74LS                               | 0°C to +70°C    |
| Storage Temperature Range            | -65°C to +150°C |

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

## **Recommended Operating Conditions**

| Symbol          | Parameter                      | DM54LS32 |     |      |      | Unite |      |      |
|-----------------|--------------------------------|----------|-----|------|------|-------|------|------|
|                 |                                | Min      | Nom | Max  | Min  | Nom   | Max  | onno |
| V <sub>CC</sub> | Supply Voltage                 | 4.5      | 5   | 5.5  | 4.75 | 5     | 5.25 | V    |
| VIH             | High Level Input Voltage       | 2        |     |      | 2    |       |      | V    |
| VIL             | Low Level Input Voltage        |          |     | 0.7  |      |       | 0.8  | V    |
| I <sub>OH</sub> | High Level Output Current      |          |     | -0.4 |      |       | -0.4 | mA   |
| I <sub>OL</sub> | Low Level Output Current       |          |     | 4    |      |       | 8    | mA   |
| T <sub>A</sub>  | Free Air Operating Temperature | -55      |     | 125  | 0    |       | 70   | °C   |

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

| Symbol          | Parameter                            | Conditions                                   |      | Min | Typ<br>(Note 1) | Max   | Units |
|-----------------|--------------------------------------|----------------------------------------------|------|-----|-----------------|-------|-------|
| VI              | Input Clamp Voltage                  | $V_{CC} = Min, I_I = -18 \text{ mA}$         |      |     |                 | -1.5  | V     |
| V <sub>OH</sub> | High Level Output                    | $V_{CC} = Min, I_{OH} = Max$                 | DM54 | 2.5 | 3.4             |       | V     |
|                 | Voltage                              | V <sub>IH</sub> = Min                        | DM74 | 2.7 | 3.4             |       | v     |
| V <sub>OL</sub> | Low Level Output                     | $V_{CC} = Min, I_{OL} = Max$                 | DM54 |     | 0.25            | 0.4   |       |
|                 | Voltage                              | V <sub>IL</sub> = Max                        | DM74 |     | 0.35            | 0.5   | v     |
|                 |                                      | $I_{OL} = 4 \text{ mA}, V_{CC} = \text{Min}$ | DM74 |     | 0.25            | 0.4   |       |
| lj –            | Input Current @ Max<br>Input Voltage | $V_{CC} = Max, V_I = 7V$                     |      |     |                 | 0.1   | mA    |
| I <sub>IH</sub> | High Level Input Current             | $V_{CC} = Max, V_I = 2.7V$                   |      |     |                 | 20    | μΑ    |
| IIL             | Low Level Input Current              | $V_{CC} = Max, V_I = 0.4V$                   |      |     |                 | -0.36 | mA    |
| IOS             | Short Circuit                        | V <sub>CC</sub> = Max                        | DM54 | -20 |                 | -100  | m۸    |
|                 | Output Current                       | (Note 2)                                     | DM74 | -20 |                 | -100  |       |
| ICCH            | Supply Current with<br>Outputs High  | V <sub>CC</sub> = Max                        |      |     | 3.1             | 6.2   | mA    |
| ICCL            | Supply Current with<br>Outputs Low   | V <sub>CC</sub> = Max                        |      |     | 4.9             | 9.8   | mA    |

### Switching Characteristics at $V_{CC} = 5V$ and $T_A = 25^{\circ}C$ (See Section 1 for Test Waveforms and Output Load)

|                      | Parameter                                          |                  |       |                  |       |    |
|----------------------|----------------------------------------------------|------------------|-------|------------------|-------|----|
| Symbol               |                                                    | C <sub>L</sub> = | 15 pF | C <sub>L</sub> = | Units |    |
|                      |                                                    | Min              | Max   | Min              | Max   |    |
| t <sub>PLH</sub>     | Propagation Delay Time<br>Low to High Level Output | 3                | 11    | 4                | 15    | ns |
| t <sub>PHL</sub>     | Propagation Delay Time<br>High to Low Level Output | 3                | 11    | 4                | 15    | ns |
| Note 1. All typicals | are at $V_{CC} = 5V$ T <sub>A</sub> = 25°C         |                  |       |                  |       |    |

VCC. V, IA

Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.






National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications



#### 54LS279/DM54LS279/DM74LS279 Quad S-R Latches

#### **General Description**

The 'LS279 consists of four individual and independent Set-Reset Latches with active low inputs. Two of the four latches have an additonal  $\overline{S}$  input ANDed with the primary  $\overline{S}$  input. A low on any  $\overline{S}$  input while the  $\overline{R}$  input is high will be stored in the latch and appear on the corresponding Q output as a high. A low on the  $\overline{R}$  input while the  $\overline{S}$  input is high will clear the Q output to a low. Simultaneous transistion of the  $\overline{R}$  and  $\overline{S}$  inputs from low to high will cause the Q output

to be indeterminate. Both inputs are voltage level triggered and are not affected by transition time of the input data.

#### Features

 Alternate military/aerospace device (54LS279) is available. Contact a National Semiconductor Sales Office/ Distributor for specifications.



© 1995 National Semiconductor Corporation TL/F/6420

RRD-B30M105/Printed in U. S. A.

May 1989

#### Absolute Maximum Ratings (Note)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

| Supply Voltage                       | 7V              |
|--------------------------------------|-----------------|
| Input Voltage                        | 7V              |
| Operating Free Air Temperature Range |                 |
| DM54LS and 54LS                      | -55°C to +125°C |
| DM74LS                               | 0°C to +70°C    |
| Storage Temperature Range            | -65°C to +150°C |

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

#### **Recommended Operating Conditions**

| Symbol          | Parameter                      |     | DM54LS27 | 9    |      | Units |      |      |
|-----------------|--------------------------------|-----|----------|------|------|-------|------|------|
|                 | i arameter                     | Min | Nom      | Max  | Min  | Nom   | Max  | onno |
| V <sub>CC</sub> | Supply Voltage                 | 4.5 | 5        | 5.5  | 4.75 | 5     | 5.25 | V    |
| VIH             | High Level Input Voltage       | 2   |          |      | 2    |       |      | V    |
| VIL             | Low Level Input Voltage        |     |          | 0.7  |      |       | 0.8  | V    |
| I <sub>OH</sub> | High Level Output Current      |     |          | -0.4 |      |       | -0.4 | mA   |
| I <sub>OL</sub> | Low Level Output Current       |     |          | 4    |      |       | 8    | mA   |
| T <sub>A</sub>  | Free Air Operating Temperature | -55 |          | 125  | 0    |       | 70   | °C   |

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

| Symbol          | Parameter                            | Conditions                            | Min  | Typ<br>(Note 1) | Max  | Units |    |
|-----------------|--------------------------------------|---------------------------------------|------|-----------------|------|-------|----|
| VI              | Input Clamp Voltage                  | $V_{CC} = Min, I_I = -18 \text{ mA}$  |      |                 |      | - 1.5 | V  |
| V <sub>OH</sub> | High Level Output                    | $V_{CC} = Min, I_{OH} = Max$          | DM54 | 2.5             | 3.5  |       | V  |
|                 | Voltage                              | $V_{IL} = Max, V_{IH} = Min$          | DM74 | 2.7             | 3.5  |       |    |
| V <sub>OL</sub> | Low Level Output                     | $V_{CC} = Min, I_{OL} = Max$          | DM54 |                 | 0.25 | 0.4   |    |
|                 | Voltage                              | $V_{IL} = Max, V_{IH} = Min$          | DM74 |                 | 0.35 | 0.5   | v  |
|                 |                                      | $I_{OL} = 4 \text{ mA}, V_{CC} = Min$ | DM74 |                 | 0.25 | 0.4   |    |
| I               | Input Current @ Max<br>Input Voltage | $V_{CC} = Max, V_1 = 7V$              |      |                 |      | 0.1   | mA |
| I <sub>IH</sub> | High Level Input<br>Current          | $V_{CC} = Max, V_1 = 2.7V$            |      |                 |      | 20    | μΑ |
| IIL             | Low Level Input<br>Current           | $V_{CC} = Max, V_I = 0.4V$            |      |                 |      | -0.4  | mA |
| los             | Short Circuit                        | V <sub>CC</sub> = Max                 | DM54 | -20             |      | -100  | mΔ |
|                 | Output Current                       | (Note 2) DM74                         |      | -20             |      | -100  |    |
| lcc             | Supply Current                       | V <sub>CC</sub> = Max (Note 3)        |      |                 | 3.8  | 7     | mA |

Note 1: All typicals are at V\_{CC}\,=\,5V,\,T\_{A}\,=\,25^{\circ}C.

Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Note 3:  $I_{CC}$  is measured with all  $\overline{R}$  inputs grounded, all  $\overline{S}$  inputs at 4.5V and all outputs open.

|                  |                                                    | From (Input)      |              | <b>R</b> L = | <b>2 k</b> Ω     |       |       |
|------------------|----------------------------------------------------|-------------------|--------------|--------------|------------------|-------|-------|
| Symbol           | Parameter                                          | To (Output)       | <b>C</b> L = | 15 pF        | C <sub>L</sub> = | 50 pF | Units |
|                  |                                                    |                   | Min          | Max          | Min              | Max   |       |
| t <sub>PLH</sub> | Propagation Delay Time<br>Low to High Level Output | <u></u> S to<br>Q |              | 22           |                  | 25    | ns    |
| t <sub>PHL</sub> | Propagation Delay Time<br>High to Low Level Output | S to<br>Q         |              | 15           |                  | 23    | ns    |
| t <sub>PHL</sub> | Propagation Delay Time<br>High to Low Level Output | R to<br>Q         |              | 27           |                  | 33    | ns    |







National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications

## Features

- Compatible with MCS®-51 Products
- 4K Bytes of In-System Programmable (ISP) Flash Memory – Endurance: 1000 Write/Erase Cycles
- 4.0V to 5.5V Operating Range
- Fully Static Operation: 0 Hz to 33 MHz
- Three-level Program Memory Lock
- 128 x 8-bit Internal RAM
- 32 Programmable I/O Lines
- Two 16-bit Timer/Counters
- Six Interrupt Sources
- Full Duplex UART Serial Channel
- Low-power Idle and Power-down Modes
- Interrupt Recovery from Power-down Mode
- Watchdog Timer
- Dual Data Pointer
- Power-off Flag
- Fast Programming Time
- Flexible ISP Programming (Byte and Page Mode)

## Description

The AT89S51 is a low-power, high-performance CMOS 8-bit microcontroller with 4K bytes of In-System Programmable Flash memory. The device is manufactured using Atmel's high-density nonvolatile memory technology and is compatible with the industry-standard 80C51 instruction set and pinout. The on-chip Flash allows the program memory to be reprogrammed in-system or by a conventional nonvolatile memory programmer. By combining a versatile 8-bit CPU with In-System Programmable Flash on a monolithic chip, the Atmel AT89S51 is a powerful microcontroller which provides a highly-flexible and cost-effective solution to many embedded control applications.

The AT89S51 provides the following standard features: 4K bytes of Flash, 128 bytes of RAM, 32 I/O lines, Watchdog timer, two data pointers, two 16-bit timer/counters, a five-vector two-level interrupt architecture, a full duplex serial port, on-chip oscillator, and clock circuitry. In addition, the AT89S51 is designed with static logic for operation down to zero frequency and supports two software selectable power saving modes. The Idle Mode stops the CPU while allowing the RAM, timer/counters, serial port, and interrupt system to continue functioning. The Power-down mode saves the RAM contents but freezes the oscillator, disabling all other chip functions until the next external interrupt or hardware reset.



8-bit Microcontroller with 4K Bytes In-System Programmable Flash

## AT89S51

2487B-MICRO-12/03





#### **Pin Configurations**

#### PDIP

|               |    |    | 1            |
|---------------|----|----|--------------|
| P1.0 🗆        | 1  | 40 | □vcc         |
| P1.1 🗆        | 2  | 39 | D P0.0 (AD0) |
| P1.2 🗆        | 3  | 38 | DP0.1 (AD1)  |
| P1.3 🗆        | 4  | 37 | DP0.2 (AD2)  |
| P1.4 🗆        | 5  | 36 | 🗆 P0.3 (AD3) |
| (MOSI) P1.5 🗆 | 6  | 35 | 🗆 P0.4 (AD4) |
| (MISO) P1.6 🗆 | 7  | 34 | 🗆 P0.5 (AD5) |
| (SCK) P1.7 🗆  | 8  | 33 | 🗆 P0.6 (AD6) |
| RST 🗆         | 9  | 32 | 🗆 P0.7 (AD7) |
| (RXD) P3.0 🗆  | 10 | 31 | □ EA/VPP     |
| (TXD) P3.1 🗆  | 11 | 30 | ALE/PROG     |
| (INT0) P3.2 🗆 | 12 | 29 | D PSEN       |
| (INT1) P3.3 🗆 | 13 | 28 | 🗆 P2.7 (A15) |
| (T0) P3.4 🗆   | 14 | 27 | 🗆 P2.6 (A14) |
| (T1) P3.5 🗆   | 15 | 26 | 🗆 P2.5 (A13) |
| (WR) P3.6 🗆   | 16 | 25 | 🗆 P2.4 (A12) |
| (RD) P3.7 🗆   | 17 | 24 | 🗆 P2.3 (A11) |
| XTAL2         | 18 | 23 | 🗆 P2.2 (A10) |
| XTAL1 🗆       | 19 | 22 | 🗆 P2.1 (A9)  |
| GND 🗆         | 20 | 21 | 🗆 P2.0 (A8)  |
|               |    |    |              |





#### PLCC D 1.4 D 1.4 D 1.3 D 1.2 D 1.1 D 1.1 D 1.1 D 1.1 D 1.1 D 1.4 D 1.3 D 1.3 D 1.3 D 1.3 D 1.3 D 1.4 4 9 9 7 9 39 □ P0.4 (AD4) 5 4 3 0 N (MOSI) P1.5 🗆 (MISO) P1.6 28 38 🗆 P0.5 (AD5) (SCK) P1.7 37 🗆 P0.6 (AD6) 19 RST 🗆 10 36 P0.7 (AD7) 35 🗆 EA/VPP (RXD) P3.0 11 NC 12 34 🗆 NC (TXD) P3.1 13 33 ALE/PROG (INT0) P3.2 [ 14 32 🗆 PSEN (INT1) P3.3 [ 15 31 🗆 P2.7 (A15) (T0) P3.4 🗖 16 30 🗆 P2.6 (A14) (WR) P3.6 (RD) P3.6 (RD) P3.6 (RD) P3.6 (RD) P3.6 (RD) P3.6 (RD) P3.7 (212 20 24 (A10) P2.2 (24 25 24 (A10) P2.2 (24 25 26 68 (A11) P2.3 (22 26 68 (A11) P2.3 (T1) P3.5 🗆

#### PDIP

|               |    |    | 1             |
|---------------|----|----|---------------|
| RST 🗆         | 1  | 42 | □ P1.7 (SCK)  |
| (RXD) P3.0    | 2  | 41 | D P1.6 (MISO) |
| (TXD) P3.1    | 3  | 40 | D P1.5 (MOSI  |
| (INT0) P3.2   | 4  | 39 | 🗆 P1.4        |
| (INT1) P3.3 🗆 | 5  | 38 | 🗆 P1.3        |
| (T0) P3.4 🗆   | 6  | 37 | 🗆 P1.2        |
| (T1) P3.5 🗆   | 7  | 36 | 🗆 P1.1        |
| (WR) P3.6 🗆   | 8  | 35 | 🗆 P1.0        |
| (RD) P3.7 🗆   | 9  | 34 |               |
| XTAL2 🗆       | 10 | 33 | D PWRVDD      |
| XTAL1 🗆       | 11 | 32 | 🗆 P0.0 (AD0)  |
| GND 🗆         | 12 | 31 | 🗆 P0.1 (AD1)  |
| PWRGND 🗆      | 13 | 30 | 🗆 P0.2 (AD2)  |
| (A8) P2.0 🗆   | 14 | 29 | 🗆 P0.3 (AD3)  |
| (A9) P2.1 🗆   | 15 | 28 | 🗆 P0.4 (AD4)  |
| (A10) P2.2 🗆  | 16 | 27 | 🗆 P0.5 (AD5)  |
| (A11) P2.3 🗆  | 17 | 26 | DP0.6 (AD6)   |
| (A12) P2.4 🗆  | 18 | 25 | 🗆 P0.7 (AD7)  |
| (A13) P2.5 🗆  | 19 | 24 | □ EA/VPP      |
| (A14) P2.6 🗆  | 20 | 23 | ALE/PROG      |
| (A15) P2.7 🗆  | 21 | 22 | D PSEN        |
|               |    |    |               |

#### **Block Diagram**







#### **Pin Description**

| Supply voltage (all packages except 42-PDIP).                                                                                                                                                                                                                                                                                                                             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ground (all packages except 42-PDIP; for 42-PDIP GND connects only the logic core and the embedded program memory).                                                                                                                                                                                                                                                       |
| Supply voltage for the 42-PDIP which connects only the logic core and the embedded program memory.                                                                                                                                                                                                                                                                        |
| Supply voltage for the 42-PDIP which connects only the I/O Pad Drivers. The application board <b>MUST</b> connect both VDD and PWRVDD to the board supply voltage.                                                                                                                                                                                                        |
| Ground for the 42-PDIP which connects only the I/O Pad Drivers. PWRGND and GND are weakly connected through the common silicon substrate, but not through any metal link. The application board <b>MUST</b> connect both GND and PWRGND to the board ground.                                                                                                              |
| Port 0 is an 8-bit open drain bi-directional I/O port. As an output port, each pin can sink eight TTL inputs. When 1s are written to port 0 pins, the pins can be used as high-impedance inputs.                                                                                                                                                                          |
| Port 0 can also be configured to be the multiplexed low-order address/data bus during accesses to external program and data memory. In this mode, P0 has internal pull-ups.                                                                                                                                                                                               |
| Port 0 also receives the code bytes during Flash programming and outputs the code bytes during program verification. <b>External pull-ups are required during program verification</b> .                                                                                                                                                                                  |
| Port 1 is an 8-bit bi-directional I/O port with internal pull-ups. The Port 1 output buffers can sink/source four TTL inputs. When 1s are written to Port 1 pins, they are pulled high by the internal pull-ups and can be used as inputs. As inputs, Port 1 pins that are externally being pulled low will source current ( $I_{IL}$ ) because of the internal pull-ups. |
| Port 1 also receives the low-order address bytes during Flash programming and verification.                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                           |

| Port Pin | Alternate Functions                   |
|----------|---------------------------------------|
| P1.5     | MOSI (used for In-System Programming) |
| P1.6     | MISO (used for In-System Programming) |
| P1.7     | SCK (used for In-System Programming)  |

**Port 2** Port 2 is an 8-bit bi-directional I/O port with internal pull-ups. The Port 2 output buffers can sink/source four TTL inputs. When 1s are written to Port 2 pins, they are pulled high by the internal pull-ups and can be used as inputs. As inputs, Port 2 pins that are externally being pulled low will source current ( $I_{II}$ ) because of the internal pull-ups.

Port 2 emits the high-order address byte during fetches from external program memory and during accesses to external data memory that use 16-bit addresses (MOVX @ DPTR). In this application, Port 2 uses strong internal pull-ups when emitting 1s. During accesses to external data memory that use 8-bit addresses (MOVX @ RI), Port 2 emits the contents of the P2 Special Function Register.

Port 2 also receives the high-order address bits and some control signals during Flash programming and verification.

## AT89S51

Port 3

Port 3 is an 8-bit bi-directional I/O port with internal pull-ups. The Port 3 output buffers can sink/source four TTL inputs. When 1s are written to Port 3 pins, they are pulled high by the internal pull-ups and can be used as inputs. As inputs, Port 3 pins that are externally being pulled low will source current ( $I_{II}$ ) because of the pull-ups.

Port 3 receives some control signals for Flash programming and verification.

Port 3 also serves the functions of various special features of the AT89S51, as shown in the following table.

| Port Pin | Alternate Functions                    |
|----------|----------------------------------------|
| P3.0     | RXD (serial input port)                |
| P3.1     | TXD (serial output port)               |
| P3.2     | INT0 (external interrupt 0)            |
| P3.3     | INT1 (external interrupt 1)            |
| P3.4     | T0 (timer 0 external input)            |
| P3.5     | T1 (timer 1 external input)            |
| P3.6     | WR (external data memory write strobe) |
| P3.7     | RD (external data memory read strobe)  |

**RST** Reset input. A high on this pin for two machine cycles while the oscillator is running resets the device. This pin drives High for 98 oscillator periods after the Watchdog times out. The DISRTO bit in SFR AUXR (address 8EH) can be used to disable this feature. In the default state of bit DISRTO, the RESET HIGH out feature is enabled.

ALE/PROG Address Latch Enable (ALE) is an output pulse for latching the low byte of the address during accesses to external memory. This pin is also the program pulse input (PROG) during Flash programming.

In normal operation, ALE is emitted at a constant rate of 1/6 the oscillator frequency and may be used for external timing or clocking purposes. Note, however, that one ALE pulse is skipped during each access to external data memory.

If desired, ALE operation can be disabled by setting bit 0 of SFR location 8EH. With the bit set, ALE is active only during a MOVX or MOVC instruction. Otherwise, the pin is weakly pulled high. Setting the ALE-disable bit has no effect if the microcontroller is in external execution mode.

**PSEN** Program Store Enable (PSEN) is the read strobe to external program memory.

When the AT89S51 is executing code from external program memory, PSEN is activated twice each machine cycle, except that two PSEN activations are skipped during each access to external data memory.

**EA/VPP** External Access Enable. EA must be strapped to GND in order to enable the device to fetch code from external program memory locations starting at 0000H up to FFFFH. Note, however, that if lock bit 1 is programmed, EA will be internally latched on reset.

 $\overline{EA}$  should be strapped to V<sub>CC</sub> for internal program executions.

This pin also receives the 12-volt programming enable voltage ( $V_{PP}$ ) during Flash programming.

**XTAL1** Input to the inverting oscillator amplifier and input to the internal clock operating circuit.

XTAL2 Output from the inverting oscillator amplifier





# Special<br/>FunctionA map of the on-chip memory area called the Special Function Register (SFR) space is shown<br/>in Table 1.RegistersNote that not all of the addresses are occupied, and unoccupied addresses may not be imple-<br/>mented on the chip. Read accesses to these addresses will in general return random data,<br/>and write accesses will have an indeterminate effect.

| 0F8H |                  |                  |                   |                  |                  |                  |                    |                  | 0FFH |
|------|------------------|------------------|-------------------|------------------|------------------|------------------|--------------------|------------------|------|
| 0F0H | B<br>00000000    |                  |                   |                  |                  |                  |                    |                  | 0F7H |
| 0E8H |                  |                  |                   |                  |                  |                  |                    |                  | 0EFH |
| 0E0H | ACC<br>00000000  |                  |                   |                  |                  |                  |                    |                  | 0E7H |
| 0D8H |                  |                  |                   |                  |                  |                  |                    |                  | 0DFH |
| 0D0H | PSW<br>00000000  |                  |                   |                  |                  |                  |                    |                  | 0D7H |
| 0C8H |                  |                  |                   |                  |                  |                  |                    |                  | 0CFH |
| 0C0H |                  |                  |                   |                  |                  |                  |                    |                  | 0C7H |
| 0B8H | IP<br>XX000000   |                  |                   |                  |                  |                  |                    |                  | 0BFH |
| 0B0H | P3<br>11111111   |                  |                   |                  |                  |                  |                    |                  | 0B7H |
| 0A8H | IE<br>0X000000   |                  |                   |                  |                  |                  |                    |                  | 0AFH |
| 0A0H | P2<br>11111111   |                  | AUXR1<br>XXXXXXX0 |                  |                  |                  | WDTRST<br>XXXXXXXX |                  | 0A7H |
| 98H  | SCON<br>00000000 | SBUF<br>XXXXXXXX |                   |                  |                  |                  |                    |                  | 9FH  |
| 90H  | P1<br>11111111   |                  |                   |                  |                  |                  |                    |                  | 97H  |
| 88H  | TCON<br>00000000 | TMOD<br>00000000 | TL0<br>00000000   | TL1<br>00000000  | TH0<br>00000000  | TH1<br>00000000  | AUXR<br>XXX00XX0   |                  | 8FH  |
| 80H  | P0<br>11111111   | SP<br>00000111   | DP0L<br>00000000  | DP0H<br>00000000 | DP1L<br>00000000 | DP1H<br>00000000 |                    | PCON<br>0XXX0000 | 87H  |

Table 1. AT89S51 SFR Map and Reset Values

6

AT89S51

User software should not write 1s to these unlisted locations, since they may be used in future products to invoke new features. In that case, the reset or inactive values of the new bits will always be 0.

**Interrupt Registers:** The individual interrupt enable bits are in the IE register. Two priorities can be set for each of the five interrupt sources in the IP register.

| AUXR    | Address = 8EH Reset Value = XXX00XX0B |                |          |               |               |           |               |         |  |  |  |
|---------|---------------------------------------|----------------|----------|---------------|---------------|-----------|---------------|---------|--|--|--|
| Not Bit | Addressable                           |                |          |               |               |           |               |         |  |  |  |
|         | _                                     | -              | I        | WDIDLE        | DISRTO        | -         | _             | DISALE  |  |  |  |
| Bit     | 7                                     | 6              | 5        | 4             | 3             | 2         | 1             | 0       |  |  |  |
|         | Reserved for future expansion         |                |          |               |               |           |               |         |  |  |  |
| DISALE  | DISAD                                 |                |          |               |               |           |               |         |  |  |  |
|         | Opera                                 | Operating Mode |          |               |               |           |               |         |  |  |  |
|         | 0                                     | ALE            | is emi   | tted at a con | stant rate of | 1/6 the o | scillator fre | equency |  |  |  |
|         | 1                                     | ALE            | is acti  | ve only durin | ig a MOVX o   | r MOVC    | instruction   |         |  |  |  |
| DISRTO  | Disab                                 | le/Enab        | le Rese  | et-out        |               |           |               |         |  |  |  |
|         | DISR                                  | ТО             |          |               |               |           |               |         |  |  |  |
|         | 0                                     | Res            | et pin i | s driven Higł | after WDT     | times out |               |         |  |  |  |
|         | 1                                     | Res            | et pin i | s input only  |               |           |               |         |  |  |  |
| WDIDLE  | Disab                                 | le/Enab        | le WDT   | in IDLE mo    | de            |           |               |         |  |  |  |
| WDIDLE  |                                       |                |          |               |               |           |               |         |  |  |  |
| 0       | WD                                    | T contin       | ues to   | count in IDLI | E mode        |           |               |         |  |  |  |
| 1       | WD.                                   | T halts        | counting | g in IDLE mo  | ode           |           |               |         |  |  |  |

Table 2. AUXR: Auxiliary Register

**Dual Data Pointer Registers:** To facilitate accessing both internal and external data memory, two banks of 16-bit Data Pointer Registers are provided: DP0 at SFR address locations 82H-83H and DP1 at 84H-85H. Bit DPS = 0 in SFR AUXR1 selects DP0 and DPS = 1 selects DP1. The user should **ALWAYS** initialize the DPS bit to the appropriate value before accessing the respective Data Pointer Register.





**Power Off Flag:** The Power Off Flag (POF) is located at bit 4 (PCON.4) in the PCON SFR. POF is set to "1" during power up. It can be set and rest under software control and is not affected by reset.

Table 3. AUXR1: Auxiliary Register 1

|                                                              | AUXR1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Addre                                                                                                                                                                                                                 | ess = A2H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                             |                                                                                                                                 |                                                                                                                              |                                                                                                                               | Reset V                                                                                                                                       | alue = XXXXXX                                                                                                                                                                        | X0B                                                                                 |  |
|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--|
|                                                              | Not E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | it Addres                                                                                                                                                                                                             | sable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                             |                                                                                                                                 |                                                                                                                              |                                                                                                                               |                                                                                                                                               |                                                                                                                                                                                      |                                                                                     |  |
|                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | _                                                                                                                                                                                                                     | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                                           | _                                                                                                                               | -                                                                                                                            | _                                                                                                                             | _                                                                                                                                             | DPS                                                                                                                                                                                  | ]                                                                                   |  |
|                                                              | Bit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7                                                                                                                                                                                                                     | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5                                                                                                                                           | 4                                                                                                                               | 3                                                                                                                            | 2                                                                                                                             | 1                                                                                                                                             | 0                                                                                                                                                                                    |                                                                                     |  |
| Memory<br>Organization                                       | –<br>DPS<br>MCS-51 d<br>bytes eacl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Reserv<br>Data Po<br>DPS<br>0<br>1<br>evices h                                                                                                                                                                        | red for futu<br>binter Reg<br>Selec<br>Selec<br>nave a se<br>rnal Prog                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ister Select<br>cts DPTR<br>cts DPTR<br>cts DPTR<br>eparate a<br>ram and                                                                    | sion<br>ct<br>Registers<br>Registers<br>ddress s<br>Data Me                                                                     | DP0L, DF<br>DP1L, DF<br>pace for<br>mory can                                                                                 | POH<br>P1H<br>Program<br>be addre                                                                                             | and Data                                                                                                                                      | Memory. Up to                                                                                                                                                                        | o 64K                                                                               |  |
| 5                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                             |                                                                                                                                 |                                                                                                                              |                                                                                                                               |                                                                                                                                               |                                                                                                                                                                                      |                                                                                     |  |
| Program Memory                                               | If the EA p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | oin is cor                                                                                                                                                                                                            | nnected to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | o GND, a                                                                                                                                    | II prograr                                                                                                                      | n fetches                                                                                                                    | are direc                                                                                                                     | ted to exte                                                                                                                                   | rnal memory.                                                                                                                                                                         |                                                                                     |  |
| Data Memory                                                  | On the AT<br>FFFH are<br>directed to<br>The AT89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | On the AT89S51, if EA is connected to V <sub>CC</sub> , program fetches to addresses 0000H through FFFH are directed to internal memory and fetches to addresses 1000H through FFFFH are directed to external memory. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                             |                                                                                                                                 |                                                                                                                              |                                                                                                                               |                                                                                                                                               |                                                                                                                                                                                      |                                                                                     |  |
|                                                              | and indire<br>128 bytes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ct addre<br>of data I                                                                                                                                                                                                 | ssing mo<br>RAM are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | des. Stad<br>available                                                                                                                      | ck operat<br>as stack                                                                                                           | ions are<br>space.                                                                                                           | examples                                                                                                                      | s of indirec                                                                                                                                  | addressing, s                                                                                                                                                                        | o the                                                                               |  |
| Watchdog<br>Timer<br>(One-time<br>Enabled with<br>Reset-out) | The WDT is intended as a recovery method in situations where the CPU may be subjected to software upsets. The WDT consists of a 14-bit counter and the Watchdog Timer Reset (WDTRST) SFR. The WDT is defaulted to disable from exiting reset. To enable the WDT, a user must write 01EH and 0E1H in sequence to the WDTRST register (SFR location 0A6H). When the WDT is enabled, it will increment every machine cycle while the oscillator is running. The WDT timeout period is dependent on the external clock frequency. There is no way to disable the WDT except through reset (either hardware reset or WDT overflow reset). When WDT overflows, it will drive an output RESET HIGH pulse at the RST pin. |                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                             |                                                                                                                                 |                                                                                                                              |                                                                                                                               |                                                                                                                                               |                                                                                                                                                                                      |                                                                                     |  |
| Using the WDT                                                | To enable<br>(SFR loca<br>and 0E1H<br>16383 (3F<br>every mad<br>at least ev<br>to WDTRS<br>When WD<br>pulse dura<br>should be<br>required to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | the WD<br>tion 0A6<br>to WDT<br>FFH), a<br>chine cyc<br>yery 163<br>ST. WDT<br>OT overfl<br>ation is s<br>serviced<br>o preven                                                                                        | T, a user<br>H). Wher<br>RST to avoin<br>this withing within<br>this within the<br>S3 maching<br>S3 maching<br>S4 maching<br>S5 machin | r must wr<br>n the WD<br>void a Wl<br>vill reset<br>the oscill<br>ne cycles<br>a write-or<br>ill genera<br>C, where<br>e sections<br>reset. | ite 01EH<br>T is enab<br>DT overfle<br>the devic<br>ator is ru<br>s. To rese<br>nly registe<br>ate an ou<br>TOSC =<br>s of code | and 0E1<br>oled, the r<br>ow. The 1<br>ce. Wher<br>nning. Th<br>et the WI<br>er. The V<br>thet the WI<br>1/FOSC<br>that will | H in sequ<br>user need<br>14-bit cou<br>n the WD<br>nis means<br>OT the us<br>VDT cour<br>SET pulse<br>. To mak<br>periodical | tence to the<br>sto servic<br>nter overflo<br>tis enable<br>the user r<br>er must wr<br>ter cannot<br>e at the RS<br>e the best<br>ly be exec | e WDTRST reg<br>e it by writing (<br>ows when it rea<br>ed, it will incre<br>nust reset the<br>ite 01EH and (<br>be read or wr<br>ST pin. The RE<br>use of the WI<br>uted within the | gister<br>)1EH<br>Iches<br>ment<br>WDT<br>)E1H<br>itten.<br>SET<br>DT, it<br>e time |  |

## AT89S51

#### WDT During In Power-down mode the oscillator stops, which means the WDT also stops. While in Powerdown mode, the user does not need to service the WDT. There are two methods of exiting **Power-down** Power-down mode: by a hardware reset or via a level-activated external interrupt, which is and Idle enabled prior to entering Power-down mode. When Power-down is exited with hardware reset, servicing the WDT should occur as it normally does whenever the AT89S51 is reset. Exiting Power-down with an interrupt is significantly different. The interrupt is held low long enough for the oscillator to stabilize. When the interrupt is brought high, the interrupt is serviced. To prevent the WDT from resetting the device while the interrupt pin is held low, the WDT is not started until the interrupt is pulled high. It is suggested that the WDT be reset during the interrupt service for the interrupt used to exit Power-down mode. To ensure that the WDT does not overflow within a few states of exiting Power-down, it is best to reset the WDT just before entering Power-down mode. Before going into the IDLE mode, the WDIDLE bit in SFR AUXR is used to determine whether the WDT continues to count if enabled. The WDT keeps counting during IDLE (WDIDLE bit = 0) as the default state. To prevent the WDT from resetting the AT89S51 while in IDLE mode, the user should always set up a timer that will periodically exit IDLE, service the WDT, and reenter IDLE mode. With WDIDLE bit enabled, the WDT will stop to count in IDLE mode and resumes the count upon exit from IDLE. UART The UART in the AT89S51 operates the same way as the UART in the AT89C51. For further information on the UART operation, refer to the Atmel Web site (http://www.atmel.com). From the home page, select "Products", then "Microcontrollers", then "8051-Architecture", then "Documentation", and "Other Documents". Open the Adobe® Acrobat® file "AT89 Series Hardware Description". Timer 0 and 1 Timer 0 and Timer 1 in the AT89S51 operate the same way as Timer 0 and Timer 1 in the AT89C51. For further information on the timers' operation, refer to the Atmel Web site (http://www.atmel.com). From the home page, select "Products", then "Microcontrollers", then "8051-Architecture", then "Documentation", and "Other Documents". Open the Adobe Acrobat file "AT89 Series Hardware Description". Interrupts The AT89S51 has a total of five interrupt vectors: two external interrupts (INT0 and INT1), two timer interrupts (Timers 0 and 1), and the serial port interrupt. These interrupts are all shown in Figure 1. Each of these interrupt sources can be individually enabled or disabled by setting or clearing a bit in Special Function Register IE. IE also contains a global disable bit, EA, which disables all interrupts at once. Note that Table 4 shows that bit positions IE.6 and IE.5 are unimplemented. User software should not write 1s to these bit positions, since they may be used in future AT89 products. The Timer 0 and Timer 1 flags, TF0 and TF1, are set at S5P2 of the cycle in which the timers

AIMEL

overflow. The values are then polled by the circuitry in the next cycle.



#### Table 4. Interrupt Enable (IE) Register

| (N                                    | ISB) |   |   |    |     |     |     |     |
|---------------------------------------|------|---|---|----|-----|-----|-----|-----|
|                                       | EA   | - | _ | ES | ET1 | EX1 | ET0 | EX0 |
| Enable Bit = 1 enables the interrupt. |      |   |   |    |     |     |     |     |

Enable Bit = 0 disables the interrupt.

| Symbol                                                                                                  | Position | Function                                                                                                                                                                                     |  |  |  |  |
|---------------------------------------------------------------------------------------------------------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| EA                                                                                                      | IE.7     | Disables all interrupts. If $EA = 0$ , no interrupt is<br>acknowledged. If $EA = 1$ , each interrupt source is<br>individually enabled or disabled by setting or clearing<br>its enable bit. |  |  |  |  |
| -                                                                                                       | IE.6     | Reserved                                                                                                                                                                                     |  |  |  |  |
| -                                                                                                       | IE.5     | Reserved                                                                                                                                                                                     |  |  |  |  |
| ES                                                                                                      | IE.4     | Serial Port interrupt enable bit                                                                                                                                                             |  |  |  |  |
| ET1                                                                                                     | IE.3     | Timer 1 interrupt enable bit                                                                                                                                                                 |  |  |  |  |
| EX1                                                                                                     | IE.2     | External interrupt 1 enable bit                                                                                                                                                              |  |  |  |  |
| ET0                                                                                                     | IE.1     | Timer 0 interrupt enable bit                                                                                                                                                                 |  |  |  |  |
| EX0                                                                                                     | IE.0     | External interrupt 0 enable bit                                                                                                                                                              |  |  |  |  |
| User software should never write 1s to reserved bits, because they may be used in future AT89 products. |          |                                                                                                                                                                                              |  |  |  |  |

#### Figure 1. Interrupt Sources



10

## Oscillator Characteristics

XTAL1 and XTAL2 are the input and output, respectively, of an inverting amplifier that can be configured for use as an on-chip oscillator, as shown in Figure 2. Either a quartz crystal or ceramic resonator may be used. To drive the device from an external clock source, XTAL2 should be left unconnected while XTAL1 is driven, as shown in Figure 3. There are no requirements on the duty cycle of the external clock signal, since the input to the internal clocking circuitry is through a divide-by-two flip-flop, but minimum and maximum voltage high and low time specifications must be observed.

Figure 2. Oscillator Connections



Note: C1, C2 =  $30 \text{ pF} \pm 10 \text{ pF}$  for Crystals =  $40 \text{ pF} \pm 10 \text{ pF}$  for Ceramic Resonators

Figure 3. External Clock Drive Configuration



Idle Mode In idle mode, the CPU puts itself to sleep while all the on-chip peripherals remain active. The mode is invoked by software. The content of the on-chip RAM and all the special function registers remain unchanged during this mode. The idle mode can be terminated by any enabled interrupt or by a hardware reset.

Note that when idle mode is terminated by a hardware reset, the device normally resumes program execution from where it left off, up to two machine cycles before the internal reset algorithm takes control. On-chip hardware inhibits access to internal RAM in this event, but access to the port pins is not inhibited. To eliminate the possibility of an unexpected write to a port pin when idle mode is terminated by a reset, the instruction following the one that invokes idle mode should not write to a port pin or to external memory.

#### **Power-down Mode** In the Power-down mode, the oscillator is stopped, and the instruction that invokes Powerdown is the last instruction executed. The on-chip RAM and Special Function Registers retain their values until the Power-down mode is terminated. Exit from Power-down mode can be initiated either by a hardware reset or by activation of an enabled external interrupt (INT0 or INT1). Reset redefines the SFRs but does not change the on-chip RAM. The reset should not be activated before V<sub>CC</sub> is restored to its normal operating level and must be held active long enough to allow the oscillator to restart and stabilize.





| Mode       | Program Memory | ALE | PSEN | PORT0 | PORT1 | PORT2   | PORT3 |
|------------|----------------|-----|------|-------|-------|---------|-------|
| Idle       | Internal       | 1   | 1    | Data  | Data  | Data    | Data  |
| ldle       | External       | 1   | 1    | Float | Data  | Address | Data  |
| Power-down | Internal       | 0   | 0    | Data  | Data  | Data    | Data  |
| Power-down | External       | 0   | 0    | Float | Data  | Data    | Data  |

## Program Memory Lock Bits

The AT89S51 has three lock bits that can be left unprogrammed (U) or can be programmed (P) to obtain the additional features listed in the following table.

|  | Table 6. | Lock Bit Protection | Modes |
|--|----------|---------------------|-------|
|--|----------|---------------------|-------|

|   | Program | Lock Bits |     |                                                                                                                                                                                                                              |
|---|---------|-----------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | LB1     | LB2       | LB3 | Protection Type                                                                                                                                                                                                              |
| 1 | U       | U         | U   | No program lock features                                                                                                                                                                                                     |
| 2 | Р       | U         | U   | MOVC instructions executed from external program memory are disabled from fetching code bytes from internal memory, $\overline{EA}$ is sampled and latched on reset, and further programming of the Flash memory is disabled |
| 3 | Р       | Р         | U   | Same as mode 2, but verify is also disabled                                                                                                                                                                                  |
| 4 | Р       | Р         | Р   | Same as mode 3, but external execution is also disabled                                                                                                                                                                      |

When lock bit 1 is programmed, the logic level at the  $\overline{EA}$  pin is sampled and latched during reset. If the device is powered up without a reset, the latch initializes to a random value and holds that value until reset is activated. The latched value of  $\overline{EA}$  must agree with the current logic level at that pin in order for the device to function properly.

## Programming the Flash – Parallel Mode

The AT89S51 is shipped with the on-chip Flash memory array ready to be programmed. The programming interface needs a high-voltage (12-volt) program enable signal and is compatible with conventional third-party Flash or EPROM programmers.

The AT89S51 code memory array is programmed byte-by-byte.

**Programming Algorithm:** Before programming the AT89S51, the address, data, and control signals should be set up according to the Flash Programming Modes table (Table 7) and Figures 4 and 5. To program the AT89S51, take the following steps:

- 1. Input the desired memory location on the address lines.
- 2. Input the appropriate data byte on the data lines.
- 3. Activate the correct combination of control signals.
- 4. Raise  $\overline{EA}/V_{PP}$  to 12V.
- 5. Pulse ALE/PROG once to program a byte in the Flash array or the lock bits. The bytewrite cycle is self-timed and typically takes no more than 50 µs. Repeat steps 1 through 5, changing the address and data for the entire array or until the end of the object file is reached.

**Data Polling:** The AT89S51 features Data Polling to indicate the end of a byte write cycle. During a write cycle, an attempted read of the last byte written will result in the complement of the written data on P0.7. Once the write cycle has been completed, true data is valid on all outputs, and the next cycle may begin. Data Polling may begin any time after a write cycle has been initiated.

## AT89S51

**Ready/Busy:** The progress of byte programming can also be monitored by the RDY/BSY output signal. P3.0 is pulled low after ALE goes high during programming to indicate BUSY. P3.0 is pulled high again when programming is done to indicate READY.

**Program Verify:** If lock bits LB1 and LB2 have not been programmed, the programmed code data can be read back via the address and data lines for verification. **The status of the individual lock bits can be verified directly by reading them back.** 

**Reading the Signature Bytes:** The signature bytes are read by the same procedure as a normal verification of locations 000H, 100H, and 200H, except that P3.6 and P3.7 must be pulled to a logic low. The values returned are as follows.

(000H) = 1EH indicates manufactured by Atmel (100H) = 51H indicates AT89S51 (200H) = 06H

**Chip Erase:** In the parallel programming mode, a chip erase operation is initiated by using the proper combination of control signals and by pulsing ALE/PROG low for a duration of 200 ns - 500 ns.

In the serial programming mode, a chip erase operation is initiated by issuing the Chip Erase instruction. In this mode, chip erase is self-timed and takes about 500 ms.

During chip erase, a serial read from any address location will return 00H at the data output.

**Programming the Flash** – **Serial Mode Serial Mode** The Code memory array can be programmed using the serial ISP interface while RST is pulled to V<sub>cc</sub>. The serial interface consists of pins SCK, MOSI (input) and MISO (output). After RST is set high, the Programming Enable instruction needs to be executed first before other operations can be executed. Before a reprogramming sequence can occur, a Chip Erase operation is required.

The Chip Erase operation turns the content of every memory location in the Code array into FFH.

Either an external system clock can be supplied at pin XTAL1 or a crystal needs to be connected across pins XTAL1 and XTAL2. The maximum serial clock (SCK) frequency should be less than 1/16 of the crystal frequency. With a 33 MHz oscillator clock, the maximum SCK frequency is 2 MHz.

To program and verify the AT89S51 in the serial programming mode, the following sequence is recommended:

1. Power-up sequence:

Apply power between VCC and GND pins.

Set RST pin to "H".

If a crystal is not connected across pins XTAL1 and XTAL2, apply a 3 MHz to 33 MHz clock to XTAL1 pin and wait for at least 10 milliseconds.

- 2. Enable serial programming by sending the Programming Enable serial instruction to pin MOSI/P1.5. The frequency of the shift clock supplied at pin SCK/P1.7 needs to be less than the CPU clock at XTAL1 divided by 16.
- 3. The Code array is programmed one byte at a time in either the Byte or Page mode. The write cycle is self-timed and typically takes less than 0.5 ms at 5V.
- 4. Any memory location can be verified by using the Read instruction that returns the content at the selected address at serial output MISO/P1.6.
- 5. At the end of a programming session, RST can be set low to commence normal device operation.



Serial

Programming Algorithm



| Power-off sequence (if needed):            |    |
|--------------------------------------------|----|
| Set XTAL1 to "L" (if a crystal is not used | ). |

Set RST to "L".

Turn V<sub>CC</sub> power off.

**Data Polling:** The Data Polling feature is also available in the serial mode. In this mode, during a write cycle an attempted read of the last byte written will result in the complement of the MSB of the serial output byte on MISO.

The Instruction Set for Serial Programming follows a 4-byte protocol and is shown in Table 8.

#### Programming Instruction Set

Serial

## Programming<br/>Interface –<br/>Parallel ModeEvery code byte in the Flash array can be programmed by using the appropriate combination<br/>of control signals. The write operation cycle is self-timed and once initiated, will automatically<br/>time itself to completion.<br/>Most major worldwide programming vendors offer worldwide support for the Atmel AT89

Most major worldwide programming vendors offer worldwide support for the Atmel AT89 microcontroller series. Please contact your local programming vendor for the appropriate software revision.

|                           |                 |     |      | ALE/ | EA/             |      |      |      |      |      | P0.7-0                 | P2.3-0 | P1.7-0 |
|---------------------------|-----------------|-----|------|------|-----------------|------|------|------|------|------|------------------------|--------|--------|
| Mode                      | V <sub>cc</sub> | RST | PSEN | PROG | V <sub>PP</sub> | P2.6 | P2.7 | P3.3 | P3.6 | P3.7 | Data                   | Add    | ress   |
| Write Code Data           | 5V              | н   | L    | (2)  | 12V             | L    | н    | н    | н    | н    | D <sub>IN</sub>        | A11-8  | A7-0   |
| Read Code Data            | 5V              | н   | L    | Н    | Н               | L    | L    | L    | н    | н    | D <sub>OUT</sub>       | A11-8  | A7-0   |
| Write Lock Bit 1          | 5V              | н   | L    | (3)  | 12V             | Н    | н    | н    | н    | Н    | х                      | х      | х      |
| Write Lock Bit 2          | 5V              | н   | L    | (3)  | 12V             | н    | Н    | н    | L    | L    | х                      | х      | х      |
| Write Lock Bit 3          | 5V              | н   | L    | (3)  | 12V             | Н    | L    | Н    | н    | L    | х                      | х      | х      |
| Read Lock Bits<br>1, 2, 3 | 5V              | н   | L    | Н    | Н               | н    | Н    | L    | н    | L    | P0.2,<br>P0.3,<br>P0.4 | х      | х      |
| Chip Erase                | 5V              | н   | L    | (1)  | 12V             | Н    | L    | Н    | L    | L    | х                      | х      | х      |
| Read Atmel ID             | 5V              | н   | L    | Н    | Н               | L    | L    | L    | L    | L    | 1EH                    | 0000   | 00H    |
| Read Device ID            | 5V              | Н   | L    | Н    | Н               | L    | L    | L    | L    | L    | 51H                    | 0001   | 00H    |
| Read Device ID            | 5V              | Н   | L    | Н    | Н               | L    | L    | L    | L    | L    | 06H                    | 0010   | 00H    |

 Table 7.
 Flash Programming Modes

Notes: 1. Each PROG pulse is 200 ns - 500 ns for Chip Erase.

2. Each PROG pulse is 200 ns - 500 ns for Write Code Data.

3. Each PROG pulse is 200 ns - 500 ns for Write Lock Bits.

4. RDY/BSY signal is output on P3.0 during programming.

5. X = don't care.



Figure 4. Programming the Flash Memory (Parallel Mode)

Figure 5. Verifying the Flash Memory (Parallel Mode)







## Flash Programming and Verification Characteristics (Parallel Mode)

 $T_{\rm A}$  = 20°C to 30°C,  $V_{\rm CC}$  = 4.5 to 5.5V

| Symbol              | Parameter                         | Min                 | Max                 | Units |
|---------------------|-----------------------------------|---------------------|---------------------|-------|
| V <sub>PP</sub>     | Programming Supply Voltage        | 11.5                | 12.5                | V     |
| I <sub>PP</sub>     | Programming Supply Current        |                     | 10                  | mA    |
| I <sub>CC</sub>     | V <sub>CC</sub> Supply Current    |                     | 30                  | mA    |
| 1/t <sub>CLCL</sub> | Oscillator Frequency              | 3                   | 33                  | MHz   |
| t <sub>AVGL</sub>   | Address Setup to PROG Low         | 48t <sub>CLCL</sub> |                     |       |
| t <sub>GHAX</sub>   | Address Hold After PROG           | 48t <sub>CLCL</sub> |                     |       |
| t <sub>DVGL</sub>   | Data Setup to PROG Low            | 48t <sub>CLCL</sub> |                     |       |
| t <sub>GHDX</sub>   | Data Hold After PROG              | 48t <sub>CLCL</sub> |                     |       |
| t <sub>EHSH</sub>   | P2.7 (ENABLE) High to $V_{PP}$    | 48t <sub>CLCL</sub> |                     |       |
| t <sub>SHGL</sub>   | V <sub>PP</sub> Setup to PROG Low | 10                  |                     | μs    |
| t <sub>GHSL</sub>   | V <sub>PP</sub> Hold After PROG   | 10                  |                     | μs    |
| t <sub>GLGH</sub>   | PROG Width                        | 0.2                 | 1                   | μs    |
| t <sub>AVQV</sub>   | Address to Data Valid             |                     | 48t <sub>CLCL</sub> |       |
| t <sub>ELQV</sub>   | ENABLE Low to Data Valid          |                     | 48t <sub>CLCL</sub> |       |
| t <sub>EHQZ</sub>   | Data Float After ENABLE           | 0                   | 48t <sub>CLCL</sub> |       |
| t <sub>GHBL</sub>   | PROG High to BUSY Low             |                     | 1.0                 | μs    |
| t <sub>wc</sub>     | Byte Write Cycle Time             |                     | 50                  | μs    |

#### Figure 6. Flash Programming and Verification Waveforms – Parallel Mode



16

Figure 7. Flash Memory Serial Downloading



## Flash Programming and Verification Waveforms – Serial Mode



Figure 8. Serial Programming Waveforms





#### Table 8. Serial Programming Instruction Set

|                                     | Instruction<br>Format |                                                                                  |                                 |                                                                                             |                                                                                             |
|-------------------------------------|-----------------------|----------------------------------------------------------------------------------|---------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| Instruction                         | Byte 1                | Byte 2                                                                           | Byte 3                          | Byte 4                                                                                      | Operation                                                                                   |
| Programming Enable                  | 1010 1100             | 0101 0011                                                                        | XXXX XXXX                       | xxxx xxxx<br>0110 1001<br>(Output on<br>MISO)                                               | Enable Serial Programming while RST is high                                                 |
| Chip Erase                          | 1010 1100             | 100x xxxx                                                                        | XXXX XXXX                       | XXXX XXXX                                                                                   | Chip Erase Flash memory array                                                               |
| Read Program Memory<br>(Byte Mode)  | 0010 0000             | A11<br>A11<br>8900<br>800<br>800<br>800<br>800<br>800<br>800<br>800<br>800<br>80 | 4444 4464<br>4564 4564          |                                                                                             | Read data from Program memory in the byte mode                                              |
| Write Program Memory<br>(Byte Mode) | 0100 0000             | AA<br>AA411<br>XXXX 2000                                                         | 4444 4464<br>7473 44567<br>0123 | 0000 0000                                                                                   | Write data to Program memory in the byte mode                                               |
| Write Lock Bits <sup>(1)</sup>      | 1010 1100             | 1110 00듑協                                                                        | xxxx xxxx                       | xxxx xxxx                                                                                   | Write Lock bits. See Note (1).                                                              |
| Read Lock Bits                      | 0010 0100             | XXXX XXXX                                                                        | XXXX XXXX                       | XX EB2<br>B12<br>XX EB2<br>B12<br>B12<br>B12<br>B12<br>B12<br>B12<br>B12<br>B12<br>B12<br>B | Read back current status of<br>the lock bits (a programmed<br>lock bit reads back as a "1") |
| Read Signature Bytes                | 0010 1000             | A411<br>A400<br>A800<br>A                                                        | ⊱ xxx xxx0                      | Signature Byte                                                                              | Read Signature Byte                                                                         |
| Read Program Memory<br>(Page Mode)  | 0011 0000             | Add Add XXXX                                                                     | Byte 0                          | Byte 1<br>Byte 255                                                                          | Read data from Program<br>memory in the Page Mode<br>(256 bytes)                            |
| Write Program Memory<br>(Page Mode) | 0101 0000             | A400<br>A101<br>XXXX                                                             | Byte 0                          | Byte 1<br>Byte 255                                                                          | Write data to Program<br>memory in the Page Mode<br>(256 bytes)                             |

Note:

 B1 = 0, B2 = 0 → Mode 1, no lock protection B1 = 0, B2 = 1 → Mode 2, lock bit 1 activated B1 = 1, B2 = 0 → Mode 3, lock bit 2 activated

B1 = 1, B2 = 1  $\rightarrow$  Mode 4, lock bit 3 activated

 $\underline{Each}$  of the lock bit modes need to be activated sequentially before Mode 4 can be executed.

After Reset signal is high, SCK should be low for at least 64 system clocks before it goes high to clock in the enable data bytes. No pulsing of Reset signal is necessary. SCK should be no faster than 1/16 of the system clock at XTAL1.

For Page Read/Write, the data always starts from byte 0 to 255. After the command byte and upper address byte are latched, each byte thereafter is treated as data until all 256 bytes are shifted in/out. Then the next instruction will be ready to be decoded.

## Serial Programming Characteristics

Figure 9. Serial Programming Timing



| Table 9. | Serial Programming Characteristics | , Τ <sub>4</sub> | $= -40^{\circ}$ C to $85^{\circ}$ C, V <sub>CC</sub> $= 4.0 - 5.5$ V | (Unless Otherwise Noted) |
|----------|------------------------------------|------------------|----------------------------------------------------------------------|--------------------------|
|----------|------------------------------------|------------------|----------------------------------------------------------------------|--------------------------|

| Symbol              | Parameter                         | Min                 | Тур | Мах                        | Units |
|---------------------|-----------------------------------|---------------------|-----|----------------------------|-------|
| 1/t <sub>CLCL</sub> | Oscillator Frequency              | 3                   |     | 33                         | MHz   |
| t <sub>CLCL</sub>   | Oscillator Period                 | 30                  |     |                            | ns    |
| t <sub>SHSL</sub>   | SCK Pulse Width High              | 8 t <sub>CLCL</sub> |     |                            | ns    |
| t <sub>SLSH</sub>   | SCK Pulse Width Low               | 8 t <sub>CLCL</sub> |     |                            | ns    |
| t <sub>OVSH</sub>   | MOSI Setup to SCK High            | t <sub>CLCL</sub>   |     |                            | ns    |
| t <sub>SHOX</sub>   | MOSI Hold after SCK High          | 2 t <sub>CLCL</sub> |     |                            | ns    |
| t <sub>SLIV</sub>   | SCK Low to MISO Valid             | 10                  | 16  | 32                         | ns    |
| t <sub>ERASE</sub>  | Chip Erase Instruction Cycle Time |                     |     | 500                        | ms    |
| t <sub>SWC</sub>    | Serial Byte Write Cycle Time      |                     |     | 64 t <sub>CLCL</sub> + 400 | μs    |





## **Absolute Maximum Ratings\***

| Operating Temperature55°C to +125°C                       |   |
|-----------------------------------------------------------|---|
| Storage Temperature                                       |   |
| Voltage on Any Pin<br>with Respect to Ground1.0V to +7.0V | , |
| Maximum Operating Voltage 6.6V                            |   |
| DC Output Current 15.0 mA                                 |   |

\*NOTICE: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

#### **DC Characteristics**

The values shown in this table are valid for  $T_A = -40^{\circ}$ C to 85°C and  $V_{CC} = 4.0$ V to 5.5V, unless otherwise noted.

| Symbol           | Parameter                                                | Condition                                | Min                      | Max                      | Units |
|------------------|----------------------------------------------------------|------------------------------------------|--------------------------|--------------------------|-------|
| V <sub>IL</sub>  | Input Low Voltage                                        | (Except EA)                              | -0.5                     | 0.2 V <sub>CC</sub> -0.1 | V     |
| V <sub>IL1</sub> | Input Low Voltage (EA)                                   |                                          | -0.5                     | 0.2 V <sub>CC</sub> -0.3 | V     |
| V <sub>IH</sub>  | Input High Voltage                                       | (Except XTAL1, RST)                      | 0.2 V <sub>CC</sub> +0.9 | V <sub>CC</sub> +0.5     | V     |
| V <sub>IH1</sub> | Input High Voltage                                       | (XTAL1, RST)                             | 0.7 V <sub>CC</sub>      | V <sub>CC</sub> +0.5     | V     |
| V <sub>OL</sub>  | Output Low Voltage <sup>(1)</sup> (Ports 1,2,3)          | I <sub>OL</sub> = 1.6 mA                 |                          | 0.45                     | V     |
| V <sub>OL1</sub> | Output Low Voltage <sup>(1)</sup><br>(Port 0, ALE, PSEN) | I <sub>OL</sub> = 3.2 mA                 |                          | 0.45                     | V     |
|                  |                                                          | $I_{OH}$ = -60 µA, $V_{CC}$ = 5V ±10%    | 2.4                      |                          | V     |
| V <sub>OH</sub>  | Output High Voltage<br>(Ports 1 2 3 ALE PSEN)            | I <sub>OH</sub> = -25 μA                 | 0.75 V <sub>CC</sub>     |                          | V     |
|                  |                                                          | I <sub>OH</sub> = -10 μA                 | 0.9 V <sub>CC</sub>      |                          | V     |
|                  | Output High Voltage<br>(Port 0 in External Bus Mode)     | $I_{OH}$ = -800 µA, $V_{CC}$ = 5V ±10%   | 2.4                      |                          | V     |
| V <sub>OH1</sub> |                                                          | Ι <sub>OH</sub> = -300 μΑ                | 0.75 V <sub>CC</sub>     |                          | V     |
|                  |                                                          | I <sub>OH</sub> = -80 μA                 | 0.9 V <sub>CC</sub>      |                          | V     |
| I <sub>IL</sub>  | Logical 0 Input Current (Ports 1,2,3)                    | V <sub>IN</sub> = 0.45V                  |                          | -50                      | μA    |
| I <sub>TL</sub>  | Logical 1 to 0 Transition Current<br>(Ports 1,2,3)       | $V_{IN} = 2V, V_{CC} = 5V \pm 10\%$      |                          | -650                     | μA    |
| ILI              | Input Leakage Current (Port 0, $\overline{EA}$ )         | 0.45 < V <sub>IN</sub> < V <sub>CC</sub> |                          | ±10                      | μA    |
| RRST             | Reset Pulldown Resistor                                  |                                          | 50                       | 300                      | KΩ    |
| C <sub>IO</sub>  | Pin Capacitance                                          | Test Freq. = 1 MHz, $T_A = 25^{\circ}C$  |                          | 10                       | pF    |
|                  | Power Supply Current                                     | Active Mode, 12 MHz                      |                          | 25                       | mA    |
| I <sub>CC</sub>  |                                                          | Idle Mode, 12 MHz                        |                          | 6.5                      | mA    |
|                  | Power-down Mode <sup>(2)</sup>                           | $V_{CC} = 5.5 V$                         |                          | 50                       | μA    |

Notes: 1. Under steady state (non-transient) conditions,  $I_{OL}$  must be externally limited as follows: Maximum  $I_{OL}$  per port pin: 10 mA Maximum  $I_{OL}$  per 8-bit port:

Port 0: 26 mA Ports 1, 2, 3: 15 mA

Maximum total  $I_{OL}$  for all output pins: 71 mA

If  $I_{OL}$  exceeds the test condition,  $V_{OL}$  may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test conditions.

2. Minimum  $V_{CC}$  for Power-down is 2V.

## **AC Characteristics**

Under operating conditions, load capacitance for Port 0, ALE/ $\overline{PROG}$ , and  $\overline{PSEN} = 100 \text{ pF}$ ; load capacitance for all other outputs = 80 pF.

#### **External Program and Data Memory Characteristics**

|                     |                                                     | 12 MHz Oscillator Variable Oscillator |     | Oscillator              |                         |       |
|---------------------|-----------------------------------------------------|---------------------------------------|-----|-------------------------|-------------------------|-------|
| Symbol              | Parameter                                           | Min                                   | Max | Min                     | Мах                     | Units |
| 1/t <sub>CLCL</sub> | Oscillator Frequency                                |                                       |     | 0                       | 33                      | MHz   |
| t <sub>LHLL</sub>   | ALE Pulse Width                                     | 127                                   |     | 2t <sub>CLCL</sub> -40  |                         | ns    |
| t <sub>AVLL</sub>   | Address Valid to ALE Low                            | 43                                    |     | t <sub>CLCL</sub> -25   |                         | ns    |
| t <sub>LLAX</sub>   | Address Hold After ALE Low                          | 48                                    |     | t <sub>CLCL</sub> -25   |                         | ns    |
| t <sub>LLIV</sub>   | ALE Low to Valid Instruction In                     |                                       | 233 |                         | 4t <sub>CLCL</sub> -65  | ns    |
| t <sub>LLPL</sub>   | ALE Low to PSEN Low                                 | 43                                    |     | t <sub>CLCL</sub> -25   |                         | ns    |
| t <sub>PLPH</sub>   | PSEN Pulse Width                                    | 205                                   |     | 3t <sub>CLCL</sub> -45  |                         | ns    |
| t <sub>PLIV</sub>   | PSEN Low to Valid Instruction In                    |                                       | 145 |                         | 3t <sub>CLCL</sub> -60  | ns    |
| t <sub>PXIX</sub>   | Input Instruction Hold After PSEN                   | 0                                     |     | 0                       |                         | ns    |
| t <sub>PXIZ</sub>   | Input Instruction Float After PSEN                  |                                       | 59  |                         | t <sub>CLCL</sub> -25   | ns    |
| t <sub>PXAV</sub>   | PSEN to Address Valid                               | 75                                    |     | t <sub>CLCL</sub> -8    |                         | ns    |
| t <sub>AVIV</sub>   | Address to Valid Instruction In                     |                                       | 312 |                         | 5t <sub>CLCL</sub> -80  | ns    |
| t <sub>PLAZ</sub>   | PSEN Low to Address Float                           |                                       | 10  |                         | 10                      | ns    |
| t <sub>RLRH</sub>   | RD Pulse Width                                      | 400                                   |     | 6t <sub>CLCL</sub> -100 |                         | ns    |
| t <sub>wLWH</sub>   | WR Pulse Width                                      | 400                                   |     | 6t <sub>CLCL</sub> -100 |                         | ns    |
| t <sub>RLDV</sub>   | RD Low to Valid Data In                             |                                       | 252 |                         | 5t <sub>CLCL</sub> -90  | ns    |
| t <sub>RHDX</sub>   | Data Hold After RD                                  | 0                                     |     | 0                       |                         | ns    |
| t <sub>RHDZ</sub>   | Data Float After RD                                 |                                       | 97  |                         | 2t <sub>CLCL</sub> -28  | ns    |
| t <sub>LLDV</sub>   | ALE Low to Valid Data In                            |                                       | 517 |                         | 8t <sub>CLCL</sub> -150 | ns    |
| t <sub>AVDV</sub>   | Address to Valid Data In                            |                                       | 585 |                         | 9t <sub>CLCL</sub> -165 | ns    |
| t <sub>LLWL</sub>   | ALE Low to $\overline{RD}$ or $\overline{WR}$ Low   | 200                                   | 300 | 3t <sub>CLCL</sub> -50  | 3t <sub>CLCL</sub> +50  | ns    |
| t <sub>AVWL</sub>   | Address to RD or WR Low                             | 203                                   |     | 4t <sub>CLCL</sub> -75  |                         | ns    |
| t <sub>QVWX</sub>   | Data Valid to WR Transition                         | 23                                    |     | t <sub>CLCL</sub> -30   |                         | ns    |
| t <sub>QVWH</sub>   | Data Valid to WR High                               | 433                                   |     | 7t <sub>CLCL</sub> -130 |                         | ns    |
| t <sub>WHQX</sub>   | Data Hold After WR                                  | 33                                    |     | t <sub>CLCL</sub> -25   |                         | ns    |
| t <sub>RLAZ</sub>   | RD Low to Address Float                             |                                       | 0   |                         | 0                       | ns    |
| t <sub>WHLH</sub>   | $\overline{RD}$ or $\overline{WR}$ High to ALE High | 43                                    | 123 | t <sub>CLCL</sub> -25   | t <sub>CLCL</sub> +25   | ns    |





## **External Program Memory Read Cycle**



#### **External Data Memory Read Cycle**



22

#### **External Data Memory Write Cycle**



## **External Clock Drive Waveforms**



## **External Clock Drive**

| Symbol              | Parameter            | Min | Max | Units |  |  |
|---------------------|----------------------|-----|-----|-------|--|--|
| 1/t <sub>CLCL</sub> | Oscillator Frequency | 0   | 33  | MHz   |  |  |
| t <sub>CLCL</sub>   | Clock Period         | 30  |     | ns    |  |  |
| t <sub>CHCX</sub>   | High Time            | 12  |     | ns    |  |  |
| t <sub>CLCX</sub>   | Low Time             | 12  |     | ns    |  |  |
| t <sub>CLCH</sub>   | Rise Time            |     | 5   | ns    |  |  |
| t <sub>CHCL</sub>   | Fall Time            |     | 5   | ns    |  |  |





#### Serial Port Timing: Shift Register Mode Test Conditions

The values in this table are valid for  $V_{CC}$  = 4.0V to 5.5V and Load Capacitance = 80 pF.

|                   |                                          | 12 MHz Osc |     | Variable Oscillator      |                          |       |
|-------------------|------------------------------------------|------------|-----|--------------------------|--------------------------|-------|
| Symbol            | Parameter                                | Min        | Мах | Min                      | Max                      | Units |
| t <sub>XLXL</sub> | Serial Port Clock Cycle Time             | 1.0        |     | 12t <sub>CLCL</sub>      |                          | μs    |
| t <sub>QVXH</sub> | Output Data Setup to Clock Rising Edge   | 700        |     | 10t <sub>CLCL</sub> -133 |                          | ns    |
| t <sub>XHQX</sub> | Output Data Hold After Clock Rising Edge | 50         |     | 2t <sub>CLCL</sub> -80   |                          | ns    |
| t <sub>XHDX</sub> | Input Data Hold After Clock Rising Edge  | 0          |     | 0                        |                          | ns    |
| t <sub>XHDV</sub> | Clock Rising Edge to Input Data Valid    |            | 700 |                          | 10t <sub>CLCL</sub> -133 | ns    |

#### Shift Register Mode Timing Waveforms



## AC Testing Input/Output Waveforms<sup>(1)</sup>



Note: 1. AC Inputs during testing are driven at V<sub>CC</sub> - 0.5V for a logic 1 and 0.45V for a logic 0. Timing measurements are made at V<sub>IH</sub> min. for a logic 1 and V<sub>IL</sub> max. for a logic 0.

## Float Waveforms<sup>(1)</sup>



Note: 1. For timing purposes, a port pin is no longer floating when a 100 mV change from load voltage occurs. A port pin begins to float when a 100 mV change from the loaded V<sub>OH</sub>/V<sub>OL</sub> level occurs.

| Speed<br>(MHz) | Power<br>Supply | Ordering Code | Package | Operation Range   |
|----------------|-----------------|---------------|---------|-------------------|
| 24             | 4.0V to 5.5V    | AT89S51-24AC  | 44A     | Commercial        |
|                |                 | AT89S51-24JC  | 44J     | (0° C to 70° C)   |
|                |                 | AT89S51-24PC  | 40P6    |                   |
|                |                 | AT89S51-24SC  | 42PS6   |                   |
|                |                 | AT89S51-24AI  | 44A     | Industrial        |
|                |                 | AT89S51-24JI  | 44J     | (-40° C to 85° C) |
|                |                 | AT89S51-24PI  | 40P6    |                   |
|                |                 | AT89S51-24SI  | 42PS6   |                   |
| 33             | 4.5V to 5.5V    | AT89S51-33AC  | 44A     | Commercial        |
|                |                 | AT89S51-33JC  | 44J     | (0° C to 70° C)   |
|                |                 | AT89S51-33PC  | 40P6    |                   |
|                |                 | AT89S51-33SC  | 42PS6   |                   |

## **Ordering Information**

|       | Package Type                                            |
|-------|---------------------------------------------------------|
| 44A   | 44-lead, Thin Plastic Gull Wing Quad Flatpack (TQFP)    |
| 44J   | 44-lead, Plastic J-leaded Chip Carrier (PLCC)           |
| 40P6  | 40-pin, 0.600" Wide, Plastic Dual Inline Package (PDIP) |
| 42PS6 | 42-pin, 0.600" Wide, Plastic Dual Inline Package (PDIP) |





#### **Packaging Information**

#### 44A – TQFP



AT89S51

#### 44J – PLCC







#### 40P6 - PDIP



28

AT89S51

#### 42PS6 - PDIP






#### **Atmel Corporation**

2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 487-2600

#### **Regional Headquarters**

#### Europe

Atmel Sarl Route des Arsenaux 41 Case Postale 80 CH-1705 Fribourg Switzerland Tel: (41) 26-426-5555 Fax: (41) 26-426-5500

#### Asia

Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimshatsui East Kowloon Hong Kong Tel: (852) 2721-9778 Fax: (852) 2722-1369

#### Japan

9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan Tel: (81) 3-3523-3551 Fax: (81) 3-3523-7581

#### **Atmel Operations**

Memory

2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 436-4314

#### Microcontrollers

2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 436-4314

La Chantrerie BP 70602 44306 Nantes Cedex 3, France Tel: (33) 2-40-18-18-18 Fax: (33) 2-40-18-19-60

#### ASIC/ASSP/Smart Cards

Zone Industrielle 13106 Rousset Cedex, France Tel: (33) 4-42-53-60-00 Fax: (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906, USA Tel: 1(719) 576-3300 Fax: 1(719) 540-1759

Scottish Enterprise Technology Park Maxwell Building East Kilbride G75 0QR, Scotland Tel: (44) 1355-803-000 Fax: (44) 1355-242-743

#### **RF**/Automotive

Theresienstrasse 2 Postfach 3535 74025 Heilbronn, Germany Tel: (49) 71-31-67-0 Fax: (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906, USA Tel: 1(719) 576-3300 Fax: 1(719) 540-1759

#### Biometrics/Imaging/Hi-Rel MPU/

High Speed Converters/RF Datacom Avenue de Rochepleine BP 123 38521 Saint-Egreve Cedex, France Tel: (33) 4-76-58-30-00 Fax: (33) 4-76-58-34-80

*Literature Requests* www.atmel.com/literature

**Disclaimer:** Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company's standard warranty which is detailed in Atmel's Terms and Conditions located on the Company's web site. The Company assumes no responsibility for any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel's products are not authorized for use as critical components in life support devices or systems.

© Atmel Corporation 2003. All rights reserved. Atmel<sup>®</sup> and combinations thereof are the registered trademarks of Atmel Corporation or its subsidiaries. MCS<sup>®</sup> is a registered trademark of Intel Corporation. Adobe<sup>®</sup> and Acrobat<sup>®</sup> are the registered trademarks of Adobe Systems Inc. Other terms and product names may be the trademarks of others.





## LM555/LM555C Timer

#### **General Description**

The LM555 is a highly stable device for generating accurate time delays or oscillation. Additional terminals are provided for triggering or resetting if desired. In the time delay mode of operation, the time is precisely controlled by one external resistor and capacitor. For astable operation as an oscillator, the free running frequency and duty cycle are accurately controlled with two external resistors and one capacitor. The circuit may be triggered and reset on falling waveforms, and the output circuit can source or sink up to 200 mA or drive TTL circuits.

#### Features

- Direct replacement for SE555/NE555
- Timing from microseconds through hours
- Operates in both astable and monostable modes

- Adjustable duty cycle
- Output can source or sink 200 mA
- Output and supply TTL compatible
- Temperature stability better than 0.005% per °C
- Normally on and normally off output

#### **Applications**

- Precision timing
- Pulse generation
- Sequential timing
- Time delay generation
- Pulse width modulation
- Pulse position modulation
- Linear ramp generator



©1995 National Semiconductor Corporation TL/H/7851

RRD-B30M115/Printed in U. S. A.

LM555/LM555C Timer

February 1995

| Absolute Maximum F              | latings               |                                     |                                     |
|---------------------------------|-----------------------|-------------------------------------|-------------------------------------|
| If Military/Aerospace specified | devices are required, | Storage Temperature Range           | $-65^{\circ}$ C to $+150^{\circ}$ C |
| please contact the National     | Semiconductor Sales   | Soldering Information               |                                     |
|                                 | y and specifications. | Dual-In-Line Package                |                                     |
| Supply Voltage                  | + 18V                 | Soldering (10 Seconds)              | 260°C                               |
| Power Dissipation (Note 1)      |                       | Small Outline Package               |                                     |
| LM555H. LM555CH                 | 760 mW                | Vapor Phase (60 Seconds)            | 215°C                               |
| LM555, LM555CN                  | 1180 mW               | Infrared (15 Seconds)               | 220°C                               |
| Operating Temperature Ranges    |                       | See AN-450 "Surface Mounting M      | lethods and Their Effect            |
| LM555C                          | 0°C to +70°C          | on Product Reliability" for other m | ethods of soldering sur-            |
| LM555                           | -55°C to + 125°C      | face mount devices.                 |                                     |

| Ε | lectrica |  | haracteristics ( | $T_A = 25^{\circ}C$ , $V_{CC} = +5V$ to $+15V$ , unless othewise s | pecified) |
|---|----------|--|------------------|--------------------------------------------------------------------|-----------|
|---|----------|--|------------------|--------------------------------------------------------------------|-----------|

|                                                                                                                          |                                                                                                                              |             |                          | Lin         | nits     |                       |         |                         |
|--------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-------------|--------------------------|-------------|----------|-----------------------|---------|-------------------------|
| Parameter                                                                                                                | Conditions                                                                                                                   |             | LM555                    |             |          | LM555C                |         | Units                   |
|                                                                                                                          |                                                                                                                              | Min         | Тур                      | Мах         | Min      | Тур                   | Мах     |                         |
| Supply Voltage                                                                                                           |                                                                                                                              | 4.5         |                          | 18          | 4.5      |                       | 16      | V                       |
| Supply Current                                                                                                           | $V_{CC} = 5V, R_L = \infty$ $V_{CC} = 15V, R_L = \infty$ (Low State) (Note 2)                                                |             | 3<br>10                  | 5<br>12     |          | 3<br>10               | 6<br>15 | mA<br>mA                |
| Timing Error, Monostable<br>Initial Accuracy<br>Drift with Temperature<br>Accuracy over Temperature<br>Drift with Supply | $\label{eq:RA} \begin{split} R_{A} &= 1k \mbox{ to } 100 \mbox{ k}\Omega, \\ C &= 0.1 \ \mu F, \mbox{ (Note 3)} \end{split}$ |             | 0.5<br>30<br>1.5<br>0.05 |             |          | 1<br>50<br>1.5<br>0.1 |         | %<br>ppm/°C<br>%<br>%/V |
| Timing Error, Astable<br>Initial Accuracy<br>Drift with Temperature                                                      | $\label{eq:RA} \begin{split} R_A, R_B &= 1k \text{ to } 100  k\Omega, \\ C &= 0.1 \; \muF, (Note 3) \end{split}$             |             | 1.5<br>90                |             |          | 2.25<br>150           |         | %<br>ppm/°C             |
| Accuracy over Temperature<br>Drift with Supply                                                                           |                                                                                                                              |             | 2.5<br>0.15              |             |          | 0.30                  |         | %<br>%/V                |
| Threshold Voltage                                                                                                        |                                                                                                                              |             | 0.667                    |             |          | 0.667                 |         | x V <sub>CC</sub>       |
| Trigger Voltage                                                                                                          | $V_{CC} = 15V$ $V_{CC} = 5V$                                                                                                 | 4.8<br>1.45 | 5<br>1.67                | 5.2<br>1.9  |          | 5<br>1.67             |         | V<br>V                  |
| Trigger Current                                                                                                          |                                                                                                                              |             | 0.01                     | 0.5         |          | 0.5                   | 0.9     | μΑ                      |
| Reset Voltage                                                                                                            |                                                                                                                              | 0.4         | 0.5                      | 1           | 0.4      | 0.5                   | 1       | V                       |
| Reset Current                                                                                                            |                                                                                                                              |             | 0.1                      | 0.4         |          | 0.1                   | 0.4     | mA                      |
| Threshold Current                                                                                                        | (Note 4)                                                                                                                     |             | 0.1                      | 0.25        |          | 0.1                   | 0.25    | μΑ                      |
| Control Voltage Level                                                                                                    | $V_{CC} = 15V$<br>$V_{CC} = 5V$                                                                                              | 9.6<br>2.9  | 10<br>3.33               | 10.4<br>3.8 | 9<br>2.6 | 10<br>3.33            | 11<br>4 | V<br>V                  |
| Pin 7 Leakage Output High                                                                                                |                                                                                                                              |             | 1                        | 100         |          | 1                     | 100     | nA                      |
| Pin 7 Sat (Note 5)<br>Output Low<br>Output Low                                                                           | $V_{CC} = 15V, I_7 = 15 \text{ mA}$<br>$V_{CC} = 4.5V, I_7 = 4.5 \text{ mA}$                                                 |             | 150<br>70                | 100         |          | 180<br>80             | 200     | mV<br>mV                |

|                            |                                                                   |       |      | Li   | mits   |      |      |       |
|----------------------------|-------------------------------------------------------------------|-------|------|------|--------|------|------|-------|
| Parameter                  | Conditions                                                        | LM555 |      |      | LM555C |      |      | Units |
|                            |                                                                   | Min   | Тур  | Max  | Min    | Тур  | Max  |       |
| Output Voltage Drop (Low)  | $V_{CC} = 15V$                                                    |       |      |      |        |      |      |       |
| ,                          | $I_{SINK} = 10 \text{ mA}$                                        |       | 0.1  | 0.15 |        | 0.1  | 0.25 | V     |
|                            | $I_{SINK} = 50 \text{ mA}$                                        |       | 0.4  | 0.5  |        | 0.4  | 0.75 | V     |
|                            | $I_{SINK} = 100 \text{ mA}$                                       |       | 2    | 2.2  |        | 2    | 2.5  | V     |
|                            | $I_{SINK} = 200 \text{ mA}$                                       |       | 2.5  |      |        | 2.5  |      | V     |
|                            | $V_{CC} = 5V$                                                     |       |      |      |        |      |      |       |
|                            | $I_{SINK} = 8 \text{ mA}$                                         |       | 0.1  | 0.25 |        |      |      | V     |
|                            | $I_{SINK} = 5 \text{ mA}$                                         |       |      |      |        | 0.25 | 0.35 | V     |
| Output Voltage Drop (High) | $I_{\text{SOUBCE}} = 200 \text{ mA}, V_{\text{CC}} = 15 \text{V}$ |       | 12.5 |      |        | 12.5 |      | V     |
|                            | $I_{SOURCE} = 100 \text{ mA}, V_{CC} = 15V$                       | 13    | 13.3 |      | 12.75  | 13.3 |      | V     |
|                            | $V_{CC} = 5V$                                                     | 3     | 3.3  |      | 2.75   | 3.3  |      | V     |
| Rise Time of Output        |                                                                   |       | 100  |      |        | 100  |      | ns    |
| Fall Time of Output        |                                                                   |       | 100  |      |        | 100  |      | ns    |

Note 1: For operating at elevated temperatures the device must be derated above 25°C based on a +150°C maximum junction temperature and a thermal resistance of 164°c/w (T0-5), 106°c/w (DIP) and 170°c/w (S0-8) junction to ambient.

Note 2: Supply current when output high typically 1 mA less at V\_{CC} = 5V.

Note 3: Tested at  $V_{CC}\,=\,5V$  and  $V_{CC}\,=\,15V.$ 

Note 4: This will determine the maximum value of R<sub>A</sub> + R<sub>B</sub> for 15V operation. The maximum total (R<sub>A</sub> + R<sub>B</sub>) is 20 M $\Omega$ .

Note 5: No protection against excessive pin 7 current is necessary providing the package dissipation rating will not be exceeded.

Note 6: Refer to RETS555X drawing of military LM555H and LM555J versions for specifications.

#### **Connection Diagrams**



TL/H/7851-2

Top View Order Number LM555H or LM555CH See NS Package Number H08C



TL/H/7851-3

Order Number LM555J, LM555CJ, LM555CM or LM555CN See NS Package Number J08A, M08A or N08E

**Top View** 



#### **Applications Information**

#### MONOSTABLE OPERATION

In this mode of operation, the timer functions as a one-shot (*Figure 1*). The external capacitor is initially held discharged by a transistor inside the timer. Upon application of a negative trigger pulse of less than 1/3 V<sub>CC</sub> to pin 2, the flip-flop is set which both releases the short circuit across the capacitor and drives the output high.



FIGURE 1. Monostable

The voltage across the capacitor then increases exponentially for a period of t = 1.1 R<sub>A</sub> C, at the end of which time the voltage equals 2/3 V<sub>CC</sub>. The comparator then resets the flip-flop which in turn discharges the capacitor and drives the output to its low state. *Figure 2* shows the waveforms generated in this mode of operation. Since the charge and the threshold level of the comparator are both directly proportional to supply voltage, the timing internal is independent of supply.





Top Trace: Input 5V/Div. Middle Trace: Output 5V/Div. Bottom Trace: Capacitor Voltage 2V/Div.

TL/H/7851-6

#### FIGURE 2. Monostable Waveforms

During the timing cycle when the output is high, the further application of a trigger pulse will not effect the circuit so long as the trigger input is returned high at least 10  $\mu$ s before the end of the timing interval. However the circuit can be reset during this time by the application of a negative pulse to the reset terminal (pin 4). The output will then remain in the low state until a trigger pulse is again applied.

When the reset function is not in use, it is recommended that it be connected to  $\mathsf{V}_{CC}$  to avoid any possibility of false triggering.

*Figure 3* is a nomograph for easy determination of R, C values for various time delays.

**NOTE:** In monostable operation, the trigger should be driven high before the end of timing cycle.



#### FIGURE 3. Time Delay

#### ASTABLE OPERATION

If the circuit is connected as shown in *Figure 4* (pins 2 and 6 connected) it will trigger itself and free run as a multivibrator. The external capacitor charges through  $R_A + R_B$  and discharges through  $R_B$ . Thus the duty cycle may be precisely set by the ratio of these two resistors.



#### FIGURE 4. Astable

In this mode of operation, the capacitor charges and discharges between 1/3  $V_{CC}$  and 2/3  $V_{CC}$ . As in the triggered mode, the charge and discharge times, and therefore the frequency are independent of the supply voltage.



#### PULSE POSITION MODULATOR

This application uses the timer connected for astable operation, as in *Figure 10*, with a modulating signal again applied to the control voltage terminal. The pulse position varies with the modulating signal, since the threshold voltage and hence the time delay is varied. *Figure 11* shows the waveforms generated for a triangle wave modulation signal.



#### LINEAR RAMP

When the pullup resistor,  $\mathsf{R}_\mathsf{A},$  in the monostable circuit is replaced by a constant current source, a linear ramp is generated. *Figure 12* shows a circuit configuration that will perform this function.



Figure 13 shows waveforms generated by the linear ramp. The time interval is given by:

$$T = \frac{2/3 V_{CC} R_E (R_1 + R_2) C}{R_1 V_{CC} - V_{BE} (R_1 + R_2)}$$
$$V_{BE} \approx 0.6V$$



#### FIGURE 13. Linear Ramp

#### **50% DUTY CYCLE OSCILLATOR**

For a 50% duty cycle, the resistors  ${\sf R}_{\sf A}$  and  ${\sf R}_{\sf B}$  may be connected as in Figure 14. The time period for the out-



 $1/2 R_A$  because the junction of  $R_A$  and  $R_B$  cannot bring pin

associated circuitry. Minimum recommended is 0.1  $\mu F$  in

when pin 2 is driven fully to ground for triggering. This limits







National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.



#### 54LS74/DM54LS74A/DM74LS74A Dual Positive-Edge-Triggered D Flip-Flops with Preset, Clear and Complementary Outputs

#### **General Description**

This device contains two independent positive-edge-triggered D flip-flops with complementary outputs. The information on the D input is accepted by the flip-flops on the positive going edge of the clock pulse. The triggering occurs at a voltage level and is not directly related to the transition time of the rising edge of the clock. The data on the D input may be changed while the clock is low or high without affecting the outputs as long as the data setup and hold times are not violated. A low logic level on the preset or clear inputs will set or reset the outputs regardless of the logic levels of the other inputs.

#### Features

 Alternate military/aerospace device (54LS74) is available. Contact a National Semiconductor Sales Office/ Distributor for specifications.

#### **Connection Diagram**



Order Number 54LS74DMQB, 54LS74FMQB, 54LS74LMQB, DM54LS74AJ, DM54LS74AW, DM74LS74AM or DM74LS74AN See NS Package Number E20A, J14A, M14A, N14A or W14B

#### **Function Table**

|    | Inpu | Out | outs |                |                  |
|----|------|-----|------|----------------|------------------|
| PR | CLR  | CLK | D    | Q              | Q                |
| L  | Н    | х   | x    | н              | L                |
| н  | L    | Х   | X    | L              | н                |
| L  | L    | Х   | X    | H*             | H*               |
| н  | н    | 1   | н    | н              | L                |
| н  | н    | 1   | L    | L              | Н                |
| н  | Н    | L   | X    | Q <sub>0</sub> | $\overline{Q}_0$ |

H = High Logic Level

X = Either Low or High Logic Level

L = Low Logic Level

↑ = Positive-going Transition

= This configuration is nonstable; that is, it will not persist when either the preset

and/or clear inputs return to their inactive (high) level.

 $\mathsf{Q}_0$  = The output logic level of  $\mathsf{Q}$  before the indicated input conditions were established.

©1995 National Semiconductor Corporation TL/F/6373

RRD-B30M105/Printed in U. S. A.

**ე** თ Flip-Flops with Preset, Clear and Complementary Outputs LS74/DM54LS74A/DM74LS74A Dual Positive-Edge**i**riggered

June 1989

#### Absolute Maximum Ratings (Note)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

| Supply Voltage                       | 7V              |
|--------------------------------------|-----------------|
| Input Voltage                        | 7V              |
| Operating Free Air Temperature Range |                 |
| DM54LS and 54LS                      | -55°C to +125°C |
| DM74LS                               | 0°C to +70°C    |
| Storage Temperature Range            | -65°C to +150°C |

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

#### **Recommended Operating Conditions**

| Symbol           | Ba                       | Parameter      |      | OM54LS74 | A    | 1    | DM74LS74 | Α    | Unite |
|------------------|--------------------------|----------------|------|----------|------|------|----------|------|-------|
| Symbol           | Га                       | rameter        | Min  | Nom      | Мах  | Min  | Nom      | Max  | Units |
| V <sub>CC</sub>  | Supply Voltage           |                | 4.5  | 5        | 5.5  | 4.75 | 5        | 5.25 | V     |
| VIH              | High Level Input         | Voltage        | 2    |          |      | 2    |          |      | V     |
| V <sub>IL</sub>  | Low Level Input          | Voltage        |      |          | 0.7  |      |          | 0.8  | V     |
| I <sub>OH</sub>  | High Level Outp          | ut Current     |      |          | -0.4 |      |          | -0.4 | mA    |
| I <sub>OL</sub>  | Low Level Outp           | ut Current     |      |          | 4    |      |          | 8    | mA    |
| f <sub>CLK</sub> | Clock Frequency (Note 2) |                | 0    |          | 25   | 0    |          | 25   | MHz   |
| f <sub>CLK</sub> | Clock Frequency (Note 3) |                | 0    |          | 20   | 0    |          | 20   | MHz   |
| tw               | Pulse Width              | Clock High     | 18   |          |      | 18   |          |      |       |
|                  | (Note 2)                 | Preset Low     | 15   |          |      | 15   |          |      | ns    |
|                  |                          | Clear Low      | 15   |          |      | 15   |          |      | 1     |
| t <sub>W</sub>   | Pulse Width              | Clock High     | 25   |          |      | 25   |          |      |       |
|                  | (Note 3)                 | Preset Low     | 20   |          |      | 20   |          |      | ns    |
|                  |                          | Clear Low      | 20   |          |      | 20   |          |      |       |
| t <sub>SU</sub>  | Setup Time (Not          | tes 1 and 2)   | 20 ↑ |          |      | 20 ↑ |          |      | ns    |
| t <sub>SU</sub>  | Setup Time (Not          | tes 1 and 3)   | 25 ↑ |          |      | 25 ↑ |          |      | ns    |
| t <sub>H</sub>   | Hold Time (Note          | e 1 and 4)     | 0↑   |          |      | 0↑   |          |      | ns    |
| Τ <sub>Δ</sub>   | Free Air Operati         | ng Temperature | -55  |          | 125  | 0    |          | 70   | °C    |

Note 1: The symbol (  $\uparrow$  ) indicates the rising edge of the clock pulse is used for reference.

Note 2:  $C_L$  = 15 pF,  $R_L$  = 2 k $\Omega,\,T_A$  = 25°C, and  $V_{CC}$  = 5V.

Note 3:  $C_L = 50$  pF,  $R_L = 2$  k $\Omega$ ,  $T_A = 25^{\circ}C$ , and  $V_{CC} = 5V$ . Note 4:  $T_A = 25^{\circ}C$  and  $V_{CC} = 5V$ .

| Symbol                                                                                                                                                                                                                                                              | Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                    | Conditions                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                          | Min                                                                                                                                                               | Typ<br>(Note 1)                                                                                                                                                   | Max                                                                                                                     | Units                                                                                               |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| VI                                                                                                                                                                                                                                                                  | Input Clamp Voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | V <sub>CC</sub> = I                                                                                                                                                                                                                                                | Min, $I_I = -18 \text{ mA}$                                                                                                                                                                                                                                                                                                      |                                                                                                                                                          |                                                                                                                                                                   |                                                                                                                                                                   | -1.5                                                                                                                    | V                                                                                                   |
| V <sub>OH</sub>                                                                                                                                                                                                                                                     | High Level Output                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | V <sub>CC</sub> = I                                                                                                                                                                                                                                                | Min, I <sub>OH</sub> = Max                                                                                                                                                                                                                                                                                                       | DM54                                                                                                                                                     | 2.5                                                                                                                                                               | 3.4                                                                                                                                                               |                                                                                                                         | v                                                                                                   |
|                                                                                                                                                                                                                                                                     | Voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $V_{IL} = M$                                                                                                                                                                                                                                                       | lax, V <sub>IH</sub> = Min                                                                                                                                                                                                                                                                                                       | DM74                                                                                                                                                     | 2.7                                                                                                                                                               | 3.4                                                                                                                                                               |                                                                                                                         | ľ                                                                                                   |
| V <sub>OL</sub>                                                                                                                                                                                                                                                     | Low Level Output                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | V <sub>CC</sub> = I                                                                                                                                                                                                                                                | Min, I <sub>OL</sub> = Max                                                                                                                                                                                                                                                                                                       | DM54                                                                                                                                                     |                                                                                                                                                                   | 0.25                                                                                                                                                              | 0.4                                                                                                                     |                                                                                                     |
|                                                                                                                                                                                                                                                                     | Voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $V_{IL} = M$                                                                                                                                                                                                                                                       | lax, V <sub>IH</sub> = Min                                                                                                                                                                                                                                                                                                       | DM74                                                                                                                                                     |                                                                                                                                                                   | 0.35                                                                                                                                                              | 0.5                                                                                                                     | V                                                                                                   |
|                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | I <sub>OL</sub> = 4                                                                                                                                                                                                                                                | $I_{OL} = 4 \text{ mA}, V_{CC} = Min$                                                                                                                                                                                                                                                                                            |                                                                                                                                                          |                                                                                                                                                                   | 0.25                                                                                                                                                              | 0.4                                                                                                                     |                                                                                                     |
| li                                                                                                                                                                                                                                                                  | Input Current @Max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $V_{\rm CC} = I$                                                                                                                                                                                                                                                   | Max                                                                                                                                                                                                                                                                                                                              | Data                                                                                                                                                     |                                                                                                                                                                   |                                                                                                                                                                   | 0.1                                                                                                                     |                                                                                                     |
|                                                                                                                                                                                                                                                                     | Input Voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $v_1 = 7v$                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                  | Clock                                                                                                                                                    |                                                                                                                                                                   |                                                                                                                                                                   | 0.1                                                                                                                     | - mA                                                                                                |
|                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                  | Preset                                                                                                                                                   |                                                                                                                                                                   |                                                                                                                                                                   | 0.2                                                                                                                     | _                                                                                                   |
|                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                  | Clear                                                                                                                                                    |                                                                                                                                                                   |                                                                                                                                                                   | 0.2                                                                                                                     |                                                                                                     |
| Iн                                                                                                                                                                                                                                                                  | High Level Input                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $V_{CC} = I$                                                                                                                                                                                                                                                       | $V_{CC} = Max$<br>$V_I = 2.7V$                                                                                                                                                                                                                                                                                                   |                                                                                                                                                          |                                                                                                                                                                   |                                                                                                                                                                   | 20                                                                                                                      | _                                                                                                   |
|                                                                                                                                                                                                                                                                     | Guirent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | v  - 2.7                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                          |                                                                                                                                                                   |                                                                                                                                                                   | 20                                                                                                                      | μA                                                                                                  |
|                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                          |                                                                                                                                                                   |                                                                                                                                                                   | 40                                                                                                                      | _                                                                                                   |
|                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                          |                                                                                                                                                                   |                                                                                                                                                                   | 40                                                                                                                      |                                                                                                     |
| IIL                                                                                                                                                                                                                                                                 | Low Level Input                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $V_{CC} = I$<br>$V_{L} = 0.4$                                                                                                                                                                                                                                      | $V_{CC} = Max$<br>$V_1 = 0.4V$                                                                                                                                                                                                                                                                                                   |                                                                                                                                                          |                                                                                                                                                                   |                                                                                                                                                                   | -0.4                                                                                                                    | -                                                                                                   |
|                                                                                                                                                                                                                                                                     | Gunon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | vi 0                                                                                                                                                                                                                                                               | Ť                                                                                                                                                                                                                                                                                                                                | Clock                                                                                                                                                    |                                                                                                                                                                   |                                                                                                                                                                   | -0.4                                                                                                                    | mA                                                                                                  |
|                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                  | Preset                                                                                                                                                   |                                                                                                                                                                   |                                                                                                                                                                   | -0.8                                                                                                                    | -                                                                                                   |
|                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                  | Clear                                                                                                                                                    |                                                                                                                                                                   |                                                                                                                                                                   | -0.8                                                                                                                    |                                                                                                     |
| IOS                                                                                                                                                                                                                                                                 | Short Circuit<br>Output Current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | V <sub>CC</sub> = 1<br>(Note 2)                                                                                                                                                                                                                                    | Max                                                                                                                                                                                                                                                                                                                              | DM54                                                                                                                                                     | -20                                                                                                                                                               |                                                                                                                                                                   | -100                                                                                                                    | mA                                                                                                  |
|                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                  | DM74                                                                                                                                                     | -20                                                                                                                                                               |                                                                                                                                                                   | -100                                                                                                                    |                                                                                                     |
| Note 1: All typ                                                                                                                                                                                                                                                     | picals are at $V_{CC} = 5V$ , $T_A = 25$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5°C.                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                          |                                                                                                                                                                   | -                                                                                                                                                                 |                                                                                                                         |                                                                                                     |
| Note 1: All typ<br>Note 2: Not m<br>shorting the o<br>DM74 series,<br>equipment.<br>Note 3: With a<br>Switch                                                                                                                                                        | bicals are at $V_{CC} = 5V$ , $T_A = 25$<br>ore than one output should be shoutputs to ground may cause the erespectively, with the minimum a<br>all outputs open, $I_{CC}$ is measured<br>bing Characteris                                                                                                                                                                                                                                                                                                                                                                                                                                              | soc.<br>orted at a time,<br>outputs to char<br>and maximum I<br>d with CLOCK of<br>tics at V <sub>C</sub>                                                                                                                                                          | and the duration should<br>nge logic state an equi<br>limits reduced by one<br>grounded after setting to<br>$_{\rm CC} = 5V$ and $T_{\rm A} =$                                                                                                                                                                                   | d not exceed one<br>valent test may<br>half from their s<br>the Q and $\overline{Q}$ out<br>$25^{\circ}C$ (See S                                         | e second. For de<br>be performed w<br>tated values. T<br>puts high in turn<br>fection 1 for                                                                       | evices, with feedb<br>there V <sub>O</sub> = 2.25 <sup>v</sup><br>his is very useful<br>n.<br>Test Wavefor                                                        | ack from the out<br>/ and 2.125V fo<br>when using au<br>ms and Outp                                                     | puts, where<br>r DM54 and<br>tomatic test<br>ut Load)                                               |
| Note 1: All typ<br>Note 2: Not m<br>shorting the o<br>DM74 series,<br>equipment.<br>Note 3: With<br>Switch                                                                                                                                                          | bicals are at $V_{CC} = 5V$ , $T_A = 25$<br>ore than one output should be shoutputs to ground may cause the erespectively, with the minimum and all outputs open, $I_{CC}$ is measured <b>ing Characteris</b>                                                                                                                                                                                                                                                                                                                                                                                                                                            | rsc.<br>oorted at a time,<br>outputs to char<br>and maximum I<br>d with CLOCK ç<br>tiCS at V <sub>C</sub>                                                                                                                                                          | and the duration should<br>nge logic state an equi<br>limits reduced by one<br>grounded after setting to<br>$_{C} = 5V$ and $T_{A} =$<br>From (Input)                                                                                                                                                                            | d not exceed ond<br>valent test may<br>half from their s<br>the Q and $\overline{Q}$ out<br>25°C (See S                                                  | e second. For du<br>be performed w<br>tated values. T<br>puts high in turn<br>section 1 for<br>RL =                                                               | evices, with feedby<br>there $V_0 = 2.25^{\circ}$<br>his is very useful<br>h.<br>Test Wavefor<br><b>2</b> k $\Omega$                                              | ack from the out<br>/ and 2.125V fo<br>when using au<br>ms and Outp                                                     | puts, where<br>r DM54 and<br>tomatic test<br>ut Load)                                               |
| Note 1: All typ<br>Note 2: Not m<br>shorting the o<br>DM74 series,<br>equipment.<br>Note 3: With a<br>Switch<br>Symbol                                                                                                                                              | bicals are at $V_{CC} = 5V$ , $T_A = 25$<br>ore than one output should be shoutputs to ground may cause the erespectively, with the minimum a<br>all outputs open, $I_{CC}$ is measured<br><b>hing Characteris</b><br>Parameter                                                                                                                                                                                                                                                                                                                                                                                                                          | soc.<br>orted at a time,<br>outputs to char<br>and maximum I<br>t with CLOCK €<br>tiCS at V <sub>C</sub>                                                                                                                                                           | and the duration should<br>nge logic state an equi<br>limits reduced by one<br>grounded after setting 1<br>$_{CC} = 5V$ and $T_A =$<br>From (Input)<br>To (Output)                                                                                                                                                               | d not exceed one<br>valent test may<br>half from their s<br>the Q and Q out<br>25°C (See S<br>CL =                                                       | e second. For d<br>be performed w<br>tated values. T<br>puts high in turn<br>section 1 for<br>R <sub>L</sub> =<br>15 pF                                           | evices, with feedb<br>here $V_{O} = 2.25$<br>his is very useful<br>n.<br>Test Wavefor<br><b>2</b> k $\Omega$<br><b>C</b> <sub>L</sub> =                           | ack from the out<br>/ and 2.125V fo<br>when using au<br>ms and Outp<br>50 pF                                            | puts, where<br>r DM54 and<br>tomatic test<br>ut Load)<br>Units                                      |
| Note 1: All typ<br>Note 2: Not m<br>shorting the o<br>DM74 series,<br>equipment.<br>Note 3: With a<br>Switch<br>Symbol                                                                                                                                              | bicals are at V <sub>CC</sub> = 5V, T <sub>A</sub> = 25<br>ore than one output should be sho<br>utputs to ground may cause the e<br>respectively, with the minimum a<br>all outputs open, I <sub>CC</sub> is measured<br><b>ing Characteris</b><br>Parameter                                                                                                                                                                                                                                                                                                                                                                                             | sec.<br>orted at a time,<br>outputs to char<br>and maximum I<br>d with CLOCK g<br>tiCS at V <sub>C</sub>                                                                                                                                                           | and the duration should<br>nge logic state an equi<br>limits reduced by one<br>grounded after setting to<br>$_{CC} = 5V$ and $T_A =$<br>From (Input)<br>To (Output)                                                                                                                                                              | d not exceed ond<br>valent test may<br>half from their s<br>the Q and Q out<br>25°C (See S<br>C <sub>L</sub> =<br><u>Min</u>                             | e second. For d<br>be performed w<br>tated values. T<br>puts high in turn<br>section 1 for<br>RL =<br>15 pF<br>Max                                                | evices, with feedby<br>there $V_0 = 2.25^{\circ}$<br>his is very useful<br>n.<br>Test Wavefor<br><b>2</b> k\Omega<br><b>C</b> <sub>L</sub> =<br><b>Min</b>        | ack from the out<br>/ and 2.125V fo<br>when using au<br>ms and Outp<br>50 pF<br>Max                                     | puts, where<br>r DM54 and<br>tomatic test<br>ut Load)<br>Units                                      |
| Note 1: All typ<br>Note 2: Not m<br>shorting the o<br>DM74 series,<br>equipment.<br>Note 3: With a<br>Switch<br>Symbol                                                                                                                                              | bicals are at V <sub>CC</sub> = 5V, T <sub>A</sub> = 25<br>ore than one output should be sho<br>utputs to ground may cause the<br>respectively, with the minimum a<br>all outputs open, I <sub>CC</sub> is measured<br>ing Characteris<br>Parameter<br>Maximum Clock Frequ                                                                                                                                                                                                                                                                                                                                                                               | Jency                                                                                                                                                                                                                                                              | and the duration should<br>nge logic state an equi<br>limits reduced by one<br>grounded after setting to<br>$_{\rm CC} = 5V$ and $T_{\rm A} =$<br>From (Input)<br>To (Output)                                                                                                                                                    | d not exceed on<br>valent test may<br>half from their s<br>the Q and $\overline{Q}$ out<br>25°C (See S<br>$C_L =$<br><u>Min</u><br>25                    | e second. For d<br>be performed w<br>tated values. T<br>puts high in turn<br>section 1 for<br>RL =<br>15 pF<br>Max                                                | evices, with feedb<br>there $V_O = 2.25^{\circ}$<br>his is very useful<br>n.<br>Test Wavefor<br><b>2</b> k\Omega<br><b>C</b> <sub>L</sub> =<br><u>Min</u><br>20   | ack from the out<br>/ and 2.125V fo<br>when using au<br>ms and Outp<br>50 pF<br>Max                                     | puts, where<br>r DM54 and<br>tomatic test<br>ut Load)<br>Units<br>MHz                               |
| Note 1: All typ<br>Note 2: Not m<br>Shorting the o<br>DM74 series,<br>equipment.<br>Note 3: With a<br>Switch<br>Symbol<br>f <sub>MAX</sub><br>t <sub>PLH</sub>                                                                                                      | bicals are at V <sub>CC</sub> = 5V, T <sub>A</sub> = 25<br>ore than one output should be sho<br>utputs to ground may cause the<br>respectively, with the minimum a<br>all outputs open, I <sub>CC</sub> is measured<br><b>ing Characteris</b><br><b>Parameter</b><br>Maximum Clock Frequ<br>Propagation Delay Tin<br>Low to High Level Out                                                                                                                                                                                                                                                                                                               | rec.<br>orted at a time,<br>outputs to char<br>and maximum I<br>d with CLOCK of<br>tics at V <sub>C</sub><br>uency<br>ne<br>tput                                                                                                                                   | and the duration should<br>nge logic state an equi<br>limits reduced by one<br>grounded after setting to<br>$_{CC} = 5V$ and $T_A =$<br>From (Input)<br>To (Output)<br>Clock to<br>Q or $\overline{Q}$                                                                                                                           | d not exceed one<br>valent test may<br>half from their s<br>the Q and $\overline{Q}$ out<br>$25^{\circ}C$ (See S<br>C <sub>L</sub> =<br><u>Min</u><br>25 | e second. For d<br>be performed w<br>tated values. T<br>puts high in turn<br>section 1 for<br>R <sub>L</sub> =<br>15 pF<br>Max<br>25                              | evices, with feedb<br>here $V_O = 2.25^{\circ}$<br>his is very useful<br>n.<br>Test Wavefor<br><b>2</b> k $\Omega$<br><b>C</b> <sub>L</sub> =<br><b>Min</b><br>20 | ack from the out<br>/ and 2.125V fo<br>when using au<br>ms and Outp<br>50 pF<br>Max<br>35                               | puts, where<br>r DM54 and<br>tomatic test<br>ut Load)<br>Units<br>MHz<br>ns                         |
| Note 1: All typ<br>Note 2: Not m<br>Shorting the o<br>DM74 series,<br>equipment.<br>Note 3: With a<br>Switch<br>Symbol<br>f <sub>MAX</sub><br>t <sub>PLH</sub>                                                                                                      | Dicals are at V <sub>CC</sub> = 5V, T <sub>A</sub> = 25<br>ore than one output should be sho<br>utputs to ground may cause the e<br>respectively, with the minimum a<br>all outputs open, I <sub>CC</sub> is measured<br><b>ing Characteris</b><br><b>Parameter</b><br>Maximum Clock Frequ<br>Propagation Delay Tin<br>Low to High Level Out<br>Propagation Delay Tin<br>High to Low Level Out                                                                                                                                                                                                                                                           | sec.<br>orted at a time,<br>outputs to char<br>and maximum I<br>d with CLOCK of<br>tics at V <sub>C</sub><br>uency<br>ne<br>tput<br>ne<br>tput                                                                                                                     | and the duration should<br>nge logic state an equi<br>limits reduced by one<br>grounded after setting to<br>$_{CC} = 5V$ and $T_A =$<br>From (Input)<br>To (Output)<br>Clock to<br>Q or $\overline{Q}$<br>Clock to<br>Q or $\overline{Q}$                                                                                        | d not exceed one<br>valent test may<br>half from their s<br>the Q and $\overline{Q}$ out<br>25°C (See S<br>C <sub>L</sub> =<br><u>Min</u><br>25          | e second. For de<br>be performed w<br>tated values. T<br>puts high in turn<br>iection 1 for<br>R <sub>L</sub> =<br>15 pF<br>Max<br>25<br>30                       | evices, with feedb<br>here $V_0 = 2.25^{\circ}$<br>his is very useful<br>h.<br>Test Wavefor<br><b>2</b> k $\Omega$<br><b>C</b> <sub>L</sub> =<br><u>Min</u><br>20 | ack from the out<br>/ and 2.125V fo<br>when using au<br>ms and Outp<br>50 pF<br>Max<br>35<br>35                         | puts, where<br>r DM54 and<br>tomatic test<br>ut Load)<br>Units<br>MHz<br>ns<br>ns                   |
| Note 1: All typ<br>Note 2: Not m<br>shorting the 2: Not m<br>shorting the 2: Note 3:<br>Note 3: With a<br>Switch<br>Symbol<br>f <sub>MAX</sub><br>t <sub>PLH</sub><br>t <sub>PLH</sub>                                                                              | Dicals are at V <sub>CC</sub> = 5V, T <sub>A</sub> = 25<br>ore than one output should be sho<br>utputs to ground may cause the e<br>respectively, with the minimum a<br>all outputs open, I <sub>CC</sub> is measured<br><b>hing Characteris</b><br><b>Parameter</b><br>Maximum Clock Frequ<br>Propagation Delay Tin<br>Low to High Level Out<br>Propagation Delay Tin<br>High to Low Level Out<br>Propagation Delay Tin<br>Low to High Level Out                                                                                                                                                                                                        | sec.<br>orted at a time,<br>outputs to char<br>and maximum I<br>d with CLOCK of<br>tics at V <sub>C</sub><br>tics at V <sub>C</sub><br>uency<br>ne<br>tput<br>ne<br>tput<br>ne<br>tput                                                                             | and the duration should<br>nge logic state an equi<br>limits reduced by one<br>grounded after setting 1<br>$C = 5V$ and $T_A =$<br>From (Input)<br>To (Output)<br>Clock to<br>Q or Q<br>Clock to<br>Q or Q<br>Preset<br>to Q                                                                                                     | d not exceed one<br>valent test may<br>half from their s<br>the Q and Q out<br>25°C (See S<br>C <sub>L</sub> =<br><u>Min</u><br>25                       | e second. For de<br>be performed w<br>tated values. T<br>puts high in turn<br>iection 1 for<br>RL =<br>15 pF<br>Max<br>25<br>30<br>25                             | evices, with feedb<br>here $V_0 = 2.25$<br>his is very useful<br>n.<br><b>2</b> k $\Omega$<br><b>C</b> <sub>L</sub> =<br><u>Min</u><br>20                         | ack from the out<br>/ and 2.125V fo<br>when using au<br>ms and Outp<br>50 pF<br>Max<br>35<br>35<br>35                   | puts, where<br>r DM54 and<br>tomatic test<br>ut Load)<br>Units<br>MHz<br>ns<br>ns<br>ns             |
| Note 1: All typ<br>Note 2: Not m<br>shorting the o<br>DM74 series,<br>equipment.<br>Note 3: With a<br>Switch<br>Symbol<br>f <sub>MAX</sub><br>tPLH<br>tPHL<br>tPHL                                                                                                  | Dicals are at V <sub>CC</sub> = 5V, T <sub>A</sub> = 25<br>ore than one output should be sho<br>utputs to ground may cause the e<br>respectively, with the minimum a<br>all outputs open, I <sub>CC</sub> is measured<br><b>ing Characteris</b><br><b>Parameter</b><br>Maximum Clock Frequ<br>Propagation Delay Tin<br>Low to High Level Out<br>Propagation Delay Tin<br>High to Low Level Out<br>Propagation Delay Tin<br>Low to High Level Out<br>Propagation Delay Tin<br>Low to High Level Out<br>Propagation Delay Tin<br>Low to High Level Out                                                                                                     | sec.<br>orted at a time,<br>outputs to char<br>and maximum I<br>d with CLOCK of<br>tiCS at V <sub>C</sub><br>tiCS at V <sub>C</sub><br>uency<br>ne<br>tput<br>ne<br>tput<br>ne<br>tput<br>ne<br>tput<br>ne<br>tput                                                 | and the duration should<br>nge logic state an equi<br>limits reduced by one<br>grounded after setting 1<br>$C = 5V$ and $T_A =$<br>From (Input)<br>To (Output)<br>Clock to<br>Q or $\overline{Q}$<br>Clock to<br>Q or $\overline{Q}$<br>Preset<br>to Q<br>Preset<br>to $\overline{Q}$                                            | d not exceed one<br>valent test may<br>half from their s<br>the Q and Q out<br>25°C (See S<br>C <sub>L</sub> =<br><u>Min</u><br>25                       | e second. For de<br>be performed w<br>tated values. T<br>puts high in turn<br>section 1 for<br><b>R</b> L =<br><b>15 pF</b><br><b>Max</b><br>25<br>30<br>25<br>30 | evices, with feedb<br>here $V_0 = 2.25$<br>his is very useful<br>n.<br>Test Wavefor<br>$2 k\Omega$<br>$C_L =$<br><u>Min</u><br>20                                 | ack from the out<br>/ and 2.125V fo<br>when using au<br>ms and Outp<br>50 pF<br>Max<br>35<br>35<br>35<br>35<br>35       | puts, where<br>r DM54 and<br>tomatic test<br>ut Load)<br>Units<br>MHz<br>ns<br>ns<br>ns<br>ns       |
| Note 1: All typ           Note 2: Not m           Shorting the o           DM74 series,           equipment.           Note 3: With a           Switch           Symbol           f <sub>MAX</sub> tPLH           tPHL           tPHL           tPHL           tPHL | Dicals are at V <sub>CC</sub> = 5V, T <sub>A</sub> = 25<br>ore than one output should be sho<br>utputs to ground may cause the e<br>respectively, with the minimum a<br>all outputs open, I <sub>CC</sub> is measured<br><b>ing Characteris</b><br><b>Parameter</b><br>Maximum Clock Frequ<br>Propagation Delay Tin<br>Low to High Level Out<br>Propagation Delay Tin<br>High to Low Level Out<br>Propagation Delay Tin<br>Low to High Level Out<br>Propagation Delay Tin<br>High to Low Level Out | sec.<br>orted at a time,<br>outputs to char<br>and maximum I<br>d with CLOCK of<br>tiCS at V <sub>C</sub><br>tiCS at V <sub>C</sub><br>uency<br>ne<br>tput<br>ne<br>tput<br>ne<br>tput<br>ne<br>tput<br>ne<br>tput<br>ne<br>tput<br>ne<br>tput<br>ne<br>tput<br>ne | and the duration should<br>nge logic state an equi<br>limits reduced by one<br>grounded after setting 1<br>$C = 5V$ and $T_A =$<br>From (Input)<br>To (Output)<br>Clock to<br>Q or $\overline{Q}$<br>Clock to<br>Q or $\overline{Q}$<br>Preset<br>to $\overline{Q}$<br>Preset<br>to $\overline{Q}$<br>Clear<br>to $\overline{Q}$ | d not exceed one<br>valent test may<br>half from their s<br>the Q and Q out<br>25°C (See S<br>C <sub>L</sub> =<br><u>Min</u><br>25                       | e second. For do<br>be performed w<br>tated values. T<br>puts high in turn<br>section 1 for<br>$R_L =$<br>15 pF<br>Max<br>25<br>30<br>25<br>30<br>25              | evices, with feedb<br>there $V_0 = 2.25$<br>this is very useful<br>Test Wavefor<br>$2 k\Omega$<br>$C_L =$<br><u>Min</u><br>20                                     | ack from the out<br>/ and 2.125V fo<br>when using au<br>ms and Outp<br>50 pF<br>Max<br>35<br>35<br>35<br>35<br>35<br>35 | puts, where<br>r DM54 and<br>tomatic test<br>ut Load)<br>Units<br>MHz<br>ns<br>ns<br>ns<br>ns<br>ns |







National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.





**INA118** 

## Precision, Low Power INSTRUMENTATION AMPLIFIER

## FEATURES

- LOW OFFSET VOLTAGE: 50µV max
- LOW DRIFT: 0.5μV/°C max
- LOW INPUT BIAS CURRENT: 5nA max
- HIGH CMR: 110dB min
- INPUTS PROTECTED TO ±40V
- WIDE SUPPLY RANGE: ±1.35 to ±18V
- LOW QUIESCENT CURRENT: 350µA
- 8-PIN PLASTIC DIP, SO-8

## **APPLICATIONS**

- BRIDGE AMPLIFIER
- THERMOCOUPLE AMPLIFIER
- RTD SENSOR AMPLIFIER
- MEDICAL INSTRUMENTATION
- DATA ACQUISITION

## DESCRIPTION

The INA118 is a low power, general purpose instrumentation amplifier offering excellent accuracy. Its versatile 3-op amp design and small size make it ideal for a wide range of applications. Current-feedback input circuitry provides wide bandwidth even at high gain (70kHz at G = 100).

A single external resistor sets any gain from 1 to 10,000. Internal input protection can withstand up to  $\pm 40V$  without damage.

The INA118 is laser trimmed for very low offset voltage (50 $\mu$ V), drift (0.5 $\mu$ V/°C) and high common-mode rejection (110dB at G = 1000). It operates with power supplies as low as ±1.35V, and quiescent current is only 350 $\mu$ A—ideal for battery operated systems.

The INA118 is available in 8-pin plastic DIP, and SO-8 surface-mount packages, specified for the  $-40^{\circ}$ C to  $+85^{\circ}$ C temperature range.



International Airport Industrial Park • Mailing Address: PO Box 11400, Tucson, AZ 85734 • Street Address: 6730 S. Tucson Blvd., Tucson, AZ 85706 • Tel: (520) 746-1111 • Twx: 910-952-1111 Internet: http://www.burr-brown.com/ • FAXLine: (800) 548-6133 (US/Canada Only) • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

## SPECIFICATIONS

#### ELECTRICAL

At  $T_{A}$  = +25°C,  $V_{S}$  =  $\pm 15V,~R_{L}$  = 10k $\Omega$  unless otherwise noted.

|                                                                                                                                                                                                   |                                                                                                                                                                         |                                      | INA118PB, UB                                                                                                                                                                       |                                                                                                                                       |                       | INA118P, U                                     |                                          |                                                                                               |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------------------------------------------------|------------------------------------------|-----------------------------------------------------------------------------------------------|
| PARAMETER                                                                                                                                                                                         | CONDITIONS                                                                                                                                                              | MIN                                  | TYP                                                                                                                                                                                | MAX                                                                                                                                   | MIN                   | TYP                                            | MAX                                      | UNITS                                                                                         |
| INPUT<br>Offset Voltage, RTI<br>Initial<br>vs Temperature<br>vs Power Supply<br>Long-Term Stability<br>Impedance, Differential<br>Common-Mode<br>Linear Input Voltage Range<br>Safe Input Voltage | $T_{A} = +25^{\circ}C$ $T_{A} = T_{MIN} \text{ to } T_{MAX}$ $V_{S} = \pm 1.35V \text{ to } \pm 18V$                                                                    | (V+) – 1<br>(V–) + 1.1               | $\begin{array}{c} \pm 10 \pm 50/G \\ \pm 0.2 \pm 2/G \\ \pm 1 \pm 10/G \\ \pm 0.4 \pm 5/G \\ 10^{10} \parallel 1 \\ 10^{10} \parallel 4 \\ (V+) - 0.65 \\ (V-) + 0.95 \end{array}$ | $\pm 50 \pm 500/G$<br>$\pm 0.5 \pm 20/G$<br>$\pm 5 \pm 100/G$<br>$\pm 40$                                                             | *<br>*                | ±25±100/G<br>±0.2±5/G<br>*<br>*<br>*<br>*<br>* | ±125±1000/G<br>±1±20/G<br>±10±100/G<br>* | μV<br>μV/°C<br>μV/ν<br>Ω    pF<br>Ω    pF<br>V<br>V<br>V                                      |
| Common-Mode Rejection                                                                                                                                                                             | $V_{CM} = \pm 10V, \Delta R_S = 1 \kappa \Omega$<br>G = 1<br>G = 10<br>G = 100<br>G = 1000                                                                              | 80<br>97<br>107<br>110               | 90<br>110<br>120<br>125                                                                                                                                                            |                                                                                                                                       | 73<br>89<br>98<br>100 | *<br>*<br>*<br>*                               |                                          | dB<br>dB<br>dB<br>dB                                                                          |
| BIAS CURRENT<br>vs Temperature                                                                                                                                                                    |                                                                                                                                                                         |                                      | ±1<br>±40                                                                                                                                                                          | ±5                                                                                                                                    |                       | * *                                            | ±10                                      | nA<br>pA/°C                                                                                   |
| OFFSET CURRENT                                                                                                                                                                                    |                                                                                                                                                                         |                                      | ±1<br>+40                                                                                                                                                                          | ±5                                                                                                                                    |                       | *                                              | ±10                                      | nA<br>⊳A/°C                                                                                   |
| NOISE VOLTAGE, RTI<br>f = 10Hz<br>f = 10Hz<br>f = 10Hz<br>f = 1kHz<br>$f_B = 0.1Hz$ to 10Hz<br>Noise Current<br>f=10Hz<br>f=1kHz                                                                  | G = 1000, R <sub>S</sub> = 0Ω                                                                                                                                           |                                      | 11<br>10<br>10<br>0.28<br>2.0<br>0.3                                                                                                                                               |                                                                                                                                       |                       | * * * * * *                                    |                                          | nV/√ <u>Hz</u><br>nV/√ <u>Hz</u><br>nV/√Hz<br>μVp-p<br>pA/√ <u>Hz</u><br>pA/√Hz               |
| $f_B = 0.1$ Hz to 10Hz                                                                                                                                                                            |                                                                                                                                                                         |                                      | 80                                                                                                                                                                                 |                                                                                                                                       |                       | *                                              |                                          | рАр-р                                                                                         |
| Gain Equation<br>Range of Gain<br>Gain Error<br>Gain vs Temperature<br>50kΩ Resistance <sup>(1)</sup><br>Nonlinearity                                                                             | $\begin{array}{c} G = 1 \\ G = 10 \\ G = 100 \\ G = 1000 \\ G = 1 \\ \end{array}$ $\begin{array}{c} G = 1 \\ G = 10 \\ G = 100 \\ G = 1000 \\ \end{array}$              | 1                                    | $\begin{array}{c} 1 + (50 k \Omega / R_G) \\ \pm 0.01 \\ \pm 0.02 \\ \pm 0.05 \\ \pm 0.5 \\ \pm 1 \\ \pm 25 \\ \pm 0.0003 \\ \pm 0.0005 \\ \pm 0.0005 \\ \pm 0.002 \end{array}$    | $\begin{array}{c} 10000\\ \pm 0.024\\ \pm 0.5\\ \pm 1\\ \pm 10\\ \pm 0.001\\ \pm 0.001\\ \pm 0.002\\ \pm 0.002\\ \pm 0.01\end{array}$ | *                     | * ****                                         |                                          | V/V<br>V/V<br>%<br>%<br>%<br>ppm/°C<br>ppm/°C<br>% of FSR<br>% of FSR<br>% of FSR<br>% of FSR |
| OUTPUT<br>Voltage: Positive<br>Negative<br>Single Supply High<br>Single Supply Low<br>Load Capacitance Stability<br>Short Circuit Current                                                         | $\begin{array}{l} R_L = 10k\Omega \\ R_L = 10k\Omega \\ V_S = +2.7 V/0 V^{(2)}, \ R_L = 10k\Omega \\ V_S = +2.7 V/0 V^{(2)}, \ R_L = 10k\Omega \end{array}$             | (V+) – 1<br>(V–) + 0.35<br>1.8<br>60 | (V+) - 0.8<br>(V-) + 0.2<br>2.0<br>35<br>1000<br>+5/-12                                                                                                                            |                                                                                                                                       | *<br>*<br>*           | * * * * * * *                                  |                                          | V<br>V<br>mV<br>pF<br>mA                                                                      |
| FREQUENCY RESPONSE                                                                                                                                                                                |                                                                                                                                                                         |                                      | 067                                                                                                                                                                                |                                                                                                                                       |                       |                                                |                                          |                                                                                               |
| Bandwidth, –3dB<br>Slew Rate<br>Settling Time, 0.01%<br>Overload Recovery                                                                                                                         | $\begin{array}{c} G = 1 \\ G = 10 \\ G = 100 \\ G = 1000 \\ V_{O} = \pm 10V, \ G = 10 \\ G = 1 \\ G = 10 \\ G = 100 \\ G = 1000 \\ 50\% \ \text{Overdrive} \end{array}$ |                                      | 800<br>500<br>70<br>7<br>15<br>15<br>21<br>210<br>20                                                                                                                               |                                                                                                                                       |                       | * * * * * * * *                                |                                          | kHz<br>kHz<br>kHz<br>V/μs<br>μs<br>μs<br>μs<br>μs                                             |
| POWER SUPPLY<br>Voltage Range<br>Current                                                                                                                                                          | V <sub>IN</sub> = 0V                                                                                                                                                    | ±1.35                                | ±15<br>±350                                                                                                                                                                        | ±18<br>±385                                                                                                                           | *                     | * *                                            | * *                                      | V<br>μA                                                                                       |
| TEMPERATURE RANGE           Specification           Operating $\theta_{JA}$                                                                                                                       |                                                                                                                                                                         | -40<br>-40                           | 80                                                                                                                                                                                 | 85<br>125                                                                                                                             | * *                   | *                                              | *<br>*                                   | °C<br>°C<br>W\Q°                                                                              |

\* Specification same as INA118PB, UB.

NOTE: (1) Temperature coefficient of the "50kΩ" term in the gain equation. (2) Common-mode input voltage range is limited. See text for discussion of low power supply and single power supply operation.



#### **PIN CONFIGURATION**



#### **ABSOLUTE MAXIMUM RATINGS**

| Supply Voltage                    | ±18V           |
|-----------------------------------|----------------|
| Analog Input Voltage Range        | ±40V           |
| Output Short-Circuit (to ground)  | Continuous     |
| Operating Temperature             | 40°C to +125°C |
| Storage Temperature               | 40°C to +125°C |
| Junction Temperature              | +150°C         |
| Lead Temperature (soldering, 10s) | +300°C         |



This integrated circuit can be damaged by ESD. Burr-Brown recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

#### **ORDERING INFORMATION**

| PRODUCT  | PACKAGE            | PACKAGE<br>DRAWING<br>NUMBER <sup>(1)</sup> | TEMPERATURE<br>RANGE |
|----------|--------------------|---------------------------------------------|----------------------|
| INA118P  | 8-Pin Plastic DIP  | 006                                         | -40°C to +85°C       |
| INA118PB | 8-Pin Plastic DIP  | 006                                         | –40°C to +85°C       |
| INA118U  | SO-8 Surface-Mount | 182                                         | –40°C to +85°C       |
| INA118UB | SO-8 Surface-Mount | 182                                         | –40°C to +85°C       |

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.



## **TYPICAL PERFORMANCE CURVES**

At  $T_{A}$  = +25°C,  $V_{S}$  =  $\pm 15V,$  unless otherwise noted.



## **TYPICAL PERFORMANCE CURVES (CONT)**

At  $T_A = +25^{\circ}C$ ,  $V_S = \pm 15V$ , unless otherwise noted.





**INPUT- REFERRED NOISE VOLTAGE** vs FREQUENCY 1k 100 Input-Referred Noise Voltage (nV/VHz) Input Bias Current Noise (pA/VHz) G = 1 100 10 G = 10 G = 100, 1000 10 1 G = 1000 BW Limit ╞┼┼┼╢╢┎╼╡┼ Current Noise (All Gains) 1 0.1 1 10 100 1k 10k Frequency (Hz)





INPUT BIAS CURRENT vs INPUT OVERLOAD VOLTAGE 10 8 6 4 2 G = 1000 0 G = 1 -2 G = 1000 G = 1 -4 -6 -8

0

Overload Voltage (V)

**INA118** 



40

Input Bias Current (mA)

-10

-40

## **TYPICAL PERFORMANCE CURVES (CONT)**

At T<sub>A</sub> = +25°C, V<sub>S</sub> =  $\pm$ 15V, unless otherwise noted.



## **TYPICAL PERFORMANCE CURVES (CONT)**

At  $T_A = +25^{\circ}C$ ,  $V_S = \pm 15V$ , unless otherwise noted.



INPUT-REFERRED NOISE, 0.1Hz to 10Hz



1s/div

SMALL-SIGNAL RESPONSE G = 1 G = 10 20mV/div  $10\mu s/div$ 









## **APPLICATION INFORMATION**

Figure 1 shows the basic connections required for operation of the INA118. Applications with noisy or high impedance power supplies may require decoupling capacitors close to the device pins as shown.

The output is referred to the output reference (Ref) terminal which is normally grounded. This must be a low-impedance connection to assure good common-mode rejection. A resistance of  $12\Omega$  in series with the Ref pin will cause a typical device to degrade to approximately 80dB CMR (G = 1).

#### SETTING THE GAIN

Gain of the INA118 is set by connecting a single external resistor,  $R_G$ , connected between pins 1 and 8:

$$G = 1 + \frac{50k\Omega}{R_G}$$
(1)

Commonly used gains and resistor values are shown in Figure 1.

The 50k $\Omega$  term in Equation 1 comes from the sum of the two internal feedback resistors of A<sub>1</sub> and A<sub>2</sub>. These on-chip metal film resistors are laser trimmed to accurate absolute values. The accuracy and temperature coefficient of these resistors are included in the gain accuracy and drift specifications of the INA118.

The stability and temperature drift of the external gain setting resistor,  $R_G$ , also affects gain.  $R_G$ 's contribution to gain accuracy and drift can be directly inferred from the gain equation (1). Low resistor values required for high gain can make wiring resistance important. Sockets add to the wiring resistance which will contribute additional gain error (possibly an unstable gain error) in gains of approximately 100 or greater.

#### DYNAMIC PERFORMANCE

The typical performance curve "Gain vs Frequency" shows that, despite its low quiescent current, the INA118 achieves wide bandwidth, even at high gain. This is due to the current-feedback topology of the INA118. Settling time also remains excellent at high gain.

The INA118 exhibits approximately 3dB peaking at 500kHz in unity gain. This is a result of its current-feedback topology and is not an indication of instability. Unlike an op amp with poor phase margin, the rise in response is a predictable +6dB/octave due to a response zero. A simple pole at 300kHz or lower will produce a flat passband unity gain response.



FIGURE 1. Basic Connections.



#### NOISE PERFORMANCE

The INA118 provides very low noise in most applications. For differential source impedances less than  $1k\Omega$ , the INA103 may provide lower noise. For source impedances greater than  $50k\Omega$ , the INA111 FET-Input Instrumentation Amplifier may provide lower noise.

Low frequency noise of the INA118 is approximately  $0.28\mu$ Vp-p measured from 0.1 to 10Hz (G $\geq$ 100). This provides dramatically improved noise when compared to state-of-the-art chopper-stabilized amplifiers.

#### **OFFSET TRIMMING**

The INA118 is laser trimmed for low offset voltage and drift. Most applications require no external offset adjustment. Figure 2 shows an optional circuit for trimming the output offset voltage. The voltage applied to Ref terminal is summed at the output. The op amp buffer provides low impedance at the Ref terminal to preserve good commonmode rejection.



FIGURE 2. Optional Trimming of Output Offset Voltage.

#### **INPUT BIAS CURRENT RETURN PATH**

The input impedance of the INA118 is extremely high approximately  $10^{10}\Omega$ . However, a path must be provided for the input bias current of both inputs. This input bias current is approximately  $\pm 5nA$ . High input impedance means that this input bias current changes very little with varying input voltage.

Input circuitry must provide a path for this input bias current for proper operation. Figure 3 shows various provisions for an input bias current path. Without a bias current path, the inputs will float to a potential which exceeds the commonmode range of the INA118 and the input amplifiers will saturate.

If the differential source resistance is low, the bias current return path can be connected to one input (see the thermocouple example in Figure 3). With higher source impedance, using two equal resistors provides a balanced input with possible advantages of lower input offset voltage due to bias current and better high-frequency common-mode rejection.



FIGURE 3. Providing an Input Common-Mode Current Path.

#### INPUT COMMON-MODE RANGE

The linear input voltage range of the input circuitry of the INA118 is from approximately 0.6V below the positive supply voltage to 1V above the negative supply. As a differential input voltage causes the output voltage to increase, however, the linear input range will be limited by the output voltage swing of amplifiers  $A_1$  and  $A_2$ . Thus, the linear common-mode input range is related to the output voltage of the complete amplifier. This behavior also depends on supply voltage—see performance curves "Input Common-Mode Range vs Output Voltage".

Input-overload can produce an output voltage that appears normal. For example, if an input overload condition drives both input amplifiers to their positive output swing limit, the difference voltage measured by the output amplifier will be near zero. The output of the INA118 will be near 0V even though both inputs are overloaded.

#### LOW VOLTAGE OPERATION

The INA118 can be operated on power supplies as low as  $\pm 1.35$ V. Performance of the INA118 remains excellent with power supplies ranging from  $\pm 1.35$ V to  $\pm 18$ V. Most parameters vary only slightly throughout this supply voltage range—see typical performance curves. Operation at very low supply voltage requires careful attention to assure that the input voltages remain within their linear range. Voltage swing requirements of internal nodes limit the input common-mode range with low power supply voltage. Typical performance curves, "Input Common-Mode Range vs Output Voltage" show the range of linear operation for a various supply voltages and gains.



#### SINGLE SUPPLY OPERATION

The INA118 can be used on single power supplies of +2.7V to +36V. Figure 5 shows a basic single supply circuit. The output Ref terminal is connected to ground. Zero differential input voltage will demand an output voltage of 0V (ground). Actual output voltage swing is limited to approximately 35mV above ground, when the load is referred to ground as shown. The typical performance curve "Output Voltage vs Output Current" shows how the output voltage swing varies with output current.

With single supply operation,  $V_{IN}^+$  and  $V_{IN}^-$  must both be 0.98V above ground for linear operation. You cannot, for instance, connect the inverting input to ground and measure a voltage connected to the non-inverting input.

To illustrate the issues affecting low voltage operation, consider the circuit in Figure 5. It shows the INA118, operating from a single 3V supply. A resistor in series with the low side of the bridge assures that the bridge output

voltage is within the common-mode range of the amplifier's inputs. Refer to the typical performance curve "Input Common-Mode Range vs Output Voltage" for 3V single supply operation.

#### INPUT PROTECTION

The inputs of the INA118 are individually protected for voltages up to  $\pm 40$ V. For example, a condition of -40V on one input and +40V on the other input will not cause damage. Internal circuitry on each input provides low series impedance under normal signal conditions. To provide equivalent protection, series input resistors would contribute excessive noise. If the input is overloaded, the protection circuitry limits the input current to a safe value of approximately 1.5 to 5mA. The typical performance curve "Input Bias Current vs Input Overload Voltage" shows this input current limit behavior. The inputs are protected even if the power supplies are disconnected or turned off.

## **INSIDE THE INA118**

Figure 1 shows a simplified representation of the INA118. The more detailed diagram shown here provides additional insight into its operation.

Each input is protected by two FET transistors that provide a low series resistance under normal signal conditions, preserving excellent noise performance. When excessive voltage is applied, these transistors limit input current to approximately 1.5 to 5mA.

The differential input voltage is buffered by  $Q_1$  and  $Q_2$ and impressed across  $R_G$ , causing a signal current to flow through  $R_G$ ,  $R_1$  and  $R_2$ . The output difference amp,  $A_3$ , removes the common-mode component of the input signal and refers the output signal to the Ref terminal.

Equations in the figure describe the output voltages of  $A_1$  and  $A_2$ . The  $V_{BE}$  and IR drop across  $R_1$  and  $R_2$  produce output voltages on  $A_1$  and  $A_2$  that are approximately 1V lower than the input voltages.





FIGURE 4. INA118 Simplified Circuit Diagram.





FIGURE 5. Single-Supply Bridge Amplifier.



FIGURE 6. AC-Coupled Instrumentation Amplifier.



FIGURE 7. Thermocouple Amplifier With Cold Junction Compensation.



FIGURE 8. Differential Voltage to Current Converter.



FIGURE 9. ECG Amplifier With Right-Leg Drive.



## **Appendix O - Index**

| <b>Document/File</b>                     | Description                                                                                                                                                                                                                                                                                                                                                                                |
|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Presentation                             | A PowerPoint presentation designed to lead the reader/viewer<br>into some of the more critical screens that will seen on the GUI.<br>Screen captures of the Remote GUI (RGUI) as well as the<br>Acebus - 8051 Microconrtoller Family Development<br>Environment - are also included in this presentation. Each<br>slide/screen capture is accompanied by a brief explanation and<br>notes. |
| System<br>Evaluation                     | A spreadsheet containing injection, and system acquired data,<br>using the Calibration Screen. This data is used to evaluate the<br>accuracy of the data acquisition hardware as well as the GUI<br>data evaluation and calculation algorithms. Graphs are plotted<br>graphically display the test results.                                                                                |
| Repeatability<br>Test As Recorded        | A spreadsheet containing the raw system acquired and evaluated date for the repeatability test.                                                                                                                                                                                                                                                                                            |
| Repeatability<br>Test with<br>Highlights | A spreadsheet containing the same data as displayed in the file<br>mentioned above "Repeatability Test As Recorded", with the<br>highest and lowest recorded being highlighted. Also displayed is<br>the Forty Point Average and the Difference Between The<br>Averaged Maximum And Minimum Acquired Values. Graphs<br>are plotted graphically display the test results.                   |
| Test Results 1<br>2006-4-12<br>13H11M2   | Test results captured and stored for a simulated 10 pair bar test.<br>This spreadsheet displays a typical test recording with all<br>possible faults taking into account.                                                                                                                                                                                                                  |
| Test Results<br>2006-4-12<br>13H53M53    | Another set of test results captured and stored for a simulated 10 pair bar test. This spreadsheet displays a typical test recording with all possible faults taking into account. Note that in this spreadsheet there are only 9 recordings of 100 successive readings. This is because an Emergency Stop was invoked on the last pair of bars.                                           |
| All Component<br>Datasheets              | Datasheets                                                                                                                                                                                                                                                                                                                                                                                 |

# International

- Surface Mount (IRLR120N)
- Straight Lead (IRLU120N)
- Advanced Process Technology
- Fast Switching
- Fully Avalanche Rated

#### Description

Fifth Generation HEXFETs from International Rectifier utilize advanced processing techniques to achieve the lowest possible on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET Power MOSFETs are well known for, provides the designer with an extremely efficient device for use in a wide variety of applications.

The D-PAK is designed for surface mounting using vapor phase, infrared, or wave soldering techniques. The straight lead version (IRFU series) is for through-hole mounting applications. Power dissipation levels up to 1.5 watts are possible in typical surface mount applications.

#### **Absolute Maximum Ratings**

## IRLR/U120N HEXFET<sup>®</sup> Power MOSFET





|                                        | Parameter                                       | Max.                   | Units |
|----------------------------------------|-------------------------------------------------|------------------------|-------|
| I <sub>D</sub> @ T <sub>C</sub> = 25°C | Continuous Drain Current, V <sub>GS</sub> @ 10V | 10                     |       |
| $I_D @ T_C = 100^{\circ}C$             | Continuous Drain Current, V <sub>GS</sub> @ 10V | 7.0                    | A     |
| I <sub>DM</sub>                        | Pulsed Drain Current 106                        | 35                     |       |
| $P_{D} @ T_{C} = 25^{\circ}C$          | Power Dissipation                               | 48                     | W     |
|                                        | Linear Derating Factor                          | 0.32                   | W/°C  |
| V <sub>GS</sub>                        | Gate-to-Source Voltage                          | ± 16                   | V     |
| E <sub>AS</sub>                        | Single Pulse Avalanche Energy@6                 | 85                     | mJ    |
| I <sub>AR</sub>                        | Avalanche Current <sup>1</sup> 6                | 6.0                    | A     |
| E <sub>AR</sub>                        | Repetitive Avalanche Energy <sup>①</sup> ©      | 4.8                    | mJ    |
| dv/dt                                  | Peak Diode Recovery dv/dt 3                     | 5.0                    | V/ns  |
| TJ                                     | Operating Junction and                          | -55 to + 175           |       |
| T <sub>STG</sub>                       | Storage Temperature Range                       |                        | °C    |
|                                        | Soldering Temperature, for 10 seconds           | 300 (1.6mm from case ) |       |

#### Thermal Resistance

|                  | Parameter                          | Тур. | Max. | Units |
|------------------|------------------------------------|------|------|-------|
| R <sub>0JC</sub> | Junction-to-Case                   |      | 3.1  |       |
| R <sub>0JA</sub> | Junction-to-Ambient (PCB mount) ** |      | 50   | °C/W  |
| R <sub>0JA</sub> | Junction-to-Ambient                |      | 110  |       |
| www.irf.com      |                                    |      |      | 1     |

PD - 91541B

# International

|                                 | Parameter                            | Min. | Тур. | Max.  | Units | Conditions                                        |
|---------------------------------|--------------------------------------|------|------|-------|-------|---------------------------------------------------|
| V <sub>(BR)DSS</sub>            | Drain-to-Source Breakdown Voltage    | 100  |      |       | V     | $V_{GS} = 0V, I_D = 250\mu A$                     |
| $\Delta V_{(BR)DSS}/\Delta T_J$ | Breakdown Voltage Temp. Coefficient  |      | 0.12 |       | V/°C  | Reference to 25°C, I <sub>D</sub> = 1mA           |
|                                 |                                      |      |      | 0.185 |       | V <sub>GS</sub> = 10V, I <sub>D</sub> = 6.0A ④    |
| R <sub>DS(on)</sub>             | Static Drain-to-Source On-Resistance |      |      | 0.225 | W     | $V_{GS} = 5.0V, I_D = 6.0A$ (4)                   |
|                                 |                                      |      |      | 0.265 | 1     | V <sub>GS</sub> = 4.0V, I <sub>D</sub> = 5.0A ④   |
| V <sub>GS(th)</sub>             | Gate Threshold Voltage               | 1.0  |      | 2.0   | V     | $V_{DS} = V_{GS}, I_D = 250 \mu A$                |
| 9 <sub>fs</sub>                 | Forward Transconductance             | 3.1  |      |       | S     | $V_{DS} = 25V, I_D = 6.0A$                        |
|                                 | Drain to Source Lookage Current      |      |      | 25    | - μΑ  | $V_{DS} = 100V, V_{GS} = 0V$                      |
| IDSS                            | Drain-to-Source Leakage Current      |      |      | 250   |       | $V_{DS} = 80V, V_{GS} = 0V, T_{J} = 150^{\circ}C$ |
| I <sub>GSS</sub>                | Gate-to-Source Forward Leakage       |      |      | 100   | ~^    | V <sub>GS</sub> = 16V                             |
|                                 | Gate-to-Source Reverse Leakage       |      |      | -100  | nA    | V <sub>GS</sub> = -16V                            |
| Qg                              | Total Gate Charge                    |      |      | 20    |       | I <sub>D</sub> = 6.0A                             |
| Q <sub>gs</sub>                 | Gate-to-Source Charge                |      |      | 4.6   | nC    | V <sub>DS</sub> = 80V                             |
| Q <sub>gd</sub>                 | Gate-to-Drain ("Miller") Charge      |      |      | 10    |       | V <sub>GS</sub> = 5.0V, See Fig. 6 and 13 @6      |
| t <sub>d(on)</sub>              | Turn-On Delay Time                   |      | 4.0  |       |       | $V_{DD} = 50V$                                    |
| tr                              | Rise Time                            |      | 35   |       | no    | $I_{D} = 6.0A$                                    |
| t <sub>d(off)</sub>             | Turn-Off Delay Time                  |      | 23   |       | ns    | $R_{G} = 11\Omega, V_{GS} = 5.0V$                 |
| t <sub>f</sub>                  | Fall Time                            |      | 22   |       |       | R <sub>D</sub> = 8.2Ω, See Fig. 10 ④⑥             |
| L <sub>D</sub>                  | Internal Drain Inductance            |      | 4.5  |       | ·     | Between lead,                                     |
|                                 |                                      |      |      |       | nH    | 6mm (0.25in.)                                     |
| Ls                              | Internal Source Inductance           |      | 7.5  |       |       | from package                                      |
|                                 |                                      |      |      |       |       | and center of die contacts                        |
| C <sub>iss</sub>                | Input Capacitance                    |      | 440  |       |       | $V_{GS} = 0V$                                     |
| Coss                            | Output Capacitance                   |      | 97   |       | pF    | $V_{DS} = 25V$                                    |
| C <sub>rss</sub>                | Reverse Transfer Capacitance         |      | 50   |       | 1     | f = 1.0MHz, See Fig. 56                           |

#### Electrical Characteristics @ T<sub>J</sub> = 25°C (unless otherwise specified)

#### **Source-Drain Ratings and Characteristics**

|                 | Parameter                 | Min.                                                                                           | Тур. | Max. | Units       | Conditions                                       |
|-----------------|---------------------------|------------------------------------------------------------------------------------------------|------|------|-------------|--------------------------------------------------|
| I <sub>S</sub>  | Continuous Source Current |                                                                                                |      | 10   |             | MOSFET symbol                                    |
|                 | (Body Diode)              |                                                                                                | 10   | Δ    | showing the |                                                  |
| I <sub>SM</sub> | Pulsed Source Current     |                                                                                                |      | 25   |             | integral reverse                                 |
|                 | (Body Diode) ①⑥           |                                                                                                |      | 35   |             | p-n junction diode.                              |
| V <sub>SD</sub> | Diode Forward Voltage     |                                                                                                |      | 1.3  | V           | $T_J = 25^{\circ}C, I_S = 6.0A, V_{GS} = 0V$ (4) |
| t <sub>rr</sub> | Reverse Recovery Time     |                                                                                                | 110  | 160  | ns          | $T_J = 25^{\circ}C, I_F = 6.0A$                  |
| Q <sub>rr</sub> | Reverse RecoveryCharge    |                                                                                                | 410  | 620  | nC          | di/dt = 100A/µs ⊕©                               |
| t <sub>on</sub> | Forward Turn-On Time      | Intrinsic turn-on time is negligible (turn-on is dominated by L <sub>S</sub> +L <sub>D</sub> ) |      |      |             |                                                  |

#### Notes:

① Repetitive rating; pulse width limited by max. junction temperature. ( See fig. 11 )

④ Pulse width  $\leq$  300µs; duty cycle  $\leq$  2%.

 $\ensuremath{\textcircled{S}}$  This is applied for I-PAK, L\_S of D-PAK is measured between lead and center of die contact

 $I_{SD} \leq$  6.0A, di/dt  $\leq$  340A/µs,  $V_{DD} \leq V_{(BR)DSS}, ~ \textcircled{B}$  Uses IRL520N data and test conditions.  $T_J \leq 175^{\circ}C$ 

\*\* When mounted on 1" square PCB (FR-4 or G-10 Material ) .

For recommended footprint and soldering techniques refer to application note #AN-994

www.irf.com

# International **IOR** Rectifier



Fig 1. Typical Output Characteristics





Fig 3. Typical Transfer Characteristics



Fig 4. Normalized On-Resistance Vs. Temperature

www.irf.com

and

International



Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 8. Maximum Safe Operating Area

www.irf.com

# International **IOR** Rectifier







Fig 10a. Switching Time Test Circuit



Fig 10b. Switching Time Waveforms



Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

www.irf.com
# International



Fig 12a. Unclamped Inductive Test Circuit



Fig 12b. Unclamped Inductive Waveforms



Fig 13a. Basic Gate Charge Waveform







Fig 13b. Gate Charge Test Circuit



# Peak Diode Recovery dv/dt Test Circuit

\*  $V_{GS} = 5V$  for Logic Level Devices

Fig 14. For N-Channel HEXFETS

# International

# Package Outline

#### **TO-252AA Outline**

Dimensions are shown in millimeters (inches)



SOLDER DIP MAX. +0.16 (.006).

# Part Marking Information TO-252AA (D-PARK)



### International **IOR** Rectifier

# Package Outline

#### **TO-251AA Outline**

Dimensions are shown in millimeters (inches)



# Part Marking Information TO-251AA (I-PARK)



9

# International

# Tape & Reel Information

#### TO-252AA



NOTES : 1. OUTLINE CONFORMS TO EIA-481.

# International

 WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 322 3331

 EUROPEAN HEADQUARTERS: Hurst Green, Oxted, Surrey RH8 9BB, UK Tel: ++ 44 1883 732020

 IR CANADA: 15 Lincoln Court, Brampton, Ontario L6T 3Z2, Tel: (905) 453 2200

 IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 6172 96590

 IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 11 451 0111

 IR FAR EAST: 171 (K&H Bldg.) 30-4 Nishi-ikebukuro 3-chome, Toshima-ku, Tokyo Japan Tel: 81 33 983 0086

 IR SOUTHEAST ASIA: 315 Outram Road, #10-02 Tan Boon Liat Building, Singapore 16907 Tel: 65 221 8371

 Data and specifications subject to change without notice.

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.

National Semiconductor

# LM741 Operational Amplifier

#### **General Description**

The LM741 series are general purpose operational amplifiers which feature improved performance over industry standards like the LM709. They are direct, plug-in replacements for the 709C, LM201, MC1439 and 748 in most applications. The amplifiers offer many features which make their application nearly foolproof: overload protection on the input and

output, no latch-up when the common mode range is exceeded, as well as freedom from oscillations.

The LM741C/LM741E are identical to the LM741/LM741A except that the LM741C/LM741E have their performance guaranteed over a 0°C to +70°C temperature range, instead of -55°C to +125°C.



LM741 Operational Amplifier

November 1994

#### **Absolute Maximum Ratings** If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications. (Note 5) LM741A LM741E LM741 LM741C Supply Voltage $\pm$ 22V $\pm 22V$ $\pm$ 22V $\pm\,18V$ 500 mW Power Dissipation (Note 1) 500 mW 500 mW 500 mW $\pm 30V$ $\pm 30 V$ $\pm 30 V$ $\pm 30 V$ Differential Input Voltage $\pm 15V$ $\pm 15V$ $\pm 15V$ $\pm 15V$ Input Voltage (Note 2) Continuous Output Short Circuit Duration Continuous Continuous Continuous Operating Temperature Range $-55^{\circ}$ C to $+125^{\circ}$ C 0°C to +70°C -55°C to +125°C $0^{\circ}C$ to $+70^{\circ}C$ Storage Temperature Range -65°C to +150°C $-65^{\circ}$ C to $+150^{\circ}$ C -65°C to +150°C -65°C to +150°C 150°C 150°C 100°C Junction Temperature 100°C Soldering Information 260°C 260°C N-Package (10 seconds) 260°C 260°C J- or H-Package (10 seconds) 300°C 300°C 300°C 300°C M-Package Vapor Phase (60 seconds) 215°C 215°C 215°C 215°C 215°C Infrared (15 seconds) 215°C 215°C 215°C See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices. ESD Tolerance (Note 6) 400V 400V 400V 400V **Electrical Characteristics (Note 3)**

| Parameter                                | Conditions                                                                                                                                                                                 | LM741A/LM741E |     | LM741 |     |     | LM741C |     |     | Unite |                      |
|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----|-------|-----|-----|--------|-----|-----|-------|----------------------|
| Farameter                                | Conditions                                                                                                                                                                                 | Min           | Тур | Max   | Min | Тур | Max    | Min | Тур | Max   | Onits                |
| Input Offset Voltage                     | $\begin{array}{l} T_{A}=25^\circC\\ R_{S}\leq 10\ k\Omega\\ R_{S}\leq 50\Omega \end{array}$                                                                                                |               | 0.8 | 3.0   |     | 1.0 | 5.0    |     | 2.0 | 6.0   | mV<br>mV             |
|                                          | $\begin{array}{l} T_{AMIN} \leq T_A \leq T_{AMAX} \\ R_S \leq 50 \Omega \\ R_S \leq 10 \ \text{k}\Omega \end{array}$                                                                       |               |     | 4.0   |     |     | 6.0    |     |     | 7.5   | mV<br>mV             |
| Average Input Offset<br>Voltage Drift    |                                                                                                                                                                                            |               |     | 15    |     |     |        |     |     |       | μV/°C                |
| Input Offset Voltage<br>Adjustment Range | $T_{A}=25^{\circ}C, V_{S}=\pm 20V$                                                                                                                                                         | ±10           |     |       |     | ±15 |        |     | ±15 |       | mV                   |
| Input Offset Current                     | $T_A = 25^{\circ}C$                                                                                                                                                                        |               | 3.0 | 30    |     | 20  | 200    |     | 20  | 200   | nA                   |
|                                          | $T_{AMIN} \leq T_A \leq T_{AMAX}$                                                                                                                                                          |               |     | 70    |     | 85  | 500    |     |     | 300   | nA                   |
| Average Input Offset<br>Current Drift    |                                                                                                                                                                                            |               |     | 0.5   |     |     |        |     |     |       | nA/°C                |
| Input Bias Current                       | $T_A = 25^{\circ}C$                                                                                                                                                                        |               | 30  | 80    |     | 80  | 500    |     | 80  | 500   | nA                   |
|                                          | $T_{AMIN} \leq T_{A} \leq T_{AMAX}$                                                                                                                                                        |               |     | 0.210 |     |     | 1.5    |     |     | 0.8   | μΑ                   |
| Input Resistance                         | $T_A = 25^{\circ}C, V_S = \pm 20V$                                                                                                                                                         | 1.0           | 6.0 |       | 0.3 | 2.0 |        | 0.3 | 2.0 |       | MΩ                   |
|                                          | $ \begin{array}{l} T_{AMIN} \leq T_A \leq T_{AMAX}, \\ V_S = \ \pm 20V \end{array} $                                                                                                       | 0.5           |     |       |     |     |        |     |     |       | MΩ                   |
| Input Voltage Range                      | $T_A = 25^{\circ}C$                                                                                                                                                                        |               |     |       |     |     |        | ±12 | ±13 |       | V                    |
|                                          | $T_{AMIN} \leq T_{A} \leq T_{AMAX}$                                                                                                                                                        |               |     |       | ±12 | ±13 |        |     |     |       | V                    |
| Large Signal Voltage Gain                | $ \begin{array}{l} T_{A}=25^{\circ}C,R_{L}\geq2k\Omega\\ V_{S}=\pm20V,V_{O}=\pm15V\\ V_{S}=\pm15V,V_{O}=\pm10V \end{array} $                                                               | 50            |     |       | 50  | 200 |        | 20  | 200 |       | V/mV<br>V/mV         |
|                                          | $ \begin{array}{l} T_{AMIN} \leq T_A \leq T_{AMAX}, \\ R_L \geq 2  k\Omega, \\ V_S = \pm 20V,  V_O = \pm 15V \\ V_S = \pm 15V,  V_O = \pm 10V \\ V_S = \pm 5V,  V_O = \pm 2V \end{array} $ | 32<br>10      |     |       | 25  |     |        | 15  |     |       | V/mV<br>V/mV<br>V/mV |

| Paramotor                                    | Conditions                                                                                                                                                                   | LM74       | 1A/LM       | 741E       | LM741      |            |           | 1          | LM7410     | ;   | Unite    |
|----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------|------------|------------|------------|-----------|------------|------------|-----|----------|
| Falameter                                    | Conditions                                                                                                                                                                   | Min        | Тур         | Max        | Min        | Тур        | Max       | Min        | Тур        | Max |          |
| Output Voltage Swing                         | $\label{eq:VS} \begin{split} V_S &= \pm 20V \\ R_L \geq 10 \; k\Omega \\ R_L \geq 2 \; k\Omega \end{split}$                                                                  | ±16<br>±15 |             |            |            |            |           |            |            |     | V<br>V   |
|                                              | $\begin{split} V_S &= \pm 15V \\ R_L &\geq 10 \ \text{k}\Omega \\ R_L &\geq 2 \ \text{k}\Omega \end{split}$                                                                  |            |             |            | ±12<br>±10 | ±14<br>±13 |           | ±12<br>±10 | ±14<br>±13 |     | v<br>v   |
| Output Short Circuit<br>Current              | $\begin{array}{l} T_A = 25^{\circ}C \\ T_{AMIN} \leq T_A \leq T_{AMAX} \end{array} \end{array} \label{eq:tau}$                                                               | 10<br>10   | 25          | 35<br>40   |            | 25         |           |            | 25         |     | mA<br>mA |
| Common-Mode<br>Rejection Ratio               | $ \begin{split} & T_{AMIN} \leq T_A \leq T_{AMAX} \\ & R_S \leq 10 \ k\Omega, \ V_{CM} = \pm 12 V \\ & R_S \leq 50 \Omega, \ V_{CM} = \pm 12 V \end{split} $                 | 80         | 95          |            | 70         | 90         |           | 70         | 90         |     | dB<br>dB |
| Supply Voltage Rejection<br>Ratio            | $\label{eq:tau} \begin{array}{l} T_{AMIN} \leq T_A \leq T_{AMAX}, \\ V_S = \pm 20V \mbox{ to } V_S = \pm 5V \\ R_S \leq 50\Omega \\ R_S \leq 10 \mbox{ k}\Omega \end{array}$ | 86         | 96          |            | 77         | 96         |           | 77         | 96         |     | dB<br>dB |
| Transient Response<br>Rise Time<br>Overshoot | $T_A = 25^{\circ}C$ , Unity Gain                                                                                                                                             |            | 0.25<br>6.0 | 0.8<br>20  |            | 0.3<br>5   |           |            | 0.3<br>5   |     | μs<br>%  |
| Bandwidth (Note 4)                           | $T_A = 25^{\circ}C$                                                                                                                                                          | 0.437      | 1.5         |            |            |            |           |            |            |     | MHz      |
| Slew Rate                                    | T <sub>A</sub> = 25°C, Unity Gain                                                                                                                                            | 0.3        | 0.7         |            |            | 0.5        |           |            | 0.5        |     | V/µs     |
| Supply Current                               | $T_A = 25^{\circ}C$                                                                                                                                                          |            |             |            |            | 1.7        | 2.8       |            | 1.7        | 2.8 | mA       |
| Power Consumption                            | $\begin{array}{l} T_{A} = 25^{\circ}C \\ V_{S} = \pm 20V \\ V_{S} = \pm 15V \end{array}$                                                                                     |            | 80          | 150        |            | 50         | 85        |            | 50         | 85  | mW<br>mW |
| LM741A                                       |                                                                                                                                                                              |            |             | 165<br>135 |            |            |           |            |            |     | mW<br>mW |
| LM741E                                       | $V_{S} = \pm 20V$ $T_{A} = T_{AMIN}$ $T_{A} = T_{AMAX}$                                                                                                                      |            |             | 150<br>150 |            |            |           |            |            |     | mW<br>mW |
| LM741                                        | $T_{A} = T_{AMAX}$ $V_{S} = \pm 15V$ $T_{A} = T_{AMIN}$ $T_{A} = T_{AMAX}$                                                                                                   |            |             |            |            | 60<br>45   | 100<br>75 |            |            |     | mW<br>mW |

Note 1: For operation at elevated temperatures, these devices must be derated based on thermal resistance, and  $T_j$  max. (listed under "Absolute Maximum Ratings").  $T_j = T_A + (\theta_{jA} P_D)$ .

| Thermal Resistance                  | Cerdip (J) | DIP (N) | HO8 (H) | SO-8 (M) |
|-------------------------------------|------------|---------|---------|----------|
| $\theta_{jA}$ (Junction to Ambient) | 100°C/W    | 100°C/W | 170°C/W | 195°C/W  |
| $\theta_{jC}$ (Junction to Case)    | N/A        | N/A     | 25°C/W  | N/A      |

Note 2: For supply voltages less than  $\pm$  15V, the absolute maximum input voltage is equal to the supply voltage.

Note 3: Unless otherwise specified, these specifications apply for  $V_S = \pm 15V$ ,  $-55^{\circ}C \le T_A \le +125^{\circ}C$  (LM741/LM741A). For the LM741C/LM741E, these specifications are limited to  $0^{\circ}C \le T_A \le +70^{\circ}C$ .

Note 4: Calculated value from: BW (MHz) = 0.35/Rise Time( $\mu$ s).

Note 5: For military specifications see RETS741X for LM741 and RETS741AX for LM741A.

Note 6: Human body model, 1.5 k $\Omega$  in series with 100 pF.











National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.

# LM211, LM311

Pb–Free Packages are Available

# **Single Comparators**

The ability to operate from a single power supply of 5.0 V to 30 V or  $\pm 15$  V split supplies, as commonly used with operational amplifiers, makes the LM211/LM311 a truly versatile comparator. Moreover, the inputs of the device can be isolated from system ground while the output can drive loads referenced either to ground, the V<sub>CC</sub> or the V<sub>EE</sub> supply. This flexibility makes it possible to drive DTL, RTL, TTL, or MOS logic. The output can also switch voltages to 50 V at currents to 50 mA, therefore, the LM211/LM311 can be used to drive relays, lamps or solenoids.

#### Features



Input polarity is reversed when GND pin is used as an output.

VEE

Ground–Referred Load



GND pin is used as an output.

Load Referred to Negative Supply





Figure 1. Typical Comparator Design Configurations



#### ORDERING & DEVICE MARKING INFORMATION

See detailed ordering and shipping information and marking information in the package dimensions section on page 7 of this data sheet.

#### MAXIMUM RATINGS (T<sub>A</sub> = +25°C, unless otherwise noted.)

| Rating                                                                                              | Symbol                             | LM211                                 | LM311                   | Unit        |
|-----------------------------------------------------------------------------------------------------|------------------------------------|---------------------------------------|-------------------------|-------------|
| Total Supply Voltage                                                                                | V <sub>CC</sub> +  V <sub>EE</sub> | 36                                    | 36                      | Vdc         |
| Output to Negative Supply Voltage                                                                   | V <sub>O</sub> –V <sub>EE</sub>    | 50                                    | 40                      | Vdc         |
| Ground to Negative Supply Voltage                                                                   | V <sub>EE</sub>                    | 30                                    | 30                      | Vdc         |
| Input Differential Voltage                                                                          | V <sub>ID</sub>                    | ±30                                   | ±30                     | Vdc         |
| Input Voltage (Note 2)                                                                              | V <sub>in</sub>                    | ±15                                   | ±15                     | Vdc         |
| Voltage at Strobe Pin                                                                               | -                                  | V <sub>CC</sub> to V <sub>CC</sub> -5 | $V_{CC}$ to $V_{CC}$ –5 | Vdc         |
| Power Dissipation and Thermal Characteristics<br>Plastic DIP<br>Derate Above T <sub>A</sub> = +25°C | P <sub>D</sub><br>R <sub>θJA</sub> | 625<br>5.0                            |                         | mW<br>mW/°C |
| Operating Ambient Temperature Range                                                                 | T <sub>A</sub>                     | -25 to +85                            | 0 to +70                | °C          |
| Operating Junction Temperature                                                                      | T <sub>J(max)</sub>                | +150                                  | +150                    | °C          |
| Storage Temperature Range                                                                           | T <sub>stg</sub>                   | -65 to +150                           | -65 to +150             | °C          |

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

#### **ELECTRICAL CHARACTERISTICS** ( $V_{CC}$ = +15 V, $V_{EE}$ = -15 V, $T_A$ = 25°C, unless otherwise noted) Note 1

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | LM211       |                        |                      | LM311       |                        |                      |                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------|------------------------|----------------------|-------------|------------------------|----------------------|----------------|
| Characteristic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Symbol           | Min         | Тур                    | Max                  | Min         | Тур                    | Max                  | Unit           |
| $ \begin{array}{l} \mbox{Input Offset Voltage (Note 3)} \\ \mbox{R}_S \leq \ 50 \ \mbox{k}\Omega, \ \mbox{T}_A = +25^\circ\mbox{C} \\ \mbox{R}_S \leq \ 50 \ \mbox{k}\Omega, \ \mbox{T}_{low} \leq \ \mbox{T}_A \leq \mbox{T}_{high}^* \end{array} $                                                                                                                                                                                                                                                                                                                           | V <sub>IO</sub>  | -           | 0.7                    | 3.0<br>4.0           | -           | 2.0<br>_               | 7.5<br>10            | mV             |
| Input Offset Current (Note 3) $T_A = +25^{\circ}C$<br>$T_{low} \le T_A \le T_{high}^*$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | l <sub>IO</sub>  | -           | 1.7<br>-               | 10<br>20             | -           | 1.7<br>-               | 50<br>70             | nA             |
| Input Bias Current $T_A = +25^{\circ}C$<br>$T_{low} \le T_A \le T_{high}^{*}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ι <sub>ΙΒ</sub>  | -           | 45<br>-                | 100<br>150           | -           | 45<br>-                | 250<br>300           | nA             |
| Voltage Gain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | A <sub>V</sub>   | 40          | 200                    | -                    | 40          | 200                    | -                    | V/mV           |
| Response Time (Note 4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  | -           | 200                    | -                    | -           | 200                    | -                    | ns             |
| $ \begin{array}{l} \mbox{Saturation Voltage} \\ V_{ID} \leq -5.0 \mbox{ mV, } I_{O} = 50 \mbox{ mA, } T_{A} = 25^{\circ}\mbox{C} \\ V_{ID} \leq -10 \mbox{ mV, } I_{O} = 50 \mbox{ mA, } T_{A} = 25^{\circ}\mbox{C} \\ V_{CC} \geq 4.5 \mbox{ V, } V_{EE} = 0,  T_{Iow} \leq T_{A} \leq T_{high}^{*} \\ V_{ID} \end{tabular} \leq 6.0 \mbox{ mV, } I_{sink} \leq 8.0 \mbox{ mA} \\ V_{ID} \end{tabular} \leq 10 \mbox{ mV, } I_{sink} \leq 8.0 \mbox{ mA} \end{array} $                                                                                                        | V <sub>OL</sub>  |             | 0.75<br>-<br>0.23<br>- | 1.5<br>-<br>0.4<br>- | -<br>-<br>- | _<br>0.75<br>_<br>0.23 | -<br>1.5<br>-<br>0.4 | V              |
| Strobe "On" Current (Note 5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ۱ <sub>S</sub>   | -           | 3.0                    | -                    | _           | 3.0                    | -                    | mA             |
| $\begin{array}{l} \text{Output Leakage Current} \\ \text{V}_{\text{ID}} \geq 5.0 \text{ mV}, \text{V}_{\text{O}} = 35 \text{ V},  \text{T}_{\text{A}} = 25^{\circ}\text{C},  \text{I}_{\text{strobe}} = 3.0 \text{ mA} \\ \text{V}_{\text{ID}} \geq 10 \text{ mV}, \text{V}_{\text{O}} = 35 \text{ V},  \text{T}_{\text{A}} = 25^{\circ}\text{C},  \text{I}_{\text{strobe}} = 3.0 \text{ mA} \\ \text{V}_{\text{ID}} \geq 5.0 \text{ mV}, \text{V}_{\text{O}} = 35 \text{ V},  \text{T}_{\text{how}} \leq \text{T}_{\text{A}} \leq \text{T}_{\text{high}}^{\star} \end{array}$ |                  | -<br>-<br>- | 0.2<br>-<br>0.1        | 10<br>-<br>0.5       | -<br>-<br>- | _<br>0.2<br>_          | -<br>50<br>-         | nA<br>nA<br>μA |
| Input Voltage Range ( $T_{low} \le T_A \le T_{high}^*$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | V <sub>ICR</sub> | -14.5       | -14.7<br>to<br>13.8    | +13.0                | -14.5       | -14.7<br>to<br>13.8    | +13.0                | V              |
| Positive Supply Current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | I <sub>CC</sub>  | -           | +2.4                   | +6.0                 | -           | +2.4                   | +7.5                 | mA             |
| Negative Supply Current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | I <sub>EE</sub>  | -           | -1.3                   | -5.0                 | _           | -1.3                   | -5.0                 | mA             |

\* LM211:  $T_{low} = -25^{\circ}C$ ,  $T_{high} = +85^{\circ}C$ LM311:  $T_{low} = 0^{\circ}C$ ,  $T_{high} = +70^{\circ}C$ 

 Offset voltage, offset current and bias current specifications apply for a supply voltage range from a single 5.0 V supply up to ±15 V supplies.
 This rating applies for ±15 V supplies. The positive input voltage limit is 30 V above the negative supply. The negative input voltage limit is equal to the negative supply voltage or 30 V below the positive supply, whichever is less.

3. The offset voltages and offset currents given are the maximum values required to drive the output within a volt of either supply with a 1.0 mA load. Thus, these parameters define an error band and take into account the "worst case" effects of voltage gain and input impedance.

4. The response time specified is for a 100 mV input step with 5.0 mV overdrive.

5. Do not short the strobe pin to ground; it should be current driven at 3.0 mA to 5.0 mA.









# LM211, LM311











#### TECHNIQUES FOR AVOIDING OSCILLATIONS IN COMPARATOR APPLICATIONS

When a high speed comparator such as the LM211 is used with high speed input signals and low source impedances, the output response will normally be fast and stable, providing the power supplies have been bypassed (with  $0.1 \,\mu\text{F}$  disc capacitors), and that the output signal is routed well away from the inputs (Pins 2 and 3) and also away from Pins 5 and 6.

However, when the input signal is a voltage ramp or a slow sine wave, or if the signal source impedance is high (1.0 k $\Omega$  to 100 k $\Omega$ ), the comparator may burst into oscillation near the crossing–point. This is due to the high gain and wide bandwidth of comparators like the LM211 series. To avoid oscillation or instability in such a usage, several precautions are recommended, as shown in Figure 16.

The trim pins (Pins 5 and 6) act as unwanted auxiliary inputs. If these pins are not connected to a trim–pot, they should be shorted together. If they are connected to a trim–pot, a 0.01  $\mu$ F capacitor (C1) between Pins 5 and 6 will minimize the susceptibility to AC coupling. A smaller capacitor is used if Pin 5 is used for positive feedback as in Figure 16. For the fastest response time, tie both balance pins to V<sub>CC</sub>.

Certain sources will produce a cleaner comparator output waveform if a 100 pF to 1000 pF capacitor (C2) is connected directly across the input pins. When the signal source is applied through a resistive network, R1, it is usually advantageous to choose R2 of the same value, both for DC and for dynamic (AC) considerations. Carbon, tin–oxide, and metal–film resistors have all been used with good results in comparator input circuitry, but inductive wirewound resistors should be avoided.

When comparator circuits use input resistors (e.g., summing resistors), their value and placement are particularly important. In all cases the body of the resistor should be close to the device or socket. In other words, there should be a very short lead length or printed–circuit foil run between comparator and resistor to radiate or pick up signals. The same applies to capacitors, pots, etc. For example, if  $R1 = 10 \text{ k}\Omega$ , as little as 5 inches of lead between the resistors and the input pins can result in oscillations that are very hard to dampen. Twisting these input leads tightly is the best alternative to placing resistors close to the comparator.

Since feedback to almost any pin of a comparator can result in oscillation, the printed-circuit layout should be engineered thoughtfully. Preferably there should be a groundplane under the LM211 circuitry (e.g., one side of a double layer printed circuit board). Ground, positive supply or negative supply foil should extend between the output and the inputs to act as a guard. The foil connections for the inputs should be as small and compact as possible, and should be essentially surrounded by ground foil on all sides to guard against capacitive coupling from any fast high-level signals (such as the output). If Pins 5 and 6 are not used, they should be shorted together. If they are connected to a trim-pot, the trim-pot should be located no more than a few inches away from the LM211, and a 0.01 µF capacitor should be installed across Pins 5 and 6. If this capacitor cannot be used, a shielding printed-circuit foil may be advisable between Pins 6 and 7. The power supply bypass capacitors should be located within a couple inches of the LM211.

A standard procedure is to add hysteresis to a comparator to prevent oscillation, and to avoid excessive noise on the output. In the circuit of Figure 17, the feedback resistor of  $510 \text{ k}\Omega$  from the output to the positive input will cause about 3.0 mV of hysteresis. However, if R2 is larger than 100  $\Omega$ , such as 50 k $\Omega$ , it would not be practical to simply increase the value of the positive feedback resistor proportionally above 510 k $\Omega$  to maintain the same amount of hysteresis.

When both inputs of the LM211 are connected to active signals, or if a high–impedance signal is driving the positive input of the LM211 so that positive feedback would be disruptive, the circuit of Figure 16 is ideal. The positive feedback is applied to Pin 5 (one of the offset adjustment pins). This will be sufficient to cause 1.0 mV to 2.0 mV hysteresis and sharp transitions with input triangle waves from a few Hz to hundreds of kHz. The positive–feedback signal across the 82  $\Omega$  resistor swings 240 mV below the positive supply. This signal is centered around the nominal voltage at Pin 5, so this feedback does not add to the offset voltage of the comparator. As much as 8.0 mV of offset voltage can be trimmed out, using the 5.0 k $\Omega$  pot and 3.0 k $\Omega$  resistor as shown.







Figure 19. Relay Driver with Strobe Capability

#### **ORDERING INFORMATION**

| Device    | Package             | Shipping <sup>†</sup> |  |  |
|-----------|---------------------|-----------------------|--|--|
| LM211D    | SOIC-8              |                       |  |  |
| LM211DR2  | SOIC-8              | 98 Units / Rail       |  |  |
| LM211DR2G | SOIC-8<br>(Pb-Free) |                       |  |  |
| LM311D    | SOIC-8              | 2500 Units / Reel     |  |  |
| LM311DG   | SOIC-8<br>(Pb-Free) | 98 Units / Rail       |  |  |
| LM311DR2  | SOIC-8              |                       |  |  |
| LM311DR2G | SOIC-8<br>(Pb-Free) | 2500 Units / Reel     |  |  |
| LM311N    | PDIP-8              |                       |  |  |
| LM311NG   | PDIP-8<br>(Pb-Free) | 50 Units / Rail       |  |  |

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

#### MARKING DIAGRAMS

| PDIP-8<br>N SUFFIX<br>CASE 626 |                         |                                        | SOIC-8<br>D SUFFIX<br>CASE 751        |
|--------------------------------|-------------------------|----------------------------------------|---------------------------------------|
|                                | X<br>A                  | = 2 or 3<br>= Assembly Lo              | 8 A A A A<br>LMx11<br>ALYW<br>1 U U U |
|                                | WL, L<br>YY, Y<br>WW, W | = Wafer Lot<br>= Year<br>/ = Work Week |                                       |

## LM211, LM311

#### PACKAGE DIMENSIONS

PDIP-8 **N SUFFIX** CASE 626-05 ISSUE L



NOTES: 1. DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL. 2. PACKAGE CONTOUR OPTIONAL (ROUND OR SQUARE CORNERS). 3. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

|     | MILLIN | IETERS   | INC       | HES   |  |
|-----|--------|----------|-----------|-------|--|
| DIM | MIN    | MAX      | MIN       | MAX   |  |
| Α   | 9.40   | 10.16    | 0.370     | 0.400 |  |
| В   | 6.10   | 6.60     | 0.240     | 0.260 |  |
| С   | 3.94   | 4.45     | 0.155     | 0.175 |  |
| D   | 0.38   | 0.51     | 0.015     | 0.020 |  |
| F   | 1.02   | 1.78     | 0.040     | 0.070 |  |
| G   | 2.54   | BSC      | 0.100 BSC |       |  |
| Н   | 0.76   | 1.27     | 0.030     | 0.050 |  |
| J   | 0.20   | 0.30     | 0.008     | 0.012 |  |
| K   | 2.92   | 3.43     | 0.115     | 0.135 |  |
| L   | 7.62   | 7.62 BSC |           | BSC   |  |
| М   |        | 10°      |           | 10°   |  |
| N   | 0.76   | 1.01     | 0.030     | 0.040 |  |

SOIC-8 D SUFFIX CASE 751-07 **ISSUE AC** 



NOTES:

- NOTES:
   DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
   CONTROLLING DIMENSION: MILLIMETER.
   DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
   MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
   DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.
   751–01 THRU 751–06 ARE OBSOLETE. NEW STANDARD IS 751–07.

|     | MILLIN | IETERS | INC       | HES   |  |  |  |  |
|-----|--------|--------|-----------|-------|--|--|--|--|
| DIM | MIN    | MAX    | MIN       | MAX   |  |  |  |  |
| Α   | 4.80   | 5.00   | 0.189     | 0.197 |  |  |  |  |
| В   | 3.80   | 4.00   | 0.150     | 0.157 |  |  |  |  |
| С   | 1.35   | 1.75   | 0.053     | 0.069 |  |  |  |  |
| D   | 0.33   | 0.51   | 0.013     | 0.020 |  |  |  |  |
| G   | 1.27   | 7 BSC  | 0.050 BSC |       |  |  |  |  |
| н   | 0.10   | 0.25   | 0.004     | 0.010 |  |  |  |  |
| J   | 0.19   | 0.25   | 0.007     | 0.010 |  |  |  |  |
| κ   | 0.40   | 1.27   | 0.016     | 0.050 |  |  |  |  |
| М   | 0 °    | 8 °    | 0 °       | 8 °   |  |  |  |  |
| Ν   | 0.25   | 0.50   | 0.010     | 0.020 |  |  |  |  |
| S   | 5.80   | 6.20   | 0.228     | 0.244 |  |  |  |  |

**SOLDERING FOOTPRINT\*** 





#### LM211, LM311

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters which may be provided in solut. C adta sheets and/or specifications can and do vary in different applications of actual performance may vary over time. All operating parameters which may be provided in solut. C and the solut. C products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application in which the failure of the SCILLC product cauld create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is

#### PUBLICATION ORDERING INFORMATION

#### LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 61312, Phoenix, Arizona 85082–1312 USA Phone: 480–829–7710 or 800–344–3860 Toll Free USA/Canada Fax: 480–829–7709 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800–282–9855 Toll Free USA/Canada

Japan: ON Semiconductor, Japan Customer Focus Center 2–9–1 Kamimeguro, Meguro–ku, Tokyo, Japan 153–0051 Phone: 81–3–5773–3850 ON Semiconductor Website: http://onsemi.com

Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative.

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.



# MC78XX/LM78XX/MC78XXA 3-Terminal 1A Positive Voltage Regulator

# Features

- Output Current up to 1A
- Output Voltages of 5, 6, 8, 9, 10, 12, 15, 18, 24V
- Thermal Overload Protection
- Short Circuit Protection
- Output Transistor Safe Operating Area Protection

# Description

The MC78XX/LM78XX/MC78XXA series of three terminal positive regulators are available in the TO-220/D-PAK package and with several fixed output voltages, making them useful in a wide range of applications. Each type employs internal current limiting, thermal shut down and safe operating area protection, making it essentially indestructible. If adequate heat sinking is provided, they can deliver over 1A output current. Although designed primarily as fixed voltage regulators, these devices can be used with external components to obtain adjustable voltages and currents.



## **Internal Block Digram**



# **Absolute Maximum Ratings**

| Parameter                                                   | Symbol            | Value      | Unit   |
|-------------------------------------------------------------|-------------------|------------|--------|
| Input Voltage (for $V_O = 5V$ to 18V)<br>(for $V_O = 24V$ ) | VI<br>VI          | 35<br>40   | V<br>V |
| Thermal Resistance Junction-Cases (TO-220)                  | R <sub>θ</sub> JC | 5          | °C/W   |
| Thermal Resistance Junction-Air (TO-220)                    | RθJA              | 65         | °C/W   |
| Operating Temperature Range                                 | TOPR              | 0 ~ +125   | °C     |
| Storage Temperature Range                                   | TSTG              | -65 ~ +150 | °C     |

# **Electrical Characteristics (MC7805/LM7805)**

(Refer to test circuit ,0°C < TJ < 125°C, IO = 500mA, VI = 10V, CI=  $0.33\mu$ F, CO=  $0.1\mu$ F, unless otherwise specified)

| Baramatar                | Symbol                                     | 6                                                                                                                               | MC7805/LM7805               |      |      | Unit |        |
|--------------------------|--------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-----------------------------|------|------|------|--------|
| Farameter                | Symbol                                     |                                                                                                                                 | manions                     | Min. | Тур. | Max. | Unit   |
|                          |                                            | TJ =+25 <sup>o</sup> C                                                                                                          | TJ =+25 °C                  |      | 5.0  | 5.2  |        |
| Output Voltage           | Vo                                         | $\begin{array}{l} \text{5.0mA} \leq \text{Io} \leq \text{1.0A, PO} \leq \text{15W} \\ \text{VI} = \text{7V to 20V} \end{array}$ |                             | 4.75 | 5.0  | 5.25 | V      |
| Line Regulation (Note1)  | Poglino                                    | T 1 25 °C                                                                                                                       | Vo = 7V to 25V              | -    | 4.0  | 100  | m\/    |
|                          | Regime                                     | 1j=+25 C                                                                                                                        | VI = 8V to 12V              | -    | 1.6  | 50   |        |
| Load Regulation (Note1)  |                                            |                                                                                                                                 | IO = 5.0mA to1.5A           | -    | 9    | 100  |        |
|                          | Regload T <sub>J</sub> =+25 <sup>o</sup> C | IO =250mA to<br>750mA                                                                                                           | -                           | 4    | 50   | mV   |        |
| Quiescent Current        | lQ                                         | TJ =+25 °C                                                                                                                      |                             | -    | 5.0  | 8.0  | mA     |
| Quiescent Current Change |                                            | IO = 5mA to 1.                                                                                                                  | 0A                          | -    | 0.03 | 0.5  | m۸     |
| Quiescent Current Change | ΔIQ                                        | VI= 7V to 25V                                                                                                                   |                             | -    | 0.3  | 1.3  | IIIA   |
| Output Voltage Drift     | $\Delta V_O / \Delta T$                    | IO= 5mA                                                                                                                         |                             | -    | -0.8 | -    | mV/ °C |
| Output Noise Voltage     | VN                                         | f = 10Hz to 10                                                                                                                  | 0KHz, TA=+25 <sup>o</sup> C | -    | 42   | -    | μV/Vo  |
| Ripple Rejection         | RR                                         | f = 120Hz<br>Vo = 8V to 18                                                                                                      | V                           | 62   | 73   | -    | dB     |
| Dropout Voltage          | VDrop                                      | IO = 1A, TJ =+25 °C                                                                                                             |                             | -    | 2    | -    | V      |
| Output Resistance        | rO                                         | f = 1KHz                                                                                                                        |                             | -    | 15   | -    | mΩ     |
| Short Circuit Current    | ISC                                        | VI = 35V, TA =                                                                                                                  | +25 °C                      | -    | 230  | -    | mA     |
| Peak Current             | IPK                                        | TJ =+25 °C                                                                                                                      |                             | -    | 2.2  | -    | A      |

#### Note:

# **Electrical Characteristics (MC7806)**

(Refer to test circuit ,0°C < TJ < 125°C, IO = 500mA, VI =11V, CI= 0.33µF, CO= 0.1µF, unless otherwise specified)

| Parameter                | Symbol                  | Co                                 | MC7806                                                                                                                                                            |      |      | Unit |        |
|--------------------------|-------------------------|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|------|--------|
| Farameter                | Symbol                  |                                    | manions                                                                                                                                                           | Min. | Тур. | Max. | Unit   |
|                          |                         | TJ =+25 °C                         |                                                                                                                                                                   | 5.75 | 6.0  | 6.25 |        |
| Output Voltage           | Vo                      | $5.0mA \le IO \le$ VI = 8.0V to 21 | $\begin{array}{l} \text{5.0mA} \leq \text{I}_{O} \leq \text{1.0A},  \text{P}_{O} \leq \text{15W} \\ \text{VI} = 8.0 \text{V} \text{ to } 21 \text{V} \end{array}$ |      | 6.0  | 6.3  | V      |
| Line Regulation (Note1)  | Doglino                 | T + + 25 °C                        | VI = 8V to 25V                                                                                                                                                    | -    | 5    | 120  | m\/    |
| Line Regulation (Note1)  | Regime                  | 1J=+25 C                           | VI = 9V to 13V                                                                                                                                                    | -    | 1.5  | 60   | mv     |
| Lood Dogulation (Noto1)  | Declard                 | TL 125 °C                          | IO =5mA to 1.5A                                                                                                                                                   | -    | 9    | 120  | m\/    |
| Load Regulation (Note I) | Regioau                 | gioau 1J =+25 C                    | IO =250mA to750A                                                                                                                                                  | -    | 3    | 60   | mv     |
| Quiescent Current        | lq                      | T <sub>J</sub> =+25 °C             |                                                                                                                                                                   | -    | 5.0  | 8.0  | mA     |
| Quiescent Current Change |                         |                                    | $I_{O} = 5mA$ to 1A                                                                                                                                               |      | -    | 0.5  | m۸     |
| Quescent Current Change  | ΔIQ                     | $V_I = 8V$ to $25V$                |                                                                                                                                                                   | -    | -    | 1.3  |        |
| Output Voltage Drift     | $\Delta V_O / \Delta T$ | IO = 5mA                           |                                                                                                                                                                   | -    | -0.8 | -    | mV/ °C |
| Output Noise Voltage     | VN                      | f = 10Hz to 100K                   | Ήz, TA =+25 <sup>o</sup> C                                                                                                                                        | -    | 45   | -    | μV/Vo  |
| Ripple Rejection         | RR                      | f = 120Hz<br>VI = 9V to 19V        |                                                                                                                                                                   | 59   | 75   | -    | dB     |
| Dropout Voltage          | VDrop                   | IO = 1A, TJ =+25 °C                |                                                                                                                                                                   | -    | 2    | -    | V      |
| Output Resistance        | rO                      | f = 1KHz                           |                                                                                                                                                                   | -    | 19   | -    | mΩ     |
| Short Circuit Current    | ISC                     | VI= 35V, TA=+25 °C                 |                                                                                                                                                                   | -    | 250  | -    | mA     |
| Peak Current             | IPK                     | TJ =+25 °C                         |                                                                                                                                                                   | -    | 2.2  | -    | А      |

#### Note:

# **Electrical Characteristics (MC7808)**

(Refer to test circuit ,0°C < TJ < 125°C, IO = 500mA, VI =14V, CI= 0.33µF, CO= 0.1µF, unless otherwise specified)

| Barameter                | Symbol                  | C.                                                           | anditions          | Ν    | AC780 | 8    | Unit   |
|--------------------------|-------------------------|--------------------------------------------------------------|--------------------|------|-------|------|--------|
| Farameter                | Symbol                  |                                                              | Diamons            | Min. | Тур.  | Max. | Onit   |
|                          |                         | TJ =+25 °C                                                   |                    | 7.7  | 8.0   | 8.3  |        |
| Output Voltage           | Vo                      | 5.0mA $\leq$ IO $\leq$ 1.0A, PO $\leq$ 15W VI = 10.5V to 23V |                    | 7.6  | 8.0   | 8.4  | V      |
| Line Demulation (Nated)  | Dealiae                 | T 05 %0                                                      | VI = 10.5V to 25V  | -    | 5.0   | 160  |        |
| Line Regulation (Note1)  | Regline                 | 1J=+25°C                                                     | VI = 11.5V to 17V  | -    | 2.0   | 80   | mv     |
| Load Regulation (Note1)  | Doglood                 | T                                                            | IO = 5.0mA to 1.5A | -    | 10    | 160  | m\/    |
| Load Regulation (Note1)  | Regioad                 | 1J=+25°C                                                     | IO= 250mA to 750mA | -    | 5.0   | 80   |        |
| Quiescent Current        | lQ                      | TJ =+25 °C                                                   | TJ =+25 °C         |      | 5.0   | 8.0  | mA     |
| Quiescent Current Change | ΔlQ                     | IO = 5mA to 1.0A                                             |                    | -    | 0.05  | 0.5  | mΔ     |
| Quiescent Current Change |                         | VI = 10.5A to 25                                             | V                  | -    | 0.5   | 1.0  |        |
| Output Voltage Drift     | $\Delta V_O / \Delta T$ | IO = 5mA                                                     |                    | -    | -0.8  | -    | mV/ °C |
| Output Noise Voltage     | VN                      | f = 10Hz to 100KHz, TA =+25 °C                               |                    | -    | 52    | -    | μV/Vo  |
| Ripple Rejection         | RR                      | f = 120Hz, VI= 11.5V to 21.5V                                |                    | 56   | 73    | -    | dB     |
| Dropout Voltage          | VDrop                   | IO = 1A, TJ=+25 °C                                           |                    | -    | 2     | -    | V      |
| Output Resistance        | rO                      | f = 1KHz                                                     |                    | -    | 17    | -    | mΩ     |
| Short Circuit Current    | Isc                     | VI= 35V, TA =+2                                              | 5 °C               | -    | 230   | -    | mA     |
| Peak Current             | IPK                     | TJ =+25 °C                                                   |                    | -    | 2.2   | -    | Α      |

#### Note:

# **Electrical Characteristics (MC7809)**

(Refer to test circuit ,0°C < TJ < 125°C, IO = 500mA, VI =15V, CI= 0.33µF, CO= 0.1µF, unless otherwise specified)

| Paramotor                | Symbol                  | C                                          | anditions                                                 | I    | MC7809 | Ð                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Unit   |
|--------------------------|-------------------------|--------------------------------------------|-----------------------------------------------------------|------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| Farameter                | Symbol                  |                                            | onations                                                  | Min. | Тур.   | Max.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Onit   |
|                          |                         | TJ =+25°C                                  | TJ =+25°C<br>5.0mA≤ IO ≤1.0A, PO ≤15W<br>VI= 11.5V to 24V |      | 9      | 9.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |
| Output Voltage           | Vo                      | 5.0mA≤ IO ≤1.0A<br>VI= 11.5V to 24V        |                                                           |      | 9      | 9.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | V      |
| Line Degulation (Note1)  | Poglino                 | T 1- 1 25°C                                | VI = 11.5V to 25V                                         | -    | 6      | 180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | m\/    |
| Line Regulation (Note I) | Regime                  | 1 J=+25 °C                                 | VI = 12V to 17V                                           | -    | 2      | 9         9.35         9.35         9.4         180         90         180         90         180         90         180         90         180         90         180         90         1.3         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - <tr td=""></tr> | mv     |
|                          |                         |                                            |                                                           |      |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |
| Lood Dogulation (Nato1)  | Declard                 | T 25°C                                     | IO = 5mA to 1.5A                                          | -    | 12     | 180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        |
| Load Regulation (Note1)  | Regioau                 | 1 J=+25 °C                                 | IO = 250mA to 750mA                                       | -    | 4      | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | mv     |
| Quiescent Current        | lq                      | TJ=+25°C                                   |                                                           | -    | 5.0    | 8.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | mA     |
|                          |                         | IO = 5mA to 1.0A                           | ł                                                         | -    | -      | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | m۸     |
| Quescent Current Change  | ΔIQ                     | VI = 11.5V to 26V                          |                                                           | -    | -      | 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        |
| Output Voltage Drift     | $\Delta V_O / \Delta T$ | IO = 5mA                                   |                                                           | -    | -1     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | mV/ °C |
| Output Noise Voltage     | VN                      | f = 10Hz to 100KH                          | f = 10Hz to 100KHz, T <sub>A</sub> =+25 °C                |      | 58     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | μV/Vo  |
| Ripple Rejection         | RR                      | f = 120Hz<br>VI = 13V to 23V               |                                                           | 56   | 71     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | dB     |
| Dropout Voltage          | VDrop                   | I <sub>O</sub> = 1A, T <sub>J</sub> =+25°C |                                                           | -    | 2      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | V      |
| Output Resistance        | rO                      | f = 1KHz                                   |                                                           | -    | 17     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | mΩ     |
| Short Circuit Current    | ISC                     | VI= 35V, TA =+2                            | VI= 35V, TA =+25°C                                        |      | 250    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | mA     |
| Peak Current             | IPK                     | TJ= +25°C                                  |                                                           | -    | 2.2    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Α      |

#### Note:

# **Electrical Characteristics (MC7810)**

(Refer to test circuit ,0°C< TJ < 125°C, IO = 500mA, VI =16V, CI =  $0.33\mu$ F, CO= $0.1\mu$ F, unless otherwise specified)

| Paramotor                    | Symbol                  | Co                                  | anditions                                                                |      | MC7810 | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Unit   |
|------------------------------|-------------------------|-------------------------------------|--------------------------------------------------------------------------|------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| Farameter                    | Symbol                  |                                     | onations                                                                 | Min. | Тур.   | Max.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Onit   |
|                              |                         | TJ =+25 °C                          |                                                                          | 9.6  | 10     | 10.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |
| Output Voltage               | Vo                      | 5.0mA ≤ IO≤1.0A<br>VI = 12.5V to 25 | $5.0mA \le I_O \le 1.0A$ , P <sub>O</sub> $\le 15W$<br>VI = 12.5V to 25V |      | 10     | 10.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | V      |
| Line Develotion (No. 4)      | Doglino                 | T 25°C                              | VI = 12.5V to 25V                                                        | -    | 10     | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | m)/    |
| Line Regulation (Note I)     | Regime                  | 1J=+25°C                            | VI = 13V to 25V                                                          | -    | 3      | Max.         10.4         10.5         200         100         200         400         8.0         0.5         1.0         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -     < | mv     |
| Lood Dogulation (Note1)      | Declard                 |                                     | IO = 5mA to 1.5A                                                         | -    | 12     | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | m)/    |
| Load Regulation (Note1)      | Regioad                 | 1J=+25°C                            | IO = 250mA to 750mA                                                      | -    | 4      | 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | - 111V |
| Quiescent Current            | lq                      | TJ =+25°C                           |                                                                          | -    | 5.1    | 8.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mA     |
| Ourissesset Ourrest Observes | 410                     | IO = 5mA to 1.0A                    | A                                                                        | -    | -      | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | m۸     |
| Quescent Current Change      | ΔIQ                     | VI = 12.5V to 29V                   |                                                                          | -    | -      | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        |
| Output Voltage Drift         | $\Delta V_O / \Delta T$ | IO = 5mA                            |                                                                          | -    | -1     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | mV/°C  |
| Output Noise Voltage         | VN                      | f = 10Hz to 100KH                   | f = 10Hz to 100KHz, T <sub>A</sub> =+25 °C                               |      | 58     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | μV/Vo  |
| Ripple Rejection             | RR                      | f = 120Hz<br>VI = 13V to 23V        |                                                                          | 56   | 71     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | dB     |
| Dropout Voltage              | VDrop                   | Io = 1A, Tj=+25 °C                  |                                                                          | -    | 2      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | V      |
| Output Resistance            | rO                      | f = 1KHz                            |                                                                          | -    | 17     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | mΩ     |
| Short Circuit Current        | ISC                     | VI = 35V, TA=+25 °C                 |                                                                          | -    | 250    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | mA     |
| Peak Current                 | lрк                     | TJ =+25 °C                          |                                                                          | -    | 2.2    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Α      |

#### Note:

# **Electrical Characteristics (MC7812)**

(Refer to test circuit ,0°C < TJ < 125°C, IO = 500mA, VI =19V, CI= 0.33µF, CO=0.1µF, unless otherwise specified)

| Parameter                     | Symbol                  | C.                                                         | anditions                                    | Ν    | <b>AC781</b>                                                                                                                                                                                                                                                                                                                                                                                        | 2    | Unit   |  |
|-------------------------------|-------------------------|------------------------------------------------------------|----------------------------------------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--------|--|
| Farameter                     | Symbol                  |                                                            | onanions                                     | Min. | Тур.                                                                                                                                                                                                                                                                                                                                                                                                | Max. | Onic   |  |
|                               |                         | TJ =+25 °C                                                 |                                              | 11.5 | 12                                                                                                                                                                                                                                                                                                                                                                                                  | 12.5 |        |  |
| Output Voltage                | Vo                      | $5.0mA \le I_O \le 1.0A, P_O \le 15W$<br>VI = 14.5V to 27V |                                              | 11.4 | 12                                                                                                                                                                                                                                                                                                                                                                                                  | 12.6 | V      |  |
| Line Regulation (Note1)       | Poglino                 | $T_{1} = 125^{\circ}C$                                     | VI = 14.5V to 30V                            | -    | 10                                                                                                                                                                                                                                                                                                                                                                                                  | 240  | m\/    |  |
|                               | Regime                  | 1J =+25 C                                                  | VI = 16V to 22V                              | -    | Typ.         Max.           12         12.5           12         12.6           10         240           3.0         120           11         240           5.0         120           5.1         8.0           0.1         0.5           0.5         1.0           -1         -           76         -           71         -           2         -           18         -           230         - | IIIV |        |  |
| Load Pagulation (Noto1)       | Pogload                 | $T_{1} = 125^{\circ}C$                                     | IO = 5mA to 1.5A                             | -    | 11                                                                                                                                                                                                                                                                                                                                                                                                  | 240  | m\/    |  |
| Load Regulation (Note I)      | Regioad                 | 1J=+25°C                                                   | IO = 250mA to 750mA                          | -    | 5.0                                                                                                                                                                                                                                                                                                                                                                                                 | 120  | IIIV   |  |
| Quiescent Current             | lQ                      | TJ =+25 °C                                                 | TJ =+25 °C                                   |      | 5.1                                                                                                                                                                                                                                                                                                                                                                                                 | 8.0  | mA     |  |
| Outine and Outreast Objection | 410                     | $I_{O} = 5 mA$ to 1.0A                                     |                                              | -    | 0.1                                                                                                                                                                                                                                                                                                                                                                                                 | 0.5  | m۸     |  |
| Quescent Current Change       | ΔIQ                     | VI = 14.5V to 30V                                          |                                              | -    | 0.5                                                                                                                                                                                                                                                                                                                                                                                                 | 1.0  |        |  |
| Output Voltage Drift          | $\Delta V_O / \Delta T$ | IO = 5mA                                                   |                                              | -    | -1                                                                                                                                                                                                                                                                                                                                                                                                  | -    | mV/ °C |  |
| Output Noise Voltage          | VN                      | f = 10Hz to 100KH                                          | f = 10Hz to 100KHz, TA =+25 °C               |      | 76                                                                                                                                                                                                                                                                                                                                                                                                  | -    | μV/Vo  |  |
| Ripple Rejection              | RR                      | f = 120Hz<br>VI = 15V to 25V                               |                                              | 55   | 71                                                                                                                                                                                                                                                                                                                                                                                                  | -    | dB     |  |
| Dropout Voltage               | VDrop                   | I <sub>O</sub> = 1A, T <sub>J</sub> =+25 °C                |                                              | -    | 2                                                                                                                                                                                                                                                                                                                                                                                                   | -    | V      |  |
| Output Resistance             | rO                      | f = 1KHz                                                   |                                              | -    | 18                                                                                                                                                                                                                                                                                                                                                                                                  | -    | mΩ     |  |
| Short Circuit Current         | Isc                     | VI = 35V, TA=+2                                            | VI = 35V, T <sub>A</sub> =+25 <sup>o</sup> C |      | 230                                                                                                                                                                                                                                                                                                                                                                                                 | -    | mA     |  |
| Peak Current                  | IPK                     | $T_{J} = +25  {}^{o}C$                                     |                                              | -    | 2.2                                                                                                                                                                                                                                                                                                                                                                                                 | -    | Α      |  |

#### Note:

# **Electrical Characteristics (MC7815)**

(Refer to test circuit ,0°C < TJ < 125°C, IO = 500mA, VI =23V, CI=  $0.33\mu$ F, CO= $0.1\mu$ F, unless otherwise specified)

| Baramotor                | Symbol                  | Co                                                                                                | nditions                                   | l     | MC7815 | 5     | Unit   |  |
|--------------------------|-------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------|-------|--------|-------|--------|--|
| Farameter                | Symbol                  |                                                                                                   | manions                                    | Min.  | Тур.   | Max.  |        |  |
|                          |                         | TJ =+25 <sup>o</sup> C                                                                            |                                            | 14.4  | 15     | 15.6  |        |  |
| Output Voltage           | Vo                      | $\begin{array}{l} 5.0mA \leq I_O \leq 1.0A, \ P_O \leq 15W \\ V_I = 17.5V \ to \ 30V \end{array}$ |                                            | 14.25 | 15     | 15.75 | V      |  |
| Line Regulation (Nate1)  | Doglino                 | T + 125 %C                                                                                        | VI = 17.5V to 30V                          | -     | 11     | 300   | m\/    |  |
|                          | Regime                  | 1J=+25 C                                                                                          | VI = 20V to 26V                            | -     | 3      | 150   | mv     |  |
|                          |                         |                                                                                                   | $I_{O} = 5 mA to 1.5 A$                    | -     | 12     | 300   |        |  |
| Load Regulation (Note1)  | Regload                 | TJ =+25 °C                                                                                        | IO = 250mA to<br>750mA                     | -     | 4      | 150   | mV     |  |
| Quiescent Current        | lQ                      | TJ =+25 °C                                                                                        |                                            | -     | 5.2    | 8.0   | mA     |  |
| Quiescent Current Change |                         | $I_{O} = 5mA$ to 1.0A                                                                             |                                            | -     | -      | 0.5   | m۸     |  |
|                          | ΔIQ                     | VI = 17.5V to 30V                                                                                 |                                            | -     | -      | 1.0   | IIIA   |  |
| Output Voltage Drift     | $\Delta V_O / \Delta T$ | IO = 5mA                                                                                          |                                            | -     | -1     | -     | mV/ °C |  |
| Output Noise Voltage     | VN                      | f = 10Hz to 100                                                                                   | f = 10Hz to 100KHz, T <sub>A</sub> =+25 °C |       | 90     | -     | μV/Vo  |  |
| Ripple Rejection         | RR                      | f = 120Hz<br>VI = 18.5V to 28.5V                                                                  |                                            | 54    | 70     | -     | dB     |  |
| Dropout Voltage          | VDrop                   | IO = 1A, TJ=+25 °C                                                                                |                                            | -     | 2      | -     | V      |  |
| Output Resistance        | rO                      | f = 1KHz                                                                                          |                                            | -     | 19     | -     | mΩ     |  |
| Short Circuit Current    | ISC                     | V <sub>I</sub> = 35V, T <sub>A</sub> =+25 °C                                                      |                                            | -     | 250    | -     | mA     |  |
| Peak Current             | IPK                     | TJ =+25 °C                                                                                        |                                            | -     | 2.2    | -     | А      |  |

#### Note:

# **Electrical Characteristics (MC7818)**

(Refer to test circuit ,0°C < TJ < 125°C, IO = 500mA, VI =27V, CI= 0.33µF, CO=0.1µF, unless otherwise specified)

| Parameter                | Symbol                  | C.                                                                | anditions                                                                             | Ν    | AC781 | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Unit   |  |
|--------------------------|-------------------------|-------------------------------------------------------------------|---------------------------------------------------------------------------------------|------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--|
| Farameter                | Symbol                  |                                                                   | Julions                                                                               | Min. | Тур.  | Max.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Onic   |  |
|                          |                         | TJ =+25 °C                                                        |                                                                                       | 17.3 | 18    | 18.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |  |
| Output Voltage           | Vo                      | $5.0 \text{mA} \le \text{IO} \le 1.0 \text{A}$<br>VI = 21V to 33V | 5.0mA $\leq$ I <sub>O</sub> $\leq$ 1.0A, P <sub>O</sub> $\leq$ 15W<br>VI = 21V to 33V |      | 18    | 18.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | V      |  |
| Line Degulation (Note1)  | Doglino                 | T , , 25 °C                                                       | VI = 21V to 33V                                                                       | -    | 15    | 360                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | m\/    |  |
| Line Regulation (Note I) | Regime                  | 1J=+25 C                                                          | VI = 24V to 30V                                                                       | -    | 5     | 8           Max.           18.7           18.9           360           180           360           180           360           180           360           180           360           180           360           180           360           180           360           180           360           180           360           180           360           180           360           180           360           180           360           180           360           180           360           180           360           1           -           -           -           -           -           -           -           -           -           -           -           -           -           - | mv     |  |
| Load Pagulation (Noto1)  | Regload TJ =+25 °C      | T 25 °C                                                           | $I_{O} = 5 mA to 1.5 A$                                                               | -    | 15    | 360                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | m\/    |  |
| Load Regulation (Note I) |                         | 1J =+25 °C                                                        | IO = 250mA to 750mA                                                                   | -    | 5.0   | 180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | IIIV   |  |
| Quiescent Current        | lQ                      | TJ =+25 °C                                                        |                                                                                       | -    | 5.2   | 8.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | mA     |  |
| Quiescent Current Change | 410                     | IO = 5mA to 1.0A                                                  |                                                                                       | -    | -     | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | m۸     |  |
| Quescent Current Change  | ΔIQ                     | VI = 21V to 33V                                                   |                                                                                       | -    | -     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |  |
| Output Voltage Drift     | $\Delta V_O / \Delta T$ | IO = 5mA                                                          |                                                                                       | -    | -1    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mV/ °C |  |
| Output Noise Voltage     | VN                      | f = 10Hz to 100KH                                                 | f = 10Hz to 100KHz, TA =+25 °C                                                        |      | 110   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | μV/Vo  |  |
| Ripple Rejection         | RR                      | f = 120Hz<br>VI = 22V to 32V                                      |                                                                                       | 53   | 69    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | dB     |  |
| Dropout Voltage          | VDrop                   | IO = 1A, TJ=+25 °C                                                |                                                                                       | -    | 2     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V      |  |
| Output Resistance        | rO                      | f = 1KHz                                                          |                                                                                       | -    | 22    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mΩ     |  |
| Short Circuit Current    | Isc                     | VI = 35V, T <sub>A</sub> =+25 <sup>o</sup> C                      |                                                                                       | -    | 250   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mA     |  |
| Peak Current             | Iрк                     | TJ =+25 <sup>o</sup> C                                            |                                                                                       | -    | 2.2   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Α      |  |

#### Note:

# **Electrical Characteristics (MC7824)**

(Refer to test circuit ,0°C < TJ < 125°C, IO = 500mA, VI =33V, CI= 0.33µF, CO=0.1µF, unless otherwise specified)

| Baramotor                | Symbol                  | C.                                                                                    | anditions              | Ν    | AC782 | 4     | Unit   |
|--------------------------|-------------------------|---------------------------------------------------------------------------------------|------------------------|------|-------|-------|--------|
| Falameter                | Symbol                  |                                                                                       | Shunons                | Min. | Тур.  | Max.  | Unit   |
|                          |                         | TJ =+25 °C                                                                            | TJ =+25 °C             |      | 24    | 25    |        |
| Output Voltage           | Vo                      | 5.0mA $\leq$ I <sub>O</sub> $\leq$ 1.0A, P <sub>O</sub> $\leq$ 15W<br>VI = 27V to 38V |                        | 22.8 | 24    | 25.25 | V      |
| Line Regulation (Note1)  | Poglino                 | $T_{1} = 125^{\circ}C$                                                                | VI = 27V to 38V        | -    | 17    | 480   | m\/    |
|                          | Regime                  | 1J =+25 C                                                                             | VI = 30V to 36V        | -    | 6     | 240   | IIIV   |
| Load Population (Noto1)  | Pogload                 | $T_{1} = 125^{\circ}C$                                                                | $I_{O} = 5 mA$ to 1.5A | -    | 15    | 480   | m\/    |
| Load Regulation (Note1)  | Regioad                 | 1J =+25 °C                                                                            | IO = 250mA to 750mA    | -    | 5.0   | 240   | IIIV   |
| Quiescent Current        | lQ                      | TJ =+25 °C                                                                            |                        | -    | 5.2   | 8.0   | mA     |
| Quieceent Current Change | ΔlQ                     | IO = 5mA to 1.0A                                                                      |                        | -    | 0.1   | 0.5   | mA     |
| Quiescent Current Change |                         | VI = 27V to 38V                                                                       |                        | -    | 0.5   | 1     |        |
| Output Voltage Drift     | $\Delta V_O / \Delta T$ | IO = 5mA                                                                              |                        | -    | -1.5  | -     | mV/ °C |
| Output Noise Voltage     | VN                      | f = 10Hz to 100KHz, TA =+25 °C                                                        |                        | -    | 60    | -     | μV/Vo  |
| Ripple Rejection         | RR                      | f = 120Hz<br>VI = 28V to 38V                                                          |                        | 50   | 67    | -     | dB     |
| Dropout Voltage          | VDrop                   | IO = 1A, TJ=+25 °C                                                                    |                        | -    | 2     | -     | V      |
| Output Resistance        | rO                      | f = 1KHz                                                                              |                        | -    | 28    | -     | mΩ     |
| Short Circuit Current    | ISC                     | VI = 35V, TA=+2                                                                       | 5 °C                   | -    | 230   | -     | mA     |
| Peak Current             | lрк                     | TJ =+25 °C                                                                            |                        | -    | 2.2   | -     | А      |

#### Note:
## **Electrical Characteristics (MC7805A)**

(Refer to the test circuits. 0°C < TJ < 125°C, I<sub>0</sub> =1A, V I = 10V, C I=0.33µF, C O=0.1µF, unless otherwise specified)

| Parameter               | Symbol                | Co                                       | onditions                                                                                                                | Min. | Тур. | Max. | Unit   |
|-------------------------|-----------------------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|------|------|------|--------|
|                         |                       | TJ =+25 °C                               |                                                                                                                          | 4.9  | 5    | 5.1  |        |
| Output Voltage          | Vo                    | IO = 5mA to 1<br>VI = 7.5V to 2          | $\begin{array}{l} \text{IO} = 5\text{mA to 1A, PO} \leq 15\text{W} \\ \text{VI} = 7.5\text{V to 20}\text{V} \end{array}$ |      | 5    | 5.2  | V      |
|                         |                       | VI = 7.5V to 25V<br>IO = 500mA           |                                                                                                                          | -    | 5    | 50   |        |
| Line Regulation (Note1) | Regline               | $V_{I} = 8V$ to 12V                      | /                                                                                                                        | -    | 3    | 50   | mV     |
|                         |                       | T                                        | VI= 7.3V to 20V                                                                                                          | -    | 5    | 50   | -      |
|                         |                       | 1J=+25 C                                 | VI= 8V to 12V                                                                                                            | -    | 1.5  | 25   |        |
| Load Regulation (Note1) |                       | TJ =+25 °C<br>IO = 5mA to 1.5A           |                                                                                                                          | -    | 9    | 100  |        |
|                         | Regload               | IO = 5mA to 1                            | A                                                                                                                        | -    | 9    | 100  | mV     |
|                         |                       | IO = 250mA to 750mA                      |                                                                                                                          | -    | 4    | 50   |        |
| Quiescent Current       | lQ                    | TJ =+25 °C                               |                                                                                                                          | -    | 5.0  | 6    | mA     |
|                         |                       | IO = 5mA to 1                            | A                                                                                                                        | -    | -    | 0.5  |        |
| Quiescent Current       | ΔlQ                   | VI = 8 V to 25V, IO = 500mA              |                                                                                                                          | -    | -    | 0.8  | mA     |
| Change                  |                       | VI = 7.5V to 2                           | 0V, TJ =+25 <sup>o</sup> C                                                                                               | -    | -    | 0.8  | -      |
| Output Voltage Drift    | $\Delta V / \Delta T$ | lo = 5mA                                 |                                                                                                                          | -    | -0.8 | -    | mV/ °C |
| Output Noise Voltage    | VN                    | f = 10Hz to 10<br>T <sub>A</sub> =+25 °C | 00KHz                                                                                                                    | -    | 10   | -    | μV/Vo  |
| Ripple Rejection        | RR                    | f = 120Hz, IO = 500mA<br>VI = 8V to 18V  |                                                                                                                          | -    | 68   | -    | dB     |
| Dropout Voltage         | VDrop                 | IO = 1A, TJ =+25 °C                      |                                                                                                                          | -    | 2    | -    | V      |
| Output Resistance       | rO                    | f = 1KHz                                 |                                                                                                                          | -    | 17   | -    | mΩ     |
| Short Circuit Current   | ISC                   | VI= 35V, TA =                            | ⊧+25 °C                                                                                                                  | -    | 250  | -    | mA     |
| Peak Current            | lрк                   | TJ= +25 °C                               |                                                                                                                          | -    | 2.2  | -    | A      |

#### Note:

## **Electrical Characteristics (MC7806A)**

(Refer to the test circuits. 0°C < TJ < 125°C, Io =1A, V I =11V, C I=0.33µF, C O=0.1µF, unless otherwise specified)

| Parameter                | Symbol                | Co                                                   | onditions                     | Min. | Тур.           | Max. | Unit   |
|--------------------------|-----------------------|------------------------------------------------------|-------------------------------|------|----------------|------|--------|
|                          |                       | TJ =+25 °C                                           |                               | 5.58 | 6              | 6.12 |        |
| Output Voltage           | Vo                    | $I_O = 5mA$ to 1A, $P_O \le 15W$<br>VI = 8.6V to 21V |                               | 5.76 | 6              | 6.24 | V      |
|                          |                       | VI= 8.6V to 25<br>IO = 500mA                         | VI= 8.6V to 25V<br>IO = 500mA |      | 5              | 60   |        |
| Line Regulation (Note1)  | Regline               | VI= 9V to 13V                                        | /                             | -    | 3              | 60   | mV     |
|                          |                       | T                                                    | VI= 8.3V to 21V               | -    | 5              | 60   |        |
|                          |                       | 1J=+25 C                                             | VI= 9V to 13V                 | -    | 1.5            | 30   |        |
| Load Regulation (Note1)  |                       | $T_J = +25 ^{\circ}C$<br>IO = 5mA to 1.5A            |                               | -    | 9              | 100  |        |
|                          | Regload               | $I_{O} = 5mA$ to 1A                                  | A                             | -    | 4              | 100  | mv     |
|                          |                       | IO = 250mA to 750mA                                  |                               | -    | 5.0            | 50   |        |
| Quiescent Current        | lQ                    | TJ =+25 °C                                           |                               | -    | 4.3            | 6    | mA     |
|                          |                       | $I_{O} = 5mA$ to 1A                                  |                               | -    | -              | 0.5  |        |
| Quiescent Current Change | ΔlQ                   | $V_{I} = 9V$ to 25                                   | V, IO = 500mA                 | -    | - 0.5<br>- 0.8 | 0.8  | mA     |
|                          |                       | VI= 8.5V to 21V, TJ =+25 °C                          |                               | -    | -              | 0.8  |        |
| Output Voltage Drift     | $\Delta V / \Delta T$ | IO = 5mA                                             |                               | -    | -0.8           | -    | mV/ °C |
| Output Noise Voltage     | VN                    | f = 10Hz to 100KHz<br>T <sub>A</sub> =+25 °C         |                               | -    | 10             | -    | μV/Vo  |
| Ripple Rejection         | RR                    | f = 120Hz, IO = 500mA<br>VI = 9V to 19V              |                               | -    | 65             | -    | dB     |
| Dropout Voltage          | VDrop                 | IO = 1A, TJ =+25 °C                                  |                               | -    | 2              | -    | V      |
| Output Resistance        | rO                    | f = 1KHz                                             |                               | -    | 17             | -    | mΩ     |
| Short Circuit Current    | ISC                   | VI= 35V, TA =                                        | =+25 °C                       | -    | 250            | -    | mA     |
| Peak Current             | IPK                   | TJ=+25 °C                                            |                               | -    | 2.2            | -    | A      |

#### Note:

## **Electrical Characteristics (MC7808A)**

(Refer to the test circuits.  $0^{\circ}C < T_J < 125^{\circ}C$ ,  $I_0 = 1A$ ,  $V_I = 14V$ ,  $C_I = 0.33\mu$ F,  $C_O = 0.1\mu$ F, unless otherwise specified)

| Parameter                | Symbol                | Co                                                                                             | onditions              | Min. | Тур. | Max. | Unit                                                                                                       |
|--------------------------|-----------------------|------------------------------------------------------------------------------------------------|------------------------|------|------|------|------------------------------------------------------------------------------------------------------------|
|                          |                       | TJ =+25 °C                                                                                     |                        | 7.84 | 8    | 8.16 |                                                                                                            |
| Output Voltage           | Vo                    | IO = 5mA  to  1<br>V <sub>I</sub> = 10.6V to                                                   | A, PO ≤15W<br>23V      | 7.7  | 8    | 8.3  |                                                                                                            |
|                          |                       | VI= 10.6V to 2<br>IO = 500mA                                                                   | 25V                    | -    | 6    | 80   |                                                                                                            |
| Line Regulation (Note1)  | Regline               | VI= 11V to 17                                                                                  | 'V                     | -    | 3    | 80   | mV                                                                                                         |
|                          |                       | T                                                                                              | VI= 10.4V to 23V       | -    | 6    | 80   | Ī                                                                                                          |
|                          |                       | 1J=+25°C                                                                                       | VI= 11V to 17V         | -    | 2    | 40   |                                                                                                            |
| Load Regulation (Note1)  |                       | T <sub>J</sub> =+25 °C<br>IO = 5mA to 1.5A                                                     |                        | -    | 12   | 100  | 100                                                                                                        |
| <b>.</b> . ,             | Regload               | IO         Small to Horizon           IO         5mA to 1A           IO         250mA to 750mA | 12                     | 100  | mV   |      |                                                                                                            |
|                          |                       | IO = 250mA to 750mA                                                                            |                        | -    | 5    | 50   |                                                                                                            |
| Quiescent Current        | lQ                    | TJ =+25 °C                                                                                     |                        | -    | 5.0  | 6    | mA                                                                                                         |
|                          |                       | IO = 5mA to $1A$                                                                               | A                      | -    | -    | 0.5  |                                                                                                            |
| Quiescent Current Change | ΔlQ                   | VI = 11V to 2                                                                                  | 5V, I <u>O</u> = 500mA | -    | -    | 0.8  | 00     mV       00     mV       0     mA       5     mA       8     mA       8     mV/°C       -     μV/Vo |
|                          |                       | VI= 10.6V to 2                                                                                 | 23V, TJ =+25 °C        | -    | -    | 0.8  | Ť                                                                                                          |
| Output Voltage Drift     | $\Delta V / \Delta T$ | IO = 5mA                                                                                       |                        | -    | -0.8 | -    | mV/ °C                                                                                                     |
| Output Noise Voltage     | VN                    | f = 10Hz to 100KHz<br>T <sub>A</sub> =+25 °C                                                   |                        | -    | 10   | -    | μV/Vo                                                                                                      |
| Ripple Rejection         | RR                    | f = 120Hz, IO = 500mA<br>VI = 11.5V to 21.5V                                                   |                        | -    | 62   | -    | dB                                                                                                         |
| Dropout Voltage          | VDrop                 | IO = 1A, TJ =+25 °C                                                                            |                        | -    | 2    | -    | V                                                                                                          |
| Output Resistance        | rO                    | f = 1KHz                                                                                       |                        | -    | 18   | -    | mΩ                                                                                                         |
| Short Circuit Current    | ISC                   | VI= 35V, TA =                                                                                  | =+25 °C                | -    | 250  | -    | mA                                                                                                         |
| Peak Current             | lрк                   | TJ=+25 °C                                                                                      |                        | -    | 2.2  | -    | А                                                                                                          |

#### Note:

## **Electrical Characteristics (MC7809A)**

(Refer to the test circuits. 0°C < TJ < 125°C, I<sub>0</sub> =1A, V I = 15V, C I=0.33µF, C O=0.1µF, unless otherwise specified)

| Parameter                | Symbol                | Co                                                                                            | onditions                  | Min. | Тур. | Max. | Unit                                                              |
|--------------------------|-----------------------|-----------------------------------------------------------------------------------------------|----------------------------|------|------|------|-------------------------------------------------------------------|
|                          |                       | TJ =+25°C                                                                                     |                            | 8.82 | 9.0  | 9.18 |                                                                   |
| Output Voltage           | Vo                    | IO = 5mA  to  1<br>V <sub>I</sub> = 11.2V to 2                                                | A, PO≤15W<br>24V           | 8.65 | 9.0  | 9.35 | V                                                                 |
|                          |                       | VI= 11.7V to 2<br>IO = 500mA                                                                  | 25V                        | -    | 6    | 90   |                                                                   |
| Line Regulation (Note1)  | Regline               | VI= 12.5V to 1                                                                                | 19V                        | -    | 4    | 45   | mV                                                                |
|                          |                       | T + -+25°C                                                                                    | VI= 11.5V to 24V           | -    | 6    | 90   | V<br>mV<br>mA<br>mA<br>mV/°C<br>μV/Vo<br>dB                       |
|                          |                       | 15 = +25 C                                                                                    | VI= 12.5V to 19V           | -    | 2    | 45   |                                                                   |
| Load Regulation (Note1)  |                       | $T_J = +25^{\circ}C$<br>IO = 5mA to 1.0A                                                      |                            | -    | 12   | 100  |                                                                   |
|                          | Regload               | Dead $IO = 5mA \text{ to } 1.0A$<br>IO = 5mA  to  1.0A<br>IO = 250mA  to  750mA<br>T = +25 °C |                            |      | 12   | 100  | mv                                                                |
|                          |                       | IO = 250mA to 750mA                                                                           |                            | -    | 5    | 50   |                                                                   |
| Quiescent Current        | lQ                    | T <sub>J</sub> =+25 °C                                                                        |                            | -    | 5.0  | 6.0  | mA                                                                |
|                          |                       | VI = 11.7V to 25V, TJ=+25 °                                                                   | 25V, TJ=+25 <sup>°</sup> C | -    | -    | 0.8  |                                                                   |
| Quiescent Current Change | $\Delta I_Q$          | VI = 11.7 V to 25V, IJ = +25 C                                                                |                            | -    | -    | 0.8  | mA                                                                |
|                          |                       | IO = 5mA to 1                                                                                 | .0A                        | -    | -    | 0.5  | V<br>mV<br>mV<br>mA<br>mV/°C<br>μV/Vo<br>dB<br>V<br>mΩ<br>mA<br>A |
| Output Voltage Drift     | $\Delta V / \Delta T$ | IO = 5mA                                                                                      |                            | -    | -1.0 | -    | mV/ °C                                                            |
| Output Noise Voltage     | VN                    | f = 10Hz to 100KHz<br>T <sub>A</sub> =+25 °C                                                  |                            | -    | 10   | -    | μV/Vo                                                             |
| Ripple Rejection         | RR                    | f = 120Hz, IO = 500mA<br>VI = 12V to 22V                                                      |                            | -    | 62   | -    | dB                                                                |
| Dropout Voltage          | VDrop                 | IO = 1A, TJ =+25 °C                                                                           |                            | -    | 2.0  | -    | V                                                                 |
| Output Resistance        | rO                    | f = 1KHz                                                                                      |                            | -    | 17   | -    | mΩ                                                                |
| Short Circuit Current    | ISC                   | VI= 35V, TA =                                                                                 | +25 <sup>°</sup> C         | -    | 250  | -    | mA                                                                |
| Peak Current             | IPK                   | TJ=+25°C                                                                                      |                            | -    | 2.2  | -    | А                                                                 |

#### Note:

## **Electrical Characteristics (MC7810A)**

(Refer to the test circuits. 0°C < TJ < 125°C, I<sub>0</sub> =1A, V I = 16V, C I=0.33µF, C O=0.1µF, unless otherwise specified)

| Parameter                | Symbol                | Co                                         | onditions                                    | Min. | Тур. | Max.             | Unit         |                                                                               |
|--------------------------|-----------------------|--------------------------------------------|----------------------------------------------|------|------|------------------|--------------|-------------------------------------------------------------------------------|
|                          |                       | TJ =+25 <sup>°</sup> C                     |                                              | 9.8  | 10   | 10.2             |              |                                                                               |
| Output Voltage           | Vo                    | IO = 5mA to 7<br>VI =12.8V to              | IA, PO≤15W<br>25V                            | 9.6  | 10   | 10.4             | V            |                                                                               |
|                          |                       | VI= 12.8V to<br>IO = 500mA                 | 26V                                          | -    | 8    | 100              |              |                                                                               |
| Line Regulation (Note1)  | Regline               | VI= 13V to 20                              | V                                            | -    | 4    | 50               | mV           |                                                                               |
|                          |                       | T 25 °C                                    | VI= 12.5V to 25V                             | -    | 8    | 100              | - mV<br>- mA |                                                                               |
|                          |                       | 1J=+25 C                                   | VI= 13V to 20V                               | -    | 3    | 50               |              |                                                                               |
| Load Regulation (Note1)  |                       | T <sub>J</sub> =+25 °C<br>IO = 5mA to 1.5A |                                              | -    | 12   | 100              |              |                                                                               |
| ,                        | Regload               | $I_{O} = 5mA$ to 2                         | I.0A                                         | -    | 12   | 100<br>50<br>6.0 | mV           |                                                                               |
|                          |                       | IO = 250mA to 750mA                        |                                              | -    | 5    | 50               |              |                                                                               |
| Quiescent Current        | lQ                    | TJ =+25 °C                                 |                                              | -    | 5.0  | 6.0              | mA           |                                                                               |
|                          |                       |                                            | $V_{I} = 13V$ to 26V, $T_{J} = +25^{\circ}C$ |      | -    | -                | 0.5          | 50           6.0         mA           0.5         mA           0.8         mA |
| Quiescent Current Change | ΔlQ                   | VI = 12.8V to                              | 25V, IO = 500mA                              | -    | -    | 0.8              |              |                                                                               |
|                          |                       | IO = 5mA to 1.0A                           |                                              | -    | -    | 0.5              |              |                                                                               |
| Output Voltage Drift     | $\Delta V / \Delta T$ | IO = 5mA                                   |                                              | -    | -1.0 | -                | mV/ °C       |                                                                               |
| Output Noise Voltage     | VN                    | f = 10Hz to 1<br>T <sub>A</sub> =+25 °C    | 00KHz                                        | -    | 10   | -                | μV/Vo        |                                                                               |
| Ripple Rejection         | RR                    | f = 120Hz, IO = 500mA<br>VI = 14V to 24V   |                                              | -    | 62   | -                | dB           |                                                                               |
| Dropout Voltage          | VDrop                 | IO = 1A, TJ =+25°C                         |                                              | -    | 2.0  | -                | V            |                                                                               |
| Output Resistance        | rO                    | f = 1KHz                                   |                                              | -    | 17   | -                | mΩ           |                                                                               |
| Short Circuit Current    | ISC                   | VI= 35V, TA =                              | =+25 <sup>°</sup> C                          | -    | 250  | -                | mA           |                                                                               |
| Peak Current             | IPK                   | TJ=+25 °C                                  |                                              | -    | 2.2  | -                | A            |                                                                               |

#### Note:

## **Electrical Characteristics (MC7812A)**

(Refer to the test circuits. 0°C < TJ < 125°C, Io =1A, V I = 19V, C I=0.33µF, C O=0.1µF, unless otherwise specified)

| Parameter                | Symbol                | Co                                                   | onditions                      | Min.  | Тур. | Max.  | Unit                                                                    |
|--------------------------|-----------------------|------------------------------------------------------|--------------------------------|-------|------|-------|-------------------------------------------------------------------------|
|                          |                       | TJ =+25 °C                                           |                                | 11.75 | 12   | 12.25 |                                                                         |
| Output Voltage           | Vo                    | IO = 5mA to 1<br>VI = 14.8V to                       | IA, PO ≤15W<br>27V             | 11.5  | 12   | 12.5  | V                                                                       |
|                          |                       | VI= 14.8V to<br>IO = 500mA                           | VI= 14.8V to 30V<br>IO = 500mA |       | 10   | 120   |                                                                         |
| Line Regulation (Note1)  | Regline               | VI= 16V to 22                                        | 2V                             | -     | 4    | 120   | mV                                                                      |
|                          |                       | T 25 °C                                              | VI= 14.5V to 27V               | -     | 10   | 120   | mV<br>mA<br>mA<br>mA<br>mV/°C                                           |
|                          |                       | 1J=+25 C                                             | VI= 16V to 22V                 | -     | 3    | 60    |                                                                         |
| Load Regulation (Note1)  |                       | T <sub>J</sub> =+25 °C<br>IO = 5mA to 1.5A           |                                | -     | 12   | 100   |                                                                         |
|                          | Regload               | IO = 5mA to 1                                        | 1.0A                           | -     | 12   | 100   | mV                                                                      |
|                          |                       | IO = 250mA to 750mA                                  |                                | -     | 5    | 50    | ]                                                                       |
| Quiescent Current        | lQ                    | T <sub>J</sub> =+25 <sup>°</sup> C                   |                                | -     | 5.1  | 6.0   | mA                                                                      |
|                          |                       | VI = 15V to 30V, TJ=+25 °C                           | -                              |       | 0.8  |       |                                                                         |
| Quiescent Current Change | ΔlQ                   | VI = 14V to 2                                        | 7V, IO = 500mA                 | -     |      | 0.8   | $ \begin{array}{c c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$ |
|                          |                       | IO = 5mA to 1.0A                                     |                                | -     |      | 0.5   |                                                                         |
| Output Voltage Drift     | $\Delta V / \Delta T$ | IO = 5mA                                             |                                | -     | -1.0 | -     | mV/°C                                                                   |
| Output Noise Voltage     | VN                    | f = 10Hz to 10<br>T <sub>A</sub> =+25 <sup>°</sup> C | 00KHz                          | -     | 10   | -     | μV/Vo                                                                   |
| Ripple Rejection         | RR                    | f = 120Hz, IO = 500mA<br>VI = 14V to 24V             |                                | -     | 60   | -     | dB                                                                      |
| Dropout Voltage          | VDrop                 | IO = 1A, TJ =+25°C                                   |                                | -     | 2.0  | -     | V                                                                       |
| Output Resistance        | rO                    | f = 1KHz                                             |                                | -     | 18   | -     | mΩ                                                                      |
| Short Circuit Current    | ISC                   | VI= 35V, TA =                                        | =+25 <sup>°</sup> C            | -     | 250  | -     | mA                                                                      |
| Peak Current             | IPK                   | Tj=+25 °C                                            |                                | -     | 2.2  | -     | Α                                                                       |

#### Note:

## **Electrical Characteristics (MC7815A)**

(Refer to the test circuits. 0°C < TJ < 125°C, Io =1A, V I =23V, C I=0.33µF, C O=0.1µF, unless otherwise specified)

| Parameter                | Symbol                | Co                                           | onditions           | Min. | Тур. | Max. | Unit                                                                                                                          |
|--------------------------|-----------------------|----------------------------------------------|---------------------|------|------|------|-------------------------------------------------------------------------------------------------------------------------------|
|                          |                       | TJ =+25 °C                                   |                     | 14.7 | 15   | 15.3 |                                                                                                                               |
| Output Voltage           | Vo                    | IO = 5mA to 7<br>VI = 17.7V to               | 1A, Po ≤15W<br>30V  | 14.4 | 15   | 15.6 | V                                                                                                                             |
|                          |                       | VI= 17.9V to 30V<br>IO = 500mA               |                     | -    | 10   | 150  |                                                                                                                               |
| Line Regulation (Note1)  | Regline               | VI= 20V to 26                                | 3V                  | -    | 5    | 150  | mV                                                                                                                            |
|                          |                       | T 25°C                                       | VI= 17.5V to 30V    | -    | 11   | 150  | Unit           V           mV           mV           mA           mV/°C           μV/Vo           dB           V           mΩ |
|                          |                       | 1J=+25 C                                     | VI= 20V to 26V      | -    | 3    | 75   |                                                                                                                               |
| Load Regulation (Note1)  |                       | T <sub>J</sub> =+25 °C<br>IO = 5mA to 1.5A   |                     | -    | 12   | 100  |                                                                                                                               |
|                          | Regload               | IO = 5mA to 2                                | 1.0A                | -    | 12   | 100  | mV                                                                                                                            |
|                          |                       | IO = 250mA to 750mA                          |                     | -    | 5    | 50   |                                                                                                                               |
| Quiescent Current        | lq                    | TJ =+25 °C                                   |                     | -    | 5.2  | 6.0  | mA                                                                                                                            |
|                          |                       | VI = 17.5V to                                | 30V, TJ =+25 °C     | -    | -    | 0.8  |                                                                                                                               |
| Quiescent Current Change | ΔlQ                   | VI = 17.5V to                                | 30V, IO = 500mA     | -    | -    | 0.8  | mA                                                                                                                            |
|                          |                       | IO = 5mA to 1.0A                             |                     | -    | -    | 0.5  |                                                                                                                               |
| Output Voltage Drift     | $\Delta V / \Delta T$ | $I_{O} = 5mA$                                |                     | -    | -1.0 | -    | mV/°C                                                                                                                         |
| Output Noise Voltage     | VN                    | f = 10Hz to 10<br>T <sub>A</sub> =+25 °C     | 00KHz               | -    | 10   | -    | μV/Vo                                                                                                                         |
| Ripple Rejection         | RR                    | f = 120Hz, IO = 500mA<br>VI = 18.5V to 28.5V |                     | -    | 58   | -    | dB                                                                                                                            |
| Dropout Voltage          | VDrop                 | IO = 1A, TJ =+25 °C                          |                     | -    | 2.0  | -    | V                                                                                                                             |
| Output Resistance        | rO                    | f = 1KHz                                     |                     | -    | 19   | -    | mΩ                                                                                                                            |
| Short Circuit Current    | ISC                   | VI= 35V, TA =                                | =+25 <sup>°</sup> C | -    | 250  | -    | mA                                                                                                                            |
| Peak Current             | IPK                   | Tj=+25°℃                                     |                     | -    | 2.2  | -    | А                                                                                                                             |

#### Note:

## **Electrical Characteristics (MC7818A)**

(Refer to the test circuits. 0°C < TJ < 125°C, I<sub>0</sub> =1A, V I = 27V, C I=0.33µF, C O=0.1µF, unless otherwise specified)

| Parameter                | Symbol                | Co                                                   | onditions                 | Min. | Тур. | Max.                                                                                                                                                                                                                                                     | Unit   |
|--------------------------|-----------------------|------------------------------------------------------|---------------------------|------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
|                          |                       | TJ =+25 °C                                           | TJ =+25 °C                |      | 18   | 18.36                                                                                                                                                                                                                                                    |        |
| Output Voltage           | Vo                    | IO = 5mA to 1<br>VI = 21V to 3                       | IA, PO ≤15W<br>3V         | 17.3 | 18   | Max.         18.36         18.7         180         180         180         180         180         180         180         180         180         0         100         50         6.0         0.8         0.5         -         -         -         - | V      |
|                          |                       | VI= 21V to 33<br>IO = 500mA                          | 3V                        | -    | 15   | 180                                                                                                                                                                                                                                                      |        |
| Line Regulation (Note1)  | Regline               | VI= 21V to 33                                        | 3V                        | -    | 5    | 180                                                                                                                                                                                                                                                      | mV     |
|                          |                       | T 25 °C                                              | VI= 20.6V to 33V          | -    | 15   | 180                                                                                                                                                                                                                                                      |        |
|                          |                       | 1J =+25 C                                            | VI= 24V to 30V            | -    | 5    | 90<br>100<br>100<br>50<br>6.0                                                                                                                                                                                                                            |        |
| Load Regulation (Note1)  |                       | TJ =+25°C<br>IO = 5mA to 1.5A                        |                           | -    | 15   | 100                                                                                                                                                                                                                                                      |        |
|                          | Regload               | $I_{O} = 5mA$ to 1                                   | I.0A                      | -    | 15   | 100                                                                                                                                                                                                                                                      | mV     |
|                          |                       | IO = 250mA to 750mA                                  |                           | -    | 7    | 50                                                                                                                                                                                                                                                       |        |
| Quiescent Current        | lQ                    | TJ =+25 °C                                           |                           | -    | 5.2  | 6.0                                                                                                                                                                                                                                                      | mA     |
|                          |                       | VI = 21V to 3                                        | 3V, TJ=+25 <sup>°</sup> C | -    | -    | 0.8                                                                                                                                                                                                                                                      |        |
| Quiescent Current Change | $\Delta I_Q$          | $V_{I} = 21V \text{ to } 32$                         | 3V, IO = 500mA            | -    | -    | SU           6.0         mA           0.8         mA           0.8         mA                                                                                                                                                                            | mA     |
|                          |                       | IO = 5mA to 1.0A                                     |                           | -    | -    | 0.5                                                                                                                                                                                                                                                      |        |
| Output Voltage Drift     | $\Delta V / \Delta T$ | IO = 5mA                                             |                           | -    | -1.0 | -                                                                                                                                                                                                                                                        | mV/ °C |
| Output Noise Voltage     | VN                    | f = 10Hz to 10<br>T <sub>A</sub> =+25 <sup>°</sup> C | 00KHz                     | -    | 10   | -                                                                                                                                                                                                                                                        | μV/Vo  |
| Ripple Rejection         | RR                    | f = 120Hz, IO = 500mA<br>VI = 22V to 32V             |                           | -    | 57   | -                                                                                                                                                                                                                                                        | dB     |
| Dropout Voltage          | VDrop                 | IO = 1A, TJ =+25°C                                   |                           | -    | 2.0  | -                                                                                                                                                                                                                                                        | V      |
| Output Resistance        | rO                    | f = 1KHz                                             |                           | -    | 19   | -                                                                                                                                                                                                                                                        | mΩ     |
| Short Circuit Current    | ISC                   | VI= 35V, TA =                                        | =+25 <sup>°</sup> C       | -    | 250  | -                                                                                                                                                                                                                                                        | mA     |
| Peak Current             | IPK                   | Tj=+25 °C                                            |                           | -    | 2.2  | -                                                                                                                                                                                                                                                        | A      |

#### Note:

## **Electrical Characteristics (MC7824A)**

(Refer to the test circuits. 0°C < TJ < 125°C, I<sub>0</sub> =1A, V I = 33V, C I=0.33µF, C O=0.1µF, unless otherwise specified)

| Parameter                | Symbol                | Co                                             | onditions           | Min.                                                                                        | Тур. | Max. | Unit                          |
|--------------------------|-----------------------|------------------------------------------------|---------------------|---------------------------------------------------------------------------------------------|------|------|-------------------------------|
|                          |                       | TJ =+25 °C                                     |                     | 23.5                                                                                        | 24   | 24.5 |                               |
| Output Voltage           | Vo                    | IO = 5mA  to  7<br>$V_I = 27.3V \text{ to } 7$ | 1A, PO ≤15W<br>38V  | 23                                                                                          | 24   | 25   | V                             |
|                          |                       | VI= 27V to 38<br>IO = 500mA                    | 3V                  | -                                                                                           | 18   | 240  |                               |
| Line Regulation (Note1)  | Regline               | VI= 21V to 33                                  | 3V                  | -                                                                                           | 6    | 240  | mV                            |
|                          |                       | T1 = +25 °C                                    | VI= 26.7V to 38V    | -                                                                                           | 18   | 240  | mV<br>mV<br>mA<br>mA<br>mV/°C |
|                          |                       | 1J = <del>7</del> 25 C                         | VI= 30V to 36V      | -                                                                                           | 6    | 120  |                               |
| Load Regulation (Note1)  |                       | TJ =+25 °C<br>IQ = 5mA to 1.5A                 |                     | -                                                                                           | 15   | 100  |                               |
| <b>3 (</b> <i>)</i>      | Regload               | $I_{O} = 5mA$ to $2$                           | 1.0A                | -                                                                                           | 15   | 100  | mV                            |
|                          |                       | IO = 250mA to 750mA                            |                     | -                                                                                           | 7    | 50   |                               |
| Quiescent Current        | lQ                    | TJ =+25 °C                                     |                     | -                                                                                           | 5.2  | 6.0  | mA                            |
|                          |                       | VI = 27.3V to                                  | 38V, TJ =+25 °C     | -                                                                                           | -    | 0.8  |                               |
| Quiescent Current Change | ΔlQ                   | VI = 27.3V to                                  | 38V, IO = 500mA     | -         -         0.0           -         -         0.8           -         -         0.8 | 0.8  | mA   |                               |
|                          |                       | IO = 5mA to 1.0A                               |                     | -                                                                                           | -    | 0.5  |                               |
| Output Voltage Drift     | $\Delta V / \Delta T$ | IO = 5mA                                       |                     | -                                                                                           | -1.5 | -    | mV/ °C                        |
| Output Noise Voltage     | VN                    | f = 10Hz  to  1<br>$T_A = 25 \degree C$        | 00KHz               | -                                                                                           | 10   | -    | μV/Vo                         |
| Ripple Rejection         | RR                    | f = 120Hz, IO = 500mA<br>VI = 28V to 38V       |                     | -                                                                                           | 54   | -    | dB                            |
| Dropout Voltage          | VDrop                 | IO = 1A, TJ =+25 °C                            |                     | -                                                                                           | 2.0  | -    | V                             |
| Output Resistance        | rO                    | f = 1KHz                                       |                     | -                                                                                           | 20   | -    | mΩ                            |
| Short Circuit Current    | ISC                   | VI= 35V, TA =                                  | =+25 <sup>°</sup> C | -                                                                                           | 250  | -    | mA                            |
| Peak Current             | IPK                   | Tj=+25 °C                                      |                     | -                                                                                           | 2.2  | -    | A                             |

#### Note:





Figure 1. Quiescent Current



Figure 3. Output Voltage



Figure 2. Peak Output Current



Figure 4. Quiescent Current

## **Typical Applications**















Figure 8. Fixed Output Regulator



Figure 9. Constant Current Regulator

#### Notes:

- (1) To specify an output voltage. substitute voltage value for "XX." A common ground is required between the input and the Output voltage. The input voltage must remain typically 2.0V above the output voltage even during the low point on the input ripple voltage.
- (2) CI is required if regulator is located an appreciable distance from power Supply filter.
- (3) Co improves stability and transient response.



I<sub>RI</sub>≥5IQ

 $V_O = V_{XX}(1+R_2/R_1) + I_QR_2 \label{eq:VO}$  Figure 10. Circuit for Increasing Output Voltage



$$\label{eq:VO} \begin{split} & I_{RI} \geq 5 \ I_Q \\ & V_O = V_{XX}(1+R_2/R_1) + I_QR_2 \\ & \mbox{Figure 11. Adjustable Output Regulator (7 to 30V)} \end{split}$$



Figure 12. High Current Voltage Regulator



Figure 13. High Output Current with Short Circuit Protection



Figure 14. Tracking Voltage Regulator



Figure 15. Split Power Supply ( ±15V-1A)



Figure 16. Negative Output Voltage Circuit



Figure 17. Switching Regulator

## **Mechanical Dimensions**

## Package





**TO-220** 

## Mechancal Dimensions (Continued)

## Package



**D-PAK** 

## **Ordering Information**

| Product Number | Output Voltage Tolerance | Package | Operating Temperature |
|----------------|--------------------------|---------|-----------------------|
| LM7805CT       | ±4%                      | TO-220  | 0 ~ + 125°C           |

| Product Number | Output Voltage Tolerance | Package | Operating Temperature |
|----------------|--------------------------|---------|-----------------------|
| MC7805CT       |                          |         |                       |
| MC7806CT       |                          |         |                       |
| MC7808CT       |                          |         |                       |
| MC7809CT       |                          |         |                       |
| MC7810CT       |                          | TO-220  |                       |
| MC7812CT       |                          |         |                       |
| MC7815CT       |                          |         |                       |
| MC7818CT       | <u>+</u> 4%              |         |                       |
| MC7824CT       |                          |         |                       |
| MC7805CDT      |                          |         |                       |
| MC7806CDT      |                          |         |                       |
| MC7808CDT      |                          |         | 0 - + 125°C           |
| MC7809CDT      |                          | BTAR    | 0 0 1 120 0           |
| MC7810CDT      |                          |         |                       |
| MC7812CDT      |                          |         |                       |
| MC7805ACT      |                          |         |                       |
| MC7806ACT      |                          |         |                       |
| MC7808ACT      |                          |         |                       |
| MC7809ACT      |                          |         |                       |
| MC7810ACT      | ±2%                      | TO-220  |                       |
| MC7812ACT      |                          |         |                       |
| MC7815ACT      | ]                        |         |                       |
| MC7818ACT      |                          |         |                       |
| MC7824ACT      |                          |         |                       |

#### DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

#### LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com

September 2001



## LM79XX Series 3-Terminal Negative Regulators General Description

The LM79XX series of 3-terminal regulators is available with fixed output voltages of -5V, -12V, and -15V. These devices need only one external component—a compensation capacitor at the output. The LM79XX series is packaged in the TO-220 power package and is capable of supplying 1.5A of output current.

These regulators employ internal current limiting safe area protection and thermal shutdown for protection against virtually all overload conditions.

Low ground pin current of the LM79XX series allows output voltage to be easily boosted above the preset value with a

**Connection Diagrams** 



Front View Order Number LM7905CT, LM7912CT or LM7915CT See NS Package Number TO3B

resistor divider. The low quiescent current drain of these devices with a specified maximum change with line and load ensures good regulation in the voltage boosted mode.

For applications requiring other voltages, see LM137 datasheet.

#### **Features**

- Thermal, short circuit and safe area protection
- High ripple rejection
- 1.5A output current
- 4% tolerance on preset output voltage

## Typical Applications



\*Required if regulator is separated from filter capacitor by more than 3". For value given, capacitor must be solid tantalum. 25µF aluminum electrolytic may be substituted.

<sup>†</sup>Required for stability. For value given, capacitor must be solid tantalum. 25µF aluminum electrolytic may be substituted. Values given may be increased without limit.

For output capacitance in excess of  $100\mu$ F, a high current diode from input to output (1N4001, etc.) will protect the regulator from momentary input shorts.

## Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

| Input-Output | Differential |
|--------------|--------------|
|--------------|--------------|

| $(V_o = -5V)$                         | 25V                |
|---------------------------------------|--------------------|
| $(V_o = -12V \text{ and } -15V)$      | 30V                |
| Power Dissipation (Note 2)            | Internally Limited |
| Operating Junction Temperature Range  | 0°C to +125°C      |
| Storage Temperature Range             | –65°C to +150°C    |
| Lead Temperature (Soldering, 10 sec.) | 230°C              |

## Input Voltage

| put voltage                      |      |
|----------------------------------|------|
| $(V_{o} = -5V)$                  | –25V |
| $(V_o = -12V \text{ and } -15V)$ | -35V |

## **Electrical Characteristics**

Conditions unless otherwise noted:  $I_{OUT}$  = 500mA,  $C_{IN}$  = 2.2 $\mu$ F,  $C_{OUT}$  = 1 $\mu$ F, 0°C  $\leq$  T<sub>J</sub>  $\leq$  +125°C, Power Dissipation  $\leq$  1.5W.

| Part Number       |                                            |                                                                  | Units |                           |       |    |
|-------------------|--------------------------------------------|------------------------------------------------------------------|-------|---------------------------|-------|----|
|                   | Output V                                   | oltage                                                           |       | –5V                       |       |    |
|                   | Input Voltage (unless otherwise specified) |                                                                  |       |                           |       |    |
| Symbol            | Parameter                                  | Conditions                                                       | Min   | Тур                       | Max   |    |
| Vo                | Output Voltage                             | $T_{\rm J} = 25^{\circ}C$                                        | -4.8  | -5.0                      | -5.2  | V  |
|                   |                                            | $5mA \le I_{OUT} \le 1A$ ,                                       | -4.75 |                           | -5.25 | V  |
|                   |                                            | P ≤ 15W                                                          |       | $(-20 \le V_{IN} \le -7)$ | )     | V  |
| $\Delta V_{O}$    | Line Regulation                            | $T_{\rm J} = 25^{\circ}$ C, (Note 3)                             |       | 8                         | 50    | mV |
|                   |                                            |                                                                  |       | $(-25 \le V_{IN} \le -7)$ | )     | V  |
|                   |                                            |                                                                  |       | 2                         | 15    | mV |
|                   |                                            |                                                                  |       | $(-12 \le V_{IN} \le -8)$ | )     | V  |
| $\Delta V_{O}$    | Load Regulation                            | $T_{J} = 25^{\circ}C$ , (Note 3)                                 |       |                           |       |    |
|                   |                                            | $5mA \le I_{OUT} \le 1.5A$                                       |       | 15                        | 100   | mV |
|                   |                                            | $250 \text{mA} \le I_{OUT} \le 750 \text{mA}$                    |       | 5                         | 50    | mV |
| IQ                | Quiescent Current                          | $T_{\rm J} = 25^{\circ}C$                                        |       | 1                         | 2     | mA |
| $\Delta I_Q$      | Quiescent Current                          | With Line                                                        |       |                           | 0.5   | mA |
|                   | Change                                     |                                                                  |       | $(-25 \le V_{IN} \le -7)$ | )     | V  |
|                   |                                            | With Load, $5mA \le I_{OUT} \le 1A$                              |       |                           | 0.5   | mA |
| V <sub>n</sub>    | Output Noise Voltage                       | $T_A = 25^{\circ}C$ , $10Hz \le f \le 100Hz$                     |       | 125                       |       | μV |
|                   | Ripple Rejection                           | f = 120Hz                                                        | 54    | 66                        |       | dB |
|                   |                                            |                                                                  |       | $(-18 \le V_{IN} \le -8)$ | )     | V  |
|                   | Dropout Voltage                            | $T_{\rm J} = 25^{\circ} {\rm C}, \ {\rm I}_{\rm OUT} = 1{\rm A}$ |       | 1.1                       |       | V  |
| I <sub>OMAX</sub> | Peak Output Current                        | $T_{\rm J} = 25^{\circ}C$                                        |       | 2.2                       |       | A  |
|                   | Average Temperature                        | I <sub>OUT</sub> = 5mA, 0.4                                      |       |                           | mV/°C |    |
|                   | Coefficient of                             | $0 \text{ C} \leq \text{T}_{\text{J}} \leq 100^{\circ}\text{C}$  |       |                           |       |    |
|                   | Output Voltage                             |                                                                  |       |                           |       |    |

#### **Electrical Characteristics**

Conditions unless otherwise noted:  $I_{OUT}$  = 500mA,  $C_{IN}$  = 2.2µF,  $C_{OUT}$  = 1µF, 0°C ≤  $T_J$  ≤ +125°C, Power Dissipation ≤ 1.5W.

| Part Number    |                       | LM7912C                          |           |                        | LM7915C |        |                          | Units  |    |
|----------------|-----------------------|----------------------------------|-----------|------------------------|---------|--------|--------------------------|--------|----|
| Output Voltage |                       |                                  | -12V      |                        | –15V    |        |                          |        |    |
|                | Input Voltage (unless | otherwise specified)             | –19V –23V |                        |         |        |                          |        |    |
| Symbol         | Parameter             | Conditions                       | Min       | Тур                    | Max     | Min    | Тур                      | Max    |    |
| Vo             | Output Voltage        | $T_J = 25^{\circ}C$              | -11.5     | -12.0                  | -12.5   | -14.4  | -15.0                    | -15.6  | V  |
|                |                       | $5mA \le I_{OUT} \le 1A$ ,       | -11.4     |                        | -12.6   | -14.25 |                          | -15.75 | V  |
|                |                       | P ≤ 15W                          | (-27      | $\leq V_{IN} \leq$     | –14.5)  | (-30   | $\leq V_{IN} \leq$       | –17.5) | V  |
| $\Delta V_{O}$ | Line Regulation       | $T_{J} = 25^{\circ}C$ , (Note 3) |           | 5                      | 80      |        | 5                        | 100    | mV |
|                |                       |                                  | (-30      | $\leq V_{IN} \leq$     | –14.5)  | (-30   | $\leq V_{IN} \leq \cdot$ | –17.5) | V  |
|                |                       |                                  |           | 3                      | 30      |        | 3                        | 50     | mV |
|                |                       |                                  | (-22      | $\leq V_{\rm IN} \leq$ | –16)    | (–26   | $S \leq V_{IN} \leq$     | ≦–20)  | V  |
| $\Delta V_{O}$ | Load Regulation       | $T_{J} = 25^{\circ}C$ , (Note 3) |           |                        |         |        |                          |        |    |
|                |                       |                                  |           |                        |         |        |                          |        |    |

## Electrical Characteristics (Continued)

| Conditio          | ns unless otherwise noted: | $I_{OUT} = 500$ mA, $C_{IN} = 2.2\mu$ F, $C_{OUT}$              | - = 1µF,                     | $0^{\circ}C \leq T$    | _ ≤ +12                      | 5°C, Pow | er Dissip             | pation $\leq 1$ | 1.5W. |
|-------------------|----------------------------|-----------------------------------------------------------------|------------------------------|------------------------|------------------------------|----------|-----------------------|-----------------|-------|
|                   | Part Number                |                                                                 |                              | LM7912C                |                              |          | LM7915C               |                 |       |
|                   | Output Voltage             |                                                                 |                              | -12V                   |                              |          | –15V                  |                 | 1     |
|                   | Input Voltage (unless o    | therwise specified)                                             |                              | –19V                   |                              |          | –23V                  |                 | 1     |
| Symbol            | Parameter                  | Conditions                                                      | Min                          | Тур                    | Max                          | Min      | Тур                   | Max             | ]     |
|                   |                            | $5mA \le I_{OUT} \le 1.5A$                                      |                              | 15                     | 200                          |          | 15                    | 200             | mV    |
|                   |                            | $250mA \le I_{OUT} \le 750mA$                                   |                              | 5                      | 75                           |          | 5                     | 75              | mV    |
| l <sub>Q</sub>    | Quiescent Current          | $T_J = 25^{\circ}C$                                             |                              | 1.5                    | 3                            |          | 1.5                   | 3               | mA    |
| $\Delta I_Q$      | Quiescent Current          | With Line                                                       |                              |                        | 0.5                          |          |                       | 0.5             | mA    |
|                   | Change                     |                                                                 | $(-30 \le V_{IN} \le -14.5)$ |                        | $(-30 \le V_{IN} \le -17.5)$ |          | -17.5)                | V               |       |
|                   |                            | With Load, $5mA \le I_{OUT} \le 1A$                             |                              |                        | 0.5                          |          |                       | 0.5             | mA    |
| V <sub>n</sub>    | Output Noise Voltage       | $T_A = 25^{\circ}C$ , $10Hz \le f \le 100Hz$                    |                              | 300                    |                              |          | 375                   |                 | μV    |
|                   | Ripple Rejection           | f = 120 Hz                                                      | 54                           | 70                     |                              | 54       | 70                    |                 | dB    |
|                   |                            |                                                                 | (-25                         | $\leq V_{\rm IN} \leq$ | –15)                         | (-30     | ≤ V <sub>IN</sub> ≤ - | -17.5)          | V     |
|                   | Dropout Voltage            | $T_{J} = 25^{\circ}C, I_{OUT} = 1A$                             |                              | 1.1                    |                              |          | 1.1                   |                 | V     |
| I <sub>OMAX</sub> | Peak Output Current        | $T_J = 25^{\circ}C$                                             |                              | 2.2                    |                              |          | 2.2                   |                 | A     |
|                   | Average Temperature        | I <sub>OUT</sub> = 5mA,                                         |                              | -0.8                   |                              |          | -1.0                  |                 | mV/°C |
|                   | Coefficient of             | $0 \text{ C} \leq \text{T}_{\text{J}} \leq 100^{\circ}\text{C}$ |                              |                        |                              |          |                       |                 |       |
|                   | Output Voltage             |                                                                 |                              |                        |                              |          |                       |                 |       |

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but do not guarantee Specific Performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. Note 2: Refer to Typical Performance Characteristics and Design Considerations for details.

Note 3: Regulation is measured at a constant junction temperature by pulse testing with a low duty cycle. Changes in output voltage due to heating effects must be taken into account.

## **Design Considerations**

The LM79XX fixed voltage regulator series has thermal overload protection from excessive power dissipation, internal short circuit protection which limits the circuit's maximum current, and output transistor safe-area compensation for reducing the output current as the voltage across the pass transistor is increased.

Although the internal power dissipation is limited, the junction temperature must be kept below the maximum specified temperature ( $125^{\circ}C$ ) in order to meet data sheet specifications. To calculate the maximum junction temperature or heat sink required, the following thermal resistance values should be used:

|         | Тур             | Max             | Тур           | Max           |
|---------|-----------------|-----------------|---------------|---------------|
| Package | θ <sub>JC</sub> | θ <sub>JC</sub> | $\theta_{JA}$ | $\theta_{JA}$ |
|         | °C/W            | °C/W            | °C/W          | °C/W          |
| TO-220  | 3.0             | 5.0             | 60            | 40            |

$$P_{D MAX} = \frac{T_{J Max} - T_{A}}{\theta_{JC} + \theta_{CA}} \text{ or } \frac{T_{J Max} T_{A}}{\theta_{JA}}$$

 $\theta_{CA} = \theta_{CS} + \theta_{SA}$  (without heat sink)

Solving for  $T_J$ :

 $T_J = T_A + P_D (\theta_{JC} + \theta_{CA})$  or

=  $T_A + P_D \theta_{JA}$  (without heat sink)

Where:

- T<sub>J</sub> = Junction Temperature
- T<sub>A</sub> = Ambient Temperature
- $P_D$  = Power Dissipation

 $\theta_{JA}$  = Junction-to-Ambient Thermal Resistance

 $\theta_{JC}$  = Junction-to-Case Thermal Resistance

 $\theta_{CA}$  = Case-to-Ambient Thermal Resistance

 $\theta_{CS}$  = Case-to-Heat Sink Thermal Resistance

 $\theta_{SA}$  = Heat Sink-to-Ambient Thermal Resistance

## **Typical Applications**

Bypass capacitors are necessary for stable operation of the LM79XX series of regulators over the input voltage and output current ranges. Output bypass capacitors will improve the transient response by the regulator.

high frequency characteristics. If aluminum electrolytics are used, their values should be  $10\mu$ F or larger. The bypass capacitors should be mounted with the shortest leads, and if possible, directly across the regulator terminals.

The bypass capacitors, (2.2 $\mu F$  on the input, 1.0 $\mu F$  on the output) should be ceramic or solid tantalum which have good





## Typical Applications (Continued)





## Schematic Diagrams (Continued)



www.national.com



LM79XX Series 3-Terminal Negative Regulators

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

Français Tel: +33 (0) 1 41 91 8790

www.national.com

SLLS047I - FEBRUARY 1989 - REVISED OCTOBER 2002

- Meet or Exceed TIA/EIA-232-F and ITU Recommendation V.28
- Operate With Single 5-V Power Supply
- Operate Up to 120 kbit/s
- Two Drivers and Two Receivers
- ±30-V Input Levels
- Low Supply Current . . . 8 mA Typical
- Designed to be Interchangeable With Maxim MAX232
- ESD Protection Exceeds JESD 22

   2000-V Human-Body Model (A114-A)
- Applications
  - TIA/EIA-232-F Battery-Powered Systems Terminals Modems Computers

| MAX232 D, DW, N, OR NS PACKAGE<br>MAX232I D, DW, OR N PACKAGE<br>(TOP VIEW) |   |    |         |  |  |  |
|-----------------------------------------------------------------------------|---|----|---------|--|--|--|
|                                                                             |   | T  | -       |  |  |  |
| С1+ Ц                                                                       | 1 | 16 | Vcc     |  |  |  |
| V <sub>S+</sub> [                                                           | 2 | 15 | ] GND   |  |  |  |
| C1– [                                                                       | 3 | 14 | ] T1OUT |  |  |  |
| C2+ [                                                                       | 4 | 13 | ] R1IN  |  |  |  |
| C2- [                                                                       | 5 | 12 | ] R1OUT |  |  |  |
| V <sub>S-</sub> [                                                           | 6 | 11 | ] T1IN  |  |  |  |
| T2OUT                                                                       | 7 | 10 | ] T2IN  |  |  |  |
| R2IN [                                                                      | 8 | 9  |         |  |  |  |

#### description/ordering information

The MAX232 is a dual driver/receiver that includes a capacitive voltage generator to supply EIA-232 voltage levels from a single 5-V supply. Each receiver converts EIA-232 inputs to 5-V TTL/CMOS levels. These receivers have a typical threshold of 1.3 V and a typical hysteresis of 0.5 V, and can accept ±30-V inputs. Each driver converts TTL/CMOS input levels into EIA-232 levels. The driver, receiver, and voltage-generator functions are available as cells in the Texas Instruments LinASIC<sup>™</sup> library.

| TA            | PACKAGE <sup>†</sup> |               | ORDERABLE<br>PART NUMBER | TOP-SIDE<br>MARKING |  |
|---------------|----------------------|---------------|--------------------------|---------------------|--|
|               | PDIP (N)             | Tube          | MAX232N                  | MAX232N             |  |
|               |                      | Tube          | MAX232D                  | MAX232              |  |
| 0°C to 70°C   | 30IC (D)             | Tape and reel | MAX232DR                 |                     |  |
| 0.0 10 10.0   | SOIC (DW)            | Tube          | MAX232DW                 | MAX232              |  |
|               |                      | Tape and reel | MAX232DWR                |                     |  |
|               | SOP (NS)             | Tape and reel | MAX232NSR                | MAX232              |  |
|               | PDIP (N)             | Tube          | MAX232IN                 | MAX232IN            |  |
| −40°C to 85°C |                      | Tube          | MAX232ID                 | MAX232I             |  |
|               | 30IC (D)             | Tape and reel | MAX232IDR                |                     |  |
|               |                      | Tube          | MAX232IDW                |                     |  |
|               |                      | Tape and reel | MAX232IDWR               | MAX2321             |  |

#### **ORDERING INFORMATION**

Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.



Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

LinASIC is a trademark of Texas Instruments.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.



SLLS047I - FEBRUARY 1989 - REVISED OCTOBER 2002

#### **Function Tables**

| EACH |        |
|------|--------|
| ЕАСП | DRIVER |
|      |        |

| INPUT<br>TIN            | OUTPUT<br>TOUT |  |  |
|-------------------------|----------------|--|--|
| L                       | Н              |  |  |
| н                       | L              |  |  |
| H = high level. L = low |                |  |  |

H = high level, L = lo

#### EACH RECEIVER

| INPUT<br>RIN           | OUTPUT<br>ROUT |  |  |
|------------------------|----------------|--|--|
| L                      | Н              |  |  |
| н                      | L              |  |  |
| H - high lovel I - low |                |  |  |

H = high level, L = low level

## logic diagram (positive logic)





SLLS047I - FEBRUARY 1989 - REVISED OCTOBER 2002

#### absolute maximum ratings over operating free-air temperature range (unless otherwise noted)<sup>†</sup>

| Input supply voltage range, V <sub>CC</sub> (see Note 1) . |                  | –0.3 V to 6 V                      |
|------------------------------------------------------------|------------------|------------------------------------|
| Positive output supply voltage range, V <sub>S+</sub>      |                  | V <sub>CC</sub> – 0.3 V to 15 V    |
| Negative output supply voltage range, V <sub>S</sub>       |                  | –0.3 V to –15 V                    |
| Input voltage range, VI: Driver                            |                  | -0.3 V to V <sub>CC</sub> + 0.3 V  |
| Receiver                                                   |                  | ±30 V                              |
| Output voltage range, VO: T1OUT, T2OUT                     | V <sub>S</sub>   | - 0.3 V to V <sub>S+</sub> + 0.3 V |
| R1OUT, R2OUT                                               | ·····            | -0.3 V to V <sub>CC</sub> + 0.3 V  |
| Short-circuit duration: T1OUT, T2OUT                       |                  | Unlimited                          |
| Package thermal impedance, $\theta_{JA}$ (see Note 2):     | D package        | 73°C/W                             |
|                                                            | DW package       | 57°C/W                             |
|                                                            | N package        | 67°C/W                             |
|                                                            | NS package       | 64°C/W                             |
| Lead temperature 1,6 mm (1/16 inch) from case              | e for 10 seconds | 260°C                              |
| Storage temperature range, T <sub>sto</sub>                |                  | –65°C to 150°C                     |

<sup>†</sup> Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: All voltage values are with respect to network ground terminal.

2. The package thermal impedance is calculated in accordance with JESD 51-7.

#### recommended operating conditions

|                 |                                      |        | MIN | NOM | MAX | UNIT |
|-----------------|--------------------------------------|--------|-----|-----|-----|------|
| V <sub>CC</sub> | Supply voltage                       |        | 4.5 | 5   | 5.5 | V    |
| VIH             | High-level input voltage (T1IN,T2IN) |        | 2   |     |     | V    |
| VIL             | Low-level input voltage (T1IN, T2IN) |        |     |     | 0.8 | V    |
| R1IN, R2IN      | Receiver input voltage               |        |     |     | ±30 | V    |
| т <sub>А</sub>  | Operating free air temperature       | MAX232 | 0   |     | 70  | °C   |
|                 | MAX232I                              |        | -40 |     | 85  | C    |

# electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Note 3 and Figure 4)

| PARAMETER                      | TEST CONDITIONS                                                           | MIN | түр‡ | MAX | UNIT |
|--------------------------------|---------------------------------------------------------------------------|-----|------|-----|------|
| I <sub>CC</sub> Supply current | $V_{CC} = 5.5 \text{ V},$ All outputs open,<br>$T_A = 25^{\circ}\text{C}$ |     | 8    | 10  | mA   |

<sup>‡</sup> All typical values are at V<sub>CC</sub> = 5 V and T<sub>A</sub> = 25°C. NOTE 3: Test conditions are C1–C4 = 1  $\mu$ F at V<sub>CC</sub> = 5 V ± 0.5 V.



SLLS047I - FEBRUARY 1989 - REVISED OCTOBER 2002

#### DRIVER SECTION

# electrical characteristics over recommended ranges of supply voltage and operating free-air temperature range (see Note 3)

| PARAMETER      |                                       | TEST CONDITIONS | MIN                                         | түр† | MAX | UNIT |    |
|----------------|---------------------------------------|-----------------|---------------------------------------------|------|-----|------|----|
| VOH            | High-level output voltage             | T1OUT, T2OUT    | $R_L = 3 k\Omega$ to GND                    |      | 7   |      | V  |
| VOL            | Low-level output voltage <sup>‡</sup> | T1OUT, T2OUT    | $R_L = 3 k\Omega$ to GND                    |      | -7  | -5   | V  |
| r <sub>o</sub> | Output resistance                     | T1OUT, T2OUT    | $V_{S+} = V_{S-} = 0, \qquad V_O = \pm 2 V$ | 300  |     |      | Ω  |
| los§           | Short-circuit output current          | T1OUT, T2OUT    | $V_{CC} = 5.5 V$ , $V_{O} = 0$              |      | ±10 |      | mA |
| IIS            | Short-circuit input current           | T1IN, T2IN      | $V_{I} = 0$                                 |      |     | 200  | μΑ |

<sup>†</sup> All typical values are at  $V_{CC} = 5 \text{ V}$ ,  $T_A = 25^{\circ}\text{C}$ .

<sup>‡</sup> The algebraic convention, in which the least positive (most negative) value is designated minimum, is used in this data sheet for logic voltage levels only.

§ Not more than one output should be shorted at a time.

NOTE 3: Test conditions are C1–C4 = 1  $\mu$ F at V<sub>CC</sub> = 5 V ± 0.5 V.

#### switching characteristics, $V_{CC} = 5 V$ , $T_A = 25^{\circ}C$ (see Note 3)

|       | PARAMETER                          | TEST CONDITIONS                            | MIN | TYP | MAX | UNIT   |
|-------|------------------------------------|--------------------------------------------|-----|-----|-----|--------|
| SR    | Driver slew rate                   | $R_L = 3 k\Omega$ to 7 kΩ,<br>See Figure 2 |     |     | 30  | V/µs   |
| SR(t) | Driver transition region slew rate | See Figure 3                               |     | 3   |     | V/µs   |
|       | Data rate                          | One TOUT switching                         |     | 120 |     | kbit/s |

NOTE 3: Test conditions are C1–C4 = 1  $\mu$ F at V<sub>CC</sub> = 5 V ± 0.5 V.

#### **RECEIVER SECTION**

# electrical characteristics over recommended ranges of supply voltage and operating free-air temperature range (see Note 3)

| PARAMETER        |                                                 | TEST CONDITIONS |                          | MIN                   | TYP† | MAX | UNIT |    |
|------------------|-------------------------------------------------|-----------------|--------------------------|-----------------------|------|-----|------|----|
| VOH              | High-level output voltage                       | R1OUT, R2OUT    | I <sub>OH</sub> = -1 mA  |                       | 3.5  |     |      | V  |
| VOL              | Low-level output voltage <sup>‡</sup>           | R1OUT, R2OUT    | I <sub>OL</sub> = 3.2 mA |                       |      |     | 0.4  | V  |
| VIT+             | Receiver positive-going input threshold voltage | R1IN, R2IN      | V <sub>CC</sub> = 5 V,   | $T_A = 25^{\circ}C$   |      | 1.7 | 2.4  | V  |
| VIT-             | Receiver negative-going input threshold voltage | R1IN, R2IN      | V <sub>CC</sub> = 5 V,   | $T_A = 25^{\circ}C$   | 0.8  | 1.2 |      | V  |
| V <sub>hys</sub> | Input hysteresis voltage                        | R1IN, R2IN      | $V_{CC} = 5 V$           |                       | 0.2  | 0.5 | 1    | V  |
| ri               | Receiver input resistance                       | R1IN, R2IN      | V <sub>CC</sub> = 5,     | T <sub>A</sub> = 25°C | 3    | 5   | 7    | kΩ |

<sup>†</sup> All typical values are at  $V_{CC} = 5 V$ ,  $T_A = 25^{\circ}C$ .

<sup>‡</sup> The algebraic convention, in which the least positive (most negative) value is designated minimum, is used in this data sheet for logic voltage levels only.

NOTE 3: Test conditions are C1–C4 = 1  $\mu$ F at V<sub>CC</sub> = 5 V ± 0.5 V.

#### switching characteristics, $V_{CC} = 5 V$ , $T_A = 25^{\circ}C$ (see Note 3 and Figure 1)

| PARAMETER           |                                                            |     | UNIT |
|---------------------|------------------------------------------------------------|-----|------|
| <sup>t</sup> PLH(R) | Receiver propagation delay time, low- to high-level output | 500 | ns   |
| <sup>t</sup> PHL(R) | Receiver propagation delay time, high- to low-level output | 500 | ns   |

NOTE 3: Test conditions are C1–C4 = 1  $\mu$ F at V<sub>CC</sub> = 5 V  $\pm$  0.5 V.



SLLS047I - FEBRUARY 1989 - REVISED OCTOBER 2002



- NOTES: A. The pulse generator has the following characteristics:  $Z_0 = 50 \Omega$ , duty cycle  $\leq 50\%$ .
  - B. CL includes probe and jig capacitance.
  - C. All diodes are 1N3064 or equivalent.

#### Figure 1. Receiver Test Circuit and Waveforms for $t_{\mbox{PHL}}$ and $t_{\mbox{PLH}}$ Measurements



SLLS047I - FEBRUARY 1989 - REVISED OCTOBER 2002



#### PARAMETER MEASUREMENT INFORMATION

- NOTES: A. The pulse generator has the following characteristics:  $Z_O = 50 \Omega$ , duty cycle  $\leq 50\%$ .
  - B.  $C_L$  includes probe and jig capacitance.

#### Figure 2. Driver Test Circuit and Waveforms for tPHL and tPLH Measurements (5-µs Input)



#### WAVEFORMS

NOTE A: The pulse generator has the following characteristics:  $Z_0 = 50 \ \Omega$ , duty cycle  $\leq 50\%$ .

Figure 3. Test Circuit and Waveforms for  $t_{THL}$  and  $t_{TLH}$  Measurements (20- $\mu s$  Input)



SLLS047I - FEBRUARY 1989 - REVISED OCTOBER 2002



 $^{\dagger}$  C3 can be connected to V<sub>CC</sub> or GND.





#### **IMPORTANT NOTICE**

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third–party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Mailing Address:

Texas Instruments Post Office Box 655303 Dallas, Texas 75265

Copyright © 2002, Texas Instruments Incorporated

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.
# Power-Supply Monitor with Reset

#### Features

### **General Description**

The MAX700/701/702 are supervisory circuits used to monitor the power supplies in  $\mu$ P and digital systems. The RESET/RESET outputs of the MAX700/701/702 are guaranteed to be in the correct state for V<sub>CC</sub> voltages down to +1V (Figure 4). They provide excellent circuit reliability and low cost by eliminating external components and adjustments when used with +5V powered circuits.

The MAX702 is the simplest part in the family. When VCC falls to 4.65V, RESET goes low. The MAX702 also provides a debounced manual reset input. The MAX701 performs the same functions but has both RESET and RESET outputs. Their primary function is to provide a system reset. Accordingly, an active reset signal is supplied for low supply voltages and for at least 200ms after the supply voltage reaches its operating value.

In addition to the features of the MAX701 and MAX702, the MAX700 provides preset or adjustable voltage detection so thresholds other than 4.65V can be selected, and adjustable hysteresis. All parts are supplied in 8-pin Plastic DIP and Narrow SO packages in commercial and extended temperature ranges.

| <br>Applications             |
|------------------------------|
| Computers                    |
| Controllers                  |
| Intelligent Instruments      |
| Automotive Systems           |
| Critical µP Power Monitoring |
|                              |

- Min 200ms RESET Pulse on Power-Up, Power-Down, and During Low-Voltage Conditions
- Reset Threshold Factory Trimmed for +5V Systems
- No External Components or Adjustments With +5V Powered Circuits
- Debounced Manual Reset Input
- Preset or Adjustable Voltage Detection (MAX700)
- ♦ Adjustable Hysteresis (MAX700)
- ♦ 8-Pin Plastic DIP and Narrow SO Packages
  - Ordering Information

| PART      | TEMP. RANGE    | PIN-PACKAGE   |
|-----------|----------------|---------------|
| MAX700CPA | 0°C to +70°C   | 8 Plastic DIP |
| MAX700CSA | 0°C to +70°C   | 8 Narrow SO   |
| MAX700C/D | 0°C to +70°C   | Dice          |
| MAX700EPA | -40°C to +85°C | 8 Plastic DIP |
| MAX700ESA | -40°C to +85°C | 8 Narrow SO   |
| MAX701CPA | 0°C to +70°C   | 8 Plastic DIP |
| MAX701CSA | 0°C to +70°C   | 8 Narrow SO   |
| MAX701C/D | 0°C to +70°C   | Dice          |
| MAX701EPA | -40°C to +85°C | 8 Plastic DIP |
| MAX701ESA | -40°C to +85°C | 8 Narrow SO   |
| MAX702CPA | 0°C to +70°C   | 8 Plastic DIP |
| MAX702CSA | 0°C to +70°C   | 8 Narrow SO   |
| MAX702C/D | 0°C to +70°C   | Dice          |
| MAX702EPA | -40°C to +85°C | 8 Plastic DIP |
| MAX702ESA | -40°C to +85°C | 8 Narrow SO   |

### **Pin Configurations**



Call toll free 1-800-998-8800 for free samples or literature.

### **Power-Supply Monitor with Reset**

### **ABSOLUTE MAXIMUM RATINGS**

-0.3V to +15.5V

| Rate of Rise, V <sub>CC</sub>         | 100V/µs |
|---------------------------------------|---------|
| Power Dissipation, any package        | 380mW   |
| Storage Temperature Range65°C to      | +150°C  |
| Lead Temperature (Soldering, 10 sec.) | 300°C   |

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect the device reliability.

#### **ELECTRICAL CHARACTERISTICS**

 $(T_A = 25^{\circ}C, V_{CC} = +5V, CTL = GND \text{ on MAX700, unless otherwise noted.})$ 

| PARAMETER                                                        | CONDITIONS                                                                                                                                                                                              | MIN                                          | ТҮР          | MAX               | UNITS |
|------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|--------------|-------------------|-------|
| Vcc Monitor Voltage Range<br>MAX700 Only                         | TA = T <sub>MIN</sub> to T <sub>MAX</sub><br>CTL = V <sub>CC</sub>                                                                                                                                      | 3                                            |              | 15                | V     |
| Min VCC For Valid Reset<br>Output, Declining Supply              | $\frac{T_A = T_{MIN} \text{ to } T_{MAX}}{\text{RESET} \le 0.4V \text{ when sinking 1mA}}$                                                                                                              | 1.5                                          | 1            |                   | V     |
| Supply Current                                                   |                                                                                                                                                                                                         |                                              | 100          | 200               | μA    |
| Reset Threshold<br>Power-up<br>Power-down                        | TA = TMIN to TMAX                                                                                                                                                                                       | 4.5<br>4.5                                   | 4.65<br>4.62 | 4.75<br>4.75      | V     |
| Internal Hysteresis                                              | HYST not connected                                                                                                                                                                                      |                                              | 30           |                   | mV    |
| Reset Output Pulse Width                                         |                                                                                                                                                                                                         | 200                                          | 350          | 500               | ms    |
| RESET Fall Time                                                  | MAX700/701 Only, CLOAD = 100pF                                                                                                                                                                          |                                              | 200          |                   | ns    |
| V <sub>CC</sub> Pulse Duration Guaranteeing<br>No Reset<br>Reset | 5V to 4V VCC Pulse                                                                                                                                                                                      | 100                                          | 10<br>10     | 1                 | μs    |
| MR Input Threshold                                               |                                                                                                                                                                                                         |                                              | 0.7          |                   | V     |
| MR Pullup Current                                                |                                                                                                                                                                                                         |                                              | -5           | -30               | μA    |
| MAX700                                                           |                                                                                                                                                                                                         |                                              | -            |                   |       |
| RESET Output Low<br>RESET Output High                            | ISINK = 3.2mA, VCC = 5V<br>ISINK = 1.6mA, VCC = 3V<br>ISOURCE = 3.2mA, VCC = 4.25V<br>ISOURCE = 1.6mA, VCC = 3V<br>ISOURCE = 0.5mA, VCC = 1.5V                                                          | Vcc-0.4<br>Vcc-0.4<br>Vcc-0.4                |              | 0.4<br>0.4        | V     |
| RESET Output Low                                                 | ISINK = 16mA, V <sub>CC</sub> = 4.25V<br>ISINK = 1.6mA, V <sub>CC</sub> = 3V<br>ISINK = 0.4mA, V <sub>CC</sub> = 1.5V<br>ISOURCE = 3.2mA, V <sub>CC</sub> = 5V<br>ISOURCE = 1.6mA, V <sub>CC</sub> = 3V | V <sub>CC</sub> -0.4<br>V <sub>CC</sub> -0.4 |              | 0.4<br>0.4<br>0.4 | V     |
| MAX701                                                           |                                                                                                                                                                                                         | •                                            |              |                   |       |
| RESET Output Low<br>RESET Output High                            |                                                                                                                                                                                                         | Vcc-0.4<br>Vcc-0.4<br>Vcc-0.4                |              | 0.4               | V     |
| RESET Output Low                                                 |                                                                                                                                                                                                         | Vcc-0.4                                      |              | 0.4<br>0.4<br>0.4 | V     |

MAX700/701/702

2

### **Power-Supply Monitor with Reset**

# **ELECTRICAL CHARACTERISTICS (continued)** ( $T_A = 25^{\circ}C$ , $V_{CC} = +5V$ , CTL = GND on MAX700, unless otherwise noted.)

|                              |                                                                                                                 | N 4151               | TVD  |                   |       |
|------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------|------|-------------------|-------|
| PARAMETER                    | CONDITIONS                                                                                                      | MIN                  | IYP  | MAX               | UNITS |
| MAX702                       |                                                                                                                 |                      |      |                   |       |
| RESET Output Low             | ISINK = 3.2mA, VCC = 4.25V<br>ISINK = 1.6mA, VCC = 3V<br>ISINK = 0.4mA, VCC = 1.5V<br>ISOURCE = 3.2mA, VCC = 5V | V <sub>CC</sub> -0.4 |      | 0.4<br>0.4<br>0.4 | v     |
| MAX700 ONLY (CTL = Vcc, unle | ess otherwise noted.)                                                                                           |                      |      |                   |       |
| SENSE Input Threshold        | TA = TMIN to TMAX                                                                                               | 1.25                 | 1.29 | 1.35              | V     |
| SENSE Input Current          |                                                                                                                 |                      | 0.1  |                   | nA    |
| HYST Input On Resistance     |                                                                                                                 |                      | 0.5  |                   | kΩ    |
| CTL Input Threshold          |                                                                                                                 |                      | 2    |                   | V     |
| CTL Pulldown Current         |                                                                                                                 |                      | 30   | 100               | μA    |

# MAX700/701/702

| NAME  | FUNCTION                                                                                                                                                                                                                                                                                                                                                                  |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Vcc   | Chip power and +5V sensing input (when CTL<br>= GND on MAX700).                                                                                                                                                                                                                                                                                                           |
| GND   | Ground                                                                                                                                                                                                                                                                                                                                                                    |
| RESET | Goes low when $V_{CC}$ falls below 4.65V, or when CTL = $V_{CC}$ on the MAX700 goes low when SENSE falls below 1.9V.                                                                                                                                                                                                                                                      |
| RESET | MAX700, 701 only – Inverted Version of RESET.                                                                                                                                                                                                                                                                                                                             |
| MR    | Input for manual push button reset. Has inter-<br>nal 5µA pull up. Low input activates the<br>RESET/RESET outputs.                                                                                                                                                                                                                                                        |
| CTL   | MAX700 only – When CTL = GND, VCC is moni-<br>tored by the reset circuit. When CTL = VCC, VCC<br>is ignored and SENSE is monitored, allowing the<br>threshold to be set with external resistors.                                                                                                                                                                          |
| HYST  | MAX700 only – Normally NOT used when voltage is monitored through V <sub>CC</sub> (CTL = GND). When monitoring through SENSE (CTL = V <sub>CC</sub> ), HYST allows hysteresis to be added, reducing noise and spurious reset activity (Figure 3). HYST turns on 5µs before the RESET/RESET outputs are activated, and its on resistance to GND is typically 1k $\Omega$ . |
| SENSE | MAX700 only – The voltage sense input when CTL = $V_{CC}$ . Its threshold is 1.29V. Sense always remains connected to the internal comparator. So, when $V_{CC}$ is being monitored internally (CTL = GND), SENSE should be left open circuit.                                                                                                                            |

### **Pin Description**

-----



1

HYST \_

GND

//// 1ΜΩ

1.29V REF.

JÆL

COMPARATOR

≶

MR

SENSE

### **Power-Supply Monitor with Reset**

MAX700

R RC

 $\overline{R}$  OSC

ĭ50k ≲

8\_Vcc

7 CTL

6 RESET

5 RESET



Figure 1. MAX700 Block Diagram

┍╾┥┝┥



Figure 3. MAX700 Connected for External Sense and Hysteresis

Figure 2. MAX700 Typical Connection Diagram



Figure 4. Typical MAX700/701/702 RESET Output vs. Vcc

Figure 4 shows the  $\overrightarrow{\text{RESET}}$  output of the MAX700/701/702 in the correct state for V<sub>CC</sub> voltages down to 0V. Note the effect of the built-in hysteresis on the trigger level of  $\overrightarrow{\text{RESET}}$ .

4

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 (408) 737-7600 \_

©1990 Maxim Integrated Products Printed USA is a registered trademark of Maxim Integrated Products.

# 

## Low-Power, 16-Bit Analog-to-Digital Converters with Parallel Interface

### **General Description**

The MAX1165/MAX1166 16-bit, low-power, successiveapproximation analog-to-digital converters (ADCs) feature automatic power-down, factory-trimmed internal clock, and a 16-bit wide (MAX1165) or byte wide (MAX1166) parallel interface. The devices operate from a single +4.75V to +5.25V analog supply and a +2.7V to +5.25V digital supply.

The MAX1165/MAX1166 use an internal 4.096V reference or an external reference. The MAX1165/MAX1166 consume only 1.8mA at a sampling rate of 165ksps with external reference and 2.7mA with internal reference. AutoShutdown<sup>™</sup> reduces supply current to 0.1mA at 10ksps.

The MAX1165/MAX1166 are ideal for high-performance, battery-powered, data-acquisition applications. Excellent dynamic performance and low power consumption in a small package make the MAX1165/ MAX1166 ideal for circuits with demanding power consumption and space requirements.

The 16-bit wide MAX1165 is available in a 28-pin TSSOP package and the byte wide MAX1166 is available in a 20-pin TSSOP package. Both devices are available in either the 0°C to +70°C commercial, or the -40°C to +85°C extended temperature range.

AutoShutdown is a trademark of Maxim Integrated Products, Inc.

### Applications

Temperature Sensor/Monitor

Industrial Process Control

I/O Boards

Data-Acquisition Systems

Cable/Harness Tester

Accelerometer Measurements

Digital Signal Processing

Pin Configurations appear at end of data sheet. Functional Diagram appears at end of data sheet.

### Features

- 16-Bit Wide (MAX1165) and Byte Wide (MAX1166) Parallel Interface
- High Speed: 165ksps Sample Rate
- Accurate: ±2LSB INL, 16 Bit No Missing Codes
- ♦ 4.096V, 35ppm/°C Internal Reference
- ♦ External Reference Range: +3.8V to +5.25V
- Single +4.75V to +5.25V Analog Supply Voltage
- ♦ +2.7V to +5.25V Digital Supply Voltage
- Low Supply Current

   1.8mA (External Reference)
   2.7mA (Internal Reference)
   0.1µA (10ksps, External Reference)
- Small Footprint 28-Pin TSSOP Package (16-Bit Wide) 20-Pin TSSOP Package (Byte Wide)

### **Ordering Information**

| PART         | TEMP RANGE     | PIN-PACKAGE | INL |
|--------------|----------------|-------------|-----|
| MAX1165ACUI* | 0°C to +70°C   | 28 TSSOP    | ±2  |
| MAX1165BCUI  | 0°C to +70°C   | 28 TSSOP    | ±2  |
| MAX1165CCUI  | 0°C to +70°C   | 28 TSSOP    | ±4  |
| MAX1165AEUI* | -40°C to +85°C | 28 TSSOP    | ±2  |
| MAX1165BEUI* | -40°C to +85°C | 28 TSSOP    | ±2  |
| MAX1165CEUI* | -40°C to +85°C | 28 TSSOP    | ±4  |
|              |                |             |     |

\*Future product—contact factory for availability.

### Ordering Information continued at end of data sheet.

### **Typical Operating Circuit**



### 

Maxim Integrated Products 1

For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

### **ABSOLUTE MAXIMUM RATINGS**

| AV <sub>DD</sub> to AGND          | -0.3V to +6V                      |
|-----------------------------------|-----------------------------------|
| DV <sub>DD</sub> to DGND          | 0.3V to (AV <sub>DD</sub> + 0.3V) |
| AGND to DGND                      | 0.3V to +0.3V                     |
| AIN, REF, REFADJ to AGND          | 0.3V to (AV <sub>DD</sub> + 0.3V) |
| CS, HBEN, R/C, RESET to DGND      | 0.3V to +6V                       |
| Digital Output (D15–D0, EOC)      |                                   |
| to DGND                           | 0.3V to (DV <sub>DD</sub> + 0.3V) |
| Maximum Continuous Current Into A | Any Pin50mA                       |

| Continuous Power Dissipation ( $T_A = +70^\circ$ | °C)              |
|--------------------------------------------------|------------------|
| 20-Pin TSSOP (derate 10.9mW/°C abo               | ve+70°C)879mW    |
| 28-Pin TSSOP (derate 12.8mW/°C abo               | ve +70°C) 1026mW |
| Operating Temperature Ranges                     |                  |
| MAX116CU                                         | 0°C to +70°C     |
| MAX116EU                                         | 40°C to +85°C    |
| Storage Temperature Range                        | 65°C to +150°C   |
| Junction Temperature                             | +150°C           |
| Lead Temperature (soldering, 10s)                | +300°C           |

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

### **ELECTRICAL CHARACTERISTICS**

 $(AV_{DD} = DV_{DD} = +5V)$ , external reference = +4.096V,  $C_{REF} = 4.7\mu$ F,  $C_{REFADJ} = 0.1\mu$ F,  $T_A = T_{MIN}$  to  $T_{MAX}$ , unless otherwise noted. Typical values are at  $T_A = +25^{\circ}$ C.)

| PARAMETER                       | SYMBOL          | CONI                                            | DITIONS                                                       | MIN | ТҮР    | MAX   | UNITS              |
|---------------------------------|-----------------|-------------------------------------------------|---------------------------------------------------------------|-----|--------|-------|--------------------|
| DC ACCURACY                     | •               |                                                 |                                                               | •   |        |       |                    |
| Resolution                      | Ν               |                                                 |                                                               | 16  |        |       | Bits               |
|                                 |                 | MAX116_A                                        |                                                               |     |        | ±2    |                    |
| Relative Accuracy               | INL             | MAX116_B                                        |                                                               |     |        | ±2    | LSB                |
|                                 |                 | MAX116_C                                        |                                                               |     |        | ±4    |                    |
|                                 |                 | No missing codes                                | MAX116_A                                                      |     |        | ±1    |                    |
| Differential Nonlinearity       | DNL             | over temperature                                | MAX116_B                                                      | -1  |        | ±1.5  | LSB                |
|                                 |                 | MAX116_C                                        |                                                               |     |        | ±2    |                    |
| Transition Noise                |                 | RMS noise, external re<br>quantization noise    | RMS noise, external reference, includes<br>quantization noise |     | 0.65   |       | LSB <sub>RMS</sub> |
|                                 |                 | Internal reference                              |                                                               |     | 0.7    |       | LSB <sub>RMS</sub> |
| Offset Error                    |                 |                                                 |                                                               |     | 0.05   | 1     | mV                 |
| Gain Error                      |                 | (Note 2)                                        |                                                               |     | ±0.002 | ±0.02 | %FSR               |
| Offset Drift                    |                 |                                                 |                                                               |     | 0.6    |       | ppm/°C             |
| Gain Drift                      |                 |                                                 |                                                               |     | 0.2    |       | ppm/°C             |
| DYNAMIC PERFORMANCE (fIN(SI     | NE-WAVE) =      | 1kHz, V <sub>IN</sub> = 4.096V <sub>P-P</sub> , | 165ksps)                                                      |     |        |       |                    |
| Signal-to-Noise Plus Distortion | SINAD           |                                                 |                                                               | 86  | 90     |       | dB                 |
| Signal-to-Noise Ratio           | SNR             |                                                 |                                                               | 87  | 90     |       | dB                 |
| Total Harmonic Distortion       | THD             |                                                 |                                                               |     | -102   | -90   | dB                 |
| Spurious-Free Dynamic Range     | SFDR            |                                                 |                                                               | 92  | 105    |       | dB                 |
| Full-Power Bandwidth            |                 | -3dB point                                      |                                                               |     | 4      |       | MHz                |
| Full-Linear Bandwidth           |                 | SINAD > 81dB                                    |                                                               |     | 33     |       | kHz                |
| CONVERSION RATE                 |                 |                                                 |                                                               |     |        |       |                    |
| Sample Rate                     | <b>f</b> SAMPLE |                                                 |                                                               |     |        | 165   | ksps               |
| Aperture Delay                  |                 |                                                 |                                                               |     | 27     |       | ns                 |
| Aperture Jitter                 |                 |                                                 |                                                               |     | <100   |       | ps                 |
| ANALOG INPUT                    |                 |                                                 |                                                               |     |        |       |                    |
| Input Range                     | VAIN            |                                                 |                                                               | 0   |        | VREF  | V                  |
| Input Capacitance               | CAIN            |                                                 |                                                               |     | 40     |       | pF                 |

### **ELECTRICAL CHARACTERISTICS (continued)**

 $(AV_{DD} = DV_{DD} = +5V)$ , external reference = +4.096V,  $C_{REF} = 4.7\mu$ F,  $C_{REFADJ} = 0.1\mu$ F,  $T_A = T_{MIN}$  to  $T_{MAX}$ , unless otherwise noted. Typical values are at  $T_A = +25^{\circ}$ C.)

| PARAMETER                       | SYMBOL           | CONDITIO                                                                      | ONS                                                                     | MIN                       | ТҮР        | МАХ                       | UNITS  |
|---------------------------------|------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------|------------|---------------------------|--------|
| INTERNAL REFERENCE              |                  | •                                                                             |                                                                         |                           |            |                           | •      |
| REF Output Voltage              | V <sub>REF</sub> |                                                                               |                                                                         | 4.056                     | 4.096      | 4.136                     | V      |
| REF Output Tempco               | TCREF            |                                                                               |                                                                         |                           | ±25        |                           | ppm/°C |
| REF Short-Circuit Current       | IREFSC           |                                                                               |                                                                         |                           | ±10        |                           | mA     |
| Capacitive Bypass at REFADJ     | Crefadj          |                                                                               |                                                                         | 0.1                       |            |                           | μF     |
| Capacitive Bypass at REF        | CREF             |                                                                               |                                                                         | 1                         |            |                           | μF     |
| REFADJ Input Leakage Current    | IREFADJ          |                                                                               |                                                                         |                           | 20         |                           | μA     |
| EXTERNAL REFERENCE              |                  |                                                                               |                                                                         |                           |            |                           |        |
| REFADJ Buffer Disable Threshold |                  | To power down the interna                                                     | al reference                                                            | AV <sub>DD</sub> -<br>0.4 |            | AV <sub>DD</sub> -<br>0.1 | V      |
| REF Input Voltage Range         |                  | Internal reference disable                                                    | b                                                                       | 3.8                       |            | AVDD                      | V      |
| REF Input Current               | I <sub>REF</sub> | $V_{\text{REF}} = +4.096V$ , f <sub>SAMPLE</sub>                              | = 165ksps                                                               |                           | 50<br>+0.1 | 120                       | μA     |
| DIGITAL INPUTS/OUTPUTS          |                  |                                                                               |                                                                         |                           | 20.1       |                           |        |
| Input High Voltage              | VIH              |                                                                               |                                                                         | 0.7 ×<br>DV <sub>DD</sub> |            |                           | V      |
| Input Low Voltage               | VIL              |                                                                               |                                                                         |                           |            | 0.3 ×<br>DV <sub>DD</sub> | V      |
| Input Leakage Current           | I <sub>IN</sub>  | $V_{IH} = 0 \text{ or } DV_{DD}$                                              |                                                                         |                           | ±0.1       | ±1                        | μA     |
| Input Hysteresis                | VHYST            |                                                                               |                                                                         |                           | 0.1        |                           | V      |
| Input Capacitance               | CIN              |                                                                               |                                                                         |                           | 15         |                           | рF     |
| Output High Voltage             | V <sub>OH</sub>  | $I_{SOURCE} = 0.5$ mA, $DV_{DD} = +2.7$ V to +5.25V,<br>AV_{DD} = +5.25V      |                                                                         | DV <sub>DD</sub> -<br>0.4 |            |                           | V      |
| Output Low Voltage              | V <sub>OL</sub>  | I <sub>SINK</sub> = 1.6mA, DV <sub>DD</sub> = +2<br>AV <sub>DD</sub> = +5.25V | $I_{SINK} = 1.6mA$ , $DV_{DD} = +2.7V$ to +5.25V,<br>$AV_{DD} = +5.25V$ |                           |            | 0.4                       | V      |
| Three-State Leakage Current     | Ioz              | D0-D15                                                                        |                                                                         |                           | ±0.1       | ±10                       | μA     |
| Three-State Output Capacitance  | C <sub>OZ</sub>  |                                                                               |                                                                         |                           | 15         |                           | рF     |
| POWER REQUIREMENTS              |                  |                                                                               |                                                                         |                           |            |                           |        |
| Analog Supply Voltage           | AVDD             |                                                                               |                                                                         | 4.75                      |            | 5.25                      | V      |
| Digital Supply                  | DVDD             |                                                                               |                                                                         | 2.7                       |            | AVDD                      | V      |
|                                 |                  |                                                                               | 165ksps                                                                 |                           | 2.7        | 3.2                       |        |
|                                 |                  | Internal reference                                                            | 100ksps                                                                 |                           | 2.0        |                           |        |
|                                 |                  | Internal reference                                                            | 10ksps                                                                  |                           | 1.0        |                           |        |
|                                 | 1                |                                                                               | 1ksps                                                                   |                           | 1.0        |                           | ^      |
| Analog Supply Current           | IAVDD            |                                                                               | 165ksps                                                                 |                           | 1.8        | 2.3                       | mA     |
|                                 |                  | External reference                                                            | 100ksps                                                                 |                           | 1.1        |                           | ]      |
|                                 |                  | External relerence                                                            | 10ksps                                                                  |                           | 0.1        |                           | ]      |
|                                 |                  |                                                                               | 1ksps                                                                   |                           | 0.01       |                           | ]      |
|                                 |                  |                                                                               |                                                                         |                           |            |                           |        |

### ELECTRICAL CHARACTERISTICS (continued)

 $(AV_{DD} = DV_{DD} = +5V)$ , external reference = +4.096V,  $C_{REF} = 4.7\mu$ F,  $C_{REFADJ} = 0.1\mu$ F,  $T_A = T_{MIN}$  to  $T_{MAX}$ , unless otherwise noted. Typical values are at  $T_A = +25^{\circ}$ C.)

| PARAMETER                    | SYMBOL | CONDITIONS                                          |                               | MIN | ТҮР   | MAX | UNITS |
|------------------------------|--------|-----------------------------------------------------|-------------------------------|-----|-------|-----|-------|
|                              |        | D0–D15 = all zeros                                  | 165ksps                       |     | 0.5   | 0.7 |       |
| Digital Supply Current       |        |                                                     | 100ksps                       |     | 0.3   |     | - mA  |
| Digital Supply Current       | UDVDD  |                                                     | 10ksps                        |     | 0.03  |     |       |
|                              |        |                                                     | 1ksps                         |     | 0.003 |     |       |
|                              |        | Full power-down                                     | IAVDD                         |     | 0.5   | 5   |       |
|                              |        |                                                     | IDVDD                         |     | 0.5   | 5   | μΑ    |
| Shutdown Supply Current      | ISHDN  | REF and REF buffer enabled (standby mode)           | IAVDD                         |     | 1.0   | 1.2 | mA    |
|                              |        |                                                     | I <sub>DVDD</sub><br>(Note 3) |     | 0.5   | 5   | μΑ    |
| Power-Supply Rejection Ratio | PSRR   | $AV_{DD} = +5V \pm 5\%$ , full-scale input (Note 4) |                               |     | 68    |     | dB    |

### TIMING CHARACTERISTICS (Figures 1 and 2)

 $(AV_{DD} = +4.75V \text{ to } +5.25V, DV_{DD} = +2.7V \text{ to } AV_{DD}, \text{ external reference} = +4.096V, C_{REF} = 4.7\mu\text{F}, C_{REFADJ} = 0.1\mu\text{F}, C_{LOAD} = 20\text{pF}, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted}.$  Typical values are at T<sub>A</sub>= +25°C.)

| PARAMETER                                                   | SYMBOL          | CONDITIONS                         | MIN | ТҮР | МАХ | UNITS |  |
|-------------------------------------------------------------|-----------------|------------------------------------|-----|-----|-----|-------|--|
| Acquisition Time                                            | tacq            |                                    | 1.1 |     |     |       |  |
| Conversion Time                                             | tCONV           |                                    |     |     | 4.7 | μs    |  |
| CS Pulse Width High                                         | tCSH            | (Note 5)                           | 40  |     |     | ns    |  |
| C Dulas Width Low (Note 5)                                  | taai            | $V_{DVDD} = 4.75V$ to 5.25V        | 40  |     |     | 20    |  |
| CS Pulse width Low (Note 5)                                 | ICSL            | V <sub>DVDD</sub> = 2.7V to 5.25V  | 60  |     |     | ns    |  |
| $R/\overline{C}$ to $\overline{CS}$ Fall Setup Time         | t <sub>DS</sub> |                                    | 0   |     |     | ns    |  |
| $R/\overline{C}$ to $\overline{CS}$ Fall Hold Time          | tau             | V <sub>DVDD</sub> = 4.75V to 5.25V | 40  |     |     | ns    |  |
|                                                             | ſОН             | V <sub>DVDD</sub> = 2.7V to 5.25V  | 60  |     |     |       |  |
| Contract Data Valid                                         | tDO             | $V_{DVDD} = 4.75V$ to 5.25V        |     |     | 40  | 20    |  |
| CS to Output Data Valid                                     |                 | V <sub>DVDD</sub> = 2.7V to 5.25V  |     |     | 80  | ns    |  |
| HBEN Transition to Output Data                              |                 | V <sub>DVDD</sub> = 4.75V to 5.25V |     |     | 40  |       |  |
| Valid (MAX1166 Only)                                        | tDO1            | V <sub>DVDD</sub> = 2.7V to 5.25V  |     |     | 80  | ns    |  |
| $\overline{\text{EOC}}$ Fall to $\overline{\text{CS}}$ Fall | t <sub>DV</sub> |                                    | 0   |     |     | ns    |  |
| $\overline{\text{CS}}$ Rise to $\overline{\text{EOC}}$ Rise | traa            | $V_{DVDD} = 4.75V$ to 5.25V        |     |     | 40  | 20    |  |
|                                                             | LOC             | V <sub>DVDD</sub> = 2.7V to 5.25V  |     |     | 80  | ns    |  |
| Rue Delinguigh Time (Note 5)                                | taa             | V <sub>DVDD</sub> = 4.75V to 5.25V |     |     | 40  | 20    |  |
| Bus Relinquish Time (Note 5)                                | ıВК             | V <sub>DVDD</sub> = 2.7V to 5.25V  |     |     | 80  | ns    |  |

Note 1: Relative accuracy is the deviation of the analog value at any code from its theoretical value after offset and gain errors have been removed.

Note 2: Offset nulled.

Note 3: Shutdown supply currents are typically 0.5µA, maximum specification is limited by automated test equipment.

Note 4: Defined as the change in positive full scale caused by a ±5% variation in the nominal supply.

Note 5: To ensure best performance, finish reading the data and wait  $t_{BR}$  before starting a new acquisition.





### Typical Operating Characteristics

(AV<sub>DD</sub> = DV<sub>DD</sub> = +5V, external reference = +4.096V, C<sub>REF</sub> = 4.7µF, C<sub>REFADJ</sub> = 0.1µF, T<sub>A</sub> = +25°C, unless otherwise noted.)

5

### **Typical Operating Characteristics (continued)**

 $(AV_{DD} = DV_{DD} = +5V, \text{ external reference} = +4.096V, C_{REF} = 4.7\mu\text{F}, C_{REFADJ} = 0.1\mu\text{F}, T_A = +25^{\circ}\text{C}, \text{ unless otherwise noted.})$ 











### **Pin Description**

| P       | N       | NAME    |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|---------|---------|---------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MAX1165 | MAX1166 | MAX1165 | MAX1166 | FUNCTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1       | 1       | D8      | D4/D12  | Three-State Digital Data Output                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2       | 2       | D9      | D5/D13  | Three-State Digital Data Output                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 3       | 3       | D10     | D6/D14  | Three-State Digital Data Output                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 4       | 4       | D11     | D7/D15  | Three-State Digital Data Output. D15 is the MSB.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 5       |         | D12     | —       | Three-State Digital Data Output                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 6       |         | D13     | —       | Three-State Digital Data Output                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 7       | —       | D14     | —       | Three-State Digital Data Output                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 8       |         | D15     | —       | Three-State Digital Data Output (MSB)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 9       | 5       | R/C     |         | Read/Convert Input. Power up and put the MAX1165/MAX1166 in acquisition mode<br>by holding R/C low during the first falling edge of $\overline{CS}$ . During the second falling<br>edge of $\overline{CS}$ , the level on R/C determines whether the reference and reference<br>buffer power down or remain on after conversion. Set R/C high during the second<br>falling edge of $\overline{CS}$ to power down the reference and buffer, or set R/C low to leave<br>the reference and buffer powered up. Set R/C high during the third falling edge of<br>$\overline{CS}$ to put valid data on the bus. |
| 10      | 6       | Ē       | DC      | End of Conversion. EOC drives low when conversion is complete.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 11      | 7       | AV      | DD      | Analog Supply Input. Bypass with a 0.1µF capacitor to AGND.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 12      | 8       | AG      | iND     | Analog Ground. Primary analog ground (star ground).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 13      | 9       | AIN     |         | Analog Input                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 14      | 10      | AGND    |         | Analog Ground. Connect pin 14 to pin 12 (MAX1165). Connect pin 10 to pin 8 (MAX1166).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 15      | 11      | REFADJ  |         | Reference Buffer Output. Bypass REFADJ with a $0.1\mu$ F capacitor to AGND for internal reference mode. Connect REFADJ to AV <sub>DD</sub> to select external reference mode.                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 16      | 12      | R       | EF      | Reference Input/Output. Bypass REF with a 4.7µF capacitor to AGND for internal reference mode. External reference input when in external reference mode.                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 17      | _       | RE      | SET     | Reset Input. Logic high resets the device.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| _       | 13      | HE      | BEN     | High-Byte Enable Input. Used to multiplex the 14-bit conversion result:<br>1: Most significant byte available on the data bus.<br>0: Least significant byte available on the data bus.                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 18      | 14      | CS      |         | Convert Start. The first falling edge of $\overline{CS}$ powers up the device and enables acquire mode when $R/\overline{C}$ is low. The second falling edge of $\overline{CS}$ starts conversion. The third falling edge of $\overline{CS}$ loads the result onto the bus when $R/\overline{C}$ is high.                                                                                                                                                                                                                                                                                                 |
| 19      | 15      | DG      | ND      | Digital Ground                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 20      | 16      | D٧      | /DD     | Digital Supply Voltage. Bypass with a $0.1\mu F$ capacitor to DGND.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 21      | 17      | D0      | D0/D8   | Three-State Digital Data Output                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 22      | 18      | D1      | D1/D9   | Three-State Digital Data Output                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 23      | 19      | D2      | D2/D10  | Three-State Digital Data Output                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 24      | 20      | D3      | D3/D11  | Three-State Digital Data Output                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 25      |         | D4      |         | Three-State Digital Data Output                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 26      |         | D5      |         | Three-State Digital Data Output                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 27      |         | D6      | —       | Three-State Digital Data Output                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 28      | _       | D7      | —       | Three-State Digital Data Output                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |





Figure 1. Load Circuits

MAX1165/MAX1166

### **Detailed Description**

### **Converter Operation**

The MAX1165/MAX1166 use a successive-approximation (SAR) conversion technique with an inherent trackand-hold (T/H) stage to convert an analog input into a 16-bit digital output. Parallel outputs provide a highspeed interface to most microprocessors ( $\mu$ Ps). The *Functional Diagram* shows a simplified internal architecture of the MAX1165/MAX1166. Figure 3 shows a typical application circuit for the MAX1166.

### Analog Input

The equivalent input circuit is shown in Figure 4. A switched capacitor digital-to-analog converter (DAC) provides an inherent T/H function. The single-ended input is connected between AIN and AGND.

### Input Bandwidth

The ADC's input-tracking circuitry has a 4MHz smallsignal bandwidth, so it is possible to digitize highspeed transient events and measure periodic signals with bandwidths exceeding the ADC's sampling rate by using undersampling techniques. To avoid aliasing of unwanted high-frequency signals into the frequency band of interest, use anti-alias filtering.

### **Analog Input Protection**

Internal protection diodes, which clamp the analog input to  $AV_{DD}$  and/or AGND, allow the input to swing from AGND - 0.3V to  $AV_{DD}$  + 0.3V, without damaging the device.

If the analog input exceeds 300mV beyond the supplies, limit the input current to 10mA.





Figure 3. Typical Application Circuit for the MAX1166

### Track and Hold (T/H)

In track mode, the analog signal is acquired on the internal hold capacitor. In hold mode, the T/H switches open and the capacitive DAC samples the analog input.

During the acquisition, the analog input (AIN) charges capacitor  $C_{DAC}$ . The acquisition ends on the second falling edge of  $\overline{CS}$ . At this instant, the T/H switches open. The retained charge on  $C_{DAC}$  represents a sample of the input.

In hold mode, the capacitive DAC adjusts during the remainder of the conversion time to restore node ZERO to zero within the limits of 16-bit resolution. Force  $\overline{CS}$  low to put valid data on the bus at the end of the conversion.

The time required for the T/H to acquire an input signal is a function of how quickly its input capacitance is charged. If the input signal's source impedance is high, the acquisition time lengthens and more time must be allowed between conversions. The acquisition time ( $t_{ACQ}$ ) is the maximum time the device takes to acquire the signal. Use the following formula to calculate acquisition time:

### $t_{ACQ} = 11 (R_S + R_{IN}) \times 35 pF$

where  $R_{IN} = 800\Omega$ ,  $R_S =$  the input signal's source impedance, and  $t_{ACQ}$  is never less than 1.1µs. A source impedance less than 1k $\Omega$  does not significantly affect the ADC's performance.

To improve the input signal bandwidth under AC conditions, drive AIN with a wideband buffer (>4MHz) that can drive the ADC's input capacitance and settle quickly.



Figure 4. Equivalent Input Circuit

### **Power-Down Modes**

Select standby mode or shutdown mode with the R/C bit during the second falling edge of  $\overline{CS}$  (see the *Selecting Standby or Shutdown Mode* section). The MAX1165/MAX1166 automatically enter either standby mode (reference and buffer on) or shutdown (reference and buffer off) after each conversion depending on the status of R/C during the second falling edge of  $\overline{CS}$ .

#### **Internal Clock**

The MAX1165/MAX1166 generate an internal conversion clock. This frees the microprocessor from the burden of running the SAR conversion clock. Total conversion time after entering hold mode (second falling edge of  $\overline{CS}$ ) to end of conversion (EOC) falling is 4.7µs (max).

### Applications Information

### Starting a Conversion

 $\overline{\text{CS}}$  and  $\overline{\text{R/C}}$  control acquisition and conversion in the MAX1165/MAX1166 (Figure 2). The first falling edge of  $\overline{\text{CS}}$  powers up the device and puts it in acquire mode if  $\overline{\text{R/C}}$  is low. The convert start is ignored if  $\overline{\text{R/C}}$  is high. The MAX1165/MAX1166 need at least 10ms (CREFADJ = 0.1µF, CREF = 4.7µF) for the internal reference to wake up and settle before starting the conversion if powering up from shutdown. The ADC can wake up, from shutdown, to an unknown state. Put the ADC in a known state by completing one "dummy" conversion. The MAX1165/MAX1166 are in a known state, ready for actual data acquisition, after the completion of the dummy conversion. A dummy conversion consists of one full conversion cycle.

The MAX1165 provides an alternative reset function to reset the device (see the *RESET* section).

M/X/M



Figure 5. Selecting Standby Mode

Selecting Standby or Shutdown Mode

The MAX1165/MAX1166 have a selectable standby or low-power shutdown mode. In standby mode, the ADC's internal reference and reference buffer do not power down between conversions, eliminating the need to wait for the reference to power up before performing the next conversion. Shutdown mode powers down the reference and reference buffer after completing a conversion. The reference and reference buffer require a minimum of 10ms ( $C_{REFADJ} = 0.1\mu$ F,  $C_{REF} = 4.7\mu$ F) to power up and settle from shutdown.

The state of  $R/\overline{C}$  at the second falling edge of  $\overline{CS}$  selects which power-down mode the MAX1165/ MAX1166 enter upon conversion completion. Holding  $R/\overline{C}$  low causes the MAX1165/MAX1166 to enter standby mode. The reference and buffer are left on after the conversion completes.  $R/\overline{C}$  high causes the MAX1165/ MAX1166 to enter shutdown mode and shut down the reference and buffer after conversion (Figures 5 and 6). When using an external reference, set the REF powerdown bit high for lowest current operation.

### **Standby Mode**

While in standby mode, the supply current is reduced to less than 1mA (typ). The next falling edge of  $\overline{CS}$  with  $R/\overline{C}$  low causes the MAX1165/MAX1166 to exit standby mode and begin acquisition. The reference and reference buffer remain active to allow quick turn-on time. Standby mode allows significant power savings while running at the maximum sample rate.

### Shutdown Mode

In shutdown mode, the reference and reference buffer are shut down between conversions. Shutdown mode reduces supply current to 0.5 $\mu$ A (typ) immediately after the conversion. The falling edge of  $\overline{CS}$  with R/C low



Figure 6. Selecting Shutdown Mode

causes the reference and buffer to wake up and enter acquisition mode. To achieve 16-bit accuracy, allow 10ms (CREFADJ =  $0.1\mu$ F, CREF =  $4.7\mu$ F) for the internal reference to wake up.

### **Internal and External Reference**

#### Internal Reference

The internal reference of the MAX1165/MAX1166 is internally buffered to provide +4.096V output at REF. Bypass REF to AGND and REFADJ to AGND with 4.7 $\mu$ F and 0.1 $\mu$ F, respectively.

Fine adjustments can be made to the internal reference voltage by sinking or sourcing current at REFADJ. The input impedance of REFADJ is nominally  $5k\Omega$ . The internal reference voltage is adjustable to  $\pm 1.5\%$  with the circuit of Figure 7.



Figure 7. MAX1165/MAX1166 Reference Adjust Circuit

### External Reference

An external reference can be placed at either the input (REFADJ) or the output (REF) of the MAX1165/ MAX1166s' internal buffer amplifier. When connecting an



external reference to REFADJ, the input impedance is typically 5k $\Omega$ . Using the buffered REFADJ input makes buffering the external reference unnecessary; however, the internal buffer output must be bypassed at REF with a 1  $\mu$ F capacitor.

Connect REFADJ to AV<sub>DD</sub> to disable the internal buffer. Directly drive REF using an external reference. During conversion the external reference must be able to drive 100µA of DC load current and have an output impedance of 10 $\Omega$  or less. REFADJ's impedance is typically 5k $\Omega$ . The DC input impedance of REF is a minimum 40k $\Omega$ .

For optimal performance, buffer the reference through an op amp and bypass REF with a 1 $\mu$ F capacitor. Consider the MAX1165/MAX1166s' equivalent input noise (38 $\mu$ V<sub>RMS</sub>) when choosing a reference.

#### **Reading a Conversion Result**

EOC is provided to flag the microprocessor when a conversion is complete. The falling edge of EOC signals that the data is valid and ready to be output to the bus.

D0–D15 are the parallel outputs of the MAX1165/ MAX1166. These three-state outputs allow for direct connection to a microcontroller I/O bus. The outputs remain high-impedance during acquisition and conversion. Data is loaded onto the bus with the third falling edge of  $\overline{CS}$  with R/C high after t<sub>DO</sub>. Bringing  $\overline{CS}$  high forces the output bus back to high impedance. The MAX1165/MAX1166 then wait for the next falling edge of  $\overline{CS}$  to start the next conversion cycle (Figure 2).

The MAX1165 loads the conversion result onto a 16-bit wide data bus while the MAX1166 has a byte-wide output format. HBEN toggles the output between the most/least significant byte. The least significant byte is loaded onto the output bus when HBEN is low and the most significant byte is on the bus when HBEN is high (Figure 2).

#### RESET

Toggle RESET with  $\overline{CS}$  high. The next falling edge of  $\overline{CS}$  begins acquisition. This reset is an alternative to the dummy conversion explained in the *Starting a Conversion* section.

#### **Transfer Function**

Figure 8 shows the MAX1165/MAX1166 output transfer function. The output is coded in standard binary.

#### **Input Buffer**

Most applications require an input buffer amplifier to achieve 16-bit accuracy. If the input signal is multi-



Figure 8. MAX1165/MAX1166 Transfer Function

plexed, the input channel should be switched immediately after acquisition, rather than near the end of or after a conversion. This allows more time for the input buffer amplifier to respond to a large step change in input signal. The input amplifier must have a high enough slew rate to complete the required output voltage change before the beginning of the acquisition time. At the beginning of acquisition, the internal sampling capacitor array connects to AIN (the amplifier output), causing some output disturbance. Ensure that the sampled voltage has settled to within the required limits before the end of the acquisition time. If the frequency of interest is low, AIN can be bypassed with a large enough capacitor to charge the internal sampling capacitor with very little ripple. However, for AC use, AIN must be driven by a wideband buffer (at least 10MHz), which must be stable with the ADC's capacitive load (in parallel with any AIN bypass capacitor used) and also settle quickly. An example of this circuit using the MAX4434 is given in Figure 9.



Figure 9. MAX1165/MAX1166 Fast Settling Input Buffer

### Layout, Grounding, and Bypassing

For best performance, use printed circuit boards. Do not run analog and digital lines parallel to each other, and do not lay out digital signal paths underneath the ADC package. Use separate analog and digital ground planes with only one point connecting the two ground systems (analog and digital) as close to the device as possible.

Route digital signals far away from sensitive analog and reference inputs. If digital lines must cross analog lines, do so at right angles to minimize coupling digital noise onto the analog lines. If the analog and digital sections share the same supply, then isolate the digital and analog supply by connecting them with a low-value ( $10\Omega$ ) resistor or ferrite bead.

The ADC is sensitive to high-frequency noise on the AV<sub>DD</sub> supply. Bypass AV<sub>DD</sub> to AGND with a  $0.1\mu$ F capacitor in parallel with a  $1\mu$ F to  $10\mu$ F low-ESR capacitor with the smallest capacitor closest to the device. Keep capacitor leads short to minimize stray inductance.

### \_Definitions

### **Integral Nonlinearity**

Integral nonlinearity (INL) is the deviation of the values on an actual transfer function from a straight line. This straight line can be either a best-straight-line fit or a line drawn between the end points of the transfer function, once offset and gain errors have been nullified. The static linearity parameters for the MAX1165/MAX1166 are measured using the end-point method.

### **Differential Nonlinearity**

Differential nonlinearity (DNL) is the difference between an actual step width and the ideal value of 1 LSB. A DNL error specification of  $\pm 1$  LSB guarantees no missing codes and a monotonic transfer function.

### **Aperture Jitter and Delay**

Aperture jitter is the sample-to-sample variation in the time between samples. Aperture delay is the time between the rising edge of the sampling clock and the instant when the actual sample is taken.

### Signal-to-Noise Ratio

For a waveform perfectly reconstructed from digital samples, signal-to-noise ratio (SNR) is the ratio of the full-scale analog input (RMS value) to the RMS quantization error (residual error). The ideal, theoretical minimum analog-to-digital noise is caused by quantization noise error only and results directly from the ADC's resolution (N bits):

### $SNR = (6.02 \times N + 1.76) dB$

where N = 16 bits.

In reality, there are other noise sources besides quantization noise: thermal noise, reference noise, clock jitter, etc. SNR is computed by taking the ratio of the RMS signal to the RMS noise, which includes all spectral components minus the fundamental, the first five harmonics, and the DC offset.

### Signal-to-Noise Plus Distortion

Signal-to-noise plus distortion (SINAD) is the ratio of the fundamental input frequency's RMS amplitude to the RMS equivalent of all the other ADC output signals:

SINAD (dB) = 
$$20 \times \log \left[ \frac{\text{Signal}_{\text{RMS}}}{(\text{Noise} + \text{Distortion})_{\text{RMS}}} \right]$$

### **Effective Number of Bits**

Effective number of bits (ENOB) indicates the global accuracy of an ADC at a specific input frequency and sampling rate. An ideal ADC's error consists of quantization noise only. With an input range equal to the full-scale range of the ADC, calculate the effective number of bits as follows:

$$\mathsf{ENOB} = \frac{\mathsf{SINAD} - 1.76}{6.02}$$

### **Total Harmonic Distortion**

Total harmonic distortion (THD) is the ratio of the RMS sum of the first five harmonics of the input signal to the fundamental itself. This is expressed as:

THD = 20 × log 
$$\left[\frac{\left(\sqrt{V_2^2 + V_3^2 + V_4^2 + V_5^2}\right)}{V_1}\right]$$

where  $V_1$  is the fundamental amplitude and  $V_2$  through  $V_5$  are the 2nd- through 5th-order harmonics.

### **Spurious-Free Dynamic Range**

Spurious-free dynamic range (SFDR) is the ratio of the RMS amplitude of the fundamental (maximum signal component) to the RMS value of the next largest frequency component.

### Functional Diagram



### \_Ordering Information (continued)

| PART         | TEMP RANGE     | PIN-PACKAGE | INL |
|--------------|----------------|-------------|-----|
| MAX1166ACUP* | 0°C to +70°C   | 20 TSSOP    | ±2  |
| MAX1166BCUP  | 0°C to +70°C   | 20 TSSOP    | ±2  |
| MAX1166CCUP  | 0°C to +70°C   | 20 TSSOP    | ±4  |
| MAX1166AEUP* | -40°C to +85°C | 20 TSSOP    | ±2  |
| MAX1166BEUP* | -40°C to +85°C | 20 TSSOP    | ±2  |
| MAX1166CEUP* | -40°C to +85°C | 20 TSSOP    | ±4  |

\*Future product—contact factory for availability.

**Chip Information** 

TRANSISTOR COUNT: 15,140 PROCESS: BICMOS



MAX1165/MAX1166

### **Package Information**

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to **www.maxim-ic.com/packages**.)



MAX1165/MAX1166

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

#### Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 \_

© 2002 Maxim Integrated Products

Printed USA

is a registered trademark of Maxim Integrated Products.

\_ 15

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.

# **μ** Dual, 5Ω Analog Switches

### **General Description**

The MAX4621/MAX4622/MAX4623 are precision, dual, high-speed analog switches. The single-pole/single-throw (SPST) MAX4621 and double-pole/single-throw (DPST) MAX4623 dual switches are normally open (NO). The single-pole/double-throw (SPDT) MAX4622 has two normally closed (NC) and two NO poles. All three parts offer low 5 $\Omega$  on-resistance guaranteed to match to within 0.5 $\Omega$  between channels and to remain flat over the full analog signal range ( $\Delta 0.5\Omega$  max). They also offer low leakage (<500pA at +25°C, <5nA at +85°C) and fast switching times (turn-on time <250ns, turn-off time <200ns).

These analog switches are ideal in low-distortion applications and are the preferred solution over mechanical relays in automatic test equipment or applications where current switching is required. They have low power requirements, use less board space, and are more reliable than mechanical relays.

The MAX4621/MAX4622/MAX4623 are pin-compatible replacements for the DG401/DG403/DG405, respectively, offering improved overall performance. These monolithic switches operate from a single positive supply (+4.5V to +36V) or with bipolar supplies ( $\pm$ 4.5V to  $\pm$ 18V) while retaining CMOS-logic input compatibility.

Rail-to-Rail is a registered trademark of Nippon Motorola, Ltd.

### Features

- Low On-Resistance: 3 $\Omega$  (typ), 5 $\Omega$  (max)
- Guaranteed Ron Match Between Channels (0.5Ω max)
- Guaranteed Break-Before-Make Operation (MAX4622)
- ♦ Guaranteed Off-Channel Leakage <5nA at +85°C
- Single-Supply Operation (+4.5V to +36V) Bipolar-Supply Operation (±4.5V to ±18V)
- TTL/CMOS-Logic Compatible
- ♦ Rail-to-Rail<sup>®</sup> Analog Signal Handling Capability
- Pin Compatible with DG401/DG403/DG405

### **Applications**

| Reed Relay Replacement   | Mi |
|--------------------------|----|
| Test Equipment           | PB |
| Communication Systems    | Au |
| Data-Acquisition Systems | Av |

Pin Configurations/Functional Diagrams/Truth Tables

Military Radios PBX, PABX Systems Audio-Signal Routing Avionics

### **Ordering Information**

| PART       | TEMP. RANGE  | PIN-PACKAGE    |
|------------|--------------|----------------|
| MAX4621CSE | 0°C to +70°C | 16 Narrow SO   |
| MAX4621CPE | 0°C to +70°C | 16 Plastic DIP |

Ordering Information continued at end of data sheet.



### 

Maxim Integrated Products 1

For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800. For small orders, phone 1-800-835-8769.

### **ABSOLUTE MAXIMUM RATINGS**

(Voltages Referenced to GND) V+ to GND.....-0.3V to +44V

| V+ to V0.3V to +4                                    | 4V  |
|------------------------------------------------------|-----|
| VL to GND0.3V to (V+ + 0.3                           | 3V) |
| All Other Pins to GND (Note 1) (V 0.3V) to (V+ + 0.3 | 3V) |
| Continuous Current (COM_, NO_, NC_)±100r             | nÁ  |
| Peak Current (COM_, NO_, NC_)                        |     |
| (pulsed at 1ms, 10% duty cycle) ±300r                | nΑ  |

| Continuous Power Dissipation (T <sub>A</sub> = | +70°C)            |
|------------------------------------------------|-------------------|
| Narrow SO (derate 8.70mW/°C ab                 | ove +70°C)696mW   |
| Narrow DIP (derate 10.53mW/°C a                | above +70°C)842mW |
| Operating Temperature Ranges                   |                   |
| MAX462_C                                       | 0°C to +70°C      |
| MAX462_E                                       | 40°C to +85°C     |
| Storage Temperature Range                      | 65°C to +150°C    |
| Lead Temperature (soldering, 10se              | c)+300°C          |
|                                                |                   |

Note 1: Signals on NO\_, NC\_, or COM\_ exceeding V+ or V- are clamped by internal diodes. Limit forward-diode current to maximum current rating.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

### **ELECTRICAL CHARACTERISTICS**—Dual Supplies

(V+ = +15V, V- = -15V, V<sub>L</sub> = +5V, GND = 0, V<sub>INH</sub> = +2.4V, V<sub>INL</sub> = +0.8V, T<sub>A</sub> = T<sub>MIN</sub> to T<sub>MAX</sub>, unless otherwise noted. Typical values are at T<sub>A</sub> = +25°C.) (Note 2)

| PARAMETER                                | SYMBOL                                                         | CONDITIONS                                                                         |                                                  | MIN  | TYP                                               | MAX                  | UNITS |      |   |    |
|------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------------------------|--------------------------------------------------|------|---------------------------------------------------|----------------------|-------|------|---|----|
| ANALOG SWITCH                            |                                                                |                                                                                    |                                                  | •    |                                                   |                      |       |      |   |    |
| Input Voltage Range<br>(Note 3)          | V <sub>COM</sub> _,<br>V <sub>NO</sub> _,<br>V <sub>NC</sub> _ |                                                                                    |                                                  | V-   |                                                   | V+                   | V     |      |   |    |
| On-Resistance                            | R <sub>ON</sub>                                                | $I_{COM} = 10mA,$<br>V <sub>NO</sub> or V <sub>NC</sub> = ±10V                     | $T_A = +25^{\circ}C$<br>$T_A = T_{MIN}$ to T_MAX |      | 3                                                 | 5<br>7               | Ω     |      |   |    |
| On-Resistance Match                      |                                                                | ICOM = 10mA.                                                                       | $T_{A} = +25^{\circ}C$                           |      | 0.25                                              | 0.5                  |       |      |   |    |
| (Notes 3, 4)                             | ΔR <sub>ON</sub>                                               | $V_{NO}$ or $V_{NC}$ = ±10V                                                        | TA = TMIN to TMAX                                |      |                                                   | 0.7                  | Ω     |      |   |    |
| On-Resistance Flatness                   |                                                                | DN) I <sub>COM</sub> = 10mA;<br>V <sub>NO</sub> or V <sub>NC</sub> = -5V,<br>0, 5V | $T_A = +25^{\circ}C$                             |      | 0.2                                               | 0.5                  | Ω     |      |   |    |
| (Notes 3, 5)                             | THEAT(ON)                                                      |                                                                                    | $T_A = T_{MIN}$ to $T_{MAX}$                     |      |                                                   | 0.7                  |       |      |   |    |
| Off-Leakage Current                      |                                                                | $V_{NO_{-}}$ or $V_{NC_{-}} = \pm 10V$ ,                                           | $T_A = +25^{\circ}C$                             | -0.5 | 0.01                                              | 0.5                  | nA    |      |   |    |
| (NO_ or NC_) (Note 6)                    | ·INO_, ·INO_                                                   | V <sub>COM</sub> = ∓10V                                                            | $T_A = T_{MIN}$ to $T_{MAX}$                     | -5   |                                                   | 5                    |       |      |   |    |
| COM_ Off-Leakage Current                 |                                                                | $V_{COM} = \pm 10V,$                                                               | $T_A = +25^{\circ}C$                             | -0.5 | 0.01                                              | 0.5                  | nA    |      |   |    |
| (Note 6)                                 |                                                                | $V_{NO}$ or $V_{NC}$ = $\mp 10V$                                                   | $T_A = T_{MIN}$ to $T_{MAX}$                     | -5   |                                                   | 5                    |       |      |   |    |
| COM_ On-Leakage Current                  |                                                                |                                                                                    |                                                  |      | $V_{COM} = \pm 10V$ ,<br>VALO OF VALO = $\pm 10V$ | $T_A = +25^{\circ}C$ | -1    | 0.02 | 1 | nA |
| (Note 6)                                 | 100M_(0N)                                                      | or floating                                                                        | TA = TMIN to TMAX                                | -10  |                                                   | 10                   |       |      |   |    |
| LOGIC INPUT                              |                                                                |                                                                                    |                                                  |      |                                                   |                      |       |      |   |    |
| Input Current with Input<br>Voltage High | linh                                                           | $V_{IN} = 2.4V$                                                                    |                                                  | -0.5 | 0.001                                             | 0.5                  | μA    |      |   |    |
| Input Current with Input<br>Voltage Low  | linl                                                           | VIN_ = 0.8V                                                                        |                                                  | -0.5 | 0.001                                             | 0.5                  | μA    |      |   |    |
| Logic Input Voltage High                 | Vinh                                                           |                                                                                    |                                                  | 2.4  |                                                   |                      | V     |      |   |    |
| Logic Input Voltage Low                  | VINL                                                           |                                                                                    |                                                  |      |                                                   | 0.8                  | V     |      |   |    |

### **ELECTRICAL CHARACTERISTICS—Dual Supplies (continued)**

(V+ = +15V, V- = -15V, V<sub>L</sub> = +5V, GND = 0, V<sub>INH</sub> = +2.4V, V<sub>INL</sub> = +0.8V, T<sub>A</sub> = T<sub>MIN</sub> to T<sub>MAX</sub>, unless otherwise noted. Typical values are at T<sub>A</sub> = +25°C.) (Note 2)

| PARAMETER                                      | SYMBOL    | CONDITIONS                                                  |                                                                      | MIN  | TYP   | MAX   | UNITS |
|------------------------------------------------|-----------|-------------------------------------------------------------|----------------------------------------------------------------------|------|-------|-------|-------|
| POWER SUPPLY                                   |           |                                                             |                                                                      |      |       |       | I     |
| Power-Supply Range                             |           |                                                             |                                                                      | ±4.5 |       | ±20.0 | V     |
| Desitive Supply Current                        | 1.        |                                                             | $T_A = +25^{\circ}C$                                                 | -0.5 | 0.001 | 0.5   |       |
| Fositive Supply Current                        | 1+        | VIN = 0.012                                                 | $T_A = T_{MIN}$ to $T_{MAX}$                                         | -5   |       | 5     | μΑ    |
| Negative Supply Current                        | 1         | $V_{\rm INI} = 0 \text{ or } 5V_{\rm I}$                    | $T_A = +25^{\circ}C$                                                 | -0.5 | 0.001 | 0.5   |       |
| Negative Supply Current                        | 1-        | VIN_ = 0 01 3 V                                             | $T_A = T_{MIN}$ to $T_{MAX}$                                         | -5   |       | 5     | μΑ    |
| Logic Supply Current                           | h         | $V_{\rm INI} = 0 \text{ or } 5V_{\rm I}$                    | $T_A = +25^{\circ}C$                                                 | -0.5 | 0.001 | 0.5   |       |
| Logic Supply Current                           | IL.       |                                                             | $T_A = T_{MIN}$ to $T_{MAX}$                                         | -5   |       | 5     | μΑ    |
| Ground Current                                 |           | $V_{\rm H} = 0 \text{ or } 5V$                              | $T_A = +25^{\circ}C$                                                 | -0.5 | 0.001 | 0.5   | μA    |
|                                                | GND       | VIN_ = 0 01 3 V                                             | $T_A = T_{MIN}$ to $T_{MAX}$                                         | -5   |       | 5     |       |
| SWITCH DYNAMIC CHARAC                          | TERISTICS |                                                             |                                                                      |      |       |       | •     |
| Turn On Timo                                   | ton       | $V_{COM} = \pm 10V,$                                        | $T_A = +25^{\circ}C$                                                 |      | 120   | 250   | ns    |
|                                                | UN        | Figure 2                                                    | $T_A = T_{MIN}$ to $T_{MAX}$                                         |      |       | 325   | 115   |
| Turn-Off Time                                  | tore      | $V_{COM} = \pm 10V$ ,                                       | $T_A = +25^{\circ}C$                                                 |      | 90    | 200   | ns    |
|                                                | UFF       | Figure 2                                                    | $T_A = T_{MIN}$ to $T_{MAX}$                                         |      |       | 275   |       |
| Break-Before-Make Time<br>Delay (MAX4622 only) | tD        | $V_{COM} = \pm 10V$ , Figure                                | e 3, T <sub>A</sub> = +25°C                                          | 5    | 25    |       | ns    |
| Charge Injection                               | Q         | $C_L = 1.0$ nF, $V_{GEN} = 0$<br>T <sub>A</sub> = +25°C     | $C_L$ = 1.0nF, $V_{GEN}$ = 0, $R_{GEN}$ = 0, Figure 4, $T_A$ = +25°C |      | 480   |       | рС    |
| Off-Isolation (Note 7)                         | Viso      | $R_L = 50\Omega$ , f = 1MHz, F                              | $R_L = 50\Omega$ , f = 1MHz, Figure 5, T <sub>A</sub> = +25°C        |      | -62   |       | dB    |
| Crosstalk (Note 8)                             | VCT       | $R_L = 50\Omega$ , f = 1MHz, Figure 6, $T_A = +25^{\circ}C$ |                                                                      |      | -60   |       | dB    |
| NC_ or NO_ Capacitance                         | COFF      | f = 1MHz, Figure 7, $T_A$ = +25°C                           |                                                                      |      | 34    |       | pF    |
| COM_ Off-Capacitance                           | Ссом      | f = 1MHz, Figure 7, T <sub>A</sub>                          | $f = 1MHz$ , Figure 7, $T_A = +25^{\circ}C$                          |      | 34    |       | pF    |
| On-Capacitance                                 | Ссом      | f = 1MHz, Figure 8, TA                                      | λ = +25°C                                                            |      | 150   |       | pF    |

### ELECTRICAL CHARACTERISTICS—Single Supply

(V+ = +12V, V- = 0, V<sub>L</sub> = +5V, GND = 0, V<sub>INH</sub> = +2.4V, V<sub>INL</sub> = +0.8V, T<sub>A</sub> = T<sub>MIN</sub> to T<sub>MAX</sub>, unless otherwise noted. Typical values are T<sub>A</sub> = +25°C.) (Note 2)

| PARAMETER                                               | SYMBOL                                                         | COND                                                                                    | MIN                           | ТҮР  | MAX   | UNITS |       |
|---------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------|------|-------|-------|-------|
| ANALOG SWITCH                                           |                                                                |                                                                                         |                               |      |       |       |       |
| Input Voltage Range<br>(Note 3)                         | V <sub>COM</sub> _,<br>V <sub>NO</sub> _,<br>V <sub>NC</sub> _ |                                                                                         |                               | GND  |       | V+    | V     |
| On-Besistance                                           | BON                                                            | ICOM_ = 10mA,                                                                           | $T_A = +25^{\circ}C$          |      | 5.5   | 8     | 0     |
| On-nesistance                                           | HON                                                            | $V_{NO}$ or $V_{NC}$ = 10V                                                              | $T_A = T_{MIN}$ to $T_{MAX}$  |      |       | 10    | 32    |
| On-Resistance Match<br>Between Channels<br>(Notes 3, 4) | ΔRon                                                           | $I_{COM}$ = 10mA, $V_{NO}$ or<br>T <sub>A</sub> = +25°C                                 | V <sub>NC</sub> _ = 10V,      |      | 0.2   | 0.5   | Ω     |
| On-Resistance Flatness<br>(Notes 3, 5)                  | RFLAT(ON)                                                      | $I_{COM}$ = 10mA; $V_{NO}$ or<br>T <sub>A</sub> = +25°C                                 | V <sub>NC</sub> = 3V, 6V, 9V; |      | 0.9   | 1.3   | Ω     |
| NO_ or NC_ Off-Leakage                                  | INO_(OFF),                                                     | VCOM_ = 1V, 10V;                                                                        | $T_A = +25^{\circ}C$          | -0.5 | 0.01  | 0.5   | n۸    |
| Current (Notes 6, 9)                                    | INC_(OFF)                                                      | $V_{NO}$ or $V_{NC}$ = 10V, 1V                                                          | $T_A = T_{MIN}$ to $T_{MAX}$  | -5   |       | 5     | ПА    |
| COM_ Off-Leakage Current                                |                                                                | $M_{OFF} = 10V, 1V; V_{NO_{OF}} = 10V, 1V; V_{NO_{O}} \text{ or } V_{NC_{O}} = 1V, 10V$ | $T_A = +25^{\circ}C$          | -0.5 | 0.01  | 0.5   | - nA  |
| (Notes 6, 9)                                            |                                                                |                                                                                         | $T_A = T_{MIN}$ to $T_{MAX}$  | -5   |       | 5     |       |
| COM_ On-Leakage Current                                 | ICOM_(ON)                                                      | $V_{COM}$ = 10V, 1V;<br>$V_{NO}$ or $V_{NC}$ = 10V,<br>1V, or floating                  | T <sub>A</sub> = +25°C        | -1   | 0.02  | 1     | - nA  |
| (Notes 6, 9)                                            |                                                                |                                                                                         | $T_A = T_{MIN}$ to $T_{MAX}$  | -10  |       | 10    |       |
| LOGIC INPUT                                             |                                                                |                                                                                         | L                             | 1    |       |       |       |
| Input Current with Input<br>Voltage High                | linh                                                           | V <sub>IN_</sub> = 2.4V                                                                 |                               | -0.5 | 0.001 | 0.5   | μA    |
| Input Current with Input<br>Voltage Low                 | I <sub>INL</sub>                                               | V <sub>IN_</sub> = 0.8V                                                                 |                               | -0.5 | 0.001 | 0.5   | μA    |
| Logic Input Voltage High                                | Vinh                                                           |                                                                                         |                               | 2.4  |       |       | V     |
| Logic Input Voltage Low                                 | Vinl                                                           |                                                                                         |                               |      |       | 0.8   | V     |
| POWER SUPPLY                                            |                                                                |                                                                                         |                               |      |       |       |       |
| Power-Supply Range                                      |                                                                |                                                                                         |                               | 4.5  |       | 36.0  | V     |
| Positive Supply Current                                 | 1+                                                             | $V_{\rm INI} = 0 \text{ or } 5V$                                                        | TA = +25°C                    | -0.5 | 0.001 | 0.5   | ΠА    |
|                                                         |                                                                |                                                                                         | $T_A = T_{MIN}$ to $T_{MAX}$  | -5   |       | 5     |       |
| Logic Supply Current                                    | l li                                                           | $V_{INI} = 0 \text{ or } 5V$                                                            | $T_A = +25^{\circ}C$          | -0.5 | 0.001 | 0.5   | uА    |
| ouppi, ourout                                           | ·L                                                             |                                                                                         | TA = TMIN to TMAX             | -5   |       | 5     | F"' ' |
| Ground Current                                          | IGND                                                           | $V_{IN} = 0 \text{ or } 5V$                                                             | $T_A = +25^{\circ}C$          | -0.5 | 0.001 | 0.5   | μA    |
|                                                         | GND                                                            | ····                                                                                    | $T_A = T_{MIN}$ to $T_{MAX}$  | -5   |       | 5     | P 1   |

### ELECTRICAL CHARACTERISTICS—Single Supply (continued)

(V+ = +12V, V- = 0, V<sub>L</sub> = +5V, GND = 0, V<sub>INH</sub> = +2.4V, V<sub>INL</sub> = +0.8V, T<sub>A</sub> = T<sub>MIN</sub> to T<sub>MAX</sub>, unless otherwise noted. Typical values are T<sub>A</sub> = +25°C.) (Note 2)

| PARAMETER                                                  | SYMBOL              | COND                                                     | ITIONS                                | MIN | TYP | MAX | UNITS |
|------------------------------------------------------------|---------------------|----------------------------------------------------------|---------------------------------------|-----|-----|-----|-------|
| SWITCH DYNAMIC CHARACTERISTICS                             |                     |                                                          |                                       |     |     |     |       |
| Turn-On Time (Note 3)                                      | n Time (Note 3) ton |                                                          | $T_A = +25^{\circ}C$                  |     | 200 | 350 |       |
|                                                            | LON                 |                                                          | $T_A = T_{MIN}$ to $T_{MAX}$          |     |     | 475 | 115   |
| Turn-Off Time (Note 3)                                     | torr                | $V_{COM} = 10V$ Figure 2                                 | $T_A = +25^{\circ}C$                  |     | 100 | 200 | ne    |
|                                                            | UFF                 |                                                          | $T_A = T_{MIN}$ to $T_{MAX}$          |     |     | 300 | 115   |
| Break-Before-Make Time<br>Delay (MAX4622 only)<br>(Note 3) | tD                  | $R_L$ = 100Ω, $C_L$ = 35pF, Figure 3, $T_A$ = +25°C      |                                       | 10  | 75  |     | ns    |
| Charge Injection                                           | Q                   | $C_L = 1.0nF$ , $V_{GEN} = 0$ , $R_{GEN} = 0$ , Figure 4 |                                       |     | 45  |     | рС    |
| Off-Isolation (Note 7)                                     | VISO                | $R_L = 50\Omega$ , f = 1MHz, Figure 5                    |                                       |     | -62 |     | dB    |
| Crosstalk (Note 8)                                         | VCT                 | $R_L = 50\Omega$ , f = 1MHz, Fig                         | $R_L = 50\Omega$ , f = 1MHz, Figure 6 |     | -60 |     | dB    |

**Note 2:** The algebraic convention, where the most negative value is a minimum and the most positive value is a maximum, is used in this data sheet.

Note 3: Guaranteed by design.

**Note 4:**  $\Delta R_{ON} = R_{ON}MAX - R_{ON}MIN$ .

**Note 5:** Flatness is defined as the difference between the maximum and minimum values of on-resistance as measured over the specified analog signal range.

Note 6: Leakage currents are 100% tested at the maximum-rated hot temperature and guaranteed by correlation at +25°C.

Note 7: Off-isolation =  $20\log_{10} [V_{COM_{-}} (V_{NC_{-}} \text{ or } V_{NO_{-}}]]$ .  $V_{COM_{-}} = \text{output}$ ,  $V_{NC_{-}} \text{ or } V_{NO_{-}} = \text{input to off switch}$ .

Note 8: Between any two switches.

Note 9: Leakage testing for single-supply operation is guaranteed by testing with dual supplies.



M/IXI/N

MAX4621/MAX4622/MAX4623

### \_Applications Information

### Operation with Supply Voltages Other than ±15V

The MAX4621/MAX4622/MAX4623 switches operate with  $\pm$ 4.5V to  $\pm$ 18V bipolar supplies and a +4.5V to +36V single supply. In either case, analog signals ranging from V+ to V- can be switched. The *Typical Operating Characteristics* graphs show the typical on-resistance variation with analog signal and supply voltage.

### **Overvoltage Protection**

Proper power-supply sequencing is recommended for all CMOS devices. It is important not to exceed the absolute maximum ratings because stresses beyond the listed ratings may cause permanent damage to the devices. Always sequence V+ on first, followed by V<sub>L</sub>, V-, and logic inputs. If power-supply sequencing is not possible, add two small signal diodes in series with the supply pins and a Schottky diode between V+ and V<sub>L</sub> (Figure 1). Adding diodes reduces the analog signal range to 1V below V+ and 1V above V-, but low switch resistance and low leakage characteristics are unaffected. The difference between V+ and V- should not exceed +44V.



Figure 1. Overvoltage Protection Using Blocking Diodes

| PIN         | NAME          | FUNCTION                                |
|-------------|---------------|-----------------------------------------|
| MAX4621     |               |                                         |
| 1, 8        | COM1,<br>COM2 | Switch Common Terminal                  |
| 2–7         | N.C.          | Not internally connected                |
| 9, 16       | NO2, NO1      | Switch Normally Open<br>Terminal        |
| 10, 15      | IN2, IN1      | Digital Logic Inputs                    |
| 11          | V+            | Positive Supply-Voltage Input           |
| 12          | VL            | Logic Supply-Voltage Input              |
| 13          | GND           | Ground                                  |
| 14          | V-            | Negative Supply Voltage<br>Input        |
| MAX4622     |               |                                         |
| 1, 3, 6, 8  | COM_          | Switch Common Terminal                  |
| 2, 7        | N.C.          | Not internally connected                |
| 4, 5, 9, 16 | NC_, NO_      | Switch Normally Closed/Open<br>Terminal |
| 10, 15      | IN2, IN1      | Digital Logic Inputs                    |
| 11          | V+            | Positive Supply-Voltage Input           |
| 12          | VL            | Logic Supply-Voltage Input              |
| 13          | GND           | Ground                                  |
| 14          | V-            | Negative Supply Voltage<br>Input        |
| MAX4623     |               |                                         |
| 1, 3, 6, 8  | COM_          | Switch Common Terminal                  |
| 2, 7        | N.C.          | Not internally connected                |
| 4, 5, 9, 16 | NO_           | Switch Normally Open<br>Terminal        |
| 10, 15      | IN2, IN1      | Digital Logic Inputs                    |
| 11          | V+            | Positive Supply-Voltage Input           |
| 12          | VL            | Logic Supply-Voltage Input              |
| 13          | GND           | Ground                                  |
| 14          | V-            | Negative Supply Voltage                 |

### **Pin Description**

MAX4621/MAX4622/MAX4623



 $C_{L2}$ 

 $R_L = 100 \Omega$ 

 $C_I = 35 pF$ 

C<sub>L1</sub>

0

0

 $V_{02}$ 

tp

V<sub>COM</sub>

SWITCH

OUTPUT

SWITCH

OUTPUT

Figure 3. MAX4622 Break-Before-Make Test Circuit

LOGIC 0 INPUT.

GND

0

V-

-15V

CL INCLUDES FIXTURE AND STRAY CAPACITANCE.

IN\_

Л

LOGIC

INPUT



Figure 4. Charge-Injection Test Circuit

M/X/M

0.9V<sub>0</sub>

tn

0.9V<sub>0</sub>



-15V

-

±

Figure 8. Channel-Off Capacitance

Figure 7. Channel-On Capacitance



-15V

-

| PART       | TEMP. RANGE    | PIN-PACKAGE    |
|------------|----------------|----------------|
| MAX4621ESE | -40°C to +85°C | 16 Narrow SO   |
| MAX4621EPE | -40°C to +85°C | 16 Plastic DIP |
| MAX4622CSE | 0°C to +70°C   | 16 Narrow SO   |
| MAX4622CPE | 0°C to +70°C   | 16 Plastic DIP |
| MAX4622ESE | -40°C to +85°C | 16 Narrow SO   |
| MAX4622EPE | -40°C to +85°C | 16 Plastic DIP |
| MAX4623CSE | 0°C to +70°C   | 16 Narrow SO   |
| MAX4623CPE | 0°C to +70°C   | 16 Plastic DIP |
| MAX4623ESE | -40°C to +85°C | 16 Narrow SO   |
| MAX4623EPE | -40°C to +85°C | 16 Plastic DIP |
|            |                |                |

### **Ordering Information (continued)**

**Chip Information** 

TRANSISTOR COUNT: 82

### Package Information



MAX4621/MAX4622/MAX4623

M/IXI/M



### Package Information (continued)

NOTES

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

12

\_\_\_\_Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

© 1999 Maxim Integrated Products

Printed USA

is a registered trademark of Maxim Integrated Products.

The Design Of An Embedded Controller For An Automated Volt-Drop Test

# A Collection Of Screen Captures And Notes

Name: Sunveer Matadin

Student Number: 2001 027 41

The Design Of An Embedded Controller For An Automated Volt-Drop Test

# The Graphic User Interface (GUI)



Click To Print Print

Click To Save-Save

| User Identification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Fault Log                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| Password                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      |
| New Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      |
| Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      |
| ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      |
| Armature Properties                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      |
| Armature Select                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      |
| New Armature Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      |
| Add New                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      |
| Number Of Commutator Bars Armature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      |
| Click To Bemove Highlighted Armsture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Conrtols Test Status                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Bar Under Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      |
| Job Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | LOAD END Continue After EMERGENCY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Error Pause STOP Bars Hemaining                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | _ Cli                |
| ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Eaults   opped                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | - 1                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      |
| Test Option                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      |
| Test Option<br>Choose an Operating<br>Option C Automated Operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Error Status                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      |
| Test Option<br>Choose an Operating<br>Option C Manual Operation<br>C Automated Operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Error Status                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      |
| Test Option Choose an Operating Option C Manual Operation C Automated Operation Test Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Error Status  Error 1  Error 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      |
| Test Option<br>Choose an Operating<br>Option<br>Test Parameter<br>Percentage Variance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Error Status<br>Error 1<br>Error 2<br>Error 2 |                      |
| Test Option Choose an Operating Option C Manual Operation C Automated Operation Test Parameter Percentage Variance Add New Yolden                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Error Status<br>Error 1<br>Error 2<br>Error 2<br>Error 2<br>Error 2<br>Error 2<br>Error 4<br>On entering the correct password, the "User<br>Profile Setup" frame is made available.<br>Searching                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | – Or<br>– De         |
| Test Option Choose an Operating Option Choose an Operating C Manual Operation C Automated Operation Test Parameter Percentage Variance Add New Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Error Status<br>Error 1<br>Error 2<br>Error 3<br>Error 4<br>Con entering the correct password, the "User<br>Profile Setup" frame is made available.<br>Searching                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      |
| Test Option Choose an Operating Option Choose an Operating Chouse an Operating Chouse an Operation Chouse | Error Status  Error 1  Error 2  Error 2  Error 2  Error 2  Error 2  Error 1  Error 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      |
| Test Option Choose an Operating Option Choose an Operating Choose an Operating Choose an Operation Choose | Error Status       Manual Test         Error 1       Error 2         Error 1       Error 2         Funct       On entering the correct password, the "User Profile Setup" frame is made available.         Image: Status       Image: Status         Manual Reading Controls       GUI Special Function Controls         View/Change Directory Path Settings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      |
| Test Option Choose an Operating Option Choose an Operating Choose an Operating Choose an Operation Add New Value Click To Remove Highlighted Value Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Error Status       Manual Test         Error 1       Error 2         Error 1       Error 2         For 2       Free 4         On entering the correct password, the "User Profile Setup" frame is made available.         Profile Setup" frame is made available.         Searching         Manual Reading Controls         Click To Take Reading         Reading Prompt         View Controls         View Settings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |
| Test Option Choose an Operating Option Choose an Operating Chouse an Operating Chouse an Operation Chouse | Error Status       Manual Test         Error 1       Error 2         Function       On entering the correct password, the "User Profile Setup" frame is made available.         Searching         Manual Reading Controls         Click To Take Reading         Reading Prompt         View Controls         View Settings         User Profile Setup                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |
| Test Option Choose an Operating Option Choose an Operating Choose an Operating Choose an Operation Choose an Operation Choose an Operation Choose an Operating Choose an Operating Add New Value Click To Remove Highlighted Value Date Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Error Status       Manual Test         Error 1       Error 2         Error 1       Error 2         Profile Setup" frame is made available.         Searching         Manual Reading Controls         Click To Take Reading         Manual Reading         Reading         Reading         Wanual Reading         Wanual Reading         User Profile Setup                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |
| Test Option Choose an Operating Option Choose an Operating Choose an Operating Choose an Operation Choose an Operation Choose an Operation Choose an Operating Add New Value Click To Remove Highlighted Value Date Time Test Started                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Error Status       Manual Test         Error 1       Error 2         Error 1       Error 2         Profile Setup" frame is made available.         Searching         Manual Reading Controls         Click To Take Reading         Manual Reading         Reading Prompt         View Controls         View Settings         User Profile Setup         User Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Enter N              |
| Test Option Choose an Operating Option Choose an Operating Add New Value Click To Remove Highlighted Value Date Time Test Started Test Ended                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Error Status       Manual Test         Error 1       Error 2         For 2       Error 4         On entering the correct password, the "User Profile Setup" frame is made available.         Searching         Manual Reading Controls         Click To Take Reading         Manual Reading Prompt         Manual Reading         Reading Prompt         Wiew Controls         View Settings         User Profile Setup         User Nonie Setup         User Name         Password                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Enter N<br>Delete    |
| Test Option<br>Choose an Operating<br>Option<br>Test Parameter<br>Percentage Variance<br>Add New Value<br>Click. To Remove Highlighted Value<br>Date<br>Time<br>Test Started<br>Test Ended                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Error Status       Manual Test         Error 1       Error 2         Error 1       Error 2         For 1       Error 2         On entering the correct password, the "User Profile Setup" frame is made available.         Searching         Manual Reading Controls         Manual Reading Controls         Manual Reading                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Enter No<br>Exit Use |
- Test Status -

View/Change Directory Path Settings

User Name Sunveer Matadin

View Settings

Password \*\*\*\*\*\*

Confirm Password

User Profile Setup

Bar Under Test

Bars Remaining

Faults Logged

Manual Test

Reading

Automated Test

Enter a New User Name and Password and then Confirm the Password

-Click To Print-

Print

Click To Save-

Open

-Open-

Enter New User

Delete User

Exit User Setup

| t Setup Fields                                      | Test In Progress Fields                               |
|-----------------------------------------------------|-------------------------------------------------------|
| User Identification                                 | Fault Log                                             |
| Password                                            |                                                       |
| New Test                                            |                                                       |
| Name                                                |                                                       |
| Armature Properties                                 |                                                       |
| Armature Select                                     |                                                       |
| Add New                                             |                                                       |
| Number Of Commutator Bars Armature                  |                                                       |
| Click To Remove Highlighted Armature                | Contols                                               |
| Job Number                                          | LOAD END Continue After EMERGENCY<br>Error Pause STOP |
| Test Option                                         |                                                       |
| Choose an Operating<br>Option C Automated Operation | Error Status                                          |
| Test Brownelse                                      |                                                       |
| Percentage Variance                                 | Error 1 Error 2 Error 3 Error 4                       |
|                                                     |                                                       |
| Add New Value                                       |                                                       |
| Click To Remove Highlighted Value                   | - Manual Bearing Controls                             |
| Date                                                |                                                       |
|                                                     |                                                       |
| Time                                                | Manual Reading                                        |
| Test Started                                        | User                                                  |
| Ted Federal                                         | Pas                                                   |
|                                                     | Exit View Lalibration Screen Confirm Pa               |
| Test Duration                                       |                                                       |

| User I dentification   Pessword   Name   Amature Status   Amature Steet   Add Nevy   Number Of Commutator Bars   Add Nevy   Add Nevy   Contols   Error Paused   Ferror Status   Dotion   Choose an Operating   Automated Operation   Dotion   Contols   Error 1   Error 2   Error 3   Error 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Test Status       Click         Bars Remaining       Click         Faults Logged       Click                                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| Password   Name   Name   Amature Properties   Amature Select   New Amature Name   Number DI Commutator Bars   Add New   Cick. To Remove Highlighted Ameture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EMERGENCY       Test Status       Clic         Bars Remaining       Emergency       Clic         Faults Logged       Clic        |
| New Test     Name     Armature Properties   Armature Select   New Armature Name   Mew Armature Select   Number Of Commutator Bars   Add New   Click To Remove Highlighted Armature   Job Number   Click To Remove Highlighted Armature   LOAD   Enror Pause   Test Option   Choose an Operating   C Menual Operation   Dation   Choose an Operating   C Menual Operation   Test Parameter   Percentage Variance   Add New Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Test Status       Clin         Bar Under Test       Bars Remaining         STOP       Faults Logged                              |
| New Test   Name   Armature Properties   Armature Select   New Armature Name   Add New   Number DI Commutator Bas   Add New   Add New   Add New   Add New   Controls                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Test Status       Clic         Bar Under Test       Bars Remaining         STOP       Faults Logged                              |
| Name   Armature Properties   Armature Select   New Armature Name   Add New   Add New   Add New Value     Controls     Continue After   Percentage Valiance     Add New Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Test Status       Clic         Bar Under Test       Bars Remaining         STOP       Faults Logged                              |
| Name   Armature Properties   Armature Select   Number Of Commutator Bars   Add New   Click To Remove Highlighted Armature     Job Number   LOAD   End   Choose an Operating   Merual Operation   Choose an Operating   Marual Operation   Test Option   Choose an Operating   Marual Operation   Test Parameter   Percentage Variance   Add New Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | EMERGENCY       Test Status       Clic         Bars Remaining       Emergency       Clic         Faults Logged       Clic        |
| Armature Properties   Armature Select   Number Of Commutator Bars   Cick. To Remove Highlighted Armature   Job Number   Cick. To Remove Highlighted Armature   LOAD   END   Continue After   Error Pause   Test Option   Choose an Operating   Manuel Operation   Dotion   Choose an Operating   Manuel Operation   Test Parameter   Percentage Variance   Add New Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | EMERGENCY       STOP         Faults Logged       Clic                                                                            |
| Armature Properties   Armature Select   Number Of Commutator Bars   Click. To Remove Highlighted Armature   Click. To Remove Highlighted Armature   LOAD   End   Controls     Controls     LOAD   End   Continue After   Percentage Variance   Add New Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | EMERGENCY       STOP         Faults Logged       Click                                                                           |
| Atmature Properties         Armature Select         New Armature Name         Circk To Remove Highlighted Armature         Circk To Remove Highlighted Armature         Job Number         Controls         LOAD       END         Continue After Error Pause         Test Option         Choose an Operating         Automated Operation         Percentage Variance         Add New Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EMERGENCY<br>STOP<br>Faults Logged                                                                                               |
| Armature Select     Number Of Commutator Bars     Add New     Armature     Citck To Remove Highlighted Armature     Job Number     Contols     LOAD   End     Continue After   Choose an Operating   Automated Operation   Otick To Remove Highlighted Armature     LoAD   Enror Status     Enror 1   Enror 2   Enror 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | EMERGENCY<br>STOP     Test Status     Clicit       Bars Remaining     Clicit       Faults Logged     Clicit                      |
| Number Of Commutator Bars   Citck. To Remove Highlighted Armature     Job Number   LOAD   END   Continue After   Error Pause     Error Status   Option   Choose an Operating   Add New Value     Firor Status     Error 1   Error 2   Error 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | EMERGENCY<br>STOP     Test Status     Click       Bars Remaining                                                                 |
| Add Newy   Armature   Click To Remove Highlighted Armature     Job Number     Job Number     LOAD   End     Continue After   Choose an Operating   Manual Operation   Option   Choose an Operating   Automated Operation   Ferror 1   Error 2   Error 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | EMERGENCY     Bars Remaining     Click       STOP     Faults Logged     Click                                                    |
| Circk: To Remove Highlighted Armature     Job Number     Job Number     LOAD   END   Continue After      Test Option   Choose an Operating   O Manual Operation   Option   Choose an Operating   O Manual Operation   Percentage Variance     Add New Value     Controls     Error 1   Error 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | EMERGENCY<br>STOP                                                                                                                |
| Click To Remove Highlighted Armature         Job Number         Job Number         LOAD       END         Continue After         Choose an Operating          • Menual Operation         Option          • Automated Operation         Test Parameter          Error 1         Error 2         Error 3         Error 4         Erro                                                                                                                                                                                                                                                  | EMERGENCY<br>STOP     Test Status     Click       Bars Remaining                                                                 |
| Click To Remove Highlighted Armature       Job Number       Image: Status and Denation       Choose an Operating       Option       Choose an Operating       Choose an Operating <td>EMERGENCY<br/>STOP     Bars Remaining     Click       Faults Logged     Click</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | EMERGENCY<br>STOP     Bars Remaining     Click       Faults Logged     Click                                                     |
| Job Number       LOAD       END       Continue After Error Pause         Test Option                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | EMERGENCY<br>STOP<br>Bars Remaining<br>Faults Logged                                                                             |
| Test Option          C Manual Operation         Option         C Automated Operation         Option         C Automated Operation         C Automated Operat     | STOP Bars Remaining Click                                                                                                        |
| Test Option         Choose an Operating         Option         Percentage Variance         Add New Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Faults Logged                                                                                                                    |
| Test Option          Choose an Operating         Option         O                     |                                                                                                                                  |
| Choose an Operating Choose an Operating Automated Operation  Test Parameter  Percentage Variance  Add New Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                  |
| Test Parameter     Error 1     Error 2     Error 3       Percentage Variance     Add New Value     Error 1     Error 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Manual TestOpe                                                                                                                   |
| Test Parameter     Error 1     Error 2     Error 3       Percentage Variance     Add New Value     Error 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Error 4 Automated Test                                                                                                           |
| Percentage Variance     Image: Construction of the second se | Error                                                                                                                            |
| Add New Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Set a Default Directory Path using the                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | frame below                                                                                                                      |
| Click To Remove Highlighted Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                  |
| Manual Reading Controls                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ction Controls T Directory Path                                                                                                  |
| Date Click To Take Reading Prompt View C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ntrols                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ana.frm<br>ana.ybp                                                                                                               |
| Manual Reading                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | age ubu                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Exit Settings M.Sc. Design ana2.frm                                                                                              |
| l est Started                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Exit Settings                                                                                                                    |
| Test Ended View Calibration Screen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Exit Settings A.Sc. Design<br>M.Sc. Design<br>M.Sc Only<br>View Default Path<br>Backup of PCP1                                   |
| Test Duration Exit Calibration Setup                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Exit Settings A.Sc. Design<br>Animation.fm<br>View Default Path<br>View Selected Path Change Default Path<br>Change Default Path |

## The GUI Start-up Screen

| Password                                                                   |                                                           |                     |
|----------------------------------------------------------------------------|-----------------------------------------------------------|---------------------|
|                                                                            |                                                           |                     |
|                                                                            | New Test                                                  |                     |
| Name                                                                       |                                                           |                     |
|                                                                            |                                                           |                     |
|                                                                            |                                                           |                     |
| Armature Proper                                                            | ties                                                      |                     |
| Armature Select                                                            | Name                                                      | <b>T</b>            |
| New Annature                                                               | Name                                                      |                     |
| •<br>• Number Of Cor                                                       | mmutator Bars                                             | Add New<br>Armature |
|                                                                            |                                                           |                     |
| Click T                                                                    | o Bernove Highlighted /                                   | Armature            |
|                                                                            |                                                           |                     |
| lob Number —                                                               |                                                           |                     |
|                                                                            |                                                           |                     |
| Fest Option                                                                |                                                           |                     |
| Choose an Op                                                               | erating C Manu                                            | al Operation        |
| Option                                                                     | C Auton                                                   | nated Operation     |
| option                                                                     |                                                           |                     |
| Test Parameter-                                                            |                                                           |                     |
| Fest Parameter-                                                            | ariance                                                   | Y                   |
| Fest Parameter                                                             | ariance<br>Add New V                                      | /alue               |
| Fest Parameter-                                                            | ariance<br>Add New Y                                      | /alue               |
| Percentage V                                                               | ariance<br>Add New \<br>To Remove Highlighte              | Value<br>d Value    |
| Test Parameter<br>Percentage V.<br>Click                                   | ariance<br>Add New <sup>1</sup><br>5 To Remove Highlighte | Value<br>d Value    |
| Fest Parameter -<br>Percentage V.<br>Circk                                 | ariance<br>Add New \<br>K To Remove Highlighte            | Value<br>d Value    |
| Fest Parameter -<br>Percentage V-<br>Click                                 | ariance<br>Add New <sup>1</sup><br>: To Remove Highlighte | Value               |
| Fest Parameter -<br>Percentage V.<br>Click<br>Date<br>Time<br>Test Started | ariance<br>Add New V<br>To Remove Highlighte              | /alue<br>d Value    |
| Fest Parameter -<br>Percentage V.<br>Circk<br>Date<br>Time<br>Test Started | ariance<br>Add New \<br>To Remove Highlighte              | Value<br>d Value    |

| In Progress Fields |  |  |  |  |
|--------------------|--|--|--|--|
| Fault Log          |  |  |  |  |
|                    |  |  |  |  |
|                    |  |  |  |  |
|                    |  |  |  |  |
|                    |  |  |  |  |
|                    |  |  |  |  |
|                    |  |  |  |  |
|                    |  |  |  |  |
|                    |  |  |  |  |
|                    |  |  |  |  |
|                    |  |  |  |  |
|                    |  |  |  |  |
|                    |  |  |  |  |
|                    |  |  |  |  |
|                    |  |  |  |  |
|                    |  |  |  |  |
|                    |  |  |  |  |
|                    |  |  |  |  |

| Conrtols                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Test Status                                       | Click To Print                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|--------------------------------|
| LOAD END Continue After<br>Error Pause STOP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Bar Under Test<br>Bars Remaining<br>Faults Logged | Print<br>Click To Save<br>Save |
| Error Status                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Manual Test                                       |                                |
| Error 1 Error 2 Error 3 Error 4 Error 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Automated Test Reading Searching                  | Delete                         |
| GUI Special Fuction Controls                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ectory Path Settings                              |                                |
| Click To Take Reading<br>Manual Reading<br>University of the second sec | ings<br>Setup                                     |                                |
| Exit View Calibration Screen Calibration Setup                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                   |                                |

| Test Setup Fields         | Enter Password and cli    | ck "Enter"                            |                               |                           |                       |                   |                |
|---------------------------|---------------------------|---------------------------------------|-------------------------------|---------------------------|-----------------------|-------------------|----------------|
| User Identification       | /                         | - Fault Log                           |                               |                           |                       |                   |                |
| Password                  |                           |                                       |                               |                           |                       |                   |                |
|                           |                           |                                       |                               |                           |                       |                   |                |
| Enter                     |                           |                                       |                               |                           |                       |                   |                |
| Name                      |                           |                                       |                               |                           |                       |                   |                |
|                           |                           |                                       |                               |                           |                       |                   |                |
|                           |                           |                                       |                               |                           |                       |                   |                |
| Armature Properties       |                           |                                       |                               |                           |                       |                   |                |
| New Armature Name         |                           |                                       |                               |                           |                       |                   |                |
|                           | Add New                   |                                       |                               |                           |                       |                   |                |
| Number Of Commutator Bars | Armature                  | , , , , , , , , , , , , , , , , , , , |                               |                           |                       |                   |                |
|                           |                           |                                       |                               |                           |                       |                   |                |
| Click To Remove Highligh  | nted Armature             | Conrtols                              | 1                             |                           |                       | Bar Under Test    | Click To Print |
| Job Number                |                           | LOAD                                  | Incorrect Password            | × ue After E              | MERGENCY              | Bare Remaining    | Print          |
|                           |                           | Lond                                  | Incorrect Password, Tries lef | t: 1                      | STOP                  | Faulta Langed     | Click To Save  |
| Test Option               |                           |                                       | ОК                            |                           |                       |                   | Save           |
| Choose an Operating       | Manual Operation          | Error Status                          |                               |                           |                       | Manual Test       | Open           |
|                           | Automated Operation       | Error 1                               | Error2                        | Error3                    | Error 4               | Automated Test    | Open           |
| Test Parameter            |                           | Error 1                               | Error 2                       | Error 3                   | Error 4               | - Reading         |                |
| Percentage Variance       | If the Password is        | incorrect, a pop-up                   |                               |                           |                       | Searching         | Delete         |
| Add N                     | lew Va message appears in | nforming the user on                  |                               |                           |                       |                   | Delete         |
| Click To Remove Highli    | the system locks of       | ut. A user has a                      |                               |                           |                       |                   |                |
| _ Date                    | maximum of 3 trie         | s.                                    | - Reading Prompt -            | GUI Special Fuction Contr | View/Change Directo   | ory Path Settings |                |
|                           |                           |                                       |                               |                           |                       | s                 |                |
| - Time                    |                           | Manual Reading                        |                               |                           | View User Profile Set | up                |                |
| Test Started              |                           |                                       |                               |                           | View User Pro         | file              |                |
| ,<br>Test Ended           |                           | - Exit                                | View Calibration Screen       |                           |                       |                   |                |
| ,<br>Test Duration        |                           | Exit                                  | Calibration Setup             |                           |                       |                   |                |
|                           |                           |                                       |                               |                           |                       |                   |                |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Password                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| Enter         Name         Armature Properties         Armature Select         Number Of Commutator Bars         Click To Bemove Highlighted Armature         Ob Number         Click To Bemove Highlighted Armature         ob Number         Ob Option         Choose an Operating         Manual Operation         Option         Choose an Operating         Automated Operation         Option         Click To Remove Highlighted Value         Option         Choose an Operating         Add New Value         Click To Remove Highlighted Value         Add New Value         Click To Remove Highlighted Value         Date         Test Started         Test Started                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                     |
| Name Armature Properties Armature Select New Armature Name Click. To Remove Highlighted Armature Click. To Remove Highlighted Armature Click. To Remove Highlighted Armature Click. To Remove Highlighted Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Enter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                     |
| Name Armature Properties Armature Select  New Armature Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                     |
| Armature Properties Armature Select  Armature Select  New Armature Name  Click To Remove Highlighted Armature  Click To Remove Highlighted Operation  Choose an Operating Option  Choose an Operating Click To Remove Highlighted Value  Test Stated  Test Stated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                     |
| Armature Properties Armature Select  Armature Select  New Armature Name  Click To Remove Highlighted Armature  Click To Remove Highlighted Armature  Click To Remove Highlighted Operation  Choose an Operating Choose an Operatin                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                     |
| Armature Properties Armature Select  Armature Select  Armature Name  Add New  Armature  Click. To Remove Highlighted Value  Click. To Remove Highlighted Value  Add New Value  Click. To Remove Highlighted Value  Add New Value  Click. To Remove Highlighted Value  Test Stated  Test Stated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                     |
| Armature Select       New Armature Name       Number Of Commutator Bars       Click To Remove Highlighted Armature       ob Number       Click To Remove Highlighted Armature       ob Number       Choose an Operating       Option       Click To Remove Highlighted Operation       Percentage Variance       Add New Value       Click To Remove Highlighted Value       Add New Value       Click To Remove Highlighted Value       Yate       Test Started       Test Ended                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Armature Properties                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |
| New Armature Name         Number Of Commutator Bars         Add New Armature         Click. To Remove Highlighted Armature         ob Number         est Option         Choose an Operating Option         Click. To Remove Highlighted Operation         est Parameter         Percentage Variance         Add New Value         Click. To Remove Highlighted Value         Add New Value         Click. To Remove Highlighted Value         Test Started         Test Ended                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Armature Select                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                     |
| Add New<br>Armature<br>Click To Remove Highlighted Armature<br>ob Number<br>est Option<br>Choose an Operating<br>Option<br>Choose an Operating<br>Option<br>Choose an Operating<br>Choose an Operati | New Armature Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                     |
| Number Of Commutator Bars       Armature         Click. To Remove Highlighted Armature         ob Number         est Option         Choose an Operating         Option         Choose an Operating         Automated Operation         Percentage Variance         Click. To Remove Highlighted Value         Add New Value         Click. To Remove Highlighted Value         Pate         Test Started         Test Ended                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Add New                                             |
| Click To Remove Highlighted Armature  Click To Remove Highlighted Armature  Choose an Operating Choose an Operating Choose an Operating Choose an Operating Click To Remove Highlighted Operation  est Parameter  Percentage Variance  Click To Remove Highlighted Value  Click To Remove Highlighted Value  Click To Remove Highlighted Value  Test Started Test Started                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Number Of Commutator Bars                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Armature                                            |
| Click. To Remove Highlighted Armature  ob Number  est Option Choose an Operating Option Choose an Operating Choose an Operation Choose an Operation Choose an Operating Click To Remove Highlighted Value Click To Remove Highlighted Value Click To Remove Highlighted Value Test Started Test Started                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                     |
| ob Number  est Option Choose an Operating Dition Choose an Operating Choose an Operation Choose an Operati                                                                                                                                                                                                                                                                                                                         | Click. To Remove Highlighted A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Armature                                            |
| ob Number  est Option Choose an Operating Option Choose an Operating Choose an Operating Choose an Operation Choose an Operating Choose an Operati                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                     |
| est Option       Choose an Operating       Manual Operation         Option       Choose an Operating       Automated Operation         est Parameter       Automated Operation       Image: Choose an Operation         Percentage Variance       Image: Choose an Operation       Image: Choose an Operation         Add New Value       Choose an Operation       Image: Choose an Operation         Image: Choose an Operation       Image: Choose an Operation       Image: Choose an Operation         Image: Choose an Operation       Image: Choose an Operation       Image: Choose an Operation         Image: Choose an Operation       Image: Choose an Operation       Image: Choose an Operation         Image: Choose an Operation       Image: Choose an Operation       Image: Choose an Operation         Image: Choose an Operation       Image: Choose an Operation       Image: Choose an Operation         Image: Choose an Operation       Image: Choose an Operation       Image: Choose an Operation         Image: Choose an Operation       Image: Choose an Operation       Image: Choose an Operation         Image: Choose an Operation       Image: Choose an Operation       Image: Choose an Operation         Image: Choose an Operation       Image: Choose an Operation       Image: Choose an Operation         Image: Choose an Operation       Image: Choose an Operation       Image: Choose a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                     |
| est Option Choose an Operating Option Choose an Operating Choose an Operating Choose an Operation Choose a                                                                                                                                                                                                                                                                                                                         | lob Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                     |
| est Option<br>Choose an Operating<br>Option<br>Percentage Variance<br>Click To Remove Highlighted Value<br>Click To Remove Highlighted Value<br>Click State<br>Test Stated<br>Test Stated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ob Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                     |
| Choose an Operating<br>Option C Manual Uperation<br>C Automated Operation<br>est Parameter<br>Percentage Variance<br>Add New Value<br>Click To Remove Highlighted Value<br>Vate<br>Test Started<br>Test Started                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ob Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | fest Option                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                     |
| Test Parameter         Percentage Variance         Add New Value         Click To Remove Highlighted Value         Date         Test Started         Test Ended                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | fob Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | al Operation                                        |
| Percentage Variance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | lob Number<br>fest Option<br>Choose an Operating<br>Option<br>Choose Autor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | al Operation<br>Nated Operation                     |
| Add New Value Click To Remove Highlighted Value Date Test Started Test Ended                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ob Number<br>Fest Option<br>Choose an Operating<br>Option<br>C Manu<br>C Manu<br>C Autor<br>Fest Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | al Operation<br>lated Operation                     |
| Add New Value Click To Remove Highlighted Value Date Test Started Test Ended                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ob Number<br>fest Option<br>Choose an Operating<br>Option<br>Choose an Operating<br>Choose an Operating | al Operation<br>Nated Operation                     |
| Click To Remove Highlighted Value Date Time Test Started Test Ended                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | est Option<br>Choose an Operating<br>Option<br>Choose an Operating<br>Choose an  | al Operation<br>lated Operation                     |
| Test Ended                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ob Number<br>Fest Option<br>Choose an Operating<br>Option<br>Choose an Operating<br>Choose an Operating | al Operation<br>Nated Operation                     |
| ime<br>Test Started                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ob Number<br>Fest Option<br>Choose an Operating<br>Option<br>Fest Parameter<br>Percentage Variance<br>Add New V<br>Click. To Remove Highlighter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | al Operation<br>Nated Operation<br>Value            |
| ime<br>Test Started                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ob Number<br>Fest Option<br>Choose an Operating<br>Option<br>Choose an Operating<br>Choose an Operating | al Operation<br>Nated Operation                     |
| ime<br>Test Started<br>Test Ended                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ob Number<br>fest Option<br>Choose an Operating<br>Option<br>fest Parameter<br>Percentage Variance<br>Add New V<br>Click To Remove Highlighter<br>Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | al Operation<br>Nated Operation                     |
| Test Ended                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ob Number  fest Option  Choose an Operating Option  fest Parameter  Percentage Variance  Click To Remove Highlighter  Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | al Operation<br>lated Operation                     |
| Test Ended                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ob Number<br>est Option<br>Choose an Operating<br>Option<br>Choose an Operating<br>Choose an Operating  | al Operation<br>lated Operation<br>Value            |
| Test Ended                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ob Number<br>[ fest Option Choose an Operating Option Choose an Operating Option Choose an Operating Choose an Operating Add New X Click To Remove Highlighter Date Time Text Started                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | al Operation<br>nated Operation<br>/alue<br>d Value |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ob Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | al Operation<br>Nated Operation                     |

- Test

| n Progress Hields                                                           |                                         |                                                                                 |                                                  |
|-----------------------------------------------------------------------------|-----------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------|
| Fault Log                                                                   |                                         |                                                                                 |                                                  |
|                                                                             |                                         |                                                                                 |                                                  |
| Conitols<br>Lock Out<br>You DO NOT have the authority to use this equipment | L. You have been LOCKED OUT             | Test Status<br>Bar Under Test<br>Bars Remaining<br>Faults Logged<br>Manual Test | Click To Print<br>Print<br>Click To Save<br>Save |
| Error 1 Error 2                                                             | Error 3<br>Error 1                      | Automated Test                                                                  | Delete                                           |
|                                                                             | On entering the                         | he following pop up                                                             |                                                  |
| Manual Reading Controls Click To Take Reading Manual Reading                | GUI Special Fuction Co<br>View Controls | Profile                                                                         |                                                  |
| Exit Calibration Screen Calibration Screen                                  |                                         |                                                                                 |                                                  |



The Lock Out Screen

-LOCKED OUT -

\*\*\*\*

Lock Out Password

\_ 8 ×

When the correct password is entered by the Administrator, the system is unlocked.

## - Test Setup Fields-- Test In User Identification Password-Enter Name -Armature Properties Armature Select -- New Armature Name--Number Of Commutator Bars-Job Number-Test Option-C Manual Operation Choose an Operating Option C Automated Operation - Test Parameter-Percentage Variance -Add New Value Date -Time-Test Started Test Ended Test Duration

## Unlocked System

| Conrtols                                |                                                | Test Status               | Click To Print                 |
|-----------------------------------------|------------------------------------------------|---------------------------|--------------------------------|
| LOAD END C                              | Entror Pause STOP                              | Bar Under Test            | Print<br>Click To Save<br>Save |
| Error Status                            |                                                | Manual Test               |                                |
| Error 1<br>Error 1<br>Error 2           | Error 3<br>Error 4<br>Error 4                  | Automated Test            | Delete                         |
| Manual Reading Controls                 | GUI Special Fuction Controls T View/Change Dir | ectory Path Settings      |                                |
| Click To Take Reading<br>Manual Reading | View Controls View Set                         | tings<br>Setup<br>Profile |                                |
| Exit View Calibration Screen            |                                                |                           |                                |

| Test Setup Fields     On entering a valid user password, the     user name associated to the entered     password is displayed by the system in the     "Name" frame.     Enter     Name     Sunveer Matadin     Armature Properties     Armature Select     New Armature Name     Add New     Add New | ogress Fields                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Click To Remove Highlighted Armature         Job Number         Job Number         Test Option         Choose an Operating         Option         C Automated Operation         Test Parameter                                                                                                         | Controls     EMERGENCY       Load     END     Continue After<br>Error Pause     EMERGENCY<br>STOP       Error Status     Error 1     Error 2     Error 3       Error 1     Error 2     Error 3     Error 4                                                                                                                                                                                                                                          | Test Status       Click To Print         Bar Under Test       Print         Bars Remaining       Click To Save         Faults Logged       Save         Manual Test       Open         Automated Test       Open         Reading       Open |
| Percentage Variance   Add New Value   Click To Remove Highlighted Value     Date     Time   Test Started   Test Ended   Test Duration                                                                                                                                                                  | Error 1       Error 2       Error 3       Error 4         Manual Reading Controls       GUI Special Fuction Controls       View/Change Direct         Click To Take Reading       Reading Prompt       View Controls       View Setting         Manual Reading       View Calibration Screen       View User Profile Set       View User Profile         Exit       View Calibration Screen       Calibration Setup       View User       View User | Searching Delete                                                                                                                                                                                                                            |



| Test Setup Fields                                  | Test In Progress Fields                                                         |
|----------------------------------------------------|---------------------------------------------------------------------------------|
| - User Identification                              | Fault Log                                                                       |
| Password Enter                                     |                                                                                 |
| Name<br>Sunveer Matadin                            |                                                                                 |
| Armature Properties                                | Job Number Not Entered                                                          |
| Armature Name: a Number of Bars: 5                 | Enter Job Number                                                                |
| New Armature Name                                  |                                                                                 |
| Number Of Commutator Bars Armature                 | Demo 1                                                                          |
| Click To Remove Highlighted Armature               | Conrtols Click To Print Bar Under Test To Print Print                           |
| Job Number                                         | Enter the required data and click "OK" STOP Bars Remaining Click To Save        |
|                                                    | Faults Logged O Save                                                            |
| C Manual Operation<br>Option C Automated Operation | Error Status Manual Test                                                        |
| - Test Parameter                                   | Lind Automated Test Open                                                        |
| Percentace Variance: 5%                            | Error 1 Error 2 Error 3 Error 4 Reading                                         |
| Add New Value                                      | Image: Searching     Image: Searching     Image: Searching     Image: Searching |
| Click To Remove Highlighted Value                  | Manual Reading Controls                                                         |
| Date                                               | Click To Take Reading Prompt View Controls View Settings                        |
| Time                                               | Manual Reading View User Profile Setup                                          |
| Test Started                                       | View User Profile                                                               |
| Test Ended                                         | Exit View Calibration Screen                                                    |
| Test Duration                                      |                                                                                 |
|                                                    |                                                                                 |



| Test Setup Fields                                                         | Test In Progress Fields                                                                                                                                                               |          |
|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| User Identification                                                       | Fault Log                                                                                                                                                                             |          |
| Password                                                                  |                                                                                                                                                                                       |          |
| Name<br>Sunveer Matadin                                                   |                                                                                                                                                                                       |          |
| Armature Properties                                                       |                                                                                                                                                                                       |          |
| Armature Name: a Number of Bars: 5                                        |                                                                                                                                                                                       |          |
| Click To Remove Highlighted Armature                                      | Conrtols Test Status Click T<br>Bar Under Test 0                                                                                                                                      | o Print- |
| Demo 1                                                                    | Locad     END     Continue After<br>Error Pause     EMERGENCY<br>STOP     Bars Remaining     Circk T       Faults Logged     0     9                                                  | o Save-  |
| Choose an Operating<br>Option © Manual Operation<br>© Automated Operation | Error Status  Click on the "View Controls" button to access the user identification inputs for  Automated Test                                                                        | pen      |
| Test Parameter       Percentage Variance:       Add New Value             | Error 1 use of the simulator.                                                                                                                                                         | lete     |
| Click. To Remove Highlighted Value                                        | Manual Reading Controls       Click To Take Reading     Reading Prompt     GUI Special Fuction Controls     View/Change Directory Path Settings       View Controls     View Settings |          |
| Time<br>Test Started 12:44:35<br>Test Ended                               | Manual Reading     User Name       View User Profile       Password       Exit       Calibration Screen       Exit                                                                    |          |
| Test Duration                                                             |                                                                                                                                                                                       |          |

| Test Setup Fields                                                                                                   | Test In Progress Fields                                                                            |                |
|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------|
| User Identification                                                                                                 | Fault Log-                                                                                         |                |
| Password<br>Enter                                                                                                   |                                                                                                    |                |
| Sunveer Matadin                                                                                                     |                                                                                                    |                |
| Armature Properties Armature Name: a Number of Bars: 5 New Armature Name Add New Armature Number Of Commutator Bars |                                                                                                    |                |
| Ciel To Reserve Highlighted American                                                                                | Controls Test Status                                                                               | Click To Print |
|                                                                                                                     | Bar Under Test 0                                                                                   | Print          |
| Job Number                                                                                                          | END Continue After<br>Error Pause STOP Bars Remaining 5<br>Faults Logged 0                         | Click To Save  |
| C Manual Operation                                                                                                  | Error Status                                                                                       |                |
| Option C Automated Operation                                                                                        | Error 1 Error2 Error3 Error 4                                                                      | Open           |
| Test Parameter Percentage Variance: 5%                                                                              | Error 1 Error 2 Error 3 Error 4 Searching                                                          | Delete         |
| Add New Value                                                                                                       |                                                                                                    |                |
| Click. To Remove Highlighted Value                                                                                  | Manual Reading Controls                                                                            |                |
| Date                                                                                                                | Click To Take Reading Reading Prompt View Controls View Settings User Name View User Profile Setup |                |
| Time Enter the Su                                                                                                   | uper User, user name and                                                                           |                |
| Test Started 12:44:35 password.                                                                                     | Password Hereiterer                                                                                |                |
| Test Ended                                                                                                          | Exit View Calibration Screen                                                                       |                |
| Test Duration                                                                                                       | Exit Calibration Setup Exit                                                                        |                |
|                                                                                                                     |                                                                                                    |                |

| Ust Identify to 2000         Parades         Parades         Name         Summer Mander         Parades         Name         Parades         Name         Parades         Name         Parades         Name         Parades         Name         Nama         Name                                                                                                                                                                                                                                                                                                                                                                                                                         | Fest Setup Fields                                                                                             | Test In Progress Fields                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Persond         Nome         Survest MdsSn         Survest MdsSn         Nome         Survest MdsSn         Nome         Survest MdsSn         Nome         Survest MdsSn                                                                                                                                                                                                                      | – User Identification                                                                                         | Fault Log                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Name   Survee Madein     Amaber   Cist: Defensore figlighted Namer   Cist: Defensore figlighted Namer   Cist: Defensore figlighted Namer   Intel Option   Defensor   Defensor   Test Parameter   Cist: To Pensore figlighted Namer   Defensor   Defensor   Statistical City   Statistical City   Test Parameter   Cist: To Pensore figlighted Namer   Defensor   Statistical City   Cist: To Pensore figlighted Namer   Defensor   Statistical City   Cist: To Pensore figlighted Namer   Defensor   Statistical City   Test Statistical City                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Password<br>Enter                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Amatuke Properties   Monotare Name:   Number Of Commutator Base:   Amatuke Properties   Number Of Commutator Base:   Amatuke Properties   Number Of Commutator Base:   Amatuke Properties   Amatuke Properties   Monotare Name:   Stock To Remove Highlighted Amatuke   Date:   2050/07/23   Time:   Time: <td>Name<br/>Sunveer Matadin</td> <td></td>                                                                                                                                                                                                                                                                                                                       | Name<br>Sunveer Matadin                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Link To Benove Highlighted Ameture     Job Number   Deren 1   Reading Deretion   Harual Operation   Clock To Penove Highlighted Value   Date    Date   Date <td>Armature Properties          Armature Name:       a Number of Bars: 5         New Armature Name       Add New</td> <td></td>                                                                                                                                                                                                                                     | Armature Properties          Armature Name:       a Number of Bars: 5         New Armature Name       Add New |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Job Number   Demo 1     Test Option   Choose an Operating   Choose an Oper | Click To Remove Highlighted Armature                                                                          | Conitols Click To Print                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Test Opion       Manual Operation         Opion       Manual Operation         Opion       Automated Operation         Test Parameter       Image: Simulator Controls are made available on entering the correct Super User user name and password.         Date       Date         2006/07/23       Image: Simulator Controls         Time       Click To Remove Highlighted Value         Time       Click To Take Reading         Test Stated       12:44:35         Test Stated       12:44:35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Job Number                                                                                                    | END Continue After<br>Error Pause EMERGENCY<br>STOP Bars Remaining 5<br>Faults Logged 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Test Parameter   Percentage Variance: 5%   Add New Value   Citck: To Remove Highlighted Value     Date   2006/07/23     Manual Reading   Manual Reading   Citck: To Take Reading   Manual Reading                                                                                                                     | C Manual Operation<br>Choose an Operating<br>Option C Manual Operation<br>© Automated Operation               | Error Status Simulator Controls are made available on entering the correct Super User user name Automated Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Click To Remove Highlighted Value         Date         2006/07/23         Time         Test Started       12:44:35         Test Ended                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Test Parameter       Percentage Variance:       5%       Add New Value                                        | and password.     Reading       Delete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ZU06/07/23     Manual Reading     y d J     View User Profile Setup       Time     Into     Out     View User Profile       Test Started     12:44:35     Manual Reading     Manual Reading                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Click To Remove Highlighted Value                                                                             | Manual Reading Controls  Click To Take Reading Prompt Reading Prom |
| Test Ended                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Time 12:44:35                                                                                                 | Manual Reading Manual |
| Test Duration     Exit     Calibration Setup     Exit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Test Ended Test Duration                                                                                      | Exit View Calibration Screen<br>Calibration Setup                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

| Setup Fields                         | Test In Progress Fields              |
|--------------------------------------|--------------------------------------|
| User Identification                  | Fault Log                            |
| Password                             |                                      |
|                                      |                                      |
| Enter                                |                                      |
| Enter                                |                                      |
| Name                                 |                                      |
| Sunveer Matadin                      |                                      |
|                                      |                                      |
| Armature Properties                  |                                      |
| Armature Name: a Number of Bars: 5   |                                      |
| New Armature Name                    |                                      |
|                                      |                                      |
| Number Of Commutator Bars Add New    |                                      |
|                                      |                                      |
|                                      | - Contols                            |
| Click To Hemove Highlighted Armature |                                      |
| - Joh Mumher                         |                                      |
| Demo 1                               | Load END                             |
|                                      |                                      |
| Test Option                          |                                      |
| Choose an Operating                  | Error Status                         |
| Uption © Automated Operation         | Error 1Error2                        |
| Test Parameter                       |                                      |
| Percentace Variance: 5%              | Error 1 A simulated                  |
|                                      | "d", is entered                      |
| Add New Value                        |                                      |
| Click To Remove Highlighted Value    |                                      |
|                                      | Manual Reading Controls              |
| Date                                 | Click To Take Reading Reading Prompt |
| 2006/07/23                           |                                      |
|                                      | Manual Reading                       |
| Time 12:44:25                        |                                      |
| Test Started 12.44.30                |                                      |
|                                      | Eula Mary Collection Concern         |
| Test Ended                           |                                      |
| Test Ended                           | Exit Calibration Screen              |



| Test Setup Fields                                                                                                                                                   | Test In Progress Fields                                                                                                                                                                                                                                                               |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| User Identification                                                                                                                                                 | Fault Log                                                                                                                                                                                                                                                                             |
| Password Enter                                                                                                                                                      |                                                                                                                                                                                                                                                                                       |
| Name<br>Sunveer Matadin                                                                                                                                             |                                                                                                                                                                                                                                                                                       |
| Armature Properties          Armature Name:       a Number of Bars: 5         New Armature Name         Add New         Add New         Armature Of Commutator Bars |                                                                                                                                                                                                                                                                                       |
| Click. To Remove Highlighted Armature                                                                                                                               | Controls Click To Print Bar Under Test In                                                                                                                                                                                                                                             |
| Job Number                                                                                                                                                          | Start     END     Continue After<br>Error Pause     EMERGENCY<br>STOP     Bars Remaining     Click To Save       Faults Logged     0     0     0     0                                                                                                                                |
| Test Option       C       Manual Operation         Choose an Operating       C       Manual Operation         Option       C       Automated Operation              | Error Status Error 3 Error 4 Automated Test                                                                                                                                                                                                                                           |
| Test Parameter         Percentage Variance:       5%         Add New Value                                                                                          | The "Load" button changes to a "Start" Error 3 Error 4 Beading Delete Delete                                                                                                                                                                                                          |
| Click To Remove Highlighted Value Date 2006/07/23 Time                                                                                                              | Manual Reading Controls       Simulator       View/Change Directory Path Settings         Click To Take Reading       Reading Prompt       View Settings         Manual Reading       Manual Reading       View Settings         Unit       View User Profile       View User Profile |
| Test Started 12:44:35 Test Ended Test Duration                                                                                                                      | Exit<br>Exit<br>Calibration Screen<br>Calibration Setup                                                                                                                                                                                                                               |

| User Identification           Password         Fault Log           Enter         Sunveer Matadin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Password<br>Enter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Name       Sunveer Matadin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Armature Properties         Armature Name:         Armature Name:         New Armature Name         Add New         Armature Of Commutator Bars                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Click To Remove Highlighted Armature  Chick To Remove Highlighted Arma   |
| Demo 1  Last Option  Last Optio   |
| Choose an Operation<br>Dption O Automated Operation Error 1 Error 2 Error 2 Error 3 Error 4 O Automated Test Open Automated Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Test Parameter       Percentage Variance: 5%       Reading         Add New Value       Delete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Date     Click To Take Reading     Reading Prompt     Simulator     View/Change Directory Path Settings       2006/07/23     Manual Reading     Reading     Image: Click To Take Reading     View Settings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Test Started 12:44:35<br>Test Ended Exit Exit Calibration Screen Cellbration Screen Cellbra |

| Test Setup Fields                                                                | Test In Progress Fields                                                                                                                                                                                                        |        |
|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| – User Identification                                                            | Fault Log                                                                                                                                                                                                                      |        |
| Password<br>Enter                                                                |                                                                                                                                                                                                                                |        |
| Armature Properties                                                              |                                                                                                                                                                                                                                |        |
| Armature Name: a Number of Bars: 5                                               |                                                                                                                                                                                                                                |        |
| Add New Armature                                                                 |                                                                                                                                                                                                                                |        |
| Click To Remove Highlighted Armature                                             | Controls  Click To Print  Click To Print  Print                                                                                                                                                                                | int —  |
| Job Number                                                                       | Start     END     Continue After<br>Error Pause     EMERGENCY<br>STOP     Bars Remaining     Click To Sa       Faults Logged     0     Gave                                                                                    | <br>we |
| Choose an Operating<br>Option © Manual Operation<br>Option © Automated Operation | Error Status The "Test Status" display is updated Error 4 Error 4 Automated Test                                                                                                                                               |        |
| Test Parameter<br>Percentage Variance: 5%                                        | Error 1 Error 2 Error 3 Error 4 Reading                                                                                                                                                                                        |        |
| Add New Value Click To Remove Highlighted Value                                  |                                                                                                                                                                                                                                | _      |
| Date                                                                             | Manual Reading Controls     Simulator     View/Change Directory Path Settings       Click To Take Reading     Reading Prompt     View Jat       Manual Reading     Manual Reading     View Jat       U     U     View Vertings |        |
| Test Started 12:44:35 Test Ended                                                 | Exit View Calibration Screen                                                                                                                                                                                                   |        |
| Test Duration                                                                    |                                                                                                                                                                                                                                |        |

| etup Fields                                                                                                                                                                                                                                                                                                                                                                                                    | Test In Progress Fields                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| User Identification                                                                                                                                                                                                                                                                                                                                                                                            | Fault Log                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Password                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Enter                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Enter                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Name                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Sunveer Matadin                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| America Descritor                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Armature Name: a Number of Bars: 5                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| New Armature Name                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Add New                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Number Of Commutator Bars Armature                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| CT L To D and LT LT La La start and                                                                                                                                                                                                                                                                                                                                                                            | - Controls                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Jah Mumhar                                                                                                                                                                                                                                                                                                                                                                                                     | Continue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Demo 1                                                                                                                                                                                                                                                                                                                                                                                                         | Load END Error Pa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Test Ontion                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Choose an Operating O Manual Operation                                                                                                                                                                                                                                                                                                                                                                         | 5.0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| choose an operating                                                                                                                                                                                                                                                                                                                                                                                            | - Error Statue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Option  Option                                                                                                                                                                                                                                                                                                                                                                                                 | Error Status                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Option  © Automated Operation                                                                                                                                                                                                                                                                                                                                                                                  | Error Status                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Option  C Automated Operation Test Parameter                                                                                                                                                                                                                                                                                                                                                                   | Error 1 Error2 Error3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Option  Automated Operation Test Parameter Percentage Variance: 5%                                                                                                                                                                                                                                                                                                                                             | Error 1 Error2 Error3 Error3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Dotion  Automated Operation Test Parameter Percentage Variance: 5%                                                                                                                                                                                                                                                                                                                                             | Error 1<br>Error 1<br>Error 1<br>A simulated "Error<br>entered into the simulated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Option     Image: Automated Operation       Test Parameter     Percentage Variance: 5%       Add New Value                                                                                                                                                                                                                                                                                                     | Error 1<br>Error 1<br>Error 1<br>A simulated "Error<br>entered into the simu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Option       Image: Automated Operation         Test Parameter       Image: Percentage Variance: 5%         Percentage Variance: 5%       Image: Add New Value         Click To Remove Highlighted Value                                                                                                                                                                                                       | Error 1<br>Error 1<br>Error 1<br>A simulated "Error<br>entered into the simu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Option       Image: Automated Operation         Test Parameter       Percentage Variance: 5%         Percentage Variance:       5%         Add New Value       Add New Value         Click To Remove Highlighted Value                                                                                                                                                                                         | Error 1<br>Error 1<br>Error 1<br>A simulated "Error<br>entered into the sim                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Option       Image: Automated Operation         Test Parameter       Percentage Variance: 5%         Percentage Variance:       5%         Add New Value       Click To Remove Highlighted Value         Date       Date                                                                                                                                                                                       | Error 1     Error 2     Error 2     Error 1     A simulated "Error     entered into the sim                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Option       Image: Automated Operation         Test Parameter       Percentage Variance: 5%         Percentage Variance:       5%         Add New Value       Image: Add New Value         Click To Remove Highlighted Value       Image: Add New Value         Date       Image: Add New Value                                                                                                               | Error 1       Error2       Error3         Error 1       A simulated "Error entered into the simulated into the sin simulated into the sin simulated into the  |
| Option       Image: Automated Operation         Test Parameter       Percentage Variance: 5%         Percentage Variance:       5%         Add New Value       Image: Add New Value         Click To Remove Highlighted Value       Image: Add New Value         Date       Image: Add New Value                                                                                                               | Error Status<br>Error 1<br>Error 1<br>Error 1<br>Error 2<br>Fror 2<br>Fror 3<br>A simulated "Error<br>entered into the simulated<br>Manual Reading Controls<br>Click To Take Reading<br>Manual Reading                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Option       Image: Automated Operation         Test Parameter       Percentage Variance: 5%         Add New Value       Image: Add New Value         Click To Remove Highlighted Value       Image: Add New Value         Date       Image: Add New Value         Time       Image: Add New Value                                                                                                             | Error Status         Error 1         Error 1         A simulated "Error entered into the sim         Manual Reading Controls         Click To Take Reading         Manual Reading         Manual Reading                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Option <ul> <li>Automated Operation</li> </ul> Test Parameter           Percentage Variance:         5%             Add New Value               Click To Remove Highlighted Value           Date                                                                                                                                                                                                               | Error 1       Error2       Error3         Error 1       A simulated "Error entered into the sim         Manual Reading Controls       Simulat         Click To Take Reading       Reading Prompt         Manual Reading       Image: Simulat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Option       Image: Automated Operation         Test Parameter       Image: S%         Percentage Variance:       5%         Add New Value       Image: S%         Click To Remove Highlighted Value       Image: S%         Date       Image: Started         Test Started       Image: Started                                                                                                               | Error 1       Error2       Error3         Error 1       A simulated "Error<br>entered into the sim         Manual Reading Controls       Simulat         Click To Take Reading       Reading Prompt         Manual Reading       Into         Manual Reading       Into                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Option       Image: Automated Operation         Test Parameter       Image: Percentage Variance: 5%         Image: Add New Value       Image: Add New Value         Click To Remove Highlighted Value       Image: Add New Value         Date       Image: Add New Value         Time       Image: Add New Value         Test Started       Image: Add New Value         Test Ended       Image: Add New Value | Error 1       Error2       Error3         Error 1       A simulated "Error"         entered into the simulated       Error3         Manual Reading Controls       Simulated         Click To Take Reading       Reading Prompt         Manual Reading       Into         Manual Reading       Into         Exit       View Calibration Screen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Option       Image: Automated Operation         Test Parameter       Image: S%         Percentage Variance:       5%         Add New Value       Image: S%         Click To Remove Highlighted Value       Image: S%         Date       Image: S%         Time       Image: S%         Test Ended       Image: S%         Test Ended       Image: S%                                                           | Error 1       Error2       Error3         Error 1       A simulated "Error entered into the simulated into the sinthe simulated into the simulated into the s |



| Test Setup Fields                                                                                                                | Test In Progress Fields                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test Setup Fields User Identification Password Enter Name Sunveer Matadin Armature Properties Armature Name: a Number of Bars: 5 | Test In Progress Fields                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Add New Armature Click To Remove Highlighted Armature                                                                            | Conrtols Click To Print                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Job Number<br>Demo 1<br>Test Option                                                                                              | Load END Continue After<br>Error Pause STOP Bar Under Test 0 Bar Under Test 0 Bars Remaining 5<br>Faults Logged 0 Save                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Choose an Operating<br>Option © Automated Operation<br>Test Parameter<br>Percentage Variance: 5%                                 | Error 1 is indicated on the "Error Status"<br>display<br>Manual Reading functionality is enabled,<br>(indicated by the "Reading Prompt" status<br>changing from red to green)<br>Copen<br>Open<br>Delete<br>Delete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Click To Remove Highlighted Value Date Time Test Started Test Ended Test Duration                                                | Manual Reading Controls       Reading Prompt         Manual Reading       Reading Prompt         Manual Reading       Image: Control in the second seco |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| User Identification                                                                                                                                                                                                                                                                                                                                                                                                                                             | Fault Log                                                                                                                                                     |
| Password                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                               |
| New Test                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                               |
| Name                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                               |
| Aurahus Duasatia                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                               |
| Amature Properties                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                               |
| Armature Select                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                               |
| Number Of Commutator Bars Add New                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Carabah                                                                                                                                                       |
| Click To Remove Highlighted Armature                                                                                                                                                                                                                                                                                                                                                                                                                            | Lonrtois                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                               |
| Job Number                                                                                                                                                                                                                                                                                                                                                                                                                                                      | LOAD END                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                               |
| Test Option                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                               |
| Choose an Operating O Manual Operation                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Error Status                                                                                                                                                  |
| Option C Automated Operation                                                                                                                                                                                                                                                                                                                                                                                                                                    | Error Status                                                                                                                                                  |
| Option C Automated Operation                                                                                                                                                                                                                                                                                                                                                                                                                                    | Error Status                                                                                                                                                  |
| Option C Automated Operation                                                                                                                                                                                                                                                                                                                                                                                                                                    | Error 1 Error 2                                                                                                                                               |
| Option C Automated Operation Test Parameter Percentage Variance                                                                                                                                                                                                                                                                                                                                                                                                 | Error 1 Error 2 Error 1 A sin                                                                                                                                 |
| Option C Automated Operation Test Parameter Percentage Variance Add New Value                                                                                                                                                                                                                                                                                                                                                                                   | Error 1<br>Error 1<br>Error 1<br>A sin<br>enter                                                                                                               |
| Option C Automated Operation Test Parameter Percentage Variance Add New Value Click To Remove Highlighted Value                                                                                                                                                                                                                                                                                                                                                 | Error 1<br>Error 1<br>Error 1<br>A sin<br>enter                                                                                                               |
| Option     C     Automated Operation         Test Parameter       Percentage Variance       Add New Value       Click To Remove Highlighted Value                                                                                                                                                                                                                                                                                                               | Error 1<br>Error 1<br>Error 1<br>A sin<br>enter                                                                                                               |
| Option C Automated Operation Test Parameter Percentage Variance Add New Value Click To Remove Highlighted Value Date                                                                                                                                                                                                                                                                                                                                            | Error Status<br>Error 1<br>Error 1<br>Error 1<br>A sin<br>enter<br>Manual Reading Controls<br>Click To Take Reading                                           |
| Option     C Automated Operation       Test Parameter     Percentage Variance       Percentage Variance     Image: Click To Remove Highlighted Value       Click To Remove Highlighted Value                                                                                                                                                                                                                                                                    | Error Status<br>Error 1<br>Error 1<br>A sin<br>enter<br>Manual Reading Controls<br>Click To Take Reading<br>Reading F                                         |
| Option     Automated Operation       Test Parameter     Percentage Variance       Percentage Variance     Image: Click To Remove Highlighted Value       Click To Remove Highlighted Value                                                                                                                                                                                                                                                                      | Error Status<br>Error 1<br>Error 1<br>Error 1<br>A sin<br>enter<br>Manual Reading Controls<br>Click To Take Reading<br>Manual Reading                         |
| Option       Image: Automated Operation         Test Parameter       Percentage Variance         Percentage Variance       Image: Add New Value         Click To Remove Highlighted Value       Image: Add New Value         Date       Image: Add New Value         Time       Image: Add New Value                                                                                                                                                            | Error Status<br>Error 1<br>Error 1<br>Error 1<br>A sin<br>enter<br>Manual Reading Controls<br>Click To Take Reading<br>Manual Reading                         |
| Option       C Automated Operation         Test Parameter       Percentage Variance         Percentage Variance       Image: Click To Remove Highlighted Value         Date       Image: Click To Remove Highlighted Value         Date       Image: Click To Remove Highlighted Value         Time       Image: Click To Remove Highlighted Value                                                                                                              | Error Status<br>Error 1<br>Error 1<br>A sin<br>enter<br>Manual Reading Controls<br>Click To Take Reading<br>Manual Reading                                    |
| Option       Image: Automated Operation         Test Parameter       Image: Automated Operation         Percentage Variance       Image: Automated Value         Dick: To Remove Highlighted Value       Image: Automated Value         Date       Image: Automated Value         Time       Image: Automated Value         Time       Image: Automated Value         Test Started       Image: Automated Value         Test Ended       Image: Automated Value | Error Status<br>Error 1<br>Error 1<br>Error 1<br>A sin<br>enter<br>Manual Reading Controls<br>Click To Take Reading<br>Manual Reading<br>Exit                 |
| Option       Image: Automated Operation         Test Parameter       Image: Automated Operation         Percentage Variance       Image: Automated Value         Olick To Remove Highlighted Value       Image: Automated Value         Date       Image: Automated Value         Time       Image: Automated Value         Test Started       Image: Automated Value         Test Ended       Image: Automated Value                                           | Error Status<br>Error 1<br>Error 1<br>Error 1<br>A sin<br>enter<br>Manual Reading Controls<br>Click To Take Reading<br>Manual Reading<br>Exit<br>Exit<br>Exit |



|                        |                    | _           |
|------------------------|--------------------|-------------|
| New New                | / Test             |             |
| Name                   |                    |             |
|                        |                    |             |
|                        |                    |             |
| rmature Properties     |                    |             |
| Armature Select        |                    | ~           |
| New Armature Name      |                    | 1           |
| l                      |                    | Add New     |
| Number Of Commutator I | Bars               | Armature    |
| 1                      |                    |             |
| Click To Remove        | e Highlighted Arma | ature       |
|                        |                    |             |
| ob Number              |                    |             |
| <u> </u>               |                    |             |
|                        |                    |             |
| Channe an Operation    | 🔿 Manual O         | peration    |
| Option                 | C Automate         | d Operation |
|                        |                    |             |
| est Parameter          |                    |             |
| Percentage Variance    |                    | <b>Y</b>    |
|                        | Add New Valu       | e           |
| Click To Remo          | ive Highlighted Va | alue        |
|                        |                    |             |
| )ate                   |                    |             |
|                        |                    |             |
|                        |                    |             |
|                        |                    |             |
| ime                    |                    |             |
| ime<br>Test Started    |                    |             |



| Setup Fields                         | Test In Progress Fields                |
|--------------------------------------|----------------------------------------|
| User Identification                  | - Fault Log                            |
| Password                             |                                        |
|                                      |                                        |
| New Test                             |                                        |
|                                      |                                        |
| Name                                 |                                        |
|                                      |                                        |
| Armature Properties                  |                                        |
| Armature Select                      |                                        |
| New Armature Name                    |                                        |
| Add New                              |                                        |
| Number Of Commutator Bars Armature   |                                        |
|                                      |                                        |
| Click To Remove Highlighted Armature | Contols                                |
|                                      |                                        |
| Job Number                           | LOAD END                               |
|                                      |                                        |
| Test Option                          |                                        |
| Choose an Operating                  | Error Status                           |
| Option O Automated Operation         | Error 1 Error2                         |
| Test Parameter                       |                                        |
| Percentage Variance                  | Error 1 A simula                       |
|                                      | entered i                              |
| Add New Value                        |                                        |
| Click To Remove Highlighted Value    | - Manual Beading Controls              |
| Date                                 | Click To Take Reading - Reading Promot |
|                                      |                                        |
|                                      | Manual Reading                         |
| Time                                 |                                        |
| Test Started                         |                                        |
| Test Ended                           | Exit View Calibration Sci              |
| Test Duration                        | Exit Calibration Setup                 |
|                                      |                                        |



| Test Setup Fields                                                                                         | Test In Progress Fields                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |
|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| User Identification                                                                                       | r Fault Log                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |
| Password<br>New Test                                                                                      | Emergency Stop on Bar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |
| Name                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| Armature Properties Armature Select New Armature Name Add New                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| Click. To Remove Highlighted Armature                                                                     | Contols Test Status                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Click To Print |
| Job Number                                                                                                | LOAD END Continue After<br>Error Pause STOP Bars Remaining Faults Logged                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Click To Save  |
| Choose an Operation<br>Option<br>Error 3 is indicated on the "Error<br>display                            | Status"     or 1     Error2     Error3     Error 4     Manual Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Open<br>Open   |
| Percentage Va<br>Percentage Va<br>automatic "Emergency Stop" is in<br>and the test is forced to end. This | an an a second and | Delete         |
| Click indicated by highlighting the relev                                                                 | Vant<br>"Controls" Beading Controls Simulator View/Change Directory Path Settings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |
| Date frame.                                                                                               | K     L     b       View Settings     View Settings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |
| Time<br>Test Started                                                                                      | Into Out View User Profile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |
| Test Duration 13: 6: 55                                                                                   | Exit View Calibration Screen Calibration Setup Exit Exit Exit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |

| t Setup Fields                         | Test In Progress Fields              |
|----------------------------------------|--------------------------------------|
| User Identification                    | Fault Log                            |
| - Password                             |                                      |
|                                        |                                      |
|                                        |                                      |
| New Test                               |                                      |
|                                        |                                      |
| Name                                   |                                      |
|                                        |                                      |
|                                        |                                      |
| Armature Properties                    |                                      |
| Armature Select                        |                                      |
| New Armature Name                      |                                      |
| Add New                                |                                      |
| Number Of Commutator Bars Armature     |                                      |
|                                        |                                      |
| Click To Bemove Highlighted Armature   | Contols                              |
|                                        |                                      |
| -Job Number                            | Continu                              |
|                                        | LUAD END Error F                     |
|                                        |                                      |
| Test Option                            |                                      |
| Choose an Operating C Manual Operation | Error Status                         |
| Option C Automated Operation           | Error 1 Error2 Error3                |
| - Test Parameter                       |                                      |
|                                        | Error 1 A simulated "Erro            |
| Percentage Variance                    | entered into the si                  |
| Add New Value                          |                                      |
| Click To Bemove Highlighted Value      |                                      |
|                                        | Manual Reading Controls              |
| Date                                   | Click To Take Reading Reading Prompt |
|                                        |                                      |
|                                        | Manual Reading Q                     |
| - Time                                 | Into                                 |
| Test Started                           |                                      |
| TextEnded                              | - Fuit - Man Calibration Carrow      |
|                                        |                                      |
|                                        | Exit Calibration Setup               |
| Test Duration                          |                                      |



| Test Setup Fields                                                      | Test In Progress Fields                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| - User Identification                                                  | Fault Log                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| New Test                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Name                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Armature Properties                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Armature Select                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| New Armature Name                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Number Of Commutator Bars Add New                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Click To Remove Highlighted Armature                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                        | Print Print                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Job Number                                                             | OAD END Error Pause STOP Bars Remaining                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Error 4 is indicated on the "Error                                     | Status"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| - Test Ontion                                                          | Save                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Choose an Oper Error 4 may arise due to reasons t                      | that may the Manual Leet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Option either be crippling to the system of                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| a little attention from the test tech                                  | Dician It Automated Test Open                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $\Gamma^{\text{Test Parameter}}$ is for this reason that the user is g | tiven two Error 1 Error 2 Error 2 Error 2 Error 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Percentage Val options, either to continue after se                    | Peing to Provide Provi |
| the problem or invoking an emer                                        | renervision                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| if the problem is crippling. These                                     | ontions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Glick are indicated by highlighting the                                | ralevant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| controls buttons/indicators in the                                     | "Controls"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                        | To Take Reading Prompt K K View Settings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                        | Into Uut View User Profile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Test Started                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Test Ended                                                             | Exit View Calibration Screen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Test Duration                                                          | Exit Calibration Setup                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

⊢T€

| st Setup Fields                      | Test In Progress Fields                                                                                                   |
|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| - User Identification                | - Fault Log-                                                                                                              |
|                                      |                                                                                                                           |
|                                      |                                                                                                                           |
|                                      |                                                                                                                           |
| New Test                             |                                                                                                                           |
|                                      |                                                                                                                           |
| Name                                 |                                                                                                                           |
|                                      |                                                                                                                           |
|                                      |                                                                                                                           |
| Armature Properties                  |                                                                                                                           |
| Armature Select                      |                                                                                                                           |
| New Armature Name                    |                                                                                                                           |
| Add Marr                             | On clicking on the Error I indication                                                                                     |
| Number Of Commutator Bars Armature   | button, a pop-up box containing a                                                                                         |
|                                      | brief explanation of the error appears                                                                                    |
|                                      | - Controls                                                                                                                |
| Click To Hemove Highlighted Armature |                                                                                                                           |
| - Job Number                         |                                                                                                                           |
|                                      | Detection Error Bars Remaining                                                                                            |
|                                      | The next pair of bars has not been detected within the allowable period. A Manual Reading must now be taken Faults Logged |
| Test Option                          | OK Save                                                                                                                   |
| Choose an Operating                  | Manual Test                                                                                                               |
| Option C Automated Operation         | Error 1 Error2 Error3 Error 4 Automated Test                                                                              |
| - Test Byrmster                      |                                                                                                                           |
|                                      | Error 1 Error 2 Error 3 Error 4 Reading                                                                                   |
| Percentage Variance                  | Searching                                                                                                                 |
| Add New Value                        |                                                                                                                           |
| Child Te Descare Under the Distance  |                                                                                                                           |
|                                      | C Manual Reading Controls                                                                                                 |
| Date                                 |                                                                                                                           |
|                                      | y d J                                                                                                                     |
|                                      | Manual Reading Q I z View User Profile Setup                                                                              |
| Time                                 | Into Out View User Profile                                                                                                |
| Test Started                         |                                                                                                                           |
| Tutfodd                              | Schurzen Manuel Mission Survey                                                                                            |
|                                      |                                                                                                                           |
| Test Duration                        | Exit Calibration Setup Case Select                                                                                        |
|                                      |                                                                                                                           |
|                                      |                                                                                                                           |

⊢ T €

| st Setup Fields                      | Test In Progress Fields                                                                               |
|--------------------------------------|-------------------------------------------------------------------------------------------------------|
| - User Identification                | r Fault Log                                                                                           |
| Oser Identification                  |                                                                                                       |
| Password                             |                                                                                                       |
|                                      |                                                                                                       |
| New Test                             |                                                                                                       |
|                                      |                                                                                                       |
| Name                                 |                                                                                                       |
|                                      |                                                                                                       |
|                                      |                                                                                                       |
| Armature Properties                  |                                                                                                       |
| Armature Select                      |                                                                                                       |
| New Armature Name                    |                                                                                                       |
|                                      | On clicking on the Error 2 indication                                                                 |
| Add New                              | button, a pop-up box containing a                                                                     |
|                                      | brief explanation of the error appears                                                                |
|                                      |                                                                                                       |
| Click To Remove Highlighted Armature | Contols Click To Print                                                                                |
|                                      | Bar Under Test Print                                                                                  |
| Job Number                           | Detection Unit Lowering Error                                                                         |
|                                      | The Test Probes have not been lowered within the allowable period. A Manual Reading must now be taken |
|                                      | Faults Logged                                                                                         |
| - Test Option                        | ОК                                                                                                    |
| Choose an Operating                  | Manual Test                                                                                           |
| C Automated Uperation                | Error 1 Error 2 Error 3 Error 4 Automated Test                                                        |
| Test Parameter                       |                                                                                                       |
|                                      | Error 1 Error 2 Error 3 Error 4 Reading                                                               |
|                                      | Searching                                                                                             |
| Add New Value                        |                                                                                                       |
| Click To Berrove Highlighted Value   |                                                                                                       |
|                                      | Manual Reading Controls                                                                               |
| Date                                 | Click To Take Reading To Reading Promotion                                                            |
|                                      | y d J                                                                                                 |
|                                      | Manual Reading Q I z View User Profile Setup                                                          |
| Time                                 | Into Out View User Profile                                                                            |
| Test Started                         |                                                                                                       |
|                                      | MScom In Sim                                                                                          |
|                                      | Exit View Calibration Screen Exit                                                                     |
| Test Duration                        | Exit Calibration Setup Case Select                                                                    |
|                                      |                                                                                                       |
|                                      |                                                                                                       |

| Test Setup Fields                                                                                             | Test In Progress Fields                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| - I leer Identification                                                                                       | - Fault Log-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Password<br>New Test                                                                                          | Emergency Stop on Bar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Name                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| -Armature Properties                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Armature Select  New Armature Name  Add New  Armature  Add New  Armature                                      | On clicking on the Error 3 indication<br>button, a pop-up box containing a<br>brief explanation of the error appears                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Click To Remove Highlighted Armature                                                                          | Contols                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Test Option                                                                                                   | Exceeded  Exceeded  Click To Save Click To Save Click To Save Save Click To Save Click To Save Save |
| Choose an Uperating<br>Option C Automated Operation<br>Test Parameter<br>Percentage Variance<br>Add New Value | Error 1 Error 2 Error 3 Error 4 Automated Test Delete Delete Delete Delete Delete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Click To Remove Highlighted Value                                                                             | Manual Reading Controls     Simulator     View/Change Directory Path Settings       Click To Take Reading     Reading Prompt     y     d       Manual Reading     Manual Reading     View Settings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Time<br>Test Started<br>Test Ended 13:13:35                                                                   | Exit View Calibration Screen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Test Duration 13: 13: 35                                                                                      | Lation Setup Case Select                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |



| Lest in Progress Fields                                                                             |
|-----------------------------------------------------------------------------------------------------|
| Fault Log                                                                                           |
|                                                                                                     |
|                                                                                                     |
|                                                                                                     |
| Loso END Cont                                                                                       |
| Error Status                                                                                        |
| When data is being received by<br>GUI, the "Test Status" frame<br>indicates that an acquisition cyc |
| Manual Reading Controls                                                                             |
| Click To Take Reading Reading Prompt                                                                |
|                                                                                                     |
|                                                                                                     |







| Test Setup Fields                                  | Test In Progress Fields                                                                                  |
|----------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| - User Identification                              | Fault Log                                                                                                |
| Password Enter                                     |                                                                                                          |
| Sunveer Matadin                                    |                                                                                                          |
| Armature Select                                    | Enter Job Number Of the Test You Wish To Open                                                            |
| Number Of Commutator Bars Add New Armature         | Find                                                                                                     |
| Click To Remove Highlighted Armature               | Lonitols                                                                                                 |
|                                                    | Enter "Find" to search through all saved filed STOP Bars Remaining Click To Save Faults Logged Save Save |
| C Manual Operation<br>Option C Automated Operation | Error Status Manual Test Open Open                                                                       |
| Test Parameter Percentage Variance                 | Error 1 Error 2 Error 3 Error 4 Reading Delete                                                           |
| Add New Value Click To Remove Highlighted Value    | Manual Beading Controls     GIII Special Function Controls     Overw/Change Directory Path Settings      |
| Date                                               | Click To Take Reading Reading Prompt View Controls View Settings                                         |
| Test Started                                       | View User Profile                                                                                        |
| Test Duration                                      | Exit     Calibration Setup                                                                               |

| Test Setup Fields                                                     | Test In Progress Fields                                                                                                                                    |
|-----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| User Identification                                                   | Fault Log                                                                                                                                                  |
| Password<br>Enter                                                     |                                                                                                                                                            |
| Name<br>Sunveer Matadin                                               |                                                                                                                                                            |
| Armature Properties                                                   |                                                                                                                                                            |
| Add New<br>Armature                                                   |                                                                                                                                                            |
| Click To Remove Highlighted Armature                                  | Controls Click To Print Bar Under Test                                                                                                                     |
| Job Number                                                            | Load END Continue After<br>Error Pause STOP Bars Remaining Click To Save                                                                                   |
| Test Option<br>Choose an Operating<br>Option<br>C Automated Operation | Error Status<br>Error 1<br>Error 1<br>Con entering "Find" a list of all saved<br>tests under the armature serial<br>or 4<br>Automated Test<br>Test Results |
| Test Parameter                                                        | numbers appear in a drop-down list.                                                                                                                        |
| Percentage Variance                                                   | (If an armature serial number is                                                                                                                           |
| Add New Value                                                         | entered directly into the input prompt,                                                                                                                    |
| Click To Remove Highlighted Value                                     | a list of all test for that specific                                                                                                                       |
|                                                                       | Manual Reading Cor armature will appear only)                                                                                                              |
| Date                                                                  | Click To Take Reading Prompt View Controls View Settings                                                                                                   |
|                                                                       | Manual Reading                                                                                                                                             |
|                                                                       | View User Profile                                                                                                                                          |
|                                                                       |                                                                                                                                                            |
| lest Ended                                                            | Exit View Calibration Screen                                                                                                                               |
| Test Duration                                                         |                                                                                                                                                            |
|                                                                       |                                                                                                                                                            |

| Test Setup Fields                                                                  | Test In Progress Fields                                                                                                                                                                                                                                                              |
|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| User Identification                                                                | Fault Log                                                                                                                                                                                                                                                                            |
| Password<br>Enter                                                                  |                                                                                                                                                                                                                                                                                      |
| Armature Properties       Armature Select       New Armature Name                  |                                                                                                                                                                                                                                                                                      |
| Add New<br>Number Of Commutator Bars<br>Armature                                   |                                                                                                                                                                                                                                                                                      |
| Click To Remove Highlighted Armature                                               | Contols Click To Print                                                                                                                                                                                                                                                               |
| Job Number                                                                         | Load END Continue After<br>Error Pause STOP Bars Remaining Cick To Save<br>Save                                                                                                                                                                                                      |
| Choose an Operating<br>Option C Automated Operation                                | Error Status                                                                                                                                                                                                                                                                         |
| Test Parameter Percentage Variance Add New Value Click To Remove Highlighted Value | On clicking on a specific serial number, a<br>list of all test dates on which tests on that<br>armature were carried out, will appear,<br>beginning with the "View All" option. On<br>clicking on a specific date, only the results<br>from tests on that date will be displayed. On |
|                                                                                    | clicking on the "View All" option, all test       al Fuction Controls       View/Change Directory Path Settings         results for that armature serial number will       w Controls       View Settings         be displayed.       View Settings                                  |
| Time<br>Test Started<br>Test Ended<br>Test Duration                                | Exit     View Calibration Screen       Calibration Setup                                                                                                                                                                                                                             |
- Test In Progress Fields - Test Setup Fields: Fault Log -User Identification Job Number: Test Results 1 Password<sup>1</sup> Operator's Name: Sunveer Matadin Armature Name: b Number of Bars: 10 Percentage Variance: 5% Date: 2006/04/12 Recorded Faults Name Sunveer Matadin Fault on Bar: 2, Percentage Variance = 4.370112E-02, Segment Reading: 0.1372522V, Reference Reading: 0.1373122V Fault on Bar: 3, Percentage Variance = 18.39481, Segment Reading: 0.1625705V, Reference Reading: 0.1373122V Fault on Bar: 4, Percentage Variance = 0.5904046, Segment Reading: 0.1365015V, Reference Reading: 0.1373122V Armature Properties Fault on Bar: 5, Percentage Variance = 10.91533, Segment Reading: 0.1223241V, Reference Reading: 0.1373122V Fault on Bar: 6, Percentage Variance = 0.4614717, Segment Reading: 0.1366786V, Reference Reading: 0.1373122V Armature Select -Fault on Bar: 7, Percentage Variance = 10.28797, Segment Reading: 0.1514389V, Reference Reading: 0.1373122V New Armature Name Fault on Bar: 8, Volt-Drop Reading Is Zero (0V), Indicating A Possible Short Circuit Fault on Bar: 9, Volt-Drop Reading Is Out Of Range, Indicating A Possible Open Circuit Fault on Bar: 10, Volt-Drop Reading Is Zero (0V), Indicating A Possible Short Circuit Add New • Number Of Commutator Bars Armature Test Status Click To Print-Conrtols Click To Remove Highlighted Armature Bar Under Test Print EMERGENCY Continue After -Job Number END Load Bars Remaining STOP Frror Pause Click To Save Display of results from a specific dated test. Faults Logged - Test Option C Manual Operation Choose an Operating Error Status Manual Test Open Option O Automated Operation Error2-Error3-- Error 1 Error 4 Automated Test Open Test Parameter Reading Error 2 Error 3 Error 4 Error 1 Delete Percentage Variance • Searching Delete Add New Value Click To Remove Highlighted Value Manual Reading Controls GUI Special Fuction Controls -View/Change Directory Path Settings -Click To Take Reading ¬ Date - Reading Prompt-View Controls View Settings Manual Reading View User Profile Setup Time View User Profile Test Started Test Ended Exit View Calibration Screen Exit Calibration Setup Test Duration

| est Setup Fields                                                                                                                                                                                      | Test In Progress Fields                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| - User Identification                                                                                                                                                                                 | Fault Log                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Password<br>New Test Name Sunveer Matadin                                                                                                                                                             | Fault on Bar: 3, Percentage Variance = 19.28123, Bar Reading: 0.1626973V, Reference: 0.136398V         Fault on Bar: 5, Percentage Variance = 10.88503, Bar Reading: 0.1215511V, Reference: 0.136398V         Fault on Bar: 7, Percentage Variance = 10.3879, Bar Reading: 0.1505669V, Reference: 0.136398V         Fault on Bar: 8, Volt-Drop Reading Is Zero (0V), Indicating A Possible Short Circuit         Fault on Bar: 9, Volt-Drop Reading Is Out Of Range, Indicating A Possible Open Circuit         Emergency Stop on Bar 10         Test Print Complete |
| Armature Properties          Armature Name:       b       Number of Bars: 10         New Armature Name       Add New         Aumber Of Commutator Bars       Armature                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Click To Remove Highlighted Armature                                                                                                                                                                  | Contols  Contols  Click To Print Bar Under Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Job Number<br>Test Results                                                                                                                                                                            | Start Results that are displayed during a test OP Bars Remaining Click To Save Save                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Test Option     C     Manual Operation       Choose an Operating     Image: Compared operation     Image: Compared operation       Option     Image: Compared operation     Image: Compared operation | Error Status Error 3 Error 4 Automated Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Test Parameter       Percentage Variance:       5%       Add New Value                                                                                                                                | Error 1 Error 2 Error 3 Error 4 Reading Delete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Click To Remove Highlighted Value                                                                                                                                                                     | Manual Reading Controls     GUI Special Fuction Controls     View/Change Directory Path Settings       Click. To Take Reading     Reading Prompt     View Controls     View Settings                                                                                                                                                                                                                                                                                                                                                                                 |
| Time<br>Test Started 13:53:53<br>Test Ended 13:58:08<br>Test Duration 0: 4: 15                                                                                                                        | Manual Reading     View Calibration Screen       Exit     View Calibration Screen       Calibration Setup                                                                                                                                                                                                                                                                                                                                                                                                                                                            |



The Design Of An Embedded Controller For An Automated Volt-Drop Test

## The Remote Graphic User Interface (RGUI)











## On clicking on a specific serial number, a list of all test dates on which tests on that armature were carried out, will appear, beginning with the "View All" option. On

armature were carried out, will appear, beginning with the "View All" option. On clicking on a specific date, only the results from tests on that date will be displayed. On clicking on the "View All" option, all test results for that armature serial number will be displayed.

(Displayed here, are all the tests recorded for the specified armature serial number. Note that all the displayed test results were recorded on the same day, hence only one date appears after the "View All" option.)

| re | ctory Path                             |
|----|----------------------------------------|
| Г  | Path Propeties                         |
|    | View Default Path                      |
|    |                                        |
|    |                                        |
|    | View Selected Path Change Default Path |
| Γ  | Drive / Network Path                   |
|    | 🖃 c: [PHIL-C]                          |
| L  |                                        |
| Γ  | Folders                                |
|    | C:\                                    |
|    | My Documents                           |
|    | Sun Galain                             |
|    | 🚔 M.Sc Only                            |
|    | data 🗾                                 |
|    | Files                                  |
|    |                                        |
|    | Admin Password Form.trm                |
|    | ana.vbp                                |
|    | ana.vbw                                |
|    | ana2.frm                               |
|    | Animation.trm                          |
| 1  | Animation your                         |
|    | Backup of PCB1 PCB                     |
|    |                                        |
|    | Backup of Sheet2.Sch                   |





The Design Of An Embedded Controller For An Automated Volt-Drop Test

**The Calibration Screen** 

| Calibration Screen                                                                                                                    |                                                                                              |                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |   | <u>_ 문 ×</u> |
|---------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|---|--------------|
| The injected voltage value is entered in the 1 <sup>st</sup> column                                                                   |                                                                                              | The value recorded by the<br>system for this injected<br>value is recorded in the 2 <sup>nd</sup>                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |   |              |
| Reading : 1 [10mV +/- 1mV]                                                                                                            |                                                                                              | column                                                                                                                                                            | mV] [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |   |              |
| Reading : 2 [20mV +/- 1mV]                                                                                                            |                                                                                              | Reading : 22 [220mV +/- 1                                                                                                                                         | mV] 🗆                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |   |              |
| Reading : 3 [30mV +/- 1mV]                                                                                                            | Individual reading                                                                           | s recorded for the 30mV +/-10<br>ue + a 1 mV tolerance                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |   |              |
| Reading : 4 [40mV +/-1mV]                                                                                                             |                                                                                              | Heading : 24 (240mV +/- 1)                                                                                                                                        | mV] [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |   |              |
| Reading : 5 [50mV +/- 1mV]                                                                                                            |                                                                                              | Reading : 25 [250mV +/- 1                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |   |              |
| Reading : 6 [60mV +/- 1mV]                                                                                                            |                                                                                              | Reading : 26 [260mV +/- 1                                                                                                                                         | mV] [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |   |              |
| Reading : 7 [70mV +/- 1mV]                                                                                                            |                                                                                              | Reading : 27 [270mV +/- 1                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |   |              |
| Reading : 8 [80mV +/- 1mV]                                                                                                            |                                                                                              | Reading : 28 [280mV +/- 1                                                                                                                                         | mV] 🗆                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |   |              |
| Reading : 9 [90mV +/- 1mV]                                                                                                            |                                                                                              | Reading : 29 [290mV +/- 1                                                                                                                                         | mV]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |   |              |
| Reading : 10 [100mV +/- 1mV]                                                                                                          |                                                                                              | Reading : 30 [300mV +/-1                                                                                                                                          | Raw data is recorded and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |   |              |
| Reading : 11 [110mV +/- 1mV]                                                                                                          |                                                                                              | Reading : 31 [310mV +/-                                                                                                                                           | displayed in this list box.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |   |              |
| Reading : 12 [120mV +/- 1mV]                                                                                                          |                                                                                              | Reading : 32 [320mV +/-                                                                                                                                           | 100 successive readings f<br>each pair of bars is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | or |   |              |
| Reading : 13 [130mV +/- 1mV]                                                                                                          |                                                                                              | Reading : 33 (330mV +/-                                                                                                                                           | displayed in its "raw" from<br>as it is received from the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n  |   |              |
| Reading : 14 [140mV +/- 1mV]                                                                                                          |                                                                                              | Reading : 34 [340mV +/-                                                                                                                                           | controller.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    | 1 |              |
| Reading : 15 [150mV +/- 1mV]                                                                                                          |                                                                                              | Reading : 35 (350mV +/- 1                                                                                                                                         | mV] [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |   |              |
| Click to close the<br>calibration screen<br>Reading: 18 [180mV +/- 1mV]<br>Reading: 18 [190mV +/- 1mV]<br>Reading: 20 [200mV +/- 1mV] | Click to view the<br>Excel spreadsheet<br>in which the<br>received data is<br>being recorded | re-take<br>Il readings<br>Click to execute<br>calibration algor<br>that will calcula<br>and save the<br>calibration/offse<br>factor<br>Reading: 40 [400 mV +/- 1] | et he contract of the contract |    |   |              |
| Close Calibration Screen                                                                                                              | View Spread Sheet Re-T                                                                       | ake Reading(s) Calculate And Save                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |   |              |

| Reading : 1 [10mV +/- 1mV]   | 0.011             | <u>9.1076</u> The entered, injecte                 | ed ading : 21 [210mV +/- 1mV]       | 2               | 0.211                                    | 0.2107935 | 39                                                                 | 10000                                       |
|------------------------------|-------------------|----------------------------------------------------|-------------------------------------|-----------------|------------------------------------------|-----------|--------------------------------------------------------------------|---------------------------------------------|
| Reading : 2 [20mV +/- 1mV]   | 0.019             | 0.0176799                                          | Heading : 22 [220mV +/- 1mV]        | V               | 0.22                                     | 0.2195873 | false                                                              | 0'0'0'0'0'0                                 |
| Reading : 3 [30mV +/- 1mV]   | 0.03              | 0.0291375                                          | The recorded,<br>acquired value     | syst<br>e       | em                                       | 0.2297432 | 9.836684E-03 , 1566<br>8.574121E-03 , 1365                         | , 30 , 6<br>, 85 , 5                        |
| Reading : 4 [40mV +/- 1mV]   | 0.04              | 0.0390804                                          | Reading : 24 [240mV +/- 1mV]        | V               | 0.24                                     | 0.2399258 | 9.170854E-03 , 1460<br>8.92588E-03 , 1421 ,<br>1.044598E-02 , 1663 | , 180 , 5<br>141 , 5<br>, 127 , 6           |
| Reading : 5 [50mV +/- 1mV]   | 0.05              | 4.907751E-02                                       | Beading : 25 [250mV +/- 1mV]        | <b>V</b>        | 0.25                                     | 0.250149  | 1.003769E-02 , 1598<br>9.183417E-03 , 1462<br>9.880654E-03 , 1573  | , 57 , 5<br>, 62 , 6<br>, 182 , 5<br>37 6   |
| Reading : 6 [60mV +/- 1mV]   | 0.059             | "ticked" to indicate that a                        | ading : 26 [260mV +/- 1mV]          | <u>-</u>        | 0.26                                     | 0.2604664 | 6.538945E-03 , 1041<br>9.692212E-03 , 1543<br>6.752513E-03 , 1075  | , 17 , 4<br>, 7 , 6<br>, 51 4               |
| Reading : 7 [70mV +/- 1mV]   | 0.07              | reading for this input range<br>has been completed | ading : 27 [270mV +/- 1mV]          | 2               | 0.27                                     | 0.2697689 | 1.124372E-02 , 1790<br>7.418342E-03 , 1181<br>9.629398E-03 , 1533  | , 254 , 6<br>, 157 , 4<br>, 253 , 5         |
| Reading : 8 [80mV +/- 1mV]   | 0.08              | 7.911276E-02                                       | Reading : 28 [280mV +/- 1mV]        | 2               | 0.28                                     | 0.280248  | 7.89573E-03 , 1257 ,<br>1.154523E-02 , 1838<br>7.028895E-03 , 1119 | 233 , 4<br>, 46 , 7<br>, 95 , 4             |
| Reading : 9 [90mV +/- 1mV]   | 0.09              | 8.902726E-02                                       | Reading : 28 [290mV +/- 1mV]        | 2               | 0.29                                     | 0.2900789 | 9.051508E-03 , 1441<br>8.473619E-03 , 1349<br>8.146985E-03 , 1297  | , 161 , 5<br>, 69 , 5<br>, 17 , 5           |
| Reading : 10 [100mV +/- 1mV] | 0.1               | 9.951258E-02                                       | Reading : 30 [300mV +/- 1mi 0       | v dat           | ta is recorded and                       | 0 3000196 | 0.011049 , 1759 , 22<br>8.373116E-03 , 1333<br>1.168342E-02 , 1860 | 3,6<br>,53,5<br>,68,7                       |
| Reading: 11 [110mV +/- 1mV]  | 0.11              | 0.109174                                           | Reading: 31 [310mV +/- disp         | olaye           | ed in this list box.                     | 104999    | 8.630654E-03 , 1374<br>1.193467E-02 , 1900<br>8.329147E-03 , 1326  | , 94 , 5<br>, 108 , 7<br>, 46 , 5           |
| Reading: 12 [120mV +/- 1mV]  | 0.12              | 0.1194307                                          | Reading: 32 [320mV +/-              | h pai           | ir of bars is                            | 201728    | 1.102387E-02 , 1755<br>7.286433E-03 , 1160<br>9.50377E-03 , 1513 , | , 219 , 6<br>, 136 , 4<br>, 233 , 5         |
| Reading : 13 [130mV +/- 1mV] | 0.13              | 0.1293813                                          | Reading: 33 [330mV +/- disp<br>as i | olaye<br>t is r | ed in its "raw" from<br>eceived from the | 307337    | 8.454775E-03 , 1346<br>1.055276E-02 , 1680<br>7.619347E-03 , 1213  | , 66 , 5<br>, 144 , 6<br>, 189 , 4          |
| Reading : 14 [140mV +/- 1mV] | 0.14              | 0.1397754                                          | Reading : 34 [340mV +/- CON         | troll           | er.                                      | 3401637   | 6.702262E-03 , 1067<br>8.140704E-03 , 1296<br>9.026382E-03 , 1427  | , 65 , 6<br>, 43 , 4<br>, 16 , 5<br>, 157 5 |
| Reading : 15 [150mV +/- 1mV] | 0.15              | 0.1488802                                          | Reading : 35 [350mV +/- 1mV]        | <b>V</b>        | 0.35                                     | 0.3502301 | 1.075377E-02 , 1712<br>7.449749E-03 , 1186<br>1.026382E-02         | , 137 , 3<br>, 176 , 6<br>, 162 , 4<br>98 6 |
| Reading : 16 [160mV +/- 1mV] | 0.16              | 0.1593765                                          | Reading : 36 [360mV +/- 1mV]        | V               | 0.36                                     | 0.3603194 | 8.724875E-03 , 1389<br>1.092337E-02 , 1739<br>8.624372E-03 1373    | , 109 , 5<br>, 203 , 6<br>, 93 5            |
| Reading : 17 [170mV +/- 1mV] | 0.17              | 0.1691788                                          | Reading : 37 [370mV +/- 1mV]        | 1               | 0.37                                     | 0.3703849 | 0.0109799 , 1748 , 2<br>8.216081E-03 , 1308<br>9.491206E-03 , 1511 | 12 , 6<br>, 28 , 5<br>, 231 , 5             |
| Reading : 18 [180mV +/- 1mV] | 0.18              | 0.1795637                                          | Reading : 38 [380mV +/- 1mV]        | <b>V</b>        | 0.38                                     | 0.3797119 | 6.620603E-03 , 1054<br>1.193467E-02 , 1900<br>7.135679E-03 , 1136  | , 30 , 4<br>, 108 , 7<br>, 112 , 4          |
| Reading : 19 [190mV +/- 1mV] | 0.19              | 0.1897348                                          | Reading : 39 [390mV +/- 1mV]        | <b>V</b>        | 0.39                                     | 0.3902905 | 1.038317E-02 , 1653<br>8.310302E-03 , 1323<br>8.894472E-03 , 1416  | , 117 , 6<br>, 43 , 5<br>, 136 , 5          |
| Reading : 20 [200mV +/- 1mV] | 0.2               | 0.1996994                                          | Reading : 40 [400mV +/- 1mV]        | M               | 0.4                                      | 0.3991595 | 9.139447E-03 , 1455<br>9.045226E-03 , 1440                         | , 175 , 5<br>, 160 , 5 💌                    |
| Close Calibration Screen     | View Spread Sheet | Re-Take Reading(s)                                 | Calculate And Save                  |                 |                                          |           |                                                                    |                                             |

The Design Of An Embedded Controller For An Automated Volt-Drop Test

The Microcontroller Software Development Environment

|             | XBB           | M @ @ # 00 00 *0 ■ 0 ■ ■ ■ 0 10 10 10 10 10 10 10 10 10 10 10 10 1 |     |               |                   |                                        |          |                     |         |
|-------------|---------------|--------------------------------------------------------------------|-----|---------------|-------------------|----------------------------------------|----------|---------------------|---------|
| 12-04-06 Mi | cro1 16bitADC | rly cal                                                            | 1 [ | 📁 12-04-06 Mi | cro2 latest       |                                        | 🔍 Reg    | ster1               | _ 🗆 ×   |
|             | ORG           | ОН                                                                 | JГ  | ; * * * * * * | *****             | *****                                  | A        | 0                   |         |
|             | LJMP          | MAIN                                                               |     |               |                   |                                        | В        | 0                   |         |
|             | ORG           | 0003H                                                              |     |               | ORG               | ОН                                     | RO       | 0                   |         |
|             | LJMP          | EXOISR                                                             |     |               | LJMP              | MAIN                                   | R1       | 0                   |         |
|             | ORG           | 0023H                                                              |     |               | ORG               | 0003н                                  | R2       | 0                   |         |
|             | LJMP          | SPISR                                                              |     |               | LJMP              | EXOISR                                 | R3       | 0                   |         |
|             |               |                                                                    |     |               | ORG               | 0013H                                  | R4       | 96                  |         |
|             |               |                                                                    |     |               | LJMP              | EX1ISR                                 | R5       | 100                 |         |
|             | ORG           | UU3UH                                                              |     | ~~~~~         |                   | 10000 55111 1005                       | R6       | 50                  |         |
| ;           |               | ANALASSA ANALINTILIZE I/O PORTS ANALASSA ANALASSA                  |     | COUNT         | EQU               | -IUUUU ;DELAY LOOP                     | R/       | U<br>7              |         |
| MATN.       | MOV           | P0 #00000100P                                                      |     | COUNTZ        | ЕŲU               | -SUUUU ;SAFTI TIME                     | SP<br>DC | 70                  |         |
| MAIN.       | MOV           | P0,#000000000<br>n1 #11111110                                      |     |               | OPC               | 00204                                  |          | י <i>ב</i> י<br>ס ח |         |
|             | MOV           | P2, #01111110B                                                     |     | ΜΑΤΝ·         | MOV               | ΨΜΟD. #00010001B                       | DEI      | N 0                 |         |
|             | MOV           | P2, #010101111B : (rEC & +RANS PORTS SET TO 1). on                 |     | 117111.       | MOV               | TP, #0000001B                          | Q Cont   | Peg1                |         |
| .*****      | ******        | **************************************                             |     |               | MOV               | ΤΕ, #000001018                         | DCM      | 16                  |         |
| ll '        |               |                                                                    |     |               |                   | ,                                      | rn r     | 10                  |         |
|             | SETB          | P3.5                                                               |     | ;*****        | * * * * * * * * * | ************************************** | * TR     | 0                   |         |
|             |               |                                                                    |     |               | MOV               | PO,#OH ; only for sim, input port      | TCON     | n                   |         |
|             | CLR           | RSO ;1S                                                            |     |               | MOV               | P1,#11111111B ; only for sim, inp      | P TMOD   | ñ                   |         |
|             | SETB          | RS1                                                                |     |               | MOV               | P2,#00001000H ; only for sim, inp      | PCON     | Ō                   |         |
|             | MOV           | R6,#50                                                             |     |               | MOV               | P3,#00011111B ; only for sim, inp      | T2CO     | NO                  |         |
| DLY3:       | mov           | r5,#100                                                            |     | ;*****        | ******            | ************************************** | SCON     | 0                   |         |
| dly:        | mov           | r4,#100                                                            |     |               |                   |                                        | SBUF     | 0                   |         |
| dly2:       | djnz          | r4,dly2                                                            |     | ; clear       | ing all           | flags                                  | тО       | 0                   |         |
|             | djnz          | r5,dly                                                             |     |               | CLR               | 00H                                    | Т1       | 0                   |         |
|             | DJNZ          | R6, DLY3                                                           |     |               | CLR               | UIH                                    | т2       | 0                   |         |
|             | CLR           | RSU<br>Pal                                                         |     |               | CLR               | 02H                                    | RCAP     | 20                  |         |
|             | CLR           | RS1 ; 15                                                           |     |               | CLR               | 0.44                                   |          |                     |         |
|             |               |                                                                    |     |               | CLR               | 040                                    | 🔍 IRA    | 41                  |         |
|             | CLR           | 00H :CLEARING FLAGS                                                |     |               | CLR               | 05H<br>06H                             | 12:      | 0                   |         |
|             | CLR           | 01H                                                                |     |               | CLR               | 07H                                    | 13:      | 0                   |         |
|             | CLR           | 02H                                                                |     |               | CLR               | 08H                                    | 14:      | 96                  |         |
|             | CLR           | 03H                                                                |     |               | CLR               | 09H                                    | 15:      | 100                 |         |
|             | CLR           | 04H                                                                |     |               | CLR               | OAH                                    | 16:      | 50                  |         |
|             | CLR           | 05H                                                                |     |               | CLR               | ОВН                                    | 17:      | 0                   |         |
|             |               |                                                                    |     |               | CLR               | OCH                                    | 18:      | 0                   |         |
| ;*****      | ******        | **************************************                             |     |               | CLR               | ODH                                    | 19:      | 0                   |         |
|             | CLR           | P2.0                                                               |     |               | CLR               | OEH                                    | 1A:      | U                   |         |
|             | NOP           |                                                                    |     |               |                   |                                        | 18:      | U                   |         |
|             | CLR           | P3.5                                                               |     |               | SETB              | EA                                     | 10:      | 0                   |         |
|             |               |                                                                    |     |               | SETB              | IT1                                    | 12:      | 0                   |         |
|             | CLR           | RSU ;20US                                                          |     |               | SETB              |                                        | 1 .      | 0                   |         |
|             | SETB          | RS1                                                                |     | AGIAN:        | SETB              | EX1; ENABLE EX INT1                    | 20.      | 0<br>0              |         |
| C. David    | MOV           | KD, #2U                                                            | 11  | START:        | JNB               | PI.U, START                            | 21:      | 0                   |         |
| Port1       |               |                                                                    |     |               |                   |                                        | 22:      | Ō                   |         |
| PU 00000    | 1100          |                                                                    |     |               |                   |                                        | 23:      | 0                   |         |
| PI 11111    | .111          |                                                                    |     |               |                   |                                        | 24:      | 0                   |         |
| P2 01111    | .110          |                                                                    |     |               |                   |                                        | 25:      | 0                   |         |
|             |               |                                                                    |     |               |                   |                                        | العد     |                     | <b></b> |

For Help, press F1



Type: 8051 Source Document Size: 15.0 KB

15.0 KB 📃 My Computer

| 0.199563 | 0.178944 | 0.180944 | 0.200813 | 0.185363 | 0.193806 | 0.177512 | 0.1995   | 0.197625 | 0.174088 |
|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| 0.171538 | 0.183744 | 0.200181 | 0.190025 | 0.171563 | 0.185588 | 0.1987   | 0.186706 | 0.176869 | 0.1883   |
| 0.1727   | 0.182819 | 0.203    | 0.191444 | 0.1735   | 0.181775 | 0.2056   | 0.1795   | 0.175606 | 0.196194 |
| 0.190256 | 0.171237 | 0.187006 | 0.201838 | 0.179819 | 0.176413 | 0.2007   | 0.1974   | 0.171981 | 0.184763 |
| 0.1935   | 0.207006 | 0.178681 | 0.174206 | 0.197219 | 0.200313 | 0.172263 | 0.174019 | 0.201325 | 0.1891   |
| 0.199513 | 0.176206 | 0.178813 | 0.200181 | 0.194756 | 0.170788 | 0.1867   | 0.1998   | 0.180944 | 0.172713 |
| 0.203619 | 0.182475 | 0.170231 | 0.1947   | 0.201694 | 0.178106 | 0.173894 | 0.201513 | 0.191006 | 0.175225 |
| 0.1775   | 0.172544 | 0.1976   | 0.198525 | 0.172263 | 0.1795   | 0.204438 | 0.188894 | 0.173775 | 0.191494 |
| 0.200838 | 0.193963 | 0.172606 | 0.184244 | 0.201813 | 0.190575 | 0.173212 | 0.1903   | 0.206019 | 0.178325 |
| 0.194475 | 0.202813 | 0.177938 | 0.172881 | 0.199225 | 0.202394 | 0.1719   | 0.1738   | 0.202838 | 0.198019 |
| 0.194206 | 0.174044 | 0.180081 | 0.199994 | 0.191181 | 0.174    | 0.18115  | 0.202212 | 0.191031 | 0.173788 |
| 0.17555  | 0.197744 | 0.200606 | 0.178806 | 0.176606 | 0.198588 | 0.200337 | 0.174019 | 0.1811   | 0.203125 |
| 0.175219 | 0.177638 | 0.201556 | 0.1935   | 0.171831 | 0.176681 | 0.202013 | 0.187931 | 0.1755   | 0.195406 |
| 0.200506 | 0.190525 | 0.172025 | 0.189006 | 0.200394 | 0.179806 | 0.179619 | 0.205806 | 0.189406 | 0.168825 |
| 0.181406 | 0.2026   | 0.191563 | 0.172838 | 0.184206 | 0.2022   | 0.191094 | 0.1719   | 0.188594 | 0.201594 |
| 0.202406 | 0.19715  | 0.1752   | 0.178344 | 0.200075 | 0.190819 | 0.169925 | 0.184325 | 0.1996   | 0.183813 |
| 0.2024   | 0.180606 | 0.173913 | 0.201206 | 0.202488 | 0.174194 | 0.177188 | 0.203244 | 0.1918   | 0.174206 |
| 0.175225 | 0.185794 | 0.201406 | 0.188    | 0.176606 | 0.1886   | 0.200038 | 0.186331 | 0.176419 | 0.1867   |
| 0.206369 | 0.1825   | 0.172769 | 0.192206 | 0.204544 | 0.181406 | 0.173406 | 0.192781 | 0.20175  | 0.1764   |
| 0.189613 | 0.202019 | 0.185394 | 0.174013 | 0.191213 | 0.204088 | 0.18215  | 0.168156 | 0.195019 | 0.205637 |
| 0.20075  | 0.193875 | 0.174425 | 0.183806 | 0.2019   | 0.1912   | 0.1722   | 0.186006 | 0.203275 | 0.187806 |
| 0.182144 | 0.202713 | 0.1903   | 0.174219 | 0.18325  | 0.198838 | 0.1835   | 0.171494 | 0.196125 | 0.1991   |
| 0.1947   | 0.2039   | 0.18155  | 0.174206 | 0.195794 | 0.199831 | 0.176606 | 0.175381 | 0.199913 | 0.199575 |
| 0.200925 | 0.173913 | 0.175619 | 0.201663 | 0.193206 | 0.170681 | 0.1894   | 0.204406 | 0.183006 | 0.172794 |
| 0.1699   | 0.198306 | 0.200825 | 0.174494 | 0.173081 | 0.201988 | 0.1899   | 0.174425 | 0.186425 | 0.199413 |
| 0.171931 | 0.185194 | 0.201212 | 0.187275 | 0.175806 | 0.186475 | 0.200313 | 0.185344 | 0.172888 | 0.197638 |
| 0.19765  | 0.187913 | 0.174594 | 0.189675 | 0.204619 | 0.182    | 0.170806 | 0.191125 | 0.205613 | 0.1815   |
| 0.187006 | 0.202294 | 0.189613 | 0.173788 | 0.188406 | 0.200606 | 0.187613 | 0.169538 | 0.198388 | 0.191144 |
| 0.188238 | 0.199906 | 0.183844 | 0.168988 | 0.191888 | 0.204519 | 0.183631 | 0.172975 | 0.196888 | 0.201819 |
| 0.174006 | 0.1784   | 0.20075  | 0.188706 | 0.175031 | 0.1807   | 0.201663 | 0.189131 | 0.173944 | 0.198206 |
| 0.1734   | 0.197481 | 0.201188 | 0.1727   | 0.172781 | 0.202212 | 0.191213 | 0.172175 | 0.1855   | 0.200613 |
| 0.201919 | 0.1895   | 0.171856 | 0.194206 | 0.203406 | 0.1783   | 0.171994 | 0.195419 | 0.199225 | 0.175006 |
| 0.1928   | 0.173738 | 0.179613 | 0.203144 | 0.193206 | 0.174613 | 0.183969 | 0.199988 | 0.184794 | 0.169888 |
| 0.199563 | 0.178544 | 0.1751   | 0.1966   | 0.2006   | 0.177794 | 0.175225 | 0.197619 | 0.1999   | 0.179619 |
| 0.194813 | 0.20175  | 0.18     | 0.173613 | 0.195806 | 0.2018   | 0.182    | 0.172988 | 0.2024   | 0.1894   |
| 0.199513 | 0.174488 | 0.175513 | 0.202269 | 0.2006   | 0.174319 | 0.184813 | 0.200075 | 0.187531 | 0.1695   |
| 0.198213 | 0.199006 | 0.173306 | 0.173625 | 0.198306 | 0.2003   | 0.1715   | 0.179781 | 0.202231 | 0.194425 |
| 0.200813 | 0.188669 | 0.17445  | 0.188    | 0.201456 | 0.181744 | 0.1734   | 0.2011   | 0.195606 | 0.17275  |
| 0.1855   | 0.203006 | 0.189    | 0.175619 | 0.184738 | 0.1998   | 0.183588 | 0.170413 | 0.1923   | 0.203938 |
| 0.204    | 0.183738 | 0.173294 | 0.197006 | 0.200862 | 0.1779   | 0.175669 | 0.197269 | 0.200363 | 0.177806 |

| 0.174681 | 0.200888 | 0.1939   | 0.1752   | 0.179606 | 0.201206 | 0.197531 | 0.174144 | 0.176806 | 0.201406 |
|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| 0.200306 | 0.181431 | 0.172631 | 0.194906 | 0.199988 | 0.1742   | 0.176594 | 0.2003   | 0.197644 | 0.172181 |
| 0.196306 | 0.1719   | 0.177556 | 0.201469 | 0.194425 | 0.1734   | 0.180413 | 0.199831 | 0.193781 | 0.1723   |
| 0.199963 | 0.1819   | 0.176219 | 0.202444 | 0.1979   | 0.173481 | 0.184838 | 0.202306 | 0.189663 | 0.174144 |
| 0.175806 | 0.192075 | 0.200406 | 0.172994 | 0.1787   | 0.2015   | 0.190788 | 0.172313 | 0.186444 | 0.198594 |
| 0.199513 | 0.200319 | 0.1687   | 0.185125 | 0.198306 | 0.184813 | 0.173138 | 0.193431 | 0.204644 | 0.1803   |
| 0.1896   | 0.201669 | 0.1807   | 0.174638 | 0.19995  | 0.190219 | 0.175994 | 0.190319 | 0.2043   | 0.179344 |
| 0.200794 | 0.180013 | 0.172731 | 0.198838 | 0.194419 | 0.173406 | 0.179581 | 0.2022   | 0.188038 | 0.175006 |
| 0.172181 | 0.19515  | 0.199488 | 0.175831 | 0.1719   | 0.199488 | 0.1899   | 0.173188 | 0.1914   | 0.203806 |
| 0.172181 | 0.179206 | 0.200738 | 0.1944   | 0.172075 | 0.181613 | 0.202463 | 0.193406 | 0.1717   | 0.1795   |
| 0.182869 | 0.201269 | 0.191031 | 0.177219 | 0.187806 | 0.2014   | 0.186438 | 0.174844 | 0.188181 | 0.202438 |
| 0.190038 | 0.173406 | 0.201406 | 0.193813 | 0.1752   | 0.183988 | 0.202    | 0.190844 | 0.169281 | 0.1839   |
| 0.200813 | 0.1768   | 0.181694 | 0.2007   | 0.1891   | 0.169675 | 0.1864   | 0.198863 | 0.182206 | 0.1723   |
| 0.193538 | 0.199806 | 0.173675 | 0.171506 | 0.202206 | 0.1915   | 0.172344 | 0.180025 | 0.2008   | 0.191806 |
| 0.17655  | 0.178281 | 0.200306 | 0.193219 | 0.172306 | 0.1848   | 0.204144 | 0.192413 | 0.170813 | 0.183931 |
| 0.171581 | 0.203019 | 0.1932   | 0.169094 | 0.187019 | 0.2019   | 0.190806 | 0.173988 | 0.184725 | 0.199663 |
| 0.188606 | 0.202488 | 0.176694 | 0.176013 | 0.200881 | 0.189788 | 0.171619 | 0.19435  | 0.1995   | 0.177606 |
| 0.198081 | 0.1867   | 0.172025 | 0.193419 | 0.2059   | 0.183106 | 0.172344 | 0.1939   | 0.201206 | 0.1804   |
| 0.180619 | 0.202356 | 0.183019 | 0.172944 | 0.196825 | 0.1999   | 0.176381 | 0.175006 | 0.198206 | 0.198438 |
| 0.182206 | 0.172044 | 0.196088 | 0.200813 | 0.177406 | 0.173925 | 0.198381 | 0.202281 | 0.172794 | 0.174694 |
| 0.1791   | 0.201894 | 0.1889   | 0.176406 | 0.186475 | 0.199894 | 0.189406 | 0.170544 | 0.192888 | 0.200875 |
| 0.177688 | 0.1768   | 0.1982   | 0.200406 | 0.175362 | 0.175094 | 0.199869 | 0.199413 | 0.174081 | 0.176606 |
| 0.172606 | 0.18075  | 0.200306 | 0.192806 | 0.173625 | 0.191194 | 0.200763 | 0.176213 | 0.1751   | 0.198788 |
| 0.196875 | 0.201212 | 0.179219 | 0.1751   | 0.198263 | 0.197681 | 0.175888 | 0.177206 | 0.202019 | 0.199913 |
| 0.1819   | 0.170206 | 0.194394 | 0.2024   | 0.173613 | 0.179819 | 0.203713 | 0.1887   | 0.173138 | 0.188606 |
| 0.201406 | 0.173644 | 0.19555  | 0.202613 | 0.172825 | 0.184606 | 0.204013 | 0.188481 | 0.172375 | 0.185594 |
| 0.1704   | 0.1971   | 0.200044 | 0.172606 | 0.182981 | 0.203006 | 0.189431 | 0.1707   | 0.186319 | 0.202206 |
| 0.1742   | 0.183869 | 0.203169 | 0.191944 | 0.171344 | 0.184306 | 0.2019   | 0.188775 | 0.175344 | 0.187363 |
| 0.172881 | 0.178194 | 0.205406 | 0.18795  | 0.168288 | 0.193644 | 0.201212 | 0.1778   | 0.178231 | 0.201344 |
| 0.200619 | 0.1742   | 0.178744 | 0.200181 | 0.196    | 0.173625 | 0.175781 | 0.202806 | 0.1879   | 0.1727   |
| 0.186713 | 0.1762   | 0.187381 | 0.199388 | 0.187613 | 0.172306 | 0.1894   | 0.200188 | 0.183219 | 0.169    |
| 0.185006 | 0.2011   | 0.1887   | 0.170206 | 0.185506 | 0.199644 | 0.185394 | 0.171506 | 0.198081 | 0.202988 |
| 0.1921   | 0.200606 | 0.1715   | 0.1831   | 0.202006 | 0.187    | 0.1752   | 0.194438 | 0.202219 | 0.174206 |
| 0.172075 | 0.201219 | 0.191631 | 0.173638 | 0.183994 | 0.201125 | 0.191006 | 0.173625 | 0.1843   | 0.2028   |
| 0.1743   | 0.189188 | 0.2027   | 0.182175 | 0.173619 | 0.198806 | 0.199606 | 0.1731   | 0.184406 | 0.204938 |
| 0.191406 | 0.203394 | 0.18315  | 0.171406 | 0.1915   | 0.202413 | 0.180406 | 0.172438 | 0.200656 | 0.203    |
| 0.173406 | 0.178381 | 0.2003   | 0.1927   | 0.172606 | 0.186006 | 0.200613 | 0.181131 | 0.1731   | 0.1959   |
| 0.179088 | 0.203006 | 0.193638 | 0.1711   | 0.185594 | 0.206    | 0.189594 | 0.175738 | 0.186481 | 0.203606 |
| 0.178806 | 0.174363 | 0.201269 | 0.192794 | 0.172794 | 0.183913 | 0.202006 | 0.182781 | 0.169025 | 0.192413 |
| 0.1768   | 0.200975 | 0.199169 | 0.172344 | 0.186013 | 0.2018   | 0.192406 | 0.172013 | 0.1864   | 0.202206 |

| 0.1994   | 0.174206 | 0.174675 | 0.196606 | 0.203163 | 0.181619 | 0.171806 | 0.188894 | 0.2024   | 0.191213 |
|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| 0.178838 | 0.2028   | 0.191006 | 0.1739   | 0.184375 | 0.199288 | 0.187088 | 0.172038 | 0.1931   | 0.20405  |
| 0.179806 | 0.201188 | 0.199013 | 0.179806 | 0.174544 | 0.195806 | 0.204488 | 0.1851   | 0.173281 | 0.187644 |
| 0.185563 | 0.204138 | 0.191006 | 0.173013 | 0.182606 | 0.201438 | 0.194412 | 0.1729   | 0.178206 | 0.1999   |
| 0.1847   | 0.1743   | 0.185144 | 0.203106 | 0.1899   | 0.1717   | 0.177013 | 0.200356 | 0.1991   | 0.175394 |
| 0.1687   | 0.1901   | 0.2008   | 0.188413 | 0.173681 | 0.186819 | 0.200925 | 0.188794 | 0.1703   | 0.185406 |
| 0.172719 | 0.192338 | 0.203244 | 0.188194 | 0.173513 | 0.1851   | 0.2035   | 0.188438 | 0.175031 | 0.185794 |
| 0.1883   | 0.200794 | 0.186481 | 0.1747   | 0.186744 | 0.201588 | 0.190438 | 0.175    | 0.1818   | 0.20135  |
| 0.181888 | 0.171619 | 0.189675 | 0.199338 | 0.1883   | 0.171706 | 0.185294 | 0.202181 | 0.189738 | 0.172794 |
| 0.200731 | 0.192838 | 0.174194 | 0.173075 | 0.2008   | 0.202613 | 0.175138 | 0.175213 | 0.198213 | 0.2014   |
| 0.182088 | 0.171006 | 0.189619 | 0.199806 | 0.184781 | 0.175913 | 0.186425 | 0.199663 | 0.1896   | 0.175    |
| 0.2026   | 0.184581 | 0.1702   | 0.191006 | 0.201981 | 0.186475 | 0.174494 | 0.186413 | 0.2015   | 0.189181 |
| 0.198069 | 0.197681 | 0.178269 | 0.173888 | 0.194231 | 0.202394 | 0.181206 | 0.175219 | 0.194844 | 0.204606 |
| 0.170181 | 0.182544 | 0.201912 | 0.199263 | 0.174594 | 0.175806 | 0.195563 | 0.203925 | 0.1832   | 0.169675 |
| 0.200606 | 0.188194 | 0.169531 | 0.1868   | 0.202406 | 0.191994 | 0.172606 | 0.183019 | 0.20075  | 0.190206 |
| 0.180413 | 0.174806 | 0.202044 | 0.201219 | 0.173838 | 0.1759   | 0.200888 | 0.190588 | 0.173663 | 0.185513 |
| 0.175238 | 0.194206 | 0.204394 | 0.1795   | 0.172825 | 0.192644 | 0.2026   | 0.1767   | 0.173663 | 0.200819 |
| 0.174206 | 0.194425 | 0.2007   | 0.180706 | 0.169469 | 0.190231 | 0.1983   | 0.1899   | 0.173406 | 0.182994 |
| 0.178806 | 0.175563 | 0.196175 | 0.2038   | 0.183669 | 0.169881 | 0.190894 | 0.200331 | 0.187919 | 0.173906 |
| 0.200481 | 0.197125 | 0.175019 | 0.176613 | 0.197544 | 0.199525 | 0.178106 | 0.1683   | 0.195106 | 0.1999   |
| 0.1795   | 0.171031 | 0.188294 | 0.2012   | 0.188275 | 0.173519 | 0.185388 | 0.201737 | 0.1946   | 0.173188 |
| 0.199806 | 0.200413 | 0.1788   | 0.172038 | 0.192875 | 0.2015   | 0.187594 | 0.1747   | 0.1835   | 0.200881 |
| 0.197619 | 0.1739   | 0.181581 | 0.201406 | 0.1899   | 0.174319 | 0.179419 | 0.2003   | 0.199288 | 0.178594 |
| 0.174563 | 0.182088 | 0.202469 | 0.194444 | 0.1748   | 0.177106 | 0.200819 | 0.1989   | 0.1798   | 0.170425 |
| 0.202813 | 0.177838 | 0.170281 | 0.190006 | 0.199263 | 0.190269 | 0.1695   | 0.18035  | 0.202425 | 0.1991   |
| 0.199806 | 0.190206 | 0.169081 | 0.184838 | 0.200081 | 0.194788 | 0.175006 | 0.175131 | 0.196331 | 0.201212 |
| 0.1885   | 0.172219 | 0.185744 | 0.200838 | 0.193219 | 0.1719   | 0.1794   | 0.201163 | 0.191213 | 0.174144 |
| 0.200825 | 0.187288 | 0.17605  | 0.185675 | 0.203006 | 0.190475 | 0.1748   | 0.177731 | 0.202413 | 0.192338 |
| 0.191819 | 0.174675 | 0.175056 | 0.195581 | 0.202019 | 0.177581 | 0.172013 | 0.191806 | 0.199606 | 0.190038 |
| 0.1847   | 0.204094 | 0.191213 | 0.1739   | 0.182206 | 0.202413 | 0.199869 | 0.177144 | 0.1704   | 0.1883   |
| 0.197431 | 0.204606 | 0.183275 | 0.175175 | 0.183906 | 0.204025 | 0.188356 | 0.17195  | 0.185163 | 0.200838 |
| 0.172825 | 0.1768   | 0.196    | 0.204075 | 0.185381 | 0.1749   | 0.1868   | 0.200825 | 0.192975 | 0.172144 |
| 0.1772   | 0.2008   | 0.195006 | 0.174356 | 0.175925 | 0.199238 | 0.202019 | 0.182013 | 0.1695   | 0.194944 |
| 0.186475 | 0.175213 | 0.191725 | 0.200381 | 0.183219 | 0.173181 | 0.194425 | 0.202725 | 0.1864   | 0.174788 |
| 0.190969 | 0.172788 | 0.1799   | 0.202488 | 0.196794 | 0.174713 | 0.176206 | 0.198444 | 0.200025 | 0.178394 |
| 0.1731   | 0.174038 | 0.195581 | 0.2046   | 0.184025 | 0.176819 | 0.187006 | 0.200813 | 0.190219 | 0.172694 |
| 0.2024   | 0.177238 | 0.171881 | 0.198206 | 0.200656 | 0.17995  | 0.1736   | 0.190975 | 0.201781 | 0.187563 |
| 0.182594 | 0.172144 | 0.187819 | 0.201456 | 0.189406 | 0.170888 | 0.181638 | 0.202019 | 0.197531 | 0.1767   |
| 0.2019   | 0.188144 | 0.175    | 0.187225 | 0.200025 | 0.190219 | 0.172013 | 0.1836   | 0.2036   | 0.202    |
| 0.191    | 0.175006 | 0.179831 | 0.202381 | 0.200813 | 0.176356 | 0.1768   | 0.1976   | 0.203906 | 0.184406 |
| 2        |          |          |          |          |          |          |          |          |          |

| 0.172025 | 0.1836   | 0.201838 | 0.194713 | 0.175794 | 0.176888 | 0.1991   | 0.198325 | 0.178744 | 0.169    |
|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| 0.1815   | 0.167675 | 0.190788 | 0.199106 | 0.188844 | 0.170775 | 0.186806 | 0.2026   | 0.189625 | 0.1731   |
| 0.203    | 0.189106 | 0.175019 | 0.181994 | 0.200838 | 0.200406 | 0.173688 | 0.1743   | 0.195906 | 0.204038 |
| 0.200413 | 0.180025 | 0.174194 | 0.1942   | 0.201181 | 0.184231 | 0.174206 | 0.188487 | 0.200413 | 0.190094 |
| 0.175919 | 0.198775 | 0.202438 | 0.170794 | 0.177625 | 0.197906 | 0.200419 | 0.179406 | 0.17355  | 0.201194 |
| 0.201244 | 0.19275  | 0.1711   | 0.174525 | 0.199213 | 0.200025 | 0.175581 | 0.172694 | 0.1935   | 0.1986   |
| 0.199106 | 0.189469 | 0.174806 | 0.183375 | 0.202994 | 0.192825 | 0.172238 | 0.17435  | 0.1972   | 0.200606 |
| 0.194394 | 0.174538 | 0.1724   | 0.196463 | 0.204525 | 0.1844   | 0.171531 | 0.187581 | 0.199138 | 0.188013 |
| 0.183087 | 0.202919 | 0.1972   | 0.175606 | 0.17495  | 0.2008   | 0.201419 | 0.177975 | 0.170488 | 0.188381 |
| 0.174481 | 0.172988 | 0.2024   | 0.193681 | 0.174206 | 0.173688 | 0.198806 | 0.204    | 0.183113 | 0.172094 |
| 0.180419 | 0.2024   | 0.202869 | 0.175944 | 0.172725 | 0.1923   | 0.2055   | 0.184025 | 0.176844 | 0.185531 |
| 0.1736   | 0.178006 | 0.199563 | 0.195531 | 0.1747   | 0.176413 | 0.197206 | 0.204488 | 0.180381 | 0.170744 |
| 0.185438 | 0.173406 | 0.195806 | 0.203919 | 0.183606 | 0.170994 | 0.190756 | 0.203387 | 0.1855   | 0.1746   |
| 0.1934   | 0.203006 | 0.186438 | 0.1766   | 0.184706 | 0.204606 | 0.190819 | 0.172788 | 0.175556 | 0.200075 |
| 0.173513 | 0.1772   | 0.19995  | 0.200144 | 0.178819 | 0.1742   | 0.196488 | 0.206281 | 0.185206 | 0.176606 |
| 0.200419 | 0.188744 | 0.174069 | 0.1854   | 0.201406 | 0.192831 | 0.175219 | 0.184038 | 0.201206 | 0.1927   |
| 0.200413 | 0.17845  | 0.174063 | 0.194006 | 0.204406 | 0.183894 | 0.1732   | 0.189625 | 0.200606 | 0.189006 |
| 0.206219 | 0.187563 | 0.1726   | 0.1916   | 0.2019   | 0.179381 | 0.170963 | 0.192144 | 0.2031   | 0.182394 |
| 0.186406 | 0.199131 | 0.189988 | 0.1739   | 0.178475 | 0.2019   | 0.194744 | 0.173294 | 0.175325 | 0.1947   |
| 0.1755   | 0.1752   | 0.202806 | 0.191606 | 0.1722   | 0.1868   | 0.2038   | 0.176719 | 0.174788 | 0.204413 |
| 0.173294 | 0.197981 | 0.201394 | 0.1814   | 0.1683   | 0.189075 | 0.198981 | 0.189825 | 0.170706 | 0.18085  |
| 0.1903   | 0.175638 | 0.176606 | 0.199225 | 0.2003   | 0.177188 | 0.1739   | 0.195106 | 0.2035   | 0.1844   |
| 0.174231 | 0.196794 | 0.199131 | 0.174806 | 0.175031 | 0.1983   | 0.2012   | 0.1815   | 0.167588 | 0.1867   |
| 0.187294 | 0.199831 | 0.189181 | 0.172606 | 0.182819 | 0.200337 | 0.195594 | 0.174188 | 0.176619 | 0.196387 |
| 0.176606 | 0.177219 | 0.202069 | 0.197888 | 0.174269 | 0.177219 | 0.1947   | 0.203956 | 0.183219 | 0.173638 |
| 0.1787   | 0.174713 | 0.199006 | 0.202994 | 0.1734   | 0.174425 | 0.196094 | 0.196706 | 0.1747   | 0.1747   |
| 0.180013 | 0.199931 | 0.19555  | 0.172488 | 0.175281 | 0.2003   | 0.20235  | 0.177806 | 0.174206 | 0.194419 |
| 0.172994 | 0.176281 | 0.201912 | 0.200606 | 0.1794   | 0.171    | 0.189081 | 0.1982   | 0.186944 | 0.17355  |
| 0.171113 | 0.185213 | 0.20075  | 0.197481 | 0.174781 | 0.173581 | 0.194988 | 0.2019   | 0.18355  | 0.177419 |
| 0.196681 | 0.190206 | 0.173569 | 0.181638 | 0.202969 | 0.200606 | 0.179806 | 0.169294 | 0.193444 | 0.202306 |
| 0.193    | 0.172638 | 0.171906 | 0.196306 | 0.198331 | 0.1784   | 0.1718   | 0.1915   | 0.201806 | 0.188313 |
| 0.175344 | 0.195913 | 0.203906 | 0.1863   | 0.174306 | 0.187881 | 0.199613 | 0.189625 | 0.17045  | 0.181325 |
| 0.204    | 0.1859   | 0.175806 | 0.186013 | 0.2028   | 0.1899   | 0.1731   | 0.1822   | 0.2024   | 0.192306 |
| 0.184081 | 0.203981 | 0.19125  | 0.1738   | 0.178344 | 0.198381 | 0.201    | 0.179913 | 0.171806 | 0.1912   |
| 0.1711   | 0.190194 | 0.198775 | 0.189944 | 0.172981 | 0.186419 | 0.2027   | 0.1907   | 0.174425 | 0.174019 |
| 0.186019 | 0.2056   | 0.1916   | 0.174281 | 0.181406 | 0.198506 | 0.202019 | 0.179619 | 0.171581 | 0.1922   |
| 0.176044 | 0.184306 | 0.204406 | 0.191613 | 0.173531 | 0.177213 | 0.1991   | 0.2014   | 0.180413 | 0.173212 |
| 0.172313 | 0.193406 | 0.206256 | 0.183788 | 0.174819 | 0.189663 | 0.199638 | 0.189619 | 0.173675 | 0.187238 |
| 0.176981 | 0.172675 | 0.191606 | 0.1991   | 0.187931 | 0.172    | 0.184994 | 0.2024   | 0.195019 | 0.172494 |
| 0.173619 | 0.187513 | 0.203113 | 0.1892   | 0.173475 | 0.180981 | 0.201219 | 0.186706 | 0.175    | 0.195188 |

| 0.1896   | 0.195906 | 0.191    | 0.17195  | 0.185394 | 0.202406 | 0.192819 | 0.173    | 0.1794   | 0.2006   |
|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| 0.182344 | 0.19955  | 0.198525 | 0.174269 | 0.176706 | 0.2005   | 0.198269 | 0.177244 | 0.175544 | 0.195981 |
| 0.182288 | 0.172144 | 0.1918   | 0.1985   | 0.187725 | 0.175806 | 0.187    | 0.200381 | 0.191894 | 0.173975 |
| 0.173738 | 0.1827   | 0.2027   | 0.195019 | 0.174206 | 0.1798   | 0.202006 | 0.200238 | 0.1752   | 0.175281 |
| 0.196656 | 0.171844 | 0.175794 | 0.200038 | 0.199594 | 0.178219 | 0.175288 | 0.196925 | 0.2008   | 0.1779   |
| 0.184887 | 0.173625 | 0.188719 | 0.2006   | 0.1871   | 0.173106 | 0.1815   | 0.203806 | 0.198394 | 0.176819 |
| 0.1794   | 0.170275 | 0.1899   | 0.200363 | 0.1892   | 0.172281 | 0.1851   | 0.201406 | 0.192994 | 0.173469 |
| 0.174125 | 0.185194 | 0.20075  | 0.193106 | 0.1723   | 0.192138 | 0.199669 | 0.189406 | 0.173244 | 0.185419 |
| 0.202063 | 0.18325  | 0.175938 | 0.185788 | 0.2019   | 0.1887   | 0.172144 | 0.177944 | 0.200388 | 0.201581 |
| 0.1863   | 0.1995   | 0.1891   | 0.170231 | 0.187119 | 0.201125 | 0.191006 | 0.176681 | 0.186713 | 0.198331 |
| 0.201144 | 0.190231 | 0.172525 | 0.190006 | 0.197994 | 0.188694 | 0.176606 | 0.186219 | 0.2027   | 0.190438 |
| 0.187225 | 0.198813 | 0.1898   | 0.1699   | 0.184838 | 0.202413 | 0.1921   | 0.172788 | 0.173188 | 0.195969 |
| 0.185175 | 0.203806 | 0.192419 | 0.173194 | 0.178563 | 0.2006   | 0.199194 | 0.178206 | 0.175744 | 0.202013 |
| 0.200406 | 0.175706 | 0.1729   | 0.191881 | 0.2035   | 0.1811   | 0.168888 | 0.190269 | 0.199238 | 0.189638 |
| 0.186363 | 0.202256 | 0.188894 | 0.171081 | 0.183606 | 0.200875 | 0.19435  | 0.171194 | 0.173131 | 0.197156 |
| 0.1752   | 0.17495  | 0.2022   | 0.200606 | 0.180144 | 0.174325 | 0.197113 | 0.201238 | 0.181219 | 0.171019 |
| 0.171669 | 0.185481 | 0.201638 | 0.1926   | 0.173888 | 0.17995  | 0.199106 | 0.203006 | 0.1755   | 0.175019 |
| 0.173894 | 0.187619 | 0.199244 | 0.190806 | 0.171006 | 0.180388 | 0.199513 | 0.200306 | 0.177638 | 0.172606 |
| 0.201613 | 0.180025 | 0.1726   | 0.192144 | 0.1991   | 0.190444 | 0.174438 | 0.185688 | 0.201681 | 0.192631 |
| 0.191344 | 0.173238 | 0.1735   | 0.198388 | 0.197406 | 0.172606 | 0.171538 | 0.196075 | 0.200075 | 0.176206 |
| 0.202006 | 0.2014   | 0.1755   | 0.174438 | 0.195038 | 0.204419 | 0.186006 | 0.172544 | 0.191744 | 0.203613 |
| 0.175613 | 0.1892   | 0.200825 | 0.188744 | 0.172788 | 0.1864   | 0.203806 | 0.192819 | 0.175219 | 0.178081 |
| 0.19975  | 0.1883   | 0.173613 | 0.1871   | 0.1985   | 0.189625 | 0.173212 | 0.183869 | 0.1995   | 0.1947   |
| 0.202588 | 0.1787   | 0.171225 | 0.1928   | 0.200706 | 0.1851   | 0.174544 | 0.186013 | 0.201488 | 0.188081 |
| 0.188606 | 0.2024   | 0.1916   | 0.175031 | 0.177675 | 0.202713 | 0.2024   | 0.177469 | 0.172606 | 0.195106 |
| 0.197581 | 0.199275 | 0.180025 | 0.175619 | 0.197244 | 0.2011   | 0.179194 | 0.170819 | 0.188744 | 0.199288 |
| 0.202037 | 0.188606 | 0.176812 | 0.1855   | 0.203613 | 0.190869 | 0.171619 | 0.179394 | 0.201394 | 0.192813 |
| 0.185144 | 0.204038 | 0.189531 | 0.1723   | 0.183606 | 0.1995   | 0.1974   | 0.173638 | 0.175744 | 0.194738 |
| 0.1848   | 0.202688 | 0.191588 | 0.173406 | 0.178481 | 0.20075  | 0.198269 | 0.175619 | 0.177406 | 0.197594 |
| 0.1857   | 0.176819 | 0.186413 | 0.2026   | 0.187906 | 0.170869 | 0.1835   | 0.203344 | 0.187969 | 0.170425 |
| 0.172181 | 0.186306 | 0.199288 | 0.191006 | 0.170844 | 0.1823   | 0.2015   | 0.200038 | 0.172981 | 0.175225 |
| 0.200894 | 0.2003   | 0.176406 | 0.1727   | 0.197625 | 0.201406 | 0.179213 | 0.170081 | 0.191619 | 0.199238 |
| 0.173794 | 0.174356 | 0.1982   | 0.201775 | 0.184419 | 0.175806 | 0.1859   | 0.1987   | 0.1891   | 0.169944 |
| 0.199806 | 0.190163 | 0.168769 | 0.180094 | 0.201231 | 0.201687 | 0.1743   | 0.174475 | 0.196825 | 0.200731 |
| 0.198206 | 0.2026   | 0.181194 | 0.171813 | 0.1883   | 0.201319 | 0.190219 | 0.173094 | 0.181625 | 0.201406 |
| 0.201219 | 0.1855   | 0.174425 | 0.186544 | 0.203806 | 0.191406 | 0.174806 | 0.179806 | 0.202013 | 0.201125 |
| 0.190812 | 0.1999   | 0.1875   | 0.173294 | 0.184025 | 0.201037 | 0.195931 | 0.1752   | 0.173013 | 0.197988 |
| 0.202019 | 0.1918   | 0.172038 | 0.176888 | 0.199619 | 0.200713 | 0.178425 | 0.173613 | 0.191881 | 0.200731 |
| 0.177244 | 0.201344 | 0.201319 | 0.178325 | 0.1695   | 0.1871   | 0.201806 | 0.1896   | 0.174369 | 0.179606 |
| 0.205613 | 0.187225 | 0.174813 | 0.18395  | 0.202037 | 0.195169 | 0.174088 | 0.1747   | 0.198675 | 0.201406 |

| 0.196413 | 0.1736   | 0.1882   | 0.201381 | 0.180294 | 0.174438 | 0.194806 | 0.200894 | 0.182725 | 0.175444 |
|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| 0.203088 | 0.181625 | 0.169406 | 0.18795  | 0.201406 | 0.1887   | 0.173381 | 0.182606 | 0.202231 | 0.196013 |
| 0.175581 | 0.202406 | 0.199794 | 0.173625 | 0.175344 | 0.196013 | 0.201663 | 0.1783   | 0.1704   | 0.191688 |
| 0.197819 | 0.203006 | 0.1807   | 0.172069 | 0.19115  | 0.198144 | 0.189688 | 0.171806 | 0.183288 | 0.201544 |
| 0.169463 | 0.192394 | 0.196825 | 0.172538 | 0.1766   | 0.200813 | 0.198394 | 0.1806   | 0.175406 | 0.192069 |
| 0.174869 | 0.195806 | 0.201538 | 0.182131 | 0.1719   | 0.192419 | 0.199994 | 0.18405  | 0.176825 | 0.192194 |
| 0.171288 | 0.197806 | 0.203806 | 0.180769 | 0.171806 | 0.1912   | 0.199131 | 0.189613 | 0.1734   | 0.186406 |
| 0.2015   | 0.190594 | 0.169944 | 0.183794 | 0.201438 | 0.193    | 0.172025 | 0.1742   | 0.200419 | 0.201469 |
| 0.176619 | 0.173738 | 0.1942   | 0.2054   | 0.183006 | 0.172794 | 0.193294 | 0.202706 | 0.1831   | 0.1762   |
| 0.18675  | 0.169544 | 0.183106 | 0.200781 | 0.191038 | 0.173562 | 0.175944 | 0.199475 | 0.200444 | 0.1748   |
| 0.171956 | 0.178594 | 0.200938 | 0.203294 | 0.177288 | 0.171    | 0.191638 | 0.201912 | 0.1787   | 0.170813 |
| 0.200419 | 0.180219 | 0.171606 | 0.194412 | 0.203    | 0.185456 | 0.175588 | 0.188013 | 0.200144 | 0.187238 |
| 0.1963   | 0.174006 | 0.175213 | 0.200419 | 0.199806 | 0.1768   | 0.175819 | 0.198219 | 0.198594 | 0.179944 |
| 0.171494 | 0.184413 | 0.2023   | 0.191094 | 0.172881 | 0.183213 | 0.201325 | 0.200038 | 0.177244 | 0.175006 |
| 0.200944 | 0.179288 | 0.172181 | 0.194806 | 0.201394 | 0.18155  | 0.1671   | 0.194994 | 0.200581 | 0.182206 |
| 0.189606 | 0.199325 | 0.189625 | 0.1706   | 0.182588 | 0.202438 | 0.196406 | 0.1719   | 0.175206 | 0.1983   |
| 0.196025 | 0.203606 | 0.177906 | 0.173481 | 0.191744 | 0.204438 | 0.183194 | 0.168025 | 0.1879   | 0.199813 |
| 0.195806 | 0.204531 | 0.183644 | 0.1751   | 0.1843   | 0.2044   | 0.19045  | 0.171838 | 0.17615  | 0.201206 |
| 0.175263 | 0.175875 | 0.201406 | 0.200038 | 0.1768   | 0.173288 | 0.200144 | 0.200406 | 0.175    | 0.1751   |
| 0.173913 | 0.197406 | 0.206819 | 0.181406 | 0.170469 | 0.193406 | 0.2035   | 0.185488 | 0.176825 | 0.187006 |
| 0.179038 | 0.173138 | 0.1911   | 0.2026   | 0.187194 | 0.175744 | 0.1847   | 0.203844 | 0.191206 | 0.172606 |
| 0.201763 | 0.198206 | 0.175513 | 0.1743   | 0.194769 | 0.204175 | 0.185156 | 0.172981 | 0.184181 | 0.203806 |
| 0.173506 | 0.176731 | 0.1947   | 0.204406 | 0.1832   | 0.172981 | 0.1863   | 0.204544 | 0.1912   | 0.174319 |
| 0.172694 | 0.1848   | 0.202806 | 0.196875 | 0.173481 | 0.1742   | 0.198006 | 0.204013 | 0.183006 | 0.174806 |
| 0.203325 | 0.1848   | 0.176669 | 0.188606 | 0.1983   | 0.189644 | 0.1719   | 0.185588 | 0.2028   | 0.192819 |
| 0.1889   | 0.1747   | 0.182606 | 0.203006 | 0.196081 | 0.1727   | 0.174544 | 0.197419 | 0.205738 | 0.183806 |
| 0.1707   | 0.184938 | 0.203806 | 0.190425 | 0.173888 | 0.1802   | 0.201181 | 0.199506 | 0.176888 | 0.1758   |
| 0.200306 | 0.1844   | 0.174019 | 0.188469 | 0.1963   | 0.1912   | 0.170763 | 0.183006 | 0.201737 | 0.197406 |
| 0.2006   | 0.180013 | 0.173288 | 0.192787 | 0.206    | 0.1848   | 0.176844 | 0.187006 | 0.204144 | 0.183238 |
| 0.181675 | 0.200381 | 0.2003   | 0.178488 | 0.173625 | 0.192288 | 0.202844 | 0.188669 | 0.176338 | 0.196669 |
| 0.194425 | 0.202481 | 0.187225 | 0.174206 | 0.183513 | 0.1994   | 0.193538 | 0.172875 | 0.174044 | 0.197613 |
| 0.189913 | 0.1704   | 0.18275  | 0.200825 | 0.193238 | 0.174206 | 0.1727   | 0.199806 | 0.2019   | 0.1783   |
| 0.182325 | 0.201394 | 0.196406 | 0.174819 | 0.175744 | 0.1987   | 0.199375 | 0.178425 | 0.1736   | 0.1928   |
| 0.183006 | 0.172363 | 0.192706 | 0.200606 | 0.18965  | 0.170588 | 0.1831   | 0.202819 | 0.200838 | 0.176213 |
| 0.199606 | 0.178206 | 0.176013 | 0.196    | 0.205744 | 0.185581 | 0.1752   | 0.184081 | 0.203131 | 0.190544 |
| 0.178419 | 0.171963 | 0.191575 | 0.205494 | 0.1846   | 0.1766   | 0.185406 | 0.202881 | 0.191969 | 0.172325 |
| 0.201206 | 0.181925 | 0.169181 | 0.188406 | 0.2014   | 0.19115  | 0.1723   | 0.1787   | 0.1982   | 0.202413 |
| 0.189206 | 0.173381 | 0.186413 | 0.202813 | 0.196719 | 0.1768   | 0.1731   | 0.195    | 0.204025 | 0.183994 |
| 0.201387 | 0.201163 | 0.174425 | 0.1732   | 0.194856 | 0.204363 | 0.1846   | 0.175588 | 0.186819 | 0.203325 |
| 0.182069 | 0.168994 | 0.187225 | 0.200025 | 0.19     | 0.171856 | 0.1843   | 0.203006 | 0.192706 | 0.174044 |

| 0.188238 | 0.199225 | 0.190206 | 0.1726   | 0.182475 | 0.201113 | 0.18715  | 0.178    | 0.186181 | 0.1974   |
|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| 0.174819 | 0.176825 | 0.200631 | 0.199819 | 0.180094 | 0.175606 | 0.195388 | 0.206306 | 0.181581 | 0.172206 |
| 0.202006 | 0.186475 | 0.173581 | 0.186306 | 0.2043   | 0.191031 | 0.174206 | 0.184406 | 0.200331 | 0.192838 |
| 0.19035  | 0.174588 | 0.181975 | 0.202519 | 0.194475 | 0.173406 | 0.1768   | 0.1992   | 0.199588 | 0.179513 |
| 0.202281 | 0.186306 | 0.173994 | 0.186425 | 0.203606 | 0.190613 | 0.1715   | 0.1799   | 0.2014   | 0.200856 |
| 0.202294 | 0.185494 | 0.174713 | 0.186819 | 0.200706 | 0.191194 | 0.175213 | 0.172194 | 0.2054   | 0.196138 |
| 0.205006 | 0.190819 | 0.169538 | 0.179906 | 0.201488 | 0.197644 | 0.176219 | 0.1758   | 0.196594 | 0.205469 |
| 0.17625  | 0.1734   | 0.1926   | 0.202819 | 0.188325 | 0.174806 | 0.184388 | 0.2018   | 0.1935   | 0.172181 |
| 0.185744 | 0.202231 | 0.191    | 0.173206 | 0.182144 | 0.200038 | 0.201006 | 0.174819 | 0.174606 | 0.197406 |
| 0.1752   | 0.196825 | 0.203606 | 0.179906 | 0.170013 | 0.1899   | 0.202475 | 0.186381 | 0.176419 | 0.186294 |
| 0.191    | 0.201094 | 0.188    | 0.173306 | 0.1848   | 0.200825 | 0.191006 | 0.171813 | 0.181406 | 0.2024   |
| 0.175819 | 0.186013 | 0.2015   | 0.191206 | 0.1715   | 0.177688 | 0.203619 | 0.1963   | 0.1729   | 0.173625 |
| 0.168194 | 0.193406 | 0.1999   | 0.187806 | 0.175994 | 0.1864   | 0.204706 | 0.189688 | 0.172006 | 0.184031 |
| 0.1956   | 0.206    | 0.185237 | 0.1742   | 0.1908   | 0.199031 | 0.190206 | 0.172881 | 0.185113 | 0.200606 |
| 0.168094 | 0.19115  | 0.199238 | 0.189163 | 0.172325 | 0.182731 | 0.202731 | 0.191006 | 0.174613 | 0.1771   |
| 0.202413 | 0.176681 | 0.1723   | 0.1959   | 0.203069 | 0.183769 | 0.170231 | 0.1894   | 0.200781 | 0.182394 |
| 0.190213 | 0.175213 | 0.186463 | 0.202806 | 0.188344 | 0.171294 | 0.184406 | 0.201375 | 0.193188 | 0.1752   |
| 0.199844 | 0.171981 | 0.1736   | 0.198019 | 0.202638 | 0.1826   | 0.174831 | 0.176875 | 0.184781 | 0.201269 |
| 0.194781 | 0.2015   | 0.1848   | 0.173988 | 0.18515  | 0.203069 | 0.1891   | 0.16915  | 0.182281 | 0.202413 |
| 0.206013 | 0.189206 | 0.175606 | 0.181794 | 0.1995   | 0.196619 | 0.173744 | 0.173181 | 0.1958   | 0.205406 |
| 0.1787   | 0.202206 | 0.200813 | 0.173506 | 0.1751   | 0.202206 | 0.1998   | 0.173381 | 0.175806 | 0.197519 |
| 0.191806 | 0.174206 | 0.175006 | 0.199163 | 0.200806 | 0.180619 | 0.168325 | 0.190675 | 0.1987   | 0.188088 |
| 0.178538 | 0.2018   | 0.200825 | 0.1772   | 0.1731   | 0.196    | 0.2015   | 0.180875 | 0.171069 | 0.190206 |
| 0.187225 | 0.202413 | 0.1898   | 0.172013 | 0.18     | 0.202944 | 0.203019 | 0.177538 | 0.171994 | 0.195663 |
| 0.172706 | 0.174069 | 0.197688 | 0.2023   | 0.178425 | 0.172412 | 0.1921   | 0.202606 | 0.186475 | 0.1739   |
| 0.173994 | 0.1894   | 0.202413 | 0.188331 | 0.169131 | 0.188    | 0.202481 | 0.191219 | 0.174019 | 0.177744 |
| 0.1979   | 0.1986   | 0.173625 | 0.174869 | 0.2014   | 0.196631 | 0.171188 | 0.177213 | 0.1963   | 0.1999   |
| 0.173675 | 0.174788 | 0.197606 | 0.198331 | 0.178813 | 0.176606 | 0.194581 | 0.2024   | 0.183619 | 0.166981 |
| 0.171681 | 0.187144 | 0.2044   | 0.190794 | 0.173744 | 0.177219 | 0.1983   | 0.196413 | 0.1719   | 0.175819 |
| 0.206144 | 0.183225 | 0.174144 | 0.187806 | 0.1992   | 0.188944 | 0.173675 | 0.186206 | 0.202006 | 0.192437 |
| 0.203006 | 0.181988 | 0.174438 | 0.187919 | 0.201544 | 0.189406 | 0.170806 | 0.181494 | 0.201488 | 0.201588 |
| 0.171994 | 0.193444 | 0.2005   | 0.187338 | 0.175606 | 0.185806 | 0.20315  | 0.191219 | 0.1752   | 0.179894 |
| 0.202031 | 0.197675 | 0.1854   | 0.173881 | 0.1878   | 0.202206 | 0.191006 | 0.171013 | 0.1794   | 0.2022   |
| 0.17445  | 0.197913 | 0.200594 | 0.183794 | 0.175375 | 0.186488 | 0.206013 | 0.191488 | 0.172894 | 0.186206 |
| 0.174294 | 0.178781 | 0.199581 | 0.200075 | 0.178463 | 0.174206 | 0.191663 | 0.202019 | 0.183913 | 0.175225 |
| 0.178206 | 0.199525 | 0.202425 | 0.1763   | 0.171381 | 0.197013 | 0.206813 | 0.186206 | 0.176406 | 0.185088 |
| 0.178419 | 0.173206 | 0.192838 | 0.202781 | 0.185444 | 0.175906 | 0.18545  | 0.204544 | 0.192756 | 0.174425 |
| 0.175006 | 0.185913 | 0.204025 | 0.191538 | 0.174369 | 0.173925 | 0.201975 | 0.194425 | 0.174863 | 0.1719   |
| 0.190425 | 0.172    | 0.179213 | 0.200331 | 0.201238 | 0.177231 | 0.171237 | 0.192038 | 0.199225 | 0.189113 |
| 0.177206 | 0.1974   | 0.201281 | 0.18235  | 0.172756 | 0.186006 | 0.2038   | 0.191869 | 0.174188 | 0.177456 |

| 0.186363 | 0.176781 | 0.187619 | 0.196925 | 0.189213 | 0.170819 | 0.183338 | 0.200337 | 0.194587 | 0.175225 |
|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| 0.187281 | 0.201231 | 0.1902   | 0.175006 | 0.183019 | 0.199531 | 0.1975   | 0.175269 | 0.17995  | 0.2024   |
| 0.172731 | 0.1807   | 0.201806 | 0.198488 | 0.173431 | 0.175806 | 0.198537 | 0.2012   | 0.178306 | 0.171813 |
| 0.175406 | 0.1966   | 0.2028   | 0.1819   | 0.167194 | 0.187331 | 0.201513 | 0.190812 | 0.172675 | 0.183644 |
| 0.177625 | 0.1679   | 0.192756 | 0.200413 | 0.185237 | 0.174813 | 0.1902   | 0.1987   | 0.1867   | 0.175012 |
| 0.172419 | 0.178206 | 0.199238 | 0.1979   | 0.174475 | 0.173688 | 0.196825 | 0.204025 | 0.182219 | 0.171694 |
| 0.177506 | 0.1738   | 0.1923   | 0.204388 | 0.181    | 0.169525 | 0.190894 | 0.204138 | 0.185206 | 0.175938 |
| 0.179013 | 0.201963 | 0.194844 | 0.174438 | 0.1723   | 0.196731 | 0.200769 | 0.183538 | 0.171594 | 0.188419 |
| 0.201138 | 0.183819 | 0.175606 | 0.188631 | 0.1979   | 0.190369 | 0.173212 | 0.185406 | 0.2027   | 0.195113 |
| 0.203806 | 0.191031 | 0.175    | 0.1767   | 0.201806 | 0.201406 | 0.178413 | 0.173606 | 0.199806 | 0.202006 |
| 0.196606 | 0.1748   | 0.176206 | 0.197625 | 0.201206 | 0.178325 | 0.172013 | 0.1915   | 0.199556 | 0.188669 |
| 0.196306 | 0.204488 | 0.1815   | 0.173188 | 0.1892   | 0.201013 | 0.1912   | 0.168506 | 0.1848   | 0.200606 |
| 0.2031   | 0.191213 | 0.172894 | 0.177213 | 0.201006 | 0.188375 | 0.170575 | 0.183213 | 0.199694 | 0.194819 |
| 0.193038 | 0.174806 | 0.174894 | 0.201644 | 0.1995   | 0.173406 | 0.1791   | 0.2022   | 0.194463 | 0.173506 |
| 0.2011   | 0.200075 | 0.1775   | 0.175269 | 0.194481 | 0.206038 | 0.183981 | 0.175238 | 0.187606 | 0.2018   |
| 0.172444 | 0.189406 | 0.199588 | 0.187563 | 0.175344 | 0.184606 | 0.201581 | 0.193    | 0.1727   | 0.1747   |
| 0.1735   | 0.198544 | 0.202219 | 0.1794   | 0.173581 | 0.1951   | 0.193338 | 0.1752   | 0.1743   | 0.200331 |
| 0.190819 | 0.169381 | 0.18085  | 0.201806 | 0.200606 | 0.176863 | 0.1735   | 0.192813 | 0.203238 | 0.184956 |
| 0.1964   | 0.174013 | 0.175513 | 0.197813 | 0.20055  | 0.180013 | 0.172406 | 0.192219 | 0.199794 | 0.187113 |
| 0.176981 | 0.1739   | 0.193444 | 0.205744 | 0.184419 | 0.174013 | 0.1871   | 0.196756 | 0.183956 | 0.174581 |
| 0.199594 | 0.17515  | 0.175244 | 0.195288 | 0.204406 | 0.184388 | 0.173988 | 0.188538 | 0.200825 | 0.189725 |
| 0.168975 | 0.184794 | 0.2007   | 0.194806 | 0.175606 | 0.1731   | 0.201244 | 0.198738 | 0.176881 | 0.1752   |
| 0.1979   | 0.1894   | 0.1707   | 0.183606 | 0.201538 | 0.197638 | 0.17355  | 0.176781 | 0.1951   | 0.203806 |
| 0.206819 | 0.185806 | 0.176206 | 0.184731 | 0.203425 | 0.191619 | 0.171675 | 0.183931 | 0.202825 | 0.18915  |
| 0.1843   | 0.2007   | 0.192619 | 0.172656 | 0.175219 | 0.198537 | 0.199225 | 0.180375 | 0.169406 | 0.191288 |
| 0.200044 | 0.201206 | 0.177406 | 0.174675 | 0.194844 | 0.205613 | 0.184419 | 0.176419 | 0.184794 | 0.205619 |
| 0.179038 | 0.170206 | 0.194206 | 0.20115  | 0.187806 | 0.172025 | 0.185444 | 0.2028   | 0.19115  | 0.172756 |
| 0.187481 | 0.199788 | 0.190294 | 0.173663 | 0.180469 | 0.2007   | 0.197694 | 0.180144 | 0.170788 | 0.190775 |
| 0.196063 | 0.203963 | 0.184825 | 0.1772   | 0.186019 | 0.200719 | 0.1907   | 0.173106 | 0.175781 | 0.199056 |
| 0.173819 | 0.175738 | 0.197613 | 0.206038 | 0.184419 | 0.175213 | 0.1843   | 0.200125 | 0.191619 | 0.174306 |
| 0.177125 | 0.1695   | 0.1926   | 0.197106 | 0.188125 | 0.173212 | 0.182737 | 0.201488 | 0.197431 | 0.175381 |
| 0.202013 | 0.202856 | 0.176369 | 0.172075 | 0.1912   | 0.200125 | 0.188569 | 0.175869 | 0.185531 | 0.204138 |
| 0.202469 | 0.178019 | 0.175181 | 0.194206 | 0.203344 | 0.1846   | 0.169206 | 0.188487 | 0.199394 | 0.190369 |
| 0.201544 | 0.1878   | 0.175806 | 0.185431 | 0.2007   | 0.1895   | 0.173219 | 0.1803   | 0.1992   | 0.200794 |
| 0.186331 | 0.201519 | 0.190806 | 0.172694 | 0.1797   | 0.199538 | 0.202488 | 0.177694 | 0.173638 | 0.1928   |
| 0.204544 | 0.191681 | 0.172381 | 0.175138 | 0.200838 | 0.2006   | 0.173944 | 0.171106 | 0.1922   | 0.20075  |
| 0.175638 | 0.201269 | 0.20075  | 0.176994 | 0.174206 | 0.192744 | 0.205613 | 0.186838 | 0.175263 | 0.185113 |
| 0.197    | 0.202425 | 0.179819 | 0.1719   | 0.189938 | 0.2028   | 0.185681 | 0.174494 | 0.185688 | 0.202675 |
| 0.174425 | 0.18475  | 0.2017   | 0.196619 | 0.175806 | 0.174006 | 0.197494 | 0.205406 | 0.1827   | 0.176606 |
| 0.1999   | 0.1999   | 0.180025 | 0.168556 | 0.191338 | 0.200744 | 0.188038 | 0.171156 | 0.185269 | 0.203006 |

| 0.177638 | 0.199994 | 0.1975   | 0.173688 | 0.176063 | 0.199619 | 0.199831 | 0.180544 | 0.169806 | 0.1926   |
|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| 0.198206 | 0.172381 | 0.176838 | 0.195875 | 0.199538 | 0.1807   | 0.1675   | 0.1891   | 0.201269 | 0.185581 |
| 0.193206 | 0.200813 | 0.188606 | 0.171894 | 0.183288 | 0.202544 | 0.192206 | 0.172694 | 0.180019 | 0.200888 |
| 0.200825 | 0.199806 | 0.1715   | 0.1743   | 0.195538 | 0.201206 | 0.180038 | 0.168344 | 0.188881 | 0.199856 |
| 0.187119 | 0.2035   | 0.191225 | 0.1715   | 0.181213 | 0.202406 | 0.195138 | 0.173513 | 0.171875 | 0.199225 |
| 0.1894   | 0.198806 | 0.189406 | 0.1687   | 0.1851   | 0.203275 | 0.189625 | 0.174844 | 0.179494 | 0.2028   |
| 0.187856 | 0.197906 | 0.1912   | 0.171906 | 0.184275 | 0.202425 | 0.191013 | 0.1715   | 0.17435  | 0.1975   |
| 0.201244 | 0.189613 | 0.17275  | 0.1814   | 0.202463 | 0.194463 | 0.1754   | 0.1731   | 0.197625 | 0.20195  |
| 0.1731   | 0.175006 | 0.198019 | 0.201881 | 0.181088 | 0.170938 | 0.1912   | 0.202494 | 0.185906 | 0.171894 |
| 0.178206 | 0.173994 | 0.195044 | 0.203006 | 0.1815   | 0.172794 | 0.188475 | 0.199238 | 0.189619 | 0.174806 |
| 0.174713 | 0.184194 | 0.204669 | 0.189081 | 0.173006 | 0.1807   | 0.203006 | 0.197419 | 0.171594 | 0.174469 |
| 0.190444 | 0.168706 | 0.183806 | 0.203169 | 0.192831 | 0.1732   | 0.1771   | 0.200013 | 0.201125 | 0.177206 |
| 0.173506 | 0.1766   | 0.1992   | 0.200656 | 0.176075 | 0.173506 | 0.198194 | 0.2019   | 0.18155  | 0.171144 |
| 0.179137 | 0.202413 | 0.203    | 0.177625 | 0.171525 | 0.191994 | 0.202438 | 0.188406 | 0.173975 | 0.1835   |
| 0.191606 | 0.174044 | 0.1806   | 0.199544 | 0.200606 | 0.176825 | 0.174606 | 0.193694 | 0.201906 | 0.183606 |
| 0.1975   | 0.200025 | 0.1816   | 0.1697   | 0.19075  | 0.2015   | 0.186619 | 0.173406 | 0.184975 | 0.205469 |
| 0.2038   | 0.1727   | 0.184606 | 0.202256 | 0.193775 | 0.174081 | 0.1739   | 0.199113 | 0.202988 | 0.1752   |
| 0.176606 | 0.185188 | 0.201638 | 0.190438 | 0.171781 | 0.176825 | 0.200038 | 0.200619 | 0.178481 | 0.172381 |
| 0.1718   | 0.184144 | 0.201188 | 0.195969 | 0.1717   | 0.174019 | 0.198806 | 0.200025 | 0.182269 | 0.170006 |
| 0.1866   | 0.204569 | 0.189294 | 0.173738 | 0.17775  | 0.200281 | 0.201219 | 0.17755  | 0.169556 | 0.190888 |
| 0.172094 | 0.184025 | 0.199594 | 0.1907   | 0.173506 | 0.181206 | 0.202206 | 0.198763 | 0.178744 | 0.174444 |
| 0.193238 | 0.205431 | 0.187194 | 0.1747   | 0.186813 | 0.202387 | 0.191006 | 0.173913 | 0.183531 | 0.198781 |
| 0.183788 | 0.171806 | 0.188038 | 0.199906 | 0.190344 | 0.171031 | 0.184825 | 0.200494 | 0.1943   | 0.173913 |
| 0.175606 | 0.181294 | 0.200881 | 0.197563 | 0.173581 | 0.180825 | 0.2024   | 0.197625 | 0.175919 | 0.1755   |
| 0.202544 | 0.187606 | 0.175806 | 0.183556 | 0.204644 | 0.191213 | 0.174013 | 0.175806 | 0.199613 | 0.202613 |
| 0.190713 | 0.175606 | 0.179137 | 0.202006 | 0.201    | 0.179413 | 0.1694   | 0.191606 | 0.199894 | 0.190206 |
| 0.182019 | 0.201525 | 0.19755  | 0.17125  | 0.1747   | 0.197638 | 0.201344 | 0.178756 | 0.170437 | 0.1898   |
| 0.199006 | 0.1885   | 0.173806 | 0.182788 | 0.201113 | 0.197613 | 0.173788 | 0.174481 | 0.196181 | 0.201288 |
| 0.201088 | 0.177944 | 0.167238 | 0.189613 | 0.1987   | 0.189888 | 0.172713 | 0.186031 | 0.172075 | 0.2038   |
| 0.17765  | 0.200988 | 0.2024   | 0.177519 | 0.1729   | 0.194419 | 0.200875 | 0.1775   | 0.174006 | 0.195013 |
| 0.1747   | 0.196038 | 0.204488 | 0.1838   | 0.168825 | 0.188888 | 0.197281 | 0.188381 | 0.173613 | 0.181613 |
| 0.1893   | 0.174406 | 0.1729   | 0.1978   | 0.199806 | 0.179969 | 0.171406 | 0.188181 | 0.199113 | 0.190206 |
| 0.170544 | 0.183344 | 0.202256 | 0.196    | 0.1736   | 0.173206 | 0.197744 | 0.199344 | 0.181638 | 0.170425 |
| 0.177406 | 0.173494 | 0.190188 | 0.200944 | 0.188138 | 0.175031 | 0.185369 | 0.2015   | 0.1943   | 0.174663 |
| 0.1991   | 0.1791   | 0.170806 | 0.189206 | 0.200963 | 0.189475 | 0.171044 | 0.184138 | 0.202806 | 0.193294 |
| 0.18825  | 0.171531 | 0.1847   | 0.202438 | 0.194438 | 0.171281 | 0.1796   | 0.200606 | 0.201744 | 0.173581 |
| 0.205419 | 0.191056 | 0.171094 | 0.182681 | 0.2028   | 0.1943   | 0.173125 | 0.1727   | 0.199913 | 0.2014   |
| 0.190413 | 0.172706 | 0.177788 | 0.202206 | 0.200825 | 0.178606 | 0.173806 | 0.1912   | 0.201394 | 0.187606 |
| 0.186806 | 0.203562 | 0.193219 | 0.173688 | 0.174144 | 0.198219 | 0.2015   | 0.180694 | 0.168494 | 0.191744 |
| 0.193194 | 0.17255  | 0.177406 | 0.200419 | 0.1995   | 0.1783   | 0.16935  | 0.188544 | 0.200606 | 0.189531 |

| 0.203631 | 0.199619 | 0.1816   | 0.168038 | 0.189625 | 0.1979   | 0.186581 | 0.1753   | 0.185194 | 0.199744 |
|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| 0.173206 | 0.186438 | 0.202044 | 0.192813 | 0.173613 | 0.180025 | 0.202219 | 0.197631 | 0.1743   | 0.175763 |
| 0.199094 | 0.173638 | 0.175    | 0.196613 | 0.206206 | 0.182481 | 0.172025 | 0.187613 | 0.201394 | 0.189638 |
| 0.189213 | 0.175338 | 0.186438 | 0.200825 | 0.1883   | 0.172769 | 0.184388 | 0.2003   | 0.191006 | 0.174606 |
| 0.1992   | 0.179244 | 0.170838 | 0.195006 | 0.2023   | 0.1835   | 0.1743   | 0.187581 | 0.199794 | 0.190206 |
| 0.2019   | 0.176794 | 0.170594 | 0.195606 | 0.204025 | 0.178706 | 0.171225 | 0.194475 | 0.204606 | 0.182269 |
| 0.200075 | 0.1806   | 0.1716   | 0.194412 | 0.203475 | 0.187831 | 0.175944 | 0.185538 | 0.204588 | 0.188881 |
| 0.1781   | 0.172188 | 0.1906   | 0.201238 | 0.188763 | 0.174206 | 0.183125 | 0.201294 | 0.192606 | 0.173638 |
| 0.186219 | 0.202731 | 0.189794 | 0.171194 | 0.17555  | 0.199381 | 0.2028   | 0.1727   | 0.174806 | 0.196831 |
| 0.186819 | 0.203194 | 0.1891   | 0.17275  | 0.181    | 0.200713 | 0.200744 | 0.170475 | 0.173206 | 0.1967   |
| 0.197638 | 0.203413 | 0.183213 | 0.174538 | 0.1866   | 0.199606 | 0.1859   | 0.175044 | 0.191606 | 0.202488 |
| 0.175225 | 0.196737 | 0.204606 | 0.181981 | 0.17355  | 0.189613 | 0.199225 | 0.190606 | 0.172606 | 0.184356 |
| 0.18635  | 0.200844 | 0.190806 | 0.173794 | 0.1822   | 0.2005   | 0.197494 | 0.1742   | 0.1755   | 0.195806 |
| 0.204025 | 0.18995  | 0.175006 | 0.181625 | 0.200825 | 0.1979   | 0.177394 | 0.174613 | 0.196406 | 0.202356 |
| 0.173206 | 0.188744 | 0.200025 | 0.190806 | 0.172888 | 0.184363 | 0.1999   | 0.194256 | 0.173925 | 0.177406 |
| 0.18955  | 0.1742   | 0.182206 | 0.201406 | 0.196963 | 0.172381 | 0.174231 | 0.199    | 0.201594 | 0.181688 |
| 0.174881 | 0.201513 | 0.201594 | 0.178819 | 0.174038 | 0.194213 | 0.204781 | 0.181681 | 0.168894 | 0.19115  |
| 0.196731 | 0.200025 | 0.1783   | 0.172544 | 0.193463 | 0.203806 | 0.183288 | 0.1699   | 0.187575 | 0.203288 |
| 0.189906 | 0.198594 | 0.18635  | 0.174881 | 0.187238 | 0.202006 | 0.187681 | 0.176606 | 0.190006 | 0.200188 |
| 0.199538 | 0.186413 | 0.1766   | 0.189006 | 0.201269 | 0.189094 | 0.1723   | 0.180606 | 0.203613 | 0.2011   |
| 0.194969 | 0.205613 | 0.185669 | 0.175744 | 0.185538 | 0.2015   | 0.192838 | 0.172269 | 0.193394 | 0.203244 |
| 0.198525 | 0.1755   | 0.1758   | 0.1995   | 0.199919 | 0.1771   | 0.170788 | 0.191106 | 0.1996   | 0.1887   |
| 0.177419 | 0.201206 | 0.199806 | 0.1796   | 0.173613 | 0.19075  | 0.199588 | 0.189206 | 0.1732   | 0.1848   |
| 0.195806 | 0.204025 | 0.184125 | 0.176388 | 0.187006 | 0.204069 | 0.191794 | 0.174813 | 0.180013 | 0.202331 |
| 0.182388 | 0.170456 | 0.188944 | 0.2003   | 0.186738 | 0.174719 | 0.185138 | 0.201113 | 0.1928   | 0.171394 |
| 0.1707   | 0.1847   | 0.2008   | 0.19075  | 0.1715   | 0.176606 | 0.2014   | 0.204    | 0.176731 | 0.176206 |
| 0.199056 | 0.191006 | 0.171406 | 0.1837   | 0.200763 | 0.191006 | 0.1731   | 0.1768   | 0.19635  | 0.202763 |
| 0.181494 | 0.169544 | 0.188013 | 0.200825 | 0.191619 | 0.172281 | 0.183    | 0.200681 | 0.200631 | 0.177688 |
| 0.190688 | 0.1739   | 0.176419 | 0.198381 | 0.202425 | 0.183262 | 0.172694 | 0.1854   | 0.202819 | 0.18995  |
| 0.205406 | 0.182081 | 0.176987 | 0.1859   | 0.201181 | 0.190425 | 0.173    | 0.176075 | 0.198231 | 0.202806 |
| 0.203006 | 0.1918   | 0.172388 | 0.178069 | 0.2015   | 0.203056 | 0.178713 | 0.169538 | 0.191494 | 0.203106 |
| 0.171225 | 0.185913 | 0.204038 | 0.191544 | 0.174369 | 0.172519 | 0.1951   | 0.2008   | 0.1828   | 0.169294 |
| 0.1891   | 0.199856 | 0.188775 | 0.172769 | 0.185406 | 0.203363 | 0.191619 | 0.173212 | 0.182019 | 0.1997   |
| 0.174581 | 0.196138 | 0.203006 | 0.1842   | 0.172019 | 0.186344 | 0.200206 | 0.191213 | 0.173794 | 0.177162 |
| 0.172981 | 0.172306 | 0.197444 | 0.203606 | 0.181181 | 0.172494 | 0.187275 | 0.200694 | 0.187994 | 0.174738 |
| 0.174194 | 0.192206 | 0.204044 | 0.1867   | 0.16885  | 0.189744 | 0.2014   | 0.190013 | 0.172388 | 0.184406 |
| 0.181625 | 0.1711   | 0.188069 | 0.200606 | 0.190169 | 0.170294 | 0.184988 | 0.202819 | 0.195425 | 0.17515  |
| 0.175619 | 0.186413 | 0.205644 | 0.1902   | 0.1735   | 0.180038 | 0.200075 | 0.203606 | 0.178606 | 0.174344 |
| 0.199869 | 0.190281 | 0.170806 | 0.182813 | 0.202013 | 0.203019 | 0.172706 | 0.175069 | 0.1964   | 0.2015   |
| 0.173594 | 0.180888 | 0.202006 | 0.199119 | 0.174425 | 0.175819 | 0.195588 | 0.205625 | 0.1823   | 0.175744 |

| 0.187461 | 0.187412 |
|----------|----------|
| 0.187057 | 0.187412 |
| 0.18747  | 0.187412 |
| 0.187408 |          |
| 0.187291 |          |
| 0.187247 |          |
| 0.187497 |          |
| 0.187049 |          |
| 0.1874   |          |
| 0.187308 |          |
| 0.187454 |          |
| 0.187196 |          |
| 0.187217 |          |
| 0.187707 |          |
| 0.18727  |          |
| 0.187382 |          |
| 0.18751  |          |
| 0.18719  |          |
| 0.187458 |          |
| 0.187448 |          |
| 0.187903 |          |
| 0.187528 |          |
| 0.18734  |          |
| 0.187855 |          |
| 0.187163 |          |
| 0.187396 |          |
| 0.187361 |          |
| 0.187279 |          |
| 0.18/2/8 |          |
| 0.18757  |          |
| 0.187091 |          |
| 0.18/235 |          |
| 0.187409 |          |
| 0.18/4/4 |          |
| 0.18/493 |          |
| 0.10/00/ |          |
| 0.10/400 |          |
| 0.10/000 |          |
| U.18/65  |          |
| 0.187708 |          |

| 0.199563 | 0.178944 | 0.180944 | 0.200813 | 0.185363 | 0.193806 | 0.177512 | 0.1995   | 0.197625 | 0.174088 |
|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| 0.171538 | 0.183744 | 0.200181 | 0.190025 | 0.171563 | 0.185588 | 0.1987   | 0.186706 | 0.176869 | 0.1883   |
| 0.1727   | 0.182819 | 0.203    | 0.191444 | 0.1735   | 0.181775 | 0.2056   | 0.1795   | 0.175606 | 0.196194 |
| 0.190256 | 0.171237 | 0.187006 | 0.201838 | 0.179819 | 0.176413 | 0.2007   | 0.1974   | 0.171981 | 0.184763 |
| 0.1935   | 0.207006 | 0.178681 | 0.174206 | 0.197219 | 0.200313 | 0.172263 | 0.174019 | 0.201325 | 0.1891   |
| 0.199513 | 0.176206 | 0.178813 | 0.200181 | 0.194756 | 0.170788 | 0.1867   | 0.1998   | 0.180944 | 0.172713 |
| 0.203619 | 0.182475 | 0.170231 | 0.1947   | 0.201694 | 0.178106 | 0.173894 | 0.201513 | 0.191006 | 0.175225 |
| 0.1775   | 0.172544 | 0.1976   | 0.198525 | 0.172263 | 0.1795   | 0.204438 | 0.188894 | 0.173775 | 0.191494 |
| 0.200838 | 0.193963 | 0.172606 | 0.184244 | 0.201813 | 0.190575 | 0.173212 | 0.1903   | 0.206019 | 0.178325 |
| 0.194475 | 0.202813 | 0.177938 | 0.172881 | 0.199225 | 0.202394 | 0.1719   | 0.1738   | 0.202838 | 0.198019 |
| 0.194206 | 0.174044 | 0.180081 | 0.199994 | 0.191181 | 0.174    | 0.18115  | 0.202212 | 0.191031 | 0.173788 |
| 0.17555  | 0.197744 | 0.200606 | 0.178806 | 0.176606 | 0.198588 | 0.200337 | 0.174019 | 0.1811   | 0.203125 |
| 0.175219 | 0.177638 | 0.201556 | 0.1935   | 0.171831 | 0.176681 | 0.202013 | 0.187931 | 0.1755   | 0.195406 |
| 0.200506 | 0.190525 | 0.172025 | 0.189006 | 0.200394 | 0.179806 | 0.179619 | 0.205806 | 0.189406 | 0.168825 |
| 0.181406 | 0.2026   | 0.191563 | 0.172838 | 0.184206 | 0.2022   | 0.191094 | 0.1719   | 0.188594 | 0.201594 |
| 0.202406 | 0.19715  | 0.1752   | 0.178344 | 0.200075 | 0.190819 | 0.169925 | 0.184325 | 0.1996   | 0.183813 |
| 0.2024   | 0.180606 | 0.173913 | 0.201206 | 0.202488 | 0.174194 | 0.177188 | 0.203244 | 0.1918   | 0.174206 |
| 0.175225 | 0.185794 | 0.201406 | 0.188    | 0.176606 | 0.1886   | 0.200038 | 0.186331 | 0.176419 | 0.1867   |
| 0.206369 | 0.1825   | 0.172769 | 0.192206 | 0.204544 | 0.181406 | 0.173406 | 0.192781 | 0.20175  | 0.1764   |
| 0.189613 | 0.202019 | 0.185394 | 0.174013 | 0.191213 | 0.204088 | 0.18215  | 0.168156 | 0.195019 | 0.205637 |
| 0.20075  | 0.193875 | 0.174425 | 0.183806 | 0.2019   | 0.1912   | 0.1722   | 0.186006 | 0.203275 | 0.187806 |
| 0.182144 | 0.202713 | 0.1903   | 0.174219 | 0.18325  | 0.198838 | 0.1835   | 0.171494 | 0.196125 | 0.1991   |
| 0.1947   | 0.2039   | 0.18155  | 0.174206 | 0.195794 | 0.199831 | 0.176606 | 0.175381 | 0.199913 | 0.199575 |
| 0.200925 | 0.173913 | 0.175619 | 0.201663 | 0.193206 | 0.170681 | 0.1894   | 0.204406 | 0.183006 | 0.172794 |
| 0.1699   | 0.198306 | 0.200825 | 0.174494 | 0.173081 | 0.201988 | 0.1899   | 0.174425 | 0.186425 | 0.199413 |
| 0.171931 | 0.185194 | 0.201212 | 0.187275 | 0.175806 | 0.186475 | 0.200313 | 0.185344 | 0.172888 | 0.197638 |
| 0.19765  | 0.187913 | 0.174594 | 0.189675 | 0.204619 | 0.182    | 0.170806 | 0.191125 | 0.205613 | 0.1815   |
| 0.187006 | 0.202294 | 0.189613 | 0.173788 | 0.188406 | 0.200606 | 0.187613 | 0.169538 | 0.198388 | 0.191144 |
| 0.188238 | 0.199906 | 0.183844 | 0.168988 | 0.191888 | 0.204519 | 0.183631 | 0.172975 | 0.196888 | 0.201819 |
| 0.174006 | 0.1784   | 0.20075  | 0.188706 | 0.175031 | 0.1807   | 0.201663 | 0.189131 | 0.173944 | 0.198206 |
| 0.1734   | 0.197481 | 0.201188 | 0.1727   | 0.172781 | 0.202212 | 0.191213 | 0.172175 | 0.1855   | 0.200613 |
| 0.201919 | 0.1895   | 0.171856 | 0.194206 | 0.203406 | 0.1783   | 0.171994 | 0.195419 | 0.199225 | 0.175006 |
| 0.1928   | 0.173738 | 0.179613 | 0.203144 | 0.193206 | 0.174613 | 0.183969 | 0.199988 | 0.184794 | 0.169888 |
| 0.199563 | 0.178544 | 0.1751   | 0.1966   | 0.2006   | 0.177794 | 0.175225 | 0.197619 | 0.1999   | 0.179619 |
| 0.194813 | 0.20175  | 0.18     | 0.173613 | 0.195806 | 0.2018   | 0.182    | 0.172988 | 0.2024   | 0.1894   |
| 0.199513 | 0.174488 | 0.175513 | 0.202269 | 0.2006   | 0.174319 | 0.184813 | 0.200075 | 0.187531 | 0.1695   |
| 0.198213 | 0.199006 | 0.173306 | 0.173625 | 0.198306 | 0.2003   | 0.1715   | 0.179781 | 0.202231 | 0.194425 |
| 0.200813 | 0.188669 | 0.17445  | 0.188    | 0.201456 | 0.181744 | 0.1734   | 0.2011   | 0.195606 | 0.17275  |
| 0.1855   | 0.203006 | 0.189    | 0.175619 | 0.184738 | 0.1998   | 0.183588 | 0.170413 | 0.1923   | 0.203938 |
| 0.204    | 0.183738 | 0.173294 | 0.197006 | 0.200862 | 0.1779   | 0.175669 | 0.197269 | 0.200363 | 0.177806 |
| 1        | 2        | 3        | 4        | 5        | 6        | 7        | 8        | 9        | 10       |

| 0.174681 | 0.200888 | 0.1939   | 0.1752   | 0.179606 | 0.201206 | 0.197531 | 0.174144 | 0.176806 | 0.201406 |
|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| 0.200306 | 0.181431 | 0.172631 | 0.194906 | 0.199988 | 0.1742   | 0.176594 | 0.2003   | 0.197644 | 0.172181 |
| 0.196306 | 0.1719   | 0.177556 | 0.201469 | 0.194425 | 0.1734   | 0.180413 | 0.199831 | 0.193781 | 0.1723   |
| 0.199963 | 0.1819   | 0.176219 | 0.202444 | 0.1979   | 0.173481 | 0.184838 | 0.202306 | 0.189663 | 0.174144 |
| 0.175806 | 0.192075 | 0.200406 | 0.172994 | 0.1787   | 0.2015   | 0.190788 | 0.172313 | 0.186444 | 0.198594 |
| 0.199513 | 0.200319 | 0.1687   | 0.185125 | 0.198306 | 0.184813 | 0.173138 | 0.193431 | 0.204644 | 0.1803   |
| 0.1896   | 0.201669 | 0.1807   | 0.174638 | 0.19995  | 0.190219 | 0.175994 | 0.190319 | 0.2043   | 0.179344 |
| 0.200794 | 0.180013 | 0.172731 | 0.198838 | 0.194419 | 0.173406 | 0.179581 | 0.2022   | 0.188038 | 0.175006 |
| 0.172181 | 0.19515  | 0.199488 | 0.175831 | 0.1719   | 0.199488 | 0.1899   | 0.173188 | 0.1914   | 0.203806 |
| 0.172181 | 0.179206 | 0.200738 | 0.1944   | 0.172075 | 0.181613 | 0.202463 | 0.193406 | 0.1717   | 0.1795   |
| 0.182869 | 0.201269 | 0.191031 | 0.177219 | 0.187806 | 0.2014   | 0.186438 | 0.174844 | 0.188181 | 0.202438 |
| 0.190038 | 0.173406 | 0.201406 | 0.193813 | 0.1752   | 0.183988 | 0.202    | 0.190844 | 0.169281 | 0.1839   |
| 0.200813 | 0.1768   | 0.181694 | 0.2007   | 0.1891   | 0.169675 | 0.1864   | 0.198863 | 0.182206 | 0.1723   |
| 0.193538 | 0.199806 | 0.173675 | 0.171506 | 0.202206 | 0.1915   | 0.172344 | 0.180025 | 0.2008   | 0.191806 |
| 0.17655  | 0.178281 | 0.200306 | 0.193219 | 0.172306 | 0.1848   | 0.204144 | 0.192413 | 0.170813 | 0.183931 |
| 0.171581 | 0.203019 | 0.1932   | 0.169094 | 0.187019 | 0.2019   | 0.190806 | 0.173988 | 0.184725 | 0.199663 |
| 0.188606 | 0.202488 | 0.176694 | 0.176013 | 0.200881 | 0.189788 | 0.171619 | 0.19435  | 0.1995   | 0.177606 |
| 0.198081 | 0.1867   | 0.172025 | 0.193419 | 0.2059   | 0.183106 | 0.172344 | 0.1939   | 0.201206 | 0.1804   |
| 0.180619 | 0.202356 | 0.183019 | 0.172944 | 0.196825 | 0.1999   | 0.176381 | 0.175006 | 0.198206 | 0.198438 |
| 0.182206 | 0.172044 | 0.196088 | 0.200813 | 0.177406 | 0.173925 | 0.198381 | 0.202281 | 0.172794 | 0.174694 |
| 0.1791   | 0.201894 | 0.1889   | 0.176406 | 0.186475 | 0.199894 | 0.189406 | 0.170544 | 0.192888 | 0.200875 |
| 0.177688 | 0.1768   | 0.1982   | 0.200406 | 0.175362 | 0.175094 | 0.199869 | 0.199413 | 0.174081 | 0.176606 |
| 0.172606 | 0.18075  | 0.200306 | 0.192806 | 0.173625 | 0.191194 | 0.200763 | 0.176213 | 0.1751   | 0.198788 |
| 0.196875 | 0.201212 | 0.179219 | 0.1751   | 0.198263 | 0.197681 | 0.175888 | 0.177206 | 0.202019 | 0.199913 |
| 0.1819   | 0.170206 | 0.194394 | 0.2024   | 0.173613 | 0.179819 | 0.203713 | 0.1887   | 0.173138 | 0.188606 |
| 0.201406 | 0.173644 | 0.19555  | 0.202613 | 0.172825 | 0.184606 | 0.204013 | 0.188481 | 0.172375 | 0.185594 |
| 0.1704   | 0.1971   | 0.200044 | 0.172606 | 0.182981 | 0.203006 | 0.189431 | 0.1707   | 0.186319 | 0.202206 |
| 0.1742   | 0.183869 | 0.203169 | 0.191944 | 0.171344 | 0.184306 | 0.2019   | 0.188775 | 0.175344 | 0.187363 |
| 0.172881 | 0.178194 | 0.205406 | 0.18795  | 0.168288 | 0.193644 | 0.201212 | 0.1778   | 0.178231 | 0.201344 |
| 0.200619 | 0.1742   | 0.178744 | 0.200181 | 0.196    | 0.173625 | 0.175781 | 0.202806 | 0.1879   | 0.1727   |
| 0.186713 | 0.1762   | 0.187381 | 0.199388 | 0.187613 | 0.172306 | 0.1894   | 0.200188 | 0.183219 | 0.169    |
| 0.185006 | 0.2011   | 0.1887   | 0.170206 | 0.185506 | 0.199644 | 0.185394 | 0.171506 | 0.198081 | 0.202988 |
| 0.1921   | 0.200606 | 0.1715   | 0.1831   | 0.202006 | 0.187    | 0.1752   | 0.194438 | 0.202219 | 0.174206 |
| 0.172075 | 0.201219 | 0.191631 | 0.173638 | 0.183994 | 0.201125 | 0.191006 | 0.173625 | 0.1843   | 0.2028   |
| 0.1743   | 0.189188 | 0.2027   | 0.182175 | 0.173619 | 0.198806 | 0.199606 | 0.1731   | 0.184406 | 0.204938 |
| 0.191406 | 0.203394 | 0.18315  | 0.171406 | 0.1915   | 0.202413 | 0.180406 | 0.172438 | 0.200656 | 0.203    |
| 0.173406 | 0.178381 | 0.2003   | 0.1927   | 0.172606 | 0.186006 | 0.200613 | 0.181131 | 0.1731   | 0.1959   |
| 0.179088 | 0.203006 | 0.193638 | 0.1711   | 0.185594 | 0.206    | 0.189594 | 0.175738 | 0.186481 | 0.203606 |
| 0.178806 | 0.174363 | 0.201269 | 0.192794 | 0.172794 | 0.183913 | 0.202006 | 0.182781 | 0.169025 | 0.192413 |
| 0.1768   | 0.200975 | 0.199169 | 0.172344 | 0.186013 | 0.2018   | 0.192406 | 0.172013 | 0.1864   | 0.202206 |
| 11       | 12       | 13       | 14       | 15       | 16       | 17       | 18       | 19       | 20       |
|          |          |          |          |          |          |          |          |          |          |

| 0.1994   | 0.174206 | 0.174675 | 0.196606 | 0.203163 | 0.181619 | 0.171806 | 0.188894 | 0.2024   | 0.191213 |
|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| 0.178838 | 0.2028   | 0.191006 | 0.1739   | 0.184375 | 0.199288 | 0.187088 | 0.172038 | 0.1931   | 0.20405  |
| 0.179806 | 0.201188 | 0.199013 | 0.179806 | 0.174544 | 0.195806 | 0.204488 | 0.1851   | 0.173281 | 0.187644 |
| 0.185563 | 0.204138 | 0.191006 | 0.173013 | 0.182606 | 0.201438 | 0.194412 | 0.1729   | 0.178206 | 0.1999   |
| 0.1847   | 0.1743   | 0.185144 | 0.203106 | 0.1899   | 0.1717   | 0.177013 | 0.200356 | 0.1991   | 0.175394 |
| 0.1687   | 0.1901   | 0.2008   | 0.188413 | 0.173681 | 0.186819 | 0.200925 | 0.188794 | 0.1703   | 0.185406 |
| 0.172719 | 0.192338 | 0.203244 | 0.188194 | 0.173513 | 0.1851   | 0.2035   | 0.188438 | 0.175031 | 0.185794 |
| 0.1883   | 0.200794 | 0.186481 | 0.1747   | 0.186744 | 0.201588 | 0.190438 | 0.175    | 0.1818   | 0.20135  |
| 0.181888 | 0.171619 | 0.189675 | 0.199338 | 0.1883   | 0.171706 | 0.185294 | 0.202181 | 0.189738 | 0.172794 |
| 0.200731 | 0.192838 | 0.174194 | 0.173075 | 0.2008   | 0.202613 | 0.175138 | 0.175213 | 0.198213 | 0.2014   |
| 0.182088 | 0.171006 | 0.189619 | 0.199806 | 0.184781 | 0.175913 | 0.186425 | 0.199663 | 0.1896   | 0.175    |
| 0.2026   | 0.184581 | 0.1702   | 0.191006 | 0.201981 | 0.186475 | 0.174494 | 0.186413 | 0.2015   | 0.189181 |
| 0.198069 | 0.197681 | 0.178269 | 0.173888 | 0.194231 | 0.202394 | 0.181206 | 0.175219 | 0.194844 | 0.204606 |
| 0.170181 | 0.182544 | 0.201912 | 0.199263 | 0.174594 | 0.175806 | 0.195563 | 0.203925 | 0.1832   | 0.169675 |
| 0.200606 | 0.188194 | 0.169531 | 0.1868   | 0.202406 | 0.191994 | 0.172606 | 0.183019 | 0.20075  | 0.190206 |
| 0.180413 | 0.174806 | 0.202044 | 0.201219 | 0.173838 | 0.1759   | 0.200888 | 0.190588 | 0.173663 | 0.185513 |
| 0.175238 | 0.194206 | 0.204394 | 0.1795   | 0.172825 | 0.192644 | 0.2026   | 0.1767   | 0.173663 | 0.200819 |
| 0.174206 | 0.194425 | 0.2007   | 0.180706 | 0.169469 | 0.190231 | 0.1983   | 0.1899   | 0.173406 | 0.182994 |
| 0.178806 | 0.175563 | 0.196175 | 0.2038   | 0.183669 | 0.169881 | 0.190894 | 0.200331 | 0.187919 | 0.173906 |
| 0.200481 | 0.197125 | 0.175019 | 0.176613 | 0.197544 | 0.199525 | 0.178106 | 0.1683   | 0.195106 | 0.1999   |
| 0.1795   | 0.171031 | 0.188294 | 0.2012   | 0.188275 | 0.173519 | 0.185388 | 0.201737 | 0.1946   | 0.173188 |
| 0.199806 | 0.200413 | 0.1788   | 0.172038 | 0.192875 | 0.2015   | 0.187594 | 0.1747   | 0.1835   | 0.200881 |
| 0.197619 | 0.1739   | 0.181581 | 0.201406 | 0.1899   | 0.174319 | 0.179419 | 0.2003   | 0.199288 | 0.178594 |
| 0.174563 | 0.182088 | 0.202469 | 0.194444 | 0.1748   | 0.177106 | 0.200819 | 0.1989   | 0.1798   | 0.170425 |
| 0.202813 | 0.177838 | 0.170281 | 0.190006 | 0.199263 | 0.190269 | 0.1695   | 0.18035  | 0.202425 | 0.1991   |
| 0.199806 | 0.190206 | 0.169081 | 0.184838 | 0.200081 | 0.194788 | 0.175006 | 0.175131 | 0.196331 | 0.201212 |
| 0.1885   | 0.172219 | 0.185744 | 0.200838 | 0.193219 | 0.1719   | 0.1794   | 0.201163 | 0.191213 | 0.174144 |
| 0.200825 | 0.187288 | 0.17605  | 0.185675 | 0.203006 | 0.190475 | 0.1748   | 0.177731 | 0.202413 | 0.192338 |
| 0.191819 | 0.174675 | 0.175056 | 0.195581 | 0.202019 | 0.177581 | 0.172013 | 0.191806 | 0.199606 | 0.190038 |
| 0.1847   | 0.204094 | 0.191213 | 0.1739   | 0.182206 | 0.202413 | 0.199869 | 0.177144 | 0.1704   | 0.1883   |
| 0.197431 | 0.204606 | 0.183275 | 0.175175 | 0.183906 | 0.204025 | 0.188356 | 0.17195  | 0.185163 | 0.200838 |
| 0.172825 | 0.1768   | 0.196    | 0.204075 | 0.185381 | 0.1749   | 0.1868   | 0.200825 | 0.192975 | 0.172144 |
| 0.1772   | 0.2008   | 0.195006 | 0.174356 | 0.175925 | 0.199238 | 0.202019 | 0.182013 | 0.1695   | 0.194944 |
| 0.186475 | 0.175213 | 0.191725 | 0.200381 | 0.183219 | 0.173181 | 0.194425 | 0.202725 | 0.1864   | 0.174788 |
| 0.190969 | 0.172788 | 0.1799   | 0.202488 | 0.196794 | 0.174713 | 0.176206 | 0.198444 | 0.200025 | 0.178394 |
| 0.1731   | 0.174038 | 0.195581 | 0.2046   | 0.184025 | 0.176819 | 0.187006 | 0.200813 | 0.190219 | 0.172694 |
| 0.2024   | 0.177238 | 0.171881 | 0.198206 | 0.200656 | 0.17995  | 0.1736   | 0.190975 | 0.201781 | 0.187563 |
| 0.182594 | 0.172144 | 0.187819 | 0.201456 | 0.189406 | 0.170888 | 0.181638 | 0.202019 | 0.197531 | 0.1767   |
| 0.2019   | 0.188144 | 0.175    | 0.187225 | 0.200025 | 0.190219 | 0.172013 | 0.1836   | 0.2036   | 0.202    |
| 0.191    | 0.175006 | 0.179831 | 0.202381 | 0.200813 | 0.176356 | 0.1768   | 0.1976   | 0.203906 | 0.184406 |
|          |          |          |          |          |          |          |          |          |          |
| 21       | 22       | 23       | 24       | 25       | 26       | 27       | 28       | 29       | 30       |

| 0.172025 | 0.1836   | 0.201838 | 0.194713 | 0.175794 | 0.176888 | 0.1991   | 0.198325 | 0.178744 | 0.169    |
|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| 0.1815   | 0.167675 | 0.190788 | 0.199106 | 0.188844 | 0.170775 | 0.186806 | 0.2026   | 0.189625 | 0.1731   |
| 0.203    | 0.189106 | 0.175019 | 0.181994 | 0.200838 | 0.200406 | 0.173688 | 0.1743   | 0.195906 | 0.204038 |
| 0.200413 | 0.180025 | 0.174194 | 0.1942   | 0.201181 | 0.184231 | 0.174206 | 0.188487 | 0.200413 | 0.190094 |
| 0.175919 | 0.198775 | 0.202438 | 0.170794 | 0.177625 | 0.197906 | 0.200419 | 0.179406 | 0.17355  | 0.201194 |
| 0.201244 | 0.19275  | 0.1711   | 0.174525 | 0.199213 | 0.200025 | 0.175581 | 0.172694 | 0.1935   | 0.1986   |
| 0.199106 | 0.189469 | 0.174806 | 0.183375 | 0.202994 | 0.192825 | 0.172238 | 0.17435  | 0.1972   | 0.200606 |
| 0.194394 | 0.174538 | 0.1724   | 0.196463 | 0.204525 | 0.1844   | 0.171531 | 0.187581 | 0.199138 | 0.188013 |
| 0.183087 | 0.202919 | 0.1972   | 0.175606 | 0.17495  | 0.2008   | 0.201419 | 0.177975 | 0.170488 | 0.188381 |
| 0.174481 | 0.172988 | 0.2024   | 0.193681 | 0.174206 | 0.173688 | 0.198806 | 0.204    | 0.183113 | 0.172094 |
| 0.180419 | 0.2024   | 0.202869 | 0.175944 | 0.172725 | 0.1923   | 0.2055   | 0.184025 | 0.176844 | 0.185531 |
| 0.1736   | 0.178006 | 0.199563 | 0.195531 | 0.1747   | 0.176413 | 0.197206 | 0.204488 | 0.180381 | 0.170744 |
| 0.185438 | 0.173406 | 0.195806 | 0.203919 | 0.183606 | 0.170994 | 0.190756 | 0.203387 | 0.1855   | 0.1746   |
| 0.1934   | 0.203006 | 0.186438 | 0.1766   | 0.184706 | 0.204606 | 0.190819 | 0.172788 | 0.175556 | 0.200075 |
| 0.173513 | 0.1772   | 0.19995  | 0.200144 | 0.178819 | 0.1742   | 0.196488 | 0.206281 | 0.185206 | 0.176606 |
| 0.200419 | 0.188744 | 0.174069 | 0.1854   | 0.201406 | 0.192831 | 0.175219 | 0.184038 | 0.201206 | 0.1927   |
| 0.200413 | 0.17845  | 0.174063 | 0.194006 | 0.204406 | 0.183894 | 0.1732   | 0.189625 | 0.200606 | 0.189006 |
| 0.206219 | 0.187563 | 0.1726   | 0.1916   | 0.2019   | 0.179381 | 0.170963 | 0.192144 | 0.2031   | 0.182394 |
| 0.186406 | 0.199131 | 0.189988 | 0.1739   | 0.178475 | 0.2019   | 0.194744 | 0.173294 | 0.175325 | 0.1947   |
| 0.1755   | 0.1752   | 0.202806 | 0.191606 | 0.1722   | 0.1868   | 0.2038   | 0.176719 | 0.174788 | 0.204413 |
| 0.173294 | 0.197981 | 0.201394 | 0.1814   | 0.1683   | 0.189075 | 0.198981 | 0.189825 | 0.170706 | 0.18085  |
| 0.1903   | 0.175638 | 0.176606 | 0.199225 | 0.2003   | 0.177188 | 0.1739   | 0.195106 | 0.2035   | 0.1844   |
| 0.174231 | 0.196794 | 0.199131 | 0.174806 | 0.175031 | 0.1983   | 0.2012   | 0.1815   | 0.167588 | 0.1867   |
| 0.187294 | 0.199831 | 0.189181 | 0.172606 | 0.182819 | 0.200337 | 0.195594 | 0.174188 | 0.176619 | 0.196387 |
| 0.176606 | 0.177219 | 0.202069 | 0.197888 | 0.174269 | 0.177219 | 0.1947   | 0.203956 | 0.183219 | 0.173638 |
| 0.1787   | 0.174713 | 0.199006 | 0.202994 | 0.1734   | 0.174425 | 0.196094 | 0.196706 | 0.1747   | 0.1747   |
| 0.180013 | 0.199931 | 0.19555  | 0.172488 | 0.175281 | 0.2003   | 0.20235  | 0.177806 | 0.174206 | 0.194419 |
| 0.172994 | 0.176281 | 0.201912 | 0.200606 | 0.1794   | 0.171    | 0.189081 | 0.1982   | 0.186944 | 0.17355  |
| 0.171113 | 0.185213 | 0.20075  | 0.197481 | 0.174781 | 0.173581 | 0.194988 | 0.2019   | 0.18355  | 0.177419 |
| 0.196681 | 0.190206 | 0.173569 | 0.181638 | 0.202969 | 0.200606 | 0.179806 | 0.169294 | 0.193444 | 0.202306 |
| 0.193    | 0.172638 | 0.171906 | 0.196306 | 0.198331 | 0.1784   | 0.1718   | 0.1915   | 0.201806 | 0.188313 |
| 0.175344 | 0.195913 | 0.203906 | 0.1863   | 0.174306 | 0.187881 | 0.199613 | 0.189625 | 0.17045  | 0.181325 |
| 0.204    | 0.1859   | 0.175806 | 0.186013 | 0.2028   | 0.1899   | 0.1731   | 0.1822   | 0.2024   | 0.192306 |
| 0.184081 | 0.203981 | 0.19125  | 0.1738   | 0.178344 | 0.198381 | 0.201    | 0.179913 | 0.171806 | 0.1912   |
| 0.1711   | 0.190194 | 0.198775 | 0.189944 | 0.172981 | 0.186419 | 0.2027   | 0.1907   | 0.174425 | 0.174019 |
| 0.186019 | 0.2056   | 0.1916   | 0.174281 | 0.181406 | 0.198506 | 0.202019 | 0.179619 | 0.171581 | 0.1922   |
| 0.176044 | 0.184306 | 0.204406 | 0.191613 | 0.173531 | 0.177213 | 0.1991   | 0.2014   | 0.180413 | 0.173212 |
| 0.172313 | 0.193406 | 0.206256 | 0.183788 | 0.174819 | 0.189663 | 0.199638 | 0.189619 | 0.173675 | 0.187238 |
| 0.176981 | 0.172675 | 0.191606 | 0.1991   | 0.187931 | 0.172    | 0.184994 | 0.2024   | 0.195019 | 0.172494 |
| 0.173619 | 0.187513 | 0.203113 | 0.1892   | 0.173475 | 0.180981 | 0.201219 | 0.186706 | 0.175    | 0.195188 |
| 31       | 32       | 33       | 34       | 35       | 36       | 37       | 38       | 39       | 40       |

| 0.1896   | 0.195906 | 0.191    | 0.17195  | 0.185394 | 0.202406 | 0.192819 | 0.173    | 0.1794   | 0.2006   |
|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| 0.182344 | 0.19955  | 0.198525 | 0.174269 | 0.176706 | 0.2005   | 0.198269 | 0.177244 | 0.175544 | 0.195981 |
| 0.182288 | 0.172144 | 0.1918   | 0.1985   | 0.187725 | 0.175806 | 0.187    | 0.200381 | 0.191894 | 0.173975 |
| 0.173738 | 0.1827   | 0.2027   | 0.195019 | 0.174206 | 0.1798   | 0.202006 | 0.200238 | 0.1752   | 0.175281 |
| 0.196656 | 0.171844 | 0.175794 | 0.200038 | 0.199594 | 0.178219 | 0.175288 | 0.196925 | 0.2008   | 0.1779   |
| 0.184887 | 0.173625 | 0.188719 | 0.2006   | 0.1871   | 0.173106 | 0.1815   | 0.203806 | 0.198394 | 0.176819 |
| 0.1794   | 0.170275 | 0.1899   | 0.200363 | 0.1892   | 0.172281 | 0.1851   | 0.201406 | 0.192994 | 0.173469 |
| 0.174125 | 0.185194 | 0.20075  | 0.193106 | 0.1723   | 0.192138 | 0.199669 | 0.189406 | 0.173244 | 0.185419 |
| 0.202063 | 0.18325  | 0.175938 | 0.185788 | 0.2019   | 0.1887   | 0.172144 | 0.177944 | 0.200388 | 0.201581 |
| 0.1863   | 0.1995   | 0.1891   | 0.170231 | 0.187119 | 0.201125 | 0.191006 | 0.176681 | 0.186713 | 0.198331 |
| 0.201144 | 0.190231 | 0.172525 | 0.190006 | 0.197994 | 0.188694 | 0.176606 | 0.186219 | 0.2027   | 0.190438 |
| 0.187225 | 0.198813 | 0.1898   | 0.1699   | 0.184838 | 0.202413 | 0.1921   | 0.172788 | 0.173188 | 0.195969 |
| 0.185175 | 0.203806 | 0.192419 | 0.173194 | 0.178563 | 0.2006   | 0.199194 | 0.178206 | 0.175744 | 0.202013 |
| 0.200406 | 0.175706 | 0.1729   | 0.191881 | 0.2035   | 0.1811   | 0.168888 | 0.190269 | 0.199238 | 0.189638 |
| 0.186363 | 0.202256 | 0.188894 | 0.171081 | 0.183606 | 0.200875 | 0.19435  | 0.171194 | 0.173131 | 0.197156 |
| 0.1752   | 0.17495  | 0.2022   | 0.200606 | 0.180144 | 0.174325 | 0.197113 | 0.201238 | 0.181219 | 0.171019 |
| 0.171669 | 0.185481 | 0.201638 | 0.1926   | 0.173888 | 0.17995  | 0.199106 | 0.203006 | 0.1755   | 0.175019 |
| 0.173894 | 0.187619 | 0.199244 | 0.190806 | 0.171006 | 0.180388 | 0.199513 | 0.200306 | 0.177638 | 0.172606 |
| 0.201613 | 0.180025 | 0.1726   | 0.192144 | 0.1991   | 0.190444 | 0.174438 | 0.185688 | 0.201681 | 0.192631 |
| 0.191344 | 0.173238 | 0.1735   | 0.198388 | 0.197406 | 0.172606 | 0.171538 | 0.196075 | 0.200075 | 0.176206 |
| 0.202006 | 0.2014   | 0.1755   | 0.174438 | 0.195038 | 0.204419 | 0.186006 | 0.172544 | 0.191744 | 0.203613 |
| 0.175613 | 0.1892   | 0.200825 | 0.188744 | 0.172788 | 0.1864   | 0.203806 | 0.192819 | 0.175219 | 0.178081 |
| 0.19975  | 0.1883   | 0.173613 | 0.1871   | 0.1985   | 0.189625 | 0.173212 | 0.183869 | 0.1995   | 0.1947   |
| 0.202588 | 0.1787   | 0.171225 | 0.1928   | 0.200706 | 0.1851   | 0.174544 | 0.186013 | 0.201488 | 0.188081 |
| 0.188606 | 0.2024   | 0.1916   | 0.175031 | 0.177675 | 0.202713 | 0.2024   | 0.177469 | 0.172606 | 0.195106 |
| 0.197581 | 0.199275 | 0.180025 | 0.175619 | 0.197244 | 0.2011   | 0.179194 | 0.170819 | 0.188744 | 0.199288 |
| 0.202037 | 0.188606 | 0.176812 | 0.1855   | 0.203613 | 0.190869 | 0.171619 | 0.179394 | 0.201394 | 0.192813 |
| 0.185144 | 0.204038 | 0.189531 | 0.1723   | 0.183606 | 0.1995   | 0.1974   | 0.173638 | 0.175744 | 0.194738 |
| 0.1848   | 0.202688 | 0.191588 | 0.173406 | 0.178481 | 0.20075  | 0.198269 | 0.175619 | 0.177406 | 0.197594 |
| 0.1857   | 0.176819 | 0.186413 | 0.2026   | 0.187906 | 0.170869 | 0.1835   | 0.203344 | 0.187969 | 0.170425 |
| 0.172181 | 0.186306 | 0.199288 | 0.191006 | 0.170844 | 0.1823   | 0.2015   | 0.200038 | 0.172981 | 0.175225 |
| 0.200894 | 0.2003   | 0.176406 | 0.1727   | 0.197625 | 0.201406 | 0.179213 | 0.170081 | 0.191619 | 0.199238 |
| 0.173794 | 0.174356 | 0.1982   | 0.201775 | 0.184419 | 0.175806 | 0.1859   | 0.1987   | 0.1891   | 0.169944 |
| 0.199806 | 0.190163 | 0.168769 | 0.180094 | 0.201231 | 0.201687 | 0.1743   | 0.174475 | 0.196825 | 0.200731 |
| 0.198206 | 0.2026   | 0.181194 | 0.171813 | 0.1883   | 0.201319 | 0.190219 | 0.173094 | 0.181625 | 0.201406 |
| 0.201219 | 0.1855   | 0.174425 | 0.186544 | 0.203806 | 0.191406 | 0.174806 | 0.179806 | 0.202013 | 0.201125 |
| 0.190812 | 0.1999   | 0.1875   | 0.173294 | 0.184025 | 0.201037 | 0.195931 | 0.1752   | 0.173013 | 0.197988 |
| 0.202019 | 0.1918   | 0.172038 | 0.176888 | 0.199619 | 0.200713 | 0.178425 | 0.173613 | 0.191881 | 0.200731 |
| 0.177244 | 0.201344 | 0.201319 | 0.178325 | 0.1695   | 0.1871   | 0.201806 | 0.1896   | 0.174369 | 0.179606 |
| 0.205613 | 0.187225 | 0.174813 | 0.18395  | 0.202037 | 0.195169 | 0.174088 | 0.1747   | 0.198675 | 0.201406 |
| 41       | 42       | 43       | 44       | 45       | 46       | 47       | 48       | 49       | 50       |

| 0.196413 | 0.1736   | 0.1882   | 0.201381 | 0.180294 | 0.174438 | 0.194806 | 0.200894 | 0.182725 | 0.175444 |
|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| 0.203088 | 0.181625 | 0.169406 | 0.18795  | 0.201406 | 0.1887   | 0.173381 | 0.182606 | 0.202231 | 0.196013 |
| 0.175581 | 0.202406 | 0.199794 | 0.173625 | 0.175344 | 0.196013 | 0.201663 | 0.1783   | 0.1704   | 0.191688 |
| 0.197819 | 0.203006 | 0.1807   | 0.172069 | 0.19115  | 0.198144 | 0.189688 | 0.171806 | 0.183288 | 0.201544 |
| 0.169463 | 0.192394 | 0.196825 | 0.172538 | 0.1766   | 0.200813 | 0.198394 | 0.1806   | 0.175406 | 0.192069 |
| 0.174869 | 0.195806 | 0.201538 | 0.182131 | 0.1719   | 0.192419 | 0.199994 | 0.18405  | 0.176825 | 0.192194 |
| 0.171288 | 0.197806 | 0.203806 | 0.180769 | 0.171806 | 0.1912   | 0.199131 | 0.189613 | 0.1734   | 0.186406 |
| 0.2015   | 0.190594 | 0.169944 | 0.183794 | 0.201438 | 0.193    | 0.172025 | 0.1742   | 0.200419 | 0.201469 |
| 0.176619 | 0.173738 | 0.1942   | 0.2054   | 0.183006 | 0.172794 | 0.193294 | 0.202706 | 0.1831   | 0.1762   |
| 0.18675  | 0.169544 | 0.183106 | 0.200781 | 0.191038 | 0.173562 | 0.175944 | 0.199475 | 0.200444 | 0.1748   |
| 0.171956 | 0.178594 | 0.200938 | 0.203294 | 0.177288 | 0.171    | 0.191638 | 0.201912 | 0.1787   | 0.170813 |
| 0.200419 | 0.180219 | 0.171606 | 0.194412 | 0.203    | 0.185456 | 0.175588 | 0.188013 | 0.200144 | 0.187238 |
| 0.1963   | 0.174006 | 0.175213 | 0.200419 | 0.199806 | 0.1768   | 0.175819 | 0.198219 | 0.198594 | 0.179944 |
| 0.171494 | 0.184413 | 0.2023   | 0.191094 | 0.172881 | 0.183213 | 0.201325 | 0.200038 | 0.177244 | 0.175006 |
| 0.200944 | 0.179288 | 0.172181 | 0.194806 | 0.201394 | 0.18155  | 0.1671   | 0.194994 | 0.200581 | 0.182206 |
| 0.189606 | 0.199325 | 0.189625 | 0.1706   | 0.182588 | 0.202438 | 0.196406 | 0.1719   | 0.175206 | 0.1983   |
| 0.196025 | 0.203606 | 0.177906 | 0.173481 | 0.191744 | 0.204438 | 0.183194 | 0.168025 | 0.1879   | 0.199813 |
| 0.195806 | 0.204531 | 0.183644 | 0.1751   | 0.1843   | 0.2044   | 0.19045  | 0.171838 | 0.17615  | 0.201206 |
| 0.175263 | 0.175875 | 0.201406 | 0.200038 | 0.1768   | 0.173288 | 0.200144 | 0.200406 | 0.175    | 0.1751   |
| 0.173913 | 0.197406 | 0.206819 | 0.181406 | 0.170469 | 0.193406 | 0.2035   | 0.185488 | 0.176825 | 0.187006 |
| 0.179038 | 0.173138 | 0.1911   | 0.2026   | 0.187194 | 0.175744 | 0.1847   | 0.203844 | 0.191206 | 0.172606 |
| 0.201763 | 0.198206 | 0.175513 | 0.1743   | 0.194769 | 0.204175 | 0.185156 | 0.172981 | 0.184181 | 0.203806 |
| 0.173506 | 0.176731 | 0.1947   | 0.204406 | 0.1832   | 0.172981 | 0.1863   | 0.204544 | 0.1912   | 0.174319 |
| 0.172694 | 0.1848   | 0.202806 | 0.196875 | 0.173481 | 0.1742   | 0.198006 | 0.204013 | 0.183006 | 0.174806 |
| 0.203325 | 0.1848   | 0.176669 | 0.188606 | 0.1983   | 0.189644 | 0.1719   | 0.185588 | 0.2028   | 0.192819 |
| 0.1889   | 0.1747   | 0.182606 | 0.203006 | 0.196081 | 0.1727   | 0.174544 | 0.197419 | 0.205738 | 0.183806 |
| 0.1707   | 0.184938 | 0.203806 | 0.190425 | 0.173888 | 0.1802   | 0.201181 | 0.199506 | 0.176888 | 0.1758   |
| 0.200306 | 0.1844   | 0.174019 | 0.188469 | 0.1963   | 0.1912   | 0.170763 | 0.183006 | 0.201737 | 0.197406 |
| 0.2006   | 0.180013 | 0.173288 | 0.192787 | 0.206    | 0.1848   | 0.176844 | 0.187006 | 0.204144 | 0.183238 |
| 0.181675 | 0.200381 | 0.2003   | 0.178488 | 0.173625 | 0.192288 | 0.202844 | 0.188669 | 0.176338 | 0.196669 |
| 0.194425 | 0.202481 | 0.187225 | 0.174206 | 0.183513 | 0.1994   | 0.193538 | 0.172875 | 0.174044 | 0.197613 |
| 0.189913 | 0.1704   | 0.18275  | 0.200825 | 0.193238 | 0.174206 | 0.1727   | 0.199806 | 0.2019   | 0.1783   |
| 0.182325 | 0.201394 | 0.196406 | 0.174819 | 0.175744 | 0.1987   | 0.199375 | 0.178425 | 0.1736   | 0.1928   |
| 0.183006 | 0.172363 | 0.192706 | 0.200606 | 0.18965  | 0.170588 | 0.1831   | 0.202819 | 0.200838 | 0.176213 |
| 0.199606 | 0.178206 | 0.176013 | 0.196    | 0.205744 | 0.185581 | 0.1752   | 0.184081 | 0.203131 | 0.190544 |
| 0.178419 | 0.171963 | 0.191575 | 0.205494 | 0.1846   | 0.1766   | 0.185406 | 0.202881 | 0.191969 | 0.172325 |
| 0.201206 | 0.181925 | 0.169181 | 0.188406 | 0.2014   | 0.19115  | 0.1723   | 0.1787   | 0.1982   | 0.202413 |
| 0.189206 | 0.173381 | 0.186413 | 0.202813 | 0.196719 | 0.1768   | 0.1731   | 0.195    | 0.204025 | 0.183994 |
| 0.201387 | 0.201163 | 0.174425 | 0.1732   | 0.194856 | 0.204363 | 0.1846   | 0.175588 | 0.186819 | 0.203325 |
| 0.182069 | 0.168994 | 0.187225 | 0.200025 | 0.19     | 0.171856 | 0.1843   | 0.203006 | 0.192706 | 0.174044 |
| 51       | 52       | 53       | 54       | 55       | 56       | 57       | 58       | 59       | 60       |

| 0.188238 | 0.199225 | 0.190206 | 0.1726   | 0.182475 | 0.201113 | 0.18715  | 0.178    | 0.186181 | 0.1974   |
|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| 0.174819 | 0.176825 | 0.200631 | 0.199819 | 0.180094 | 0.175606 | 0.195388 | 0.206306 | 0.181581 | 0.172206 |
| 0.202006 | 0.186475 | 0.173581 | 0.186306 | 0.2043   | 0.191031 | 0.174206 | 0.184406 | 0.200331 | 0.192838 |
| 0.19035  | 0.174588 | 0.181975 | 0.202519 | 0.194475 | 0.173406 | 0.1768   | 0.1992   | 0.199588 | 0.179513 |
| 0.202281 | 0.186306 | 0.173994 | 0.186425 | 0.203606 | 0.190613 | 0.1715   | 0.1799   | 0.2014   | 0.200856 |
| 0.202294 | 0.185494 | 0.174713 | 0.186819 | 0.200706 | 0.191194 | 0.175213 | 0.172194 | 0.2054   | 0.196138 |
| 0.205006 | 0.190819 | 0.169538 | 0.179906 | 0.201488 | 0.197644 | 0.176219 | 0.1758   | 0.196594 | 0.205469 |
| 0.17625  | 0.1734   | 0.1926   | 0.202819 | 0.188325 | 0.174806 | 0.184388 | 0.2018   | 0.1935   | 0.172181 |
| 0.185744 | 0.202231 | 0.191    | 0.173206 | 0.182144 | 0.200038 | 0.201006 | 0.174819 | 0.174606 | 0.197406 |
| 0.1752   | 0.196825 | 0.203606 | 0.179906 | 0.170013 | 0.1899   | 0.202475 | 0.186381 | 0.176419 | 0.186294 |
| 0.191    | 0.201094 | 0.188    | 0.173306 | 0.1848   | 0.200825 | 0.191006 | 0.171813 | 0.181406 | 0.2024   |
| 0.175819 | 0.186013 | 0.2015   | 0.191206 | 0.1715   | 0.177688 | 0.203619 | 0.1963   | 0.1729   | 0.173625 |
| 0.168194 | 0.193406 | 0.1999   | 0.187806 | 0.175994 | 0.1864   | 0.204706 | 0.189688 | 0.172006 | 0.184031 |
| 0.1956   | 0.206    | 0.185237 | 0.1742   | 0.1908   | 0.199031 | 0.190206 | 0.172881 | 0.185113 | 0.200606 |
| 0.168094 | 0.19115  | 0.199238 | 0.189163 | 0.172325 | 0.182731 | 0.202731 | 0.191006 | 0.174613 | 0.1771   |
| 0.202413 | 0.176681 | 0.1723   | 0.1959   | 0.203069 | 0.183769 | 0.170231 | 0.1894   | 0.200781 | 0.182394 |
| 0.190213 | 0.175213 | 0.186463 | 0.202806 | 0.188344 | 0.171294 | 0.184406 | 0.201375 | 0.193188 | 0.1752   |
| 0.199844 | 0.171981 | 0.1736   | 0.198019 | 0.202638 | 0.1826   | 0.174831 | 0.176875 | 0.184781 | 0.201269 |
| 0.194781 | 0.2015   | 0.1848   | 0.173988 | 0.18515  | 0.203069 | 0.1891   | 0.16915  | 0.182281 | 0.202413 |
| 0.206013 | 0.189206 | 0.175606 | 0.181794 | 0.1995   | 0.196619 | 0.173744 | 0.173181 | 0.1958   | 0.205406 |
| 0.1787   | 0.202206 | 0.200813 | 0.173506 | 0.1751   | 0.202206 | 0.1998   | 0.173381 | 0.175806 | 0.197519 |
| 0.191806 | 0.174206 | 0.175006 | 0.199163 | 0.200806 | 0.180619 | 0.168325 | 0.190675 | 0.1987   | 0.188088 |
| 0.178538 | 0.2018   | 0.200825 | 0.1772   | 0.1731   | 0.196    | 0.2015   | 0.180875 | 0.171069 | 0.190206 |
| 0.187225 | 0.202413 | 0.1898   | 0.172013 | 0.18     | 0.202944 | 0.203019 | 0.177538 | 0.171994 | 0.195663 |
| 0.172706 | 0.174069 | 0.197688 | 0.2023   | 0.178425 | 0.172412 | 0.1921   | 0.202606 | 0.186475 | 0.1739   |
| 0.173994 | 0.1894   | 0.202413 | 0.188331 | 0.169131 | 0.188    | 0.202481 | 0.191219 | 0.174019 | 0.177744 |
| 0.1979   | 0.1986   | 0.173625 | 0.174869 | 0.2014   | 0.196631 | 0.171188 | 0.177213 | 0.1963   | 0.1999   |
| 0.173675 | 0.174788 | 0.197606 | 0.198331 | 0.178813 | 0.176606 | 0.194581 | 0.2024   | 0.183619 | 0.166981 |
| 0.171681 | 0.187144 | 0.2044   | 0.190794 | 0.173744 | 0.177219 | 0.1983   | 0.196413 | 0.1719   | 0.175819 |
| 0.206144 | 0.183225 | 0.174144 | 0.187806 | 0.1992   | 0.188944 | 0.173675 | 0.186206 | 0.202006 | 0.192437 |
| 0.203006 | 0.181988 | 0.174438 | 0.187919 | 0.201544 | 0.189406 | 0.170806 | 0.181494 | 0.201488 | 0.201588 |
| 0.171994 | 0.193444 | 0.2005   | 0.187338 | 0.175606 | 0.185806 | 0.20315  | 0.191219 | 0.1752   | 0.179894 |
| 0.202031 | 0.197675 | 0.1854   | 0.173881 | 0.1878   | 0.202206 | 0.191006 | 0.171013 | 0.1794   | 0.2022   |
| 0.17445  | 0.197913 | 0.200594 | 0.183794 | 0.175375 | 0.186488 | 0.206013 | 0.191488 | 0.172894 | 0.186206 |
| 0.174294 | 0.178781 | 0.199581 | 0.200075 | 0.178463 | 0.174206 | 0.191663 | 0.202019 | 0.183913 | 0.175225 |
| 0.178206 | 0.199525 | 0.202425 | 0.1763   | 0.171381 | 0.197013 | 0.206813 | 0.186206 | 0.176406 | 0.185088 |
| 0.178419 | 0.173206 | 0.192838 | 0.202781 | 0.185444 | 0.175906 | 0.18545  | 0.204544 | 0.192756 | 0.174425 |
| 0.175006 | 0.185913 | 0.204025 | 0.191538 | 0.174369 | 0.173925 | 0.201975 | 0.194425 | 0.174863 | 0.1719   |
| 0.190425 | 0.172    | 0.179213 | 0.200331 | 0.201238 | 0.177231 | 0.171237 | 0.192038 | 0.199225 | 0.189113 |
| 0.177206 | 0.1974   | 0.201281 | 0.18235  | 0.172756 | 0.186006 | 0.2038   | 0.191869 | 0.174188 | 0.177456 |
| 61       | 62       | 63       | 64       | 65       | 66       | 67       | 68       | 69       | 70       |

| 0.186363 | 0.176781 | 0.187619 | 0.196925 | 0.189213 | 0.170819 | 0.183338         | 0.200337 | 0.194587                               | 0.175225          |
|----------|----------|----------|----------|----------|----------|------------------|----------|----------------------------------------|-------------------|
| 0.187281 | 0.201231 | 0.1902   | 0.175006 | 0.183019 | 0.199531 | 0.1975           | 0.175269 | 0.17995                                | 0.2024            |
| 0.172731 | 0.1807   | 0.201806 | 0.198488 | 0.173431 | 0.175806 | 0.198537         | 0.2012   | 0.178306                               | 0.171813          |
| 0.175406 | 0.1966   | 0.2028   | 0.1819   | 0.167194 | 0.187331 | 0.201513         | 0.190812 | 0.172675                               | 0.183644          |
| 0.177625 | 0.1679   | 0.192756 | 0.200413 | 0.185237 | 0.174813 | 0.1902           | 0.1987   | 0.1867                                 | 0.175012          |
| 0.172419 | 0.178206 | 0.199238 | 0.1979   | 0.174475 | 0.173688 | 0.196825         | 0.204025 | 0.182219                               | 0.171694          |
| 0.177506 | 0.1738   | 0.1923   | 0.204388 | 0.181    | 0.169525 | 0.19 <u>0894</u> | 0.204138 | 0.185206                               | 0.175938          |
| 0.179013 | 0.201963 | 0.194844 | 0.174438 | 0.1723   | 0.196731 | 0.20             |          |                                        |                   |
| 0.201138 | 0.183819 | 0.175606 | 0.188631 | 0.1979   | 0.190369 | 0.17             |          |                                        | Plc               |
| 0.203806 | 0.191031 | 0.175    | 0.1767   | 0.201806 | 0.201406 | 0.17             |          |                                        |                   |
| 0.196606 | 0.1748   | 0.176206 | 0.197625 | 0.201206 | 0.178325 | 0.17             | 0 21     |                                        |                   |
| 0.196306 | 0.204488 | 0.1815   | 0.173188 | 0.1892   | 0.201013 | 0.               | 0.21     |                                        |                   |
| 0.2031   | 0.191213 | 0.172894 | 0.177213 | 0.201006 | 0.188375 | 0.17             |          |                                        |                   |
| 0.193038 | 0.174806 | 0.174894 | 0.201644 | 0.1995   | 0.173406 | 0.               | 0.2      |                                        | $\wedge A +$      |
| 0.2011   | 0.200075 | 0.1775   | 0.175269 | 0.194481 | 0.206038 | 0.18             |          |                                        |                   |
| 0.172444 | 0.189406 | 0.199588 | 0.187563 | 0.175344 | 0.184606 | 0.20             |          |                                        | $\Pi \Pi \Lambda$ |
| 0.1735   | 0.198544 | 0.202219 | 0.1794   | 0.173581 | 0.1951   | 0.19             | 0.19     | $\mathbb{A} + \mathbb{A} + \mathbb{A}$ | +++++             |
| 0.190819 | 0.169381 | 0.18085  | 0.201806 | 0.200606 | 0.176863 | 0. <b>9</b>      |          |                                        |                   |
| 0.1964   | 0.174013 | 0.175513 | 0.197813 | 0.20055  | 0.180013 | 0.17 <b>F</b>    |          |                                        |                   |
| 0.176981 | 0.1739   | 0.193444 | 0.205744 | 0.184419 | 0.174013 | 0. <b>b</b>      | 0.18     | +++++                                  |                   |
| 0.199594 | 0.17515  | 0.175244 | 0.195288 | 0.204406 | 0.184388 | 0.17 j           |          | '    V                                 | ' II V V          |
| 0.168975 | 0.184794 | 0.2007   | 0.194806 | 0.175606 | 0.1731   | 0.20 <b>g</b>    |          |                                        |                   |
| 0.1979   | 0.1894   | 0.1707   | 0.183606 | 0.201538 | 0.197638 | 0.1              | 0.17     |                                        |                   |
| 0.206819 | 0.185806 | 0.176206 | 0.184731 | 0.203425 | 0.191619 | 0.17             |          |                                        |                   |
| 0.1843   | 0.2007   | 0.192619 | 0.172656 | 0.175219 | 0.198537 | 0.19             | 0.40     |                                        |                   |
| 0.200044 | 0.201206 | 0.177406 | 0.174675 | 0.194844 | 0.205613 | 0.18             | 0.16     |                                        |                   |
| 0.179038 | 0.170206 | 0.194206 | 0.20115  | 0.187806 | 0.172025 | 0.18             |          |                                        |                   |
| 0.187481 | 0.199788 | 0.190294 | 0.173663 | 0.180469 | 0.2007   | 0.19             | 0.15     |                                        |                   |
| 0.196063 | 0.203963 | 0.184825 | 0.1772   | 0.186019 | 0.200719 | 0.               | 1        | 7 13 1                                 | 9 25 31           |
| 0.173819 | 0.175738 | 0.197613 | 0.206038 | 0.184419 | 0.175213 | 0.               |          | 7 10 1                                 | 5 20 01           |
| 0.177125 | 0.1695   | 0.1926   | 0.197106 | 0.188125 | 0.173212 | 0.18             |          |                                        |                   |
| 0.202013 | 0.202856 | 0.176369 | 0.172075 | 0.1912   | 0.200125 | 0.18             |          |                                        |                   |
| 0.202469 | 0.178019 | 0.175181 | 0.194206 | 0.203344 | 0.1846   | 0.169206         | 0.188487 | 0.199394                               | 0.190369          |
| 0.201544 | 0.1878   | 0.175806 | 0.185431 | 0.2007   | 0.1895   | 0.173219         | 0.1803   | 0.1992                                 | 0.200794          |
| 0.186331 | 0.201519 | 0.190806 | 0.172694 | 0.1797   | 0.199538 | 0.202488         | 0.177694 | 0.173638                               | 0.1928            |
| 0.204544 | 0.191681 | 0.172381 | 0.175138 | 0.200838 | 0.2006   | 0.173944         | 0.171106 | 0.1922                                 | 0.20075           |
| 0.175638 | 0.201269 | 0.20075  | 0.176994 | 0.174206 | 0.192744 | 0.205613         | 0.186838 | 0.175263                               | 0.185113          |
| 0.197    | 0.202425 | 0.179819 | 0.1719   | 0.189938 | 0.2028   | 0.185681         | 0.174494 | 0.185688                               | 0.202675          |
| 0.174425 | 0.18475  | 0.2017   | 0.196619 | 0.175806 | 0.174006 | 0.197494         | 0.205406 | 0.1827                                 | 0.176606          |
| 0.1999   | 0.1999   | 0.180025 | 0.168556 | 0.191338 | 0.200744 | 0.188038         | 0.171156 | 0.185269                               | 0.203006          |
| 71       | 72       | 73       | 74       | 75       | 76       | 77               | 78       | 79                                     | 80                |




Difference Between The Averaged Maximum And Minimum Acquir

| Г          | 0.187461 | 0.187412 |
|------------|----------|----------|
|            | 0.187057 | 0.187412 |
|            | 0.18747  | 0.187412 |
|            | 0.187408 | 0 187412 |
|            | 0 187291 | 0 187412 |
|            | 0 187247 | 0.107412 |
|            | 0.107247 | 0.107412 |
|            | 0.107457 | 0.107412 |
|            | 0.107049 | 0.107412 |
|            | 0.1074   | 0.107412 |
|            | 0.107300 | 0.107412 |
|            | 0.107404 | 0.107412 |
|            | 0.107190 | 0.107412 |
|            | 0.18/21/ | 0.187412 |
|            | 0.18//0/ | 0.187412 |
|            | 0.18/2/  | 0.187412 |
|            | 0.18/382 | 0.187412 |
|            | 0.18/51  | 0.187412 |
|            | 0.18719  | 0.18/412 |
|            | 0.187458 | 0.187412 |
|            | 0.187448 | 0.187412 |
|            | 0.187903 | 0.187412 |
|            | 0.187528 | 0.187412 |
|            | 0.18734  | 0.187412 |
|            | 0.187855 | 0.187412 |
|            | 0.187163 | 0.187412 |
|            | 0.187396 | 0.187412 |
|            | 0.187361 | 0.187412 |
|            | 0.187279 | 0.187412 |
|            | 0.187278 | 0.187412 |
|            | 0.18757  | 0.187412 |
|            | 0.187091 | 0.187412 |
|            | 0.187235 | 0.187412 |
|            | 0.187409 | 0.187412 |
|            | 0.187474 | 0.187412 |
|            | 0.187493 | 0.187412 |
|            | 0.187667 | 0.187412 |
|            | 0.187488 | 0.187412 |
|            | 0.187586 | 0.187412 |
|            | 0.18765  | 0.187412 |
|            | 0.187708 | 0.187412 |
|            |          |          |
|            |          |          |
| + A        | 0 407440 |          |
| TAverage   | 0.187412 |          |
| red Values | 0 000854 |          |
| ed values  | 0.000004 |          |

| 0.009837 | 0.008574 | 0.009171 | 0.008926 | 0.010446 | 0.008398 | 0.010038 | 0.009183 | 0.009881 | 0.006539 |
|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| 0.017268 | 0.016394 | 0.018555 | 0.016796 | 0.018405 | 0.018103 | 0.016225 | 0.019541 | 0.016281 | 0.020465 |
| 0.025126 | 0.029648 | 0.02755  | 0.02848  | 0.029353 | 0.0238   | 0.033888 | 0.02642  | 0.031545 | 0.029083 |
| 0.044856 | 0.034962 | 0.041074 | 0.038788 | 0.04103  | 0.039585 | 0.038273 | 0.043078 | 0.034177 | 0.043618 |
| 0.056564 | 0.044114 | 0.055327 | 0.039095 | 0.055854 | 0.04294  | 0.054975 | 0.045258 | 0.053241 | 0.046357 |
| 0.061438 | 0.051859 | 0.063448 | 0.050138 | 0.065823 | 0.050459 | 0.062839 | 0.05348  | 0.058222 | 0.06157  |
| 0.077198 | 0.059303 | 0.07566  | 0.065295 | 0.067431 | 0.074001 | 0.061011 | 0.075119 | 0.06191  | 0.076225 |
| 0.073373 | 0.08255  | 0.075082 | 0.081099 | 0.078197 | 0.071187 | 0.082839 | 0.085766 | 0.086514 | 0.075779 |
| 0.089579 | 0.084114 | 0.096709 | 0.081476 | 0.095704 | 0.08059  | 0.097594 | 0.079127 | 0.096533 | 0.078191 |
| 0.108279 | 0.090986 | 0.109786 | 0.090785 | 0.102117 | 0.097494 | 0.102123 | 0.098216 | 0.099296 | 0.103298 |
| 0.103078 | 0.118926 | 0.100239 | 0.123844 | 0.097312 | 0.11941  | 0.096118 | 0.119824 | 0.100031 | 0.12059  |
| 0.109755 | 0.130948 | 0.107374 | 0.128147 | 0.109535 | 0.135013 | 0.107946 | 0.13108  | 0.108681 | 0.128976 |
| 0.113976 | 0.140898 | 0.118756 | 0.142921 | 0.121552 | 0.130584 | 0.126866 | 0.132676 | 0.128668 | 0.129058 |
| 0.154579 | 0.136778 | 0.135207 | 0.146771 | 0.130276 | 0.150974 | 0.123857 | 0.153172 | 0.129083 | 0.153687 |
| 0.136363 | 0.160603 | 0.134177 | 0.156778 | 0.14554  | 0.152104 | 0.154397 | 0.135905 | 0.160697 | 0.133335 |
| 0.150352 | 0.171382 | 0.147136 | 0.174064 | 0.146225 | 0.172814 | 0.144523 | 0.17331  | 0.148003 | 0.167946 |
| 0.149943 | 0.183731 | 0.157494 | 0.176124 | 0.166872 | 0.17179  | 0.169454 | 0.165415 | 0.176288 | 0.161621 |
| 0.169454 | 0.190666 | 0.167443 | 0.192845 | 0.163562 | 0.192626 | 0.173474 | 0.181495 | 0.165132 | 0.166526 |
| 0.191476 | 0.192205 | 0.185345 | 0.197619 | 0.176388 | 0.202487 | 0.174366 | 0.205308 | 0.176646 | 0.203323 |
| 0.184315 | 0.210314 | 0.193913 | 0.215358 | 0.184133 | 0.214673 | 0.185547 | 0.210415 | 0.194611 | 0.201313 |
| 0.200245 | 0.227538 | 0.196595 | 0.223913 | 0.194623 | 0.225521 | 0.195923 | 0.22593  | 0.200195 | 0.21522  |
| 0.215264 | 0.23358  | 0.20483  | 0.239209 | 0.20348  | 0.22956  | 0.21657  | 0.213273 | 0.225459 | 0.210101 |
| 0.242023 | 0.232412 | 0.226526 | 0.237211 | 0.2174   | 0.241545 | 0.213116 | 0.245226 | 0.216319 | 0.246784 |
| 0.248285 | 0.224334 | 0.254466 | 0.22593  | 0.258116 | 0.223769 | 0.256627 | 0.224987 | 0.251683 | 0.229139 |
| 0.261652 | 0.244724 | 0.252607 | 0.252877 | 0.243229 | 0.257494 | 0.240232 | 0.264937 | 0.23642  | 0.263662 |
| 0.245647 | 0.2776   | 0.247236 | 0.275804 | 0.252073 | 0.266432 | 0.252054 | 0.265741 | 0.257582 | 0.257896 |
| 0.250446 | 0.283229 | 0.253266 | 0.286438 | 0.256093 | 0.272908 | 0.266445 | 0.272173 | 0.268857 | 0.265936 |
| 0.266696 | 0.298241 | 0.26299  | 0.295967 | 0.263549 | 0.291903 | 0.280917 | 0.273976 | 0.287827 | 0.271784 |
| 0.309573 | 0.275804 | 0.304384 | 0.273976 | 0.298587 | 0.283361 | 0.295101 | 0.291903 | 0.284133 | 0.296225 |
| 0.284121 | 0.314768 | 0.288248 | 0.304127 | 0.298317 | 0.300597 | 0.300044 | 0.296998 | 0.305942 | 0.290992 |
| 0.324416 | 0.299391 | 0.317984 | 0.304761 | 0.316005 | 0.307889 | 0.314183 | 0.307933 | 0.308486 | 0.316382 |
| 0.308951 | 0.337029 | 0.305188 | 0.338938 | 0.306357 | 0.336043 | 0.306878 | 0.335691 | 0.304529 | 0.335842 |
| 0.327381 | 0.335691 | 0.328907 | 0.332085 | 0.334673 | 0.319001 | 0.34495  | 0.315961 | 0.346979 | 0.314617 |
| 0.338028 | 0.332607 | 0.349824 | 0.329259 | 0.352475 | 0.323423 | 0.358455 | 0.326897 | 0.357814 | 0.324435 |
| 0.354717 | 0.349774 | 0.350151 | 0.354378 | 0.341514 | 0.362117 | 0.334774 | 0.365974 | 0.331457 | 0.362952 |
| 0.36559  | 0.349579 | 0.370195 | 0.349774 | 0.378354 | 0.343712 | 0.375892 | 0.344535 | 0.379234 | 0.345057 |
| 0.354573 | 0.383518 | 0.361602 | 0.373675 | 0.367852 | 0.373869 | 0.36951  | 0.368543 | 0.375553 | 0.365873 |
| 0.364152 | 0.394579 | 0.36907  | 0.386715 | 0.37348  | 0.383109 | 0.377682 | 0.380936 | 0.381922 | 0.374699 |
| 0.373367 | 0.403423 | 0.377632 | 0.397563 | 0.388788 | 0.392663 | 0.391583 | 0.388003 | 0.395471 | 0.383518 |
| 0.411652 | 0.391438 | 0.404422 | 0.396583 | 0.403361 | 0.401753 | 0.396809 | 0.408248 | 0.387852 | 0.411652 |

| 0.009692 | 0.006753 | 0.011244 | 0.007418 | 0.009629 | 0.007896 | 0.011545 | 0.007029 | 0.009052 | 0.008474 |
|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| 0.015283 | 0.019541 | 0.014717 | 0.019548 | 0.016244 | 0.021784 | 0.014818 | 0.020842 | 0.015188 | 0.021043 |
| 0.029347 | 0.030402 | 0.026884 | 0.032456 | 0.026457 | 0.032513 | 0.025936 | 0.034604 | 0.026024 | 0.03299  |
| 0.033379 | 0.043046 | 0.03402  | 0.045779 | 0.031966 | 0.042443 | 0.033335 | 0.03934  | 0.036891 | 0.037858 |
| 0.050691 | 0.046577 | 0.049943 | 0.050176 | 0.047852 | 0.04968  | 0.04603  | 0.05392  | 0.042487 | 0.053423 |
| 0.052896 | 0.063417 | 0.051357 | 0.065628 | 0.051796 | 0.067544 | 0.051338 | 0.067136 | 0.050484 | 0.062594 |
| 0.060704 | 0.078222 | 0.058907 | 0.075961 | 0.06115  | 0.076093 | 0.063229 | 0.073191 | 0.073178 | 0.064246 |
| 0.071671 | 0.082456 | 0.08809  | 0.077531 | 0.069108 | 0.080094 | 0.088913 | 0.078888 | 0.072688 | 0.07517  |
| 0.096715 | 0.081602 | 0.097519 | 0.083863 | 0.09407  | 0.086237 | 0.087871 | 0.093411 | 0.082845 | 0.09468  |
| 0.095484 | 0.105534 | 0.091351 | 0.109768 | 0.088788 | 0.110163 | 0.088467 | 0.108938 | 0.084221 | 0.112557 |
| 0.098474 | 0.112795 | 0.10544  | 0.113103 | 0.108153 | 0.108348 | 0.107984 | 0.105955 | 0.118524 | 0.099824 |
| 0.113693 | 0.124152 | 0.116175 | 0.121357 | 0.118486 | 0.115509 | 0.12365  | 0.111451 | 0.130144 | 0.108838 |
| 0.136671 | 0.122205 | 0.140704 | 0.116112 | 0.142312 | 0.113662 | 0.140905 | 0.112092 | 0.143957 | 0.126256 |
| 0.127224 | 0.153461 | 0.132079 | 0.143775 | 0.138832 | 0.137569 | 0.143945 | 0.13032  | 0.148976 | 0.125823 |
| 0.16005  | 0.134271 | 0.164629 | 0.138499 | 0.159805 | 0.14652  | 0.150791 | 0.153706 | 0.140798 | 0.156784 |
| 0.154303 | 0.16228  | 0.16321  | 0.152525 | 0.171256 | 0.14559  | 0.174516 | 0.147136 | 0.174611 | 0.143411 |
| 0.181734 | 0.154579 | 0.182808 | 0.15397  | 0.184114 | 0.155126 | 0.184328 | 0.155201 | 0.179541 | 0.15559  |
| 0.19478  | 0.166457 | 0.193719 | 0.172199 | 0.189089 | 0.168053 | 0.195013 | 0.165157 | 0.194309 | 0.184466 |
| 0.172111 | 0.204227 | 0.175327 | 0.203756 | 0.183731 | 0.194975 | 0.18691  | 0.187946 | 0.195038 | 0.185923 |
| 0.198593 | 0.199837 | 0.206244 | 0.189981 | 0.207783 | 0.186539 | 0.212959 | 0.18441  | 0.214793 | 0.184793 |
| 0.208807 | 0.212192 | 0.211407 | 0.208134 | 0.219447 | 0.201382 | 0.222858 | 0.19652  | 0.226024 | 0.196388 |
| 0.233982 | 0.205025 | 0.237852 | 0.203455 | 0.234567 | 0.211464 | 0.221715 | 0.216451 | 0.219479 | 0.222224 |
| 0.211853 | 0.246036 | 0.212563 | 0.247249 | 0.217211 | 0.238807 | 0.224347 | 0.234516 | 0.226181 | 0.231489 |
| 0.248587 | 0.237199 | 0.239234 | 0.243794 | 0.232374 | 0.25059  | 0.226665 | 0.252004 | 0.222305 | 0.255704 |
| 0.233568 | 0.267148 | 0.236244 | 0.261237 | 0.229843 | 0.268486 | 0.234686 | 0.264548 | 0.258505 | 0.241583 |
| 0.266156 | 0.25652  | 0.269372 | 0.250465 | 0.2713   | 0.247249 | 0.27478  | 0.241545 | 0.27566  | 0.244887 |
| 0.273668 | 0.260044 | 0.28365  | 0.256677 | 0.285477 | 0.254064 | 0.28544  | 0.253951 | 0.282261 | 0.25897  |
| 0.291884 | 0.266445 | 0.295025 | 0.264014 | 0.294152 | 0.262406 | 0.294152 | 0.263379 | 0.298317 | 0.265377 |
| 0.280509 | 0.297016 | 0.277569 | 0.303097 | 0.277412 | 0.305063 | 0.274196 | 0.304749 | 0.277437 | 0.308386 |
| 0.311181 | 0.288989 | 0.314937 | 0.283624 | 0.319234 | 0.28483  | 0.31184  | 0.283844 | 0.316112 | 0.293536 |
| 0.30353  | 0.319001 | 0.29951  | 0.32402  | 0.298241 | 0.325459 | 0.290999 | 0.325842 | 0.296822 | 0.325773 |
| 0.30549  | 0.336884 | 0.307048 | 0.328838 | 0.309893 | 0.326771 | 0.31598  | 0.324334 | 0.314366 | 0.325653 |
| 0.348907 | 0.314422 | 0.342908 | 0.315521 | 0.347946 | 0.318807 | 0.345063 | 0.317199 | 0.340515 | 0.325653 |
| 0.355    | 0.325773 | 0.353379 | 0.330452 | 0.342852 | 0.338568 | 0.340126 | 0.345471 | 0.331558 | 0.349554 |
| 0.334014 | 0.36804  | 0.335302 | 0.365873 | 0.333863 | 0.363009 | 0.340132 | 0.356514 | 0.348166 | 0.354573 |
| 0.375515 | 0.34559  | 0.368851 | 0.354573 | 0.363411 | 0.36103  | 0.357971 | 0.370678 | 0.349749 | 0.376489 |
| 0.379466 | 0.362657 | 0.383411 | 0.352362 | 0.388342 | 0.354083 | 0.386344 | 0.358989 | 0.379039 | 0.363229 |
| 0.386244 | 0.367462 | 0.396796 | 0.362607 | 0.396407 | 0.363832 | 0.396778 | 0.363222 | 0.393379 | 0.365157 |
| 0.402858 | 0.379108 | 0.40608  | 0.376696 | 0.403499 | 0.369391 | 0.405528 | 0.377173 | 0.406445 | 0.380716 |
| 0.384931 | 0.411652 | 0.385377 | 0.411652 | 0.383982 | 0.411652 | 0.385138 | 0.411652 | 0.388342 | 0.411652 |

| 0.008147 | 0.011049 | 0.008373 | 0.011683 | 0.008631 | 0.011935 | 0.008329 | 0.011024 | 0.007286 | 0.009504 |
|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| 0.01434  | 0.020634 | 0.015905 | 0.021671 | 0.014008 | 0.020747 | 0.016501 | 0.020867 | 0.01576  | 0.020358 |
| 0.0238   | 0.033618 | 0.02456  | 0.033373 | 0.024221 | 0.034843 | 0.024994 | 0.034183 | 0.024724 | 0.03299  |
| 0.039755 | 0.039893 | 0.038769 | 0.039642 | 0.038631 | 0.040917 | 0.036972 | 0.041828 | 0.036074 | 0.041307 |
| 0.044171 | 0.054479 | 0.042041 | 0.05233  | 0.048254 | 0.049893 | 0.048844 | 0.047977 | 0.053009 | 0.043405 |
| 0.050364 | 0.063423 | 0.04897  | 0.065999 | 0.050446 | 0.065666 | 0.052802 | 0.066011 | 0.051193 | 0.063109 |
| 0.075188 | 0.06554  | 0.072067 | 0.067676 | 0.069711 | 0.068851 | 0.06816  | 0.071281 | 0.064215 | 0.075565 |
| 0.086162 | 0.08483  | 0.075603 | 0.079466 | 0.080201 | 0.078178 | 0.080892 | 0.075823 | 0.080333 | 0.070785 |
| 0.079793 | 0.096646 | 0.080678 | 0.095879 | 0.084422 | 0.095314 | 0.082714 | 0.093681 | 0.084529 | 0.094083 |
| 0.087437 | 0.108134 | 0.092462 | 0.112173 | 0.085421 | 0.111558 | 0.085427 | 0.108568 | 0.089579 | 0.111288 |
| 0.116482 | 0.09853  | 0.11941  | 0.098436 | 0.116552 | 0.104447 | 0.108876 | 0.103926 | 0.113832 | 0.110697 |
| 0.129378 | 0.10934  | 0.129742 | 0.109428 | 0.126256 | 0.114077 | 0.119598 | 0.121432 | 0.118982 | 0.121533 |
| 0.132067 | 0.126822 | 0.13272  | 0.127864 | 0.130861 | 0.127839 | 0.136294 | 0.119824 | 0.140207 | 0.118097 |
| 0.15517  | 0.12706  | 0.150741 | 0.129441 | 0.150364 | 0.131602 | 0.144359 | 0.137356 | 0.139943 | 0.14044  |
| 0.13809  | 0.15625  | 0.143555 | 0.154579 | 0.148744 | 0.149158 | 0.152412 | 0.146539 | 0.153876 | 0.141922 |
| 0.17267  | 0.146771 | 0.175402 | 0.142117 | 0.17468  | 0.146382 | 0.174937 | 0.144121 | 0.173474 | 0.144391 |
| 0.18071  | 0.156991 | 0.183926 | 0.158405 | 0.185113 | 0.153568 | 0.18093  | 0.154384 | 0.186432 | 0.157431 |
| 0.176872 | 0.184535 | 0.172864 | 0.185804 | 0.173461 | 0.187732 | 0.167035 | 0.190559 | 0.166834 | 0.19919  |
| 0.199008 | 0.184121 | 0.19218  | 0.192161 | 0.191093 | 0.19076  | 0.186935 | 0.197167 | 0.180006 | 0.201677 |
| 0.21429  | 0.180308 | 0.216941 | 0.182318 | 0.212129 | 0.18897  | 0.209874 | 0.18934  | 0.207173 | 0.196036 |
| 0.226526 | 0.196325 | 0.230094 | 0.191658 | 0.229573 | 0.194378 | 0.198128 | 0.224127 | 0.19478  | 0.22495  |
| 0.213116 | 0.223813 | 0.220396 | 0.217293 | 0.224322 | 0.216891 | 0.220986 | 0.216482 | 0.224384 | 0.207827 |
| 0.229083 | 0.230961 | 0.22544  | 0.232167 | 0.222374 | 0.240848 | 0.21718  | 0.246495 | 0.212092 | 0.245773 |
| 0.223832 | 0.257751 | 0.222249 | 0.255804 | 0.22794  | 0.251489 | 0.229812 | 0.250126 | 0.228907 | 0.247952 |
| 0.260779 | 0.237871 | 0.258505 | 0.245226 | 0.252255 | 0.252638 | 0.248053 | 0.254856 | 0.2374   | 0.264523 |
| 0.276175 | 0.244629 | 0.276979 | 0.245226 | 0.277205 | 0.245264 | 0.274491 | 0.245641 | 0.277701 | 0.244014 |
| 0.275873 | 0.260364 | 0.283844 | 0.254372 | 0.28483  | 0.256093 | 0.287889 | 0.256495 | 0.28456  | 0.253266 |
| 0.295622 | 0.265396 | 0.294479 | 0.26294  | 0.298342 | 0.267764 | 0.296709 | 0.264667 | 0.297098 | 0.267764 |
| 0.271822 | 0.302242 | 0.274837 | 0.304673 | 0.274234 | 0.306947 | 0.27527  | 0.303097 | 0.276175 | 0.306357 |
| 0.305138 | 0.291935 | 0.314786 | 0.283411 | 0.313373 | 0.285477 | 0.319812 | 0.283229 | 0.312356 | 0.283222 |
| 0.292173 | 0.327173 | 0.296683 | 0.327186 | 0.290641 | 0.324755 | 0.295371 | 0.322726 | 0.296225 | 0.321539 |
| 0.318731 | 0.317902 | 0.318807 | 0.325666 | 0.313982 | 0.335226 | 0.305    | 0.337475 | 0.304868 | 0.333612 |
| 0.333474 | 0.319001 | 0.343951 | 0.314686 | 0.348166 | 0.31598  | 0.348555 | 0.317601 | 0.345339 | 0.313373 |
| 0.328882 | 0.351394 | 0.333694 | 0.345339 | 0.343731 | 0.337299 | 0.342023 | 0.340302 | 0.343763 | 0.338907 |
| 0.349799 | 0.354573 | 0.34505  | 0.352368 | 0.343317 | 0.354183 | 0.341784 | 0.359837 | 0.336407 | 0.364089 |
| 0.343631 | 0.378693 | 0.348166 | 0.370967 | 0.348681 | 0.370459 | 0.349554 | 0.363763 | 0.359397 | 0.362224 |
| 0.374196 | 0.371068 | 0.370314 | 0.366979 | 0.374416 | 0.364366 | 0.378499 | 0.364246 | 0.381709 | 0.356596 |
| 0.388323 | 0.367048 | 0.394918 | 0.364617 | 0.394604 | 0.361834 | 0.392707 | 0.36456  | 0.396043 | 0.362494 |
| 0.39799  | 0.378687 | 0.406621 | 0.375182 | 0.40152  | 0.379095 | 0.407663 | 0.375528 | 0.408128 | 0.373367 |
| 0.388386 | 0.411652 | 0.387563 | 0.411652 | 0.384736 | 0.411652 | 0.386344 | 0.410848 | 0.384497 | 0.411652 |



| 0.008725 | 0.010923 | 0.008624 | 0.01098  | 0.008216 | 0.009491 | 0.006621 | 0.011935 | 0.007136 | 0.010383 |
|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| 0.018781 | 0.018028 | 0.017324 | 0.018612 | 0.015773 | 0.017111 | 0.019711 | 0.016608 | 0.020258 | 0.014428 |
| 0.028486 | 0.028241 | 0.029761 | 0.028285 | 0.031351 | 0.027575 | 0.033492 | 0.025722 | 0.033894 | 0.02559  |
| 0.03419  | 0.044642 | 0.035572 | 0.044686 | 0.032996 | 0.043204 | 0.034818 | 0.040031 | 0.03826  | 0.039146 |
| 0.054359 | 0.047418 | 0.051872 | 0.048851 | 0.048166 | 0.051583 | 0.045433 | 0.054717 | 0.042852 | 0.058235 |
| 0.053976 | 0.05679  | 0.059692 | 0.055308 | 0.058945 | 0.054121 | 0.063009 | 0.051884 | 0.065452 | 0.050119 |
| 0.062155 | 0.076652 | 0.06142  | 0.077751 | 0.062437 | 0.075377 | 0.061589 | 0.077111 | 0.06191  | 0.074799 |
| 0.081935 | 0.079592 | 0.077657 | 0.082217 | 0.073951 | 0.088084 | 0.073235 | 0.085031 | 0.066533 | 0.086765 |
| 0.100503 | 0.079529 | 0.097236 | 0.075609 | 0.098486 | 0.079403 | 0.096313 | 0.083405 | 0.094095 | 0.084253 |
| 0.102123 | 0.096307 | 0.100704 | 0.095672 | 0.108153 | 0.090258 | 0.107318 | 0.08696  | 0.113813 | 0.090546 |
| 0.100515 | 0.119089 | 0.09544  | 0.124026 | 0.09968  | 0.120716 | 0.097494 | 0.123084 | 0.096866 | 0.119183 |
| 0.107531 | 0.132688 | 0.106734 | 0.129987 | 0.111281 | 0.130119 | 0.112487 | 0.123222 | 0.115804 | 0.118662 |
| 0.140232 | 0.124026 | 0.135949 | 0.11799  | 0.141514 | 0.11941  | 0.145616 | 0.1137   | 0.140101 | 0.115905 |
| 0.127638 | 0.151388 | 0.125214 | 0.153706 | 0.129209 | 0.150477 | 0.129843 | 0.145333 | 0.134177 | 0.14326  |
| 0.168053 | 0.136124 | 0.159529 | 0.132996 | 0.159391 | 0.133876 | 0.164014 | 0.137343 | 0.1625   | 0.137079 |
| 0.176627 | 0.146294 | 0.172475 | 0.148769 | 0.170484 | 0.151018 | 0.169994 | 0.150961 | 0.167029 | 0.154667 |
| 0.165226 | 0.175691 | 0.160327 | 0.181319 | 0.154466 | 0.182318 | 0.153913 | 0.187098 | 0.157714 | 0.185327 |
| 0.194699 | 0.161225 | 0.194441 | 0.174799 | 0.178518 | 0.179906 | 0.172758 | 0.187337 | 0.165157 | 0.188474 |
| 0.179322 | 0.197192 | 0.185622 | 0.19076  | 0.18875  | 0.188009 | 0.192607 | 0.184114 | 0.195685 | 0.1775   |
| 0.18495  | 0.212255 | 0.188894 | 0.209981 | 0.190578 | 0.207224 | 0.194102 | 0.181237 | 0.215892 | 0.186363 |
| 0.206036 | 0.21115  | 0.214485 | 0.204428 | 0.220044 | 0.206244 | 0.217293 | 0.201809 | 0.221903 | 0.208254 |
| 0.233474 | 0.202607 | 0.23934  | 0.20103  | 0.235603 | 0.203411 | 0.232569 | 0.203028 | 0.233373 | 0.208254 |
| 0.219523 | 0.242557 | 0.219303 | 0.237883 | 0.223832 | 0.23358  | 0.23157  | 0.227626 | 0.23358  | 0.233964 |
| 0.252676 | 0.227732 | 0.255754 | 0.220647 | 0.256288 | 0.226476 | 0.258367 | 0.222626 | 0.25267  | 0.226074 |
| 0.232362 | 0.264937 | 0.236589 | 0.259711 | 0.24691  | 0.248819 | 0.253543 | 0.24723  | 0.253072 | 0.238888 |
| 0.247236 | 0.274585 | 0.246156 | 0.275584 | 0.243668 | 0.278241 | 0.246068 | 0.27745  | 0.244837 | 0.277412 |
| 0.254278 | 0.283116 | 0.256482 | 0.288116 | 0.253568 | 0.285892 | 0.253706 | 0.287582 | 0.257274 | 0.280949 |
| 0.286193 | 0.282626 | 0.27902  | 0.283229 | 0.274001 | 0.290798 | 0.266344 | 0.295088 | 0.264799 | 0.294667 |
| 0.294881 | 0.276388 | 0.298587 | 0.275729 | 0.302173 | 0.281018 | 0.304774 | 0.274372 | 0.302626 | 0.274585 |
| 0.292274 | 0.301822 | 0.296087 | 0.30397  | 0.298329 | 0.306313 | 0.288788 | 0.314372 | 0.285773 | 0.316005 |
| 0.325622 | 0.290245 | 0.325622 | 0.293807 | 0.325628 | 0.291935 | 0.326847 | 0.29723  | 0.322412 | 0.298637 |
| 0.322437 | 0.320829 | 0.323241 | 0.316024 | 0.329774 | 0.3038   | 0.335082 | 0.305471 | 0.33696  | 0.304761 |
| 0.333668 | 0.335276 | 0.326263 | 0.332456 | 0.327286 | 0.335823 | 0.325653 | 0.339234 | 0.316294 | 0.34495  |
| 0.356206 | 0.326043 | 0.357814 | 0.322852 | 0.353763 | 0.325955 | 0.354987 | 0.326068 | 0.352833 | 0.330641 |
| 0.346338 | 0.350967 | 0.351671 | 0.346401 | 0.361005 | 0.337896 | 0.366627 | 0.33767  | 0.365854 | 0.332651 |
| 0.377173 | 0.345559 | 0.377701 | 0.342908 | 0.373819 | 0.344585 | 0.374171 | 0.349774 | 0.368072 | 0.354969 |
| 0.387745 | 0.351822 | 0.386344 | 0.355019 | 0.384133 | 0.359812 | 0.378524 | 0.36299  | 0.373675 | 0.37125  |
| 0.381771 | 0.380107 | 0.378354 | 0.383543 | 0.375308 | 0.388342 | 0.370967 | 0.391552 | 0.364969 | 0.392563 |
| 0.407638 | 0.373894 | 0.404403 | 0.375503 | 0.402349 | 0.378499 | 0.406696 | 0.373913 | 0.406696 | 0.375854 |
| 0.403128 | 0.393166 | 0.411652 | 0.384667 | 0.411652 | 0.383499 | 0.411652 | 0.380295 | 0.411652 | 0.384931 |

| 0.00004  | 0 000004 | 0 0004 00 | 0 000045 | 0.000544 | 0 007050  | 0 000700 | 0 000040 | 0.040740 | 0 00700  |
|----------|----------|-----------|----------|----------|-----------|----------|----------|----------|----------|
| 0.00831  | 0.008894 | 0.009139  | 0.009045 | 0.008511 | 0.007858  | 0.009768 | 0.009246 | 0.010716 | 0.00728  |
| 0.019334 | 0.013813 | 0.020879  | 0.014366 | 0.019158 | 0.015019  | 0.021445 | 0.014887 | 0.020025 | 0.01571  |
| 0.033562 | 0.026602 | 0.031991  | 0.024177 | 0.032142 | 0.025019  | 0.031464 | 0.026558 | 0.031853 | 0.028266 |
| 0.040616 | 0.037469 | 0.0414/6  | 0.036771 | 0.044548 | 0.034026  | 0.044303 | 0.032255 | 0.04348  | 0.033781 |
| 0.042016 | 0.055666 | 0.042481  | 0.057312 | 0.041972 | 0.053505  | 0.042211 | 0.052387 | 0.04566  | 0.050031 |
| 0.064592 | 0.05125  | 0.067004  | 0.051545 | 0.065327 | 0.049491  | 0.065245 | 0.050157 | 0.063568 | 0.051928 |
| 0.065383 | 0.073298 | 0.064655  | 0.070823 | 0.07     | 0.06843   | 0.074058 | 0.062915 | 0.075879 | 0.060396 |
| 0.071558 | 0.091043 | 0.072123  | 0.085132 | 0.069755 | 0.087362  | 0.070446 | 0.084014 | 0.075371 | 0.081036 |
| 0.090389 | 0.091627 | 0.088053  | 0.091237 | 0.084422 | 0.090898  | 0.083913 | 0.097726 | 0.08255  | 0.098486 |
| 0.113379 | 0.089215 | 0.110848  | 0.086796 | 0.109472 | 0.091891  | 0.111332 | 0.088675 | 0.109479 | 0.088637 |
| 0.100113 | 0.117575 | 0.103524  | 0.115967 | 0.102041 | 0.114366  | 0.103247 | 0.107167 | 0.111288 | 0.106828 |
| 0.121288 | 0.115873 | 0.123078  | 0.113562 | 0.122274 | 0.115578  | 0.122412 | 0.110546 | 0.131784 | 0.107268 |
| 0.14434  | 0.115704 | 0.144334  | 0.118593 | 0.141715 | 0.118191  | 0.137626 | 0.124648 | 0.133662 | 0.131093 |
| 0.138599 | 0.139328 | 0.141112  | 0.136489 | 0.142324 | 0.137305  | 0.147908 | 0.129378 | 0.148951 | 0.128046 |
| 0.163109 | 0.136225 | 0.15468   | 0.1425   | 0.154422 | 0.143612  | 0.152814 | 0.150352 | 0.147186 | 0.153982 |
| 0.164824 | 0.157406 | 0.1587    | 0.159617 | 0.160609 | 0.151193  | 0.166778 | 0.152268 | 0.162343 | 0.159868 |
| 0.153951 | 0.185754 | 0.149378  | 0.183518 | 0.155848 | 0.180433  | 0.159064 | 0.179736 | 0.163015 | 0.175741 |
| 0.166457 | 0.191847 | 0.168248  | 0.190484 | 0.162217 | 0.196891  | 0.159529 | 0.190559 | 0.164221 | 0.194611 |
| 0.20343  | 0.17527  | 0.205025  | 0.174504 | 0.202544 | 0.176288  | 0.202915 | 0.170672 | 0.204296 | 0.175509 |
| 0.2138   | 0.180917 | 0.216294  | 0.18348  | 0.215082 | 0.187462  | 0.211482 | 0.191156 | 0.208072 | 0.195069 |
| 0.217475 | 0.202224 | 0.226376  | 0.195377 | 0.227563 | 0.193781  | 0.215773 | 0.205634 | 0.211263 | 0.212462 |
| 0.232808 | 0.206036 | 0.230239  | 0.206633 | 0.23316  | 0.207305  | 0.230283 | 0.208637 | 0.224227 | 0.216413 |
| 0.225333 | 0.228549 | 0.232312  | 0.225465 | 0.235974 | 0.216891  | 0.242035 | 0.212469 | 0.244736 | 0.214271 |
| 0.259309 | 0.22326  | 0.257324  | 0.224384 | 0.253317 | 0.22919   | 0.248053 | 0.232406 | 0.242619 | 0.240402 |
| 0.263756 | 0.237751 | 0.264133  | 0.235188 | 0.265641 | 0.235992  | 0.267249 | 0.233901 | 0.265138 | 0.237186 |
| 0.248053 | 0.270358 | 0.250044  | 0.272965 | 0.253291 | 0.269296  | 0.254786 | 0.259692 | 0.261583 | 0.257582 |
| 0.259102 | 0.281212 | 0.261332  | 0.276979 | 0.264535 | 0.273662  | 0.270905 | 0.26843  | 0.276633 | 0.256797 |
| 0.260817 | 0.293003 | 0.26321   | 0.294956 | 0.264523 | 0.293461  | 0.264516 | 0.289843 | 0.272513 | 0.286124 |
| 0.309158 | 0.27647  | 0.305188  | 0.271796 | 0.306024 | 0.275722  | 0.306332 | 0.275289 | 0.301401 | 0.281822 |
| 0.281903 | 0.312814 | 0.282274  | 0.316325 | 0.286093 | 0.313078  | 0.290666 | 0.307952 | 0.294209 | 0.30745  |
| 0.321351 | 0.302205 | 0.314384  | 0.31157  | 0.308687 | 0.316005  | 0.299705 | 0.322726 | 0.298706 | 0.323825 |
| 0.33326  | 0.304328 | 0.336156  | 0.30353  | 0.334686 | 0.306313  | 0.332676 | 0.309353 | 0.324322 | 0.318386 |
| 0.313511 | 0.348606 | 0.312569  | 0.346558 | 0.316124 | 0.348166  | 0.313907 | 0.34495  | 0.316376 | 0.338298 |
| 0.346482 | 0.337324 | 0.339096  | 0.342016 | 0.335741 | 0.348166  | 0.328982 | 0.348122 | 0.323562 | 0.353662 |
| 0 365892 | 0.336683 | 0.366972  | 0 335873 | 0 365829 | 0.33669   | 0.362776 | 0.340101 | 0.36103  | 0 340245 |
| 0.360226 | 0.363028 | 0.358335  | 0.367984 | 0.353555 | 0 374535  | 0.348141 | 0.377136 | 0.344956 | 0 375427 |
| 0.379812 | 0.362758 | 0.377481  | 0.364127 | 0 370534 | 0 374284  | 0 366495 | 0 37919  | 0.359058 | 0 383524 |
| 0.364246 | 0.396796 | 0.362927  | 0.399209 | 0.362927 | 0 395157  | 0.361834 | 0 394655 | 0.365842 | 0 39348  |
| 0 404202 | 0 376275 | 0 402808  | 0 376696 | 0 406376 | 0 375528  | 0 404837 | 0 375471 | 0 400716 | 0 378687 |
| 0 411652 | 0.383433 | 0.411652  | 0.38/031 | 0.411652 | 0.38/0320 | 0 411652 | 0.302004 | 0.40708/ | 0.301169 |
| 0.411002 | 0.000420 | 0.411002  | 0.00-001 | 0.411032 | 0.004001  | 0.411002 | 0.002004 | 0.407304 | 0.031100 |



0.05

Reading Number







| 0.009188 | 0.011 0.001812 | 1  |
|----------|----------------|----|
| 0.01768  | 0.019 0.00132  | 2  |
| 0.029137 | 0.03 0.000863  | 3  |
| 0.03908  | 0.04 0.00092   | 4  |
| 0.049078 | 0.05 0.000922  | 5  |
| 0.057826 | 0.059 0.001174 | 6  |
| 0.069122 | 0.07 0.000878  | 7  |
| 0.079113 | 0.08 0.000887  | 8  |
| 0.089027 | 0.09 0.000973  | 9  |
| 0.099513 | 0.1 0.000487   | 10 |
| 0.109174 | 0.11 0.000826  | 11 |
| 0.119431 | 0.12 0.000569  | 12 |
| 0.129381 | 0.13 0.000619  | 13 |
| 0.139775 | 0.14 0.000225  | 14 |
| 0.14888  | 0.15 0.00112   | 15 |
| 0.159377 | 0.16 0.000623  | 16 |
| 0.169179 | 0.17 0.000821  | 17 |
| 0.179564 | 0.18 0.000436  | 18 |
| 0.189735 | 0.19 0.000265  | 19 |
| 0.199699 | 0.2 0.000301   | 20 |
| 0.210794 | 0.211 0.000206 | 21 |
| 0.219587 | 0.22 0.000413  | 22 |
| 0.229743 | 0.23 0.000257  | 23 |
| 0.239926 | 0.24 7.42E-05  | 24 |
| 0.250149 | 0.25 0.000149  | 25 |
| 0.260466 | 0.26 0.000466  | 26 |
| 0.269769 | 0.27 0.000231  | 27 |
| 0.280248 | 0.28 0.000248  | 28 |
| 0.290079 | 0.29 7.89E-05  | 29 |
| 0.30002  | 0.3 1.96E-05   | 30 |
| 0.3105   | 0.31 0.0005    | 31 |
| 0.320173 | 0.32 0.000173  | 32 |
| 0.330734 | 0.33 0.000734  | 33 |
| 0.340164 | 0.34 0.000164  | 34 |
| 0.35023  | 0.35 0.00023   | 35 |
| 0.360319 | 0.36 0.000319  | 36 |
| 0.370385 | 0.37 0.000385  | 37 |
| 0.3/9/12 | 0.38 0.000288  | 38 |
| 0.390291 | 0.39 0.000291  | 39 |
| 0.39916  | 0.4 0.00084    | 40 |

0.1262310.135810.1320920.1244160.1516710.1440580.1250750.1359050.1535620.128970.1352070.1271730.1423490.1471860.1271480.1268340.1444220.1396730.1262440.1372860.1635050.1656220.1607220.1569980.1632290.1663320.1571860.1598050.1686620.1611060.137720.1351510.1374810.1384170.1350570.1364380.1366020.1367840.1352760.1376820.1174750.1242090.1262310.1155970.1169970.1262940.1184920.1135740.1209360.1281910.127230.1431410.140710.1229210.1333540.1435360.1342710.1266520.1389130.1471360.138750.1558920.1675820.1451880.1342780.1600690.1600250.1314510.1426320.169837AdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjusted0.4116460.4116460.4116460.4116460.4116460.4116460.4116460.411646

0.1224250.1518220.1415010.1174750.1338820.1519790.1346420.1177950.1455280.151840.1467530.130050.1262440.1475630.1304520.1293970.1446730.1431090.124020.1340770.1579960.1638570.170440.1591580.1551510.1689260.1649430.1574180.1635490.1686060.1358290.1342710.1348620.1379020.1333790.1338190.1387370.1390450.1344660.1383350.1207850.1177260.1251880.1261620.1181410.1209420.1275940.1195290.1171920.1220540.1286560.1330970.1444220.1366650.1301190.1354770.1441520.1364890.1272610.1436620.1525630.1369410.1543530.1689820.1417530.1355460.1648240.1606090.1376130.145477AdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjusted0.4116460.4116460.4116460.4116460.4116460.4116460.4116460.411646

0.1277890.1210050.1488320.1495410.1241390.121320.1489640.1537940.1279330.1246230.1455280.136080.1242270.1362880.1514260.1409360.1236680.1363380.1501820.1386930.1644220.1574560.163260.1654270.1630590.1573870.1616210.1671230.161910.1593340.1365260.1377140.1360110.1363510.1371920.1333790.1330780.1381160.137720.1369720.1244280.1178020.1164010.1214010.1296550.1197990.1169160.1220730.1265580.1216210.1460930.1315830.1274430.1436310.1455650.1276380.1270480.1377950.1459420.129340.1696730.1539760.1336810.1487810.1649620.1501570.1324750.149950.1694030.153449AdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjusted0.4116460.4116460.4116460.4116460.4116460.4116460.4116460.411646

0.1437250.1519720.1250130.1212370.1502140.1524120.1238320.1210110.147550.1512630.1273240.1356780.1464570.1354710.1235180.1360990.145980.139560.1273680.135340.1644850.1686750.1631660.1558980.1651070.1675440.1600130.1533670.1630150.1697240.1370160.1353390.1399810.1338320.132660.1340260.139830.1373050.1360490.1362120.1152890.1205530.1280590.1210050.1200570.1223490.1246230.123210.1172930.1206090.126520.1397610.1443150.1323240.1262250.1398370.1455280.1293970.1266460.1405090.1329330.1478080.1684420.1543340.1358290.1454270.1655970.1536930.1316650.145101AdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjusted0.4116460.4116460.4116460.4116460.4116460.4116460.4116460.411646

0.1280530.1222420.147820.150220.1244350.1197990.1505530.144340.1215890.1344280.1453830.1373740.126570.1347680.1425130.1379590.1274430.1348240.1460430.140170.1591210.1567090.1659050.1719280.1624870.1585490.1631470.1696480.1591390.1551760.139560.1375570.1320670.1325820.1402010.1375880.1364450.1382220.1395350.1376570.1221230.1228270.1172860.1220350.1271670.1231410.1173560.121060.1239570.1202140.1448810.1321480.127180.1401570.1466390.1336750.1275250.136080.1453580.1310490.1700690.1525630.1350130.1462440.1662560.1591330.1341650.1453140.1664950.158342AdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjusted0.4116460.4116460.4116460.4116460.4116460.4116460.4116460.411646

0.156030.1411180.1213380.1344720.1488690.1398930.1241210.135490.1490770.139560.1285050.1358790.1487440.1381910.123650.1310680.1491460.1392780.1278390.1326570.1658480.1697610.162180.1581970.1628330.1696990.1614070.1575750.159830.1631160.1325060.1334360.1358290.1357290.1338510.1368840.1403020.1362750.1326070.1362810.1156850.1229650.124070.1229150.1204520.1231910.1248240.1238630.1188880.1194160.1247420.137990.1431780.1370850.1308170.1362750.1431090.1366270.1261620.1316650.1346920.1403020.1665390.1601440.1368150.141840.1700630.1620730.1360490.14201AdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjusted0.4116460.4116460.4116460.4116460.4116460.4116460.4116460.411646

0.1248120.1332730.1503020.141910.1232980.1339320.1551820.1390450.1225380.1332730.1504770.1401570.1250310.1330590.1470410.1385930.1223120.1342780.1471360.1397550.1613070.1608480.1629520.168210.1632410.1566770.1654520.1702390.1592840.1546730.138260.1378890.1370160.1349310.1367150.1387310.1328640.1333730.1353770.1393280.1236370.1241710.1156340.1225440.1258170.123430.1169790.1242460.1240390.1204210.1421550.1395040.1274620.1358790.1438880.1376880.1307790.1317710.1430280.1348810.1632540.1616210.1333670.1358290.1619850.1664890.1417960.1393280.1628710.168166AdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjusted0.4116460.4116460.4116460.4116460.4116460.4116460.4116460.411646

0.1441330.1321610.1214450.1396420.1528830.1334740.1192590.1409990.1527830.1293970.1278020.132060.1492840.143040.1267960.1294470.1459550.1414070.1268530.1289640.1623560.1701440.1626010.1581970.1675940.1667150.159020.1582040.1681220.1667530.136150.1359490.1405650.1378770.1358790.1350440.1372930.1381780.1356470.1362940.1145850.1203520.1298620.1194970.1185240.1220040.1289260.1210620.1187370.1243150.1237750.1323620.1456780.136250.1285870.135760.1453580.139070.1286750.134070.1435180.1325690.1574180.1663820.1427640.1325690.1570850.167230.1473240.132657AdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjusted0.4116460.4116460.4116460.4116460.4116460.4116460.4116460.411646

0.1218030.1469350.1496110.1240520.1250310.153260.1454270.1231090.1215770.1518530.1458170.1433730.12750.1305210.1425190.1477140.1293530.1268340.1414260.1410240.1562810.1583920.1646550.1639260.1586120.1564820.1681780.1697050.1588570.1564380.1365140.137550.132730.1329710.1358790.1349870.1360870.1377890.1373430.1370540.1266330.1161810.1182730.1249370.1256780.1200250.1194910.1233290.1248930.1200310.1417150.1365390.1281160.1317590.1425130.139830.1284170.1369160.145760.1402320.1581780.1679520.1422740.1306720.1580030.1681280.1430590.1304590.1572990.165892AdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjusted0.4116460.4116460.4116460.4116460.4116460.4116460.4116460.411646

0.1488690.1213630.1266460.1529270.1407040.1201010.1332660.1502580.1411120.1218590.1280840.1299750.1487690.145050.1274180.1276440.1454460.143970.1261430.1266710.1677760.1671420.1569540.157450.1669220.1661810.1586430.1596550.1679210.169510.1366710.1337250.1361810.1358290.1338440.1357790.1391960.1345540.136150.13620.113580.1220480.1260180.1212120.1185550.1212630.1245670.1234050.119410.1202070.1290770.1328020.1384170.1444030.1348810.1260490.1347740.1423370.1348240.1289320.1476010.1299060.1590520.1700060.1446480.1358860.1592210.1655340.1422610.130616AdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjusted0.4116460.4116460.4116460.4116460.4116460.4116460.4116460.411646

| 0.136398 |  |
|----------|--|
| 0.136289 |  |
| 0.162697 |  |
| 0.136292 |  |
| 0.121551 |  |
| 0.135783 |  |
| 0.150567 |  |
| 0        |  |
| 0.411645 |  |

0.1441210.1391960.1241020.1317210.1516710.1349690.1236240.1487250.1490260.125490.1440330.1437190.1267710.1366770.1467460.1374310.1240770.1431530.1481090.1278330.1574810.1626190.1672610.1624370.157180.1654210.1681660.1573620.1607980.1696550.1391020.1390950.1349310.1357730.1374430.1368970.1372170.137230.136690.1361810.1183860.1205030.1253140.1214320.1174060.1266580.1224120.1178020.1198560.1256220.1455590.139410.1293150.1413380.1459420.1321040.129680.1440330.1417090.1302140.1435870.1687440.1530460.1396290.1570540.170050.1394970.1432470.1670350.154981AdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjusted0.4116460.4116460.4116460.4116460.4116460.4116460.411646AdjustedAdjusted0.411646AdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjusted

0.1306660.1520850.1401820.1244720.142180.1528270.1307980.1204020.1500060.1459920.1314320.1494540.1403330.1487440.1287120.1366580.1487440.1353080.1256280.1458730.1633170.1572490.1667650.1683230.1583610.1605150.1713820.1640830.1571170.1634920.1352830.1365390.1354710.1352760.1382220.1383920.1367340.1369660.137940.1373180.1202070.1161310.1222050.126030.1187940.1182290.1268280.1216210.1157540.1204020.1342530.1468340.1362630.1260360.1422610.1456090.1281720.1322610.1471670.1399620.1342650.1503520.167010.1499180.1346860.160930.1631280.1390950.1449560.167469AdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjusted

0.1234170.1350440.1520980.1401070.1248180.1316650.1510180.1373870.1218220.1318150.1471550.1275630.1267210.1451070.1483980.1320920.1264510.1443090.1468090.130930.1698370.1604270.1570670.1669160.1662440.1571860.1558350.1656340.1630210.155270.1355460.1387440.139560.1364130.1366770.1370230.1373740.13620.1332660.1360240.1269540.1256280.118650.1224370.128210.1237810.1187940.1247490.1278390.1205970.1270410.1360870.1457980.1378890.1281530.1356090.1429460.1375750.1297360.1375060.1550750.1359740.1461750.1631220.1461310.1329650.1535680.1684550.1516650.1363AdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjusted

0.1519540.1393660.1238250.1361370.1519220.1385490.1254650.1356780.1524620.1372990.1252260.140710.145710.130220.1266330.143920.1470540.1320670.1262690.1437120.159190.1675940.1679520.1587690.1580210.1558610.170590.1678270.1566520.1600940.1361810.135980.1301570.1358290.1374060.1334230.1341710.1382350.1393220.1361310.1166210.1248370.1274810.1189010.1158730.1217090.1253270.1214130.1179710.1244220.1439570.1360870.1245230.1368340.1483610.1365260.1244220.1399250.1487440.1333230.1522930.165710.1526630.1395230.1497050.1632350.1520350.1353830.150530.162814AdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjusted

0.1237120.1332730.1493470.1389950.1247240.1396230.1549750.1299750.1233610.1465640.1469030.1301070.1260550.1443340.1492150.1296360.1265580.1446860.1470040.1286180.1681660.1638630.1545920.1580590.1655280.166250.156690.1617090.1684360.1651510.1352760.1380590.1367460.135810.1345980.1370540.1387190.1352390.136690.1368720.1279150.1183920.116790.1258420.1267960.1190580.1215390.1279270.1246990.1166140.1282540.143920.1471480.1312370.1299120.1426320.1450380.130220.1291390.1424560.1531660.1374430.1543150.1683790.1499560.1349430.1542020.1664320.1461620.135785AdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjusted

0.1535740.1249690.1273180.1508350.1455280.123210.1312630.1517270.1412810.1220230.1258290.1441210.1450690.1256160.1242150.146080.1483860.1289760.1292530.1487750.1581280.1618910.1677010.1638940.1571860.1602070.1668720.1614070.156030.1612190.1367210.1338820.1363070.1378450.1337690.1342650.135810.1389320.1361240.1356090.1203450.1262310.1225190.1181910.1218340.1262250.1221610.1175570.1216770.1278450.1426130.1285930.1277890.1430650.1417840.1241770.1335110.1434740.1434490.1281160.1523620.1639260.1446230.1334550.1591710.1692460.1454770.1353140.1593970.16657AdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjusted0.4116460.4116460.4116460.4116460.4116460.4116460.4116460.4116460.411646AdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjusted

0.1340830.1494470.1379020.1211560.1384990.1503020.1377140.1254590.1368470.1506340.1455340.1272240.1318280.149340.1438820.127070.1295160.1488820.1396420.126570.1638630.1615580.1584670.1621110.1678830.1628520.1564510.1652510.1724310.1618090.137720.1396360.1374940.1345790.1367960.135930.1370920.1341710.1350060.1348740.1248560.119460.1231280.1265330.1243470.1186560.1254520.1290080.12240.1167710.1325440.1470040.1380970.126840.1360050.1468220.137670.129070.1355030.1460360.1447860.1391960.1602830.1654150.1408540.1367590.1619280.164830.1361120.137041AdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjusted0.4116460.4116460.4116460.4116460.4116460.4116460.4116460.4116460.411646AdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjusted

0.1334860.1241020.1451880.1521170.1340080.1206660.1405090.1517590.1316580.1204080.134340.1465390.1390950.1224120.1334110.1470350.1396990.1275440.1358790.1488940.1580590.1695040.1651070.1583920.159950.1656910.1636870.1567340.1600190.1643280.1362810.1358290.1378890.1392340.1359990.1366140.1378520.1373180.1370230.1341140.1230280.1263190.1210180.1165140.1262750.1282540.1207470.1181720.1254080.126910.1354460.1254020.1301570.1461310.1374060.1285430.1396990.1428960.1643530.1290450.1643720.1622110.1388070.1394910.1668280.1626130.1378330.1428960.1643530.165653AdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjusted

0.1441210.1541710.1310550.120810.1455210.1534740.1301070.1211930.1486930.1531910.1396290.1261810.1358790.1478020.1405340.1264890.1313130.1487440.1421730.1278520.1646670.1575440.1614070.1703020.1639510.1589640.1614890.1680650.1633420.1580030.1370410.1370040.1374870.1324620.1349940.1345790.1339070.1354840.1382160.1398240.1183920.1211680.1258920.1266830.1199250.1187940.1256470.1258480.1153890.115980.1406470.1467150.1349060.1280720.1417780.1445290.1311870.1273120.1439450.1464070.1350380.1413510.1611060.1599750.1358290.144340.1644720.1630460.1371550.143951AdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjusted

0.1212630.134070.1523620.1391210.1239130.1359050.1521360.1366020.1213130.1358790.1310550.1471730.1396990.1246420.1282790.1450750.1422860.1244280.1350940.1499940.1632850.1659610.1616080.1572170.1631160.1694540.1629960.155170.1635110.1709110.1342590.1374940.1396110.1407040.1355090.1365950.1360180.1358920.1380530.1368780.1229840.1243840.1173810.1203520.128310.1254150.120820.1197930.1281780.1246230.1293970.1266330.1439450.1443910.1257980.1261810.1437250.1470350.1285430.1263380.1667150.1629080.1375130.1447550.168650.1515640.1342710.1461370.1664320.154064AdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjustedAdjusted

| 0.137312 |
|----------|
| 0.137252 |
| 0.162571 |
| 0.136502 |
| 0.122324 |
| 0.136679 |
| 0.151439 |
| 0        |
| 0.411645 |
| 0        |
## Chapter 3

## Graphic User Interface (GUI) Development

The GUI provides a means to control the automated machine as well a means to capture, analyse and store data. See Appendix A for a screen capture of the GUI and Appendix C for the complete GUI source code. In order to perform the above two functions, reliable communication between the GUI and the Controller is imperative. As previously mentioned, the GUI communicates directly with the Communication Microcontroller (CM) which then in turn communicates with the Automation Microcontroller (AM).



FIGURE 3-1: SYSTEM BLOCK DIAGRAM

In order to understand the function of the GUI, the communication between GUI and the CM has to first be discussed.

The GUI and the CM communicate serially using their respective serial ports which are setup to interact as required. In this chapter the author will discuss how data is processed from the point at which it is present in the GUI serial buffer as well as the prompts transmitted by the GUI to the controller, more specifically, the CM.

The interface between the GUI and the serial port (RS232) of a PC or Laptop using the Visual Basic 6 development environment is the MSComm component (only available in more recent versions of Visual Basic). Once enabled the properties of the MSComm component have to be set so that they mirror the settings for the CM serial port. Under Properties in the MSComm component, the serial port that is to be used must be specified. For the purposes of this project, CommPort 1 was chosen. Under Settings, a baud rate of 2400, no parity bit, eight data received bits and one stop bit was specified. See Figure 3-2, below for a screen capture of the input property box for the MSComm component.

| Properties - MSComm1                             |                                            |  |
|--------------------------------------------------|--------------------------------------------|--|
| MSComm1 MSComm                                   |                                            |  |
| Alphabetic Categorized                           |                                            |  |
| (About)                                          |                                            |  |
| (Custom)                                         |                                            |  |
| (Name)                                           | MSComm1                                    |  |
| CommPort                                         | 1                                          |  |
| DTREnable                                        | True                                       |  |
| EOFEnable                                        | False                                      |  |
| Handshaking                                      | 0 - comNone                                |  |
| InBufferSize                                     | 1024                                       |  |
| Index                                            |                                            |  |
| InputLen                                         | 0                                          |  |
| InputMode                                        | 0 - comInputModeText                       |  |
| Left                                             | 6000                                       |  |
| NullDiscard                                      | False                                      |  |
| OutBufferSize                                    | 512                                        |  |
| ParityReplace                                    | ?                                          |  |
| RThreshold                                       | 0                                          |  |
| RTSEnable                                        | False                                      |  |
| Settings                                         | 2400,n,8,1                                 |  |
| SThreshold                                       | 0                                          |  |
| Tag                                              |                                            |  |
| Тор                                              | 13920                                      |  |
| <u> </u>                                         |                                            |  |
| Settings<br>Sets/returns th<br>bit, and stop bil | e baud rate, parity, data<br>: parameters. |  |

## FIGURE 3-2: SCREEN CAPTURE OF THE INPUT PROPERTY FIELDS FOR MSCOMM1.

Along with MSComm1 settings, the serial port is initialised in the Form Load procedure using the statements in Code Extract 3-1, below.

'\*\*\*\*\*\*Initilise Serial Comm port 1\*\*\*\*\*\*
'Rec data
MSComm1.RThreshold = 1
MSComm1.InputLen = 1
MSComm1.DTREnable = False
MSComm1.Settings = "2400,N,8,1"
MSComm1.CommPort = 1
MSComm1.PortOpen = True
'Trans data
MSComm1.OutBufferCount = 0
'\*\*\*\* End Initilise Serial Comm port 1\*\*\*\*\*

## CODE EXTRACT 3-1: SERIAL PORT INITIALISATION IN THE FORM LOAD PROCEDURE

For receiving data the first statement sets the threshold to 1, thus firing the Receive Event on every received byte. The second statement ensures that data is input one byte at a time. The third statement disables the DTR (Data Terminal Ready line), during communications, hence the DTR line is always Low (0). The fourth statement is included for redundancy in order to ensure the aforementioned settings. The fifth statement selects the communication port that is to be used and the sixth statement opens the selected port. Finally, the seventh statement clears the transmit buffer on loading of the GUI form.

The information that is transmitted and received can be divided into two categories. One being ASCII characters for control operations, event prompts and selections made and the other being data in the form of the High and Low Bytes of a sixteen bit word that represents the digitised volt-drop reading. See Appendix B for the complete list of ASCII commands and their respective function or event prompts.

The transmission of ASCII prompts from the GUI to the CM is accomplished by using the line of code below:

#### MSComm1.Output = "B"

Here the ASCII code for the character B is transmitted to the CM in order to signal that the END button has been clicked on the GUI. ASCII characters are not only transmitted on a click event on the GUI, but they are also transmitted to signal the

beginning or the end of certain procedures as well as selections that have been made in the GUI input fields before the test can be started.

For any activity on the serial port or the associated buffers the OnComm procedure is initiated. The GUI has to decipher if this initiation occurred on the Send Event, Receive Event or any other activity. If,

#### MSComm1.CommEvent = comEvReceive

the OnComm procedure was initiated on the receive event. This means that data is present in the serial port buffer. The line of code below:

Let SerIn = MSComm1.Input

reads the serial port buffer and copies the data into the variable SerIn. This variable is read in the OnComm procedure as well as in various other parts of the analysis and calculation procedures without being altered. The analysis and calculation processes will be discussed later in this chapter.

When in the OnComm procedure SerIn falls into a Case Select loop. Here the contents of SerIn is compared to all of the possible ASCII characters that are used as prompts and performs the tasks associated with the character that SerIn is equal to. When SerIn is equivalent to 'z', flag 'Incomming\_HighB\_Flag' is set. The setting of this flag alerts the GUI that upon the next initiation of the OnComm procedure that is due to a receive event, SerIn, will hold the high byte of the sixteen-bit, digitised volt-drop reading. SerIn will therefore not enter the case select loop.

When SerIn is equivalent to 'y', flag 'Incomming\_LowB\_Flag' is set to alert the GUI that on the next initiation of the OnComm procedure that is due to a receive event SerIn will hold the low byte of the sixteen-bit, digitised volt-drop reading. Here again, SerIn does not enter the case select loop. The high and low bytes are each transmitted as eight bits by the controller, however, once in the GUI serial buffer it is read as the letter or symbol that is the ASCII code representation of the eight received bits. For example, if the binary number '01100001' was transmitted by the controller, the GUI

will read it as the letter 'a'. It is therefore necessary to convert the ASCII represented input to the decimal value that it represents in order to use the value in further calculations. This is accomplished in Visual Basic using the **Asc** function as shown below,

This line of code converts the ASCII coded value held in variable SerIn into the decimal value representing the ASCII code and places it in the variable that holds the low byte of the acquired volt-drop reading.

The decimal value for the received high byte is acquired in the same manner as can be seen in the Code Extract that follows. Please note that the Code Extracts and Flow Diagrams that follow, represents the expected input prompts from the controller before the Additional Features. With the inclusion of the Additional Features, incoming prompts such as the ASCII code for "S" was added as a further case that is to be tested in the Case Select Loop. Figure 3-3 depicts the flow chart for the Case Select loop in the OnComm procedure and Code Extract 3-2 presents the related source code.





#### FIGURE 3-3: FLOW CHART FOR THE CASE SELECT LOOP

Private Sub MSComm1\_OnComm() If MSComm1.CommEvent = comEvReceive Then Let SerIn = MSComm1.Input If SerIn = "" Then Let SerIn = "x" End If If Incomming\_LowB\_Flag = True Then Low\_Byte = Asc(SerIn) Let Incomming\_LowB\_Flag = False Let Incomming\_HighB\_Flag = False Call Calculation

Elself Incomming\_HighB\_Flag = True Then High\_Byte = Asc(SerIn)

Let Incomming\_HighB\_Flag = False Else Select Case SerIn

Case "b" MSComm1.Output = Auto\_Man

```
Case "d"
  Command5.BackColor = &H8000000F
  Let Command5.Caption = "Start"
  Command5.Enabled = True
  Let Command8.Enabled = True
  Screen.MousePointer = vbArrow
Case "O"
  Command8.BackColor = QBColor(12)
  Command7.BackColor = &H8000000F
  Let Command6.Enabled = True
  Let Command6.BackColor = & HFF8080
  Let Picture6.BackColor = &H8000000F
  Call TestEnd_States
  Let Emergency = True
  Command8.Enabled = False
  List1.FontBold = True
  List1.AddItem "Emergency Stop on Bar " & Text6.Text
  List1.FontBold = False
Case "I"
  Call Bar count
Case "J"
  Let Command10.Enabled = True ' error1
  Command10.BackColor = QBColor(12)
  Frame14.ForeColor = QBColor(12)
  Frame14.FontSize = 10
  Frame14.FontBold = True
  Command9.Enabled = True
  Frame20.ForeColor = QBColor(10)
  Picture5.BackColor = QBColor(10)
  Frame21.ForeColor = QBColor(10)
  Command9.BackColor = & HFF8080
Case "m"
  Let Command11.Enabled = True ' error2
  Command11.BackColor = QBColor(12)
  Frame16.ForeColor = QBColor(12)
  Frame16.FontSize = 10
  Frame16.FontBold = True
  Command9.Enabled = True
  Frame20.ForeColor = QBColor(10)
  Picture5.BackColor = QBColor(10)
  Frame21.ForeColor = QBColor(10)
  Command9.BackColor = & HFF8080
Case "L"
  Let Command12.Enabled = True 'error3
  Command12.BackColor = QBColor(12)
  Frame17.ForeColor = QBColor(12)
  Frame17.FontSize = 10
  Frame17.FontBold = True
  Command8.Enabled = True
  Command7.Enabled = True
  Command7.BackColor = & HFF8080
  Command8.BackColor = &HFF8080
  Command8.BackColor = QBColor(12)
```

```
Command7.BackColor = &H8000000F
    Let Command6.Enabled = True
    Let Command6.BackColor = &HFF8080
    Let Picture6.BackColor = &H8000000F
    Call TestEnd States
    Let Emergency = True
    Command8.Enabled = False
    List1.FontBold = True
    List1.AddItem "Emergency Stop on Bar " & Text6.Text
    List1.FontBold = False
    Let Command12.Enabled = True
    Command12.BackColor = QBColor(12)
  Case "Q"
    Let Command13.Enabled = True 'error4
    Command13.BackColor = QBColor(12)
    Frame15.ForeColor = QBColor(12)
    Frame15.FontSize = 10
    Frame15.FontBold = True
    Command8.Enabled = True
    Command7.Enabled = True
    Command7.BackColor = &HFF8080
    Command8.BackColor = &HFF8080
  Case "z"
    Let Incomming HighB Flag = True
    Picture8.BackColor = QBColor(4)
    Picture9.BackColor = &H8000000F
  Case "y"
    Let Incomming_LowB_Flag = True
 End Select
 End If
End If
End Sub
```

#### CODE EXTRACT 3-2: ONCOMM EVENT RECEIVE

## 3.1 A walk through the GUI

The aim of this walk through is to lead the reader through the features, functions and code behind the Graphic User Interface. Screen captures will help the reader to understand how the GUI responds to user prompts and data that is received. See Appendix A for a true representation of the GUI and Appendix O for a GUI PowerPoint Presentation. The GUI is divided into two separate parts, one being the Test Setup Fields and the other being the Test In Progress Fields. Each of these will be discussed individually in the sections that follow.

I ALX

## 3.1.1 Test Setup Fields

## **3.1.1.1 User Identification Frame**

The input fields in this section are used to setup the system for the specific armature that is to be tested. See Figure 3-4A and Figure 3-4B. The User Identification frame is the location in which the details of the staff member that is to perform the test are entered.

| Setup Fields                         | Test In Progress Fields                                                                  |
|--------------------------------------|------------------------------------------------------------------------------------------|
| Hand Jaho Man Kan                    | Fault Log                                                                                |
| User Identification                  |                                                                                          |
| Password                             |                                                                                          |
|                                      |                                                                                          |
| New Test                             |                                                                                          |
|                                      |                                                                                          |
| Name                                 |                                                                                          |
|                                      |                                                                                          |
|                                      |                                                                                          |
| Armature Properties                  |                                                                                          |
| Armature Select                      |                                                                                          |
| New Armature Name                    |                                                                                          |
| Add New                              |                                                                                          |
| Number Of Commutator Bars Armature   |                                                                                          |
|                                      |                                                                                          |
| Click To Remove Highlighted Armsture | Controls Test Status Click To Print                                                      |
|                                      | Bar Under Test Print                                                                     |
| Job Number                           | LOAD END Continue After EMERGENCY Bus Remaining                                          |
|                                      | Click To Save                                                                            |
|                                      | Faults Logged Save                                                                       |
| - Test Option                        |                                                                                          |
| Option C Automated Operation         | Error Status Manual Test Open                                                            |
|                                      | Error 1 Error 2 Error 4 Automated Test Open                                              |
| Test Parameter                       |                                                                                          |
| Percentage Variance                  | Error I Error 2 Error 3 Error 4 Delete                                                   |
|                                      | Delete                                                                                   |
| Add INEW Value                       |                                                                                          |
| Click To Remove Highlighted Value    |                                                                                          |
| -                                    | Manual Reading Lonirots GUI Special Fuction Controls View/Change Directory Path Settings |
| Date                                 | Click To Take Reading - Reading Prompt - View Controls View Settings                     |
|                                      | View User Profile Setup                                                                  |
| Time                                 | Monthly De Cha                                                                           |
| Test Started                         | View User Prome                                                                          |
|                                      |                                                                                          |
| Test Ended                           | Exit View Calbration Screen                                                              |
| Test Duration                        | Exit Calibration Setup                                                                   |
|                                      |                                                                                          |

FIGURE 3-4A: INITIAL TEST SCREEN

| est |     |
|-----|-----|
| 9   | est |

#### FIGURE 3-4B: USER IDENTIFICATION FRAME ON THE INITIAL TEST SCREEN

Initially, except for the New Test button encircled in Figure 3-4A, all the buttons and text input boxes are disabled. On clicking on the New Test button in the Password frame the Enter button is enabled and replaces the New Test button. See Figure 3-5A, and Figure 3-5B.

| Setup Fields                           | Test In Progress Fields                                              |
|----------------------------------------|----------------------------------------------------------------------|
| - User Identification                  | Fault Log                                                            |
| Password                               |                                                                      |
|                                        |                                                                      |
| Enter                                  |                                                                      |
| Name                                   |                                                                      |
|                                        |                                                                      |
|                                        |                                                                      |
| Armature Properties                    |                                                                      |
| Amature Select                         |                                                                      |
| New Armature Name                      |                                                                      |
| Add New Armature                       |                                                                      |
|                                        |                                                                      |
|                                        | - Contols                                                            |
| Lick To Hemove Highlighted Armature    | Bar Under Test                                                       |
| Job Number                             | LOAD END Continue After EMERGENCY Batt Benaring                      |
|                                        | Click To Save                                                        |
| Test Option                            | Save Save                                                            |
| Choose an Operating C Manual Operation | Error Status Manual Test                                             |
| Option C Automated Operation           | Error 1 Error 2 Error 3 Error 4 Error 4 Automated Test               |
| Test Parameter                         |                                                                      |
| Percentage Variance                    | Error 1 Error 2 Error 3 Error 4 Delete                               |
| 6 dd New Value                         | Delete                                                               |
| Chill Te Deserve Historie A faile      |                                                                      |
| Lick to henove highighed value         | Manual Reading Controls                                              |
| Date                                   | Click To Take Reading - Reading Prompt - View Controls View Settings |
|                                        |                                                                      |
| Time                                   | Manual Heading                                                       |
| Test Started                           | View User Prohie                                                     |
| Test Ended                             | - Evit                                                               |
|                                        | Exit Calbration Setup                                                |
| Test Duration                          |                                                                      |



| User Ident | fication |
|------------|----------|
| - Passwor  | J        |
|            |          |
|            |          |
|            | Enter    |
| -Name-     |          |
|            |          |
|            |          |

# FIGURE 3-5B: USER IDENTIFICATION FRAME ON THE INITIATE TEST SCREEN

At this stage, except for the Enter button, all other control buttons are disabled and except for the Password text input box all the text input boxes are still disabled. To enable the GUI the correct user password has to be entered. This password was originally a generic password that was assigned to the system. Any staff member that was assigned to use this system was to use this password. This has subsequently been changed such that each user has a unique username and password that is chosen by the individual. The username and password is stored in a file on the PC or laptop hard-drive and is accessed and/or edited via the GUI whenever need be.

This login system is very much like the standard Windows® username and password login system except for the fact that only the password is entered in order to use the system. If the password is one that exists in the Username and Password file, the username that is associated with the entered password is displayed in the Name text box. This method is used to ensure accountability as the username displayed in the Name text box is the name that is printed in the test report and saved in the test history file. The username and password feature is discussed in detail in Chapter 6 under the heading, Multiple User Names and Passwords.

On entering the incorrect password GUI informs the user that the password is incorrect as well as the number of attempts that remain. See Figure 3-6A and Figure 3-6B.

| etup Fields                          | Test In Progress Fields     |                             |                       |                      |                |
|--------------------------------------|-----------------------------|-----------------------------|-----------------------|----------------------|----------------|
| User Identification                  | Fault Log                   |                             |                       |                      |                |
| Pastword Enter                       |                             |                             |                       |                      |                |
| Name                                 |                             |                             |                       |                      |                |
| Armature Properties                  |                             |                             |                       |                      |                |
| Armature Select                      |                             |                             |                       |                      |                |
| Add Neise<br>Armature                |                             |                             |                       |                      |                |
| Click To Remove Highlighted Armature | Conitols                    |                             |                       | Test Status          | Click To Print |
| Job Number                           | LOAD Incorrect Pa           | sword XI u After I          | MERGENCY              | Bar Under Test       | Print          |
|                                      | Incorrect Pa                | ssword, Tries left: 2       | STOP                  | Bars Remaining       | Click To Save  |
| Test Option                          |                             |                             |                       | Faults Logged        | Save           |
| Choose an Operating                  | Error Status                |                             |                       | Manual Test          | Open           |
| C Automated Uperation                | Error 1 Euor2               | Error3                      | Error 4               | Automated Test       | Open           |
| Test Parameter                       | Error 1 Erro                | or 2 Error 3                | Error 4               | F Reading            |                |
| Percentage Variance                  |                             |                             |                       | Searching            | Delete         |
| Add New Value                        |                             |                             |                       |                      | Deete          |
| Cick To Remove Highlighted Value     | - Manual Reading Controls   | - GUU Special Evolution Con | trolo                 | ataeu Patis Cattings |                |
| Date                                 | Click To Take Reading Readi | Ig Prompt                   | View Setti            | nas I                |                |
|                                      |                             |                             |                       |                      |                |
| Time                                 | Manual Heading              |                             | - View User Profile S | setup                |                |
| Test Started                         |                             |                             | View User F           | rone                 |                |
| Test Ended                           | Exit View Calif             | vation Screen               |                       |                      |                |
| Test Duration                        | Exit Calibra                | tion Setup                  |                       |                      |                |
|                                      |                             |                             |                       |                      |                |

## FIGURE 3-6A: GUI REPRESENTATION WHEN AN INCORRECT PASSWORD HAD BEEN ENTERED

| Incorrect Password                | < |
|-----------------------------------|---|
| Incorrect Password, Tries left: 2 | 2 |
| ОК                                |   |

## FIGURE 3-6B: MESSAGE BOX INFORMING THE USER OF THE NUMBER OF TRIES THAT REMAIN

If, on the third attempt, an incorrect password is entered the message box depicted in Figure 3-7A appears informing the user that he/she is about to be locked out by the system.

| Lock Out        |                                                    | × |
|-----------------|----------------------------------------------------|---|
| You DO NOT have | the authority to use this equipment. You have been |   |
|                 | ОК                                                 |   |

### FIGURE 3-7A: MESSAGE BOX INFORMING THE USER THAT HE/SHE HAS BEEN LOCKED OUT

On acknowledgement of this message (by clicking on the OK button) the Lock Out frame is activated. The Lock Out frame hides every input and output function of the GUI, except for the Administrator Password functionality. See Figure 3-7B. The administrator password is used by a member of staff that is responsible for the supervision of the tests as well as the test technicians. This password allows the administrator to access and edit properties such as the Armature Properties, Test Parameters, Directory path and Unlocking. A user with a basic user password does not have the ability to edit these properties. Note that only the administrator can unlock the system once it has been locked.



#### FIGURE 3-7B: LOCK OUT SCREEN

#### 3.1.1.2 Armature Properties Frame



It is here that the user selects the armature type that is to be tested. See Figure 3-7C.

FIGURE 3-7C: ARMATURE PROPERTIES FRAME

The list of armatures is created by completing the New Armature Name and Number of Commutator Bars field and then clicking on the Add New Armature button. As mentioned previously this functionality is only available to the administrator, therefore upon clicking the above mentioned button, the user is asked for the administrator password before the new armature is added, see Figure 3-8A and Figure 3-8B. If an incorrect password is entered the new armature will not be added. For the removal of armatures from the list the Click To Remove Highlighted Armature functionality is used and is a functionality only available to the administrator. The reason for limiting access to these property fields is simply to exercise control over the test system. The user may only use the system and may not define any test limits and conditions other than those available to him/her.

| 🐂 Administrator's Password     |       |   |
|--------------------------------|-------|---|
| Enter Administrator's Password | Enter | ] |
|                                |       |   |

FIGURE 3-8A: ADMINISTRATOR'S PASSWORD PROMPT

| Setup Fields                           | Test In Progress Fields                                                                  |
|----------------------------------------|------------------------------------------------------------------------------------------|
| 11 11 17 17                            | Fault Log                                                                                |
| User Identification                    |                                                                                          |
| Password                               |                                                                                          |
|                                        |                                                                                          |
| Enter                                  |                                                                                          |
|                                        |                                                                                          |
| Surveer Matadin                        |                                                                                          |
|                                        |                                                                                          |
| Armshura Properties                    |                                                                                          |
|                                        |                                                                                          |
| New Armahure Name                      |                                                                                          |
| 6E traction                            |                                                                                          |
| Add New                                |                                                                                          |
| 680                                    |                                                                                          |
|                                        |                                                                                          |
| Click To Remove Highlighted Armature   | Constole Test Statue Click To Print                                                      |
|                                        | Administrator's Password Bar Under Test Print                                            |
| Job Number                             | Enter Administrator's Password STOP Bars Remaining                                       |
|                                        | Enter Faults Longed Click To Save                                                        |
| Test Option                            | Save                                                                                     |
| Choose an Operating C Manual Operation | Manual Test                                                                              |
| Option C Automated Operation           | Error 1 Error 2 Error 3 Error 4 Error 4                                                  |
| Test Parameter                         | Autoriated rest Open                                                                     |
|                                        | Error 1 Error 2 Error 3 Error 4 Reading                                                  |
| Percentage Variance                    | Searching                                                                                |
| Add New Value                          | Delete                                                                                   |
| Click To Remove Highlighted Value      |                                                                                          |
|                                        | Manual Reading Controls GUI Special Fuction Controls View/Change Directory Path Settings |
| Date                                   | Click To Take Reading Prompt View Controls View Settings                                 |
|                                        |                                                                                          |
|                                        | Manual Reading View User Profile Setup                                                   |
| Time                                   | View User Profile                                                                        |
| Test Started                           |                                                                                          |
|                                        | Exit View Calibration Screen                                                             |
| Test Ended                             |                                                                                          |
| Test Ended Test Duration               | Exit Calibration Setup                                                                   |

FIGURE 3-8B: GUI DISPLAYING THE ADMINISTRATOR'S PASSWORD PROMPT

All armatures appearing in the list are stored in a sequential file. This sequential file is accessed and/or edited when creating the list of armatures that are to be tested, adding a new armature to an existing list or deleting an armature from the list. The code extract below is responsible for the addition of a new armature to an existing file.

```
Private Sub Command3 Click()
If InputBox("Enter Administrators Password", "Administrators Password") = "AdminAutoSun6" Then
  If (Text4.Text <> "") And (Text5.Text <> "") Then
    Combo2.AddItem "Armature Name: " & Text4.Text & " Number of Bars: " & Text5.Text
    Let a = Combo2.ListCount ' used as a record number, 1st item starts at 1
    Open Default Path & "Arm.TXT" For Append As #1
    Write #1, Text4.Text, Val(Text5.Text), (a)
    Let Text4.Text = ""
    Let Text5.Text = ""
    Close #1
  Else
  MsgBox "Enter new Armature Name and Number of Bars"
End If
Else: MsgBox "You are NOT Authorised to perform this action"
End If
End Sub
```

#### **CODE EXTRACT 3-3: ADD NEW ARMATURE - COMMAND CLICK**

The destination to which this file is saved is determined by **Default Path**. This path is specified in the Directory Path frame which will be discussed later in this chapter. The name of the file, as shown in Code Extract 3-3, is Arm. Data is written to this file using the Write statement. The data from the **Text4.Text** input box, which reflects the name of the new armature, the value of the data from the **Text5.Text** input box, which holds the number of bars on the commutator of the new armature, and the value that variable '**a**' holds is written into the file.

The data from the two input text boxes is also displayed in a Combo Box using the AddItem method. With reference to Code Extract 3-3,

#### Let a = Combo2.ListCount

assigns the value representing the number of items presently in the Combo Box to variable 'a'. In this way, the last item added to the list is given the value that corresponds to the number of items in the Combo Box. For example, if the sixth armature is added to the Combo Box list the value returned by the ListCount method will be six.

The value that variable 'a' holds is stored with the intention for it to be used as an index to access a particular armature and its associated data from the file when selected. In this way, each entry into the file is much like a record. When an item (armature) is selected from the Combo Box, it already has an index (the ListIndex) associated to it by virtue if its place in the Combo Box. This ListIndex is not to be confused with the index created when saving the record.

Referring to Code Extract 3-4, when an armature is selected, it's associated ListIndex is written into variable 'd', the value in 'd' is then incremented by one using Let d = d + 1. Each entry in the Arm file is read using the lnput #1, nam, num, cnt, statement, after opening the file using Open DefaultPath & "Arm.TXT" For lnput As #1. The value in variable 'cnt' is compared to that of the value held in variable 'd'. The reader should note that value read into variable 'cnt' is the index that was created and assigned to variable 'a' when saving each record. When the value in variables 'd' and 'cnt' are

the same, the record holding the data for the selected armature has been identified. The data string read into '**nam**' holds the name of the selected armature and the value read into the variable '**num**' is the number of bars on the commutator of the selected armature. This value is read into Text Box 7 on the GUI which reflects the number of bars that remain to be tested. Each time a reading is taken this value is decremented by one until all the bars have been tested. Recall that '**d**' was incremented. The reason for this is as follows. The ListCount value which was assigned to '**a**' represented the number of items that was presently on the list when the last item was stored.

The number system for the ListCount method starts from one. Using the example from above, 'a' will hold and store the value six for the sixth armature added to the list. Now, when selecting an armature, the value from the current ListIndex method (held in variable 'd') is compared with the value of the stored ListCount method, (held in variable 'cnt'). The ListIndex number system begins from zero. Again using the previous example, the sixth item in the Combo Box list will return a ListIndex value of five due to the number system starting at zero. So in order for the sixth item in the Combo Box list to return a ListIndex of six, the ListIndex value is incremented by one.

Private Sub Combo2 Click() Dim d As Integer Let d = Combo2.ListIndexLet d = d + 1Open DefaultPath & "Arm.TXT" For Input As #1 Do While Not EOF(1) Input #1, nam, num, cnt If cnt = d Then Let Text7.Text = num Let Text6.Text = 0Let Text8.Text = 0 Let No of Bars = Val(num) End If Loop Close #1 End Sub

#### CODE EXTRACT 3-4: COMBO BOX ARMATURE SELECT - COMMAND CLICK

The question that now arises is what happens when an armature (record) is deleted from the list? How is the saved index edited? See Code Extract 3-5.

```
Private Sub Command4 Click()
If InputBox("Enter Administrators Password", "Administrators Password") = "AdminAutoSun6" Then
  If MsgBox("Are You Sure That You Want to Delete The Selected Item?", vbYesNo) = vbYes Then
  Dim c As Integer
    Let b = Combo2.ListIndex
    Combo2.Clear
    If Dir(DefaultPath & "Arm.TXT") <> "" Then
       Open DefaultPath & "Arm.TXT" For Input As #1
       Open "Del" For Output As #2
          Do While Not EOF(1)
          Input #1, nam, num, cnt
            If cnt \langle (b + 1) \rangle Then
            Combo2.AddItem "Armature Name: " & nam & " Number of Bars: " & num
           Let c = Combo2.ListCount
            Write #2, nam, num, c
            End If
         Loop
       Close #1
       Close #2
       Kill DefaultPath & "Arm.TXT"
       Name "Del" As DefaultPath & "Arm.TXT"
    Else: MsgBox "No Armature Properties Found"
    End If
  End If
Else: MsgBox "You are NOT Authorised to perform this action"
End If
End Sub
```

## CODE EXTRACT 3-5: CLICK TO REMOVE HIGHLIGHTED ARMATURE - COMMAND CLICK

Before clicking on the 'Click to Remove Highlighted Armature' button, an armature must have already been selected. The delete process is only initiated if the administrator's password has been entered correctly. The process entails opening the Arm file to read data, opening a further file named 'Del' to write data into, then searching for the selected armature (record) and deleting it. Each record is read from Arm, its record (variable '**cnt**') index is compared to the value of ListIndex method plus one (variable '**b**').

If these two variables are not equal then that record is written into the Del file. This means that every record except the selected one is copied into the Del file hence, the

Del file holds all records except the omitted record. The selected record has been deleted from the list. The question still remains, how is the saved index values edited? Referring to Code Extract 3-5, the reader will notice that each time a record is copied into the Del file, it is copied with a new index using variable '**c**'.

Let c = Combo2.ListCount Write #2, nam, num, c

The new index associated with each record is the value of the ListCount method for the new list being created during the delete process. The original content of the Combo Box is deleted and a new list is created using the AddItem method. As an example, if the third item in the old list is to be deleted, items one and two are copied into the Del file as their saved index (variable '**cnt**') is not equal to variable '**b**'.

When copying into the Del file, each item is also added (using the AddItem method) to the previously cleared (using the **Combo2.Clear** statement) ComboBox. Hence the stored index value using variable '**c**' is one for item one, as after this item was added to the Combo Box list, the ListCount method returned a value of one. In the same way, item two will have an index value of 2. Now, because item three is the item selected to be deleted, its saved index (variable '**cnt**') is equal to variable '**b**'.

When this occurs, the item (item three in this case) is not copied to the Del file, nor is it added to the Combo Box list. Hence the Combo Box List still contains two items and its current ListCount method value will still be two. When the fourth item is read and the index values compared, the values will not be equal. Item four is then added to the ComboBox list and also copied into the Del file. Once added to the ComboBox list, the ListCount method will return a value of three which is copied into variable 'c' and saved in the Del file as the new index for the previously known item four, but now the current renamed item three.

Hence item four, with an index value of four, from the Arm file is saved as item three with an index value of three in the Del file. Each item copied into the Del file from this point forward will be saved with a new index. After all the records (except the one selected to be deleted) from the Arm file has been copied into the Del file, the entire Arm file is deleted using the,

#### Kill DefaultPath & "Arm.TXT"

statement. The Del file is then renamed Arm using,

Name "Del" As DefaultPath & "Arm.TXT"

The new Arm file now contains all items except the one that was selected to be deleted. See Figure 3-9 for a flow chart of the delete process.





## FIGURE 3-9: CLICK TO REMOVE HIGHLIGHTED ARMATURE COMMAND CLICK FLOWCHART

### 3.1.1.3 Job Number Property Frame

| Job Number- |  | <br>7 |
|-------------|--|-------|
|             |  |       |
|             |  |       |

FIGURE 3-10: JOB NUMBER PROPERTY INPUT FRAME

It is in this input box that the armature serial number is entered. This serial number is reflected in the test report printout and it is also used as a file name under which the test results are saved. As will be discussed later in this chapter, tests are saved in files bearing the serial numbers of armatures as filenames in order to generate a test history for each armature. When a test is carried out on an armature with a file name (serial number) which does not appear in the file containing the list of armatures that were previously tested, that armature is added to the saved list, i.e. its serial number is added to a sequential file name (**Saved\_List**'.

A sequential file bearing the name of the serial number of the armature is also created and it is here that the test results are saved. When saving a test for an armature with a serial number that already exists the content of the Job Number Property frame is compared with the list of serial numbers in the 'Saved\_List' file. When a match is found that file is opened and the present test details are added to it. If no match is found then a new file is created and the name of the file is added to the 'Saved\_List' file.

#### 3.1.1.4 Test Option Property Frame

| Test Option<br>Choose an Operating<br>Option | <ul> <li>Manual Operation</li> <li>Automated Operation</li> </ul> |
|----------------------------------------------|-------------------------------------------------------------------|
|----------------------------------------------|-------------------------------------------------------------------|

FIGURE 3-11: TEST OPTION PROPERTY FRAME

This property frame allows the user to choose between Automated and Manual modes by clicking on the appropriate option. Once a selection is made it is reflected in the Test Status property frame, as show on Figure 3-12 below.

| Test Status    |  |  |  |  |  |
|----------------|--|--|--|--|--|
| Bar Under Test |  |  |  |  |  |
| Bars Remaining |  |  |  |  |  |
| Faults Logged  |  |  |  |  |  |
|                |  |  |  |  |  |
| Manual Test    |  |  |  |  |  |
| Automated Test |  |  |  |  |  |
| Reading        |  |  |  |  |  |
| Searching      |  |  |  |  |  |
|                |  |  |  |  |  |

FIGURE 3-12: TEST STATUS PROPERTY FRAME

In Automated mode the entire system is enabled. This means that the controller, more specifically the Automation Microcontroller (AM), controls the mechanical system according to the commands from the GUI and the Communication Microcontroller (CM). In Manual mode, the automated control functionality of the system is disabled and the AM enters power-down mode. Only the data acquisition, analysis and storage functionalities of the system are available to the user. In this mode, the test technician is responsible for placing the test probes on the commutator bars and switching the test current using a footswitch. On selecting the Manual option, 'G' is placed into variable Auto\_Man, using the statement:

Auto\_Man is read and the ASCII representation of its contents is transmitted to the CM when the test settings are being uploaded to the controller. The Load event is initiated on clicking the Load button on the GUI. More detailed discussions will follow later in this chapter. On selecting the Automated option, 'g' is placed into the Auto\_Man variable.

#### 3.1.1.5 Test Parameter Property Frame



FIGURE 3-13: TEST PARAMETER PROPERTY FRAME

The Parameter Property Frame is where the user stipulates the allowable percentage variance (i.e. percentage difference) of present reading from the reference reading. This value is then stored in variable **Percentage** to be used in the Calculation subprogram. Different ranges can be added and removed from the available options by the administrator in exactly the same was way as in the Armature Properties

Frame. The operation of this frame is identical to that of Armature Properties Frame therefore the author will not enter into a discussion on the operation of this frame.

| Date           |           |  |  |  |  |  |
|----------------|-----------|--|--|--|--|--|
| 2006/05/16     |           |  |  |  |  |  |
| <u> </u>       |           |  |  |  |  |  |
| _ Time         |           |  |  |  |  |  |
| Test Started   | 15:24:48  |  |  |  |  |  |
| 1 out otdition |           |  |  |  |  |  |
| Test Ended     | 15:59:23  |  |  |  |  |  |
|                | 0.24.25   |  |  |  |  |  |
| Test Duration  | 0. 34. 35 |  |  |  |  |  |
|                |           |  |  |  |  |  |

#### 3.1.1.6 The Date and Time Frames



These output fields reflect the date of a test and the test duration. On starting the test, by clicking the Start button, the date and the current time (Test Started) is uploaded from the PC's internal clock.

'\*\*\*\*\*\*\*\* load begin time and date\*\*\*\*\*\*
Let Text11.Text = Space(30) & Date
Let Text12.Text = Space(20) & Time
timed = Second(Time)
timee = Minute(Time)
timef = Hour(Time)

## CODE EXTRACT 3-6: RECORDING THE TIME WHEN THE TEST WAS STARTED.

When a test ends, either naturally (when all the bars have been tested) or unnaturally (when an emergency stop has been invoked), the end time of the test (Test Ended) is uploaded from the PC's internal clock. The duration is computed as shown in Code Extract 3-7, below.

Let Text13.Text = Space(20) & Time

timed = Second(Time) - timed If timed < 0 Then timed = 60 + timedtimee = timee + 1End If timee = Minute(Time) - timee If timee < 0 Then timee = 60 + timee timef = timef + 1 End If timef = Hour(Time) - timef If timef < 0 Then timed = 24 + timefEnd If Let Text14.Text = Space(20) & timef & ":" & Space(1) & timee & ":" & Space(1) & timed End If 

#### **CODE EXTRACT 3-7: CALCULATION OF THE DURATION OF THE TEST**

#### 3.1.2 Test In Progress Fields

#### 3.1.2.1 Fault Log List

The Fault Log list is a list that displays each reading that falls outside the specified percentage variance range. It is also the screen that is used to display all relevant test information and test history that is retrieved from stored files.



## FIGURE 3-15A: THE FAULT LOG SCREEN DISPLAYING PRESENT TEST FAULTS

Figure 3-15A depicts a typical test fault log. This is what the user will see during the test as faults are recorded. Figure 3-15B below, illustrates the same test results that has been recalled from a stored file.

```
      Fault Log

      Job Number: Test Results

      Operator's Name: Sunveer Matadin

      Armature Name: b Number of Bars: 10

      Percentage Variance: 5%

      Date: 2006/04/12

      Recorded Faults

      Fault on Bar: 3, Percentage Variance = 19.28123, Bar Reading: 0.1626973V, Reference: 0.136398V

      Fault on Bar: 5, Percentage Variance = 10.88503, Bar Reading: 0.1215511V, Reference: 0.136398V

      Fault on Bar: 7, Percentage Variance = 10.3879, Bar Reading: 0.1505669V, Reference: 0.136398V

      Fault on Bar: 8, VoltDrop Reading Is Zero (0V), Indicating A Possible Short Circuit

      Fault on Bar: 9, VoltDrop Reading Is Out Of Range, Indicating A Possible Open Circuit

      Emergency Stop on Bar 10

      End Of Recorded Results
```

# FIGURE 3-15B: THE FAULT LOG SCREEN DISPLAYING RETRIEVED FILE DATA

Figure 3-15B depicts a saved test that has been recalled in order to view the stored results. Critical information such as the job (serial) number, the operators name, the type of armature (the armature name and the number of bars on the commutator), the allowable percentage variance and the date of the test is displayed.

Under 'Recorded Faults', each fault is recorded with the following information: the number of the pair of bars on which the fault was recorded, the percentage variance from the reference reading, the actual volt-drop reading across the present two bars, the actual reference reading and, in the event of an emergency stop, the pair of bars on which such a stop was initiated.

### **3.1.3** The Control Commands

The control commands are used to prompt the controller, and where necessary the automated machine, to react to a user initiated event. There are three controls that may be used under normal test conditions when none of the system errors have occurred.

These are the Load/Start, End and the Emergency Stop controls as shown in Figure 3-16.



#### FIGURE 3-16: CONTROLS FOR NORMAL TEST CONDITIONS

In the event of an error, the two controls to be used are the Continue After Error Pause and the Manual Reading as shown in Figure 3-17A and Figure 3-17B. On an error that requires a manual reading to be taken, i.e. Error1 and Error2, the Manual Reading Control is enabled and the Reading Prompt turns green. A red Reading Prompt alerts the user that the system is not ready to take a manual reading whilst a green setting indicates to the user that the system has been prepared for a manual reading procedure. The user clicks on the Manual Reading button on the GUI when the reading is about to be taken. Thereafter the user presses a Manual Reading switch situated on the automated machine after the test current is switched on and the test probes are set in place. The volt-drop reading is then captured and processed.



#### FIGURE 3-17A: DISABLED MANUAL READING CONTROL



FIGURE 3-17B: ENABLED MANUAL READING CONTROL

Referring to Figure 3-16, the reader will notice that the first button in the Controls frame is the Load button and all the other control buttons are disabled. This is to ensure that all the data required for a test has been entered correctly in the Test Setup Fields as discussed earlier.

Once all the data has been entered the Load button is clicked to upload the applicable information to the controller (more specifically the Communications Microcontroller). All the input data fields on the GUI are disabled when the Load button is clicked in order to ensure that the input setting can not be altered during a test. If any input data field has not been completed when the Load button is clicked a message box or an input box appears prompting the user to enter the required data. See Figure 3-18A for the flow diagram relating to this process. Once the CM has received the information it acknowledges having done so by transmitting the ASCII code for the letter 'd' back to the GUI.

On receiving this, the Load button is replaced by the Start Button and the Emergency Stop Button is enabled as depicted in Figure 3-18B. When the user is ready to begin the test the Start button is clicked and 'A' is transmitted to the controller to begin. When the Start button is clicked it turns green, as shown in Figure 3-18C, and the mouse pointer changes to a pointer and hourglass signifying that the test is in progress.





#### FIGURE 3-18A: DATA FIELD VERIFICATION PROCEDURE



#### FIGURE 3-18B: START AND EMERGENCY STOP CONTROL ENABLED



#### FIGURE 3-18C: START CONTROL BUTTON CLICKED TO BEGIN TEST

After the last pair of bars has been tested the End control button is highlighted in blue as shown in Figure 3-19A below. This alerts the user that the test is complete. The user must acknowledge this alert by clicking on the End button. The End control is also enabled and highlighted when an Emergency Stop is initiated. This is further discussed below.



FIGURE 3-19A: END CONTROL HIGHLIGHTED BLUE TO ALERT USER

When the End control button is clicked, 'B' is transmitted to the controller and the End button is highlighted in green to signify the completion of the test. This signifies that the controller has entered powerdown mode and that the data is ready to be printed and saved or only saved. Referring to Figure 3-19B, the reader will notice that the Print and Save options are now enabled. All the output fields in the Test Status Frame and all the input fields in the Test Setup Frame are cleared. Further, all control and input buttons, except for the password Enter Button, are disabled. This allows the user to begin the next test once a valid password has been entered.



## FIGURE 3-19B: END CONTROL HIGHLIGHTED GREEN AFTER ALERT IS ACKNOWLEDGED

When the detection unit, containing the test probes and optical sensor, is not raised to its initial position within the allocated time Error 4 is invoked and the Continue After Error Pause control, The Emergency Stop control as well as the Error 4 status display are enabled and highlighted as depicted in Figure 3-20.

The GUI is made aware of this error when the ASCII code for the letter 'L' is received. When this error occurs the user has to assess the problem and if the fault is not serious enough to abandon the test, the user will physically raise the unit to its initial position. Once this is done and the user is confident that the error was not due to an event that may be recurring, the user will click on the Continue After Error Pause control for the test to progress as usual. Once clicked all the control buttons and displays that were highlighted and enabled due to the error are disabled and are no longer highlighted. If the fault is deemed to be serious and possibly recurring in nature the user will then click on the highlighted Emergency Stop control to immediately stop the test.



## FIGURE 3-20: CONTINUE AFTER ERROR PAUSE CONTROL ENABLED FOR ERROR 4

The last control featured in the Controls frame is the Emergency Stop button. This functionality is enabled as soon as the test is started and remains enabled throughout the test. If at any point during the test, for whatsoever reason, the user decides that it

is unsafe to continue with the test, an emergency stop can be evoked by clicking on the Emergency Stop control button. When clicked, the Emergency Stop control is highlighted in red, the End button is enabled and the ASCII code for the Letter 'F' is transmitted from the GUI to the CM. The CM then Sets (1) P0.5, which is connected to the AM P1.5 and P3.2 (External Interrupt 0). When the AM is interrupted due to External Interrupt 0 being triggered and P1.5 is High (1), the AM immediately initiates an emergency stop. The AM immediately halts the task that was being carried out, switches off the Test Current by Clearing (0) P2.7 and safely shuts the system down before entering Powerdown mode. The GUI reflects the fact that an Emergency Stop was evoked in the Fault Log and waits for the user to click the End button in order to end the present test.



FIGURE 3-21: EMERGENCY STOP EVOKED

## 3.1.4 Error Status Frame

The Error Status Frame is where errors are reflected as or when they occur. When no errors have occurred, the frame looks like Figure 3-22, with each error status display being disabled.



FIGURE 3-22: ERROR STATUS FRAME

When an error does occur the appropriate display is highlighted red and is enabled. Once the user clicks on the error a display message box pops up informing the user of the type of error, the cause, and possible steps to follow. Only once the error has been corrected and the controller communicates this to the GUI, will the highlighted display be disabled. Each error and flow charts depicting the steps taken when they occur will be discussed in detail in detail in Chapter 4. For the purposes of this discussion, the author will only concentrate on what events trigger these errors and on how the GUI reflects them.

Error 1 occurs when a pair of bars is not detected within an allocated time. The controller is responsible for the timing of this process and if the allocated time has elapsed before the next pair of bars are detected, the controller transmits the ASCII code for the letter 'J' to the GUI. When the GUI receives a 'J' it immediately enables and highlights the Error 1 display as well as the Manual reading control. As mentioned earlier, a detailed discussion concerning this, and all the other errors, will follow in Chapter 4. See Figure 3-23A for a representation of the Error 1 display. When the Error 1 display is clicked the following message appears in a message box: "The next pair of bars has not been detected within the allowable period. A Manual Reading must now be taken"

| Error Status |         |         |         |  |  |  |
|--------------|---------|---------|---------|--|--|--|
| Error 1      | Error2  | Error3  | Error 4 |  |  |  |
| Error 1      | Error 2 | Error 3 | Error 4 |  |  |  |

#### FIGURE 3-23A: ERROR 1 DISPLAY

Error 2 occurs when the detection unit has not been lowered onto the surface of the commutator within the allowable time. Here again the controller is responsible for the timing of this process and if the allocated time has elapsed before the detection unit has been lowered, the controller transmits the ASCII code for the letter 'm' to the GUI. On receiving this character the GUI highlights Error 2 and enables the Manual reading control.


FIGURE 3-23B: ERROR 2 DISPLAY

When the Error 2 display is clicked the following message appears in a message box: "The Test Probes have not been lowered within the allowable period. A Manual Reading must now be taken"

Error 3 occurs when the test current is switched on for a period longer than a predetermined allowable time. In this case the controller transmits the ASCII code for the letter 'L' to the GUI. Unlike the previous two errors, Error 3 initiates an immediate Emergency Stop (by transmitting the ASCII code for the letter 'F' to the controller) and enables the End control function. The GUI still however highlights Error 3 to inform the user that the Emergency Stop was initiated due to Error 3. On clicking the Error 3 display the following message appears in a message box:

"The Test Current has been switched on for too long, and as a safety measure an Emergency Stop has been invoked. Please Click End, check the device and Restart the Test"



#### FIGURE 3-23C: ERROR 3 DISPLAY AND INVOKED EMERGENCY STOP

Error 4 was discussed in the explanation pertaining to the Continue After Error Pause Control, but for completeness the author will briefly discuss Error 4 here.

Error 4 occurs when the detection unit has not been raised to its initial position within the allowable time. When the allowable time has elapsed before the detection unit is raised to its initial position, the controller transmits the ASCII code for the letter 'Q' to the GUI. On receiving this the GUI highlights and enables the Error 4 display as well as the Continue After Error Pause and Emergency Stop controls as shown in Figure 3-20 and Figure 3-23D, below. The user then assesses the fault and elects to either continue with the test by clicking on the Continue After Error Pause button or stopping the test by clicking on the Emergency Stop button.



## FIGURE 3-23D: CONTINUE AFTER ERROR PAUSE CONTROL ENABLED FOR ERROR 4

## 3.1.5 Test Status Display

The Status Display is responsible for the summary of the present test at any point in time. As can be seen from Figure 3-24, the information displayed includes the number of the pair of bars (i.e. first pair, second pair etc) that is currently under test, the number of pairs of bars that remains to be tested, the number of faults that were logged, the mode that the system is operating in (i.e. manual or automated) and the

task that the system is presently performing (i.e. either searching for the next pair of bars or taking a reading).

| Test Status               |
|---------------------------|
| Bar Under Test 2          |
| Bars Remaining <b>398</b> |
| Faults Logged             |
|                           |
| Manual Test               |
| Automated Test            |
| F Reading                 |
| Searching                 |
|                           |

FIGURE 3-24: TEST STATUS DISPLAY

## 3.1.6 Recorded Test Data Option

The user has four options when it comes to the handling of recorded test data. These are the print, save, open and delete options. Each will be discussed individually in the subsections that follow. Below is a representation of which options are available at different stages of the process.

Figure 3-25A depicts the options available after the correct password is entered but before a test has started. Figure 3-25B depicts the options available while a test is in progress and Figure 3-25C depicts the options available at the end of a test.



FIGURE 3-25: TEST DATA OPTIONS

#### 3.1.6.1 Print Option

A printed test report is useful for three reasons. Firstly, a hard copy of a specific test or a test history of an individual armature can be made available. The second reason is that a written record travels with the armature after this test so that staff in the next stage of the process will have a written record of the test and failures recorded therein. The third use for a printed test report is that it aids in accountability, i.e. the technician that performs the test can be held accountable for the test and the results as his/her name appears in the test report as well as his/her signature acknowledging the faults.

The user may view and print saved test records by opening a specified file using the Open button. It is for this reason that the print option is made available to the user after the correct password is entered but before a test is started. When Print is clicked, all the data contained in the opened file is printed in the format shown in Appendix D. If a file was not opened, thus implying that no data is displayed when Print is clicked, the following message appears:

#### "No Data Available To Print"

Once a test is in progress the print option is disabled until the end of the test when it is again enabled. Here, when Print is clicked, only the data recorded during the test that was just completed is printed in the format shown in Appendix E. One of the main features of this new system is the fact that test data can be printed and stored. It is for this reason that when the user prints the present test the data is also automatically saved in the appropriate file.

### 3.1.6.2 Save Option

As mentioned above, when a completed test is printed it is also automatically saved therefore there is no need to click on the Save button. The Save button is useful when the user wishes to only save the present test data without having a printed copy.

A dual sequential file system is used to save a test record. The first sequential file is the one used to store the names or serial numbers of the armatures that have been tested and saved, in order to generate a list when required. This file is named **DefaultPath & ''Saved\_List.TXT''** as shown in Code Extract 3-8. DefaultPath is the specified location of the file named Saved\_List. The above-mentioned list is available when the user clicks on the Open or Delete buttons.

The second sequential file is the one in which the test data is saved. The file name is the serial number of the armature under test. Each record added to this file has the following fields: the serial number of the armature, the name of the test technician, the type of armature, the allowable percentage variance specified for the test, the date of the test and recorded faults (if any) read by incrementing the index number of the Fault Log list and the actual fault logged on that pair of bars. In other words, each fault recorded in the Fault Log list is saved in the file with the test parameters and identification data fields preceding it. A typical record in the file is found below,

"matadin","sun 04/05","Armature Name: f Number of Bars: 50","Percentage Variance: 20%","2005/05/04","Emergency Stop on Bar 0"

The flow diagram for the Save event is depicted in Figure 3-26 and the code for this event is shown in Code Extract 3-8.



FIGURE 3-26: SAVE EVENT FLOW DIAGRAM

```
Private Sub Command15_Click()
Dim Add Flag As Boolean
Command14.Enabled = False
Command15.Enabled = False
Let Add Flag = False
Let Save_Test = Text9.Text
If Dir(DefaultPath & "Saved_List.TXT") <> "" Then
  Open DefaultPath & "Saved_List.TXT" For Input As #7 ' file for the list of all jobs saved
    Do While Not EOF(7)
    Input #7, Add_list
       If Add list = Save Test Then
         Let Add Flag = True
       End If
    Loop
  Close #7
    If Add_Flag = False Then
       Let Add Flag = False ' redundant
       Open DefaultPath & "Saved_List.TXT" For Append As #7
       Write #7, Save_Test
       Close #7
    End If
Flse
  Open DefaultPath & "Saved List.TXT" For Append As #7
  Write #7, Save_Test
  Close #7
End If
  Open DefaultPath & Save_Test For Append As #5
  Let i = 0
  Do While i <= (List1.ListCount - 1)
    Write #5, Text9.Text, Text2.Text, Combo2.List(Combo2.ListIndex),
              Combo1.List(Combo1.ListIndex), LTrim(Text11.Text), List1.List(i)
    Let i = i + 1
  Loop
  Write #5, "End", "xxx", "xxx", "xxx", LTrim(Text11.Text), "End Of Recorded Results"
  Close #5
```

End Sub

#### **CODE EXTRACT 3-8: SAVE - EVENT CLICK**

After the last item from the Fault Log has been saved, a record containing 'xxx' in the user name, armature name and allowable percentage variance fields together with the serial number field is saved to indicate the end of a test record.

"End","xxx","xxx","xxx","2005/05/04","End Of Recorded Results"

## 3.1.6.3 Open option

This option is only available to the user after a valid password has been entered. By clicking on Open, the user may view any and all saved tests. When clicked an input box as shown in Figure 3-27 appears prompting the user to enter the serial number of the armature for which the test data is wished to be viewed. When this number has been entered all the recorded tests for that serial number i.e. the armature test history, are displayed on the Fault Log display.



FIGURE 3-27: INPUT PROMPT WHEN 'OPEN' IS CLICKED

In order to refine the search, for example if a test on a specific date is required, the user enters 'Find' in the input box. A list of armature serial numbers appears as shown in Figure 3-28. This list is generated by reading the 'Save\_List' file mentioned above.

| Test Status    | Click To Print     |
|----------------|--------------------|
| Bar Under Test | Print              |
| Bars Remaining | Click To Save      |
| Faults Logged  | Save               |
| Manual Test    | Open               |
| Automated Test | matadin<br>sunveer |
| Reading        | dude 🗾             |
| Searching      | Delete             |

FIGURE 3-28: LIST OF SAVED SERIAL NUMBERS

By clicking on a serial number from this list a search is initiated. This search entails the opening of the file with the name matching the selected serial number, in this case matadin, reading through each record and displaying the dates on which tests were carried out on that armature, see Code Extract 3-9. All these dates along with a 'View All' option are displayed in a list box as depicted in Figure 3-29.

On clicking on a specific date the user may view the data recorded in the test (or tests) carried out on that armature on the specified date. By clicking on the 'View All' option a test history containing every test recorded and saved under the specified serial number is displayed, see Code Extract 3-10A and Code Extract 3-10B. The user clicks on the Exit button provided to exit from the Open procedure at any time.

Private Sub List2 Click() Let Save Test = List2.Text List1.Clear Let Dspl Date = "" List4.Clear List4.AddItem "View All" Open DefaultPath & Save Test For Input As #5 Do While Not EOF(5) Input #5, aa, bb, cc, dd, ee, ff If (Dspl\_Date <> ee) And (bb <> "xxx") Then List4.AddItem LTrim(ee) Let Dspl Date = ee End If Loop If List4.ListCount = 1 Then MsgBox "There are no items to View" List4.Clear Else List4.Visible = True End If Close #5 End Sub

#### CODE EXTRACT 3-9: GENERATION OF A LIST OF DATES FOR A SPECIFIED SERIAL NUMBER



# FIGURE 3-29: LIST OF TEST DATES FOR A SPECIFIED ARMATURE SERIAL NUMBER

Private Sub List4\_Click() List1.Clear Let Test\_Date = List4.Text Call FopenSub List2.Visible = False List4.Visible = False Command33.Visible = False End Sub

#### CODE EXTRACT 3-10A: EVENT CLICK - ON THE DATE LIST

Public Sub FopenSub()

If Test\_Date = "View All" Then Open DefaultPath & Save\_Test For Input As #5 Let j = False Do While Not EOF(5) Input #5, aa, bb, cc, dd, ee, ff If j = False Then List1.AddItem "Job Number: " & aa List1.AddItem "Operator's Name: " & bb List1.AddItem cc List1.AddItem dd List1.AddItem "Date: " & LTrim(ee) List1.AddItem "" List1.AddItem "" List1.AddItem "" List1.AddItem ""

```
Let j = True
              Else
                List1.AddItem ff
                   If aa = "End" Then
                   Let j = False
                  List1.AddItem ""
                  List1.AddItem ""
                   End If
              End If
         Loop
         Close #5
  Else
    Open DefaultPath & Save_Test For Input As #5
         Let j = False
         Do While Not EOF(5)
           Input #5, aa, bb, cc, dd, ee, ff
             If (Test_Date = LTrim(ee)) Then
                If i = False Then
                   List1.AddItem "Job Number: " & aa
                   List1.AddItem "Operator's Name: " & bb
                   List1.AddItem cc
                  List1.AddItem dd
                   List1.AddItem "Date: " & LTrim(ee)
                   List1.AddItem ""
                   List1.AddItem "Recorded Faults "
                  List1.AddItem ""
                  List1.AddItem ff
                   Let j = True
                'End If
                Else
                   List1.AddItem ff
                     If aa = "End" Then 'xxx (or End) signals end of a test and all the fields for
                                         the next test has to be printed
                     Let j = False
                     List1.AddItem ""
                     List1.AddItem ""
                     End If
                End If
              End If
         Loop
    Close #5
 End If
'aa is the Job No field
'bb is the Operators Name field
'cc is the Armature Selection field
'dd is the Percentange Variance field
'ee is the Date field
'ff is the Recorded Faults field
*****************
End Sub
```

#### CODE EXTRACT 3-10B: FOPEN SUBPROGRAM CALLED IN CODE EXTRACT 3-10A

## 3.1.6.4 Delete Option

The delete option allows a user with administrative rights to delete a file with a specified serial number. When an armature is discarded it may be decided that the history of that armature is no longer relevant however, the opposite may also be true. The relevance of the history of a discarded armature can only be decided by the workshop management and maintenance engineers.

The Delete option works in much the same way as the Open option. All the records with the specified serial number are located when that serial number is entered into the input box prompt or, a list containing all the saved serial numbers is generated when "Find" is entered into the input box as depicted in Figure 3-30. The difference however is when the Delete button is clicked, the GUI requests the Administrator's password. If the password is entered correctly and a serial number is selected the GUI will ensure that the user is sure of his decision by prompting a response using a pop up box as shown in Figure 3-31.



## FIGURE 3-30: LIST OF SERIAL NUMBERS GENERATED ON THE DELETE CLICK EVENT

| Confirm Delete                                          |    | × |  |  |  |  |  |  |
|---------------------------------------------------------|----|---|--|--|--|--|--|--|
| Are You Sure That You Want to Delete The Selected Item? |    |   |  |  |  |  |  |  |
| Yes                                                     | No |   |  |  |  |  |  |  |

#### FIGURE 3-31: POP UP PROMPT ON SELECTING AN ITEM TO BE DELETED

If Yes is selected by the user the deletion process is initiated. This process entails the removal of the selected serial number from the sequential file that generates the list of saved serial numbers, i.e. "Saved\_List.TXT", as well as removing the file that contains the test history saved under the name of the selected serial number. Removing the selected item from the "Saved\_List.TXT" file is accomplished by reading this file and copying all items except the one selected into another file, in this case "Saved\_List\_Del". At the end of this process, "Saved\_List.TXT" is deleted and "Saved\_List\_Del" is renamed as "Saved\_List.TXT".

To delete the file containing the test history the following statement:

Kill (DefaultPath & Save\_Test)

is used to remove the file with the name stored in **Save\_Test** (which is the serial number of the selected item) using **DefaultPath** to locate it. See Figure 3-32, Code Extract 3-11A and Code Extract 3-11B, for the associated flow diagram and code respectively.



FIGURE 3-32: DELETE PROCESS FLOW DIAGRAM

```
Private Sub Command32_GotFocus()
If Form3.AdminPasswordFlag = True Then
Let Form3.AdminPasswordFlag = False
Save_Test = InputBox("Enter File Name", "Delete file")
  If Save_Test <> "" Then
    If Save Test <> "Find" Then
       If Dir(DefaultPath & Save Test) <> "" Then
         Open DefaultPath & Save_Test For Input As #5
            If MsgBox("Are You Sure That You Want to Delete The Selected Item?", vbYesNo,
                        "Confirm Delete") = vbYes Then
            Call Delete
            End If
         Close #5
       Else: MsgBox " File Does Not Exist", vbOKOnly, "Data Error"
       End If
    Else
    If Dir(DefaultPath & "Saved_List.TXT") <> "" Then
    Open DefaultPath & "Saved List.TXT" For Input As #7
    List3.Clear
       Let Del_Hold = ""
         Do While Not EOF(7)
         Input #7, Delx
            If Del Hold <> Delx Then
           List3.AddItem Delx
           Let Del_Hold = Delx
            End If
         Loop
            If List3.ListCount <> 0 Then
           List3.Visible = True
            Command34.Visible = True
            Else
            MsgBox "There Are No Tests To View", vbOKOnly, "Data Error"
            End If
       Close #7
    Else: MsgBox "There Are No Tests To View", vbOKOnly, "Data Error"
    End If
    End If
  Else: MsgBox "Job Number Not Entered", vbOKOnly, "Enter Data"
  End If
'Else
'MsgBox " You are Not Authorised to use this fuctionality"
End If
End Sub
```

#### **CODE EXTRACT 3-11A: DELETE FILE CODING**

Public Sub Delete() If Dir(DefaultPath & "Saved\_List.TXT") <> "" Then Open DefaultPath & "Saved\_List.TXT" For Input As #7 Open "Saved\_List\_Del" For Output As #8 Do While Not EOF(7) Input #7, look If Save Test <> look Then Write #8, look End If Loop Close #7 Close #8 Kill DefaultPath & "Saved List.TXT" Name "Saved\_List\_Del" As DefaultPath & "Saved\_List.TXT" Else: MsgBox "File Does Not Exist" End If If Dir(DefaultPath & Save\_Test) <> "" Then Kill (DefaultPath & Save\_Test) List<sup>1</sup>.Clear End If End Sub

#### CODE EXTRACT 3-11B: DELETE SUBPROGRAM CODING

## 3.1.7 Directory Path Specification

The Directory Path specifies the location where all files generated and accessed by the GUI are saved. This location is copied into the variable **DefaultPath** which precedes the file name. Using **DefaultPath** files can be saved on the local hard drive, written to removable data storage devices or, by mapping a network drive, files can be stored in allocated locations on the network.

The Directory Path settings can be viewed and reset via the Directory Path frame. The Directory Path frame is made visible by clicking on the View Setting button found on the View/Change Directory Path Settings Frame. The user can return to the View/Change Directory Path Settings Frame from the Directory Path Frame by clicking on the Exit Settings button. See Figure 3-33A and Figure 3-33B.

| View/Change Directory Path Settings |
|-------------------------------------|
| View Settings                       |
| View User Profile Setup             |
| View User Profile                   |
|                                     |
|                                     |
|                                     |

#### FIGURE 3-33A: DIRECTORY PATH SPECIFICATION

| Directory Path                                                |                                                            |                                                                          |  |  |  |  |
|---------------------------------------------------------------|------------------------------------------------------------|--------------------------------------------------------------------------|--|--|--|--|
| 🖃 c: [P] 💌                                                    | 🔄 cky370 📃                                                 | Admin Password Form.fr                                                   |  |  |  |  |
| Exit Settings                                                 | G My Documents<br>G sun<br>G M.Sc. Design<br>G M.Sc Only ▼ | ana.nm<br>ana.vbp<br>ana.vbw<br>ana2.fm<br>Animation.fm<br>Animation.ybp |  |  |  |  |
| Viet                                                          | w Default Path                                             | Animation.vbw                                                            |  |  |  |  |
| View Selected Path Change Default Path Backup of Sheet2.Sch 💌 |                                                            |                                                                          |  |  |  |  |
|                                                               |                                                            |                                                                          |  |  |  |  |

#### FIGURE 3-33B: DIRECTORY PATH SPECIFICATION

Visual Basic provides a simple approach for displaying drives, directories and files. All of these can be viewed using,

> Private Sub Drive1\_Change() Let Dir1.Path = Drive1.Drive End Sub

to display directories in the selected drive and

Private Sub Dir1\_Change() Let File1.Path = Dir1.Path End Sub directory

to display files in the selected directory.

The Default Path can only be set or changed by an administrator. A directory path is selected using the drive, directory and file input boxes. The administrator then clicks on 'View Selected Path' to verify that this is the correct selected destination. When satisfied with the selected path the administrator clicks on Change Default Path. An input box, which prompts the administrator for the administrator's password, appears and if the correct password is entered, the selected path is saved as the new default directory path.

The default path can also be viewed by clicking on the 'View Default Path' button. The Default Path setting is dynamic (i.e. it can be changed when required and is not hard-coded) and points to the location in memory in which data can be saved. The Default Path itself also has to be saved in a file so that it can be referred to whenever the default path is required. The location of this file however, is static i.e. it is hardcoded and cannot be changed by the user nor the administrator.

The name and location of this file is **SavePath** and "C:\Program Files\SavePath" respectively. When the GUI is loaded for use each time it is initiated, the Form\_Load procedure opens the **SavePath** file and copies its contents into the Default Path variable. See Code Extract 3-12. This is carried out on the onset of a test so that the Default Path variable can be accessed whenever the path is required instead of opening, reading and closing a sequential file each time it is required.

If Dir("C:\Program Files\SavePath") <> "" Then Open "C:\Program Files\SavePath" For Input As #10 Input #10, DefaultPath ' holds the path to the saved files Close #10 Else MsgBox "Default Path is Not Valid, it has been changed" Command17.Enabled = False End If

#### CODE EXTRACT 3-12: INITIALISING THE DEFAULT DATA PATH

## 3.1.8 Exit Command

The exit command allows the user to exit from the GUI before a test is started or after

the test has ended. The Exit functionality is disabled during a test.



FIGURE 3-34: EXIT COMMAND CLICK

## **3.2** Percentage Variance Calculation.

All the literature in this chapter thus far has concentrated on the activities of the GUI when being prompted by a user or the controller and the output commands or signals that are transmitted by the GUI to the controller based on the data received and calculations carried out by the GUI. One such calculation is carried out when the GUI receives the test data from the Analogue-to-Digital converter (ADC) via the CM. This is the calculation of the percentage variance of the present reading from the stored reference reading. This is arguably the most critical calculation as the need for the entire project has evolved around it. Referring to Code Extract 3-13, the author will discuss this subprogram in as much detail as possible.





#### FIGURE 3-35: FLOW DIAGRAM FOR THE CALCULATION SUBPROGRAM

Public Sub Calculation()

Picture8.BackColor = QBColor(4) Picture9.BackColor = &H8000000F

StnBit\_WD = ((High\_Byte \* 256) + Low\_Byte)

' set Reference value on first reading If Initial\_Count = 0 Then Let Reference = StnBit\_WD Let ActReference = (Reference \* ActVolReadRes) Let mVActReference = (ActReference / Gain) End If

If Reference <> 0 Then ' checking if reference value = 0

```
Current_Variance = (((Abs(StnBit_WD - Reference)) / Reference) * 100)
End If
' compare to selected % variance and log if a fault
If (Current Variance > Percentage) Then
List1.AddItem "Fault on Bar: " & Text6.Text & ", Percentage Variance = " &
              "Current_Variance & ", Segment Reading: " & ActVolRead & "V" &
              ", Reference Reading: " & ActReference & "V"
Let Text8.Text = Val(Text8.Text) + 1
End If
'end current reading and comparison
     Command9.Enabled = False 'disables man reading but and dsply
    Frame20.Enabled = False
    Picture5.BackColor = QBColor(12) '
    Frame21.Enabled = False
    Let Command10.Enabled = False ' error1
    Command10.BackColor = &H8000000F
    Frame14.ForeColor = &H80000012
    Frame14.FontSize = 8
    Frame14.FontBold = False
    Let Command11.Enabled = False ' error2
    Command11.BackColor = &H8000000F
    Frame16.ForeColor = &H80000012
    Frame16.FontSize = 8
    Frame16.FontBold = False
    MSComm1.Output = "E" ' to microcontroller
    Picture8.BackColor = &H800000F
    Picture9.BackColor = QBColor(10)
' checking the 1st 5 readings to see if the ref reading is from a fault bar.
Let Initial_Count = Initial_Count + 1
  If (Initial_Count = 6) And (Val(Text8.Text) = 5) Then
  Let Reference = StnBit WD
  Let ActReference = (Reference * ActVolReadRes)
  Let mVActReference = (ActReference / 1000
  Let Text8.Text = ""
  Let No_of_Bars = ((Val(Text6.Text) + Val(Text7.Text)) - 1)
  Let Text7.Text = No_of_Bars
  Let Text6.Text = 1
  Let Initial_Error = True ' flag to indicate Ref value error.
```

```
List1.FontBold = True
```

```
List1.AddItem "Test Restarted, Bar 5 is reset as the Initial (First) Bar!"
List1.FontBold = False
End If
```

Else

MsgBox " The Recorded reference value is 0 Volts & is therefore not Valid. Please Restart this Test" End If

End Sub

#### CODE EXTRACT 3-13: CALCULATION SUBPROGRAM

This subprogram has two objectives; the first is to calculate the percentage variance of a present reading from the reference reading whilst the second objective is centered around the reference reading itself. Consider this, what if the reference reading is in fact a fault reading, i.e. what if the reference reading is the reading across an open or short circuit or a damaged winding on the armature? The first step would be to check if the first reading recorded is very close or equal to zero volts.

This would indicate a short circuit and this value will therefore not be stored as a reference value. A true open circuit would be indicated by a reading that is very close or equal to the supply voltage. But the supply voltage and current is not the same for every type of armature tested due to the armature characteristics as well as the arc length between the test current supply probes on the commutator. Also considering that damaged and potentially problematic windings also have to be detected, there is no clear cut value that can be used to reject a reference reading (that is other than the reading for a short circuit). In order to detect that the reference value being used is indeed a value that was recorded on a fault winding, the GUI performs a check after the first five readings taken, after the reference reading.

This essentially means that this check is carried out on the sixth reading captured. Variable **Initial Count** keeps track of the number of readings taken and by recalling an earlier discussion regarding the Test Status display, the reader will remember that the number of faults recorded is displayed in a text box (Text8). Noting this, and as shown in Code Extract 3-13, in the event that the value in **Initial Count** is six and the value of Text8 is five,

If (Initial\_Count = 6) And (Val(Text8.Text) = 5) Then

this event will indicate that five (5) faults have been logged immediately after the reference value was set.

If such an event occurs, the GUI will conclude that based on the last five captured readings, the reference value was set on a fault or damaged winding reading. The reference value is then reset to that of the value recorded on the present bar (which will be the sixth bar). The values in the Test Status display as well as the variables that hold the values that reflect the number of bars that remain to be tested and the bar presently under test, are also adjusted appropriately to reflect this change. The test is reset on the sixth bar and continues as normal from that point forward.

For all of the above to occur the data transmitted from the controller has to be converted, manipulated and passed through mathematical formulae in order to obtain usable values that can be compared, displayed and stored. The following discussion will cover the manner in which this is done. Recall, that ASCII codes are transmitted by the controller. These ASCII codes are then converted into their associated numerical values in the OnComm procedure using the Visual Basic Asc function, as shown below,

Low\_Byte = Asc(SerIn)

and,

High\_Byte = Asc(SerIn)

When the calculation subprogram is called by the OnComm procedure, the Low\_Byte and High\_Byte variables already contain the required numerical values. The first step in the calculation subprogram is to convert these two bytes of data into the original sixteen (16) bit word that was present in the ADC register before its transmission as two separate bytes to the CM. This is accomplished using:

Once the sixteen-bit word has been realised, it is then necessary to calculate the actual voltage that this word represents. This is accomplished by dividing the ADC reference value (which is also the maximum input ADC voltage) by the sixteen-bit word when each bit is equal to 1 (i.e. 1111 1111 1111 1111 which equals 65536). By doing this,

the voltage-per-bit value is obtained, or the resolution in volts (stored in variable **ActVolReadRes**). With an ADC internal  $V_{Ref}$  of 4.096V and sixteen bit resolution, the smallest voltage increment that the input signal can broken down into is:

Resolution in Volts =  $4.096 / 65536 = 62.5 \mu V$ 

This value is then multiplied by the value of the sixteen-bit word that was captured (**StnBit\_WD**) to produce the actual voltage associated with the sixteen bit word. This actual voltage is then stored in variable, **ActVolRead**. Furthermore, the actual voltage is divided by the analogue gain to obtain the true voltage reading that is present on the bars before the analogue gain. Note that the variable named "Gain" holds the value of the analogue gain as set using the Instrumentation Amplifiers external gain resistor  $R_G$ .

Let ActVolReadRes = (4.096 / 65536) Let ActVolRead = (StnBit\_WD \* ActVolReadRes) Let mVActVolRead = (ActVolRead / Gain)

For the calculation of the percentage variance however, these actual voltage values are not used. The percentage variance is calculated using the numerical value of the sixteen bit words that are stored in variable **StnBit\_WD** (which holds the value of present reading) and in variable **Reference** (which holds the value of the reference reading). This is done in order to use values as close to the original recorded values as possible and to decrease the probability of any errors that may arise by using values that have been rounded off. The equation below is responsible for the calculation of the percentage variance of the present reading from the reference reading.

Current Variance = (((Abs(StnBit\_WD - Reference)) / Reference) \* 100)

**Abs** is a Visual Basic function that produces the absolute value of a mathematical calculation. Here it is used to provide the absolute value for the difference between the present reading value (**StnBit\_WD**) and the reference reading value (**Reference**), as either value may greater than the other for any reading taken. This value is then divided by the reference value and multiplied by a hundred to obtain the percentage variance.

The next step is to compare the percentage variance value (**Current Variance**) to the allowable or pre-selected percentage variance that was selected by the user. Recall that this pre-selected percentage variance is stored in variable, **Percentage**.

```
If (Current_Variance > Percentage) Then
List1.AddItem "Fault on Bar: " & Text6.Text & ", Percentage Variance = " &
"Current_Variance & ", Segment Reading: " & ActVolRead & "V" &
", Reference Reading: " & ActReference & "V"
Let Text8.Text = Val(Text8.Text) + 1
End If
```

The statements above show the comparison of the two values. In the instance where **Current Variance** is greater than **Percentage**, a fault will be recorded in the Fault Log display.

Another subprogram that is executed on every bar is the calculation of the number of bars that remain to be tested. The Bar\_count subprogram decrements the number of bars remaining to be tested (stored in variable No\_of\_Bars) by one each time the controller transmits an increment prompt (ASCII code for the letter 'I'). This increment prompt is transmitted by the controller before the rotation of the armature under test is initiated hence the total number of bars is decremented before the very first rotation.

With this in mind, the reader will follow that when the increment signal is transmitted by the controller before the last pair of bars is tested, the decremented value in Bar\_count will be zero. After the last pair of bars has been tested and when the controller next sends an 'I' the decremented value will be less than one. It is at this point that the GUI signals to controller that the last bar has been tested and that the test must now end.

The prompt to the CM that signals that the last bar has been tested is the ASCII code for the letter 'P'. For every increment signal received by the GUI before the last one, the ASCII code for the letter 'p' is transmitted to the controller to indicate the last bar has not been tested and that rotation should be initiated. See Code Extract 3-14. Public Sub Bar\_count() Let No\_of\_Bars = No\_of\_Bars - 1 If No\_of\_Bars < 0 Then ' <0 cos for the last bar this variable = 0 MSComm1.Output = "P" Command6.BackColor = QBColor(9) Command5.BackColor = &H8000000F Command6.Enabled = True Else MSComm1.Output = "p" Let Text7.Text = No\_of\_Bars Let Text6.Text = Val(Text6.Text) + 1 End If End Sub

#### CODE EXTRACT 3-14: BAR\_COUNT SUBPROGRAM

## 3.3 The Remote Graphic User Interface (RGUI)

The Remote Graphic User Interface is used by authorised users in remote locations to view test records via the network, see Appendix F for a true representation of the RGUI and Appendix G for a printout of the associated code. The RGUI can only access information when the test station GUI stores data in a location on the network by mapping the network as a drive. The Default Path that is set on the RGUI must be the same as that of the GUI on the workshop floor. The RGUI only allows users to read and print information from saved files. Note that the format in which test data is displayed is exactly the same as the format in which the GUI displays retrieved file data as shown in Figure 3-37A and Figure 3-37B.

The user cannot edit, replace or delete files from remote location. The RGUI contains three fields, namely the Search Information field, Data Display field and Directory path field. The inputs and button prompts are much the same as those on the test station GUI. They carry out the same functions and operate in the exact same way. The only variation from the test station GUI is the File Names and Refined Search – Dates display lists. The File Names list and contents is the same as the list that appears on the test station GUI when the Open button is clicked. In the RGUI this list box is permanently displayed.

The Refined Search – Dates list and contents is the same as the list that appears when a serial number is clicked on in the serial number list on the GUI. Here as well, the difference is that this list box is permanently displayed on the RGUI. As in the GUI, when Open is clicked, an input box appears prompting the user to enter a serial number. If a valid serial number is entered all test results for that serial number will be displayed in the Data Display screen. If 'Find' is entered into the input box all the serial numbers of armatures are displayed on the RGUI in the File Names list.

Upon clicking on an item from this list, all dates on which tests were carried out on the selected armature as well as a 'View All' option appears in the Refined Search – Dates list. By clicking on a specific date the results of test(s) carried out on that date will be displayed in the Data Display screen. If 'View All' is selected, results of all tests carried out on the selected armature are displayed. All other functionalities that are available on the RGUI operate in the same manner as those on the GUI.



#### FIGURE 3-36: REMOTE GRAPHIC USER INTERFACE (RGUI)

| earch Information      | - Display Data                                                                                                                                    |                                                                                           | - Directory Rath                           |
|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------|
| Recounced              |                                                                                                                                                   |                                                                                           | - Path Propeting                           |
| Password               | Job Number: Test Results 1                                                                                                                        |                                                                                           | Part Properties                            |
|                        | Armature Name: b Number of Bars: 10                                                                                                               |                                                                                           | View Default Path                          |
| Password               | Date: 2006/04/12                                                                                                                                  |                                                                                           |                                            |
|                        | Recorded Faults                                                                                                                                   |                                                                                           | View Selected Path Change Default Path     |
| Print Displayed Data   | Fault on Bar. 2 Percentage Variance = 4.370112E-02 Segment Ber                                                                                    | ading: 0.1372522V Beference Beading: 0.1373122V                                           | Drive / Network Path                       |
| Print                  | Fault on Bar: 3, Percentage Variance = 18,39481, Segment Reading                                                                                  | 1.0.1625705V, Reference Reading: 0.1373122V                                               |                                            |
|                        | Fault on Bar. 5. Percentage Valiance = 0.5054040, Segment Reading                                                                                 | p. 0.1303013V, Reference Reading: 0.1373122V                                              | I a c frincet                              |
| Upen File              | Fault on Bar: 6, Percentage Valiance = 0.4614717, Segment Reading<br>Fault on Bar: 7, Percentage Valiance = 10.28797, Segment Reading             | p. 0.1356766V, Reference Reading: 0.1373122V<br>0.1514389V, Reference Reading: 0.1373122V | Folders                                    |
| Upen                   | Fault on Bar: 8, Volt-Drop Reading Is Zero (OV), Indicating A Possible S<br>Fault on Bar: 9, Volt-Drop Reading Is Out Of Range, Indicating A Poss | Short Circuit<br>ible Open Circuit                                                        | (C) .                                      |
| - File Names           | Fault on Bar: 10, Volt-Drop Reading Is Zero (0V), Indicating A Possible<br>End Df Becorded Besults                                                | Short Circuit                                                                             | Documents and Settings                     |
| Test2                  |                                                                                                                                                   |                                                                                           | My Documents                               |
| Test                   |                                                                                                                                                   |                                                                                           | Sun                                        |
| 002                    |                                                                                                                                                   |                                                                                           | M.Sc Only                                  |
| aa<br>Test Demo1       |                                                                                                                                                   |                                                                                           | 📃 data 💌                                   |
| Test Results           |                                                                                                                                                   |                                                                                           | Files                                      |
| Test Results: 1        |                                                                                                                                                   |                                                                                           | A durin Decement Form for                  |
| 001 Test Results       |                                                                                                                                                   |                                                                                           | ana.fm                                     |
| 888                    |                                                                                                                                                   |                                                                                           | ana.vbp<br>ana.vbw                         |
|                        |                                                                                                                                                   |                                                                                           | ana2.fm<br>Animation.fm                    |
| Refined Search - Dates |                                                                                                                                                   |                                                                                           | Animation.vbp<br>Animation.vbw             |
| View All<br>2005/04/12 |                                                                                                                                                   |                                                                                           | Backup of PCB1.PCB<br>Backup of Sheat2.Sch |
| 2000 0 11 12           |                                                                                                                                                   |                                                                                           | binary to interger.fm                      |
|                        |                                                                                                                                                   |                                                                                           |                                            |
|                        |                                                                                                                                                   |                                                                                           |                                            |
|                        |                                                                                                                                                   |                                                                                           |                                            |
|                        |                                                                                                                                                   |                                                                                           |                                            |
|                        |                                                                                                                                                   |                                                                                           |                                            |
|                        |                                                                                                                                                   |                                                                                           |                                            |
|                        |                                                                                                                                                   |                                                                                           |                                            |
|                        |                                                                                                                                                   |                                                                                           |                                            |
|                        |                                                                                                                                                   |                                                                                           |                                            |
|                        |                                                                                                                                                   |                                                                                           |                                            |
|                        |                                                                                                                                                   |                                                                                           |                                            |
| Exit Program           |                                                                                                                                                   |                                                                                           |                                            |
| Exit                   |                                                                                                                                                   |                                                                                           |                                            |
|                        |                                                                                                                                                   |                                                                                           |                                            |

#### FIGURE 3-37A: REMOTE GRAPHIC USER INTERFACE (RGUI) DATA DISPLAY

Job Number: Test Results 1 Operator's Name: Sunveer Matadin Armature Name: b Number of Bars: 10 Percentage Variance: 5% Date: 2006/04/12

**Recorded Faults** 

Fault on Bar: 2,<br/>Percentage Variance = 4.370112E-02,<br/>Segment Reading: 0.1372522V,<br/>Reference Reading: 0.1373122VFault on Bar: 3,<br/>Percentage Variance = 18.39481,<br/>Segment Reading: 0.1625705V,<br/>Reference Reading: 0.1373122VFault on Bar: 4,<br/>Percentage Variance = 0.5904046,<br/>Segment Reading: 0.1365015V,<br/>Reference Reading: 0.1373122VFault on Bar: 5,<br/>Percentage Variance = 10.91533,<br/>Segment Reading: 0.1223241V,<br/>Reference Reading: 0.1373122VFault on Bar: 6,<br/>Percentage Variance = 0.4614717,<br/>Segment Reading: 0.1366786V,<br/>Reference Reading: 0.1373122VFault on Bar: 7,<br/>Percentage Variance = 10.28797,<br/>Segment Reading: 0.1514389V,<br/>Reference Reading: 0.1373122VFault on Bar: 8,<br/>Volt-Drop Reading Is Zero (0V), Indicating A Possible Short Circuit<br/>Fault on Bar: 10,<br/>Volt-Drop Reading Is Zero (0V), Indicating A Possible Short Circuit<br/>Fault on Bar: 10,<br/>Volt-Drop Reading Is Zero (0V), Indicating A Possible Short Circuit<br/>End Of Recorded Results

## FIGURE 3-37B: REMOTE GRAPHIC USER INTERFACE (RGUI) DISPLAY FORMAT

# Chapter 4

## **Microcontrollers and Embedded Programming**

In this chapter the author will discuss the core of the controller. This core comprises a pair of microcontrollers that communicate with each other via their port pins in order to perform the appropriate physical tasks, at the precise time, based on information received from the GUI and transducers on the automated machine i.e. the Physical Test Station. Both are AT89S51 microcontrollers and are enhanced derivatives of the 8051 family. These microcontrollers were chosen on the basis of them having the following essential features: four eight pin input/output ports, 4K bytes of Flash memory, two external interrupts, two sixteen bit timers and a full duplex UART serial channel. For further information on this microcontroller, see Appendix H for a comprehensive datasheet.

A microcontroller is the bridge between software instructions (commands) and electrical hardware. Programs written in C, Assembly or any other compiler compatible language are compiled and assembled, and stored in microcontroller memory which currently is most likely to be EEPROM technology. The speed at which these programs are stepped through (or executed) is dependent on the length of time that one machine cycle takes to execute and the number of machine cycles that are required for each instruction to execute. Depending on the instruction, data is either processed or input and output ports are addressed to either read signals or produce signals from or to interfacing electrical hardware.

The length of time that one machine cycle takes to execute depends on the frequency of the oscillator that provides the clocking source for the microcontroller. This design is not time critical which means that commands based on processed information did not have to execute at a very rapid rate. It is for this reason that a 12MHz quartz crystal was chosen to drive the on-chip oscillator resulting in a machine cycle of one microsecond (1 $\mu$ s) duration. The tasks performed by these microcontrollers do not involve complex mathematical calculations or algorithms. It is for this reason that code was written in assembly language as opposed to a higher level programming

language. The advantages that assembly language have over higher level languages for these types of applications (bit manipulation, logic operations and input/output port interaction) are execution speed and the efficient use of program memory space. The Acebus development environment was used to develop and simulate the code for both microcontrollers. This tool allows the developer to write, assemble, simulate and debug code written in assembly language. In the simulation environment code can be stepped through line-by-line and the changes in the respective registers, special function registers, input/output ports etc. are reflected accordingly. See Figure 4-1A and Figure 4-1bB for a screen captures of the Acebus development environment and Appendix I for a labeled representation of the development environment.

|    | DEFAULT - 22-0                     | 09-05 Micro1 : | 16bitADC                                                    |            |        |             |                 |                                                    | ×             |
|----|------------------------------------|----------------|-------------------------------------------------------------|------------|--------|-------------|-----------------|----------------------------------------------------|---------------|
|    | ie cat view ∧<br>⊃l <b>⊘¦⊟∣Ø</b> ∣ | K B R          | see wontor oppons whow map<br>■ ◎ 問 ☞ 神 伊 伊 四 風 の 歌 歌 画 ? № |            |        |             |                 |                                                    |               |
| Ē  | 22.00.05 Mic                       | vol 16bitéDC   |                                                             |            | AR 0.0 | 2-00-05 Miz | wo2 latest      |                                                    | T             |
| lh | , 22-09-05 MIC                     | TMD            | 60                                                          |            |        | Data L      | act modi        | ified : 22-09-05                                   | 싂             |
| Ш  | e a ·                              | cine           | A. #'D'.N END :LAST BAR REACHED                             |            | í.     | ******      | 350 mous        | ***************************************            | - H           |
| Ш  | bu.                                | CLB            | P2.7 , to u2 to signal last bar                             |            | í.     |             | * *             | **************************************             |               |
| Ш  |                                    | jmp            | Finish                                                      |            | ;      | *****       | ******          | ****                                               |               |
| Ш  |                                    |                |                                                             |            |        |             |                 |                                                    |               |
| Ш  | ;DEC NO                            | OF BARS        | FROM THE TOTAL IN U1 HERE                                   |            |        |             | ORG             | OH                                                 |               |
| Ш  | ;ALSO CH                           | HECK FOR       | LAST BAR - IF YES, ALLERT NB                                |            |        |             | LJMP            | MAIN                                               |               |
| Ш  | ;THEN WA                           | AIT FOR        | THE "END"PULSE FROM NE AND JUMP TO END                      |            |        |             | ORG             | UUU3H                                              |               |
| Ш  | ,                                  |                |                                                             |            |        |             | DUMP            | DO12H                                              |               |
| Ш  | GO.                                | SETE           | PO D: START TO U2 / FET OFF                                 |            |        |             | LIMP            | EXITSE                                             |               |
| Ш  |                                    | 0010           | LORO, MININE TO OD , LDI OLL                                |            |        |             | DOTTE           |                                                    |               |
| Ш  |                                    |                |                                                             |            | C      | OUNT        | EQU             | -10000 ;DELAY LOOP                                 |               |
| Ш  |                                    | SETB           | P2.7 ;NOT LAST BAR                                          |            | C      | CUNT2       | EQU             | -50000 ;SAFTY TIME                                 |               |
| Ш  | BGN_TW:                            | JNB            | P2.2, BGN_TW ; WAIT TO CHECK IF PULSE WAS REC               | IEVEL      |        |             |                 |                                                    |               |
| Ш  |                                    | CLR            | P2.7 , to u2 to signal last bar                             |            |        |             | ORG             | 0030H                                              |               |
| Ш  |                                    | NOR            | EXU                                                         |            | 191    | IATN:       | MOV             | TMOD, #00010001B                                   |               |
| Ш  |                                    | NOP            |                                                             |            |        |             | MOV             | TE #00000018                                       |               |
| Ш  |                                    | NOP            |                                                             |            |        |             | 1101            | 11, 000001012                                      |               |
| Ш  |                                    | NOP            |                                                             |            | ;      | *****       | ******          | **************************************             |               |
| Ш  | WT_RDNG:                           | : JNB          | P2.2,WT_RDNGE ; WAIT FOR TAKE READING PULSE                 |            |        |             | MOV             | PO,#OH ; only for sim, input ports must be set to  |               |
| Ш  |                                    | SETB           | P0.7; TO U2 TO CONT AFTER READING TAKEN                     |            |        |             | MOV             | P1,#1111111B ; only for sim, input ports must be   |               |
| Ш  |                                    | NOP            |                                                             |            |        |             | MOV             | P2, #OH ; only for sim, input ports must be set to |               |
| Ш  |                                    | NOP            |                                                             |            |        | ******      | MOV<br>******** | P3,#UUUIIIIIB ; only for sim, input ports must be  |               |
| Ш  |                                    | CLR            | PN 7                                                        |            | · '    |             |                 | INTILIZE 1/O PORTS                                 |               |
| Ш  |                                    | CALL           | RDG SUB                                                     |            | ;      | clear:      | ing all         | flags                                              |               |
| Ш  |                                    | JMP            | WT_U2ST; LOOP ENDS NORMALLY                                 |            |        |             | CLR             | 00H                                                |               |
| Ш  | WT_RDNG                            | E:JNB          | 03H,WT_RDNG                                                 |            |        |             | CLR             | 01H                                                |               |
| Ш  |                                    | CLR            | 03H                                                         |            |        |             | CLR             | 02H                                                |               |
| Ш  |                                    | JMP            | WT_U2ST; LOOP ENDS AFTER ERROR 1 ND 2                       |            |        |             | CLR             | 03H                                                |               |
| Ш  |                                    |                |                                                             |            |        |             | CLR             | 04H                                                |               |
| Ш  |                                    |                |                                                             |            |        |             | CLR             | 054                                                |               |
| Ш  |                                    |                |                                                             |            |        |             | CLR             | 07H                                                |               |
| Ш  |                                    |                |                                                             |            |        |             | CLR             | 08H                                                |               |
| Ш  | ;*****                             | *****          | ****************                                            | ****       |        |             | CLR             | 09H                                                |               |
| Ш  | ;                                  |                | EXTERNAL INTERRUPT ISR - FOR ERRORS 1 TO 4                  |            |        |             | CLR             | OAH                                                |               |
| Ш  | ;*****                             | *****          | ***************************************                     | ****       |        |             | CLR             | OBH                                                |               |
| Ш  | EVOTOD.                            | TND            | P2 4 EDD2                                                   |            |        |             | CLR             | UCH<br>BDW                                         |               |
| Ш  | EVOIPE.                            | CALL           | ER1 SUB                                                     |            |        |             | CLK             | ODH                                                |               |
| Ш  |                                    | SETB           | 03H; FLAG TO INDICATE TO WT RDNG LOOP THAT E                | N ERF      |        |             | SETB            | EA                                                 |               |
| Ш  |                                    | JMP            | EXOOUT                                                      |            |        |             | SETB            | IT1                                                |               |
| Ш  | ERR2:                              | JNB            | P2.5, ERR3                                                  |            |        |             | SETB            | ITO                                                |               |
| Ш  |                                    | CALL           | ER2_SUB                                                     |            | A      | GIAN:       | SETB            | EX1; ENABLE EX INT1                                |               |
| Ш  |                                    | SETB           | 03H                                                         |            | s      | TART:       | JNB             | P1.0, START                                        |               |
| Н  | •                                  | JMP            | EXDOUT                                                      | <b>,</b> Ľ | •      |             | JB              | P1.6, AUTO ; (1 = AUTO, 0 = MAN)                   | -II           |
| 브  | - Mala Janaan Cr                   |                |                                                             | ا // ت     |        |             |                 |                                                    |               |
| FO | r Heip, press F1                   | 0/5            |                                                             | _          |        |             |                 | Ln 257, Col 46   INS   Read                        | : <i>//</i> / |
| P  | age 2 Sec 1                        | 2/3            | At 6.1cm Ln 6 Col 13 REC IRK EXT OVR English (U.S US        |            |        |             |                 |                                                    |               |

#### FIGURE 4-1A: SCREEN CAPTURE OF THE ACEBUS DEVELOPMENT ENVIRONMENT

| 🖀 DEFAULT -     | - Port1          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |            |              |                                        |          |          | _ 🗆 🗡        |
|-----------------|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|------------|--------------|----------------------------------------|----------|----------|--------------|
| File Edit Vie   | ew Assemble Sin  | nulate Monitor Options Window Help                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |            |              |                                        |          |          |              |
|                 | 🖉 🔏 🖻 🖻          | B 🐜 🖗 🗃 🖗 🖗 🖓 🖬 🕘 🖳 🕑 📽 🖿 🤶 🕺                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |            |              |                                        |          |          |              |
| 22-09-05        | 5 Micro1 16bitAD | cX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C  | 22-09-05 M | icro2 latest |                                        | 🔍 Conf   | Reg1     | - U ×        |
|                 | ORG              | OH 🔺                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | IF | ;Date I    | ast mod      | lified : 22-09-05                      | PSW      | 16       |              |
|                 | LJMP             | MAIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | U. | ;*****     | *****        | *************                          | * IP     | 0        |              |
|                 | ORG              | 0003H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11 | ;          | *            | ************ MICROCONTROLLER 2         | IE       | 0        | I            |
|                 | LJMP             | EXOISR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | U. | ;*****     | *****        | *****                                  | * TCON   | 0        | I            |
|                 | ORG              | 0023H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | U. |            |              |                                        | TMOD     | 0        | I            |
|                 | LJMP             | SPISR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11 |            | ORG          | OH                                     | PCON     | 0        | I            |
|                 |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | U. |            | LJMP         | MAIN                                   | T2COI    | N 0      | I            |
|                 |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | U. |            | ORG          | UUU3H                                  | SCON     | U        | I            |
|                 |                  | **************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | U. |            | LJMP         | EXUISE<br>00120                        | SBUF     | U        | I            |
| ;               |                  | ANALY AND ANALY | U. |            | URG<br>T TMD | DUIJH                                  | T U      | 0        | I            |
| MATN            | MOV              | p0 #00000100P ; only for gim input ports must be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | U. |            | TOWE         | BAILSK                                 | m2       | 0        | I            |
| I MAIN.         | MOV              | p1, #111111118 ; only for sim, input ports must be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | U. | COUNT      | ROU          | -10000 (DELAY LOOP                     | RCAP'    | 2 0      | I            |
|                 | MOV              | P2, #01111110B ; only for sim, input ports must be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | U. | COUNT2     | EOU          | -50000 ;SAFTY TIME                     | I GITTE  |          |              |
|                 | MOV              | P3,#010101111B : (rEC & TRANS PORTS SET TO 1), onl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11 |            |              |                                        | 0        |          |              |
| ;****           | ******           | **************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11 |            | ORG          | 0030H                                  | Regi     | SUEFI    |              |
|                 |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | U. | MAIN:      | MOV          | TMOD, #00010001B                       | A        | <u> </u> |              |
|                 | SETB             | P3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | U. |            | MOV          | IP,#0000001B                           | B        | J        |              |
|                 |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | U. |            | MOV          | IE,#00000101B                          | RU<br>p1 | 0        |              |
|                 | CLR              | RSO ;1S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | U. |            |              |                                        | R2       | 0        |              |
|                 | SETB             | RS1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11 | ;*****     | *****        | ************************************** | * 23     | 0        |              |
|                 | MOV              | R6,#50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | U. |            | MOV          | PO,#OH ; only for sim, input po        | r R4     | 95       |              |
| DLY3:           | : mov            | r5,#100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | U. |            | MOV          | P1,#11111111B ; only for sim, i        | n R5     | 100      |              |
| dly:            | mov              | r4,#100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | U. |            | MOV          | P2, #0H ; only for sim, input po       | r R6     | 50       |              |
| aryz:           | : djnz           | r4, d1y2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | U. |            | PIUV         | P3, #UUUIIIIIB ; ONLY FOR SIM, 1       | a R7     | 0        | I            |
|                 | D IN Z           | P6 DIV3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | U. | ,          |              | INTIGIZE 1/O PORTS                     | SP       | 7        | I            |
|                 | CLR              | RSD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | U. | : clear    | ing all      | flags                                  | PC       | 62       | I            |
|                 | CLR              | RS1 ; 1S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | U. | , 01001    | CLR          | 00H                                    | DPTH     | R O      | I            |
|                 |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | U. |            | CLR          | 01H                                    | 0        | -        | - Indiana    |
|                 |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11 |            | CLR          | 02H                                    | IRAN     | 41       |              |
|                 | CLR              | 00H ;CLEARING FLAGS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | U. |            | CLR          | 03H                                    | 00:      | 0        | <b>_</b> _   |
|                 | CLR              | 01H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | U. |            | CLR          | 04H                                    | 01:      | 0        |              |
|                 | CLR              | 02H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11 |            | CLR          | 05H                                    | 02:      | U        |              |
|                 | CLR              | 03H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11 |            | CLR          | 06H                                    | 03:      | 0        |              |
|                 | CLR              | 04H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | U. |            | CLR          | 07H                                    | 0.5      | 0        |              |
|                 |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11 |            | CLR          | 08H                                    | 0.6      | 0        |              |
| ;****           | ***              | **************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | U. |            | CLR          | 09H                                    | 07.      | n        |              |
|                 | CLR              | P2.U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | U. |            | CLR          | UAH                                    | 08:      | Ő        |              |
|                 | NOP              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | U. |            | CLR          | UBH                                    | 09:      | ŏ        |              |
|                 | CLR              | 23.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | U. |            | CLR          | OCH<br>BDU                             | 0A:      | Ō        |              |
|                 |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11 |            | CLK          | ODH                                    | 0B:      | 0        |              |
|                 | NOR ++           | o+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11 |            | CDTD         | F A                                    | 0C:      | 0        |              |
|                 | NOP /C           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |            | SETE         | TTT1                                   | OD:      | 0        |              |
| Port1           |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |            |              |                                        | 0E:      | 0        |              |
| PO 000          | 00100            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -  |            |              |                                        | OF:      | 0        |              |
| P1 111          | .11111           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |            |              |                                        | 10:      | 0        |              |
| P2 011          | .11110           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |            |              |                                        | 11:      | U        |              |
| P3 011          | .10111           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _  |            |              |                                        | 1 12:    | U        | <u> </u>     |
| For Help, press | 5 F1             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |            |              |                                        |          |          | INS Ready // |
| Page 2          | Sec 1 2/3        | At 6.9mm in 7 Col 40 DEC TOY EXT COD English (U.S. 1038                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |            |              |                                        |          |          |              |

FIGURE 4-1B: SCREEN CAPTURE OF THE ACEBUS DEVELOPMENT ENVIRONMENT IN SIMULATION MODE

Each microcontroller has a specific function, one being communication and acquisition of data, as preformed by the Communication Microcontroller (CM) and the other being the control of the automation tasks, as performed by the Automation Microcontroller (AM).

## 4.1 The Communication Microcontroller

The Communication microcontroller communicates with the GUI via its onboard serial port and with the Automation Microcontroller and the Analogue-to-Digital Converter (ADC) via its input/output pins (I/O pins).



FIGURE 4-2: SYSTEM BLOCK DIAGRAM

The function of the CM includes the transmission and reception of prompts to and from the GUI, the control of the ADC, the capture of data (high and low bytes) and storage thereof in two registers in its memory and the transmission of this data to the GUI for analysis. When the analysis is complete the GUI prompts the CM which in turn signals the AM to continue with the test.

While the AM is in control it communicates with the CM in the event of any system errors. If no errors occur, the AM will hand over control to the CM in order for the CM to take the volt-drop readings after the test current has been switched on and the test probes have been lowered onto the bars of the commutator. These readings are then transmitted to the GUI and so the process continues until the last pair of bars has been tested. See Figure 4-3 for the flow diagram for the CM. A discussion follows thereafter.






FIGURE 4-3: FLOW DIAGRAM FOR THE COMMUNICATIONS MICROCONTROLLER

On power up the CM initialises the ADC (i.e. the MAX 1166). Referring to the MAX 1166 datasheet, included as Appendix J, the ADC manufacturer's application information found on page 9 suggests that a 'dummy' conversion should be run in order to put the ADC in a known state after powering up from shut down. The CM then waits for the GUI to transmit a "Status: Ready" prompt, i.e. the ASCII code for the letter 'A'. When this has been received the CM transmits 'b' to the GUI to request the mode of operation in which the test is to be run. If a 'G' is received then the test is to be run in manual mode, the CM then informs the AM of this by Clearing (0) the CM P0.6 so that the AM can enter Powerdown mode.

The CM notes that the test is being run in manual mode by setting flag 04H in the bit addressable ram. This flag is tested in the CM Reading Subroutine in order to establish whether communication with the AM should be attempted. Recalling that AM is in Powerdown mode during a manual test any attempt by the CM to communicate with the AM will be futile and will ultimately leave the CM in a continuous wait loop as it will be waiting for communication signals from the AM that will never arrive. When flag 04H is tested in the Reading Subroutine and is found to be Set (1), the CM will not attempt to communicate with the AM as the test is being run in manual mode. However, if this flag is tested and is found to be Low (0) the CM will establish communication with the AM as the test will be running in automated mode. If a 'g' is received the test will be run in the automated mode. The AM will be informed of this by Setting (1) the CM P0.6. Once the CM captures the mode of operation it transmits a 'd' to the GUI to indicate that it is ready to begin the test. Recalling the discussion on the GUI Start control, it is after receiving the 'd' that the Start Button is enabled. On clicking the Start button an 'A' is transmitted by the GUI. On receiving this prompt ('A') the controller begins the test.

For the first pair of bars to be tested the CM transmits an increment prompt to the GUI, the ASCII code for the letter 'I' without waiting for an increment signal from the AM. However, after the first pair of bars has been tested, the CM will wait for the increment signal from the AM before transmitting the 'I' prompt to the GUI. The increment signal from the AM is signaled by setting its output P0.0, High (logic level 1). See Appendix K for a complete list of Input/Output port utilisations for both microcontrollers.

The input P2.3 of the CM which is directly connected to P0.0 of the AM is then also read as a High. This High state on the CM input pin is recognised as an increment signal from the AM. This signal from the AM serves to inform the GUI, via the CM, that the system is ready to test the next pair of bars. When the increment prompt is transmitted to the GUI, the Bar\_count subroutine is called in order to ascertain whether the last pair of bars has been tested. If it has been tested, the GUI transmits a 'P' to the CM to acknowledge that the test has been completed. On receiving this prompt the CM in turn informs the AM that the test is over and that Powerdown mode should be entered into. After verifying that the AM has received the command to enter Powerdown the CM itself enters Powerdown.

Note that in manual mode, the CM does not read an increment pulse from the AM as the AM is in Powerdown mode. An increment signal is generated by the user pressing on a switch that is connected to P3.6 which sends the increment prompt to the GUI.

The end of a test is signaled by the reception of a 'B' prompt from the GUI. This prompt is transmitted when the END control button is clicked on the GUI. The

prompt 'B' is transmitted regardless of the mode in which the test has been run. However, in the automated mode the CM does not wait for the receipt of this prompt to enter Powerdown as it is already aware of the end of the test due to the AM increment signal and the GUI Bar\_count subroutine.

If the last pair of bars has not yet been tested, the GUI transmits 'p'. When the CM receives this signal it instructs the AM to begin the rotation of the armature under test by setting P0.0 High. The CM now waits for the AM to detect the next pair of bars, stop the armature rotation, switch on the test current and lower the test probes onto the detected bars. Once the AM receives a signal from the detection unit indicating that the test probes are on the commutator it signals the CM to take a reading. When the CM reads P2.2 as a High it calls the subroutine that captures the volt-drop reading for the pair of bars under test. This subroutine will be discussed in detail later in this chapter. The captured data is stored as a High byte and Low Byte in two registers in the CM memory (RAM). The CM then transmits each byte to the GUI where it is analysed. Upon completion of the calculation and the analysis process by the GUI, the GUI transmits an ASCII 'E' to the CM. This prompt serves to inform the CM that the data has been analysed and that the GUI is ready to proceed to the next pair of bars.

It should be noted here that as an additional feature, one hundred consecutive readings are captured at 1000µs intervals and averaged for each pair of bars. The CM and GUI Reading Subroutines were therefore modified to enable this functionality. The details and discussion offered in this chapter are aimed at providing an understanding of the basic features and concepts before the more complex additional features are discussed in Chapter 6.

On receiving this prompt, the CM informs the AM that it too is ready to proceed to the next pair of bars by setting its P0.7 High (1). On receiving a High on P1.7, the AM confirms that it is ready to proceed to the next pair of bars by setting its P0.1 High (1) which is the increment signal that the CM reads on its P2.3. When P2.3 is read as a High (1) the CM transmits the increment prompt ('I') to the GUI.

The CM follows this process until the last pair of bars has been tested or until any one of the four possible system errors interrupts the process flow. When such an interrupt

is encountered there is a branch from the main program flow to an interrupt handling procedure (an ISR) that caters specifically for the encountered error. Once the error has been 'handled' control is handed back to the main program. These Interrupts, their associated Interrupt Service Routines (ISRs) and critical subroutines will be discussed in the sections that follow. See Appendix L for the source code for both the Communication and Automation microcontrollers.

## 4.1.1 Microcontroller Initialisation

On power up the microcontroller must perform an initialisation procedure to ensure that all the ports, timers and special function registers are set up appropriately to undertake the tasks that they are assigned. As the name indicates, the AT89S51 input/output ports can be used as either inputs that read signals from the interfacing digital system or outputs that transmit signals to the interfacing digital system. Each pin can be addressed independently and can therefore be configured individually as an input or an output pin. Pins can be configured as inputs by writing a logic level 1 (High) to their port latches. If a port latch contains the logic level 0 (Low), it will be configured as an output pin. Code Extract 4-1 shows the input/output port configuration for the CM as depicted in Appendix K.

| MAIN: | MOV | PO,#00000100B |
|-------|-----|---------------|
|       | MOV | P1,#11111111B |
|       | MOV | P2,#01111110B |
|       | MOV | P3,#01010111B |

### CODE EXTRACT 4-1: COMMUNICATION MICROCONTROLLER I/O PORT CONFIGURATION

Also to be initialised are the various Special Function Registers (SFRs) and Timers as shown in Code Extract 4-2.

| MAIN2: | MOV  | SCON,#01010000B |
|--------|------|-----------------|
|        | MOV  | TMOD,#20H       |
|        | MOV  | тн1, #-13       |
|        | SETB | TR1             |
|        | MOV  | IE,#10000000B   |
|        | MOV  | IP,#00010000B   |
|        | SETB | ITO             |

# CODE EXTRACT 4-2: INITIALISATION OF SPECIAL FUNCTION REGISTERS FOR THE CM

Special Function Registers are associated with specific microcontroller features, properties and settings. For example, the SCON SFR is used in conjunction with the serial port, the TMOD SFR is used in conjunction with the timers, and the IE and IP SFRs are used in conjunction with the interrupts. It is for this reason that the author has opted to discuss the initialisation of these SFRs when discussing their associated microcontroller features.

# 4.1.2 Serial Port

The serial port provides a means of data transmission and reception. A parallel-toserial conversion takes place on transmission of data and a serial-to-parallel conversion takes place on reception of data. In other words, when data from a register which holds data as eight parallel bits needs to be transmitted serially, i.e. one bit after the other, a parallel-to-serial conversion needs to take place. And when receiving serially transmitted data and storing it in a register the opposite conversion, i.e. a serial-to- parallel conversion, must take place. See Figure 4-4A and Figure 4-4B.



### FIGURE 4-4A: SERIAL PORT DATA TRANSMISSION



FIGURE 4-4B: SERIAL PORT DATA RECEPTION

The AT89S51 serial port features full duplex operation and two SFRs that provide access to the serial port. These are the SCON and the SBUF registers. SBUF, the serial port buffer, is in fact two individual buffers/registers. A write-only register is accessed when SBUF is written to when the data is to be transmitted and the read-only register that is accessed when SBUF is read from when data has been received. For example, the statement:

MOV SBUF,A

transmits data from the general purpose register, i.e. the Accumulator (A), by copying the value from A to the SBUF register. Similarly using:

received data is read from the SBUF register and copied into A. The SCON special function register, when initiated, sets the mode in which the serial port will operate as well as the individual bits that enable reception, sets flags etc. The statement:

MOV SCON, #01010000B

initialises the serial port for operation in mode 1 by setting bits SCON.7 = 0 and SCON.6 = 1. The Receive Enable bit, SCON.4 is also set to enable the reception of characters.

| Bit    | Symbol | Address | Description                                          |
|--------|--------|---------|------------------------------------------------------|
| SCON.7 | SM0    | 9FH     | Serial Port mode bit 0                               |
| SCON.6 | SM1    | 9EH     | Serial Port mode bit 1                               |
| SCON.5 | SM2    | 9DH     | Serial Port mode bit 2                               |
| SCON.4 | REN    | 9CH     | Receive Enable                                       |
| SCON.3 | TB8    | 9BH     | Transmit bit 8. Ninth bit transmitted in modes 2 & 3 |
| SCON.2 | RB8    | 9AH     | Receive bit 8. Ninth bit received in modes 2 & 3     |
| SCON.1 | TI     | 99H     | Transmit Interrupt flag                              |
| SCON.0 | RI     | 98H     | Receive Interrupt flag                               |

# TABLE 4-1: SERIAL PORT CONTROL (SCON) REGISTER SUMMARYSOURCE: THE 8051 MICROCONTROLLER (REFERENCE BOOK)

The serial port can operate in one of four modes. In Mode 1 the serial port operates as an eight bit UART (Universal asynchronous receiver/transmitter) with variable Baud Rate. The baud rate is set to 2400 using Timer 1. In this mode, transmission and reception involves ten bits. The first bit being the start bit which is always a Low (0), followed by eight bits of data with the leading bit being the LSB and a stop bit which is always a High (1). Setting of the baud rate is discussed in this chapter under Timers i.e. Section 4.1.4.

| MAIN2: | MOV  | SCON,#01010000B |
|--------|------|-----------------|
|        | MOV  | тмор, #20н      |
|        | MOV  | тн1, #-13       |
|        | SETB | TR1             |

### **CODE EXTRACT 4-3: SERIAL PORT AND BAUD RATE INITIALISATION**

# 4.1.3 Interrupts and Interrupt Service Routines (ISRs)

In real world applications, systems are required to respond to random events that may or may not occur and if they do occur the time at which they do so cannot be predicted. It is this random, unpredictable nature of the event that makes it difficult to program the event detection and handling as part of a process flow or main program. A normal program flow is defined and executes statement by statement, jumps, calls subroutines and returns from subroutines, hence leaving no allowance for random, unpredictable events. The most efficient way to handle such events is to pause the normal program flow or the main program, which operates at base-level, jump to a location in memory in which code for handling the event resides (the Interrupt Service Routine), execute the ISR at interrupt-level and then return control to the main program. An Interrupt Service Routine is a block of code that is developed to handle the specific event that triggers its associated interrupt. A microcontroller has various interrupt sources which indicates that such an event has occurred. The AT89S51 has two External Interrupts, two Timer Interrupts and a Serial Port Interrupt. The CM however, only makes use of one external interrupt, External Interrupt 0, and the Serial Port Interrupt.

Whenever a specified event occurs, an interrupt is triggered. Each interrupt has an associated flag to signal that a specific interrupt has occurred. All flags, except the serial port interrupt flags, and level triggered external interrupts flags, are cleared by hardware, i.e. the programmer does not have to clear the flag using software because flags are automatically cleared when vectoring to the ISR. Edge triggered external interrupts flags are cleared by hardware and are therefore favored for this application. When a serial port interrupt occurs the source of the interrupt, i.e. whether the interrupt was triggered on a receive or transmit event, needs to be verified. The only way of verifying this is by checking the status of each flag. The serial port flags must therefore be cleared in software after being checked.

Each interrupt also has an assigned location in memory in which its ISR should reside. See Table 4-2 below. When an interrupt occurs, the location in memory allocated to the associated interrupt is loaded into the Program Counter (PC). This value (location) is called the interrupt vector.

| Interrupt             | Flag     | Vector Address |  |  |  |
|-----------------------|----------|----------------|--|--|--|
| System Reset          | RST      | 0000H          |  |  |  |
| External Interrupt 0  | IE0      | 0003H          |  |  |  |
| Timer Interrupt 0     | TF0      | 000BH          |  |  |  |
| External Interrupt 1  | IE1      | 0013H          |  |  |  |
| Timer Interrupt 1     | TF1      | 001BH          |  |  |  |
| Serial Port Interrupt | RI or TI | 0023H          |  |  |  |

# TABLE 4-2: INTERRUPT VECTORSSOURCE: THE 8051 MICROCONTROLLER

The reader will notice that each interrupt has only eight bytes of memory in which to code the ISR. In the event that an ISR is longer than eight bytes, a jump statement is used to direct the program counter to another location in memory. Note that the program counter (PC) holds the memory address of the next statement (instruction) that is to be executed.

| ORG  | ОН     |
|------|--------|
| LJMP | MAIN   |
| ORG  | 0003н  |
| LJMP | EXOISR |
| ORG  | 0023н  |
| LJMP | SPISR  |
|      |        |

#### **CODE EXTRACT 4-4: CM VECTORING ADDRESSES**

Referring to Code Extract 4-4 on a system reset (or startup), the program counter is loaded with the Reset vector address (0000H), when at this location, the program counter is then loaded with the address of the MAIN label thus executing a jump to the location in memory where the main program resides under the label MAIN. When External Interrupt 0 is triggered, the PC is loaded with the External Interrupt 0 vector address (0003H).

When at this location, the PC is loaded with the vector address for the EX0ISR label. This label represents the beginning of the External Interrupt 0 ISR. The program then jumps to the location in memory where this label resides and executes each instruction in the ISR until the RETI (return from interrupt) instruction. This instruction signals the end of the ISR and hands over control to the main program so that it may continue from where it left off. All interrupts are handled in the same way.

## 4.1.3.1 Interrupt Enabling

The Interrupt Enable (IE) register is responsible for the enabling and disabling of all interrupts. Each interrupt is enabled and disabled individually by addressing the specified bit. However, if the Global enable/disable bit EA, is not set High (1), none of the individual interrupts can be enabled. Therefore by Setting (1) or Clearing (0)

the Global enable/disable bit all individually enabled interrupts can be enabled or disabled at the same instant. Interrupts can be enabled or disabled anywhere in program code by using statements such as the following:

or by addressing the entire IE register. all the interrupts can be individually enabled or disabled using one statement. This method is used most often when initialising the interrupts as shown in Code Extract 4-2 and in the statement below.

MOV IE,#1000000B

This statement sets the Global enable/disable bit High (1), thus enabling the use of interrupts whenever they are individually enabled during the program. Table 4-3 presents a summary for Interrupt Enable register.

| Bit  | Symbol | Bit Address | <b>Description</b> (1=Enable, 0 = Disable) |
|------|--------|-------------|--------------------------------------------|
| IE.7 | EA     | AFH         | Global enable/disable                      |
| IE.6 | -      | AEH         | Undefined                                  |
| IE.5 | -      | ADH         | Undefined for the AT89S51                  |
| IE.4 | ES     | ACH         | Enable Serial Port Interrupt               |
| IE.3 | ET1    | ABH         | Enable Timer 1 Interrupt                   |
| IE.2 | EX1    | AAH         | Enable External 1 Interrupt                |
| IE.1 | ET0    | A9H         | Enable Timer 0 Interrupt                   |
| IE.0 | EX0    | A8H         | Enable External 0 Interrupt                |

# TABLE 4-3: INTERRUPT ENABLE REGISTER SUMMARYSOURCE: THE 8051 MICROCONTROLLER

## 4.1.3.2 Interrupt priority

The events that trigger certain interrupts may be more critical than the events that trigger others, these critical events therefore demand immediate attention. This may entail the interruption of an already executing ISR that was triggered by an earlier event, i.e. the non critical ISR must be interrupted to hand over control to the more critical ISR. This is achieved by using the Interrupt Priority (IP) register. By setting the bit assigned to a certain interrupt High (1), that interrupt is assigned a high-level priority and can therefore interrupt the ISR of an interrupt with a low-level priority if

required. The interrupt priority can be set when initialising the interrupts as shown in Code Extract 4-2 and in the statement below.

MOV IP,#00010000B.

Referring to Table 4-4, for a summary of the IP register, the reader will notice that in the instruction above only bit IP.4 is set High (1). This means that of all the interrupts that are, or will be enabled, the serial port interrupt has the highest priority and its ISR takes precedence over any program, subroutine or ISR that is executing at the time.

| Bit  | Symbol | Bit Address | <b>Description</b> (1=High Level, 0 = Low Level) |
|------|--------|-------------|--------------------------------------------------|
| IP.7 | -      | -           | Undefined                                        |
| IP.6 | -      | -           | Undefined                                        |
| IP.5 | PT2    | 0BDH        | Undefined for the AT89S51                        |
| IP.4 | PS     | 0BCH        | Priority for Serial Port Interrupt               |
| IP.3 | PT1    | <b>OBBH</b> | Priority for Timer 1 Interrupt                   |
| IP.2 | PX1    | 0BAH        | Priority for External 1 Interrupt                |
| IP.1 | PT0    | 0B9H        | Priority for Timer 0 Interrupt                   |
| IP.0 | PX0    | 0B8H        | Priority for External 0 Interrupt                |

# TABLE 4-4: INTERRUPT PRIORITY REGISTER SUMMARYSOURCE: THE 8051 MICROCONTROLLER

## 4.1.3.3 Polling sequence

A fixed polling sequence determines which of two interrupts having the same priority

is serviced first, if these two interrupts are triggered at exactly the same time.

The polling sequence for the AT89S51 is:

- External Interrupt 0
- Timer Interrupt 0
- External Interrupt 1
- Timer Interrupt 1
- Serial Port Interrupt

## 4.1.3.4 External Interrupts

Signals from interfacing systems are processed by a digital system which then outputs a signal to one or both of the external interrupt port pins, P3.2 (pin 12) and/or P3.3 (pin 13). These interrupts can be triggered in two ways, i.e. low-level activation or negative (or falling) edge activation. In the former instance, an external interrupt is triggered when the interrupt pin is held Low (0). In the latter instance, the interrupt is triggered on a High-to-Low (1-to-0) transition. The activation mode is configured by setting or clearing the ITO bit (which is associated with External Interrupt 0) and the IT1 bit (which is associated with External Interrupt 0) is configured to trigger on a negative edge.

SETB ITO

The CM makes use of External Interrupt 0 by enabling and disabling it on demand and initialising it with a low-level interrupt priority and negative-edge activation. The function of this interrupt is to indicate and service system errors if or when they occur and to inform the GUI (by transmitting a 'O') when a manual Emergency Stop has been initiated by pressing on the Emergency Stop switch (on P3.2) on the Test Station or by the activation of a safety interlock. Once the GUI has been informed of an Emergency Stop, the CM enters Powerdown mode.

Recall from Chapter 2, Error1 occurs when a pair of bars is not detected within a specified time, Error2 occurs when the test probes are not present on the surface of the commutator within a pre-selected default time, Error3 occurs when the test current is not switched off after a pre-selected default time and Error4 occurs when the test probes are not raised to their original position within a specified time.

The AM is the first to recognise any errors should they occur as system monitoring signals produced by proximity switches and other transducers are input to the AM via the interfacing digital system. The AM then sets High (1) output pins that correspond to the error that has occurred. See Appendix K and Table 4-5.

| Automation Microcontroller (AM) – Automation Control |      |                                                |  |  |  |  |  |  |
|------------------------------------------------------|------|------------------------------------------------|--|--|--|--|--|--|
| P2.6                                                 | (27) | O – Error 4 – Test Probes Not Raised.          |  |  |  |  |  |  |
| P3.5                                                 | (15) | <b>O</b> – Error 1 – Pair Not Detected.        |  |  |  |  |  |  |
| P3.6                                                 | (16) | <b>O</b> – Error 2 – Test Probes Not Lowered.  |  |  |  |  |  |  |
| P3.7                                                 | (17) | <b>O</b> – Error 3 – Current On-Time Exceeded. |  |  |  |  |  |  |

### TABLE 4-5: TABLE OF THE AM ERROR OUTPUT INDICATION PINS

These output pins are connected to individual input pins on the CM as well as the External 0 interrupt as depicted in Appendix K and Table 4-6.

| (    | Communications Microcontroller (CM) – Communication & Signalling |                                                                     |  |  |  |  |  |  |
|------|------------------------------------------------------------------|---------------------------------------------------------------------|--|--|--|--|--|--|
| P2.4 | (25)                                                             | I – Error 1 – Pair Not Detected.                                    |  |  |  |  |  |  |
| P2.5 | (26)                                                             | I – Error 2 – Test Probes Not Lowered.                              |  |  |  |  |  |  |
| P2.6 | (27)                                                             | I – Error 3 – Current On-Time Exceeded.                             |  |  |  |  |  |  |
| P3.2 | (12)                                                             | I – External Interrupt 0 – All Error Inputs Connected here as well. |  |  |  |  |  |  |
| P3.4 | (14)                                                             | I – Error 4 – Test Probes Not Raised.                               |  |  |  |  |  |  |

### TABLE 4-6: TABLE OF THE CM ERROR INPUT INDICATION PINS

When a system error occurs, the AM signals the CM by setting the associated pin High (1). When any one of the error lines go High (1) the interfacing digital system also triggers External Interrupt 0. The reason for this becomes apparent when looking at the flow diagram in Figure 4-5 and Code Extract 4-5.



### FIGURE 4-5: FLOW DIAGRAM FOR EXTERNAL INTERRUPT 0 – CM

EXTERNAL INTERRUPT O ISR ; ;FOR ERRORS 1 TO 4 & Emergency Stop EXOISR: JNB P2.4, ERR2 CALL ER1 SUB SETB 0ЗН EXOOUT JMP ERR2: P2.5,ERR3 JNB ER2 SUB CALL SETB 0ЗН EXOOUT JMP P2.6,ERR4 ERR3: JNB ER3 SUB CALL EXOOUT JMP ERR4: P3.4, EXOOUT JNB ER4 SUB CALL A, #'O' EXOOUT: MOV CALL CH OUT EXT JMP RETI

#### CODE EXTRACT 4-5: CODE FOR EXTERNAL INTERRUPT 0 - CM

When the interrupt is triggered the External Interrupt 0 ISR is initiated. Once in the ISR, each input error pin is tested for a High (1) status and when an error pin is identified the associated subroutine is called to handle it. The error subroutines will be discussed in detail in the section entitled Subroutines i.e. Section 4.1.5.

### 4.1.3.5 Serial Port Interrupts

The serial port interrupt is triggered when any activity is detected on the serial port. When data is received the Receive Interrupt (RI) flag is set High (1) and when data is being transmitted the Transmit Interrupt flag is set High (1). The interrupt is triggered on either of these events. As previously mentioned, the RI and TI flags have to be cleared by software the reason for this will be discussed with reference to Figure 4-6 and Code Extract 4-6.



### FIGURE 4-6: FLOW DIAGRAM FOR SERIAL PORT INTERRUPT – CM

| ;******         | * * * * * * * * * | ****                                    |
|-----------------|-------------------|-----------------------------------------|
| ; 8             | SERIAL PO         | ORT ISR                                 |
| ;******         | * * * * * * * * * | * * * * * * * * * * * * * * * * * * * * |
|                 |                   |                                         |
| SPISR:          | CLR               | EXO                                     |
|                 | JNB               | TI,REC                                  |
|                 | ;CLR              | TI; cleared in ch out                   |
|                 | JMP               | SP_OUT                                  |
| REC:            | NOP               | _                                       |
| SLCH_IN:        | JNB               | RI,\$                                   |
| _               | CLR               | RI                                      |
|                 | MOV               | A, SBUF                                 |
|                 | CJNE              | A,#'B',SPNXT ;END                       |
| ENDD:           | SETB              | PO.1; END TO U2                         |
| SP_END:         | JNB               | P3.4,SP_END                             |
| _               |                   | _                                       |
|                 | CLR               | P0.1                                    |
|                 | MOV               | РО,#ОН                                  |
|                 | MOV               | Р1,#ОН                                  |
|                 | MOV               | Р2,#ОН                                  |
|                 | MOV               | P3,#00000011B                           |
|                 | MOV               | PCON,#00000010B;POWER DOWN              |
|                 | NOP               |                                         |
|                 | JMP               | ED                                      |
| SPNXT:          | CJNE              | A, #'F', SP_END3 ;EMERGENCY STOP        |
| CRNT_E:         | SETB              | P0.5                                    |
| SP_ENDx:        | JNB               | P3.4,SP_ENDx                            |
|                 |                   |                                         |
|                 | CLR               | P0.5                                    |
|                 | MOV               | РО,#ОН                                  |
|                 | MOV               | Р1,#ОН                                  |
|                 | MOV               | Р2,#ОН                                  |
|                 | MOV               | P3,#00000011B                           |
|                 | MOV               | PCON,#00000010B;POWER DOWN              |
|                 | NOP               |                                         |
|                 | JMP               | ED                                      |
| SP END3:        | JMP               | SP OUT                                  |
| SP OUT:         | SETB              | EXO                                     |
|                 | RETI              |                                         |
|                 | -                 |                                         |
| ; * * * * * * * | * * * * * * * * * | ****                                    |

## CODE EXTRACT 4-6: CODE FOR SERIAL PORT INTERRUPT – CM

The CM receives prompts as well as transmits prompts and data. The only significant events that would require the main program to be interrupted are the End event or an Emergency Stop event prompt from the GUI. Hence an ISR only needs to be initiated on a receive event or only when the RI flag triggers the interrupt. As mentioned previously, the ISR is initiated on both the receive and transmit event.

A method of exiting the ISR on a transmit event is to check the status of the TI and RI flags. As show in Code Extract 4-6, the TI flag is tested and if it is found to be High (1) a jump to the end of and an exit from, the ISR is initiated. Control is then handed over to the point in the program from which it left off. If the TI flag is not found to be set, i.e. Low (0), then the RI flag is cleared and the received data is tested to verify if it corresponds to either the End ('B') or Emergency Stop ('F') prompt. If it does correspond, the AM is instructed by the CM to enter Powerdown. Once the CM verifies the AM having received this instruction, the CM configures its port pins appropriately before also entering Powerdown.

If the received data does not correspond to either of these conditions i.e. a 'B' or 'F', the ISR is exited and control is handed over to the main program at the point from which it left off. When the ISR is initiated on a receive event that is not an End or an Emergency Stop prompt, the point at which the main program was interrupted, was a waiting point for a prompt. When control is handed back to the main program, control is handed back at this waiting point. It is here that the received data is tested again to verify whether the received prompt is the prompt that the main program was waiting for at that point.

# 4.1.4 Timers

The AT89S51 features two sixteen-bit timers, Timer 0 and Timer 1, which can be used in any one of four modes as shown in Table 4-7. These timers make use of six special function registers, TCON, TMOD, TL0, TL1, TH0 and TH1. For this project, CM utilises Timer 1 in mode 2, auto-reload mode, to generate the required baud rate for the serial port and the AM utilises Timer 0 and Timer 1 in mode 1, as sixteen-bit timers. In both cases, the clocking source is the on-chip oscillator which is used for

| interval | timing | as | opposed | to | an | external | clocking | pulse | which | is | used | for | event |
|----------|--------|----|---------|----|----|----------|----------|-------|-------|----|------|-----|-------|
| counting | 5.     |    |         |    |    |          |          |       |       |    |      |     |       |

| Mode | <b>M1</b> | <b>M0</b> | Description                                                                    |
|------|-----------|-----------|--------------------------------------------------------------------------------|
| 0    | 0         | 0         | 13-Bit timer mode                                                              |
| 1    | 0         | 1         | 16-Bit timer mode                                                              |
| 2    | 1         | 0         | 8 – Auto-reload mode                                                           |
| 3    | 1         | 1         | Split timer mode – Timer 0 split into two 8-bit timers & Timer<br>1 is stopped |

# TABLE 4-7: TABLE OF TIMER MODESSOURCE: THE 8051 MICROCONTROLLER

The selection between these two clocking sources is made by either setting the  $C/\overline{T}$  bit in the TMOD SFR High (1) for interval timing using the on-chip oscillator or, by setting the  $C/\overline{T}$  bit Low (0) for event counting using external clocking sources. When using interval timing the on-chip oscillator clocking source is followed by a divide-by-twelve stage. This means that the timer registers are incremented at a rate of  $1/12^{\text{th}}$  the frequency of the clocking source. For example, if a 12MHz crystal was used, as in this case, the on-chip oscillator will provide a clocking frequency of 12MHz before the divide-by-twelve stage. After the divide-by-twelve stage the clock rate will be 1MHz, or in terms of time, one microsecond (1µs).

As previously mentioned, the timer makes use of six special function registers. These SFRs along with their respective purposes are summarised in Table 4-8.

| <b>Timer SFR</b> | Purpose           | Address | <b>Bit-Addressable</b> |
|------------------|-------------------|---------|------------------------|
| TCON             | Control           | 88H     | Yes                    |
| TMOD             | Mode              | 89H     | No                     |
| TL0              | Timer 0 Low-Byte  | 8AH     | No                     |
| TL1              | Timer 1 Low-Byte  | 8BH     | No                     |
| TH0              | Timer 0 High-Byte | 8CH     | No                     |
| TH1              | Timer 1 High Byte | 8DH     | No                     |

# TABLE 4-8: TIMER SPECIAL FUNCTION REGISTER SUMMARYSOURCE: THE 8051 MICROCONTROLLER

The Timer Control Register (TCON) is the only one of the timer SFRs that is bit addressable. These registers contain status bits (timer flags) and control bits (timer triggers). It is necessary to Set (1) or Clear (0) each of these bits independently and at

External Interrupt 1 type flag

External Interrupt 0 edge flag

External Interrupt 0 type flag

| Bit    | Symbol | <b>Bit Address</b> | Description                    |
|--------|--------|--------------------|--------------------------------|
| TCON.7 | TF1    | 8FH                | Timer 1 overflow flag          |
| TCON.6 | TR1    | 8EH                | Timer 1 run-control bit        |
| TCON.5 | TF0    | 8DH                | Timer 0 overflow bit           |
| TCON.4 | TR0    | 8CH                | Timer 0 overflow bit           |
| TCON.3 | IE1    | 8BH                | External Interrupt 1 edge flag |

8AH

89H

88H

different times in order to control the timers. See Table 4-9 for the TCON register bit summary.

# TABLE 4-9: TCON REGISTER SUMMARYSOURCE: THE 8051 MICROCONTROLLER

A timer can be started or stopped using theTRx<sup>1</sup>bit. For example when using Timer 0, the statement:

SETB TRO

is used to start the timer. The timer register(s) will increment by one from 0000H or from any pre-loaded value. The duration between each increment is determined by the clocking pulse, which as discussed above, provides a clocking pulse every 1µs for a 12 MHZ crystal. The timer is stopped by using the statement below.

### CLR TRO

Flags are used to indicate a timer overflow. For example, if Timer 0 is used as a sixteen-bit timer, when started, it will increment from 0000H or a pre-loaded value, every 1µs until it reaches the maximum sixteen-bit count, FFFFH. Once FFFFH has been reached, the counter beings counting from 0000H again. On the FFFFH to the 0000H transition the Timer 0 flag (TF0) is Set (1). This flag is set by hardware and is cleared by software after the status of the flag has been tested as shown below.

WAIT\_T3:JNB TF1,WAIT\_T3

The use of timers for long interval timing is discussed in the sub-section entitled Timers and Timer Operation i.e. Section 4.2.4 in the Automation Microcontroller discussion.

TCON.2

TCON.1

TCON.0

IT1

IE0

ITO

<sup>&</sup>lt;sup>1</sup> The 'x' in TRx represents 0 or 1, thus implying TR0 or TR1. From this point forward, an 'x' used in this form, in conjunction with any other register, will also represent a 1 or a 0.

The TMOD register is used primarily to set the mode of the timers during initialisation. After initialisation the TMOD register is generally not re-addressed. See Table 4-10 for a summary of the TMOD register.

| Bit | Name             | Timer | Description                                                          |
|-----|------------------|-------|----------------------------------------------------------------------|
| 7   | GATE             | 1     | Gate Bit                                                             |
| 6   | $C/\overline{T}$ | 1     | Counter/Timer select bit. (1 = event counter, 0 = interval counting) |
| 5   | M1               | 1     | Mode bit 1                                                           |
| 4   | M0               | 1     | Mode bit 0                                                           |
| 3   | GATE             | 0     | Timer 0 gate bit                                                     |
| 2   | $C/\overline{T}$ | 0     | Timer 0 Counter/Timer select bit.                                    |
| 1   | M1               | 0     | Timer 0 Mode bit 1                                                   |
| 0   | M0               | 0     | Timer 0 Mode bit 0                                                   |

# TABLE 4-10: TMOD REGISTER SUMMARYSOURCE: THE 8051 MICROCONTROLLER

TH0 and TH1 are the respective Timer 0 and Timer 1 High byte registers, while TL0 and TL1, are the respective Timer 0 and Timer 1 Low byte registers. Depending on the mode in which the timers are used, the SFRs are written to when pre-loading values (and incremented at each clock pulse), and/or read from when recording the time that has elapsed.

The Communication Microcontroller uses Timer 1 to set the baud rate for the serial port. The baud rate is set by the overflow rate of Timer 1. Timer 1 is initialised in mode 2, 8-bit auto-reload mode, as shown using the second instruction in Code Extract 4-7. Referring to the third instruction in Code Extract 4-7, a reload value of -13 is stored in the Timer 1 high byte register (TH1). In this mode the Timer low byte register (TL1), is incremented by one from the pre-loaded value stored in the Timer high byte register, to FFH. On the Timer overflow, the Timer flag is set as usual but in mode 2, the re-load value that is held in the Timer high byte register, is reloaded into the Timer low byte and counting begins from this value to FFH. This cycle runs continuously.

| MAIN2: | MOV  | SCON,#01010000B |
|--------|------|-----------------|
|        | MOV  | TMOD, #20H      |
|        | MOV  | тн1,#-13        |
|        | SETB | TR1             |

#### **CODE EXTRACT 4-7: SERIAL PORT AND BAUD RATE INITIALISATION**

The re-load value is determined by the required baud rate and the selected serial port mode that was set upon initialisation of the SCON SFR. With the serial port being initialised in mode 1, the default baud rate is 1/32 of the oscillator frequency. (Note that this value can be doubled by setting the SMOD bit in the Power Control (PCON) register, High [1]). The equation used to calculate the re-load value for a given baud rate when operating in a pre-selected serial port mode, is as follows:

Default Rate =  $\frac{\text{Timer Overflow Rate}}{\text{Clock Frequency Reduction Value}}$  ...... 4-1

Source: The 8051 Microcontroller

Substituting the values

| 2400 KHz =    | Timer Overflow Rate                    |  | 1-2 |
|---------------|----------------------------------------|--|-----|
|               | 32                                     |  | 7-2 |
| Timer Overflo | bw Rate = $2400 \text{ kHz} \times 32$ |  | 4-3 |
|               | = 76800 kHz                            |  |     |
|               | = 76.8kHz                              |  | 4-4 |

What now remains to be calculated is the number of clocking cycles, at 1MHz, it will take to provide an overflow every 76.8kHz.

Number of clocks = 
$$\frac{1MHz}{76.8kHZ}$$
 ..... 4-5  
= 13.02  
 $\approx$  13 clocks

Alternatively, using time instead of frequency,

from (4-4), Time = 
$$\frac{1}{76.8 \text{kHz}}$$
 = 13.02µs ..... 4-6  
≈ 13µs

and a clocking rate of

$$\frac{1}{1 \text{MHz}} = 1 \mu \text{s} \qquad \qquad 4-7$$

The number of clocks, at a rate of  $1\mu$ s, that is takes to produce an overflow after  $13\mu$ s is:

This value (13) is multiplied by -1 and stored in the Timer high byte (TH1) register. Because an overflow occurs on the FFH-to-0H transition, using the negative of the calculated value, the assembler is told that the reload value is 13 less than 0. In this way, an overflow is forced after every 13 clocks, hence providing the required baud rate.

## 4.1.5 Subroutines

Subroutines are small programs that can be called by the main program, other subroutines as well as interrupt service routines (ISRs). They often consist of a block of code that is used more than once by the calling program. When developing and debugging a program, it is easier to divide the large and often complex program into smaller programs that are less complex. These smaller programs, or subroutines, are then called at will, to perform the task that they were designed to undertake before returning control to the calling program. A subroutine is initiated by using a CALL statement, for example:

CALL DELAYLOOP

calls the subroutine labeled Delayloop. Each subroutine begins with a name or label which is used to identify the subroutine as well as its location in memory. A subroutine ends with a Return (RET) statement, which hands over control to the calling program at the instruction immediately following the CALL instruction.

At this point it is perhaps appropriate to discuss the difference between an Interrupt Service Routine (ISR) and a Subroutine. A subroutine is called at specific and predetermined points, using a CALL statement. The program then branches to the location in memory at which the called label resides. Instructions are then executed until the RET statement is reached at which point control is handed back to the calling program at the instruction immediately following the CALL instruction. The point from which the main program branches, as well as the point of return is predetermined and known.

By contrast, the Interrupt Service Routine (ISR), is not called using a CALL statement but rather initiated when its associated interrupt is triggered in response to an event. This event can occur at any time. It can therefore not be predicted or predetermined. When an interrupt occurs, the location in memory space allocated to the associated ISR is loaded into the Program Counter (PC).

This value (location) is called the interrupt vector. When vectoring to an interrupt, the main program (which may include subroutines), is paused as control is handed over to the ISR. After the interrupt has been handled, control is returned to the main program using the Return From Interrupt statement (RETI). Control is handed over at the point from which the program was initially interrupted so that it may continue from where it left off. As opposed to a subroutine, the point at which an interrupt occurs and returns, control is unknown and cannot be predetermined. Each of the subroutines used by the Communications Microcontroller will be discussed in the sections that follow.

## 4.1.5.1 The CH\_OUT Subroutine

This subroutine is called when ASCII prompts and data are to be transmitted via the serial port. The data is loaded into the Accumulator register (A), prior to the CALL statement, as show below:

| MOV  | A,#'I' |
|------|--------|
| CALL | CH_OUT |

Recalling the discussion on the serial port interrupt, the reader is reminded that the serial port interrupt is triggered when either the RI or TI flag is set. When data is transmitted, the TI flag that is set to signal the end of transmission of a byte will be set High (1) thereby triggering the interrupt. In order to avoid the interrupt being triggered, it is disabled using the first statement in Code Extract 4-8. However, as previously described, it is still possible to transmit data with the serial port interrupt enabled and vectoring off to the serial port ISR when TI is set High (1).

This is due to the ISR being exited when the TI flag is read and found to be High (1). On exiting the ISR control is handed back to CH\_OUT to continue as normal. A choice had to be made between the two options. On one hand the serial port interrupt can be disabled for the short transmission period. The advantage of doing this is that the program is more efficient as time is not wasted unnecessarily triggering interrupts, vectoring to the ISR and testing the status of the TI flag, only to exit the ISR and return to the subroutine exactly where it left off.

The disadvantage of this option is that when the serial port interrupt is disabled the system cannot respond to an Emergency Stop immediately. It will only respond to the serial port interrupt when it is enabled again after the transmission of the byte of data. This is because the RI flag will still be Set (1) and will remain so until it is Cleared (0) by software. Considering the fact that ten bits of data is transmitted at a rate of 13µs per bit, the worst case delay before the interrupt is handled is 130µs and will apply if the interrupt was triggered by the RI flag immediately after the serial port was disabled.

The second option is to leave the serial port enabled during transmission. The advantage of this is that the system can respond to an Emergency Stop immediately. The disadvantage is inefficiency due to the serial port interrupt being triggered and serviced every time data is to be transmitted

If an event that is serious enough to initiate an Emergency Stop, the probability of the Emergency Stop being initiated at the exact moment that data is being transmitted is minimal. This is because the number of times data is transmitted during a typical (no system errors) cycle is five (four times during transmission of data and once for the transmission of prompts) and the duration of each transmit operation is 130µs. The total time that the CM is transmitting data during a typical cycle is therefore 650µs. Considering the time taken to complete a typical cycle from the rotation of the armature to taking a reading to the rotation of the armature again, is approximately ten to fifteen seconds, depending on the speed of the armature drive motor and the detection unit drive motor, the probability of an error occurring during transmission of data for a typical cycle is:

$$\frac{650\,\mu\rm{s}}{10\rm{s}} \times 100 = 0.0065\% \qquad \dots \qquad 4-9$$

The probability decreases if the typical cycle takes more than 10s (due to lower speeds of the drive motors).

Further, considering that the worst case delay from the time an Emergency Stop is initiated till the time it the serviced is 130µs which in real terms is almost negligible and the fact that the initiation of an Emergency Stop is an event that rarely occurs, option two was chosen (the option that involved the disabling and enabling of the serial port interrupt). In summary, efficiency was chosen over a low probability of an occurrence of an event that even if it occurred will cause no ill effect to the system as a whole.

| CH_OUT: | CLR  | ES     |
|---------|------|--------|
| -       | MOV  | SBUF,A |
| тх2:    | JNB  | TI,TX2 |
|         | CLR  | TI     |
|         | SETB | ES     |
|         | RET  |        |

### CODE EXTRACT 4-8: CH\_OUT SUBROUTINE

The second statement in this subroutine copies the value held in A into SBUF. Writing to SBUF in this manner begins transmission. In the third statement the TI flag is continuously tested in order to ascertain if the data has been transmitted. Recall that the TI flag is set when all data has been transmitted and SBUF is empty. Once transmission is complete, the TI flag is set High (1) and the test loop is exited. In the fourth statement, the TI flag is cleared and in the fifth statement the serial port interrupt is enabled. The RET statement exits from the subroutine and returns control to the calling program. See Figure 4-7 for the associated flow diagram.



FIGURE 4-7: CH\_OUT FLOW DIAGRAM

# 4.1.5.2 The Error 1 Subroutine

Error 1 occurs when a pair of bars is not detected within a predefined time. The AM alerts the CM to this error by triggering External Interrupt 0 as described earlier. The Error 1 subroutine is then called from the External Interrupt 0 ISR. If this error is to occur, it will do so before a volt-drop reading is taken. The error subroutine must therefore cater for a manual reading that is to be taken by the test technician. The execution of this process is described in the discussion that follows with reference to Code Extract 4-9 and Figure 4-8.





### FIGURE 4-8: ERROR 1 FLOW DIAGRAM

ERROR 1 SUB ; A,#'J' ER1 SUB:MOV CH OUT CALL E1E2: NOP A, #'D', E1E2 MAN RDG:CJNE SETB P0.3 TK RDG: JNB P3.6,TK RDG IK RDG2:JB P3.6, TK RDG2 PO.4 SETB E1 CK1: JNB P2.2,E1 CK1 P2.2,\$ JB PO.4 CLR P2.2,E3 RDNG E3 RDNG:JNB P0.7 SETB NOP NOP NOP P0.7 CLR RDG SUB CALL CLR P0.3 SETB PO.4 El WT: P2.2,E1 WT JNB PO.4 CLR NOP NOP RET 

### **CODE EXTRACT 4-9: ERROR 1 SUBROUTINE**

The first step in this subroutine is to alert the GUI to the fact that Error 1 has occurred by transmitting 'J'. The subroutine then enters a wait loop until the test technician acknowledges this error and signals his intention to take a manual reading by clicking on the Take Manual Reading button on the GUI. The GUI then transmits a 'D' to the CM. The CM then enters another wait loop where it waits for the test technician to press a switch connected to P3.6 when he/she has set the test probes in place on the pair of bars that are to be tested. Once this switch is pressed, the CM uses P0.4 to signal to the AM that it is ready to take a manual reading. The AM then checks whether the test current is switched on and if all is well, it will signal to the CM that it too is ready to take a reading by Setting (1) and Clearing (0) the CM P2.2. The AM then calls its Reading subroutine. Once called this subroutine signals to the CM that it has been called by again setting the CM P2.2 hence allowing it to exit the wait loop. The CM signals that it has received the message sent and that it is about to call its Reading subroutine by Setting (1) P0.7. At this point, the Reading subroutines for both the CM and AM are synchronised with each other. A volt-drop reading is then taken. The CM then signals the AM by Setting (1) P0.4 that the reading has been taken upon completion of its reading subroutine. When the AM receives this signal it responds by setting the CM P2.2 High (1). The Error 1 subroutine returns control to the calling program upon receiving this signal. Note that the CM P0.4 and P2.2 are used for communication with the AM where CM P0.4 transmits signals which are read by the AM P1.4 and CM P2.2 is used to read the status (signals) of the AM P0.0.

### 4.1.5.3 The Error 2 Subroutine

Error 2 occurs when the test probes do not reach the surface of the commutator within the allowable predetermined time. In terms of the CM when this error occurs the procedure that has to be followed is exactly the same as that of Error 1 as a volt-drop reading has not yet been taken. The route followed by the CM is to call the Error 1 subroutine from the point after it has transmitted 'J' to the GUI, i.e. from label E1E2, as shown in Code Extract 4-10.

### **CODE EXTRACT 4-10: ERROR 2 SUBROUTINE**

Referring to Code Extract 4-9 the reader will notice that the E1E2 label follows immediately after informing the GUI that Error 1 has occurred by transmitting 'J'. This label is also the beginning point of the E1E2 subroutine. A subroutine within a larger subroutine, such as E1E2 is created by calling a label at any point before the

RET statement. This label is then regarded as the name and starting point for the smaller subroutine with the common RET statement being the end or return of control instruction. With this being the case all that the Error 2 subroutine has to do is alert the GUI that Error 2 has occurred by transmitting 'm' before calling the E1E2 subroutine.

### 4.1.5.4 The Error 3 Subroutine

Error 3 occurs when the allowable time for the Test Current to be switched on is exceeded. This occurs when the period of time measured from the instant that the microcontroller pulses the IGBT driver to switch on the Test Current till the instant that the microcontroller pulses the IGBT driver to switch off the Test Current, is greater than the default time. This is present because of the high test supply current used (350A to 400A). Such a system error may be dangerous to the test technician, nearby personnel and may also cause damage to the armature under test due to overheating. With this in mind, it was decided that the safest option is to immediately end the test on the occurrence of this error. As shown in Code Extract 4-11 the Error 3 subroutine simply informs the GUI that Error 3 has occurred by transmitting "L" (the GUI subsequently initiates an Emergency Stop) before jumping to the CRNT\_E label, in the serial port ISR, in order to initiate the Powerdown procedure for both the AM and CM.

### **CODE EXTRACT 4-11: ERROR 3 SUBROUTINE**

### 4.1.5.5 The Error 4 Subroutine

Error 4 occurs when the test probes are not raised to their initial position within the allowable time. The procedure for this error is not as complex as that for Error 1 and Error 2 because the volt-drop reading would have already been taken before this error

occurs. As shown in Code Extract 4-12 the Error 4 subroutine informs the GUI that Error 4 has occurred by transmitting a 'Q', and waits for the test technician to attend to the fault. If the fault is not serious the technician will manually raise the test probes to the correct position before clicking on the Continue After Error button on the GUI. The GUI then transmits a 'C' to the CM. On receiving this prompt.('C') the wait loop is exited and the AM is signaled to continue with the test using P0.4 and P2.2 as described earlier.

ERROR 4 SUB \*\*\*\*\*\*\*\*\*\*\*\*\* ER4 SUB:MOV A, #'Q' CALL CH OUT E3E4: NOP WT NBC3:CJNE A, #'C', E3E4 PO.4 SETB E3 WT: P2.2,E3 WT JNB PO.4 CLR RET \*\*\*\*\*\*\*\*\*\*

#### **CODE EXTRACT 4-12: ERROR 4 SUBROUTINE**

### 4.1.5.6 The Reading Subroutine

The Reading Subroutine is responsible for communication with the Reading subroutine in the AM, controlling the ADC via the ADC control lines, capturing the recorded data from the ADC and transmitting this data to the GUI.



#### FIGURE 4-9: SYSTEM BLOCK DIAGRAM





FIGURE 4-10: READING SUBROUTINE FLOW DIAGRAM
| RDG_SUB: | NOP             |                                                       |
|----------|-----------------|-------------------------------------------------------|
| NO_NEG:  | JB<br>JB        | 04H,NO_COM<br>05H,NO_COM                              |
| WT_RD:   | JNB             | P2.2,WT_RD ; WAIT FOR CURRENT - SWITCHED BY U2        |
|          | SETB            | P0.7; TO U2 TO SIGNAL READY TO TAKE READING           |
|          | NOP             |                                                       |
|          | NOP             |                                                       |
|          | CLR             | P0.7                                                  |
| NO_COM:  | NOP             |                                                       |
| ;EXTRA : | 15 DELAY        | IN UC2 (X) 4 INPUT CCTRY                              |
| ov_chk:  | JNB             | PO.2,DWN ; for pcb, for tst cct, jb pO.2              |
|          | JMP             | FET_ON                                                |
| DWN:     | LJMP            | OVRVOL                                                |
| FET_ON:  | SETB            | PO.O ; ANA SW ON                                      |
|          |                 |                                                       |
|          | CLR             | P2.0                                                  |
|          | CLR             | RSO ;20US                                             |
|          | SETB            | RS1                                                   |
|          | MOV             | R6,#24                                                |
| D4:      | DJNZ            | R6, D4                                                |
|          | CLR             | RSO                                                   |
|          | CLR             | RS1 ;20US                                             |
| ;AQU MOI | DE, p3,5<br>CLR | cleared lus after p2.0 ***(CS fALLING eDGE 1)<br>P3.5 |
|          | CLR             | RSO ;20US                                             |
|          | SETB            | RS1                                                   |
|          | MOV             | R6,#20                                                |
| D5:      | DJNZ            | R6, D5                                                |
|          | CLR             | RSO                                                   |
|          | CLR             | RS1 ;20US                                             |
|          | NOP             | ;Tcsl and tdh                                         |
|          | SETB            | P3.5                                                  |
|          | CLR             | RSO ;20US                                             |
|          | SETB            | RS1                                                   |
|          | MOV             | R6,#24                                                |

| D6:     | DJNZ<br>CLR<br>CLR                              | R6,D6<br>RS0<br>RS1                                                                                   | ;20US                                                                                                                    |
|---------|-------------------------------------------------|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
|         | CLR                                             | P3.5; FOR STAND                                                                                       | Y MODE ***(CS fALLING eDGE 2)                                                                                            |
| ADC_W:  | JB                                              | P2.1, ADC_W                                                                                           | ;EOC'                                                                                                                    |
|         | SETB<br>SETB<br>CLR<br>NOP<br>CLR<br>NOP<br>CLR | P3.5<br>P2.0; TO PUT DAY<br>P3.3; ;HBEN -<br>; EXTRA<br>P3.5; ***(CS fAI<br>;WAIT F(<br>P3.3; ;HBEN - | A OUT<br>LOW BYTE<br>TIME BEFORE CS FORCED LOW<br>LING eDGE 3)<br>OR VALID DATA,Tdo+Tdv (tdv = 0)<br>LOW BYTE redundancy |
| D7:     | CLR<br>SETB<br>MOV<br>DJNZ<br>CLR               | RSO<br>RS1<br>R6,#10<br>R6,D7<br>RSO                                                                  | ;20US                                                                                                                    |
|         | CLR<br>MOV<br>SETB<br>CLR<br>SETB<br>MOV        | RS1<br>R3, P1 ;HOLD L<br>P3.3 ;HBEN -<br>RS0<br>RS1<br>R6.#10                                         | ;20US nop<br>BYT<br>HIGH BYTE<br>;20US                                                                                   |
| D8:     | DJNZ<br>CLR<br>CLR                              | R6, D8<br>RS0<br>RS1                                                                                  | ;20US                                                                                                                    |
|         | MOV<br>SETB                                     | R5,P1 ;HOLD H<br>P3.5;**(CS 1ST H                                                                     | BYT<br>RISING EDGE AFTER FALLING eDGE 3)                                                                                 |
| NA_CK:  | CJNE<br>CJNE<br>MOV<br>MOV                      | R5,#1111111118,OT<br>R3,#111111110B,OT<br>R5,#1111111118<br>R3,#1111111118                            | IT_RNG ;CHECK IF NOT ALLOWED CODE<br>IT_RNG                                                                              |
| OUT_RNG | :MOV<br>CALL                                    | A,#'z'<br>CH_OUT                                                                                      |                                                                                                                          |

| OUT_H:   | MOV    | A, R5                                       |
|----------|--------|---------------------------------------------|
|          | CALL   | CH_OUT                                      |
|          | MOV    | A, #'y'                                     |
|          | CALL   | CH_OUT                                      |
| OUT_L:   | MOV    | A, R3                                       |
|          | CALL   | CH_OUT                                      |
| WT_NBCT: | CJNE   | A, #'E', WT_100C; WAIT FOR CONTINUE FROM NB |
|          | SETB   | 05H                                         |
|          | JMP    | RDG_SUB                                     |
| WT_100C: | CJNE   | A, #'S', WT_NBCT                            |
|          | CLR    | 05H                                         |
| RDG_END: | JB     | 04H,NO_COM2                                 |
|          | JB     | 05H,NO_COM2                                 |
|          | SETB   | P0.7; TO U2 TO CONT AFTER READING TAKEN     |
| RG_END:  | JNB    | P2.2,RG_END                                 |
|          | CLR    | P0.7                                        |
|          | CLR    | PO.O ;ANA SW OFF                            |
|          | JMP    | NO_COM2                                     |
| OVRVOL:  | MOV    | A, #"z"                                     |
|          | CALL   | CH_OUT                                      |
|          | MOV    | A, #11111111B                               |
|          | CALL   | CH_OUT                                      |
|          | MOV    | A, #'y'                                     |
|          | CALL   | CH_OUT                                      |
|          | MOV    | A, #11111110B                               |
|          | CALL   | CH_OUT                                      |
| WT NBC:  | CJNE   | A,#"E",WT 100E ; WAIT FOR CONTINUE FROM NB  |
| -        | SETB   | 05H                                         |
|          | JMP    | RDG_SUB                                     |
| WT_100E: | CJNE   | A, #'S', WT_NBC                             |
| -        | CLR    | 05H                                         |
| RDG_EDS: | JB     | 04H,NO_COM2                                 |
| _        | JB     | 05H,NO_COM2                                 |
|          | SETB   | P0.7; TO U2 TO CONT AFTER READING TAKEN     |
| RG_EDS:  | JNB    | P2.2,RG_EDS                                 |
|          | CLR    | P0.7                                        |
|          | CLR    | PO.O ;ANA SW OFF                            |
| NO_COM2: | RET    |                                             |
| ;******  | ****** | ***************************************     |

## **CODE EXTRACT 4-13: READING SUBROUTINE**

The operation of this subroutine is discussed with reference to Figure 4-10 and Code Extract 4-13. Once called the first operation undertaken by this subroutine is to verify if flag 04H has been set. Flag 04H is set when the system is to be operated in Manual mode. When running in Manual mode the AM is in Powerdown and will therefore not respond to any communication signals from the CM. When operating in the Automated mode there is constant communication between the AM and the CM in order to maintain synchronisation.

When being operated in the Manual mode this communication is fruitless as the CM will be waiting for signals from the AM that will never be transmitted. The CM will therefore be caught in an endless waiting loop. The reason that 04H flag is tested is to ensure that the CM knows if it should communicate with the AM (as when it is in Automated mode) or if all its communication instructions should be skipped, when it is operating in Manual mode as discussed earlier in this chapter. Flag 05H is used to indicate that 100 successive readings are to be taken. This is an additional feature and will therefore be discussed in detail in Chapter 6.

If the system is in Automated mode, P2.2 is tested in order to verify that the AM has called and is presently executing its Reading subroutine and to ensure that it is ready to take a reading. The CM then confirms having received this signal by setting its P0.7 pin. As mentioned above, these steps are skipped when in Manual mode. Next, P0.2 is tested in order to verify that the reading about to be taken is within the maximum input range of the ADC and other interfacing circuitry. The exact mechanics behind this process will be discussed in detail in Chapter 5 under the section dealing with the interfacing analogue circuitry (Section 5.3). However, in order to facilitate a better understanding, the author will briefly discuss the principle and concept used.

Although the test is setup by the technician to record values within a particular range, 200mV to 350mV, the possibility exists that a volt-drop equal to the potential of the Test Supply can be recorded across a pair of bars. This will occur when the pair of bars being tested is connected to an open circuited winding. According to tests carried out by the author, the typical Test Supply potential when setting the aforementioned range, is between ten and fifteen volts (10V to 15V) depending on the type and rating

of the armature under test. As will be explained in chapter five the first stage in the input circuitry is more than capable of handling these values as well as negative input potentials, as in the case when the polarity of the Test Supply Current, or the orientation of the input test probes is reversed. The ADC input stage however, cannot handle such potentials. The ADC absolute maximum rating for the input pin is positive 6 volts to negative 0.3V (+6V to -0.3V). It is for this reason that an Analogue Switch (MAX 4622) is placed on the ADC input line. This switch is only switched on by the CM when the interfacing analogue circuitry confirms that the potential on the ADC input line is safely within its operating range. This circuitry is explained in Chapter 5, Section 5.3.

If the CM P0.2 is High (1), the Analogue Switch is off due to the input value being out-of-range. In this case 1111 1111 (binary code) is transmitted as the High Byte and 1111 1110 (binary code) is transmitted as the Low Byte to the GUI as the reading for the pair presently under test. Upon receiving this value the GUI immediately recognises the out-of-range reading and displays a possible open circuit on this pair of bars. After this transmission the CM sits in a wait loop, waiting for the GUI to transmit the Continue Test prompt, i.e. 'E'. Note that in order to facilitate the 100 reading additional feature, a second prompt is used to verify that all 100 readings have been captured. This prompt is the ASCII code for the character 'S'. More details on this additional feature will be provided in Chapter 6.

If P0.2 is low, the Analogue Switch is switched on and the ADC can read the input potential. The ADC control pins are then prompted and read by the CM in order to capture a reading. The High Byte is stored in the CM register 5, R5 and the Low Byte is stored in the CM register 3, R3. See Appendix K for a list of the registers used for both the AM and CM.

The next step is to check if R5 holds 1111 1111 and R3 holds 1111 1110. This is the previously mentioned out-of-range default value. If the default value has been recorded, the value held in R3 is changed to 1111 1111. This new value and the out-of-range default value should normally not be recorded on a non-fault bar. As discussed in Chapter 3, the ASCII code for the letter 'z' is transmitted to the GUI before the High Byte (the value held in R5) of the captured reading is transmitted to

the GUI. The ASCII code for the letter 'y' is transmitted to the GUI before the Low Byte (the value held in R3) of the captured reading is transmitted to the GUI. The CM then waits for the GUI to process the transmitted data and inform the CM that it is ready to continue by transmitting an 'E' (the Continue Test prompt).

On receiving this prompt the CM again tests if flag 04H is set High (1). If it is not set High, then using P0.7 and P2.2 as described above, the CM communicates with the AM to inform it that the reading has been successfully captured, transmitted and analysed and that it should ready itself to proceed with the next task in the process. If the flag 04H is set, then this communication process is skipped as mentioned earlier. The CM then switches off the analogue switch on the ADC input line in order to protect the ADC in the event of an out-of-range input value on the next pair of bars. The subroutine is then exited and control is returned to the calling program at the statement immediately following the CALL instruction.

# 4.1.6 ADC Control

The ADC control pins and the associated connection pins on the CM are listed below. The  $\overline{CS}$ , Convert Start ADC input pin, is connected to the CM P3.5 pin which is configured as an output pin. The R/ $\overline{C}$ , Read/ $\overline{Convert}$  ADC input pin is connected to the CM P2.0 pin which is configured as an output pin. The  $\overline{EOC}$ , End Of Conversion ADC output pin, is connected to the CM P2.1 pin which is configured as an input pin.

And finally, the HBEN, High-Byte Enable ADC input pin is connected to the CM P3.3 pin which is configured as an output pin. Figure 4-11 depicts the flow diagram that describes the process that is followed when the ADC captures a reading. Figure 4-12A depicts the flow diagram that shows the steps taken by the CM to implement the process followed in Figure 4-11. Figure 4-12B depicts the timing diagram for the ADC control process. See Appendix J to view the ADC (MAX 1166) datasheet.





FIGURE 4-11: FLOW DIAGRAM FOR THE ADC CONTROL PROCESS





## FIGURE 4-12A: FLOW DIAGRAM OF STEPS TAKEN BY THE CM TO IMPLEMENT THE ADC CONTROL PROCESS



Falling Edge

## FIGURE 4-12B: TIMING DIAGRAM FOR ADC CONTROL PROCESS

#### Mr. S. Matadin 2001 027 41

The control process is as follows: to start up the ADC and enable acquisition mode, the R/ $\overline{C}$  pin must be held low during the  $\overline{CS}$  falling edge. This is the  $\overline{CS}$  first falling edge. The above is accomplished by the CM by Clearing (0) P2.0 and after a short delay, also Clearing (0) P3.5. Both P2.0 and P3.5 would have been set at the end of the previous reading or acquisition cycle or in the case of the first reading to be taken, these ports would have been set by the 'dummy' conversion cycle as mentioned earlier. Next, to start a conversion and choose the ADC 'Standby Mode' option,  $R/\overline{C}$  must remain Low (0) during the  $\overline{CS}$  second falling edge. (The second  $\overline{CS}$  falling edge will start the conversion process and the logic level of  $R/\overline{C}$  during this falling edge will determine the mode of operation).

To accomplish this, after a delay that is greater than the stipulated  $t_{CS}$  (i.e. the minimum time that the  $\overline{CS}$  pin should be held Low (0) before setting it High (1)) the  $\overline{CS}$  pin is set High (1). Then after a delay that is greater than  $t_{CHS}$  (i.e. the minimum time that the  $\overline{CS}$  pin should be held High (1) before setting it Low (0)) the  $\overline{CS}$  pin is set Low (0) to produce the second falling edge. Note that the time between the first and second falling edge,  $t_{ACQ}$ , is the acquisition time and cannot be less than the stipulated 4.7µs. Hence the sum of  $t_{CSL}$  and  $t_{CHS}$  must be greater than or equal to  $t_{ACQ}$ , as shown in Figure 2, Page 8 of the MAX 1166 datasheet.

Note that for Standby Mode the  $R/\overline{C}$  pin is held low during the second  $\overline{CS}$  falling edge. In this mode the reference and buffer remain powered up after a conversion cycle. For Shutdown Mode the  $R/\overline{C}$  pin is held high during the second  $\overline{CS}$  falling edge. In this mode the reference and buffer are powered down after a conversion cycle. The advantage of Standby Mode over Shutdown Mode is that in the case of the Standby Mode there is no need to wait for the internal reference to wake up and settle and to run a 'dummy' conversion before a new acquisition and conversion cycle takes place. The ADC can simply exit Standby Mode and begin an acquisition and conversion cycle

After the  $\overline{CS}$  second falling edge the CM waits to the  $\overline{EOC}$  pin to drive Low (0). This signals the end of a conversion and occurs on the expiration of the conversion time,

 $t_{CONV}$ , following the  $\overline{CS}$  second falling. When P2.1 is driven Low (0) the wait loop is exited and the Low-Byte can be put on the ADC eight-bit output bus. In order to read the Low-Byte certain conditions must first be satisfied. These are that the  $R/\overline{C}$  pin must be held High on the  $\overline{CS}$  third falling edge and the HBEN pin must be held Low. This is done as follows: after a delay of  $t_{DV}^2$  (i.e. the minimum time that has to elapse after  $\overline{EOC}$  is driven Low (0) and before the  $\overline{CS}$  third falling edge), the  $\overline{CS}$  pin can be driven Low (0) to produce the third falling edge. But this pin is not driven Low until it is first driven High (to recover from the last falling edge transition) and P2.0 is driven High.

After the third falling edge, a delay that is greater than  $t_{DO}$  is enforced to allow for valid data to be put on the eight-bit output bus. Then by setting HDEN High (1) and waiting for a period grater than  $t_{DO1}$  (i.e. the time that is required for valid data to be put on the eight-bit output bus after toggling HBEN), the High-Byte is put on the eight-bit output bus. After the CM has recorded and stored the high and low bytes of data that was output by the ADC, P3.5 is set High (1) hence driving the  $\overline{CS}$  pin High (1). The process of driving the  $\overline{CS}$  pin high after the  $\overline{CS}$  third falling edge forces the ADC eight-bit output bus into a high impedance state and readies the device for the next acquisition and conversion on the next  $\overline{CS}$  falling edge.

The  $\overline{EOC}$  pin is also forced High (after a time delay determined by  $t_{EOC}$ ) on this  $\overline{CS}$  raising edge. Note that the next acquisition should be initiated after a delay period greater than  $t_{BR}$  (i.e. Bus Relinquish Time) as stipulated for best results by the manufacturer. This delay period is more than compensated for by the execution time for the CM instructions that follow before the next acquisition and conversion process is initiated.

<sup>&</sup>lt;sup>2</sup> Note that the  $\overline{CS}$  third falling edge can occur immediately after  $\overline{EOC}$  is driven Low, as  $t_{DV}$  is stipulated as a minimum of  $0\eta s$ 

# 4.2 Automation Microcontroller

The Automation Microcontroller (AM) controls the Physical Test Station based on input signals received from the Physical Test Station itself, as well as commands and prompts received from the CM and the GUI via the CM.



FIGURE 4-13: SYSTEM BLOCK DIAGRAM

This section will describe the tasks undertaken by the AM and the manner in which these tasks are executed. As the previous section, The Communications Microcontroller, provided detailed explanations on all the relevant microcontroller functionalities, such as Timers, Interrupts, Subroutines etc, this section will concentrate solely on discussing the AM's use of these functionalities to efficiently complete specific tasks. In order to provide an overview of the AM's process flow, a diagrammatic depiction is presented in the form of a flow diagram in Figure 4-15.

# 4.2.1 Explanation of functions, tasks and flow process

The program for the AM was developed using three control levels based on interrupts and interrupt priorities. The first level is the base level, where the Main program has control. Here the required initialisations are carried out as well as the control and timing of the Armature Drive Motor and the calling of Error 1 subroutine, should Error 1 occur. When a pair of bars is detected, External Interrupt 1 is triggered and the External Interrupt 1 Interrupt service routine assumes control thereby entering the second control level. The EX1 ISR is responsible for stopping the Armature Drive Motor, the lowering and raising of the Detection Unit, switching of the Test Current, communication with the CM in order to capture the volt-drop readings and calling of error subroutines should the associated errors occur. The third level is the domain of the External Interrupt 0 (EX0) ISR. EX0 is assigned a higher priority than EX1 and can therefore interrupt the EX1 ISR as in the case when the test probes have reached the surface of the detected bars. In fact this is the function of EX0, i.e. to ascertain the status of the Detection Unit. When the test probes reach the surface of the bars EX0 is triggered, the Detection Unit Drive Motor is stopped, and the time period taken for the probes to be lowered to the surface of the bars is recorded in the EX0 ISR. EX0 is also triggered when the test probes have been raised to their initial position.

In summary, the base level allows for initialisations and also prompts the Armature Drive Motor to begin the rotation of the armature under test. When a pair of bars is detected EX1 is triggered and EX1s ISR is initiated as the second control level and assumes control from the base level. In the EX1 ISR, the Armature Drive Motor is stopped, the Detection Unit Drive Motor is prompted to lower the Detection Unit and the Test Current is switched on. The time taken for the test probes to reach the bars allows the test current to settle. Once the test probes on the Detection Unit reach the surface of the bars EX0 is triggered, the EX1 ISR is interrupted and the EX0 ISR executes, initiating control level three and assuming control from the EX1 ISR. When the EX0 ISR has stopped the Detection Unit Drive Motor and completed recording the relevant times, the ISR is exited and control is handed back to the EX1 ISR hence control level two.

The EX1 ISR then proceeds to communicate with the CM and a volt-drop reading is taken after which the Detection Unit Drive Motor is prompted to raise the Detection Unit. When the Detection Unit Drive Motor reaches its initial position EX0 is again triggered thereby initiating control level three and assuming control from the EX1 ISR and control level two. The EX0 ISR stops the Detection Unit Drive Motor and exits handing control back to EX1 ISR and control level two. EX1 ISR is then also exited and control is handed to the base control level and the Main program. Based on the commands from the GUI via the CM, the cycle is repeated until the last bar is tested. See Figure 4-14 for a diagrammatic representation of the above discussion. A more

detailed explanation of the Automation Microcontrollers process flow follows after Figure 4-15.



FIGURE 4-14: DIAGRAMMATIC REPRESENTATION OF THE THREE LEVEL CONTROL SYSTEM







# FIGURE 4-15: FLOW DIAGRAM FOR THE AUTOMATION MICROCONTROLLER

The AM first executes an initialisation process in which all the timers, interrupts and input/output ports that will be utilised for the duration of a test are initialised. Thereafter, the AM waits for the start pulse from the CM on P1.0. Upon receiving this pulse, the AM tests P1.6 to ascertain whether the test will be run in the Automated or Manual mode. If P1.6 is High (1) then the Manual mode has been selected and the AM initiates Powerdown mode. If P1.6 is Low (0) then Automated mode has been selected and the AM then Sets (1) and Clears (0) P0.1, which is responsible for signaling 'Increment The Number Of Bars'.

The AM then waits for the GUI to inform it, via the CM, whether or not the last pair of bars has been tested. If P3.0 is Low (0), then the last pair of bars have been tested and the AM waits for the End command from the GUI via the CM. Once this is

received, the AM enters Powerdown mode. If P3.0 is High (1), then the last pair has not been tested and the command is given to the Armature Drive Motor to initiate the rotation of the armature under test by setting P0.4 High (1). The AM then waits for the next pair of bars to be detected while timing the period between the initiation command and when the pair of bars has been detected. Detection of a pair of bars triggers External Interrupt 1 (EX1). If EX1 is not triggered before a maximum allowable time for detection is exceeded, Error 1 has occurred and the associated subroutine is called. Recall that Error 1 occurs when a pair of bars has not been detected within the maximum allowable time. The maximum allowable time for detection for each of the first three pairs is a preset value of 10 seconds.

The time duration recorded on the third pair of bars is stored to be used to calculate a tolerance or the maximum allowable time for the detection of a pair of bars after initiating the rotation of the armature under test. This new maximum allowable time will be the Detection Reference Time for the duration of the test. The time recorded on the third pair plus twenty percent is used as the reference value, i.e.

## Detection Reference Time = Third Pair Time Recording x 1.2

From the fourth pair of bars onwards, if EX1 is not triggered before the Detection Reference Time has expired, Error 1 subroutine is called. The use of the Detection Reference Time allows for greater control of the system as the unique reference value that is used for the duration of the test is based on the bar widths and spaces between the bars of the particular armature under test. In this way an error is detected sooner than if a preset value that catered for all armatures was used, hence the possibility of excessive damage to the system and the armature under test due to a system error is reduced. The reason that the Detection Reference Time is calculated based on the time recorded for the third pair of bars is simply because the system is given time to settle during the first and second cycles.

The question that now arises is what happens if a detection error occurs on the third pair of bars, i.e. when the time is being recorded to calculate the Detection Reference Time? The answer is that if Error 1 was called before External Interrupt 1 was triggered, then a time period will not be recoded as all time recordings is done by the External Interrupt 1 interrupt service routine (ISR). The Error 1 subroutine does not have the capability to perform any time interval recording. Hence the value that will be used to calculate the Detection Reference Time will now be recorded on the next detection cycle, i.e. on the forth pair of bars. However, to introduce redundancy, the Error 1 subroutine also takes appropriate measures when this event occurs. Note that the use of timers to record time, set preset intervals and introduce delays is discussed in Section 4.1.4.

When a pair of bars has been detected before the Detection Reference Time has exceeded, hence triggering EX1, the rotation of the armature under test is immediately stopped by Clearing (0) P0.4. The rest of the process from this point onwards is executed in the External Interrupt 1 ISR. From this ISR, the signal to the Detection Unit Drive Motor to begin lowering the Detection Unit is given. The Test Current is also switched on by Setting (1) P2.7. The Test Current is switched on before the Test Probes on the Detection Unit reach the bars as opposed to when they are already on the bars. This is done to prevent large voltage spikes due to the switching of the large test current to the inductive load (i.e. the inductance (L) of the armature under test), from damaging the input circuitry.

The Test Probes must not be confused with the Test Current Probes. The Test Current Probes are the probes from which the Test Current is injected though the armature under test via an IGBT. The Test Current Probes are lowered onto the commutator and are fixed into place at the start of the test and are in no way attached to the Detection Unit. These probes are not raised off or lowered onto the commutator as in the case of the Test Probes on the Detection unit. The Test Current is switched on when a reading is to be taken and is switched off when a reading is complete and the Test Probes have been raised off the surface of the commutator.

The Test Current probes are never raised off the surface of the commutator at any time during the test. When the IGBT is switched off, the collapsing magnetic energy that is stored in the armature is dissipated via an onboard fly-back diode. Fly-back diodes are a standard feature on most modern IGBT units and are built into the semiconductor structure of the IGBT to provide onboard protection in a single unit. The Test Current is switched on between 2 and 4 seconds after it was last switched off

depending on the speed of rotation and the spacing of the commutator bars. The low switching frequency allows for sufficient time for the stored magnetic energy to be dissipated via the onboard fly-back diode hence there is no arcing.

The spring mounted Test Probes are fixed onto the Detection Unit. These probes are lowered and raised when a reading is to be taken. A minute current flows through these test probes due to the extremely high input impedance of the Data Acquisition Module, more specifically the input impedance of the precision Instrumentation Amplifier, the INA 118, as discussed in Section 5.3. It is due to this high input impedance and the low Test Supply Voltage of typically +15VDC maximum that arcing does not occur when the test probes are raised off and lowered onto the Commutator when the Test Current is flowing through the armature. Tests on the Data Acquisition Module proved that no arcing takes place when the test probes are raised off and lowered to flow through the armature.

The only undesirable electrical effect that would have to be catered for is the bouncing of the input signal due to the mechanical bounce created when spring loaded test probes make contact with the surface of the bars. This bounce will create oscillations in the input signal however, the amplitude of these oscillations should not exceed the amplitude of the input signal when it has settled. This means that although there will be oscillations due to the bounce, there will be no voltage spikes as created when switching the Inductive load. In order to cater for the above-mentioned oscillations, the ADC is instructed to perform acquisition and conversion only after a delay period has been enforced.

If the test probes on the detection unit do not reach the surface of the bars within a preset time then Error 2 occurs and the associated subroutine is called. When the test probes do reach the surface of the bars within the allocated time, the Detection Unit outputs a signal which triggers External Interrupt 0 (EX0). As mentioned previously, EX0 is assigned a higher priority than EX1. Error 2 will be initiated when the preset allowable time of ten seconds, for reaching the surface of the bars, expires before EX0 is triggered. If EX0 is triggered before the aforementioned time expires, the EX0 ISR is initiated. The EX0 ISR stops the Detection Unit Drive Motor and stores the time

that was taken for the test probes to reach the surface of the bars by copying the values held in the timer registers. Once on the surface of the bars, the AM signals the CM that a volt-drop reading can now be taken be Setting (1), P0.0. The AM then waits for one of two signals from the CM. The first is the signal received on P1.7, which informs the AM that the reading has successfully been taken by the CM, transmitted to the GUI, analysed and stored. Now both the GUI and the CM are ready to proceed.

The second signal is received on P3.1, which informs the AM that the maximum allowable time that the Test Current can be switched on for an individual volt-drop reading has been exceeded. The timing of the Test Current on-time is carried out by external interfacing circuitry and is discussed in Section 5.1.6. If P3.1 is Set (1) before P1.7, Error 3 has occurred. The Error 3 subroutine is then called and due to the severity of the effects of such high currents being applied to the armature under test for a prolonged period of time, an Emergency Stop is automatically initiated and the AM immediately halts the task that was being carried out, switches off the Test Current by Clearing (0) P2.7 and safely shuts the system down before entering Powerdown mode. If however, P1.7 is Set (1) before P3.1 then the volt-drop reading will be captured with no system irregularities and the process flow continues as normal.

The next step is to prompt the Detection Unit Drive Motor to begin raising the test probes off the surface of the bars. Here again EX0 is triggered when the Detection Unit reaches its initial position. If, however, EX0 is not triggered before the maximum allowable time has elapsed Error 4 occurs and the associated subroutine is called. This maximum allowable predetermined time for this process is called the Unit Raising Reference Time. This period is derived by adding twenty percent of the time taken for test probes to reach the surface of the bars (during lowering) to the recorded time itself, i.e.

Unit Raising Reference Time = Recorded Test Probe Lowering Time x 1.2 When EX0 is triggered before the Unit Raising Reference Time expires, the Detection Unit Drive Motor is stopped and control is returned to the EX1 ISR, which in turn returns control to the Main program. The Main program then transmits an Increment signal to the GUI via the CM and waits for the response. This cycle continues until each pair of bars on the commutator of the armature under test has been tested.

# 4.2.2 Initialisation and main program

The Main program is responsible for performing all the required initialisations on startup. This includes the initialisations of the input/output ports, timers, interrupts and interrupt priorities. The above-mentioned initialisations can be viewed in Code Extract 4-14.

|                 | ORG       | ΟH      |    |      |      |             |
|-----------------|-----------|---------|----|------|------|-------------|
|                 | LJMP      | MAIN    |    |      |      |             |
|                 | ORG       | 0003H   |    |      |      |             |
|                 | LJMP      | EXOIS   | R  |      |      |             |
|                 | ORG       | 0013H   |    |      |      |             |
|                 | LJMP      | EX1IS   | R  |      |      |             |
| COUNT           | EQU       | -1000   | 0  | ;DEI | AY   | LOOP        |
| COUNT2          | EQU       | -50000  | 0  | ;SAE | ΤY   | TIME        |
|                 | ORG       | 0030н   |    |      |      |             |
| MAIN:           | MOV       | TMOD, # | #0 | 0010 | 0001 | lB          |
|                 | MOV       | IP,#00  | 00 | 0000 | )1B  |             |
|                 | MOV       | IE,#00  | 00 | 0010 | )1B  |             |
| ;*****          | *iNTILIZE | . I/O 1 | PO | RTS  | ***  | *****       |
|                 | MOV       | PO,#O1  | Н  |      |      |             |
|                 | MOV       | P1,#1   | 11 | 1111 | .1B  |             |
|                 | MOV       | P2,#01  | Н  |      |      |             |
|                 | MOV       | P3,#00  | 00 | 1111 | 1в   |             |
| ; * * * * * * * | *iNTILIZE | : I/O ) | РО | RTS  | ***  | * * * * * * |

## **CODE EXTRACT 4-14: AUTOMATION MICROCONTROLLER INITIALISATION**

The first six statements redirect the program counter (PC) to different locations in program memory (ROM), via labels, when vectoring off to the defined addresses (i.e. in this case 0H, 0003H, and 0013H). The starting location or address for a program is 0H, this is the system reset vector address. Once at this location, a Long Jump (LJMP) to the label Main is initiated. This label is the starting point of the Main program. Similarly, when interrupts are triggered, the PC is loaded with the default vectoring address of the associated ISR. Once at that address, the program is redirected to

locations in memory where the associated ISR resides using LJMP statements. This is because the eight-byte provision made for ISR's is too small to cater for the ISR's needs. The main program memory space is available from 0030H, as the space from 0000H to 002FH is allocated to system reset and ISR code. The statement below,

#### MOV TMOD, #00010001B

initiate the timers using the TMOD SRF. Both Timer0 and Timer1 are initialised as sixteen-bit timers. Interrupt priority is assigned using,

where, as discussed earlier, External Interrupt 0 is assigned a higher priority than External Interrupt 1. The statement,

```
MOV IE,#00000101B
```

is used to initialise the required interrupts which are, External Interrupt 0 and External Interrupt 1. Following these statements, the input/output ports are initialised by setting the port pins that are to be used as inputs High (1) and setting the port pins that are to be used as outputs Low (0). The EQU directive is used to assign a numeric value to the associated symbol. This symbol is then substituted whenever this value is to be used. For example, the statements below make use of COUNT2 symbol to access its associated numeric value which, referring to Code Extract 4-14, is 50 000. The negative sign implies 50 000 less than the timer overflow value of 0H.

```
MOV R1, #HIGH COUNT2
MOV R2, #LOW COUNT2
```

Here the high byte of -50 000 is loaded into register R1 and the low byte is loaded into register R2. The timer high and low byte registers are loaded in the same manner. See Appendix L for the AM source code. Following the initialisation steps, the Main program clears all flag bits (located in general purpose RAM) that are to be used in the program. This is done as a precaution. See Appendix K for a list of flags used. Following this step, the AM initiates and waits for communication signals from the CM. It then waits in a loop for the start signal from the CM. On receiving this signal it ascertains the mode of operation. Thereafter, the AM Clears (0) P0.5, in order to clear the D Flip-Flops that provide the interrupt trigger signal when a pair of bars have been detected. This is also a precautionary measure taken to ensure that the flip-flops are in

a known state. The AM then enables the interrupts, transmits the increment signal (on P0.1) to CM and after an enforced delay created by calling the DELAYLOOP subroutine, it waits for a Continue pulse/signal (when the last pair of bars have not been tested) or an End signal (when the last pair of bars have been tested) on port pins P3.0 and P1.1 respectively. The DELAYLOOP subroutine is used often in the program to enforce a one second delay and will be discussed in length under Subroutines.

If a Continue pulse was received the AM then determines if the pair of bars to be tested is pair one, two or three or if it is pair four or above using flags 00H, 01H and 02H. This is done for the following reason. As the reader may recall, a Detection Reference Time is calculated using the values stored in the timer registers when the third pair was being tested. The Detection Reference Time is then used as a tolerance for the detection period for the fourth pair of bars onward. Hence if the AM 'knows' that pair four or greater is being tested, the Detection Reference Time is used as a reference instead of the preset maximum allowable time of ten seconds that is used for bars one, two and three.

After this point, the AM waits for either the maximum allowable time (using the appropriate value) to expire or External Interrupt 1 to be triggered when a pair of bars has been detected. The Main program does this by checking if the EX1 flag, 04H, has been set. This flag is set at the start of the EX1 ISR and serves to flag or signal the ISR execution event. Once the Armature Drive Motor has been prompted to start, the timers whose registers have been loaded with the appropriate values, are also started/triggered. Once the preloaded time has expired, the status of flag 04H is checked, as shown in Code Extract 4-15. The reason<sup>3</sup> that this flag is always tested at this point is that the preloaded time either expires due to an error or it is forced to expire by reloading the timer and R3 registers with values that are slightly less than the allowable time hence causing this allowable time to expire almost immediately after the EX1 ISR is exited.

<sup>&</sup>lt;sup>3</sup>Note that the preloaded time always expires. Hence, a check has to be made to verify if it expired due to having exceeded the maximum allowable time or if it was forced to expire due the External Interrupt ISR.

When EX1 is triggered the timers are paused, the ISR handles the interrupt and control is returned to the timers which will resume their count from the new "forcing" reloaded value until the maximum allowable value has been reached. So upon completion of this count, the Main program has to check if EX1 had been triggered and if the ISR had been initiated by testing flag 04H. If EX1 ISR had indeed been initiated (flag 04H is High (1)) then no error would have occurred. However if flag 04H was Low (0) at this point, then the EX1 ISR had not been initiated before the maximum allowable time was exceeded and an error is reflected.

| TMR_OUT: | CLR<br>JB<br>CALL  | EX1<br>04H,<br>ERR( | NO_ERR1<br>DR1 |
|----------|--------------------|---------------------|----------------|
| NO_ERR1: | CLR<br>SETB<br>JMP | 04H<br>EX1<br>AUT(  | D              |

#### CODE EXTRACT 4-15: EXTERNAL INTERRUPT 1 FLAG 04 H TEST

Note that prior to exiting the EX1 ISR, the timers are reloaded with values that force the them to overflow almost immediately, hence eliminating the need to wait for the timer to count for the remainder of the preloaded duration, as shown in Code Extract 4-16.

| EXR1OUT:MOV | TH1,#-10 |
|-------------|----------|
| MOV         | TL1,#-10 |
| MOV         | R3,#1    |
| SETB        | TR1      |

## **CODE EXTRACT 4-16: TIMER REGISTER RELOADED "FORCING" VALUES**

If the predefined duration is exceeded before EX1 is triggered then Error I subroutine is called and upon regaining control from the subroutine the Main program loops back to the block of code below,

| NLBAR: | JNB  | P3.0,LBAR  |
|--------|------|------------|
|        | JMP  | CONT       |
| LBAR:  | JNB  | P1.1,NLBAR |
|        | CLR  | P0.1       |
|        | LJMP | END        |

#### CODE EXTRACT 4-17: START / RESTART LOOP

where it waits for a Continue or End signal from the CM. The Error 1 subroutine will be discussed in detail under the section entitled Subroutines. If the triggering of EX1 is first to occur then the program vectors to the EX1 ISR where the interrupt is handled and after completion of this process, the timers are reloaded and control is handed back to the Main program. From this point a jump is initiated and the Main program enters a wait loop where it waits for a Continue or End signal from the CM, as shown in Code Extract 4-17.

This entire process is repeated until the last pair bars have been tested and is identified as having been completed by the reception of an End signal from the CM.

# 4.2.3 Interrupts and Interrupt Service Routines (ISRs)

External Interrupt 1 and External Interrupt 0 are the only interrupts enabled for use by the AM. The interrupt priority is assigned such that External Interrupt 0 has a higher priority than External Interrupt 1 and can therefore interrupt the External Interrupt 1 Interrupt Service Routine (ISR) when the associated triggering event occurs. External Interrupt 1 is triggered on the detection of a pair of bars by the optical sensor. The EX1 ISR then takes control for the duration of that test cycle except for when External Interrupt 0 is triggered and EX0 ISR briefly assumes control. External Interrupt 0 is triggered when the test probes reach the bars under test, when the test probes are raised to their initial position, when an Emergency Stop is initiated by pressing the Emergency Stop switch (on P1.5) on the Test Station or if one of the systems Safety Interlocks are triggered. Safety Interlocks are switches on access points to the test area, e.g. gates or doors. When a gate or door is opened during a test, the Safety Interlock is triggered. This is a safety measure implemented to prevent unauthorised staff from entering the test area while a test is in progress. Each interrupt and the associated interrupt service routine will be discussed individually below.

# 4.2.3.1 External Interrupt 1 and External Interrupt 1 ISR

External Interrupt 1 is triggered when the optical sensors on the detection unit detects a pair of bars and signals this event via a D flip-flop and an interfacing digital network. On triggering this interrupt, the program is immediately paused and the program vectors off to the location in memory that is allocated to the EX1 ISR (0013H). Due to its size, eight bytes is too little space to contain the entire ISR. The ISR has to therefore be located elsewhere in memory and identified by a label. Once at the vectored address, i.e. 0013H, a long jump is initiated to the ISR using the label EX1ISR to identify the ISR's location in memory. The label is the beginning point of the ISR and once identified, the ISR executes and returns control to the interrupted program i.e. the Main program in this case using the Return Form Interrupt (RETI) statement. Figure 4-16 depicts the flow diagram for the EX1 ISR and Code Extract 4-18 shows the EX1 ISR coding.





## FIGURE 4-16: EXTERNAL INTERRUPT 1 ISR FLOW DIAGRAM

; EXTERNAL INTERUPT 1 - ISR - v2 EX1ISR: CLR PO.4 P0.5 SETB nop nop nop nop P0.5 CLR CALL DELAYLOOP CLR TR1 CLR TRO SETB 04H JNB 02H,RUN DWN 05H,RUN DWN JB MOV R4,THO MOV R5,TLO B,R3 MOV MOV R6,B 05H SETB ;\*\*\*\*\*\*\*\*\*\* DOWN ; ;\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* RUN DWN:CALL RUN DWNX ;\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* READING ; CALL READING ;\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* ; RUN UP ·\*\*\*\* RUN UP CALL EXR1OUT:MOV TH1,#-10 TL1,#-10 MOV R3,#1 MOV TR1 SETB RETI

#### CODE EXTRACT 4-18: EXTERNAL INTERRUPT 1 ISR CODING.

On entering the ISR, the first task carried out is to stop the rotation of the Armature Drive Motor by Clearing (0) P0.4 and also stopping the Timers by Clearing (0) TR1 and TR0. The next task is to Clear (0) the D flip-flops that produce the triggering pulse. This is accomplished by setting port pin P0.5 High (1) for a short period before clearing it again. This is done to ensure that the D flip-flops are in a known state for the next detection cycle. The operation of the input detection circuitry will be discussed in Chapter 5. Next, the EX1 flag, 04H, is set. This indicates to the Main program that External Interrupt 1 was triggered and that EX1 ISR did execute.

Following this, the ISR checks whether the pair of bars that were detected are the third pair. If it is the third pair, then the values that are stored in the timer registers are copied into registers R4 (high byte) and R5 (low byte). Further, the value stored in register R3 (Timer 1 overflow count) is copied into register R6 in Register Bank 0, see Appendix K. These values are used in the calculation of the Detection Reference Time. (Note that the use of Timers will be discussed later in the chapter under the section entitled Timers).

The Detection Unit Drive Motor is prompted to begin lowering the unit and the test probes onto the surface of the commutator by calling the RUN\_DWNX subroutine. Once the test probes are on the surface of the bars the READING subroutine is called. This subroutine communicates with the CM READING subroutine in order to capture a volt-drop reading for that pair of bars. When the process reading is complete the RUN\_UP subroutine is called to raise the bars to its initial position. Note that all subroutines will be discussed in the section entitled Subroutines.

Finally, prior to exiting the ISR and returning control to the Main program, the timer registers and the Timer 1 overflow count register, R3, is reloaded with values that will force an almost immediate timer overflow thereby forcing the maximum allowable time to be exceeded, as discussed earlier. Control is then returned to the Main program.

# 4.2.3.2 External Interrupt 0 and External Interrupt 0 ISR

External Interrupt 0 is triggered when the test probes on the Detection Unit has reached the bars under test (when the unit is being lowered), the test probes have been raised to their initial position (when the unit is being raised), when an Emergency stop has been initiated (by pressing the Emergency Stop switch on the Test Station) or if one of the systems Safety Interlocks are triggered. When triggered the program vectors off to 0003H where it is redirected using a jump statement to the location in memory where the label EX0ISR resides. The location of this label is the beginning point of the EX0 ISR code. An explanation of the EX0 ISR is provided with reference to Figure 4-17 for the EX0 ISR flow diagram and Code Extract 4-19.





## FIGURE 4-17: EX0 ISR FLOW DIAGRAM
```
;EXTERNAL INTERUPT 0 - ISR - v2
EXOISR: jnb
              P1.5, no stop
       ljmp
              end
no_stop:JB
              OEH, IG
              P0.2
       CLR
              P0.3
       CLR
              TR1
       CLR
       CLR
              TRO
       JNB
              OCH, S
              P2.7
       CLR
s:
       CALL
              DELAYLOOP
       SETB
              08H
              OCH, EXROOUT
       JΒ
       MOV
              B,R3
              R7,B
       MOV
              RSO
       CLR
                      ;
       SETB
              RS1
                      ;REG BANK 1
              R1, THO
       MOV
       MOV
              R2,TLO
       CLR
              RSO
                      ;
              RS1
                      ;REG BANK 0
       CLR
EXROOUT:CLR
              0CH
              TH1, #-10
       MOV
              TL1, #-10
       MOV
       MOV
              R3,#1
              TR1
       SETB
IG:
       RETI
```

#### **CODE EXTRACT 4-19: EX0 ISR CODING**

The first task undertaken by the interrupt service routine is to test port pin P1.5. If this pin is High (1) then EX0 was triggered by the initiation of an emergency stop or one of the systems Safety Interlocks was triggered. The ISR then jumps to the End label where the input/output ports are cleared and Powerdown mode is entered into. If P1.5 was Low (1) then the interrupt was triggered by the test probes reaching the surface of bars when being lowered or its initial position when being raised.

However, the ISR has to further ascertain if the interrupt was triggered while the ERROR READING PROCEDURE Subroutine was being executed by testing flag 0EH. This flag is Set (1) by the ERROR READING PROCEDURE Subroutine when a manual reading has to be taken due to an error and when it is Set (1), the EX0 ISR is

to ignore the interrupt and exit the ISR. The ERROR READING PROCEDURE Subroutine will be further discussed later in this chapter. When flag 0EH is tested and found to be Low (0), the interrupt was not triggered during the execution of the ERROR READING PROCEDURE Subroutine. Both the raising and lowering motion is then stopped by Clearing (0) the port pins responsible for prompting the action, i.e. P0.2 and P0.3 respectively. Thereafter, the Timers are stopped by Clearing (0) TR1 and TR0. Following this, flag 0CH is tested. This flag is set by the RUN\_UP subroutine to indicate that the Detection Unit was in the process of being raised at the moment of the interrupt.

If 0CH is set, i.e. High (1), the Detection Unit was being raised before the ISR, which means that a reading was already completed and the test probes are off the surface of the bars and at its initial position when this interrupt was triggered. It is then required that the Test Current is switched off, and this is accomplished by Clearing P2.7. If flag 0CH was not set, i.e. Low (0), then the interrupt was triggered when the test probes reached the surface of the bars in order to take a volt-drop reading. The Test Current is therefore left on. After this process a delay is enforced by calling the DELAYLOOP subroutine.

The EX0 flag, 08H, is then set to indicate that this interrupt has been triggered and that the associated ISR has executed. Next, flag 0CH is retested. In this case if the flag is not set (which implies that the interrupt was triggered when the Detection Unit was being lowered) the values in the timer registers are stored in Register Bank 1, register R1 (high byte) and R2 (low byte).

The Timer 1 overflow value that is stored in register R3 is copied into register R7 in Register Bank 0, see Appendix K. These values are recalled and used to calculate the Unit Raising Reference Time. Register Bank 0 is accessed using the Mode bits RS0 and RS1 in the Program Status Word Register (PSW), see Table 4-11 and Table 4-12. By setting RS0 =1 and RS1 = 0, the eight registers, R0 to R7 in Register Bank 1 can be accessed.

| CLR | RSO | ;    |      |   |
|-----|-----|------|------|---|
| CLR | RS1 | ;REG | BANK | 0 |

And by resetting RS0 = 0 and RS1 = 0, the eight registers, R0 to R7 in Register Bank 0 can be accessed

CLR RSO ; SETB RS1 ;REG BANK 1

. Note that Register Bank 0 is the default register.

| Bit   | Symbol | <b>Bit Address</b> | Description            |
|-------|--------|--------------------|------------------------|
| PSW.7 | CY     | D7H                | Carry Flag             |
| PSW.6 | AC     | D6H                | Auxiliary Carry Flag   |
| PSW.5 | F0     | D5H                | Flag 0                 |
| PSW.4 | RS1    | D4H                | Register Bank Select 1 |
| PSW.3 | RS0    | D3H                | Register Bank Select 0 |
| PSW.2 | OV     | D2H                | Overflow Flag          |
| PSW.1 | -      | D1H                | Reserved               |
| PSW.0 | Р      | D0H                | Even Parity Flag       |

# TABLE 4-11: PROGRAM STATUS WORD REGISTER (PSW) SUMMARYSOURCE: THE 8051 MICROCONTROLLER

| RS1 | RS1 | Bank | Address   |
|-----|-----|------|-----------|
| 0   | 0   | 0    | 00H - 07H |
| 0   | 1   | 1    | 08H - 0FH |
| 1   | 0   | 2    | 10H – 17H |
| 1   | 1   | 3    | 18H – 1FH |

# TABLE 4-12: REGISTER BANK SUMMARY – SOURCE: THE 8051MICROCONTROLLER

Prior to exiting and returning control to EX1 ISR the timer registers and the Timer 1 overflow count register, R3, are reloaded to force an almost immediate timer overflow hence forcing the maximum allowable time to be exceeded, as discussed earlier. Control is then handed back to the EX1 ISR by executing the RETI statement.

# 4.2.4 Timers and Timer Operation

The Automation Microcontroller makes use of both Timer 0 and Timer 1 in the Sixteen-Bit Timer mode as initialised at the beginning of the program. This means that the timer counts in 1µs intervals from 0000H to FFFFH. On a FFFFH to 0000H transition an overflow occurs and the Timer Overflow Flag, TFx, is set. Both timers are used together with an overflow count register, R3, to time the duration of certain events/processes. The timer registers as well as the overflow count register are also reloaded with predefined values so that an event is allowed a maximum time in which to occur. Timer 0 is also used to enforce a delay of one second when the DELAYLOOP subroutine is called.

Timer 0 and Timer 1 are used to time how long an event takes to complete (when raising or lowering the Detection Unit) or how long an event takes to begin (When waiting for a pair of bars to be detected). To store the timer register and overflow count register values the following procedure is used referring to Figure 4-18 and Code Extract 4-20.





#### FIGURE 4-18: FLOW DIAGRAM FOR THE INTERVAL TIMING PROCEDURE

|         | MOV  | R1, #HIGH COUNT2 |
|---------|------|------------------|
|         | MOV  | R2,#LOW COUNT2   |
|         | MOV  | R3,#200          |
| TMR2:   | MOV  | тно,#он          |
|         | MOV  | тьо,#он          |
|         | MOV  | TH1,R1           |
|         | MOV  | TL1,R2           |
|         | SETB | TR1              |
|         | SETB | TRO              |
| WAIT_T2 | :JNB | TF1,WAIT_T2      |
|         | clr  | tr1              |
|         | CLR  | TRO              |
|         | clr  | tf1              |
|         | CLR  | TFO              |
|         | DJNZ | R3,TMR2          |

#### CODE EXTRACT 4-20: CODING FOR THE INTERVAL TIMING PROCEDURE

The process begins with Timer 1 being preloaded with the values associated with the COUNT2 symbol, i.e. –50000. This value is negative because it has to be loaded as 50000 less than the overflow value which for a sixteen-bit counter is 0000H (recall that at an overflow occurs on a FFFFH to 0000H transition). Registers R1 and R2 are preloaded with the high and low bytes respectively of the COUNT2 value, i.e. –50000. R1 and R2 are later used to load the Timer 1 high and low byte registers respectively. Thereafter, the Timer Overflow Register is

preloaded with 200. This means that a maximum of 200 cycles of  $50000\mu$ s duration will be counted, i.e.

This 10s is the maximum allowable time for an event to occur or begin and is the default allowable period when an interval is being timed in order to store the duration. If this time is exceeded before the event is completed or has begun, the Error subroutine associated with the interval being timed is called.

After being loaded, Timer 1 is triggered and a count is started from the preloaded value to 0000H. While counting the Timer 1 Overflow Flag, TF1, is continuously tested in a loop. As soon as an overflow occurs, TF1 is set High (1) and the test loop is exited. The timer is stopped and the overflow flag is Cleared (0). Register R3 is then decremented to indicate that one 50000µs cycle has been completed. R3 is then tested to check if it holds a value of zero, indicating that 200, 50000µs cycles have been completed, hence implying that the 10s maximum allowable time has been reached.

If this is the case, the timer has exceeded the maximum allowable time before the event being timed has occurred, therefore not stopping the timer in order to store the value. When this occurs the Error subroutine associated with the interval being timed is called. For every completed 50000µs cycle for which R3 does not hold zero after being decremented, a jump is initiated to the point where the timer registers are reloaded and then triggered to begin the next 50000µs cycle. The reader will note that Timer 0 is also triggered and stopped at the same time that Timer 1 is triggered and stopped. The only difference in the use of these two timers is that when being reloaded, Timer 1 registers are reloaded with –50000, i.e. 50000 counts below 0000H, and Timer 1 registers are reloaded with 0H. The explanation is provided with reference to Figure 4-19.



## FIGURE 4-19: TIMER REGISTER OPERATION

When the stored timer register and overflow count register, R3, values are used to calculate the Detection Reference Time and the Unit Raising Reference Time, the calculation subroutine (which will be discussed under Subroutines) subtracts the value remaining in R3 from the initially loaded 200, producing the number of 50000 $\mu$ s cycles that were completed during the interval that was timed. The number of cycles is not an accurate indication of the entire interval. For example, in the event that the timers were stopped due to an expected event 10255 $\mu$ s after the last 50000 $\mu$ s was completed and this cycle was the tenth cycle. The overflow count register, R3 will only hold the value after the last timer overflow i.e. 200 – 10 = 90. After being processed by the calculation subroutine, the value to be reloaded into the timers and overflow count register will be 200 –90 = 10. Because the reloaded value is just

$$10 \text{ cycles x } 50000 \mu \text{s} = 0.5 \text{s}$$

and not the true value of,

$$10 \text{ cycles } x 50000 \mu s + 10255 \mu s = 510255 \mu s = 0.510255 s,$$

it is obvious that the 10255µs that was counted just before the timers were stopped is 'lost'. In order to capture the most accurate time for an interval this "lost" time must also be captured. This is where Timer 0 is important. Referring to Figure 4-19a, it is shown that when the timers are being loaded, Timer 1 registers are loaded –50000, i.e. 50000 counts below 0000H. At the same time, Timer 0 is loaded with 0000H. When the timers are started they both count up from their preloaded values. When Timer 1 reaches the FFFFH to 0000H transition and overflows, Timer 0 registers holds 50000. In this way Timer 0 is performing a positive count/timing, beginning at 0000H of the same period that is being counted/timed by Timer 1 from its preloaded value.

Figure 4-19b provides a true representation of the timer register values for the example given above. After the ten 50000µs cycles have been completed the timer registers are reloaded as described above, i.e. Timer 1 with a preloaded value and Timer 0 with 0000H. The timers are then triggered and the both begin the counting/timing process. When the an event occurs that stops the timers, Timer 1 registers hold a value that is equal to the preloaded value plus the period that was just timed i.e. 10255µs. Or, put differently, Timer 1 registers hold a value that is 10255

counts closer to the FFFFH to 0000H transition than the preloaded value. But at the same instant Timer 0 registers holds exactly 10255. This is because the Timer 0 registers were loaded with an initial starting point of 0000H and timed the exact period that Timer 1 did. This value, stored in the Timer 0 registers are used by the calculation subroutine to calculate the reload value for the time interval that has to be counted after the ten cycles have elapsed, hence providing a true reflection of the interval time.

Although it is good engineering practice to obtain the most accurate values as possible, for the purposes of this project, such accuracy is not imperative as a twenty percent time duration is added to the recorded time (as an allowable tolerance) by adding twenty percent more cycles to the recorded completed cycled. This will be discussed in CALC\_TIME subroutine. When counting down or timing an interval for which a calculated preloaded value is being used to verify that an event is completed or begins, before the preloaded interval expires, the use of only one timer is necessary.

Here, the calculated number of 50000µs cycles, which included the twenty percent tolerance, is loaded into register R3 and the registers of the timer being used is loaded with –50000 i.e. the same value used when recording the time interval. The timer is then triggered and at the end of each 50000µs the timer overflow flag is Set (1) and R3 is decremented until zero is reached. When zero has been reached the timer registers are reloaded with the calculated remainder value and again triggered. If after this duration has expired the expected event has not began or been completed, the error subroutine associated with the expected event is called. If the event has started or has been completed before this interval is exceeded, the timers and overflow count register are reloaded with values that will force an almost immediate overflow when control is handed back, as described under Interrupts and Interrupt Service Routines.

# 4.2.5 Subroutines

# 4.2.5.1 The CALC\_TIME Subroutine

This subroutine, as mention earlier, is used to calculate the reload values for the timer and overflow count registers when timing the completion or beginning of an event that has been allocated a maximum allowable preset time. Before the CALC\_TIME subroutine is called, the calling program loads, 200 into register A in order to calculate the number of overflow counts/cycles that occurred. Further, the stored high byte timer value is loaded into Register R1, the stored low byte timer value is loaded into register R2 and the overflow count register value is loaded into R3. Referring to Figure 4-20 and Code Extract 4-21 the calculation procedure is as follows.





## FIGURE 4-20: CALC\_TIME SUBROUTINE FLOW DIAGRAM

| ;**** | * * * * * * * * | * * * * * * * * *            | ****            | * * * * * * *     | ******            |
|-------|-----------------|------------------------------|-----------------|-------------------|-------------------|
| ;     |                 | CALC_TI                      | ME              |                   |                   |
| ;**** | ******          | * * * * * * <del>*</del> * * | *****           | *****             | * * * * * * * * * |
|       | CALC_TIN        | 4E:                          | CLR             | C                 |                   |
|       |                 |                              | SUBB            | A,R3              |                   |
|       |                 |                              | MOV             | RJ,A              |                   |
|       |                 |                              | CLR             | C                 |                   |
|       |                 |                              | CLR             | AC                |                   |
|       |                 |                              | CLR             | ov                |                   |
|       |                 |                              | MOV             | A, R2             |                   |
|       |                 |                              | CPL             | А                 |                   |
|       |                 |                              | ADD             | A,#1              |                   |
|       |                 |                              | MOV             | R2,A              |                   |
|       |                 |                              | MON             | 8 D1              |                   |
|       |                 |                              | MOV             | A, KI             |                   |
|       |                 |                              | CPL             | A                 |                   |
|       |                 |                              | JNC             | <u>ร</u> บพ<br>สว |                   |
|       |                 |                              | CLR             | 02                |                   |
|       |                 |                              | ADD             | A,#1              |                   |
|       |                 |                              | JNC             | SUM               |                   |
|       |                 |                              | MOV             | A,#255            |                   |
|       | SUM:            |                              | MOV             | R1,A              |                   |
|       |                 |                              | CLR             | С                 |                   |
|       |                 |                              | CLR             | AC                |                   |
|       |                 |                              | CLR             | ov                |                   |
|       |                 |                              |                 |                   |                   |
|       | co1·            | MOV                          | A. R3           |                   |                   |
|       | 001.            | MOV                          | R #5            |                   |                   |
|       |                 | DTV                          | D, #3<br>AD     |                   |                   |
|       |                 |                              | V D 3           |                   |                   |
|       |                 | ADD                          | A, KO           |                   |                   |
|       |                 | MOV                          | тоцц<br>пр #рсс |                   |                   |
|       |                 | MOV                          | кз,#255<br>а    |                   |                   |
|       | mort            | CLR                          |                 |                   |                   |
|       | TOLL:           | MOV                          | R3,A            |                   |                   |
|       |                 | CLR                          | ov              |                   |                   |
|       |                 | CLR                          | AC              |                   |                   |
|       |                 | RET                          |                 |                   |                   |

#### CODE EXTRACT 4-21: CALC\_TIME SUBROUTINE CODING

The first calculation performed is to establish the number of overflow counts that had taken place. This is done by subtracting the value held in register R3 from the value held in register A, i.e. 200, as preloaded by the calling program. Register A is loaded with 200 because 200 was loaded into register R3 when the interval was being timed.

Register R3 was then decremented on the timer overflow every 50000 counts. So subtracting the contents of R3 from 200 produces the number of over flow cycles. Next, all the arithmetic flags, i.e. C, CY, OV are Cleared (0). Following this, the reload value for the timer registers is calculated. Recall that the reload values for the timer registers are negative so as to load a value that is the required amount less than 0000H. The calculation of this negative value is accomplished by finding the 2's compliment<sup>4</sup> of the value that was originally recorded and stored in Timer 2 registers. This calculation will now be discussed.

The contents of register R2 which holds the timer register low byte value is copied into register A. The contents of register A is then complimented. Note that register A and B are used extensively during this subroutine. This is because certain instructions can only be performed using these registers. For example, the compliment instruction cannot be performed using any other register apart from register A. One (1) is then added to the contents of register A before the contents is copied back into Register R2.

The contents of Register R1, which holds the timer register high byte value, is then copied into register A where it is complimented. The Carry Flag C, which is Set (1) when there is an overflow of an eight bit register, is then tested to determine if there was an overflow of the timer low byte register R2 when one was added to it. Example: If R2 contained 1101 1100 before one was added to it, it would contain 1101 1101 after one was added to it and the Carry Flag C will not be set.

i.e.  $1101 \ 1100 + 1 = 1101 \ 1101$ , and C = 0

However, if R2 contained 1111 1111 before one was added to it, it would contain 0000 0000 after one was added to it and the Carry Flag C will be set.

i.e. 1111 1111 + 1 = 0000 0000, and C = 1

<sup>&</sup>lt;sup>4</sup>A negative of a binary number is the 2's compliment of its corresponding positive number. To calculate the negative value using the 2's compliment system, the original positive binary number has to be first complimented (this is 1's compliment), before one (1) is added to the Least Significant Bit (LSB).

When the C is tested and found to be High (1) an overflow of R2 is implied and one has to be added to the contents of A. If C was found to be Low (0), the contents of A is left as is. See Figure 4-21 for numerical examples using the discussed calculation process.

Next a twenty percent tolerance is added to the calculated number of cycles that are held in register R3. This is accomplished by copying the contents of R3 into register A and loading register B with 5. Register A is then divided by register B leaving the integer part of quotient in register A and the remainder in register B. The contents of R3 is then added to the contents of A which should be twenty percent of the original value held in R3. If the Carry Flag C is Set (1) after this addition, implying an overflow, A is simply reloaded with 255 (or FFH) which is the largest value than can be counted to before an overflow in an eight bit register. Finally, the contents of A is copied back into R3, all arithmetic flags are cleared and the subroutine is exited using the RET statement.

| Example 1: Without Low Byte Overflow                                                                                                                                                      |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| High Byte Low Byte                                                                                                                                                                        |  |  |  |
| $(\text{Ten Thousand}) = 10\ 000 = 0010\ 0111\ 0001\ 0000$                                                                                                                                |  |  |  |
| [ Low Byte,1's Compliment]<br>Compliment of Low Byte = 1110 1111                                                                                                                          |  |  |  |
| [Low Byte,2's Compliment]<br>Compliment of Low Byte + 1 = 1111 0000 , C = 0 [Note: No overflow]                                                                                           |  |  |  |
| [ High Byte,1's Compliment]<br>Compliment of High Byte = 1101 1000                                                                                                                        |  |  |  |
| 16-Bit Word, High & Low Byte = 1101 1000 1111 0000 = 55 536                                                                                                                               |  |  |  |
| 16-Bit Value = 1111 1111 1111 1111 = 65 535 = FFFH                                                                                                                                        |  |  |  |
| Overflow Value = $0000 \ 0000 \ 0000 = 0 = 0000$ H                                                                                                                                        |  |  |  |
| => The number of counts from 0000H to the FFFFH to 0000H transition = FFFFH + 1 = 65535 + 1 = 65536, because it takes one count more from FFFFH to reach 0000H, hence forcing an overflow |  |  |  |
| The calculated reload value = 55 536, which is 10 000 less than 0000H i.e. $65 536 + (-10 000) = 55 536$                                                                                  |  |  |  |

## FIGURE 4-21: EXAMPLE 1: CALCULATION OF TIMER REGISTER RELOAD VALUES USING THE 2'S COMPLIMENT<sup>4</sup> METHOD.

| Example 2: With Low Byte Overflow                                                                                                                                                                  |                                       |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--|
|                                                                                                                                                                                                    | High Byte Low Byte                    |  |
| 256 =                                                                                                                                                                                              | 0000 0001 0000 0000                   |  |
| [ Low Byte,1's Compliment]<br>Compliment of Low Byte =                                                                                                                                             | 1111 1111                             |  |
| [Low Byte,2's Compliment]<br>Compliment of Low Byte + 1 =                                                                                                                                          | = 0000 0000 , C = 1 [ Note: Overflow] |  |
| [ High Byte,1's Compliment]<br>Compliment of High Byte =                                                                                                                                           | = 1111 1110                           |  |
| [ Due to Carry Flag, C being Set (<br>Compliment of High Byte + 1 =                                                                                                                                | 1)]<br>1111 1111                      |  |
| 16-Bit Word, High & Low Byte =                                                                                                                                                                     | = 1111 1111 0000 0000 = 65 280        |  |
| 16-Bit Value =                                                                                                                                                                                     | = 1111 1111 1111 1111 = 65 535 = FFFH |  |
| Overflow Value =                                                                                                                                                                                   | = 0000 0000 0000 0000 = 0 = 0000H     |  |
| => The number of counts from 0000H to the FFFFH to 0000H transition<br>= FFFFH + 1 = 65535 + 1 = 65536,<br>because it takes one count more from FFFFH to reach 0000H, hence<br>forcing an overflow |                                       |  |
| The calculated reload value = 65 280, which is 256 less than 0000H i.e. $65 536 + (-256) = 65 280$                                                                                                 |                                       |  |

# FIGURE 4-21: EXAMPLE 2: CALCULATION OF TIMER REGISTER RELOAD VALUES USING THE 2'S COMPLIMENT<sup>4</sup> METHOD.

# 4.2.5.2 The READING Subroutine

The READING Subroutine for the AM has only two functions. The first is to ensure constant communication with the CM READING Subroutine using port pins P0.0 and P1.7, in order to synchronise both microcontrollers during a volt-drop reading procedure. If this is not done the AM will 'run away' or continue executing statements while the CM is busy taking a reading causing the two microcontrollers to lose synchronisation with each other leading to an instability in the system.

The second function of this subroutine is to test port pin P3.1 in order to establish whether the Test Current On time is exceeded. If port pin P3.1 is High (1) then the Test Current On time has been exceeded and the Error 3 subroutine is called. See Code Extract 4-22.

READING ; PO.0 READING: SETB RD WT: JNB P1.7, RD WT PO.0 CLR NOP NOP CALL DELAYLOOP SETB PO.0 P1.7, RDNG0 RDNG0: JNB CLR PO.0 CALL DELAYLOOP P1.7, RDNGX RDNG: JNB JMP RDNGOK JNB P3.1, RDNG RDNGX: CALL ERROR3 CLR PO.0 JMP OUT2 RDNGOK: SETB PO.0 NOP NOP PO.0 CLR NOP NOP JNB P3.1, cnt chk ERROR3 CALL cnt chk:RET

## **CODE EXTRACT 4-22: READING SUBROUTINE CODING**

## 4.2.5.3 The RUN\_DWNX Subroutine

The role of this subroutine is to lower the Detection Unit that houses the test probes onto the surface of the bars within a predefined time of 10s. If the lowering process is not completed within this time, a system fault has occurred and the Error 2 subroutine is called. The operation of this subroutine is discussed below with reference to Figure 4-22 and Code Extract 4-23.

Firstly, External Interrupt 0 is enabled so that an interrupt can be generated when the test probes are on the bars to be tested and when the test probes are raised to their initial positions. Flag 0CH is cleared as a safety precaution. The Test Current is then

switched on by Setting port pin P2.7. The DELAYLOOP subroutine is then called to enforce a one second delay before the timers are loaded with the appropriate values and are triggered. The reason a delay is enforced, is to ensure that the switching times, in this case turn-on times, for the various devices such as the Detection Unit Drive Motor and the test current switch (an IGBT) are catered for before the process continues. In other words the system is forced to wait for the devices to be switched on before it continues.

A one second delay is excessive for the devices being switched here and indeed for most modern electrical switches where the worst-case turn-on and turn-off times are in the order of a few hundred milliseconds. However in order to make the system flexible in terms of replacing system components a worst case delay of one second was used to cater for almost any type of switching device turn-on and turn-off times. Note that all subroutines will be discussed in the section entitled Subroutines. Following this, the Timer registers are loaded with the 10s maximum allowable time before the Detection Unit Drive Motor is prompted to begin lowering the Detection Unit by Setting P0.3.

The timer is triggered and the ISR then waits for the timer to overflow as in the Main program and then test flag 08H. This flag is set by EX0 and signals that the interrupt was triggered and the associated ISR has executed. If flag 08H is Set (1), then EX0 has been triggered when the test probes reached the surface of the bars before the maximum allowable time had been exceeded. The program can therefore continue as normal. If however flag 08H was not Set (1) when it was tested the maximum allowable time had before EX0 was triggered hence signaling Error 2. The Error 2 subroutine is the called to handle the error.





## FIGURE 4-22: RUN\_DWNX SUBROUTINE FLOW DIAGRAM

| ;*****  | * * * * * * * * * | * * * * * * * * * * * * * * * * * * * * |
|---------|-------------------|-----------------------------------------|
| ; DOWN  | - LOWER           | DETECTION UNIT                          |
| ;*****  | * * * * * * * * * | * * * * * * * * * * * * * * * * * * * * |
| RUN DWN | X:SETB            | EXO                                     |
| _       | CLR               | OCH                                     |
|         | SETB              | P2.7; CUTTENT ON                        |
|         | CALL              | DELAYLOOP                               |
|         | ;JB               | 06H,DECT_2                              |
|         | MOV               | R1,#HIGH COUNT2                         |
|         | MOV               | R2,#LOW COUNT2                          |
|         | MOV               | R3,#200                                 |
|         | SETB              | P0.3                                    |
|         | CALL              | DELAYLOOP                               |
| TMR2:   | MOV               | тно,#он                                 |
|         | MOV               | тьо,#он                                 |
|         | MOV               | TH1,R1                                  |
|         | MOV               | TL1,R2                                  |
|         | SETB              | TR1                                     |
|         | SETB              | TRO                                     |
| WAIT_T2 | :JNB              | TF1,WAIT_T2                             |
|         | clr               | tr1                                     |
|         | CLR               | TRO                                     |
|         | clr               | ttl                                     |
|         | CLR               | TFU                                     |
|         | DJNZ              | R3, TMR2                                |
|         | SETB              | U/H                                     |
|         | JMP               | TMR_OUT2                                |
| TMR_OUT | 2:JB              | 08H,NO_ERR2                             |
| —       | CALL              | ERROR2                                  |
|         | SETB              | EXO                                     |
|         | JMP               | EXR1OUT                                 |
| NO_ERR2 | :SETB             | EXO                                     |
|         | CLR               | 08H                                     |
|         | RET               |                                         |

#### CODE EXTRACT 4-23: RUN\_DWNX SUBROUTINE CODING

# 4.2.5.4 The RUN\_UP Subroutine

The RUN\_UP Subroutine is called when the Detection Unit has to be raised off the surface of the bars to its initial position. Once the subroutine is called, External Interrupt 0 is enabled so that it may be triggered when the unit has reached its initial

position. Flag 0CH is Set (1) to indicate to the EX0 ISR that the raising event is in process (for the reasons discussed earlier). Registers R1, R2 and R3 from Register Bank 0 are then loaded with the appropriate values from registers R1 and R2 (in Register Bank 1) and Register R7 respectively, for use in the CALC\_TIME Subroutine in order to calculate the reload values. Following this, the Detection Unit Drive Motor is prompted by Setting (1) port pin P0.2 to begin raising the unit.

The timer is then triggered to begin the count. The subroutine then waits for the preloaded interval to expire either due to the Detection Unit not being raised to its initial position in the maximum allowable time or due to Detection unit reaching its initial within the maximum allowable time hence triggering EX0. The EX0 ISR loads the timer and overflow count registers with values that force the interval to expire prematurely. In order to determine which of the aforementioned events occurred when the interval expired, flag 08H is tested.

This flag is Set (1) when External Interrupt 0 is triggered and the EX0 ISR executes implying that the Detection Unit did reach its initial position within the preloaded interval. When 08H is tested and it is not Set (1) the indication is that the Detection Unit did not reach its initial position within the preloaded interval. This signals that Error 4 has occurred and therefore the Error 4 subroutine is called. Prior to exiting, the relevant flags are Cleared (0) and the subroutine is exited by executing the RET instruction. See Figure 4-23 and Code Extract 4-24.



FIGURE 4-23: RUN\_UP SUBROUTINE FLOW DIAGRAM

| ;*****    | * * * * * * * * * * | * * * * * * * * * * | * * * * * * * * * * * * * * * * |
|-----------|---------------------|---------------------|---------------------------------|
| ; RI      | UN_UP SUB           | В                   |                                 |
| ;*****    | ********            | * * * * * * * * *   | * * * * * * * * * * * * * * *   |
| RUN UP:   | SETB                | EXO                 |                                 |
| _         | SETB                | OCH                 |                                 |
| DECT 3:   | CLR                 | RSO;                |                                 |
| _         | SETB                | RS1;                | REG BANK1                       |
|           | MOV                 | A,R1                |                                 |
|           | MOV                 | B,R2                |                                 |
|           | CLR                 | RSO;                |                                 |
|           | CLR                 | RS1;                | REG BANKO                       |
|           | MOV                 | R1, A               |                                 |
|           | MOV                 | R2.B                |                                 |
|           | MOV                 | A. R7               |                                 |
|           | MOV                 | R3.A                |                                 |
|           | MOV                 | A #200              |                                 |
|           | CALL                | CALC TT             | ហច                              |
|           | CADD                |                     | 115                             |
|           | CALL                | DEL VIO             | חר                              |
| CNUT DNI. | MOV                 | mu1 #ut             | 2F<br>28 COUNT2                 |
| CNI_DN.   | MOV                 | , #ni(              | JA COUNTZ                       |
|           | MOV<br>CEMP         | TL1,#LOU            | W COUNTZ                        |
|           | JND                 | TKI<br>mp1 matu     |                                 |
| WAIT_D:   | JNB                 | TEL, WALS           | r_D                             |
|           | clr                 | tr1<br>+ 51         |                                 |
|           | CIT                 | TTI<br>DO ONT I     |                                 |
|           | DJNZ                | R3, CNT_I           |                                 |
|           | JB                  | USH, TMR            | _00T3                           |
|           | MOV                 | THI, RI             |                                 |
|           | MOV                 | TL1,R2              |                                 |
|           | SETB                | TR1                 |                                 |
| WAIT_DX   | :JNB                | TF1, WAI            | r_dx                            |
|           | clr                 | trl                 |                                 |
|           | clr                 | ttl                 |                                 |
|           | SETB<br>-           | 07H                 |                                 |
| TMR_OUT:  | 3:                  | JB                  | 08H,NO_ERR3                     |
|           |                     | JB                  | ODH,NO_ERR3                     |
|           |                     | CALL                | ERROR4                          |
|           |                     | SETB                | EXO                             |
|           |                     | JMP                 | OUT2                            |
| NO_ERR3   | CLR                 | 08H                 |                                 |
|           | CLR                 | ODH                 |                                 |
| OUT2:     | SETB                | EXO                 |                                 |
|           | CLR                 | OCH                 |                                 |
|           | CLR                 | ODH                 |                                 |
|           | CLR                 | 08H                 |                                 |
|           |                     |                     |                                 |

RET

# CODE EXTRACT 4-24: RUN\_UP SUBROUTINE CODING

# 4.2.5.5 The ERROR READING PROCEDURE Subroutine

This subroutine is called by error subroutines that require a manual test to be taken, i.e. Error 1 and Error 2. Recall that when an automatic volt-drop test is taken by the Test Station, the test current is switched on before the test probes are to reach the surface of the bars and switched off after the test probes have been raised off the surface of the bars (for reasons discussed earlier). This same process has to be followed when a manual test is to be taken, however, there is no guarantee that the test technician will always abide by this. Thus, the process has to be enforced.

This is the main role of this subroutine, i.e. to ensure that the test probes are not on the surface of the bars when the Test Current is switched on and off. Note that although a volt-drop reading has to be taken manually due to the error, the test is still been run in Automated mode hence the Test Current is still switched on by the controller and not the test technician. Recall that in Manual mode the Test Current is switched on by the system and alerting the test technician, by lighting up a lamp/LED on P2.0, when the test current is being applied before the test probes are on the surface of the bars. Note that when a manual reading is being taken the lamp/LED on P2.0 will also be on if the Detection Unit, hence the Test Probes are in the initial position, i.e. fully raised, before lowering. This is to ensure that the technician investigates the possible causes of Error2, i.e. a possible malfunction of the Detection Unit drive motor, or a mechanical malfunction before continuing.

Only when the test technician raises the test probes off the bars and below the initial position before switching on the Test Current will the alert lamp/LED on P2.0 be switched off and the process be allowed to continue. The same will apply when the test probes are being raised off the surface of the bars after a reading has been taken. The Test Current will not be switched off until the test probes have been raised off the surface of the bars. As long as the test probes remain on the surface of the bars after the volt-drop reading was taken the alert lamp/LED on P2.1 will inform the test technician that the test probes should be raised. The ERROR READING

PROCEDURE Subroutine is discussed below with reference to Figure 4-24 and Code Extract 4-25.







#### FIGURE 4-24: ERROR READING PROCEDURE SUBROUTINE FLOW DIAGRAM

Mr. S. Matadin 2001 027 41

| ; * * * * * * * | * * * * * * * * | * * * * * * * * * * * * * * * * |
|-----------------|-----------------|---------------------------------|
| ; ERI           | ROR READ        | ING PROCEDURE                   |
| ;*****          | * * * * * * * * | * * * * * * * * * * * * * * * * |
|                 |                 |                                 |
| ER I SW         | :SETB           | OEH                             |
| E1 CK1:         | JNB             | P1.4,E1 CK1                     |
| AGN:            | JB              | P3.2,0N I                       |
|                 | SETB            | ₽2.0 <sup>—</sup>               |
|                 | JMP             | AGN                             |
| ON I:           | CALL            | DELAYLOOP                       |
| —               | SETB            | P2.7                            |
|                 | CLR             | P2.0                            |
| PRBS_WT         | :JB             | P3.2, PRBS_WT                   |
| _               | CALL            | DELAYLOOP                       |
|                 | JB              | P3.2,PRBS_WT                    |
|                 | SETB            | P0.0                            |
|                 | NOP             |                                 |
|                 | NOP             |                                 |
|                 | CLR             | PO.O                            |
|                 | CALL            | READING                         |
| E1_HLD:         | JNB             | P1.4,E1_HLD                     |
|                 | SETB            | P0.0                            |
|                 | NOP             |                                 |
|                 | NOP             |                                 |
|                 | CLR             | PO.O                            |
| AGN2:           | JB              | P3.2,OF_I                       |
|                 | SETB            | P2.1                            |
|                 | JMP             | AGN2                            |
| OF_I:           | CALL            | DELAYLOOP                       |
|                 | CLR             | P2.7                            |
|                 | CLR             | P2.1                            |
|                 | CALL            | DELAYLOOP                       |
|                 | CLR             | OEH                             |
|                 | RET             |                                 |

#### **CODE EXTRACT 4-25: ERROR READING PROCEDURE SUBROUTINE CODING**

Once called the ERROR READING PROCEDURE Subroutine Sets (1) flag 0EH, to indicate to the EX0 ISR that it has been called, and waits for a proceed signal from the CM Error 1 subroutine on P1.4. When received, port pin P3.2 is tested to establish whether the test probes are on the surface of the bars or at its initial position i.e. in a fully raised position. Recall that port pin P3.2 is the External Interrupt 0 trigger pin however in this case only the status of the pin is being tested. When P3.2 is Low (0) the test probes are either on the surface of the bars or at its initial position. In this case the program/process pauses, waiting for the test probes to be positioned between the surface of the bars and the Detection Unit's initial position, by the test technician. The

pausing and incorrect position of the Test Probes are indicated by the lighting up the alert lamp/LED on P2.0. When P3.2 is High (1), the test probes are not on the surface of the bars nor are they in the initial position. Although it is important to test if the test probes are on the surface of the bars before the test current is switched on it is equally important to test if the Detection Unit, hence the test probes are fixed in its initial position. The reason for this is that Error2 indicates that the test probes did not reach the surface of the bars within the allowed time due to the Detection Unit not moving from its initial position caused by a malfunction of the Detection Unit drive motor or a mechanical malfunction. When the Detection Unit and the test probes are between the surface of the bars and the initial position it indicates that the test technician has assessed the possible cause of the error. Once the test probes are in the correct position a delay is enforced, the Test Current is switched on (P2.7) and a proceed signal is transmitted to the CM before the READING subroutine is called. The ERROR READING PROCEDURE Subroutine then waits for a continue signal from the CM on P1.4 which indicates that the volt-drop reading has been captured. Once received, the AM confirms receipt of this signal by Setting (1), P0.0. Before the test current is switched off P3.2 is again tested to ascertain whether the test probes are on the surface of the bars.

As described above, if the test probes are on the surface of the bars the program/process is paused waiting for the test probes to be raised by the test technician and this is indicated by lighting up the alert lamp/LED on P2.1. When P3.2 is High (1) the test probes are not on the surface of the bars nor are they at the initial position. A delay is then enforced, the Test Current is switched off, the lamp/LED on P2.1 is switched off and further delay is enforced before the subroutine is exited using the RET statement.

## 4.2.5.6 The ERROR 1 Subroutine

This subroutine is called when Error 1 occurs due to a pair of bars not being detected within the maximum allowable preset time. The discussion that follows is with reference to Figure 4-25 and Code Extract 4-26.

#### Mr. S. Matadin 2001 027 41



## FIGURE 4-25: ERROR 1 SUBROUTINE FLOW DIAGRAM

| ;********* |                     |                 |  |
|------------|---------------------|-----------------|--|
| ; ERROR    | 1 - BAR\$           | S NOT DETECTED  |  |
| ;*****     | * * * * * * * * * * | *****           |  |
| ERROR1:    | CLR                 | PO.4            |  |
|            | JB                  | 05H,S1          |  |
|            | JNB                 | 02н,s1          |  |
|            | MOV                 | R4,#HIGH COUNT2 |  |
|            | MOV                 | R5,#LOW COUNT2  |  |
|            | MOV                 | в,#200          |  |
|            | MOV                 | R6,B            |  |
|            | CLR                 | 05H             |  |
|            | CLR                 | 02н             |  |
|            | SETB                | 00H             |  |
|            | SETB                | 01H             |  |
| S1:        | SETB                | P0.5            |  |
|            | nop                 |                 |  |
|            | CLR                 | P0.5            |  |
|            | SETB                | P3.5            |  |
|            | CALL                | ER_I_SW         |  |
|            | CLR                 | P3.5            |  |
|            | RET                 |                 |  |

#### **CODE EXTRACT 4-26: ERROR 1 SUBROUTINE CODING**

When called, the first task undertaken is to stop the Armature Drive Motor by Clearing (0) port pin P0.4. Then, as a safety measure the subroutine checks if it was called on the third pair of bars cycle, i.e. on the cycle that a reference time is stored in order to calculate the Detection Reference Time. If this is the case then the storage registers are reloaded with the default maximum allowable time of 10s and the bar count that detects the third pair of bars is reset to the second pair.

This is done so that the reference time used to calculate the Detection Reference Time, is stored on the next pair cycle i.e. the fourth pair. Because of the reset, the fourth pair of bars is recognised as the third pair. If this subroutine was not called on the third pair cycle the above steps are simply skipped. Following this, the D flipflops that trigger External Interrupt 1 when a pair of bars is detected are cleared to put them in a known state for the next cycle by Setting (1) and Clearing (0) port pin P0.5. The CM is then notified that Error 1 has occurred by Setting (1) port pin P3.5. This is done so that the CM can inform the GUI that Error 1 has occurred which is then displayed. Also, the CM calls its Error 1 subroutine to synchronise with the AM Error 1 subroutine.

Next, the ERROR READING PROCEDURE Subroutine is called in order to record the volt-drop reading. Once the ERROR READING PROCEDURE Subroutine is completed and returns control to the Error 1 subroutine, port pin P3.5 is Cleared (0). Control is handed back to the calling program by executing the RET statement.

# 4.2.5.7 The ERROR 2 Subroutine

The ERROR 2 Subroutine is called by the AM when the test probes do not reach the surface of the bars under test within the maximum allowable time. The discussion that follows is with reference to Figure 4-26 and Code Extract 4-27.




#### FIGURE 4-26: ERROR 2 SUBROUTINE FLOW DIAGRAM

```
;
       ERROR 2
;TEST PROBES NOT LOWERED
**********************************
ERROR2: CLR
              P0.3
              P2.7
       CLR
           DELAYLOOP
       CALL
       SETB
              OAH
       CALL
              RUN UP
              OBH,E2 OUT
       JB
              P3.6
       SETB
       CALL
              ER I SW
       CLR
              P3.6
E2_OUT: CLR
              OAH
       CLR
              OBH
       RET
```

#### **CODE EXTRACT 4-27: ERROR 2 SUBROUTINE CODING**

Once called, this subroutine first stops the Detection Unit Drive Motor from lowering the Detection Unit by Clearing (0) port pin, P0.3. The Test Current is then switched off by Clearing (0) port pin P2.7. After a delay is enforced, flag 0AH is Set (1) to

signal to the Error 4 subroutine that the Error 2 subroutine has been called. Following this, the RUN\_UP subroutine is called to raise the Detection Unit to its original position using the time recorded for the error lowering process. In the event that there is also an error when raising the Detection Unit, and Error 4 is handled by calling the Error 4 subroutine, Flag 0AH is used to indicate if the Error 4 subroutine was called during the raising process called from the Error 2 subroutine.

If this is the case, the Error 4 subroutine will also handle Error 2. Next flag 0BH is tested. Flag 0BH is Set (1) by the Error 4 subroutine to indicate that it had been indirectly called from the Error 2 subroutine and that it has already signaled the CM and called the ERROR READING PROCEDURE Subroutine to record a manual voltdrop reading. If this flag is not Set (1), the ERROR 2 Subroutine alerts the CM that this error has occurred by Setting (1) port pin, P3.6.

The CM, upon receiving this signal, will call its ERROR 2 Subroutine in order to notify the GUI of the error and to synchronise with the AM. Next, the ERROR READING PROCEDURE Subroutine is called to facilitate a manual reading. On receiving control from the ERROR READING PROCEDURE Subroutine, port pin P3.6 is cleared along with flags 0AH and 0BH. Finally control is returned to the calling program by executing the RET statement.

## 4.2.5.8 The ERROR 3 Subroutine

Error 3 occurs when the Test Current on time has been exceeded. This is regarded by the system as a critical error and therefore enforces an Emergency Stop, hence a system shut down. As soon as Error 3 occurs the AM The ERROR 3 Subroutine informs the GUI via the CM. The GUI then displays this error before taking the relevant steps in preparation for a system shut down before signaling the CM and AM to do the same. The discussion that follows is with reference to Figure 4-27 and Code Extract 4-28.



FIGURE 4-27: ERROR 3 SUBROUTINE FLOW DIAGRAM

ERROR 3 ; ;TEST CUTTENT TIME EXCEEDED ERROR3: SETB ODH CALL RUN UP P2.7 CLR SETB P3.7 nop DELAYLOOP CALL P3.7 CLR E3 HLD: JNB P1.4, E3 HLD PO.0 SETB NOP NOP PO.0 CLR CLR ODH RET

#### **CODE EXTRACT 4-28: ERROR 3 SUBROUTINE CODING**

When called, the ERROR 3 Subroutine first Sets (1) flag 0DH to indicate that it has been called due to the associated system error. The reason for Setting (1) this flag will be discussed shortly. Following this step, the RUN\_UP subroutine is called so that the test probes are raised off the surface of the bars before the Test Current is switched off as programmed in the ERROR 3 Subroutine. The question that now arises is what happens if there is an error when the Detection Unit hence the test probes are being raised, i.e. it does not reach its initial position in the maximum allowable preset time? Well, Error 4 would have occurred and the associated subroutine i.e. the ERROR 4 Subroutine would be called to handle it appropriately.

This will however halt the system until the test technician arrives at the Test Station and assesses the problem. The time taken to assess the problem will only add to the time for which the Test Current is switched on, which is undesirable as Error 3 calls for an immediate system shut down. This is were flag 0DH plays its role. If the Error 4 subroutine is called while Error 3 has occurred, the Error 4 subroutine is immediately exited. This is because when flag 0DH is tested at the start of the Error 4 subroutine, it will be High (1). If the Error 4 subroutine was called to handle Error 4 at any point other then when Error 3 has occurred, this flag will not be set hence allowing the Error 4 subroutine to execute as normal. The next step in the Error 3 subroutine is to switch off the Test Current, alert the CM that that Error 3 has occurred and enforce a delay. The CM will inform the GUI that Error 3 has occurred. Following this, the steps reflected in the flow diagram in Figure 4-27 and Code Extract 4-28 would technically be executed, however, since this error enforces an emergency stop both the CM and the AM are informed via their respective interrupts. Because the interrupts are triggered and the associated ISRs assume control the remaining instructions are not executed as the AM is forced to Clear (0) its input/output ports and enter Powerdown mode.

#### 4.2.5.9 The ERROR 4 Subroutine

This subroutine is called when the Detection Unit hence the test probes do reach their initial position within the maximum allowable time. The discussion that follows is with reference to Figure 4-28 and Code Extract 4-29.





FIGURE 4-28: ERROR 4 SUBROUTINE FLOW DIAGRAM

ERROR 4 ; ;TEST PROBES NOT RAISED \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* ERROR4: JB ODH,E4 OUT P0.2 CLR CLR P2.7 CALL DELAYLOOP P2.6 SETB nop CALL DELAYLOOP CLR P2.6 E4 HLD: JNB P1.4,E4 HLD PO.0 SETB NOP NOP CLR PO.0 JNB OAH, E4 OUT SETB OBH SETB P3.6 ;TO MIC1 ER I SW CALL P3.6 CLR 0AH CLR E4 OUT: RET

#### **CODE EXTRACT 4-29: ERROR 4 SUBROUTINE CODING**

When entered into, the ERROR 4 Subroutine first sets flag 0DH for the reasons mentioned in the ERROR 3 Subroutine discussion above. Next the Detection Unit Drive Motor is stopped from raising the Unit by Clearing (0) port pin P0.2. The Test Current is then switched off by Clearing (0) port pin P2.7. Following this, the CM is informed of Error 4 having occurred by setting port pin P2.6. The ERROR 4 Subroutine then enters a wait loop where it waits for the CM's ERROR 4 Subroutine to inform it that it may continue by setting port pin P1.4.

Once Set (1), the ERROR 4 Subroutine acknowledges having received this signal by Setting and Clearing P0.0. Flag 0AH is then tested to establish if Error 4 has occurred during the Run\_UP procedure that was called by the ERROR 2 Subroutine. (Recall that when an error occurs while the Detection Unit is being lowered, i.e. Error 2, the RUN\_UP subroutine is called to raise the Detection Unit to its original position using the time recorded for the error lowering process.) If flag 0AH is Set (1), then Error 4

did indeed occur during the RUN\_UP procedure that was called by the ERROR 2 Subroutine and the steps then taken by the ERROR 4 Subroutine handles Error 2 as well. The ERROR 2 Subroutine is then simply exited when control is handed back to it due to flag 0BH being Set (1), as described earlier in the ERROR 2 Subroutine discussion. The steps taken are as follows. First flag 0BH is Set (1) in order to inform the ERROR 2 Subroutine that the ERROR 4 Subroutine has already handled Error 2.

Then the CM is informed that Error 2 has occurred by Setting (1) port pin P3.6 and the ERROR READING PROCEDURE Subroutine is called to capture a volt-drop reading. Port pin P3.6 is then Cleared (0) along with flag 0AH. The subroutine is then exited by executing the RET instruction. If flag 0AH was found to be Low (0) when it was tested the implication is that Error 4 did not occur during the ERROR 2 Subroutine and the ERROR 4 Subroutine is simply exited.

## 4.2.5.10 The DELAY LOOP subroutine

The DELAY LOOP subroutine is called whenever a delay has to be enforced, for example, when the system needs to be paused in order to allow for a device to be switched on or off after their specified switching time. Although the delay is set to be one second it can easily be shortened or increased by loading new values onto the Timer 0 and timer-overflow-count, R0, registers. The discussion that follows is with reference to Figure 4-29 and Code Extract 4-30.



#### FIGURE 4-29: DELAY LOOP SUBROUTINE FLOW DIAGRAM

Chapter 4 - Microcontrollers and Embedded Programming

| ;************************************** |            |                           |  |  |  |  |  |
|-----------------------------------------|------------|---------------------------|--|--|--|--|--|
| ;                                       | DELAY LOOP |                           |  |  |  |  |  |
| ;************************************** |            |                           |  |  |  |  |  |
| DELAYLOOP:                              | MOV        | R0,#100 ;1SEC = 100X10000 |  |  |  |  |  |
| RPT:                                    | MOV        | THO,#HIGH COUNT           |  |  |  |  |  |
|                                         | MOV        | TLO,#LOW COUNT            |  |  |  |  |  |
|                                         | SETB       | TRO                       |  |  |  |  |  |
| DLY:                                    | JNB        | TFO, DLY                  |  |  |  |  |  |
|                                         | CLR        | TRO                       |  |  |  |  |  |
|                                         | CLR        | TFO                       |  |  |  |  |  |
|                                         | DJNZ       | RO, RPT                   |  |  |  |  |  |
|                                         |            |                           |  |  |  |  |  |
|                                         | RET        |                           |  |  |  |  |  |
|                                         |            |                           |  |  |  |  |  |

#### **CODE EXTRACT 4-30: DELAY LOOP SUBROUTINE CODING**

Once called the timer-overflow-count register, R0, is loaded with a value of 100. The Timer 0, high and low byte registers are the loaded with the value (i.e.10 000) assigned to the COUNT symbol as initialised using the EQU directive in the main program. The high byte of the value (i.e.10 000) assigned to the COUNT symbol is loaded into the Timer 0 high byte register and the low byte of the value (i.e.10 000) assigned to the COUNT symbol is loaded into the Timer 0 high byte register and the low byte of the value (i.e.10 000) assigned to the COUNT symbol is loaded into the Timer 0 low byte register. The timer is then triggered to begin the count. Recall that each count is one microsecond, hence 10 000 counts implies 10 000µs.

The DELAY LOOP subroutine then enters a waiting loop where it waits for the Timer 0 Overflow Flag (TF0) to be Set (1). This signals that the timer has overflowed implying that 10 000µs has elapsed. The timer is then stopped by Clearing (0) TR0 followed by TF0 also being Cleared (0). The timer-overflow-count register, R0, is then decremented and tested to check if the value it holds is zero. If the value is higher that zero, the Timer 0 registers are reloaded (i.e. with a value of 10 000) and the timer is triggered to restart the cycle. If R0 does hold a value of zero then one second has elapsed and the subroutine is exited by executing the RET instruction.

In summary R0 is decremented after each 10000µs cycle (due to a timer overflow) until it holds a value of zero. Hence, 100 10000µs cycles would have been counted.

 $1 \text{ second} = 100 \text{ x } 10000 \mu \text{s}$ 

## Chapter 5 Hardware Design

This chapter discusses the hardware design that enables the software that is executing within the embedded mirocontrollers and the GUI to be transformed into physical pulses and signals that control actuators that initiate the motion of objects in the physical world. Hardware also converts, conditions and monitors signals that are produced by transducers, which monitor the external environment, into signals and pulses that are decipherable and understood by the embedded microcontrollers.

This enables the system to respond to various inputs by executing the appropriate blocks of code in response to specific events. The author used the Protel Design Environment to draw schematics and develop the layout and routing of the PCB (Printed Circuit Board). The controller circuit was drawn in modules that link to each other using Netlables (this is a functionality that is available in the Protel Development Environment). The "Bottom-Up" design approach was used to develop this schematic. This approach involves drawing modules on independent sheets and using a Master Sheet (Entitled "Master" in this design) to facilitate linking between all schematic sheets using the above-mentioned Netlables.

Drawing schematics in modules that link to each other makes the circuit easy to understand and modify if need be, as it is uncluttered and easy to isolate a problem area. Each module will be discussed independently however, the reader will be informed as to how the module being discussed is connected to interfacing modules. The complete circuit schematic which includes all the modules discussed can be found in Appendix M, all datasheets can be found in Appendix J, and all test results are presented in Chapter 7.

1

## 5.1 Digital System Design

The digital system includes all digital circuitry, from the embedded controllers to the logic gates and drivers that are used in signal conditioning and level shifting respectively. The first modules to be discussed will be the Automation Microcontroller module and the Communication Microcontroller module. In both cases the 40 pin AT89S51 microcontroller was used.

## 5.1.1 The Communication Microcontroller Module

The Communication Microontroller module interfaces and communicates with the ADC by pulsing and reading the ADC control pins, HBEN,  $\overline{CS}$ ,  $\overline{EOC}$  and  $R/\overline{C}$  as well as receiving the 8 bit output from the ADC parallel output bus. This module also communicates with the Automation Microcontroller, reads the status on the Manual Reading switch and reacts to a forced emergency stop whether it was initiated by pressing the Emergency Stop switch or by the activation of any one of the four safety interlocks. See Figure 5-1 for a representation of the Communication Microcontroller Module and Appendix M for the complete circuit schematic.



FIGURE 5-1: THE COMMUNICATION MICROCONTROLLER MODULE.

The on-chip oscillator is driven by a quartz crystal X1 with the aid of two stabilising capacitors (C1 and C2). Using a 12MHz crystal and noting that each machine cycle is 12 oscillator periods, each machine cycle is calculated to be 1µs in duration, as shown below.

$$T = \frac{1}{12MHz} = 83.33333 \times 10^{-9}$$
$$T_{\text{Machine Cycle}} = 83.33333 \times 10^{-9} \times 12 \text{ periods} = 1 \mu \text{s}$$

The reset pin (9) of the microcontroller is connected to the Reset pin of MAX 701 (see Appendix J for a complete datasheet for the MAX 701). The MAX 701 is a

supervisory circuit that monitors the supply to the microcontroller in order to detect Brown-out conditions. A Brown-out<sup>5</sup> occurs when the supply falls to a level that is appreciably lower than the normal supply level for a prolonged amount of time. This will cause components that are powered by this supply to behave erratically and unpredictably. In the event of a Brown-out, which in the case of the MAX 701 is anything equal to or less than 4.65V, the Reset pin of the MAX 701 goes High (4.65V or the present available positive logic High voltage) and is held at this level until the supply returns to its normal rating.

This procedure effectively holds the microcontroller in a Reset state until the supply is within its normal operating range. Note that holding the Reset pin (9) of the AT89S51 high (1) for at least two machine cycles effectively resets the microcontroller. The MAX 701 also provides a Reset-On-Power-up pulse to the microcontroller. This ensures that the microcontroller is in a known state on power-up i.e. all its input/output ports, internal registers, special function registers, program counter etc. are loaded with the default reset values reflected on Page 6 of the AT89S51 datasheet found in Appendix J.

The author originally used the RC network depicted in Figure 5-2 to provide the reset pulse on power-up. But the author's experience has shown that this network behaves erratically and is therefore unreliable in environments where EMI (Electromagnetic Interference) is a factor.

The MAX 701 solved the EMI related problems, specifically relating to Reset-On-Power-up. There were various other methods adopted to negate the effects of EMI on the circuit as a whole. Some of these include, but are not limited to, proper PCB layout and design, which involved, amongst other things, placing the microcontrollers in the center of the board and the quartz crystals as close to the microcontroller oscillator pins (XTAL1 and XTAL2) as possible.

<sup>&</sup>lt;sup>5</sup> Brown-out refers to the condition where the rms supply voltage falls to a value that is appreciably lower than the normal value but not zero. In the case of a Black-out, the supply falls to zero, i.e. there is a complete loss of the supply.

Reduced track lengths, avoiding 90° bends in tracks, routing power and signal tracks away from each other, designing multilayer PCBs with paired power and ground planes, placing  $0.1\mu$ F capacitors across all ICs with the addition of a  $4.7\mu$ F capacitor directly across the microcontrollers. Along with these, the circuit was kept compact and a common grounded guard ring was routed around the edge of the PCB.

The first line of defense against EMI is the metal enclosure in which the circuit is housed. Keeping the size of the holes on the enclosure as small as possible and ensuring that the lid makes proper electrical contact with the rest of the enclosure, this metal enclosure forms a Faraday Cage around the circuit. To further reduce the impact of EMI via conductors from the external environment, shielded cables were used.



FIGURE 5-2: PREVIOUSLY USED POWER-UP RC NETWORK

Port 0 of the AT89S51 is an open drain input/output port hence the use of external pull-up resistors. Ports 1, 2 and 3 all have internal pull-ups. The basic input/output port structure is depicted in Figure 5-3 and is sourced from *The 8051 Microcontroller*, by I. Scott Mackenzi.



#### FIGURE 5-3: INPUT/OUTPUT PORT STRUCTURE – SOURCE: THE 8051 MICROCONTROLLER

When used as an output port, writing a 1 (high) to the latch, switches off the FET holding the port pin high (VCC) via the pull-up (internal or external) resistor. When a 0 (low) is written to the latch the FET is switched on pulling the port pin to ground ( $V_{DS}$  to be exact). When used as in input, 1 (high) must be written to the latch to switch off the FET. In this way, only the load on the port pin can determine its state. For example, if the load on the port pin was the output of a TTL logic IC, when the IC output is high (1), typically 3.4V, a small current will flow producing the required 1.6V drop across the pull-up resistor to keep the Port pin at 3.4V. The potential read on the Port pin will therefore be a high (1). When the IC output is low (0) the potential on the IC pin will be a maximum of 0.4V.

This will allow a maximum current of 4mA to 8mA (depending on the type of IC and the maximum current it can sink during an output low,  $I_{OL}$ ) to flow from VCC through the pull-up resistor down to ground via the load IC. This current flow will produce the required 4.6V potential drop across the pull-up resistor such that when the port pin is read, it would reflect a potential of 0.4V implying a logic level low (0). Port 1 is the input port for the 8 bit wide parallel ADC output, with port pin P1.0 set up as the LSB (Least Significant Bit) and port pin P1.7 set up as the MSB (Most Significant Bit). Ports 0, 2 and 3 are used as inputs and outputs as required. This facilitates

communication with the Automation Microcontroller, control of the ADC, reading of switches, switching of LEDs and also communication with the GUI via serial port pins P3.0 and P3.1.

The interconnections between the Automation and Communications microcontrollers are summarised in the respective Microcontroller Port Utilisation tables found in Appendix K. The connections from the Communications Microcontroller to other devices are also summarised in the Communications Microcontroller Port Utilisation table found in Appendix K. Note that the  $\overline{EA}$  (External Access) pin is connected to VCC. This is because when the  $\overline{EA}$  pin is held low (0) the microcontroller executes programs from external ROM whilst holding the pin high (1) forces the microcontroller to execute programs from internal ROM.

The input to External Interrupt 0, P3.2, is an OR and NOR gate network which allows any of the system errors (Error 1, 2, 3 or 4) or an Emergency Stop, labeled *"EmgcyStop\_SW&Intlks"*, (initiated by pressing the Emergency Stop switch or triggering a Safety Interlock) to trigger the interrupt. The Emergency Stop signal is an input to both microcontrollers that enforces a complete system stop by interrupting both microcintrollers forcing them to enter a safe shutdown procedure before entering power-down themselves. This Emergency Stop is initiated by the triggering of switches (push-button and interlock) on the physical system and should not be confused with the Emergency Stop that is initiated by clicking on the Emergency Stop button on the GUI, although both events yield the same end result. Including Emergency Stop triggers from various sources makes the entire system safer in the occurrence of an undesirable or dangerous event. The Emergency Stop is generated by an independent network which will be discussed later in this chapter.

## 5.1.2 The Automation Microcontroller Module

The Automation Microcontroller module is responsible for the control of all the system's actuators which include the Armature Drive Motor and the Detection Unit Drive Motor as well as the switching of the Test Current Supply via an IGBT. It also

receives input signals from the physical system to indicate the system status and the occurrence of events whether desirable or undesirable.

These input signals include the signal indicating the detection of a pair of bars, labeled "*u2\_EX1\_Bar\_Dect*", the signal that indicates that the Detection Unit has reached its initial position, labeled "*Detect\_Unit\_Switches*", as well as Emergency Stop signals, labeled "*EmgcyStop\_gui*" and "*EmgcyStop\_SW&Intlks*". All of the above mention signals, except "*EmgcyStop\_gui*", are generated by independent networks all of which will be discussed later in this chapter. The "*EmgcyStop\_gui*" signal is generated by the Communication Microcontroller to inform the Automation Microcontroller that an Emergency Stop has been initiated via the GUI. See Figure 5-4 for a representation of the Automation Microcontroller Module and Appendix M for the complete circuit schematic.



FIGURE 5-4: THE AUTOMATION MICROCONTROLLER MODULE

The Automation Microcontroller is set up in exactly the same way as the Communications Microcontroller. The interconnections between the Automation and Communications microcontrollers are summarised in the respective Microcontroller Port Utilisation tables in Appendix K. The connections from the Automation Microcontroller to other devices are also summarised in the Automation Microcontroller Port Utilisation table in Appendix K.

The input to External Interrupt 0, P3.2, is an OR and NOR gate network which triggers the interrupt in the occurrence of any of the two Emergency Stop events (*"EmgcyStop\_gui"* and *"EmgcyStop\_SW&Intlks"*) or the occurrence of the bar detection event (*"Detect\_Unit\_Switches"*). The input to port pin P1.5 is also an OR gate with *"EmgcyStop\_gui"* and *"EmgcyStop\_SW&Intlks"* as input signals. The reason for this becomes apparent when the reader recalls the discussion in Chapter 4 concerning the External Interrupt 0 ISR for the Automation Microcontroller.

The first task undertaken by the interrupt service routine is to test port pin P1.5. If this pin is High (1) then EX0 was triggered by the initiation of an emergency stop".

As soon as External Interrupt 0 (EX0) is triggered, the associated ISR first checks if P1.5 is High (1), indicating that any one of the Emergency Stop sources had been triggered. If this is the case, the system shut down and controller power-down procedures are entered into. If this not the case and P1.5 is Low (0) then the interrupt was triggered due to the detection of a pair of bars, i.e. the *Detect\_Unit\_Switches*" signal. Hence this port pin is only used to decipher whether an interrupt was initiated due to an emergency stop or the detection of a pair of bars.

## 5.1.3 The Bar Detection Module

The Bar Detection module is responsible for alerting the Automation Microcontroller when a pair of bars has been detected. The actual detection of each copper bar on the commutator of the armature under test is undertaken using optical sensors that detect the reflection of an emitted laser beam. The Omron E3X-NA11 amplification unit together with the Omron E32-DC200 fiber optic unit (with reflective sensors) was used to carry out this task. See Appendix J for complete datasheets. The combination of these two units allow for the accurate detection of a copper bar from a distance of between 50mm and 70mm above the surface of the commutator. See Figure 5-5 and Figure 5-6 for images of the commutator and the copper bars that are to be detected.



FIGURE 5-5: TYPICAL COMMUTATOR OF AN ARMATURE UNDER TEST



FIGURE 5-6: COPPER BARS ON A COMMUTATOR

The above images depict a typical commutator, however in this case, the reader will notice that there are grooves present between each copper bar. Grooves are created by

a process called Undercutting which entails the use of a motorised, revolving, circular saw blade typically 20mm in diameter. These grooves are not present in all commutators that are to be tested. In some instances the armature that is to be tested still has an epoxy resin (from the VIP stage of the armature refurbishing process) between the bars. Due to the Turning stage (using a lathe) in the armature refurbishing process the surface of the commutator is smooth, with the copper bars and the epoxy resin being exactly the same level. It is for this reason that a high accuracy proximity sensor was abandoned. After testing various sensors, the optical sensor produced the best results and proved to be the most reliable means of detecting the copper bars.

The sensor is set on Light On mode. In this mode, an open collector NPN transistor, which is the output of the Omron E3X-NA11, is switched on when a reflected beam is detected by the reflective sensor. See Figure 5-7 below, for an extract from the device datasheet (see the complete datasheet in Appendix J), that illustrates the modes of operation and the device output circuit.

| ∎ Out  | ■ Output Circuits                                                                    |                    |                                                                                                                                                                                  |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
|--------|--------------------------------------------------------------------------------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Output | Model                                                                                | Mode<br>selector   | Timing chart                                                                                                                                                                     | State of<br>output<br>transistor | Output circuit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| NPN    | E3X-NA11<br>E3X-NA6<br>E3X-NA611<br>E3X-NA11F<br>E3X-NA11V<br>E3X-NA11V<br>E3X-NA14V | LIGHT ON<br>(L/ON) | Incident light<br>Operation indicator IQN<br>(orange) OFF<br>Output<br>transistor OFF<br>Load (relay) Operate<br>(Between brown and black)                                       | Light ON                         | Control output<br>Control output |  |  |  |
|        |                                                                                      | DARK ON<br>(D/ON)  | No incident light<br>No incident light<br>Operation indicator ON<br>OFF<br>Output<br>transistor<br>Load (relay)<br>OPF<br>Release<br>(Between brown and black)                   | Dark ON                          | M8 Connector Pin Arrangement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
| PNP    | E3X-NA41<br>E3X-NA6<br>E3X-NAG41<br>E3X-NA41F<br>E3X-NA41V<br>E3X-NA41V<br>E3X-NA44V | LIGHT ON<br>(L/ON) | Incident light<br>Operation indicator ONF<br>Crange indicator ON<br>Crange OFF<br>Output<br>Transistor<br>OFF<br>Load (relay)<br>Operate<br>Release<br>(Between brown and black) | Light ON                         | Protection<br>(orange) Photo-<br>sectric<br>Sensor<br>circuit<br>Blue<br>Blue<br>Blue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
|        |                                                                                      | DARK ON<br>(D/ON)  | Incident light<br>Operation indicator ON<br>(orange) OFF<br>Output ON<br>transistor OFF<br>Load (relay) Operate<br>Release<br>(Between brown and blaci                           | Dark ON                          | M8 Connector Pin Arrangement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |

# FIGURE 5-7: OPERATIONAL MODES AND THE OUTPUT CIRCUIT FOR THE OMRON E3X-NA11

The optical sensors are supplied with +15V and the outputs from these sensors provide a clock pulse to respective positive-edge-triggered D flip-flops. The output of the D flip-flops provide the two inputs to the NAND gate which in-turn triggers the External Interrupt 1 pin on the Automation Microcontroller when driven low (0). This signal, " $u2\_EX1\_Bar\_Dect$ ", must go low (0) only when a PAIR of bars has been detected. It must return to high (1) when the D flip-flops are cleared by the Automation Microcontroller and go low (0) again when the next pair or bars are detected. The network shown in Figure 5-8A fulfils the above triggering requirements. See Figure 5-9 for a timing diagram for the bar detection network.



FIGURE 5-8A: BAR DETECTION NETWORK

The voltage divider resistor-network ensures that 5V is present at the output when the transistor is off (implying that no bars have been detected) and 0V ( $V_{CE}$  to be exact) is present at the output when the transistor is on (implying that a bar has been detected). A 6.2V zener diode, with a very low response time, or a Tranzorb, depending on the operating environment, is placed in parallel with the output resistor for protection purposes to ensure that the output of the voltage divider resistor-network will not exceed 6.2V.

Initially, the network that was used as a level shifter to provide a TTL level input to the digital interface from the optical sensor output of 0V to 15V was a simple series resistor and zener diode network as depicted in the figure below.



FIGURE 5-8B: INITIAL LEVEL SHIFTER NETWORK

It may seem like an adequate solution, however, when one considerers the fact that the zener diode has response time, although very small, one will become aware of a potential problem that may arise when using this series network. The instant that the NPN transistor in the output circuit of the optical sensor is switched off, the zener diode is still essentially "off" as it does not respond instantaneously to the applied source. Ideally, the zener diode will be seen as an open circuit to the rest of the network for this period of time.

This being the case, the output of this series network, which is the input to the NOT gate, will for all intents and purposes, be pulled up to +15V by the series resistor which acts as a pull-up resistor for the period before the zener diode responds or "switches on". This +15V input is well above the absolute maximum rating for the IC and will ultimately damage it. The author used the word ultimately because, due to the very small response time of the zener diode, the IC will only be exposed to +15V for a very short period. The IC may therefore not be damaged instantly however, repeated exposure to such high input potentials will damage the IC over time.

It is for the above reason that the voltage divider comprising of a  $1k\Omega$  and  $2k\Omega$  with adequate protection was used. This network produces a 5V drop across the  $1K\Omega$  resistor when a +15V source is applied.

$$V_{R1K} = \frac{1K}{1K + 2K} \times 15V = 5V$$

This network ensures that the input to the NOT gate is exposed to a maximum of 6.2V which is within recommended operating range for the IC.

The output of the resistor-zener network enters a NOT gate which inverts the signal producing an output high (1) when a bar has been detected and a low (0) when no bars have been detected. The output of this NOT gate clocks a positive-edge-triggered D flip-flop whenever a bar has been detected. Because the D input of the flip-flop is tied high (Vcc) when clocked, the output of the flip-flop, Q, goes high. The output of the D flip-flop provides the input to the NAND gate which triggers the external interrupt pin on the Automation Microcontroller. The microcontroller clears both D flip-flops, in order to put them into a known state, as soon as it enters the Interrupt Service Routine (ISR) that it vectored to when a pair of bars have been detected.



FIGURE 5-9: TIMING DIAGRAM FOR THE DETECTION NETWORK

The discussion that follows is with reference to Figure 5-9 and Figure 5-8A and describes the operation of the Bar Detection module. Assume that the commutator is rotating slowly and Sensor 1 detects a bar, the output of the NOT gate [point A] is

high (1). The low-to-high transition (positive edge) clocks the D flip-flop producing an output [at point F] that is also high (1). If, at this point, Sensor 2 has not yet detected a bar the output of the NAND gate remains high (1). The commutator will continue slowly rotating with Sensor 1 directly over it's bar until Sensor 2 detects a bar. For the purposes of this explanation, assume that Sensor 2 has also detected a bar at the same time that Sensor 1 has detected a bar (Ideal situation with an ideal commutator) the output of the NOT gate [point B], is high (1). The low-to-high transition (positive edge) clocks the D flip-flop producing an output [at point E] that is high (1). With both the inputs to the NAND gate being high (1), the output [at point G] goes low (0).

This high-to-low transition (negative edge) triggers External Interrupt 1 of the Automation Microcontroller. The microcontroller clears both flip-flops in the associated ISR. When rotation begins again, control is handed back to the Bar Detection module. At this point both sensors indicate that they detect a bar. This is because the Armature Rotation Drive Motor was stopped as soon as both bars were detected. The outputs of the NOT gates at both point A and point B are now high (1). These high outputs however, do not clock the D flip-flops as they are positive edge triggered. Since the clock did not go low (0) before going high (1), the outputs of the flip-flops remain cleared (0) implying that the output of the NAND gate remains high (1). As the commutator rotates the sensors will pass over the groove (or epoxy resin gap) between a pair of consecutive bars.

This causes the output of the sensors to produce a low (0), via the NOT gates. On the detection of the next bar, a low-to-high transition will be created and this positive edge will again trigger the D flip-flops. Its is thus clear that the Bar Detection module only detects the NEXT pair of bars to be tested by using positive edge triggered flip-flops to reject the high (1) signal from the sensors when they are still over the pair of bars that were previously detected. Note that, although theoretically both bars should be detected at the exact same time by their respective optical sensors, this is not the case practically. There are two reasons for this, one being that when the commutator is undercut some of the copper is also cut into producing bars and gaps of varying widths. The other reason is dirt, spots or marks on a bar that do not allow for the reflection of the laser. If the bars and the gaps between bars were the exact same

width throughout the circumference of the commutator and the commutator was clean, as in the case of a new commutator, both bars will be detected at the exact same time.

## 5.1.4 Mechanical Switch Input Module

This project makes use of both mechanical switches and inductive proximity switches. Inductive proximity switches are used where a high number of repetitive onoff transitions will occur as in the case when monitoring the position and initial positions of the Detection Unit. Because mechanical switches entail the physical "making" and "breaking" of metal alloy contacts the life span of mechanical switches are lower than that of non-contact switches (inductive and capacitive types) due to the wear of the metal contacts. Non-contact switches however, are much more expensive than traditional mechanical switches. It is for these two reasons that mechanical switches were used to monitor events or conditions that should not occur, and if they do, these occurrences will be very seldom thereby eliminating the contact wear as a factor. Another shortcoming that is associated with mechanical switches, and even mechanical relays for that matter, is contact bounce. When the metal contacts "make" or "break" there is a physical, high frequency bouncing action between the movable and stationary contact. See Figure 5-10 for and illustration of the above explanation.



#### FIGURE 5-10: MECHANICAL CONTACT BOUNCE OSCILLATIONS

Bouncing contacts lead to undesirable high frequency oscillations when a switch or relay "makes" or "breaks". These oscillations cause immense problems to digital circuitry such as multiple switching, multiple interrupt edge triggering etc. Debouncing refers to the elimination of these oscillations. There are two methods that can be implemented to achieve this. The first is de-bouncing using software. There various algorithms can be used to detect a change of state and thereafter verify the stability of the input line/signal, for example, allowing a delay after a change of state, pulse counting, pulse timing etc. The author has worked with many software debouncing techniques and in his experience has obtained the best results using a technique that involves the monitoring of the line after the first change of state. After the first change in state the line is read after a predefined delay, typically in the order of tens of microseconds.

If, when read, the line yields the same state for a predefined number of reading events typically twenty to fifty that state is accepted as an input. The delay time between readings, as well as the number of read events required to be stable before an input is accepted, are both variables that can be varied depending on the contact type, bounce oscillation frequency and the length of time that the oscillations are typically present for after the switch or relay "makes" or 'breaks". Software de-bouncing however, becomes more complicated when the input pin is an edge triggered microcontroller interrupt. Because there are a large number of oscillations, the interrupt will be triggered on each rising or falling edge. This means that the associated ISR needs to be disabled on the first raising or falling edge and the de-bouncing algorithm needs to be initiated within the ISR. This process entails taking control from the main program for the entire de-bouncing period plus the duration of the ISR executing time.

For this design the author has opted to use a hardware de-bouncing technique that overcomes the above inconvenience as well as frees the microcontroller to use its processing power on tasks more critical to the system than de-bouncing. With reference to Figure 5-11, a  $\overline{S}$  -  $\overline{R}$  latch is used to latch the line output to a stable state and keeping it stable regardless of any oscillations that may occur.



FIGURE 5-11: MECHANICAL SWITCH INPUT NETWORK

An illustration aiding the explanation of this network can be found in Figure 5-12. In the first state with the switch on the normally closed (NC) contact the reset pin ( $\overline{R}$ ) of the latch is pulled down to ground hence resetting the latch and producing an output of 0V. Next, the switch is to be switched on by breaking contact with the NC contact and making contact with the normally open (NO) contact. As soon as this transition is initiated, the instant contact with the NC contact is broken and the  $\overline{R}$  pin is pulled high to Vcc via pull up resistor, R2.

The instant contact is made with the NO contact (i.e. the  $\overline{S}$  pin), it is pulled down to ground initially before the bouncing oscillations begin. This first low pulse duration is sufficient to latch the output in a stable High (1) state before the oscillation have any effect on the line being read. With  $\overline{R}$  held to Vcc the oscillations have no bearing on the output. See the truth table provided in Table 5-1. When  $\overline{S}$  goes High (1) with  $\overline{R}$  held High (1), the output remains unchanged i.e. latched High (1). And when  $\overline{S}$  goes Low (0) with  $\overline{R}$  held High(1), the output is Set (1) leaving it unchanged i.e. latched High (1). The same latching principal will apply when the switch is switched off.



FIGURE 5-12: THE  $\overline{S} \cdot \overline{R}$  LATCH USED FOR DE-BOUNCING

| $\overline{S} - \overline{R}$ Latch Truth Table |                |        |                    |  |  |  |
|-------------------------------------------------|----------------|--------|--------------------|--|--|--|
| Inputs                                          |                | Output | C                  |  |  |  |
| $\overline{S}$                                  | $\overline{R}$ | Q      | Comment            |  |  |  |
| 1                                               | 1              | NC     | No Change in State |  |  |  |
| 0                                               | 1              | 1      | Latch Set          |  |  |  |
| 1                                               | 0              | 0      | Latch Reset        |  |  |  |
| 0                                               | 0              | 1      | Invalid Condition  |  |  |  |

TABLE 5-1:  $\overline{S} \cdot \overline{R}$  LATCH TRUTH TABLE

As shown in Figure 5-11, hardware de-bouncing is used for all mechanical switches that provided input signals to the system. These include the Safety Interlock switches, Emergency Stop switch, Take Manual Reading switch, Manual Test Current switch etc. An OR gate network is used to output a High (1) via signal *"EmgcyStop\_SW&Intlks"* if any of the safety interlocks or the Emergency Stop Switch is activated. And the *"Tk\_Man\_Rdng\_SWITCH"* signal alerts the controller that a manual reading is about to be taken.

## 5.1.5 The Inductive Proximity Switch Module

The Inductive Proximity Switch module is responsible for triggering External Interrupt 0 on the Automation Microcontroller when the Detection Unit has reached either its initial position, i.e. the point from which it was lowered, or when the spring loaded test probe has reached the surface of the armature under test. A single inductive proximity switch is used to monitor the position of the Detection Unit when it is being raised to its initial position and two inductive proximity switches, one on each spring loaded probe, are used to monitor when the probes have reached the surface of the bars. See Figure 5-12. The AND gate ensures that the interrupt is only triggered when both test probes are on the surface of the commutator. The OR gate facilitates the triggering of the interrupt (by signal "*Detect\_Unit\_Switches*") when either raising or lowering the Detection unit. The outputs of the inductive switches are open collector PNP, an example of which is depicted in Figure 5-7.



FIGURE 5-12: INDUCTIVE PROXIMITY SWITCH NETWORK

When switched on, the PNP transistor connects the load, in this case the resistor-zener network, to the supply. When switched off, the PNP transistor is also turned off and is ideally seen as an open circuit. When the inductive proximity switch is switched on the inputs to the interfacing ICs are High (1), i.e. 5V. When the inductive proximity switch is off the PNP transistor is also off. This is where the 1k $\Omega$  resistor serves a second purpose – it is also a pull-down resistor, pulling the TTL input Low (0) i.e. 0V when the inductive proximity switch is off. If there was no 1k $\Omega$  resistor present when the transistor is switched off, the input to the TTL circuitry will essentially be floating. The introduction of the 1k $\Omega$  resistor provides a path down to ground pulling

the TTL input to ground when the Inductive switch and hence, the transistor is switched off. The  $1k\Omega$  resistor together with the  $2k\Omega$  resistor forms a voltage divider network and with a 6.2V zener diode or Tranzorb in parallel with the  $1k\Omega$  resistor for protection. This network operates exactly the same as the network described in the Bar Detection module.

#### 5.1.6 Test Current On-Time Timing Module

This module is used to monitor the amount of time the Test Current is applied to the armature under test. Under normal test conditions the Test Current should not be required to be applied for a period longer than twenty seconds. If for any reason there is a system fault or an oversight on the part of the test technician (when taking a manual reading) that may cause the Test Current to be applied to the armature for excessive amounts of time, the system needs to be shut down in order to prevent any damage to the armature under test, the test system or any potentially dangerous situations for the test technician or any personnel in the vicinity. A 555 timer set to operate in monostable mode is preset with a period (using a 300k $\Omega$  resistor, a 500k $\Omega$  variable resistor, and a 100  $\mu$ F capacitor) that the Test Current On-Time should not exceed. Using the equation

$$T = 1.1 x (R+V_r)C$$

with the 500k $\Omega$  variable resistor set to zero ohms, the allowable on-time is set to,

$$T = 1.1 x (300k + 0) (100uF) = 33s$$

and setting the variable resistor to its full resistance value the allowable on-time is set to

$$T = 1.1 x (300k + 500k) (100uF) = 88s$$

The allowable Test Current On-Time can be preset to any value within the above range. The 555 timer is triggered by the same microcontroller output that switches the Test Current on, "*Test\_Current*", via a NOT gate as the 555 timer is a negative edge

triggered device. The 555 timer's output is then set High (1) for the period preset by the aforementioned capacitor and resistors. When this period has expired the output returns to a Low (0) state. The Automation Microcontroller continually monitors the output of the 555 timer, " $I_On_T$ \_Exceded", during a Volt-Drop reading procedure. If this output goes Low (0) before the reading has been completed, Error 3 is signalled and the system enters shutdown by initiating an Emergency Stop. When the Test current is switched off under normal conditions (i.e. before the allowable time is exceeded) the 555 timer is reset for triggering on the next reading cycle. See Figure 5-13 below, for an illustration of this module.



FIGURE 5-13: TEST CURRENT ON-TIME TIMING NETWORK

## 5.1.7 The Test Current Pulse Module

Recall that this system was designed to operate in two modes, namely, Automated Mode and Manual Mode. In Automated Mode the test current is pulsed/switched on and off via an IGBT by the controller (the Automation Microcontroller to be specific) using P2.7 (*"Test\_Current"* signal). When operating in Manual Mode the test technician is required to pulse/switch the test current on and off manually via a push

button or foot switch. This implies the IGBT driver must have two triggering sources, one for manual operation and one for automated operation. The Test Current Pulse module fulfils this purpose. With reference to Figure 5-14, the first input signal, "*Test\_Current*" to the OR gate is provided during operation in automated mode. The second input signal to the OR gate, "*Man\_I*", is provided during manual operation. It is clear that the IGBT that switches the test current can be triggered either during manual or automatic operation (via the "*TestCuttent\_Sw\_Out*" signal).

However for completeness and safety reasons it is required that any pulses from the push button or foot switch be ignored during automatic operation. This is accomplished using the AND and NOT gates as follows. The input signal to the NOT gate (*"Auto-Man\_Togl"*) is the same signal that the Communications Microcontroller uses to inform the Automation Microcontroller in which mode the test is to be run. For automated mode, a High (1) is signalled and for manual mode, a Low (0) is signalled. So in manual mode this signal is always Low (0) and due to the NOT gate the input to the AND gate is High (1).

The second input to this AND gate, "*Man\_I\_Sw*", is provided by the push button or foot switch that is used for the manual pulsing of the IGBT. During automated operation the signal, "*Auto-Man\_Togl*", is always High (1). Due to the NOT gate, a Low (0) is input to the AND gate while operating in this mode. Hence, it is only during manual operation that the pulses from the manual reading, push button or foot switch, are recognised. Note that during manual operation, the Automation Microcontroller is forced to enter Power-down with all its output ports cleared (i.e. 0). This implies that the "*Test\_Current*" input will always be Low (0) and will therefore have no influence on the triggering of the IGBT during manual operation.



FIGURE 5-14: TEST CURRENT PULSE NETWORK
# 5.1.8 The Serial Port Driver/Receiver Module

This module facilitates serial communication between the on-board serial port on the Communication Microcontroller and the serial port on the PC or Laptop that is running the GUI. The MAX 232 is an industry standard level shifter that was designed for this purpose. As shown in Figure 5-15, the interconnection of this device is simple and straight-forward with only capacitors being used as additional components, as prescribed in the MAX 232 datasheet (see Appendix J).



FIGURE 5-15: SERIAL PORT DRIVER/RECEIVER MODULE

## 5.2 Supply Regulation

The controller will be powered by a  $\pm$  24V Switch Mode, off-the-shelf, power supply. The controller circuitry requirements include a + 5V supply for the digital circuitry,  $\pm$  15V supply to power up the Op-Amps, Comparators, Optical Sensors and Inductive Proximity Switches, and a +24V supply for any interfacing power circuitry that may be needed. The 78xx and 79xx series of voltage regulators along with stabilisation and filtering capacitors were used to provide the required regulated supply voltages. See Sheet 3 of the circuit schematic in Appendix M. Note that the string of  $0.1\mu$ F capacitors found at the bottom of this sheet are bypass capacitors that were distributed to the appropriate locations on the PCB when the PCB layout was being finalised.

## 5.3 The Data Acquisition Module

The Data Acquisition module is responsible for measuring the difference in potential between two successive bars, signal conditioning to rejecting any inputs outside the expected input range and converting the input analogue signal to a sixteen-bit word that is to be transmitted to the Graphic User Interface (GUI) via the Communications Microcontroller. See Figure 5-16A and Figure 5-16B for the block diagram describing this module.



FIGURE 5-16A: BLOCK DIAGRAM FOR THE DATA ACQUISITION MODULE



# FIGURE 5-16B: DETAILED BLOCK DIAGRAM FOR THE DATA ACQUISITION MODULE

Before discussing this module any further it is important for the reader to know the type and magnitude of the input signal that is to be measured. The test supply is a maximum of +15V / 400A. The typical potential difference (or volt drop) expected to be measured between a pair of successive bars, on any armature that is to be tested, is in the range of between 100mV and 350mV for a healthy winding. Before the test begins the test technician will verify that readings within this range are produced by

measuring the volt drop across the first pair of bars and, if need be, varying the magnitude of the test supply or varying the arc length of the test supply probes or both to ensure that the reading produced is within the stipulated range.

The technician will thereafter measure the volt drop across at least five other successive pairs of bars that lie within the arc length of the test supply probes in order to verify the range. If the readings on these bars fall outside the range that was set on the first pair of bars the implication is that the windings of first pair of bars are unhealthy or damaged. In this case the input range must be set and verified on one of the other five measured pairs of bars.

The expected input range discussed above only applies to healthy windings, i.e. windings that are not open circuited, shot circuited or damaged. If a winding is open circuited the volt drop across the connected pair of bars will be equal to the supply potential. If a winding is short circuited the volt drop across the pair of connected bars will be zero volts. If a winding is damaged the volt-drop across the connected pair of bars will fall outside the preset variance (or tolerance) from the reference reading specified at the beginning of the test. The input signals are DC with no expected AC components. Any AC components encountered are regarded as noise and will be rejected and/or filtered.

A precision Instrumentation Amplifier, the INA 118 is used to acquire the potential difference (or volt drop) between two successive bars. See Appendix J for the complete datasheet for the INA 118. This amplifier features, amongst other things, a high Common Mode Rejection (CMR) of 110dB (at a gain of 10) and input protection up to  $\pm$  40V. It also offers a non-linearity of typically  $\pm$  0.0005% of the full-scale range (at a gain of 10). Some of the specifications mentioned above are stipulated at a gain of 10. This is because a gain of 10 is set (using the external resistor, R<sub>G</sub> – see datasheet) to amplify the input signal from the hundreds of millivolts to the volt range. Hence, an input of 350mV will be amplified to 3.5V. This is done in order to utilise the full input range of the sixteen-bit Analogue-to-Digital Converter hence maximising the 16-bit resolution and reducing the effects of any conversion errors should they occur.

A sixteen-bit, successive approximation, Analogue-to-Digital Converter, the MAX 1166, with an input range of between -0.3V and  $V_{Ref}$  (4.096V) is used to convert the input signal to a sixteen-bit word (2 eight-bit wide, parallel output words). See Appendix J for the complete datasheet for the MAX 1166. The operation of the ADC was discussed in detail in Chapter 4, under the section entitled ADC Control. The ADC was set-up to make use of the internal reference voltage as prescribed in the datasheet and shown in Figure 5-17.



#### FIGURE 5-17: ANALOGUE-TO-DIGITAL CONVERTER NETWORK

The ADC features, amongst other things, sixteen-bit resolution, a high speed sampling rate, an eight-bit wide parallel output and an accuracy of  $\pm 2$  LSB (Least Significant Bit). With an internal V<sub>Ref</sub> of 4.096V and sixteen bit resolution, the smallest voltage increment that the input signal can broken down into is:

Resolution in Volts =  $4.096 / 65536 = 62.5 \mu V$ 

i.e. each digital bit is equal to an analogue step of  $62.5\mu V$ .

Recalling that the input signal is amplified by a factor of 10 the true analogue step size (after being scaled down in software) is  $6.25\mu$ V. Similarly, the true input voltage range after being scaled down by software will be 0 to 350mV.

This implies that a variance of

Variance (%) = 
$$\frac{6.25 \,\mu\text{V}}{350 \,\text{mV}} \times 100 = 1.786 \times 10^{-3}\%$$

can theoretically/ideally be detected by the system. This value has two important connotations, the first being the fact that the smallest input change that can be detected is well below 1% hence, the percentage variance from the reference reading can be calculated with a great degree of accuracy and the second connotation is that the ADC error of  $\pm 2$  LSB will be almost negligible when considering the percentage variance from the reference value.

Recalling that the input range for the ADC is between -0.3V and  $V_{Ref}$  (4.096V), the ADC has to be protected from any inputs outside this range as they will potentially damage the ADC. Out of range input signals can be produced in two ways, the first being due to an open circuit. In this case, the potential difference across the pair of bars that are connected to an open circuited winding will equal to potential of the test supply current (which may be as high as 15V). The second way an out of range reading can be produced is by the reversal of the orientation of the test probes with respect to the test supply probes.

This means that when the test current positive probe is to the right of the negative probe and the positive test probe is to the left of the negative test probe (or versa-visa) a negative reading of equal magnitude to the positive reading will be produced. This situation can arise when the test technician setting up the test reverses the polarity of the test supply or when the test technician is taking a manual reading and uses an independent (unauthorised) set of test probes to take a manual reading and unknowingly reverses the orientation of the polarity of the inputs with respect to the potential of the test supply probes. Although this situation should not occur protection has to be designed into the system to prevent any hardware damage that may occur. The reader may ask why an ADC with an equal positive and negative input range (e.g.  $\pm 5V$ ) is not used.

The answer to this is – the expected input range is between 0 and 3.5V (after amplification). And with a sixteen-bit ADC that has a positive input range (eg. +5V), all sixteen bits are dedicated to conversions within this positive range. If a sixteen-bit ADC with an equal positive and negative range was to be used, eight bits will be dedicated to the positive range, 0 to +5V, and the other eight bits will be dedicated to the negative range, 0 to +5V. Hence only an eight bit resolution can be expected for the readings of importance i.e. those within the 0 to 5V range. The eight bits dedicated to undesirable readings that are produced by an incorrect system set up or use. In the author's opinion, the eight bit resolution used for the negative range of inputs is wasted. The author has hence elected to use a sixteen-bit ADC with only a positive input range and has devised a method of rejecting all unwanted and potentially damaging input signals. This method will be discussed in the paragraphs that follow.

With reference to Sheet 4 of the circuit schematic found in Appendix M, the first stage of the data acquisition module is the INA 118 instrumentation amplifier. This stage is followed by a filtering stage that comprises capacitors of various values which facilitates more efficient filtering over a range of frequencies. Seeing as the output of the instrumentation amplifier is expected (and required) to be purely DC in nature, any AC components found on this signal must be filtered before the signal progresses to the next phase of the system. It is for this reason that capacitors were used as low-pass filters instead of low-pass high order passive or active filters with a cut-off frequencies set very low (almost zero Hertz, in this case).

In the phase that follows, three Voltage Followers (or Buffers) makes three identical copies of the original signal. A Voltage Follower is simply an Op-Amp (LM 741 in this case) with its output fed directly into its inverting input. The non-inverting input is the input pin for the signal. This network produces an output with zero gain, i.e. an output that is equal to the input. A fourth Voltage Follower is placed at the input to the ADC.

Note that all the Op-Amp and Comparator ICs that are used make provision for a potentiometer that is used to nullify the output offset voltage. These potentiometers are also used for "tuning" purposes to ensure that the signal which is the input to the

ADC is equal to the signal at the input end of the data acquisition module provided that the magnitude of signal is within the allowable ADC input range.

Three identical copies of the input signal are made purely to maintain the integrity of the input signal to the ADC. Two comparator stages are required to determine whether the input signal is outside the ADC input range. These two stages are in parallel implying that they each require a perfect copy of the original input signal. The third copy of the input signal flows directly to the ADC input via an analogue switch. If only one signal was used in each of the comparison stages before being input to the ADC, the integrity of that one signal would be compromised, i.e. the ADC input signal will vary from the original input signal to the data acquisition module.

Recalling that the input of the ADC must be within the -0.3V to 4.096V range, a comparison must be done in order to reject all inputs outside this range. This comparison is done in two parallel stages. The first stage determines if the input signal is less than the ADC reference voltage,  $V_{Ref}$ , which is equal to 4.096V. In order to do this a comparator (the LM 311) is used with the input signal connected to the comparator's inverting input and a reference voltage connected to the non-inverting input pin. The reference voltage is set up using a voltage divider network that comprises of a  $2k\Omega$  and a  $9k\Omega$  resistor both with a 1% tolerance. With these values the expected reference at zero percent variance is:

$$V_{\text{Ref}} = \frac{9k\Omega}{9k\Omega + 2k\Omega} \times 5V = 4.091V$$

with a  $\pm 1\%$  V<sub>Ref</sub> variance of the range between 4.076V and 4.105V.

The output of LM 311 is open-collector, with pin 7 being the collector end and pin 1 being the emitter end of the output transistor. Connecting the collector (pin 7) via a pull-up resistor to the +5V supply and connecting the emitter (pin 1) to ground, the comparator outputs a High (1), i.e. +5V, when the non-inverting input is greater than the inverting input and a Low (0), 0V (or  $V_{ce}$ ) when the inverting input is greater than the non-inverting input. The output of this comparison stage is connected to the first of two inputs of an AND gate.

The second comparison stage is tasked to ensure that all negative input signals are rejected. Here the input signal is connected to the non-inverting input pin of the comparator (LM 311) and the reference is connected to the inverting input. The reverence voltage,  $V_{\text{Ref}}$ , is set to 0V by connecting the inverting input directly to ground. However, the reader should note that a voltage divider network that is set up between -15V and ground (Gnd) is provided in the event that a slightly negative reference is required due to the operating environment. To set a 0V reference using this network the resistor to ground is replaced with a physical jumper and the resistor to the negative supply is not inserted. The output of this comparison stage is connected to the second of the two inputs to the AND gate.

When the input signal is within range the first comparator stage will produce a High input signal to the AND gate because the potential at the inverting pin will be greater than that at the non-inverting pin. The second comparator stage will also produce a High input signal to the AND gate for the same reason. The output of the AND gate is hence High. The output of the AND gate (" $V_RangeDetect$ ") provides the input to the Communication Microcontroller's P0.2. Before a reading can be taken this input port (i.e. P0.2) is tested to verify if it is High (1).

If this is the case, the Analogue Switch (MAX 4622) is switched on by the Communication Microcontroller port pin P0.0, allowing the signal to pass through to the ADC input pin. See Appendix J for a complete datasheet for the MAX 4622. If this port pin is Low, the analogue switch is left off, connecting the ADC input pin to ground. The MAX 4622 analogue switch has a low on-resistance, with a normally open, normally closed and a common pin. It can be operated from a bipolar supply of  $\pm 18V$ , although in this case the operating supply is  $\pm 15V$ . This allows the analogue switch to control any input within this range without any damage which makes it perfect for this application. When the input pin of this device is low, as in the case where the input signal is found to be outside the allowable range, the common pin is "connected" to the normally closed pin which in this case is connected to ground. When the allowable range, the case is connected is pin of the allowable range, the input signal is found to be within the allowable range, the common pin is "connected" to the normally closed pin which in this case is connected input signal is found to be within the allowable range, the common pin is "connected" to the normally open pin which in this case is connected to device is found to be within the allowable range, the common pin is "connected" to the normally open pin which in this case is connected to output pin of the first voltage follower stage which represents the input signal to the data acquisition unit.

For completeness, if the input signal is higher than the preset reference,  $V_{Ref}$ , of the first comparison stage as in the case where an open circuit is detected on a winding connected to the pair of bars under test, the output of the comparison stage will be Low. This is because the inverting input will be at a higher potential than the non-inverting input. The output of the AND gate will therefore be Low hence ensuring that the Communication Microcontroller keeps the analogue switch off. This in turn ensures that the ADC input remains connected to ground, i.e. 0V, and not to the out-of-range input signal.

If the input signal is lower than preset reference, 0V, of the second comparison stage, as in the case where the orientation of the test probes is reversed with respect to that of the Test Supply probes, the output of the comparison stage will be Low. This is because the inverting input will be at a higher potential than the non-inverting input. The output of the AND gate will be Low ensuring that the Communication Microcontroller keeps the analogue switch off. This in turn ensures that the ADC input remains connected to ground, i.e. 0V, and not to the out-of-range input signal. It is in this way that all out-of-range inputs are rejected by the data acquisition module.

This method was not the first approach that was tried. After researching and experimenting with adaptive (variable) gain Op-Amp networks, arithmetic using a number of Op-Amp stages, scaling and using various switching devices such as relays, BJTs and FETs, this approach was found to be the simplest, most effective and most accurate method of rejecting out-of-range input signals while still maintaining the integrity of the original input signal.

## 5.4 Automation Output Module

This relatively simple module provides the signals that control the actuators in the automated system via the respective electronic control drives such as inverters in the case of motors and IGBT drivers in the case if IGBTs. The controller is just one module of the entire Automated Test Station. Other modules that interact with this module are the two electronic motor drives (one for the rotation of the armature under test and the other for lowering and raising the detection unit), the IGBT driver and the GUI. With this in mind, the author provided two types of control outputs.

The first being simple 5V TTL control signals. These can be used to pulse any type of drive or drivers via a second output module that will have to be designed depending on the input requirements of the drivers that are being used. This second output module can be considered as a level shifter or adapter that will make it possible for the controller to be more versatile and to be seen as a "plug and play" module that can be used with an array of different transducers, drivers and drives, provided that the adaptor is designed for those transducers, drivers and drives that are being used.



FIGURE 5-18: CONTROLLER OUTPUT MODULE

The other outputs that are provided are specifically designed for the drives and drivers being used for this project. As per the contractor's requirements, three switching devices that can 'make' and 'break' a 24V/20mA input must be provided for the drives that control the motors. The drive itself has a 24V/20mA source that will be the input to the switching device with the output of the switching device providing an

input to the input pins of electronic drive. Hence the electronic motor drive is controlled by controlling the switching device. As has been the pattern throughout this design process, the author has opted to use semiconductor switches rather than mechanical switching devices such as mechanical relays, for the reasons explained earlier. In this case, a gate logic level power MOSFET was used. See Appendix J for a complete datasheet for the IRLU120N. The IRLU120N is a power MOSFET with a gate that is activated and deactivated by 5V and 0V logic level pulses respectively, hence avoiding the need for gate drivers. Off the shelf IGBT drivers are today available with inputs that operate on 5V and 0V logic level pulses. It is for this reason that one TTL output is provided for IGBT switching.