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ABSTRACT 

Introduction: Preeclampsia (PE) is a clinical complication of pregnancy characterised with 

the new onset of hypertension and proteinuria, and/or organ dysfunction. Globally, it is 

associated with maternal and perinatal morbidity and is a major cause for concern. If 

undiagnosed, preeclampsia can lead to eclampsia, which is characterised by an onset of 

seizures (convulsions). Thus, neurological consequences have been reported in both PE 

mothers and their offspring.  

Materials and Methods: This study investigated the role of neuroinflammation and 

oxidative stress in the brain of an Nꭃ-nitro-L-arginine methyl (L-NAME) induced 

Preeclamptic rat model through birth to late postnatal days in the mother and the offspring. 

Pregnant rats were divided into control, early onset and late onset PE groups. Blood 

pressure, urine volume and proteinuria were measured on gestational day (GD) 0, 12 and 17 

to establish PE. At GD 19, postnatal day (PND) 1 and 60, rats and their pups were sacrificed 

and brain excised. Prior to sacrifice at PND 60, the offspring were subjected to 

neurobehavioural studies to test for memory performance and locomotor activity. Ionized 

calcium binding adaptor molecule 1 (IBA1) and Excitatory amino acid transporter 1 

(EAAT1), and oligodendrocyte transcription factor 2 (OLIG2) expression in the cortex and 

cerebellum were analysed by immunohistochemistry. Additionally, cortical and cerebellar 

tissues were homogenised for further biochemical analysis of oxidative stress such as Nitric 

oxide (NO), lipid peroxidase superoxide dismutase (SOD), glutathione (GSH), lipid 

peroxidase (LPO) and purinergic enzyme activities at PND 60.  

Results: We found an increase in blood pressure accompanied by proteinuria and a low 

foetal count in the L-NAME treated groups. Neuroinflammation was evident in the treated 

group at birth and PND 60 as shown by an increase in the number of IBA1 expressing 

activated microglia with a simultaneous reduction in the immunoexpression of EAAT1. PE- 

induced axonal damage was noted as shown by a reduced number of oligodendrocytes. At 

PND 60, PE groups show alteration in oxidative stress markers, increased 

acetylcholinesterase activity, and decreased purinergic enzymes activities such as adenosine 

triphosphatase (ATPase) and ecto-nucleoside triphosphate diphosphohydrolase 

(ENTPDase). The offspring at PND 60 also display reduced memory performance and 

locomotor activity, which was accompanied by an increased number of activated microglia, 

down-regulated the immunoexpression of EAAT1 and reduced number of oligodendrocyte 

cells.  
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Discussion and conclusion:  This study demonstrates neuroinflammation and axonal 

damage in PE at delivery which also persists into later life. This finding might be attributed 

to systemic inflammation and vulnerability of blood-brain barrier associated with PE which 

can cause crossing over of substances from the systemic environment thereby causing insult 

to the brain. Alteration in oxidative stress markers and an increase in acetylcholinesterase 

in the brain usually pinpoint to neurovascular/ neurodegenerative disease, this might be an 

indication of PE been predisposing to neurodegenerative disease later in life. We, therefore, 

conclude that a history of PE predisposes mothers and their offspring to a higher risk of 

neurological complications later in life. 
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LITERATURE REVIEW 

1.1 Background 

Approximately 15% of pregnant women develop life-threatening complications during 

pregnancy, at delivery and/or post-partum. Hypertensive disorders of pregnancy (HDP) is a 

significant contributor to these complications (Organization and UNICEF, 2017). When 

blood pressure is greater than or equal to 140/90mmHg during pregnancy it is classified as 

a hypertensive disorder of pregnancy. It may be further stratified into pregnancy-induced 

hypertension, preeclampsia/ eclampsia, gestational hypertension or chronic hypertension 

(Yigzaw et al., 2015). 

In South Africa (SA), preeclampsia (PE) accounts for more than 80 percent of deaths 

emanating from HDP. Despite easy access to tertiary care, the incidence of perinatal death 

and pre-term delivery is higher to that reported in other low and medium income countries 

(Nathan et al., 2018). 

Preeclampsia is a clinical complication of pregnancy (MacKay et al., 2001). It is 

characterised by the development of hypertension of >140/90 mmHg on two occasions 

within 4 hours and is accompanied by significant proteinuria (>300 mg dL), and is 

associated with  other maternal organ dysfunction involving the kidney, liver and brain 

(Brown et al., 2018). Preeclampsia normally presents during the second trimester around 

the 20th weeks of gestation and resolves 6 weeks postpartum.  

Preeclampsia is a life-threatening condition (Rich-Edwards et al., 2014, Lisonkova and 

Joseph, 2013, Abalos et al., 2014) that occurs in 3-8% of pregnancy. Globally, PE ranks 

second to haemorrhage as a direct cause of maternal mortality with an alarming number of 

approximately 830 deaths in women daily (Gupte and Wagh, 2014). In SA, hypertension in 

pregnancy is the most common direct medical complication in pregnancy and with 14% of 

maternal deaths within SA associated with PE (Saving mothers 2014-2016, 2017). 

Both maternal and fetal genetic composition and environmental factors underlie the 

etiological process of PE (English et al., 2015). The only cure for PE is delivery of the fetus 

and placenta with consequential  maternal improvement hence the placenta is regarded as 

the etiological agent of PE (Myatt, 2002). 
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Multiple organ systems such as the liver, kidney and brain are affected in PE (Duley, 2009, 

Khan et al., 2006). The most severe outcome of PE is maternal stroke, liver rupture, 

prematurity and intrauterine growth restriction (Duley, 2009). Neurological disorders such 

as headache, visual disturbance, uncontrolled vomiting, cortical blindness and seizure or 

eclampsia also occur (Abalos, 2014). Hemolysis, elevated liver enzymes, low platelets 

usually known as HELLP syndrome is considered a part of PE classification (Brown et al., 

2018).  

1.2 Pathogenesis and Pathophysiology of preeclampsia 

Despite several attempts to unravel the concepts underlying PE, its pathogenesis and 

pathophysiology remains unclear and debatable. PE is a multisystem syndrome that involves 

genetic and environmental factors in its pathogenesis (Romero and Chaiworapongsa, 2013). 

The exact cause remains unknown. The pathogenic process usually begins during the first 

trimester, early before the clinical signs are recognised (Gathiram and Moodley, 2016).  

There are two stages involved in PE development; the first stage is poor placentation 

whereby trophoblast invasion is inadequate with the resultant non-physiological 

remodelling of spiral arteries that eventuates in placental hypoxia and oxidative stress. At 

around 8 weeks, the trophoblast plugs of the spiral arteries begin to open and placentation 

resumes. Defective placentation may arise from premature opening and perfusion of the 

intervillous space by oxygenated arterial blood before the placenta is equipped to cope with 

the stress (Redman and Sargent, 2003). Consequentially,  the hypoxic placental 

microenvironment releases excessive substances such as soluble Fms-like tyrosine kinase 

(sFlt) (Redman and Sargent, 2005), angiotensin II (Schiessl, 2007) and cardiac glycosides 

(Puschett et al., 2010).  These factors interact with environmental and maternal genetic 

constituents thereby  leading  to the second clinical stage of the maternal syndrome 

expressed as high blood pressure, proteinuria and/or oedema (Roberts and Hubel, 2009). An 

abnormality in the renin-angiotensin system, 1,25-dihyroxyvitamin D, lipoxin A4 including 

vacuolar adenosine triphosphatase (ATPase) have been implicated in the deficient 

placentation of PE (Zhang et al., 2013).   

The lack of physiological transformation of spiral arteries in PE results in decreased blood 

supply to the fetus. This creates a hypoxic microenvironment and oxidative stress that leads 

to  a generalised dysfunction of the endothelial cells (Negi et al., 2011). Also in contrast to 

normal pregnancy, an angiogenic imbalance in favour of anti-angiogenesis exists in PE with 
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an increased expression of sFlt1 receptor and soluble endoglin (Eng) together with a 

concomitant decline in vascular endothelial growth factor (VEGF) and placental growth 

factors (PlGF) (Govender et al., 2013, Helmo et al., 2017, Helmo and Moed, 2007, Maynard 

and Karumanchi, 2011). Nonetheless, clarity on the conceptual framework of the maternal 

syndrome of PE is unavailable (Baijnath et al., 2014). Figure 1 shows the stages involved in 

the pathophysiology of PE. 
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Fig 1.1. Schematic diagram highlighting the stages involved in the pathophysiology of PE. 

The first stage involves poor placentation which usually occurs silently during 1st trimester 

of pregnancy which eventually leads to the clinical symptoms which is the 2nd stage. 
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1.3 Classification of Preeclampsia  

The classification of PE remains a clinical challenge. PE was previously classified into mild, 

(140-159 mmHg systolic and 90-109 mm Hg diastolic) and severe (> 160 mm Hg systolic 

and > 110 mm Hg diastolic) forms based on the level of blood pressure (Taylor et al., 2014). 

More recently, the International Society for Study of Hypertension in Pregnancy  (ISSHP) 

have indicated that they do not advocate  the use of severe PE in the classification (Brown 

et al., 2018). 

PE may be classified into early onset PE (EOPE) and late onset PE disease (LOPE) based 

on gestational age i.e., EOPE, gave birth before 34 weeks and LOPE, after 37 weeks. In 

contrast to LOPE, EOPE is usually complicated by deficient trophoblast invasion with 

consequential intrauterine growth retardation (IUGR) (Redman, 2017).  

EOPE is associated with a high incidence of neurological complications such as blurred 

vision and persistence headache (Von Dadelszen et al., 2003). Also, EOPE is often 

associated with maternal and perinatal morbidity (Witlin et al., 1999). Furthermore, EOPE 

is greatly associated with placental disease (hypo-perfusion of placenta), incomplete 

transformation of spiral arteries with reduced nutrient supply to the fetus associated with 

IUGR (Gathiram and Moodley, 2016).  

In LOPE, there is no or little modification in the diameter of spiral arteries. LOPE has been 

linked to underlying cardiovascular diseases that are unmasked by the physiological stress 

of pregnancy (Gathiram and Moodley, 2016). 

1.4 Prediction and Risk Factors of Preeclampsia 

Due to the heterogeneous nature of PE, it is unlikely that a single clinical risk factor or 

biomarker in early pregnancy will predict women likely to develop PE (English et al., 2015). 

Risk factors for PE development include; pre-existing hypertension (Endeshaw et al., 2016), 

chronic kidney disease (Hirose et al., 2014), insulin-dependent diabetic (Rosenberg et al., 

2005), low socioeconomic status (Boghossian et al., 2014), primiparity (Boghossian et al., 

2014), women with previous EOPE (Boghossian et al., 2014), infections like urinary tract 

infection (UTI) (Conde-Agudelo et al., 2008), migraine headaches (Sanchez et al., 2008), 

sickle cell disease and family history of hypertension (Endeshaw et al., 2016). Pregnant 

women with the above-mentioned risk factor/s receive intensive antenatal care and early 

delivery of the baby to reduce morbidity and mortality. However, in developing countries, 



7 

 

such as sub-Saharan African countries, adequate pre-natal care is a great challenge 

(Endeshaw et al., 2016).  

1.5 Outcome of Preeclampsia on the mother 

Many reports have shown that both the mother and the children born from a preeclamptic 

pregnancy are at higher risk of developing certain diseases such as stroke later in life. In fact 

women with a past history of PE have a 60% risk of having a non-pregnancy related 

ischemic stroke later in life than those with no history of PE (Brown et al., 2006).  

A significant decrease in brain volume with an increase in the ventricular zones have been 

reported in pregnant women with history of hypertension (Aukes et al., 2012). The 

mechanism underlying this reduction in brain volume is unclear. However, women with a 

history of PE are reported to display some cognitive impairment of short term and long term 

memory together with a slower motor speed (Backes et al., 2011, Baecke et al., 2009, Brussé 

et al., 2008, Postma et al., 2014a). Additionally, PE is also associated with the development 

of cardiovascular disease and diabetes mellitus later in life (O’Tierney-Ginn and Lash, 

2014).  

1.6 Effect of Preeclampsia on the fetus 

The perinatal outcome of PE is associated with pre-term delivery resulting in intra-uterine 

growth retardation (IUGR), low birth weight, foetal and neonatal death  (Ware‐Jauregui et 

al., 1999). Notably pre-term delivery and low birth weight are also associated with cerebral 

palsy and neuro-cognitive impairment (Soleimani et al., 2014). In addition, infants born to 

PE mothers have thrombocytopenia and neutropenia at birth (Backes et al., 2011). 

1.7 Eclampsia 

Eclampsia is the presence or new onset of convulsion/s or seizure/s in a preeclamptic woman 

(Abalos, 2014, Duley, 2009, Wallace et al., 2019). Eclampsia normally occurs within the 

20-40 gestational week period  and 2-9 days postpartum (Lubarsky et al., 1994, Veltkamp 

et al., 2000). It occurs in about 2-3% of PE women (Poston, 2006). Eclampsia is one of the 

most dangerous complication of pregnancy and the principal cause of maternal death with 

characteristic neurological disorder and fetal intrauterine death (Abalos et al., 2014). 

Although by definition eclampsia is restricted to women with PE, there does not appear to 

be a progressive development from mild to severe PE to eclampsia (Katz et al., 2000). The 

incidence of eclampsia is higher in twin pregnancies, in developing countries, low 
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socioeconomic conditions, nulliparous patients younger than 20 years, and multiparous 

patients older than 35 years (Bhandiwad and Gowda, 2015). Eclampsia is an enigmatic 

syndrome in its pathogenesis and in its temporal relation to gestation (Bhandiwad and 

Gowda, 2015).  

Eclampsia is attributed to an intense cerebral vasospasm with a loss of auto-regulation of 

intracranial arterial vessels. The resultant  cerebral edema  eventuates in micro-ischemic 

damage to the blood brain barrier (Roberts and Redman, 1993). This injury is triggered by 

endothelial damage, imbalance between vasoconstrictive and vasodilatory prostaglandins, 

sympathetic overactivity and an abnormal placenta (Bhandiwad and Gowda, 2015, Sibai et 

al., 1998). The primary mechanism is believed to be the elevation of blood pressure due to 

a loss of autoregulation of vasoconstrictive forces. A systemic loss of integrity of tight 

junctions  and endothelial damage ensues culminating in  disruption of the blood brain 

barrier (Bhandiwad and Gowda, 2015). Furthermore, activation of glial cells may cause 

neuroinflammation (Amburgey et al., 2010). Serum Tumour necrosis factor (TNF)-α from 

late gestational days pregnant rats has been shown to be implicated in the cause of 

inflammation in the brain (Amburgey et al., 2010). Similarly, an animal model of late 

gestational days pregnant rats treated with TNF-α noted hyper-excitability of the brain 

(Cipolla et al., 2010). 

1.8 Animal Models of Preeclampsia  

Many animal models of PE have been used to investigate the pathogenesis and potential 

treatment options to better manage the condition (Yallampalli and Garfield, 1993, 

Cadnapaphornchai et al., 2001). Earlier studies used the rat model of Adriamycin 

nephropathy to induce hypertension and proteinuria in pregnant rats, and thereafter 

evaluated renal pathology associated with PE development (Podjarny et al., 1992, Podjarny 

et al., 1995, Rathaus et al., 1995).  

Models on the imbalance of angiogenic factors are based on the infusion of soluble receptors 

of the pro-angiogenic factors VEGF and placental growth factor (PlGF), including infusion 

of/or adenoviral administration of sFlt-1 and soluble Eng (sEng) (Kundu et al., 2014), or a 

combination of both (Bridges et al., 2009, Murphy et al., 2010). Inflammatory models of PE 

include infusion of TNF-α (LaMarca et al., 2005a, LaMarca et al., 2005b), interleukin-6 (IL-

6) (Gadonski et al., 2006, LaMarca et al., 2011), Angiotensin 1 Receptor (AT1R) 

autoantibodies (LaMarca et al., 2009), a low-dose endotoxin such as lipo-polysaccharide 
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(LPS) (Faas et al., 1994) as well as metabolic models of PE induced by nutritional selenium 

deficiency (Vanderlelie et al., 2004).   

The Reduced Uteroplacental Perfusion Pressure (RUPP) rat model of PE induces placental 

ischemia by limiting blood flow to the uteroplacental unit via silver clips on the distal 

abdominal aorta and uterine arcades on day 14 of pregnancy. This method reduces uterine 

perfusion pressure by ~ 40 % and raises blood pressure by ~ 25 mm Hg. Furthermore, rats 

with RUPP have proteinuria, placental ischemia and fetal growth restriction, and are in a 

state of oxidative stress and endothelial dysfunction similar to that of women with PE 

(Alexander et al., 2001).  

Importantly, the oral administration of nitro-L arginine methyl ester (L-NAME) in drinking 

water of rats has been used to study the pathogenesis of PE. This model of PE shows 

increased blood pressure, proteinuria with low fetal pup number as well as  low birth weight 

(Liu et al., 2016, Soobryan et al., 2017). 

1.9 Neuroinflammation 

Neuroinflammation is the response of the Central Nervous System (CNS) to altered 

homeostasis from within or from outside the CNS.  It describes major neurological 

conditions such as inflammatory, trauma, developmental, infectious, ischemic and 

neurodegenerative diseases (Ransohoff et al., 2015, Qin et al., 2016). Neuroinflammation 

involves the activation of glial cells, elevation of pro-inflammatory cytokines and/or 

chemokines, nitric oxide and reactive oxygen species, all of which contribute to neuronal 

degeneration (Heneka et al., 2015, Pott Godoy et al., 2008). Also, it includes  the activation 

of microglia and resident immune cells within the central nervous system (Riazi et al., 2008). 

Microglia are resident macrophages of the CNS that serve as an interface between the neural 

parenchyma and the immune system (Kettenmann et al., 2011). Microglia cells play a major 

role in the development of CNS and synaptic pruning, hence impact the incidence and 

severity of neurodevelopmental disorders (Ransohoff et al., 2015). 

Microglial activation is triggered by excito-toxic, inflammatory, hypoxia or 

hypoxic/ischemia events (Tahraoui et al., 2001, Mallard et al., 2003). Active microglia may 

occur in a reparative state as they clean up cellular debris and promote repair of the injury 

(Hu et al., 2015). These productive activated microglia are classified as M2  cells (Hu et al., 

2015). In contrast, M1 microglia secrete pro-inflammatory cytokines, reactive oxygen 

species and glutamate that act in a feed-forward system to stimulate neuroinflammation (Hu 
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et al., 2015).  An alternative role of active microglia has emerged where M2 microglia have 

the potential to transform back to M1 microglia that has a cytotoxic effect on brain repair.  

The cytokines secreted by activated microglia also activate astrocytes which then become 

important contributors to inflammatory and immune response (Farina et al., 2007). The 

uptake of L-glutamate (L-Glu) within the brain to prevent neurotoxicity is carried out 

primarily by the CNS glial cells (Merkle et al., 2004). Glutamate excitotoxicity can lead to 

functional damage within the CNS (Parkin et al., 2018). An impairment of glutamate 

transporter function has been reported in several neurological diseases related to 

inflammation, (Guo et al., 2010). Activated microglia may have deleterious effects on 

oligodendrocytes progenitor cells survival and may also inhibit progenitor cells from 

maturing into myelin-producing oligodendrocytes in vitro (Krause and Müller, 2010). 

Activated microglia release L-Glu which elevate L-Glu extracellularly, leading to increase 

of intracellular L-Glu within astrocytes. This therefore implicates activated microglia in the 

down regulation of L-Glu transporter, an elevation of extracellular L-Glu is caused as an 

early event of neuroinflammation (Takaki et al., 2012). Cytokines, chemokines, glutamate 

and reactive oxygen species are also detrimental to oligodendroglial development 

(Caprariello et al., 2012, Caprariello et al., 2015).  

Since PE is a state of exaggerated inflammation, the suppression of exaggerated systemic 

inflammation controls neuroinflammation in the brain (Liu et al., 2017). Nonetheless, 

whether neuroinflammation is present during PE and its molecular mechanism remains 

unknown.  

1.10 Preeclampsia and blood brain barrier 

The CNS may be seriously affected by peripheral immune exaggeration despite protection 

by the blood brain barrier (BBB) (Qin et al., 2016). Pregnancy has the potential to affect 

several aspects of cerebral circulation, including the cerebral endothelium and BBB (Cipolla 

et al., 2010). 

In PE, maternal endothelial dysfunction leads to an increase in BBB permeability with 

oedema and consequential disruption (Kaplan, 2001). Exposure of rat cerebral arteries to 

plasma from women with PE show increased blood brain barrier permeability (Amburgey 

et al., 2010). The plasma of women with EOPE compared to that of the LOPE increase  

blood brain barrier permeability, due to an up-regulation of circulating oxidized lipoproteins 

(Schreurs and Cipolla, 2013). Blood brain barrier disruption and increase in permeability 
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allow pro-inflammatory cytokines to gain easy access/feedback to the brain which then 

activate microglia thereby sanctioning the passage of seizure provoking factors. Also, 

neuronal damage can occur through the infiltration of leukocyte from serum into the CNS 

after BBB disruption (Popovich et al., 1999). 

1.11 Preeclampsia, Neurodevelopment and Cognitive Impairment in Developing 

Children  

Neurodevelopment: Complications associated with pregnancy may have serious 

consequences on development (Kronenberg et al., 2006). The ontological processes critical 

for the maturation of the fetus are highly sensitive to the alteration within the intrauterine 

environment (Nafee et al., 2008). Brain growth and development occur rapidly within the 

period of 20th to 32nd weeks of gestation (Pescosolido et al., 2012, Woodworth et al., 2012). 

Compromise to neurodevelopment may occur during this period from illness, poor nutrition 

or infection. Also, clinical factors like hypoxia, prematurity, ischemia and inflammation pre-

determine perinatal brain damage (Cauli et al., 2010). Systemic inflammation is associated 

with structural changes in the neonate’s brain which are associated with a neuro-behavioural 

deficit that occur later in the neonate with sepsis (Cardoso et al., 2015).  Serious clinical 

consequences are neuromotor problems, visual and hearing impairment, learning 

difficulties, psychological, behavioural and social problems as well as intra-uterine growth 

restriction and death (Colvin et al., 2004, Mwaniki et al., 2012). PE is clinically diagnosed 

during the second trimester around the 20th week of gestation which is also the critical period 

of neurodevelopment (Pescosolido et al., 2012, Steegers et al., 2010, Woodworth et al., 

2012).  

To-date, the only treatment for preeclampsia is pre-term delivery. Whilst the survival rate 

of a pre-term infant has improved over the decades the overall prevalence of neuro-disability 

after pre-term birth remains unchanged (Soleimani et al., 2014, Wilson-Costello et al., 

2005). Factors that influence brain development such as fetal hypoxia and intra-uterine 

growth restriction are associated with PE and is also one of the risk factors for the 

development of oxidative stress in pre-term infants (Buonocore et al., 2002). Furthermore, 

epidemiological evidence has shown that infants born to PE mothers are susceptible to 

hypertension, respiratory distress syndrome, stroke and epilepsy in adult life (Barker, 2006), 

however, the underlying cellular and molecular mechanisms remain unknown.  
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Cognitive impairment: A 10-year follow-up cohort study of verbal ability and non-verbal 

ability of children from mothers who had gestational hypertension and PE reported reduced 

verbal and non-verbal ability in children of PE compared to those of mothers with 

gestational hypertension. Therefore, maternal hypertensive diseases of pregnancy are a risk 

factor for reduction in offspring verbal ability (Whitehouse et al., 2012). 

Neurodevelopmental outcome is associated with rapid weight gain and head growth of 

infant born at term (Serenius et al., 2013, Ehrenkranz et al., 2006). Cheng et al., (2004) 

demonstrated that children born to preeclamptic mothers have lower scores in the Bayley 

scale of infant development at the age of 24 months compared to children without maternal 

PE (Cheng et al., 2004). Therefore, mildly delayed development at age 24 months is 

associated with PE and pre-term delivery due to PE is related to a high risk of poor cognitive 

outcome. Using an animal model Cauli et al (2010) demonstrated the learning, motor and 

rearing behavioural activities of pups born to preeclamptic mothers.  They showed an 

impairment in the learning ability as well as reduced motor activity of rats exposed to L-

NAME compared to controls. The authors concluded that there was reduced learning ability 

in rats with maternal PE. Liu et al (2016) also reported a decrease in body and brain weight 

of rats exposed to L-NAME compared to control on the post-natal day (PND) 0 but no 

difference in body weight and brain weight between the control and L-NAME exposed rats 

at PND 56. Deficiency in neurogenesis was noted at day 0 in offspring from rats with 

maternal PE (Liu et al., 2016).  

Hence, as exaggeration of inflammation occurs during PE, and systemic inflammation has 

been reported to result in neuroinflammation, likewise changes that has been reported in the 

brain of those with history of PE and their fetus is similar to those present in people reported 

with neurological disorders that involves neuroinflammation. Therefore, there is need to 

study whether neuroinflammation will be present during pregnancy complicated with PE 

and later in life in both the mother and their fetus.  

1.12 Aim 

The overall aim of this study was to understand the role of neuroinflammation in the 

pathophysiology of PE and the long-term consequence of PE on the histology of the brain 

using a PE rat model from birth through adulthood. 

1.13. Study objectives  

Objectives for this study are to: 
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1. induce EOPE and LOPE in female pregnant rats using L-Name; 

2. evaluate the pathological changes in the cerebral cortex and cerebellum of the mother 

during gestation and at post-natal days; 

3. investigate the pathological changes that may be present in the cerebral cortex and 

cerebellum of the offspring born to PE mothers from birth to adulthood  

4. evaluate neurobehavioural parameters on cognitive and motor skills in the offspring 

based on pregnancy type (normotensive vs preeclamptic rats)  

5. investigate the level of oxidative stress markers in the cortex and cerebellum based 

on pregnancy type (normotensive vs preeclamptic rats) and 

6. investigate change in acetylcholinesterase, chymotrypsin and purinergic enzymes 

inhibitory activities (ATPase and ENTPDase) in the cortex and cerebellum based on 

pregnancy type (normotensive vs preeclamptic rats). 

1.14 Study design 

This study is a prospective experimental study that utilizes Sprague Dawley Rats. 
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2.1 Abstract  

Pre-eclampsia (PE) is a pregnancy specific syndrome that affects multiple organs including 

the brain. PE resolves after delivery of the placenta. Nonetheless, PE is a predisposing factor 

for cardiovascular disorders and hypertension later in life. These conditions are associated 

with a cognitive decline and dementia later in life. Studies have suggested that there may be 

long term pathological changes within the brain of the woman after PE/eclampsia and PE 

may be a risk marker for early cerebrovascular impairment. The aim of this review is to 

provide an insight into the possible long-term effect of PE and eclampsia on the brain 

structure and function with the probability of PE being a risk factor for neurodegenerative 

development. Long term effects of PE include cognitive impairment such as memory loss, 

attention deficit and motor speed impairment. Also, the pathology of the brain seems to be 

much affected later in life in women with history of PE/eclampsia. Certain changes in the 

structure and function of the brain observed among women with history of PE/eclampsia 

are similar to neurological disease like Alzheimer’s disease (AD) and dementia. 
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Pre-eclampsia/eclampsia; White and gray matter; Cognitive impairment; Dementia 
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2.2 Introduction 

Certain pregnancy hormones have been reported to remodel the maternal brain at the 

neuronal level (Kinsley and Lambert, 2006). Examples of maternal brain modifications 

caused by some pregnancy hormones include an increase in dendritic spine density and 

neuronal excitability in the dentate gyrus, white matter regeneration, mediation of 

neurogenesis in the forebrain and enhancement of hippocampal spike transmission (Shingo 

et al., 2003, Kinsley and Lambert, 2006, Rosenblatt et al., 1988, Maguire et al., 2009). 

Despite the tissue structural modification of the brain, a more marked functional remodeling 

of the hippocampus occurs during pregnancy (Chan et al., 2015).  

Pre-eclampsia is a pregnancy specific condition, identified as the leading global cause of 

maternal and foetal morbidity and mortality with a prevalence of 3-10%. It is characterised 

by new onset of hypertension (systolic blood pressure ≥ 140 mmHg or diastolic blood 

pressure ≥ 90 mmHg, measured on two occasions at least four hours apart) in a previously 

normotensive women and by the presence of proteinuria (> 0.3g per 24hours).  Additionally, 

other features associated with PE with or without proteinuria may include 

thrombocytopaenia (platelet count < 100000/µl), renal insufficiency (serum creatinine 

concentration> 1.1mmg/dl or a doubling of the serum creatinine concentration in the 

absence of other renal disease), liver function impairment, pulmonary oedema and 

cerebral/visual problems (Duley, 2009, Lindheimer et al., 2015).  

A 2017 report demonstrated racial and socio-economic disparities in prevalence of PE. The 

report showed that rate of PE/eclampsia was higher in black women compared to white, and 

also higher in women who resided in poorest areas compared to those in wealthy area 

(Fingar et al., 2017). Also, Fokom-Domgue and Noubiap 2015, suggested that the 

commonly accepted definition of PE should be reassessed and readjusted to the African 

context, as black women had higher BP compared to their white counterparts, either during 

or in absence of pregnancy. Also, endemic infection such as malaria may also be 

confounding factors for PE in Sub-Saharan African women. Additionally, Goldenberg et 

al., 2015 showed that a prenatal care program that consist of testing for hypertension and 

proteinuria, increase in use of hospitalization for caesarean section/induction of labour 

would more significantly reduced maternal mortality in PE compared to increasing 

interventions with MgSO4. 

Acute cerebral complications such as eclampsia, cerebral oedema and intracranial 

haemorrhage accounts for up to 75% of maternal fatalities in Europe. Earlier data from the 

UK indicated that eclampsia accounts for 6% of direct maternal deaths, while pre-eclampsia 
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accounts for nearly 50% of reversible, pregnancy-related ischemic strokes (Zeeman et al., 

2009). Reports from South Africa ‘’between’’ 2005-2007 showed 622 deaths associated 

with hypertensive disorders of pregnancy. Eclampsia accounted for 55% of deaths, while 

pre-eclampsia accounted for 28%. 45% of the final cause of death was due to cerebral 

complications, while about 23% and 25% where due to cardiac and respiratory failure 

respectively (Moodley 2011). It is possible that PE patients that survive these outcomes into 

later life may be at higher risk for further neurological damage associated with old age. 

PE affects multiple organs including the kidney, liver and brain (Aukes et al., 2012, Aukes 

et al., 2009, Duley, 2009, Aukes et al., 2007). The pathogenesis and pathophysiology of PE 

involve genetic and environmental factors. Apart from the pathogenomic endothelial cell 

dysfunction, persistent activation of systemic maternal inflammatory cell response and 

elevated inflammatory cytokines are implicated in the pathogenesis of PE (Tosun et al., 

2010). Macrophages are implicated in pathophysiology of PE. Numbers of macrophages are 

altered PE patients. Most studies indicate increase macrophages in decidua of PE patients. 

This appear to be consistent with increase in occurrence of macrophage chemotactic factors 

such as M-CSF, IL-8 and MCP-1 in PE patients. Also, macrophages may be differentially 

activated in PE, in a manner consistent with increase in pro-inflammatory cytokines and 

decrease in anti-inflammatory cytokines in placenta of PE women (reviewed in Faas et al., 

2014). Neuroinflammation is the recruitment and rapid activation of resident immune cells 

in the brain, these immune cells, also known as the macrophages of the central nervous 

system (CNS), constitute approximately 10% of the brain parenchyma cells (Streit et al., 

2004). Activation of the immune cells of the brain resembles that of the activation of the 

monocytes in the peripheral tissues (Tilleux and Hermans, 2007). Neuroinflammation is a 

critical factor in the advancement of different neurological and neurodegenerative disease 

(Chen et al., 2015). The mechanism of how systemic inflammation relays signals to the 

brain and contributes to increased CNS inflammation and injury still remains to be fully 

elucidated (Mallard et al., 2003). However, D’Mello et al., (2013), demonstrated that 

increase in monocyte specific rolling and adhesion along cerebral endothelial cells (CECs) 

may contribute to cerebral changes that influence behaviour in response to systemic 

inflammation. The study indicated that TNFα-TNFR1 signalling and adhesion of P-selectin 

are vital mediators of these monocyte-CECs adhesive interactions. 

Adaptive immune mediated cells (T and B lymphocytes) and innate immune cells initiate 

neuroinflammatory disease (Baik et al., 2014, Ferretti et al., 2016, Van Eldik et al., 2016). 

Disruption of tight junctions at the blood brain barrier (BBB) mediates a greater transport 
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of molecules from the peripheral to the CNS contributing to hypoperfusion and 

inflammation. This may in turn initiate or contribute to a “vicious cycle” of most 

neurodegenerative disease (Oby and Janigro, 2006, Zlokovic, 2005, Marchi et al., 2011).  

This review aims at presenting findings from the literature on the long-term effect of pre-

eclampsia and eclampsia on the brain structure and function whilst elucidating the 

possibility of PE being a risk factor for neurodegenerative disease development (see Figure 

1). Eclampsia is a severe complication of PE characterised by the onset of seizures 

(convulsions). Evidence suggests that long-term pathological changes within the brain may 

occur in eclampsia (Postma et al., 2014a). The association between PE/eclampsia and 

neurodegenerative disease are yet to be fully elucidated. PE/eclampsia might be a risk 

marker for early cerebrovascular impairment (Aukes et al., 2012). 

2.3 Brain size in PE 

During pregnancy, there is shift in focus of women from the survival of the pregnant woman 

to the care and well-being of her offspring (Kinsley and Lambert, 2006, Moya et al., 2014). 

This shift is mediated by variable amounts of different hormones secreted by the placenta, 

ovaries and brain during pregnancy (Szarka et al., 2010, Aagaard-Tillery et al., 2006), which 

may cause a change in the structure of the brain (Moya et al., 2014). With the use of T1 

(spin lattice) weighted magnetic resonance imaging (MRI), a decrease in brain size and 

concomitant increase in ventricular zone was observed in pregnant women. The decrease in 

brain size with increase in ventricular zone demonstrates the overall decrease in brain 

volume during healthy pregnancy (Oatridge et al., 2002).  The latter study reported a 

significant decrease in brain size in PE compared to healthy pregnant women during 

pregnancy and 40 weeks after delivery but no difference in the ventricular zone between the 

groups. The mechanism underlying the difference in brain size in PE is unclear but a 

complication like chronic renal failure in pre-eclampsia may influence size and volume of 

brain. The brain size was reported to decrease up to 52 weeks postdelivery in a pre-eclamptic 

patient with renal failure (Oatridge et al., 2002). 

Mielke et al. found that hypertensive pregnancy disorders are associated to smaller brain 

volume later in life when compared with women without history of hypertensive pregnancy 

disorders in their study of 1279 women who participated in the Family Blood pressure 

Project Genetic Epidemiology Network of Arteriopathy (GENOA) (Mielke et al., 2016). 



30 

 

2.4 Gray matter and PE 

There is a paucity of data on gray matter, the major component of the CNS in pregnancy 

and its associated complications. Gray matter is composed of neuronal cell bodies, 

dendrites, myelinated and unmyelinated axon, synapses, vascular structures and glial cells 

(Purves et al., 2008). Heokzema et al. (2017), reported pronounced changes in gray matter 

pre- and post-pregnancy in primiparous and nulliparous women. In pregnancy there was an 

extensive gray matter volume reduction in the anterior and posterior cortical midline and 

bilateral prefrontal and temporal cortex zones. The reduction in gray matter volume 

remained up to 24 months post pregnancy (Hoekzema et al., 2017). Moreover, a recent study 

on brain MRI of women with a previous history of PE (5- 15 years later) demonstrated a 

reduction in the volume of cortical gray matter in women with a history of PE compared to 

those with a normotensive pregnancy. This reduction in gray matter volume was also noted 

at the subcortical structure of the brain, thereby exacerbating the overall reduction in the 

total gray matter (Siepmann et al., 2017). Variations in gray matter signals extracted from 

MRI indicate various processes, including changes in the number of synapses, the number 

of glial cells, the number of neurons, structure of the dendrites, vasculature, blood volume 

and circulation, and myelination (Hoekzema et al., 2017) Notwithstanding the MRI, no 

studies have to-date been able to pinpoint specific molecular mechanisms underlying the 

volume reduction of gray matter both in pregnancy and PE. 

2.5 White matter and PE 

Alteration in white matter integrity is a predictor for the development of stroke and dementia 

later in life (Debette and Markus, 2010). White matter lesions are recently thought to be a 

direct consequence of small vessel pathology (Pantoni, 2010). White matter lesion is defined 

as a region found within the hemispheric white matter of the brain seen under T2 weighted 

magnetic resonance imaging to be hyperintense (Pantoni, 2010). Meta-analysis has revealed 

that women with history of PE, particularly those with early-onset pre-eclampsia, have an 

increased risk of hypertension, ischaemic and haemorrhagic stroke, both fatal and non-fatal, 

in later life, therefore PE is an independent risk factor for white matter lesions later in life 

(Bellamy et al., 2007).  

Notably, in both elderly and young individuals one of the risk factors in the development 

and progression of white matter lesion is the presence of hypertension (Kuller et al., 2010, 

Jeerakathil et al., 2004, de Leeuw et al., 2002, Hopkins et al., 2006). Aukes et al. (2012) 

reported severe white matter lesion with a 41% prevalence in women with 5-6-year history 
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of eclampsia and a 37% prevalence in women with history of PE compared to 17% in 

women with a history of normotensive pregnancy. Despite adjustment for factors like age, 

pre-existing hypertension and current hypertension, PE and age were independently 

associated with white matter lesion (Aukes et al., 2012). Similarly, in a retrospective cohort 

study with the use of cerebral MRI imaging to determine the severity and the location of 

white matter lesion, Wiegman et al. (2014) found severe white matter lesions among women 

with PE/eclampsia and parous normotensive pregnancy (Wiegman et al., 2014). Women 

with history of hypertensive pregnancy disorder shows greater mean in white matter lesion 

volume when compared with normotensive pregnancy as studied by MRI imaging (Mielke 

et al., 2016). Also, a recent study on prevalence of cerebral white matter lesion after six 

months and one year postpartum in women with severe PE report a twofold prevalence of 

white matter lesion in women with severe hypertension in pregnancy when compared with 

women with normotensive pregnancy (Soma-Pillay et al., 2017). The regional distribution 

of the lesion in women with PE was predominantly the frontal lobe or temporal lobe lesion 

dissimilar to the occipitoparietal lobe lesion that occurs in posterior reversible 

encephalopathy. Further, according to Postman et al. (2014), parity does not correlate with 

the presence of cerebral white matter lesions (Postma et al., 2014b). A recent study reported 

severe changes in white matter at the temporal lobe in women with history of PE compared 

to normotensive pregnancy (Siepmann et al., 2017), whilst another longitudinal study of 

women with severe PE after giving immediately, six months and one year after birth  

reported that the lesion of the white matter were more profound at the frontal lobe (Soma-

Pillay et al., 2017).  A subcortical white matter lesion occurs more frequently in women 

with history of PE/ eclampsia compared to normotensive pregnancy, the lesion seems to be 

more pronounced in women with pre-term PE (< 37 weeks of gestation) (Postma et al., 

2016). The prevalence of cerebral white matter lesion after PE may also be attributed  to the 

treatment regimen for blood pressure control during pregnancy (Soma-Pillay et al., 2017). 

Furthermore, Seipmann et al., (2017) reported that the temporal lobe of PE patients showed 

significant decrease in fractional anisotropy (FA) and increase in radial diffusivity (RD). 

These are indices of white matter damage in MR imaging. Additionally, the authors 

positively correlated these indices of white matter microstructural damage with time since 

index pregnancy. These authors demonstrated that temporal lobe white matter damage 

continually increase several years after the index pregnancy, and they hypothesize that this 

may be reason why total differences in total white matter lesion is marked by age 60 years. 



32 

 

2.6 Cognitive functioning and PE  

Subjective cognitive symptoms and validated physical and psychological symptoms that 

negatively impact the physical, social, and emotional well-being and quality of life have 

been reported in women with a history of severe PE and pre-term birth than normotensive 

pregnancy (Backes et al., 2011). Many years after an index pregnancy, there is some degree 

of cognitive impairment among women with history of PE/eclampsia when compared with 

normotensive pregnancy (Aukes et al., 2007). However, eclampsia does not affect the 

degree of the cognitive impairment when compared with PE (Aukes et al., 2007). Cognitive 

deficit especially in short-term and long-term memory has been demonstrated in women 

with severe PE, 3-8 months postpartum (Brussé et al., 2008). Baecke et al (2008) also 

reported attention deficit among women with a history of PE, pre-term birth when compared 

with normotensive pregnancy (Backes et al., 2011). Postman and his group observed slower 

motor speed and worse score in cognitive failure questionnaires of women with seven years 

history of PE/eclampsia but no difference in objective measures of visual perception, 

working memory, attention, executive functioning and long-term memory compared with 

the women with normotensive pregnancy (Postma et al., 2014a, Postma et al., 2016). Also, 

Mielke and colleague conducted a cognitive test with the use of standard protocol to assess 

global cognition and domain of memory language, executive function and processing speed 

on patients with history of hypertension during pregnancy, they reported worse performance 

in speed processing but there are no association between memory, language, executive 

function and history of hypertension in pregnancy when compared with women without 

hypertension during pregnancy. Despite adjustment for cardiovascular disease, 

hypertension, hypertension duration, family history of hypertension, the relation between 

history of hypertension in pregnancy and still remained significant which then concluded 

that pregnancy hypertension disorders is an independent predictor for cognitive impairment. 

(Mielke et al., 2016).  Women with a 35 year history of PE vs age matched normotensive 

pregnancy underwent comprehensive neuropsychological assessment using 2.5-hour battery 

that involved standardized and validated test for working memory, learning and memory, 

attention, language, perceptual process and self-reported mood questionnaires. The PE 

group exhibited greater cognitive impairment later in life than women who experienced a 

normotensive pregnancy (Fields et al., 2017). The mechanisms underlying the cognitive 

impairment is unclear, but could reflect common mechanisms contributing to brain changes, 

such as white matter lesions and coronary artery calcification, as the pattern of cognitive 
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change seen in women with history of PE/ eclampsia is consistent with that observed with 

vascular disease/white matter pathology (Fields et al., 2017, Postma et al., 2016). 

2.7 Dementia/Alzheimer’s and PE 

One of the primary risk factors for brain vascular disease especially small vessel disease 

that subsequently leads to white matter abnormalities, loss of gray matter neurons and brain 

infarction is hypertension (Kuller et al., 2010). Hypertension during midlife as well as white 

matter abnormalities are an independent risk factor for the development of vascular 

dementia and AD (Gorelick, 2004, Kivipelto et al., 2001, Schmidt et al., 2005).  Leffert et 

al. (2015) reported that PE confers a 4–5-fold increased risk of stroke when compared to the 

normotensive pregnant population (Leffert et al., 2015). The increased risk for 

cardiovascular disease, including stroke, as well as the increased risk for white matter lesion 

and cognitive impairment in women with history of PE may be related to an increased risk 

for vascular dementia (McDonald et al., 2008). Worse performance in speed processing and 

brain atrophy found years later in women with history of hypertensive pregnancies 

suggested that hypertensive pregnancy may be a predictor for the identification of women 

at greater risk of future dementia (Mielke et al., 2016). Additionally, because the medial 

temporal lobe contains the hippocampus, progressive white matter changes in the temporal 

lobe of PE patients several years after the index pregnancy may contribute to cognitive 

decline and dementia associated with surviving PE patients. The hippocampus is considered 

to be majorly responsible for memory and cognitive tasks such as spatial/relational memory, 

declarative memory etc. (Seipmann et al., 2017; Ijomone et al., 2012; Squire 2009). 

In contrast to previous reports, a study of self-reported history of hypertensive disease many 

years after pregnancy and the diagnosis of dementia, reported no correlation between the 

history of hypertension and dementia despite adjustment for body mass index, smoking and 

education, although vascular dementia and dementia were inclusive (Nelander et al., 2016). 

A study of about 300 000 women from Sweden with almost 35 years history of hypertension 

in pregnancy reported no increased risk for in-hospital diagnosis of vascular dementia or 

dementia after any hypertension disease in pregnancy (Andolf et al., 2017). 

Albehedan et al. (2016), conducted a case control study in 426 women diagnosed with AD 

with or without history of hypertension in pregnancy. They found no association between 

hypertension in pregnancy and AD but the population of women with history of 

hypertension in pregnancy or PE were more prevalent in early onset Alzheimer’s diagnosis 

than those with late onset AD (Abheiden et al., 2015). However, a recent clinical study in 
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the US reports significant increased risk of death from AD from previously pre-eclamptic 

women. Women in this study with 1 or more singleton pregnancies (1939-2012) that were 

diagnosed with PE had high mortality risks for diabetes, stroke ischemic heart disease, and 

particularly AD.  Specifically, women with hypertensive disease of pregnancy had the 

highest increased mortality risks from AD (Theilen et al., 2016). 

One of the hallmarks of AD is protein misfolding and aggregation which includes abnormal 

deposition of amyloid beta (Aβ) peptide and neurofibrillary tangles, mostly composed of 

aggregated tau protein (Lepeta et al., 2016). Recent studies have associated PE occurrence 

with onset of AD type pathology. Buhimschi and colleagues showed there is increased 

deposition of Aβ aggregates in placentas of PE patients. This is accompanied by 

dysregulation in amyloid precursor protein (APP)-processing pathways. APP is the 

precursor for Aβ peptide (Buhimschi et al., 2014). Additionally, Kalkunte et al., (2013) 

demonstrated that transthyretin is dysregulated and forms aggregates in human placenta of 

PE and causes apoptosis in placental region. Transthyretin is a protein that can bind Aβ and 

prevent Aβ fibril formation (Stein et al., 2004), and dysregulation or reduction in 

transthyretin has been implicated in AD pathology (Kalkunte et al., 2013). Seeing that these 

studies have mostly evaluated placentas of PE patients, it will be interesting to evaluate 

brain tissues of PE patients where possible, for markers of protein misfolding and 

aggregation. 

Considering the pathophysiology of PE, risk of cardiovascular disease related to PE and 

findings on brain lesions, there is possible risk increase for all kind of vascular disease 

including dementia, Therefore, there is need to further investigation (Andolf et al., 2017). 
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Fig. 2.1 Illustration showing how poor neurological outcomes results from PE/eclampsia. 

 

2.8 Conclusion  

PE/eclampsia are associated with long term effects of cardiovascular disease and stroke later 

in life. Since the brain undergoes physiological changes during PE/eclampsia, these 

structural and functionality changes may predispose PE women developing neurological 

deficit later in life. Cognitive impairment such as memory loss, attention deficit and motor 

speed impairment are long term effects of PE. The association between PE and neurological 

disease remains controversial. However, several studies have correlated PE/eclampsia with 

neurological impairments. Two opposing concepts have been used to explain the origin of 

the poor neurological outcomes after PE/eclampsia.  One suggests that CNS dysfunction 

arises from BBB damage and/or cerebrovascular dysfunction.  The other suggests that the 

marked systemic/peripheral maternal inflammation, even in cases of an intact and fully 

functional BBB, is driving CNS dysfunction. Future studies should attempt to underscore 

molecular markers of neurological damage, neuroinflammation and BBB dysfunction in 

brains of PE patients (where that will be possible) and PE-animal models. 
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3.1 Abstract 

Pre-eclampsia (PE) is a pregnancy syndrome associated with an increased risk of both the 

mother and the baby developing cardiovascular disorders later in life. It is widely accepted 

that women with severe PE develop a neurological impairment however studies have 

revealed that the mother and baby are at jeopardy for a neurological deficit later in life. The 

present study examined expression of Ionized calcium binding adaptor molecule1 (IBA1) 

and Excitatory amino acid transporter 1 (EAAT1) as neuro-inflammatory markers in an Nꭃ-

nitro-L arginine methyl (L-NAME) model of early- and late-onset (EOPE/ LOPE) PE-like 

syndrome in rat models. Forty-five adult nulliparous pregnant Sprague-Dawley rats were 

used for this experiment. They were divided into Control, EOPE and LOPE groups. 

Administration of L-NAME was done between gestational days 8–17 for the treated groups. 

Animals were sacrificed at gestational day (GD) 19, post-natal day (PND) 1 and 60 and the 

brain excised for further analysis. Our study confirmed L-NAME induced PE-like symptoms 

in rat models as evidenced by significant increase in systolic blood pressure and urine 

protein compared with Control. There was up-regulation of IBA1 expression and increased 

microglial activation in the brain of PE rat models assessed at gestational day 19, post-natal 

day 1 and 60. Also, IBA1 expression is up regulated in the pups at post-natal day 1 and 60. 

Contrastingly, EAAT1 expression is down-regulated in the brain of PE rat models assessed 

at gestational day 19, post-natal day 1 and 60, as well as offspring at post-natal day 1 and 

60. These results demonstrate likely neuro-inflammation within the brain of PE mothers 

during pregnancy, that persist into later life, as well as possible neuro-inflammation in brains 

of offspring of PE mothers. 

Keywords:  L-NAME; PE mothers; Offspring; Neuro-inflammation; IBA1; EAAT1 
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3.2 Introduction 

Pre-eclampsia is a clinical complication of pregnancy with a new onset of hypertension that 

affects multiple organs including the brain, kidney and liver (Minire et al., 2013, Nankali et 

al., 2013, Eltounali et al., 2017). Neurological syndromes such as vomiting, visual 

disturbance, persistence and severe headaches, seizure are some of the severe complications 

of PE (Redman and Sargent, 2003, Roos et al., 2012, Samra, 2013). PE is associated with 

aberrant angiogenic factors expression (Govender et al., 2018). Later in life,  a mother who 

suffered PE is predisposed to cardiovascular (Melchiorre et al., 2011) and hypertensive 

disorders which are in turn associated with cognitive decline and dementia. Women with a 

history of PE may display a long-term pathological change within the central nervous 

system (CNS).   

Additionally, PE is associated with low birth weight and inter uterine growth restriction, 

infants from PE mothers are prone to developing hypertension, respiratory distress, 

epilepsy/ stroke later in life (Griffith et al., 2011, Barker, 2006, Davis et al., 2012). Studies 

have observed that offspring from PE mothers have enlarged cerebellum and brainstem later 

in life (Rätsep et al., 2015). Ratsep and colleagues proposed that PE leads to cognitive 

impairment and increase susceptibility to stroke later in life of the offspring.  This is 

attributed to the disruption of the general architecture of the brain that contributes  to an 

imbalance in signalling between the adjacent regions of the brain (Rätsep et al., 2015). 

Activation of systemic macrophages emanating from peripheral inflammation leads to brain 

inflammation via the activation of microglia (Faas et al., 2014). Glia cells which acts as 

macrophage-like cells of the CNS undergo changes in morphology with subsequent neuro-

inflammation as a result of insult to the brain (Hu et al., 2015). Notably an important factor 

in the progression of neurological and neurodegenerative disease is neuro-inflammation 

(Chen et al., 2015). The vulnerability of the blood brain barrier in PE causing easy cross 

over from the systemic environment to the CNS thereby leading to insult to the brain have 

been reported (Cipolla et al., 2010).  

Ionized calcium binding adaptor molecule 1 (IBA1) is a protein that specifically expressed 

in microglial which is usually up-regulated during activation of microglial. Excitatory amino 

acid transporter (EAAT1) also known as Glutamate Aspartate 1 (GLAST) is primarily 

expressed by the glial cells of CNS.  It is responsible for uptake of L-glutamate within the 

brain to prevent neurotoxicity (Merkle et al., 2004). Glutamate excito-toxicity can lead to 
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functional damage within the CNS (Parkin et al., 2018), and an impairment of EAAT1 

function occurs in several neurological diseases associated with inflammation (Guo et al., 

2010). Under chronic hypoxia, EAAT1 expression released from astrocytes declines while 

in adult CNS an up-regulation of its expression reflects an indirect anti-apoptosis activity 

(Koeberle and Bähr, 2008). 

The use of Nꭃ-nitro-L-arginine methyl (L-NAME) to induce a PE-like syndrome in rodent 

models has been previously established (Baijnath et al., 2014, Soobryan et al., 2017, Liu et 

al., 2016). This model produces a dose-dependent hypertension in pregnant rodents, unlike 

in many other models where pregnancy is anti-hypertensive. Additionally, this model 

exhibits renal vasoconstriction leading to decreased glomerular filtration rate, proteinuria, 

suppression of the normal volume expansion, and increased maternal and foetal morbidity 

and mortality in a pattern that resembles preeclampsia in humans (Podjarny et al., 2004, 

Zhao et al., 2018).  

The current study used the L-NAME model of PE to examine the expressions of IBA1 and 

EAAT1/ GLAST as a neuroinflammatory marker in the brain of pre-eclamptic rats. 

3.2 Materials and methods 

3.2.1 Animal care and experimental design 

All experimental procedures were carried out in accordance with the ethics of animal 

handling using ARRIVE guidelines as approved by the Animal Research Ethics Committee 

of the University of KwaZulu-Natal, Durban, South Africa (AREC/055/17D). Forty-five 

healthy female and 23 male Sprague-Dawley rats aged 10 weeks were bred by the 

Biomedical Research Unit of University of KwaZulu-Natal, South Africa.  The rats were 

housed under standard laboratory temperature of 18-22oC under 12 hrs light/dark ambient 

conditions. Food and water were allowed ad libitum. Two female rats were housed with one 

male rat in type IV cages, and a vaginal smear was used to confirm Day 0 of pregnancy. The 

pregnant adult female rats were weighed and randomly divided into 3 major groups [Control 

(n=15), early-onset PE (EOPE, n=15), and late-onset PE (LOPE, n=15)]. Each group was 

further divided into 3 subgroups of 5 rats each creating a total of 9 subgroups. The adult 

female rats from one subgroup of each groups were sacrificed via isoflurane inhalation on 

gestational day (GD) 19 (GD 19), post-natal day 1 (PND 1) and post-natal-day 60 (PND 60) 

for Immunohistochemical studies. Additionally, at PND1, 5 pups from each group were 

sacrificed the brain were excised and fixed for further Immunohistochemical analysis p. 



48 

 

Also, at PND 60, 5 females and 5 male pups were sacrificed, the brain were excised and 

fixed for further Immunohistochemical analysis (See Fig 1). 

 

3.2.2 Induction L-NAME model of PE 

Control rats received drinking water during the experiment. Rats in EOPE group received 

L-NAME at GD 8–12 to induced EOPE. Rats in the LOPE group received L-NAME in their 

drinking water at GD 13–17 to induced LOPE. The L-NAME was administered at 0.3g/L ad 

libitum in drinking water as previously established (Baijnath et al., 2014, Soobryan et al., 

2017).  

3.2.3 Determination of blood pressure, urine volume and urine protein 

Blood pressure was measured using a tail-cuff BP monitor (MRBP, IITC Life Sciences Inc., 

USA) at day 0 and at GD 12 and 17. After measurement of blood pressure, rats were placed 

singly in metabolic cages for a 24-hr urine sample. The urine volume was measured and part 

were aliquoted for protein analysis. Total urinary protein level was measured using a Labtex 

machine (LabMax Plenno, Lagoa-Santa Brazil). 
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Fig. 3.1: Experimental design. GD – gestational day; EOPE – early onset PE; LOPE – late 

onset PE. 

 

3.2.4 Immunohistochemistry of IBA1 and EAAT1 

Brain tissues fixed in 10% neutral buffered formalin were dehydrated and embedded in 

paraffin wax. Sections of 3-5µm thickness were cut onto coated slides, Parasagittal sections 

from 2 – 3 mm lateral to midline were obtained. Sections were deparaffinized and 

rehydrated. Heat-mediated antigen retrieval was performed using citrate-based antigen 

retrieval solution (pH 6.0), for 20 mins. Endogenous peroxidase blocking was performed 
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using 0.3% of H2O2 for 10 min, then sections were incubated with normal horse serum for 

20 min followed by incubation with primary antibodies viz., goat anti-Allograft/IBA1 and 

anti-EAAT1/GLAST (Sigma Aldrich, USA) diluted at 1:125 and 1:500 respectively for 1 

hour at room temperature. Sections were then incubated in ImmPRESS™ HRP (Peroxidase) 

Polymer Anti-Goat IgG kit (Vector Labs, USA). The reaction was developed with DAB 

Peroxidase Substrate kit (Vector Labs, USA). Sections were then rinse in water and 

counterstained with Mayer’s Haematoxylin, dehydrated, cleared and mounted with Dibutyl 

Phthalate Xylene (Dako). 

3.2.5 Photomicrography and Image quantification 

The immunostained slides were digitized using the Leica SCN400 Slide Scanner (Leica 

Microsystems, Wetzlar, Germany). Six to ten random non-overlapping areas of the cerebral 

cortex and cerebellum were snapped at X40 using the Lecia SlidePath Gateway software. 

Using the Rat Brain Atlas (Paxinos and Watson, 2007) as reference, areas examined where 

at Bregma levels 1.6 – -8.6 mm (for cortex) and -10.4 – -14.6 mm (cerebellum). Images 

were imported on the NIH-sponsored ImageJ software for analysis. The number of IBA1+ 

cells as well as activated microglia (rod or amoeboid shaped IBA+ cells) were identified 

and counted using the ImageJ Cell-Counter tool (Ijomone and Nwoha, 2015). 

Immunoreactivity of EAAT1 expression was quantified by intensity measurements as 

previously described (Jensen, 2013). In brief, a threshold of Red, Green and Blue (RGB) 

stacks were converted to greyscale images using the software. ImageJ quantifies staining 

intensity as mean grey value on a scale of 0 – 255 (white to black). However, data were 

expressed as invert of mean grey value using the formula 255 – X (where X is mean grey 

value of any image). 

3.2.6 Statistical analysis 

Data were analysed using Two-way ANOVA or One-way ANOVA with further multiple 

analysis using Bonferroni’s test, on the GraphPad Prism version 5.01 (GraphPad Inc., USA) 

statistical software package. Parametric analysis was used as it performed well with skewed 

and non-normal distribution.  Results are expressed as mean ±SEM and p ˂ 0.05 probability 

value was considered significant. 
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3.3 RESULTS 

3.3.1 Changes in systolic blood pressure 

Using two-way ANOVA analysis of systolic blood pressure (SBP) of pregnant adult female 

rats show significant effect in interaction (p ˂ 0.001), treatment factor (p ˂ 0.001), and time 

factor (p ˂ 0.001). Multiple comparison with the Bonferroni test, revealed no significant 

difference in SBP across all treatment groups (Control = 113.9±0.57, EOPE = 114.7±0.70, 

LOPE = 113.7±0.67 mmHg) at day 0. However, at GD 12, SBP of EOPE (139.4±1.19 

mmHg) were significantly increased (p < 0.001) compared to Control (114.3±0.52 mmHg) 

rats. Additionally, at GD 17, SBP of LOPE (151.3±1.05 mmHg) as well as EOPE 

(143.5±1.24 mmHg) rats were significantly increased (p < 0.001) compared to Control 

(114.9±0.55 mmHg). Furthermore, the Bonferroni test revealed no significant changes in 

SBP of Control rats across day 0, GD 12 and 17. However, SBP of EOPE rats at GD 12 and 

17 significantly increased (p < 0.001) compared to EOPE rats at day 0. Also, SBP of LOPE 

rats at GD 17 was significantly higher (p < 0.001) compared to SBP of LOPE rats at day 0 

and GD 12 (Fig. 3.2) 

 

 

Fig 3.2: Systolic blood pressure in PE rat models during pregnancy. EOPE – early-onset 

PE; LOPE – late-onset PE. Two-way ANOVA followed by Bonferroni multiple comparison 

test. Comparison of differences across treatment groups at days 0, 12 and 17 is indicated as 

*** p < 0.001 compared to control, and ### p < 0.001 compared between EOPE and LOPE. 

Comparison of differences across days for each treatment group is indicated as  p < 0.001 

compared to Day 0, and  p < 0.001 compared between Days 12 and 17 
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3.3.2 Changes in urine volume and urine total protein 

Two-way ANOVA analysis of the urine volume of pregnant adult female rats showed no 

significant effect in interaction (p = 0.7978), treatment factor (p = 0.1758), but significant 

effect on time factor (P ˂ 0.01). Multiple comparison with Bonferroni’s test, revealed no 

significant difference in urine volume across all treatment groups (Control = 11.27±0.86, 

EOPE = 11.80±2.15, LOPE = 11.47±1.04 ml) at day 0. Also, at GD 12, there is no significant 

difference in urine volume across all groups (Control = 13.80±2.06, EOPE = 18.07±1.99, 

LOPE = 16.73±1.36 ml). Similarly, no significant difference in urine volume is seen at GD 

17 (Control = 14.60±2.61, EOPE = 17.67±2.49, LOPE = 18.67±1.70 ml). However, the 

Bonferroni’s test showed that urine volume of LOPE rats at GD 17 is significantly higher 

(p < 0.05) than at day 0 (Fig 3.3A). 

Two-way ANOVA analysis of urine total protein of pregnant adult female rats showed 

significant effect in interaction (p < 0.05), treatment factor (p< 0.001), and time factor (P ˂ 

0.001). Multiple comparison with Bonferroni’s test, revealed no significant difference in 

urine protein across all treatment groups (Control = 0.25±0.06, EOPE = 0.35±0.10, LOPE 

= 0.40±0.11 ml) at gestational day 0. However, at gestational day 12, urine protein of EOPE 

rats (0.91±0.09 ml) were significantly increased (p < 0.001) compared to Control (0.26±0.04 

ml). Additionally, at gestational day 17, urine protein of EOPE (1.18±0.20 ml; p < 0.001) 

and LOPE (1.00±0.07 ml; p < 0.01) rats were significantly increased compared to Control 

(0.47±0.09 ml). Furthermore, Bonferroni’s test revealed no significant changes in urine 

protein of Control rats across day 0, gestational days 12 and 17. However, urine protein of 

EOPE rats is significantly increased at gestational days 12 (p < 0.01) and 17 (p < 0.001) 

compared to EOPE rats at day 0. Additionally, urine protein of LOPE rats at gestational day 

17 was significantly higher compared to urine protein of LOPE rats at day 0 (p < 0.001) and 

gestational day 12 (p < 0.05) (Fig. 3.3B) 
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Fig 3.3: Urine volume and urine total protein in PE rat models during pregnancy. EOPE – 

early-onset PE; LOPE – late-onset PE. Two-way ANOVA followed by Bonferroni multiple 

comparison test. Comparison of differences across treatment groups at days 0, 12 and 17 is 

indicated as ** p < 0.01, *** p < 0.001 compared to control. Comparison of differences 

across days for each treatment group is indicated as  p < 0.01,  p < 0.001 compared to 

Day 0, and  p < 0.05 compared between Days 12 and 17 
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3.3.3 IBA1 and EAAT1 expressions in the brain of PE mothers and offspring 

EAATI are basic transporter that allows uptake of glutamate within the brain and mostly 

observed around the membrane of glia cells mostly astrocytes and Bergmann cells of the 

CNS. IBA1 positive stains are usually observed to stain the nuclei and processes of the 

microglia cells. 

Representative photomicrographs of IBA1 and EAAT1 expressions is shown in Figure 3.4. 

IBA1+ cells were obvious in brain of PE mothers at GD 19, PND 1 and 60, as well as in 

brain of pups at PND 1 and 60. IBA1 expression is observed to increase in cortex and 

cerebellum of PE mothers and their pups at PND 60, as well as in cortex of PND 1 pups. 

Additionally, obvious microglia activation is observed as exhibited by microglial activation 

characterized by rod-shaped or larger amoeboid-like cell bodies. Microglia activation is 

observed to be increased in PE models. EAAT1 expression is observed in cortex and 

cerebellum of PE models, with higher EAAT1 expression noted in the cerebellum. Induction 

of PE is observed to reduce EAAT1 expressions in the brain. 

 

 

 

 

 

 



55 

 

 

Fig 3.4. Representative photomicrographs of IBA1 and EAAT1 expression in cortex and 

cerebellum. Micrographs of PE mothers at PND 1 are shown. Magnification = x400. Arrows 

indicate IBA1+ cells; dashed arrows indicate activated microglia morphology. The EAAT1 

is a membranous stain with diffuse expression that is higher in the cerebellum compared to 

the cerebral cortex.  

 

3.3.3.1 Changes to IBA1 expression in the cerebral cortex 

Result of Two-way ANOVA of the number of IBA1+ cells within the cerebral cortex of the 

mothers revealed significant effect in the interaction (p < 0.01), treatment factor (p ˂ 0.001), 

and time factor (p ˂ 0.001). Further Bonferroni’s test showed the number of IBA1+ cells 

significantly increased (p < 0.001) in EOPE (4.50±0.45) and LOPE (4.58±0.31) mothers 

compared to Control (1.50±0.20) at GD 19. IBA1+ cells at PND 1 is also significantly 
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increased (p < 0.05) in EOPE (3.58±0.40) and LOPE (3.67±0.36) mothers compared to 

control (2.50±0.20). At PND 60, IBA1+ cells in EOPE (2.14±0.26) and LOPE (1.80±0.20) 

mothers is also significantly increased (p < 0.05) compared to control (0.50±0.20). No 

significant difference was observed between EOPE and LOPE mothers at GD 19, PND 1 

and 60 (Fig 3.5A). 

One-way ANOVA analysis of IBA1+ cells of pups at PND1 showed no significant changes 

between control and PE groups (Control = 4.13±0.68, EOPE = 5.93±1.10, LOPE= 

3.27±0.41) (Fig 3.5B). Analysis of number of IBA1+ cells among female and male pups at 

PND 60 using Two-way ANOVA, showed no significant effect in the interaction (p = 

0.5526), treatment factor (p = 0.1029), and sex factor (p = 1.000). Though increase in IBA1+ 

cells are observed in pups from PE rats compared to control, this effect did not reach 

accepted significant levels in both female (Control = 2.67±0.21, EOPE = 3.27±0.27, LOPE 

= 2.80±0.28) and male (Control = 2.53±0.32, EOPE = 3.07±0.28, LOPE = 3.13±0.24) pups 

(Fig 3.5C). 

Two-way ANOVA analysis of number of activated microglia cells within the cerebral cortex 

of the mothers revealed significant effect in the interaction (p < 0.05), treatment factor (p ˂ 

0.001), and time factor (p ˂ 0.001). Further Bonferroni’s test showed that number of 

activated microglia significantly increased (p < 0.001) in EOPE (1.67±0.47) and LOPE 

(2.67±0.33) mothers compared to Control (0.33±0.14) at GD 19. Additionally, at GD 19, 

activated microglia in LOPE mothers was significantly higher (p < 0.05) than EOPE 

mothers. Activated microglia at PND 1 is also significantly increased (p < 0.01) in EOPE 

(1.58±0.29) and LOPE (1.58±0.19) mothers compared to control (0.33±0.14). At PND 60, 

there was increase in activated microglia of PE (EOPE = 0.86±0.14, LOPE = 0.70±0.21) 

mothers compared to control (0.08±0.08), but this effect did not reach significant levels. No 

significant difference is observed between EOPE and LOPE mothers at PND 1 and 60 (Fig 

3.5A). 

One-way ANOVA analysis of number of activated microglia in the brain of the pups at 

PND1 showed no significant changes between control and PE groups (Control = 1.40±0.35, 

EOPE = 2.27±0.70, LOPE = 1.07±0.28) (Fig 3.5B). Analysis of activated microglia number 

among female and male pups at PND 60 using Two-way ANOVA, showed no significant 

effect in the interaction (p = 0.7308), treatment factor (p = 0.1426), and sex factor (p = 

0.7143). Although number of activated microglia is seen to increase in PND 60 pups from 
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PE mothers compared to control, this effect did not reach accepted significant levels in both 

female (Control = 0.47±0.22, EOPE = 0.93±0.25, LOPE = 0.93±0.18) and male (Control = 

0.67±0.19, EOPE = 0.80±0.28, LOPE = 1.07±0.21) pups (Fig 3.5C). 

 

 

Fig 3.5. Effects of early- and late-onset PE on IBA1 expression in cortex. IBA1 is up-

regulated in mothers and pups in L-NAME model of PE, with an increase in microglial 

activation. Data analysed using two-way ANOVA (for mothers and PND 60 pups) or one-

way ANOVA (for PND 1 pups), followed with Bonferroni’s multiple comparison. * p < 

0.05, ** p < 0.01, *** p < 0.001 compared to control; # p < 0.05 compared between EOPE 

and LOPE 
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3.3.3.2 Changes in IBA1 expression in the cerebellum 

Result of Two-way ANOVA of the number of IBA1+ cells within the cerebellum of the 

mothers revealed no significant effect in the interaction (p = 0.8600), but significant effect 

in treatment factor (p ˂  0.001), and time factor (p ˂  0.001). Further Bonferroni’s test showed 

the number of IBA1+ cells significantly increased in EOPE (3.93±0.37; p < 0.05) and LOPE 

(4.53±0.31; p < 0.001) mothers compared to Control (2.47±0.26) at GD 19. IBA1+ cells at 

PND 1 is also significantly increased (p < 0.01) in EOPE (5.73±0.57) and LOPE (5.87±0.48) 

mothers compared to control (3.67±0.69). At PND 60, IBA1+ cells significantly increased 

(p < 0.001) in LOPE (4.20±0.26) mothers but not in EOPE (3.27±0.45) mothers compared 

to control (1.93±0.23). No significant difference is observed between EOPE and LOPE 

mothers at GD 19, PND 1 and 60 (Fig 3.6A). 

Analysis of number of IBA1+ cells among female and male pups at PND 60 using Two-

way ANOVA, showed no significant effect in the interaction (p = 0.8427), treatment factor 

(p = 0.4526), but showed significant effect on sex factor (p = 0.0446). There was non-

significant increase in IBA1+ cells in pups from PE rats compared to control, in both female 

(Control = 2.67±0.22, EOPE = 2.87±0.22, LOPE = 2.93±0.32) and male (Control = 

3.13±0.27, EOPE = 3.23±0.39, LOPE = 3.67±0.41) pups (Fig 3.6B). 

Two-way ANOVA analysis of number of activated microglia cells within the cerebellum of 

the mothers revealed significant effect in the interaction (p < 0.05), treatment factor (p ˂ 

0.001), but not in time factor (p ˂ 0.1627). Further Bonferroni’s test showed no significant 

changes to number of activated microglia in EOPE (1.13±0.27) and LOPE (1.27±0.21) 

mothers compared to Control (0.66±0.18) at GD 19. Activated microglia at PND 1 is also 

significantly increased (p < 0.001) in EOPE (2.20±0.31) mothers, but not LOPE (1.07±0.21) 

mothers compared to control (0.22±0.14). Similarly, at PND 60, there was significant 

increase (p < 0.05) in activated microglia of EOPE (1.13±0.41) mothers but not LOPE 

(0.93±0.27) mothers compared to control (0.20±0.11). No significant difference is observed 

between EOPE and LOPE mothers at GD 19 and PND 60, however, activated microglia in 

EOPE mothers is significantly higher (p < 0.01) compared to LOPE mothers at PND 1 (Fig 

3.6A). 

Analysis of activated microglia number among female and male pups at PND 60 using Two-

way ANOVA, showed no significant effect in the interaction (p = 0.6120), treatment factor 

(p = 0.1471), and sex factor (p = 0.5185). Although number of activated microglia is 
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observed to have increase in PND 60 pups from PE mothers compared to control, this effect 

did not reach accepted significant levels in both female (Control = 0.60±0.16, EOPE = 

1.13±0.26, LOPE = 0.93±0.15) and male (Control = 0.80±0.17, EOPE = 1.00±0.25, LOPE 

= 1.22±0.36) pups (Fig 3.6B). 

 

 

Fig 3.6. Effects of early- and late-onset PE on IBA1 expression in cerebellum. IBA1 is 

upregulated in mothers and pups in L-NAME model of PE, with consequent increase in 

microglial activation. Data analysed using two-way ANOVA followed with Bonferroni’s 

multiple comparison. * p < 0.05, ** p < 0.01, *** p < 0.001 compared to control. 
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3.3.3.3 Changes in EAAT1 expression in the cerebral cortex 

Two-way ANOVA analysis EAAT1 immunoreactivity in the cerebral cortex of the mothers 

revealed significant effect on interaction (p < 0.001), treatment factor (p ˂ 0.001), and time 

factor (p ˂ 0.001). Further Bonferroni’s test showed that EAAT1 immunoreactivity 

significantly decreased (p < 0.001) in LOPE (101.77±2.50) mothers and but not EOPE 

(121.61±2.52) mothers compared to Control (128.70±2.89) at GD 19. Additionally, at GD 

19, EAAT1 immunoreactivity in LOPE mothers was significantly lower (p < 0.001) than 

EOPE mothers. EAAT1 immunoreactivity at PND 1 is also significantly decreased in EOPE 

(110.09±1.34; p < 0.001) and LOPE (115.57±3.57; p < 0.05) mothers compared to control 

(125.22±3.67). At PND 60, there was no significant changes in EAAT1 immunoreactivity 

of PE (EOPE = 131.82±2.64, LOPE = 124.97±1.96) mothers compared to control 

(124.21±2.36). No significant difference is observed between EOPE and LOPE mothers at 

PND 1 and 60 (Fig 3.7A). 

One-way ANOVA analysis EAAT1 immunoreactivity in the pups at PND1 showed 

significant changes (p < 0.001) across treatments. Bonferroni’s test confirmed EAAT1 

immunoreactivity significantly decreased (p < 0.001) in pups from EOPE (123.00±2.49) 

mothers but not LOPE (138.90±3.92) mothers compared to pups from Control 

(151.70±5.67). Additionally, EAAT1 immunoreactivity of PND 1 pups from EOPE mothers 

is significantly lower (p < 0.05) compared to pups from LOPE mothers (Fig 3.7B). Analysis 

of EAAT1 immunoreactivity among female and male pups at PND 60 using Two-way 

ANOVA, showed no significant effect in the interaction (p = 0.2312), treatment factor (p = 

0.0579), and sex factor (p = 0.0586). Bonferroni’s test showed significant decrease (p < 

0.05) in EAAT1 immunoreactivity of female pups from LOPE (113.18±6.40) mothers but 

not from pups of EOPE (125.26±2.18) mothers compared to pups from Control 

(128.06±3.28). No significant change is shown in male pups from PE (EOPE = 119.94±3.51, 

LOPE = 113.19±5.06) mothers compared to control (113.70±2.97) (Fig 3.7C). 

3.3.3.4 Changes in EAAT1 expression in the cerebellum 

Two-way ANOVA analysis EAAT1 immunoreactivity in the cerebellum of the mothers 

revealed significant effect on interaction (p < 0.01), treatment factor (p ˂ 0.001), and time 

factor (p ˂ 0.001). Further Bonferroni’s post-test showed that EAAT1 immunoreactivity 

significantly decreased in EOPE (123.33±3.04; p < 0.01) and LOPE (118.99±1.67; p < 

0.001) mothers compared to Control (138.23±3.31) at GD 19. EAAT1 immunoreactivity at 
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PND 1 is significantly decreased (p < 0.01) in LOPE (130.48±3.43) mothers but not EOPE 

(136.32±1.28) mothers compared to control (143.16±2.92). At PND 60, there was no 

significant changes in EAAT1 immunoreactivity of PE (EOPE = 123.67±6.73, LOPE = 

128.54±3.13) mothers compared to control (124.03±2.17). No significant difference was 

observed between EOPE and LOPE mothers at GD 19, PND 1 and 60 (Fig 3.7A). 

Analysis of EAAT1 immunoreactivity among the female and male pups at PND 60 using 

Two-way ANOVA, showed significant effect in the interaction (p < 0.001), treatment factor 

(p < 0.001), and sex factor (p < 0.05). Bonferroni’s test showed significant decrease (p < 

0.001) in EAAT1 immunoreactivity of female pups from EOPE (114.87±2.97) mothers but 

not from pups of LOPE (133.28±2.45) mothers compared to pups from Control 

(139.78±3.28). Additionally, EAAT1 immunoreactivity of female pups from EOPE mothers 

is significantly lower that pups from LOPE mothers. No significant change is shown in male 

pups from PE (EOPE = 133.87±2.54, LOPE = 135.09±1.29) mothers compared to control 

(133.09±1.56) (Fig 3.7C). 
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Fig 3.7. Effects of early- and late-onset PE on EAAT1 expression in cortex and cerebellum. 

EAAT1 is downregulated in mothers and pups in L-NAME model of PE. Data analysed 

using two-way ANOVA (for mothers and PND 60 pups) or one-way ANOVA (for PND 1 

pups), followed with Bonferroni’s multiple comparison. * p < 0.05, ** p < 0.01, *** p < 

0.001 compared to control; # p < 0.05, ### p < 0.001 compared between EOPE and LOPE. 
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3.4 DISCUSSION  

Animal models that mimic a PE-like syndrome has been established by different authors. In 

the present study, L-NAME was used to induce PE.  Such models enable study of the 

molecular changes that occur within the brain during PE and later in life in both the mother 

and the offspring. Administration of L-NAME has been reported to cause hypertension, renal 

vasoconstriction, glomerular injury and proteinuria (Baijnath et al., 2014, Liu et al., 2016, 

Soobryan et al., 2017). The validation of L-NAME as a model for PE has been reported 

through increase in systolic SBP during pregnancy and the reduction back to normal after 

delivery (Baijnath et al., 2014). In the present study, we demonstrated that administration of 

L-NAME to pregnant rats produced pathological signs similar to that noted in women with 

PE. The systolic SBP and the urine protein value increases in both the early and late PE 

model used. Notably an increased in SBP can result in increased glomerular pressure which 

in turn causes protein loss due to glomerular filtration damage. With the release of sFlt-1 by 

the hypoxic placenta, glomerular damage is severely increased thereby leading to increased 

level of protein in the urine (Baijnath et al., 2014), which was also noted  in our study.  

Pro-inflammatory cytokines which are elevated in normal pregnancy drives excessive 

systemic inflammation in PE  (Pinheiro et al., 2013). These pro-inflammatory cytokines are 

the causative effect of neuroinflammation and is associated with neurological deficit such 

as  dementia (Chen et al., 2016). Local and systemic inflammation in the central nervous 

system contributes significantly to the development of vascular dementia (de Leeuw et al., 

2002). Recently, controversy debates whether women with a history of hypertension in 

pregnancy may developed Alzheimer’s or dementia later in life. Women with a previous 

history of PE display increased risk of brain lesions and risk for cardiovascular disease 

(Andolf et al., 2017). White and gray matter lesions have been noted in women with several 

years of history of PE and eclampsia (Wiegman et al., 2014).  

The main immune cells of the CNS are microglia and astrocytes. Microglia serves as 

macrophages of the CNS and act as the main and first immune response cells (Filiano et al., 

2015).  When microglial are activated, they execute functions such as phagocytosis of toxic 

products, release of cytokines  etc. (Morales et al., 2014). Predisposition to seizures in severe 

PE may be related with increased in BBB permeability to small solutes and microglial 

activation (Johnson et al., 2014).  In our study, the number of IBA1+ cells were elevated 

and activation of microglia which is the hallmark of neuroinflammation was seen in the 

cerebral cortex and the cerebellar cortex of PE-like model rat at late gestation and later in 
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life. This difference was seen to be more severe in the LOPE model. This may be due to the 

vulnerability of the BBB during PE that allows the crossing of the systemic inflammation 

solute which in turns influences the cause of neuro-inflammation and the activation of 

microglia (Cipolla et al., 2010). In acute hypoxia, an imbalance in microglia activation is 

attributed to the activation of the NF-kB pathway (Zhang et al., 2017). Also the activation 

of the NF-kB signalling pathway is involved in inflammation and implicated in the 

pathophysiology of PE (Vaughan and Walsh, 2012). C-reactive protein (CRP) an acute 

protein plays a major role in most inflammatory disease including PE and/or in the 

progression of neuroinflammatory disease (Luan and Yao, 2018). For instance increase in 

CRP was reported in women with 30 years history of pregnancy implicated with PE or 

eclampsia (Hubel et al., 2008). Due to budgetary constraints, we were unable to examine all 

the mediators of inflammation. Nonetheless there is strong evidence to suggest that activated 

microglia  may release neuroinflammation markers. In the PE model, these markers may be 

dysregulated. Further studies on activities and/or expressions of other markers implicated in 

both systemic and CNS inflammation, may shed more light on neuroinflammatory impact 

of PE in women with a history of the syndrome 

Experiences during development have a profound effect on the brain and behaviour. The 

severity and outcome of these effects depends on the age and type of experience (Kolb et 

al., 2011). Early experiences such as prenatal stress alters gene expression therefore 

assumed to be in part responsible for alteration in development (Mychasiuk et al., 2011). 

Likewise, PE occurs around the 20th week of pregnancy which is the critical period for fetal 

brain development in utero (Steegers et al., 2010, Woodworth et al., 2012). 

Maternal inflammation caused by exposure to pathogens is sufficient to alter neuro-

development. The mechanism by which maternal inflammation alters neurodevelopment is 

still a debate (Mallard, 2012). Induction of the maternal inflammatory pathway alters several 

neurodevelopmental processes and results in abnormal adult behaviour in the offspring 

(Wang et al., 2009b). Exposure to lipopolysaccharide during pregnancy to induce PE results 

in elevated concentrations of soluble pro-inflammatory and chemo-attractive cytokines in 

the serum of the mother which in turn leads to defective fetal neurodevelopment (Bell and 

Hallenbeck, 2002). Wang and colleague (2010) reported a loss in white matter tissue 

manifested as a decrease in the myelin basic protein with activation of microglia, reduced 

oligodendrocytes and tumour necrotic factor alpha expression in the brain of neonate rat 

exposed  to lipopolysaccharide and hypoxia (Wang et al., 2010). Damage caused to the 
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integrity of the BBB by long term lipopolysaccharide-induced inflammation is reversible 

after treatment with anti-inflammatory drugs while the damage to the white matter of the 

brain even by short term lipopolysaccharide induced inflammation is irreversible, therefore 

damage to the brain structure or function at the critical period of neurodevelopment may 

lead to irreversible neurodevelopmental disorder (Stolp et al., 2011). In the present study, 

there was a non-significant increase in the number of IBA1+ and activated microglia cells 

within the cerebral cortex in both sexes of PE offspring. Also, there was significant increase 

in the number of activated microglia in the cerebellar cortex of the male offspring but not in 

female. Administration of lipopolysaccharide to pregnant rats in the last few days of 

gestation can cause acute and long lasting effect on microglia. Activation of microglia in 

the brain were reported through the increase of iNOS expression (Cunningham et al., 2013) 

where hippocampal microglia of male offspring were activated at a late post-natal day in a 

maternal inflammation model (Kelley et al., 2017). Also, Carver et al., reported that the 

whole brain and the cerebellar volumes showed no difference between the control and 

treated groups irrespective of the sex of the offspring, in PE-like animal models (Carver et 

al., 2014a). Microglia density was found unaltered in the hippocampus of adult offspring 

administered with Lipopolysaccharides at gestational day 9 (Giovanoli et al., 2016). 

One of the most important excitatory neurotransmitter in the CNS is L-glutamate (L-Glu) 

which in excess leads to neurotoxicity (Kumar et al., 2010). EAAT1 a major L-Glu 

transporter in human CNS plays a major role in preventing neurotoxicity by maintaining 

extracellular L-Glu from reaching toxic level (Rothstein et al., 1996). EAAT1 is expressed 

throughout the CNS with higher expression in astrocytes and the Bergmann glial of the 

cerebellum and also within the brainstem; they are the main glutamate transporters in the 

cerebellum (Takatsuru et al., 2007). Changes in CNS structure and function can be induced 

through the intervention of glutamate transporters. During cerebral ischemia a varying 

amount of glutamates are released (Hamilton and Attwell, 2010). Altered expression of 

glutamate transporters could lead to neurological deficit (Guo et al., 2012). The dynamism 

of the expression of glutamate transporter was seen in the cerebral cortex and hippocampus 

(Guo et al., 2012). In inflammation, elevation of extracellular L-Glu concentration has been 

suggested to be related to impairment of L-Glu transporters (Takaki et al., 2012). In this 

present study, there was down-regulation of EAAT1 expression in the cerebral cortex and 

cerebellar cortex implying an increase level of L-Glu within this brain region. This may be 

attributed to inflammation that occurs during PE and/or the activation of microglia as seen 
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in the present study. Activated microglia release L-Glu which elevates extracellular L-Glu, 

thereby causing an up-regulation of astrocytic intracellular L-Glu. The consequence of this 

increase is the  down regulation of GLAST expression, incriminating activated microglia in 

both the down regulation of L-Glu transporter and elevation of extracellular L-Glu which 

occurs early in neuroinflammation (Takaki et al., 2012). Down regulation of L-Glu 

transporter can also be caused by higher concentration of ATP (Liu et al., 2010), but may 

not contribute to the down regulation seen in inflammation without cell death (Takaki et al., 

2012). 

3.5 CONCLUSION 

Our finding demonstrated that PE induced neuro-inflammation via activation of microglia 

as expressed by up-regulation of IBA1 in the maternal and foetal brain. This activation of 

microglia might have in turn lead to release of L-Glu resulting in the elevated extracellular 

and astrocytic intracellular L-Glu levels leading to down-regulation of EAAT1 expression 

as found in the present study which is characteristics of early event of neuro-inflammation. 

These changes persist till late in adolescence in the brain of the offspring born to PE mothers.  
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4.1 Abstract 

Pre-eclampsia (PE) is a pregnancy complicated syndrome that affects multiple organs 

including the brain that continue post- delivery in both mother and the offspring. We 

evaluated the expression of oligodendrocytes in the brain of PE rat model through 

development as well as the cognitive changes and other behavioural modifications that may 

occur later in the life of offspring of PE-like rat model. Pregnant rats divided into early-

onset and late-onset groups were administered with L-NAME through drinking water at GD 

8-17. Rats were allowed free access to water throughout the pregnancy. At GD 19, PND 1 

and 60, rats were sacrificed and brain excised for further analysis. The offspring were 

subjected to behavioural studies for cognitive and sensorimotor impairments before 

sacrificed at PND 60. Results showed significant down-regulation in the expression of 

OLIG2 in PE at GD 19 brain which persists till PND 60. In addition, there was a significant 

increase in the latency to locate the platform in Morris water maze, time to traverse the 

balance beam and reduced hanging time on the wire test between the control and the PE 

treated. PE could lead to impaired neuronal signalling through demyelination which may 

contributes significantly to long-term sensorimotor and cognitive deficit. 

 

Keywords: Oligodendrocytes; long-term cognitive deficit; demyelination; pregnancy 

complication. 
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4.2 Introduction  

Globally, one of the main cause of maternal/foetal morbidity and mortality is hypertensive 

disorders of pregnancy, with pre-eclampsia (PE) being the most important of such 

pathologies identified as the commonest pathology (Women's and Health, 2010). The 

pathophysiology of PE is currently explained as the progressive maternal vascular 

remodelling and aberrant angiogenic expression which cause hypoxia, oxidative stress, and 

systemic vascular inflammation (Govender et al., 2018, Moodley, 2011). Importantly, the 

complications emanating from PE persist long after birth affecting both the mother and the 

offspring. Preeclamptic women have a lifetime risk of developing cardiovascular disease, 

metabolic syndrome, hypertension, diabetics and stroke (Bellamy et al., 2007, Brown et al., 

2006, Chan et al., 2015, Melchiorre et al., 2011).  

A recent review correlates injury of the structure and function of brain  in PE with alteration 

in white and gray matter that contribute to cognitive impairment, similar to changes 

observed in Alzheimer’s and dementia disease (Ijomone et al., 2018b).  Moreover, a review 

carried out on the outcome of maternal hypertension revealed that the mother has a risk later 

in life for cardiovascular disease onset, immune imbalance, behavioural and neurological 

defect (Pinheiro et al., 2016). The critical period for fetal brain development in utero is 

around the 20th week of gestation which is co-incident with the onset of pre-eclampsia 

development (Pescosolido et al., 2012, Steegers et al., 2010, Woodworth et al., 2012). 

Epigenetics, a hypoxic microenvironment, anti-angiogenic state and/or inflammatory milieu 

contributes to  poor fetal development (Davis et al., 2012). Of note, offspring of pre-

eclamptic pregnancies experience large brain volume with small vessel radii when 

compared with normotensive brain (Rätsep et al., 2016). It is possible that an aberrant 

angiogenic signalling milieu in PE distresses the vascular structure of the brain in the 

offspring however it is inadequate to  affect brain growth (Rätsep et al., 2016).  

PE is also associated with high risk of intellectual disability in the offspring (Griffith et al., 

2011) and with a greater risk of autism (Dachew et al., 2018), attention deficit (Mann and 

McDermott, 2011) and with lower neuromuscular development in adolescence (Grace et al., 

2014). The mechanism underlying these long term effects still remains unclear.  

Inflammatory response plays a key role in the development and progression of white matter 

lesion and neuronal loss, thereby contributing to learning and memory deficit (Tong et al., 

2019). Furthermore maternal inflammation during pregnancy has a long term effect on the 
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behaviour of rat pups (Kirsten et al., 2010). Deficit in cognitive function associated with PE 

may be due to the generalised exaggeration of the inflammation (Th1) response and the 

disruption of the general architecture of the brain via disparate signalling between adjacent 

brain regions (Rätsep et al., 2016); a phenomenon usually present in attention deficit 

disorder and autism spectrum disorder (Konrad and Eickhoff, 2010).  

Reduction in brain volume is also associated with aberrant cognitive function such as spatial 

memory loss and navigation problems (Kay et al., 2018). Increased vulnerability to 

cognitive failure is normally associated with underlying cerebrovascular pathology such as 

white matter degeneration (Tong et al., 2019). Oligodendrocytes are the predominant 

constituent of white matter and play a vital role in the maintenance of axonal health by 

producing myelin (Bhat and Steinman, 2009). They are highly vulnerable to pathological 

insult due to their susceptibility to oxidative stress (Bradl and Lassmann, 2010). Apoptosis 

of mature oligodendrocytes is initiated in the presence of pro-inflammatory cytokines which 

are increased in PE (Caprariello et al., 2012, Szarka et al., 2010). Oligodendrocyte 

transcription factor 2 (OLIG 2) is a protein coding gene expressed in progenitor and mature 

oligodendrocytes. It’s expression is most restricted to CNS, and well known for determining 

motor neuron and oligodendrocytes differentiation (Patel and Klein, 2011).  

The aim of this study was to evaluate the association of PE with pups’ weight from birth to 

adulthood, as well as change in cognitive function that may occur later in the life of offspring 

of PE-like rat model. Also, the aim was to evaluate the association of PE with Olig-2 

expression. 

4.2 Materials and methods 

4.2.1 Animal care and experimental design 

All experimental procedures were carried out in accordance with animal handling ethics 

approved by the Animal Research Ethics Committee of the University of KwaZulu-Natal, 

South Africa (AREC/055/17D). Forty-five healthy female and 23 male Sprague-Dawley rats 

aged 10 weeks were bred at the Biomedical Research Unit of University of KwaZulu-Natal.  

The rats were housed under standard laboratory temperature of 18-22oC under 12 hrs 

light/dark cycle conditions. Access to food and water were allowed ad libitum. The Lee boot 

effect was induced by grouping female rats away from their male counterparts (Moon et al., 

2008). A vaginal smear was taken daily and analysed histologically to determine the estrous 

phase. On estrous, female rats were housed with larger male rats and allowed to mate 
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overnight. In the morning, the presence of a vaginal plug or the presence of sperm as 

determined microscopically was used to confirm Day 0 of pregnancy.  

Pregnant adult female rats were weighed and randomly divided into 3 major groups [Control 

(n=15), early-onset PE (EOPE, n=15), and late-onset PE (LOPE, n=15)]. Each group was 

further divided into 3 subgroups of 5 rats each, (Control- subgroup 1-3; EOPE- subgroup 4-

6 and LOPE- subgroup 7-9). The control received only water ad libitum throughout the 

experiment, the EOPE subgroups received L-Name from GD 8-12 and the LOPE groups 

received L-Name from GD 13-17. The L-Name (CAS no: 51298-52-5, Sigma, made in 

Switzerland) was administered at 0.3g/L in drinking water, which was available ad-libitum 

and blood pressure was measured by a non-invasive method with the use of a tail-cuff BP 

monitor (MRBP IITC Life Sciences Inc., USA). Adult female rats from one subgroup were 

sacrificed via isoflurane inhalation on gestational day (GD) 19 (GD 19), post-natal day 1 

(PND 1) and post-natal-day 60 (PND 60) for routine H&E staining and immuno-

histochemical studies. Additionally, at PND 1 and 5 surviving offspring from each group 

were sacrificed, the brain was excised, fixed in 10% phosphate buffered formaldehyde and 

processed for paraffin wax embedding for further Immunohistochemical analysis. Between 

PND 46-58, 7 female and 7 male surviving offspring underwent a behavioural test and at 

PND 60 they were sacrificed, the brain were excised and processed for 

Immunohistochemical analysis. 

4.2.2 Body weight  

The body weight of all pups were recorded. At GD 19 and PND 1, due to the size of the 

pups, the average weight of pups from each mother was obtained from the total body weight 

of all pups divided by the number of pups. 

4.2.3 Behavioural studies 

A total of 14 pups of both sexes from the EOPE groups, 14 pups from LOPE group and 14 

pups from the control group were used for behavioural studies between PND 46-58. 

4.2.3.1 Balance Beam test 

This was used to measure the motor coordination and balance of the rats (carter et al., 2010). 

Using a beam of wood of 77 mm, 40 mm and 27 mm square with 100 cm in length and 60 

cm high above a padded ground. The test was carried out over a period of three days. Two 

days were used for pre-training, on the first day of pre-training, the pups were trained with 
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the 77 mm wide wood, where the starting point was chosen to be 10 cm away from the edge 

of the wood and 10 cm before the entrance of the goal box was chosen as the endpoint. Four 

trials were done for each animal. On the second day, the pre-training was repeated with four 

trials but on a 40 mm wide wood. After the removal of each rat, the apparatus was cleaned 

with 70% ethanol and allowed to evaporate before placing another animal. On the actual 

test day, the 27 mm wide wood was used for the experiments, three trials were done and the 

average of the latency was used. The number of time each rat slipped was recorded and the 

average used for the analysis. 

4.2.3.2 Hanging wire test 

This was used to measure neuromuscular impairment and motor co-ordination (van Putten 

et al., 2016). The animals were assisted to grasp a steel wire with their forepaws (3 mm in 

diameter and 60 cm in length), placed at a height of 50 cm over a well bedded cushion 

support. The length of time the rat was able to grasp the wire until it fell was recorded. This 

latency time to the grip loss and fall was recorded. Animals that do not fall down after 180 

seconds were removed. To access limb impairment during this test, rats that gripped the 

wire with both hind-paws in addition to the forepaw were scored 3; rats that gripped the 

wire with 1 hind-paw were scored 2; whilst rats that did not grip the wire with either hind-

paws were scored 1. The results were expressed as the total score (Yi et al., 2007). The trial 

was conducted three consecutive times and the average was used for the final result. There 

was a 5 minutes resting pause between each test attempt. 

4.2.3.3 Morris Water Maze test 

A Morris water maze test was used to evaluate spatial learning and memory function in pups 

from each treatment group. The test was carried out between PND 55-58. The method used 

was in accordance with that of Vorhees and Williams (2006).  

The Morris water maze apparatus consisted of a circular pool, 100 cm in diameter and 85 

cm deep. The pool was divided into four quadrants. A transparent plastic (11 × 11 cm and a 

height of 18 cm) platform was placed in one quadrant. The pool was filled with tepid water 

(27 ± 1°C). Rats are natural swimmers. Each rat was placed in a quadrant and the time 

(latency) taken by each rat to find the platform was recorded (Vorhees and Williams, 2006). 

This procedure was done across four days; consisting of three days of pre-trial and one day 

of actual test.  
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During the pre-trial, the pool was filled with water and the platform exposed 1 inch above 

the surface of the water. The animals were placed in one quadrant and allowed to locate, 

swim to and stand on the platform. After 120 seconds, animals that did not locate the 

platform was guided to the platform and allowed to stay for 15 seconds. This was repeated 

with a starting position across all the four quadrants for each of the animal per day.  

On the actual test day, the platform was placed 1 inch below the surface of the water and 

the procedure was repeated as per the pre-trial days and the latency time to reach the 

platform was recorded. The platform was later removed, the animal was placed at one of the 

quadrant and was allowed to swim to the previous location of the platform. The duration 

(time) each animal spent in the quadrant where the platform was initially located was 

recorded with a cut off time of 60 seconds,  this was used to indicate the memory of the 

animal.  

4.2.4 Sacrifice and organ collection 

On gestational day 19, Animals from groups 1, 4 and 7 were sacrificed using overdose-

inhalation of isofluorane. After blood collection, the fetuses were removed, placenta 

carefully separated and the fetuses were weighed. Also, the brains of the maternal animals 

were dissected, divided into two equal halves and one side fixed in neutral buffered formalin 

(10% NBF) for histology processes. On postnatal day 1, Animals in group 2, 5 and 8 were 

also sacrificed including the pups using overdose-inhalation of isoflurane. The brains were 

carefully removed and fixed likewise for further processes. In addition, on postnatal day 60, 

the remaining animals were sacrificed, while 14 animals of both sexes from each 

experimental groups were sacrificed after undergoing some behavioural procedures and the 

brain excised too. 

4.2.5 Immunohistochemistry of OLIG 2  

The cerebellum and the cortex were fixed in 10% neutral buffered formalin, dehydrated and 

embedded in paraffin wax. Sections of 3-5µm thickness were cut onto coated slides, 

deparaffinized and rehydrated. Heat-mediated antigen retrieval was performed using citrate-

based antigen retrieval solution (pH 6.0), for 20 min. Sections were then treated using Mouse 

and Rabbit HRP/DAB IHC Detection kit. Endogenous peroxidase blocking (10 min) was 

performed prior to protein blocking (10 min). This was followed by incubation with the 

primary antibody viz., anti-mouse OLIG2 antibody (1:200 dilution; 2 hrs; Millipore USA). 

Subsequently incubation in a mouse specific complement reagent for 10 min was performed, 
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as per manufacturers instruction for compatibility purpose. Sections were then incubated in 

HRP (horse radish peroxidase) micro-Polymer Goat Anti-rabbit HRP secondary antibody 

(Abcam USA) for 20 min. The reaction was developed with DAB chromogen (Abcam, 

USA). Sections were then rinsed in water and counterstained with Mayer’s Haematoxylin, 

dehydrated, cleared and mounted with Dibutyl Phthalate Xylene (Dako). Oligodendrocytes 

are located in the brain, therefore, brain tissue was used for the positive control. 

Replacement of the primary antibody with a non-immune sera of the same IgG class as the 

primary antibody served as the negative control.  Method control also included replacement 

of the antibody with a buffer. 

 

4.2.6 Photomicrograph and Image quantification  

The Leica SCN400 Slide Scanner (Leica Microsystems, Wetzlar, Germany) was used to 

digitalize the immunostained sections. With the use of Lecia SlidePath Gateway software, 

five to ten random non overlapping area of the cerebral cortex and cerebellum were snapped 

at X40 magnification. The number of OLIG2 positive cells were counted using image J 

software.   

4.2.7 Statistical analysis 

GraphPad Prism version 5.01 (GraphPad Inc, USA) statistical software package was used 

to analyse data. Descriptive statistics for continuous data was presented by mean ± standard 

error. Statistical analysis was performed with the use of two-way ANOVA or one-way 

ANOVA and further multiple analysis using Bonferroni test for parametric data as it 

performed well with skewed and non-normal distribution. A probability value of p ˂ 0.05 

was considered statistically significant. 

 

4.3 RESULTS 

4.3.1 Establishment of PE model and body weight 

Administration of L-Name resulted in significantly increased maternal systolic blood 

pressure (SBP) and  proteinuria (Ijomone et al., 2019). 

 A total of 154, 117 and 109 pups were born to the control, EOPE and LOPE groups 

respectively. Two pups from the LOPE group exhibited impaired limbs. There was a 

significant reduction in the body weight of pups of the LOPE vs control (2.31±0.22 vs 
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4.13±0.10; p < 0.001) but not in the EOPE  vs control (3.96±0.09 vs 4.13±0.10; p> 0.05; 

Figure 4.1A-C). At PND 1 there was no significant difference in the body weight across all 

the groups (Control = 7.63±0.39 , EOPE = 7.71±0.45, LOPE = 6.96±0.87; p > 0.05) (Fig 

4.1B). At weaning, (PND 21 and PND 60), there was no significant difference in the 

bodyweight of both male and female of the EOPE vs control (p > 0.05) whilst there was 

significant difference in the body weight of the LOPE vs control (p < 0.001) offsprings and 

EOPE vs LOPE in both male and female offspring (Fig 4.1C and 4.1D).  
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Fig 4.1. Effect of early- and late-onset PE on the body weight of the pups at different stage 

of development. There is reduction in the body weight of the LOPE group pups. Data 

analysed using two-way ANOVA (for PND 21 and 60) or one-way ANOVA (for GD 19 

and PND 1), followed with Bonferroni multiple comparison. * p < 0.05, ** p < 0.01, *** p 

< 0.001 compared to control; # p < 0.05, ## p < 0.01, ### p < 0.001 compared between EOPE 

and LOPE. 

 

4.3.2 Balance beam test 

In the balance beam test, the EOPE and LOPE pups spent more time crossing the beam 

compared to control pups. Two-way ANOVA revealed no statistical difference in the 

interaction (p > 0.05) and sex factor (p > 0.05), but there was significant effect in the 
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treatment factor (p <0.0001). Further multiple comparison using the Bonferroni test 

revealed a significant increase in the time spent to cross the beam in the EOPE vs control 

(7.93±1.11 vs 4.14±0.58; p < 0.001), with  no significant difference in the LOPE vs control 

(4.14±0.87 vs 4.14±0.58; p > 0.05) in the male pups. Similarly in the female pups, despite 

a significant difference in the time to cross the beam by the EOPE compared to the control 

group (6.49±0.34 vs 3.38±0.55; p < 0.01) there was no difference between LOPE vs control 

groups (Fig 4.2A).  

Observationally, the LOPE pups slipped (paw slips) more often than the EOPE and control 

pups while crossing the beam. A two-way ANOVA revealed no statistical difference in the 

interaction (p > 0.05) and sex factor (p > 0.05), but there was significant effect in the 

treatment factor (p < 0.0001). Furthermore multiple comparisons in the male pups using the 

Bonferroni test revealed a significant difference in the number of paw slips whilst crossing 

the beam in the LOPE vs control (1.86±0.39 vs 0.90±0.16; p < 0.001) but no significant 

difference between the EOPE compared to the control groups (0.99±0.09 vs 0.90±0.16; p > 

0.05). Also, in the female pups, there was significant difference in the number of paw slips 

between the LOPE vs control (1.52±0.18 vs 0.66±0.15; p < 0.01) but not between  EOPE 

(1.14±0.23) compared to control groups (0.66±0.15; Fig 4.2B). 
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Fig 4.2. Effect of early- and late-onset PE on the balance beam test of the male and female 

pups at adulthood. The L-Name group pups spent more time walking the beam when 

compared with the control and slipped more on the beam. Data analysed using two-way 

ANOVA followed with Bonferroni multiple comparison. ** p < 0.01, *** p < 0.001 

compared to control; # p < 0.05, ## p < 0.01 compared between EOPE and LOPE. 

 

4.3.3 Hanging wire test 

In the hanging wire test, the control animals were able to grasp onto the wire longer than the 

EOPE and LOPE groups. Two-way ANOVA revealed no significant effect in the interaction 

(p > 0.05) but significant difference was seen in the treatment factor (p < 0.0001) and sex 

factor (p < 0.0001). Furthermore multiple comparisons of the male pups using a Bonferroni 

test showed no significant difference in ‘grasp time’ between the EOPE (9.05±2.76; p > 

0.05) and LOPE (13.33±2.78; p > 0.05) compared with the control group (19.14±4.72). 

Additionally, in the female pups there was significant difference in ‘grasp time’ of the the 

EOPE (23.00±4.61; p < 0.001) and LOPE (21.14±2.85; p < 0.001) compared to the control 

group (49.71±7.98) (Fig 4.3A).  

The two-way ANOVA of limb impairment test showed no significant effect in the 

interaction (p > 0.05) but significant different in the treatment factor (p < 0.01) and sex 

factor (p < 0.01). Further multiple comparisons using a Bonferroni test for ‘limb 

impairment’ revealed no significant difference (p > 0.05) in EOPE (1.44±0.19) and LOPE 

(1.43±0.17) compared to the control groups (1.09±0.66) of the male pups.  Similarly there 

was no significant difference in ‘limb impairment’ of the EOPE compared to control 

(1.57±0.14, 1.33±0.15; p > 0.05) yet a significant difference in the LOPE vs control groups 

(1.85±0.19 vs 1.33±0.15; p < 0.05) of the female pups (Fig 4.3B). 
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Fig 4.3. Effect of early- and late-onset PE on hanging wire test of the male and female pups 

at adulthood. The L-Name group pups spent less time hanging to the wire when compared 

with the control and mostly held the wire with forepaws and hindpaws. Data analysed using 

two-way ANOVA followed with Bonferroni multiple comparison. * p < 0.05, *** p < 0.001 

compared to control 

 

4.3.4 Morris Water Waze test in the pups 

In the morris water maze test, there was an increase in escape latency time in both sexes of 

EOPE and LOPE compared to the control. Results of the two-way ANOVA revealed no 

significant effect (p > 0.05) in the interaction and sex factor but there was significant 

difference in the treatment factor (p < 0.0001). In the male pups, the Bonferroni test showed 

a significant difference in escape latency time between EOPE vs control (19.11±4.01 vs 

8.57±1.02; p < 0.05) and LOPE compared to the control group (18.19±4.31, 8.57±1.02; p 

< 0.05). Also, in the female pups there was significant difference in escape latency time 

between the LOPE (26.91±2.49; p < 0.01) but not the EOPE (19.29±2.26; p > 0.05) 

compared to control (13.00±1.78) groups (Fig 4.4A). Likewise, the control pups spent more 

latency time compared with EOPE and LOPE groups across both sexes  at the quadrant 
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where the platform was placed from during the pro-trial period. Statistically, a two-way 

ANOVA showed no sigificant effect in the interaction (p > 0.05) but there was significant 

difference in the treatment factor (p < 0.0001) and sex factor (p < 0.05). Bonferroni multiple 

comparisons test revealed a significant difference in the time spent where the platform was 

initially placed in the EOPE (19.00±1.21; p < 0.05) but no significant difference in the 

LOPE (19.71±1.84; p > 0.05) when compared with control (25.71±2.69) among the male 

pups. Among the female pups, there was significant difference in the time spent where the 

platform was initially placed between the EOPE vs control group (14.27±1.73 vs 

23.71±2.47; p < 0.05) and LOPE (13.29±1.04; p < 0.05) groups compared to the  control 

group (23.71±2.47) (Fig 4.4B). 
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Fig 4.4. Effect of early- and late-onset PE on the latency time of morris water maze test of 

the male and female pups at adulthood. The L-Name group pups spent more time to locate 

the platform when compared with the control and spent less time at the quadrant where the 

the platform was located during pro-trial. Data analysed using two-way ANOVA followed 

with Bonferroni multiple comparison. * p < 0.05, ** p < 0.01 compared to control. 
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4.3.5 OLIG2 expression in the cerebral cortex and cerebellum of the PE mother and 

offspring 

OLIG2 immuno expression (+ cells) was greater in the brain of the control group compared 

to the brain of the PE mother at GD 19, PND 1 and PND 60. Likewise, OLIG2 + cells were 

more expressed in the brain of control offspring at PND 1 and PND 60 when compared with 

offspring from the treated groups. 

Figure 4.5 and 4.6 are the representative micrograph of OLIG2 expression at PND 60 in 

both mother and offspring respectively. 

 

 

Fig 4.5. Representative micrographs of OLIG2+ cells expression in the cortex and 

cerebellum of the mothers. Shown are the micrographs of brain from mothers at PND 60. 
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Fig 4.6. Representative micrographs of OLIG2+ cells expression in the cortex and 

cerebellum. Shown are the micrographs of brain from male and female offsprings at PND 

60. 
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4.3.6 OLIG2 cell count expression in the cerebral cortex 

OLIG2+ cell count was done using Image J analysis, and the numbers were imported to 

graphPad for statistical analysis. The Two-way ANOVA result of the number of OLIG2+ 

cells within the cerebral cortex of the mother revealed no significant effect in the interaction 

(p > 0.05) but a significant difference was noted for the treatment factor (p < 0.0001) and 

time factor (p < 0.001). Furthermore, a Bonferroni test showed no significant difference in 

the number of OLIG 2+ cells in the cerebral cortex of the EOPE vs control groups 

(6.40±0.43 vs 7.21±0.68; p > 0.05) unlike the significant difference of the LOPE group 

compared with the control (4.57±0.32 vs 7.21±0.68; p < 0.01) mother at GD 19. At PND 1 

in the cerebral cortex of the mother, there was no significant difference in the number of 

OLIG2+ cells in the EOPE vs control (5.10±0.51 vs 5.93±0.50; p > 0.05) but a significant 

decrease (p < 0.001) was seen in the LOPE (2.89±0.39) compared to control (5.93±0.50). 

OLIG2+ cells number in the cerebral cortex of the mother at PND 60 significantly reduced 

in EOPE vs control (5.87±0.68 vs 7.83±0.57; p < 0.05) and also decreased in LOPE 

(3.85±0.43; p < 0.001) compared to control (7.83±0.57). Significant difference of the 

number of OLIG2+ cells in the cerebral cortex was also observed in EOPE compared to 

LOPE at GD19, PND 1 and 60 (Fig 4.7A).  

One way ANOVA of the number of OLIG2+ cells in the cerebral cortex of the pups at PND 

1 showed significant difference between EOPE and control (16.88±1.33, 23.1±1.32; p < 

0.01)  and LOPE vs control (14.57±0.87 vs 23.1±1.32; p < 0.001). There was no significant 

difference in the number of OLIG2+ cells in EOPE compared to LOPE (Fig 4.7B).  

Two- way ANOVA analysis of the number of OLIG2+ cells in the cerebral cortex among 

the male and the female pups at PND 60 revealed significant effect in the treatment factor 

(p < 0.0001) but no significant effect in the interaction and sex factor ( p > 0.05). Further 

multiple analysis using the Bonferroni test showed a significant decrease in the number of 

OLIG2+ cells in the cerebral cortex of the EOPE group vs control group (4.61±0.33 vs 

8.13±0.61; p < 0.001) and LOPE group compared to control (4.60±0.36 vs 8.13±0.61; p < 

0.001) in the male pups. Also among the female pups, there was significant decrease in the 

number of OLIG2+ cells in the cerebral cortex of the EOPE group vs control (5.00±0.37 vs 

8.00±0.61; p < 0.001) and in the LOPE goup compared to the control (4.33±0.38, 8.00±0.61; 

p < 0.001). Between EOPE and LOPE there was no significant difference among the male 

and the female pups (Fig 4.7C). 
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Fig 4.7. Effects of early- and late-onset PE on OLIG2 expression in cortex. OLIG2 positive 

cells decreased in mothers and pups in L-NAME model of PE. Data analysed using two-way 

ANOVA (for mothers and PND 60 pups) or one-way ANOVA (for PND 1 pups), followed 

with Bonferroni’s multiple comparison. * p < 0.05, ** p < 0.01, *** p < 0.001 compared 

to control; # p < 0.05, ## p < 0.01 compared between EOPE and LOPE. 
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4.3.7 OLIG2 cell count expression in the cerebellum 

Analysis of Two-way ANOVA of the number of OLIG2+ cells count within the cerebellum 

of the mother revealed effect in the interacton (p < 0.01) and treament factor (p < 0.0001) 

but no significant difference in the time factor (p > 0.05). Multiple analysis using Bonferroni 

test showed no statistical significant difference (p > 0.05) in the EOPE (12.79±1.69) but 

significant decrease (p < 0.001) in the LOPE (7.00±0.63) compared to control (13.70±1.44) 

at GD 19 with the cerebellum of the mother. At PND 1, there was significant decrease (p < 

0.05)  in the number of OLIG2+ cells in the EOPE (10.58±1.21) and significant decrease (p 

< 0.001) in the LOPE (6.23±0.93) when compared with the control (15.67±1.37). Also, 

significant decrease (p < 0.001) was seen in the EOPE (9.17±1.23) and LOPE (9.07±0.93) 

when compared with control (19.7±1.32) at PND 60. Likewise, compare between the EOPE 

and LOPE show significant difference at GD 19 (p < 0.01) and PND 1 (p < 0.05) but no 

significant difference at PND 60 (Fig 4.8A).  

Result of Two-way ANOVA analysis of OLIG2+ cells count among the female and male 

pups at PND 60 revealed no significant effect (p > 0.05) in the interaction and in the sex 

factor but showed significant difference in the treament factor (p < 0.0001). Further multiple 

analysis using Bonferroni test revealed no statistical significant change (p > 0.05) in the 

EOPE (11.23±1.89) and LOPE (13.38±1.99) compared to control (15.67±2.07) in the male 

pups at PND 60. Meanwhile, there was significant difference (p < 0.01) in the EOPE 

(8.90±1.14) but no significant difference (p > 0.05) in the LOPE (12.17±1.62) when 

compared with the control (14.73±1.92) in the female pups at PND 60 (Fig 4.8B). 
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Fig 4.8. Effects of early- and late-onset PE on OLIG2 expression in cerebellum. There was 

reduction in the number of OLIG2 positive cells in mothers and pups in L-NAME model of 

PE. Data analysed using two-way ANOVA followed with Bonferroni multiple comparison. 

* p < 0.05, ** p < 0.01, *** p < 0.001 compared to control; # p < 0.05, ## p < 0.01 compared 

between EOPE and LOPE. 
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4.4 DISCUSSION 

Preeclampsia predisposes women to an increased risk of cardiovascular disease and 

cerebrovascular risk later in life (Amaral et al., 2015). Moreover, the effect of pre-eclampsia 

seems to continue in both the mother even after the delivery of placenta. More specifically, 

both the mother and the offspring of PE pregnancies are at great risk of developing metabolic 

diseases and neurological deficits later in life (Aukes et al., 2012, Cheng et al., 2004, Fields 

et al., 2017). The mechanism behind this long term effect however, remains unclear and 

requires investigation.  

In the present study, we report a significant reduction in total number of pups at GD 19.  

Additionally the pups had a significantly low body weight at GD 19 in the LOPE group. 

Also, at weaning and at PND 60, the EOPE group body weight was similar to the control 

group in contrast to the LOPE group which was significantly reduced. This variation in body 

weight may be due to the disparity in the number of pups in the treated groups which were 

lower than the control group. Administration of L-Name is associated with high blood 

pressure induction and a lack of physiological transformation of spiral arteries during 

development that lead to inadequate nutrient and oxygen availability to the offspring thereby 

causing growth retardation (Liu et al., 2016). The variation in body weight is consistent with 

other research (Baijnath et al., 2014). It may also be possible that PE affects the number of 

pups. Previous studies have  reported low body weight at GD 18 in L-Name pups when 

compared with control (Pellicer et al., 2011) while other studies revealed no change in body 

weight in LPS induced model (Kirsten et al., 2010).  

The relationship between low body weight and cognitive deficit has been reported in the 

literature. Children with low birth weight are at greater risk of developmental disturbance 

such as cognitive deficit and behavioural disorders during school age (Fan et al., 2013). 

Male gender, low birth weight and cerebral palsy are major predictors of poor behavioural 

outcome (Sobaih, 2018). Hypertension in pregnancy is reported to be related to poor 

neurocognitive outcome in middle childhood (Whitehouse et al., 2012). In this present 

study, we demonstrated that offspring born to PE mothers exhibit adulthood impairment in 

learning, memory, balance and locomotor functions. In PE, hypoxia, oxidative stress and 

dys-function in the vascular/endothelial activity affect gene expression during fetal 

development thereby producing adverse effects in adulthood of the offspring (Redman and 

Sargent, 2005). Although, there was no difference in the body weight of the EOPE pups, 
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they however display impairment in cognitive function. This implies that the brain weight 

of the PE model may itself impair cognitive function of the offspring. 

Inflammatory response plays a key role in the development and progression of white matter 

lesion and neuronal loss, thereby leading to learning and memory deficit (Tong et al., 2019). 

Cardoso and colleagues report that systemic inflammation is associated with structural 

changes in the neonate brain which may be associated with neurobehavioural deficits found 

later in neonate with sepsis (Cardoso et al., 2015). Gender may also influence the 

susceptibility to long term adverse effect of neuromotor and neurological outcome in PE.  

Our results revealed impairment in memory function of both male and female in early and 

late-onset L-Name PE model. This finding is consistent  with that of  Liu et al who reported 

impaired spatial learning and memory in male offspring of L-Name PE model, that he 

attributed to deficiency in neurogenesis with an under expression of proliferation related 

genes such as cAMP response element binding, fibroblast growth factor-2 and Histone 

acetyltransferase (Ep300) (Liu et al., 2016). However an absence of  genotype sex 

interaction was reported in the cognitive behaviour test using placental growth factor (PlGF) 

knocked down mice model despite using a sensitive sex difference test of neurobehaviour 

(Kay et al., 2018). In our L-Name PE model, both male and female pups exhibited a lower 

locomotor function in the EOPE group compared to the LOPE group. Similarly, we noted 

the same trend in the number of paw slips in our study. In contrast, Carver et al (2014) 

reported a 5 fold increase in the number of paw slips as well as an increased fall off the 

beam in a female mice model of PE by the injection of adenovirus carrying soluble Fms-

like tyrosine kinase (sFlt-1) whereas no such difference was reported in the male counterpart 

(Carver et al., 2014b).  

Our study demonstrates that paw slips were greater in the female compared to the male 

offspring reflecting poor balance and neuromuscular impairment. This is consistent with the 

observations of Carver et al (Carver et al., 2014b). Also, in a perinatal ischemia rat model, 

the offspring displayed similar locomotor outcomes which correlated with a gender bias 

(Infante et al., 2013). The variation seen in the results might be due to different models of 

PE. Nonetheless, the benefit of our model is that we mimic the heterogeneous PE model of 

both EOPE and LOPE present in humans. The EOPE group showed more cognitive deficit 

than the LOPE group. This may be due to the high association of EOPE with neurological 

complications such as blurred vision and persistent headache (Von Dadelszen et al., 2003). 

Demyelination is been reported to be accompanied with cognitive deficit (Hoyos et al., 

2014). Altered myelin structure leads to behavioural abnormalities such as anxiety, altered 
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locomotor activities (Pasquini et al., 2011). Generating and maintenance of myelin sheath 

under normal condition, likewise remyelination after axonal damage is full responsibility of 

oligodendrocyte cells (Nave, 2010). Oligodendrocytes loss is known to be a significant 

factor underlying demyelination after injury (Caprariello et al., 2012).  

Our study demonstrates a reduction in the number of OLIG2+ cells in PE compared to the 

control both in the mother and the pups at different stages of development. This reduction 

in the number of OLIG2+ cells within the cerebral cortex and the cerebellum implies a 

degeneration and/or apoptosis/necrosis of oligodendrocytes. Oligodendrocytes cells plays a 

vital role in the maintenance of axonal health in adult brain and in the production of myelin 

(Bhat and Steinman, 2009). Oligodendrocytes are vulnerable to damage under pathological 

condition due to their susceptibility to oxidative stress (Bradi and Lasmann 2010). PE is 

well characterised by hypoxic conditions and oxidative stress (Hansson et al., 2014). 

Notably apoptosis of mature oligodendrocytes may be initiated in the presence of pro-

inflammatory cytokines which are known to be heightened in PE (Caprariello et al., 2012, 

Szarka et al., 2010). Notably, the death of oligodendrocytes may also be caused through 

excitotoxicity from overwhelming release of glutamate and ATP (Matute et al., 2007). An 

increase in glutamate plasma levels have been reported in women with mild to severe PE 

(Terán et al., 2012). Impaired function of glutamate-NOcGMP pathway in the cerebellum 

and reduced learning ability have been previously reported in rats born to PE mothers (Cauli 

et al., 2010). Dent et al., (2015) also reported a decrease in OLIG2 cell number in the 

ipsilateral external capsule of  traumatic brain injury mice at 48hrs and one week after injury 

but the number was  reinstated back to control level by 2 weeks (Dent et al., 2015). In 

contrast we did not observe these findings, the number of OLIG2+ cells in the cerebral 

cortex and the cerebellum of PE induced rats at PND 60 remained down-regulated. Also, in 

the pups born to PE mothers, the decrease in the number of OLIG 2+ cells persist until PND 

60 in both parts of the brain independent of gender. This implies that PE may cause 

susceptibility to axonal damage and reduction in myelin.  

4.5. Conclusion   

In conclusion, this study  demonstrates cognitive changes such as spatial and learning 

memory loss and neuromotor impairment in an L-Name PE rat model offspring at 

adolescence.  Furthermore we show a reduction in oligodendrocyte death within the cortex 
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and cerebellum at both birth and at adolescent. Reduced oligodendrocytes and 

demyelination may contribute significantly to long-term sensorimotor and cognitive deficit.  

Finally, we propose that PE induces oligodendrocyte death in the mother during pregnancy 

and later in life. This may be related to the period of cohabitation and metabolic deficit 

usually recorded in women with history of PE. We propose that oligodendrocyte cell 

degeneration may be responsible for the long term cognitive impairment in women with a 

history of PE. PE is a risk factor for the development of cognitive impairment and 

oligodendrocyte death in offspring. 
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5.1 ABSTRACT 

Women with a history of preeclampsia (PE) tend to have a higher risk of developing 

cardiovascular and neurological disease later in life. Imbalance in oxidative markers and 

purinergic enzymes have been implicated in the pathogenesis of neurological disease.  This 

study investigated the effect of PE on oxidative imbalance, purinergic enzyme inhibitory 

activity, acetylcholinesterase and chymotrypsin activity in the brain of PE rat model at post-

natal day (PND) 60. Pregnant rats divided into early-onset and late-onset groups were 

administered with L-NAME through drinking water at gestational day (GD 8-17). Rats were 

allowed free access to water throughout the pregnancy and allowed to deliver on their own. 

The mother and the pups were sacrificed at PND 60, the cortex and the cerebellum excised, 

homogenised and stored for analyses of the enzymes. Results showed an increased in nitric 

oxide (NO) and malondialdehyde (MDA) with concomitant decrease in glutathione (GSH) 

and superoxide dismutase (SOD), an indication of oxidative damage. Also, there was an 

increase in acetylcholinesterase activity with a decrease in chymotrypsin, ATPase and Ecto-

Nucleoside Triphosphate Diphosphohydrolase (ENTPDase) activities in both the cortex and 

the cerebellum of the mother and the pups at PND 60. These results indicate the involvement 

of oxidative stress, increased cholinergic activity and depleted proteolytic and purinergic 

activity in PE – induced neurotoxicity. 

Keywords: Neurotoxicity; Preeclampsia; Oxidative imbalance; Acetylcholinesterase; 

Chymotrypsin; Purinergic enzymes 
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5.2 INTRODUCTION 

Pre-eclampsia  is defined as  new onset of hypertension (>140/90 mm hg) after 20 weeks of 

gestation in a previously normotensive women associated with at least 1+ proteinuria on 

urinary dipstick measurement (Steegers et al., 2010, Brown et al., 2018). Notwithstanding 

the severity and the incidence, the pathophysiology of this disease is not fully understood 

(Gillis et al., 2016). Despite knowing that the consequence of PE ends after the delivery of 

placenta, it is now apparent that women with PE and their offspring have greater 

susceptibility to develop cardiovascular complications such as heart disease, stroke, and 

venous thromboembolism over a 5–15-year period post-delivery.  Moreover these women 

have a greater risk of dying from cerebrovascular diseases such as stroke and vascular 

dementia after pregnancy than women who had a healthy pregnancy (Amaral et al., 2015).  

The long-term consequence of PE on the brain of the mother and the developing brain of 

the offspring associated with long term cognitive decline requires investigation. More 

recently, a change in brain size years after the index pre-eclamptic pregnancy has been 

reported (Mielke et al., 2016, Postma et al., 2016). Nonetheless PE is associated with 

development of white and gray matter lesions (Hoekzema et al., 2017, Siepmann et al., 2017, 

Soma-Pillay et al., 2017) together with cognitive impairment later in life  (Baecke et al., 

2009, Fields et al., 2017, Mielke et al., 2016, Postma et al., 2014a, Postma et al., 2016).  

Oxidative stress is a disproportion between the productions of reactive oxygen 

species (ROS) emanating from normal metabolic processes and anti-oxidants in the cell. 

The brain is especially susceptible to oxidative injury due to its high oxygen metabolism, 

its rich lipid milieu, and its low antioxidant enzyme content. Oxidative stress is involved in 

the aetiology of early development of brain injury where it triggers neuronal cell death 

(Ikonomidou and Kaindl, 2011). It is a neurogenic pathway that is involved in almost all the 

central nervous system pathologies (Popescu, 2013). In aged humans, oxidative damage 

leads to concomitant suppression of the endogenous anti-oxidants viz., superoxide 

dismutase (SOD), catalase (CAT), glutathione (GSH) and glutathione peroxidase (GSH-px) 

in cognitive sites such as the hippocampus and cerebral cortex thereby contributing to 

cognitive decline (Hasan et al., 2009, Siqueira et al., 2005). 

Currently it is controversial whether a previous history of PE predisposes women to an 

increased risk of Alzheimer’s disease (AD) development. Growing evidence however, 

supports the hypothesis that oxidative stress plays a major role in the cognitive impairment 
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(Devi and Satpati, 2017) emanating from elevated lipid peroxidation, protein and DNA 

oxidation in neurons (Markesbery and Lovell, 2006). 

Notably  hypertension in pregnancy is associated with utero-placenta ischemia leading to 

fetal   hypoxia and intra-uterine growth restriction (Chaiworapongsa et al., 2014). Fetal 

hypoxia is associated with oxidative stress in pre-term infants (Buonocore et al., 2002). 

Oxidative stress occurs at post-natal day (PND) 7 in pre-term children with or without 

hypoxia. Shoji and colleague reported an increase in 8-hydroxy-2″-deoxyguanosine which 

is a marker of oxidative DNA damage in the urine of infant with low birth weight and 

concluded that this marker is correlated to mental development and therefore it can be a 

predictive marker of neurodevelopmental outcome in low birth weight infants (Shoji et al., 

2014).  

This study aimed at investigating the effect of PE on oxidative imbalance, purinergic, 

acetylcholinesterase and chymotrypsin enzymatic activities in the brain at PND 60. 

5.3 MATERIALS AND METHOD 

5.3.1 Animals 

Fifteen (15) pregnant albino female rats (Sprague-Dawley strain) weighing 180 – 200 g were 

obtained from the Biomedical Research Unit (BRU), University of KwaZulu-Natal, Durban, 

South Africa. The rats were fed on pelletized chows, and water given ad libitum, while 

acclimatizing for 7 days under natural photo periods of 12-h light-dark cycle. They were 

maintained under the guidelines and approval of the Animal Ethics Committee of the 

University of KwaZulu-Natal, Durban, South Africa (AREC/055/017D). 

The rats were divided into three groups of five animal each; control, early-onset (EOPE) 

and late onset (EOPE PE). The EOPE and LOPE groups were given L-NAME in the drinking 

water ad libitum at gestational days 8-12 and 12-16 respectively. Blood pressure were 

measured at gestational day 12 and 17. The rats were allowed to give birth on their own and 

the pups were left with the mother for 21 days. After weaning, the pups were separated from 

the mother. 

5.3.2 Sacrifice and Collection of Organs 

Forty two male and females comprising of 14 pups from each group were sacrificed with 

the mothers at post-natal day (PND) 60. The frontal cortex and cerebellum were carefully 
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excised. They were homogenized in 50 mM sodium phosphate buffer (with 10% triton X-

100, pH 7.5). The homogenized samples were then centrifuged at 15 000 rpm for 10 mins 

at 4°C. The supernatant was collected and stored at -20°C for subsequent analysis. 

5.3.3 Determination of Oxidative Stress 

The supernatants were analyzed for oxidative stress biomarkers viz.,  GSH and SOD 

activities, and MDA level (Chowdhury and Soulsby, 2002). 

5.3.3.1 Determination of GSH level 

This was carried out using the Ellman’s method (Ellman, 1959). Briefly, after deproteinizing 

with an equal volume of 10% Trichloroacetic acid (TCA), the supernatants were centrifuged 

for 5 mins at 3500 rpm. Two hundred μL of the supernatant together with 50 μL of Ellman 

reagent (Ellman et al., 1961) was thereafter added to a 96 well plate. The reaction mixture 

was allowed to stand for 5 mins, and absorbance was read at 415 nm. The GSH 

concentration was extrapolated from a standard curve. 

5.3.3.2 Determination of SOD activity 

The SOD activity was determined using a method based on the principle that 6-

hydroxydopamine (6-HD) is oxidized by H2O2 from SOD catalyzed dismutation of O2
.-, 

which produces a colored product (Gee and Davison, 1989). Briefly, 15 μL of the 

supernatants were dissolved in 170 μL of 0.1 mM diethylenetriaminepentaacetic acid 

(DETAPAC) in a 96 well plate. 15 μL of 1.6 mM 6-HD was thereafter added. Absorbance 

of the reactant mixture was measured at 492 nm for 5 mins at 1 min interval. 

5.3.3.3 Determination of Lipid peroxidation levels  

This was determined by measuring the thiobarbituric acid reactive substances (TBARS), 

expressed as MDA equivalent in the supernatants (Chowdhury and Soulsby, 2002). Briefly, 

a reaction mixture consisting of 100 μL of the supernatants, 100 μL of 8.1% SDS solution, 

375 μL of 20% acetic acid, 1 mL of 0.25% thiobarbituric acid (TBA), and 425 μL of distilled 

water was heated at 95°C for 1 h in a water bath. Two hundred μL of the heated mixture 

was thereafter pipetted into 96-well plate, and absorbance read at 532 nm. 
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5.3.3.4 Determination of NO Level 

Tissue NO levels were determined using the Griess method (Erukainure et al., 2019b). One 

hundred microliters of the sample or distilled water (blank) was incubated with an equal 

volume of Griess reagent for 30 mins at 25°C in the dark. Absorbance was read at 548 nm 

and the result was calculated using the formula: 

𝐍𝐢𝐭𝐫𝐢𝐜 𝐨𝐱𝐢𝐝𝐞 𝐜𝐨𝐧𝐜. = (Absorbance of sample − Absorbance of blank) x 0.1305 

 

5.3.4 Determination of Purinergic Enzymes Activities 

5.3.4.1 Determination of ATPase activity 

The ATPase activity within tissue were determined according to a established protocol 

(Adewoye et al., 2000, Erukainure et al., 2017). Briefly, a reaction mixture consisting of 

200 µL of the tissues’ supernatants, 200 µL of 5 mM KCl, 1300 µL of 0.1 M Tris-HCl 

buffer, and 40 µL of 50 mM ATP was incubated at 37°C in a tube for 30 mins. The reaction 

was stopped by adding 1 mL of distilled water and 1.25% ammonium molybdate. 

Thereafter, 1 mL of freshly prepared 9% ascorbic acid was added to the reaction mixture 

and allowed to stand for 30 mins. Absorbance was read at 660 nm. 

5.3.4.2 Determination of Ecto-Nucleoside Triphosphate Diphosphohydrolase (E-

NTPDase) activity 

Tissue E-NTPDase activity were determined according to a modified established protocol 

(Schetinger et al., 2007, Ademiluyi et al., 2016). Briefly, 20 µL of the supernatants were 

incubated with 200 µL of the reaction buffer (1.5 mM CaCl2, 5 mM KCl, 0.1 mM EDTA, 

10 mM glucose, 225 mM sucrose and 45 mM Tris-HCl) at 37°C for 10 min. 20 µL of 50 

mM ATP was thereafter added to the reaction mixture and further incubated at 37°C in a 

shaker for 20 mins. Two hundred µL of 10% TCA was added to the reaction mixture to stop 

the reaction. The reaction was incubated on ice for 10 mins and absorbance was read 600 

nm. 

5.3.5 Determination of Acetylcholinesterase Activity 

Tissue acetylcholinesterase activity was determined using the Ellman’s method (Ellman et 

al., 1961). Briefly, 20 μL of the supernatants was mixed with 10 μL of 3.3 mM Ellman’s 

reagent (pH 7.0) and 50 μL of 0.1 M phosphate buffer (pH 8) . The reaction mixture was 
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incubated for 20 min at 25 °C. The reaction was stopped by adding 10 μL of 0.05 M 

acetylcholine iodide to the reaction mixture. Absorbance was read at 412 nm at 3 min 

intervals. 

5.3.6 Determination of Proteolytic Activity 

This was carried out by determining the α-chymotrypsin activity in the tissue according to 

a previous method (Saleem et al., 2016), with slight modifications. Briefly, a reaction 

mixture consisting of 15 μl of supernatants and 60 μl Tris-HCl buffer (50mM pH 7.6) were 

pre-incubated at 37 °C for 20 min. The reaction was initiated by the addition of 15 μl 1.3 

mM N-succinyl phenyl-alanine-P-nitroanilide. This reaction mixture was incubated for 30 

min at 37°C for 30 min, and absorbance read at 410 nm. 

5.4 Statistical Analysis 

Data was subjected to analysis of variance (ANOVA) and significant difference established 

at p <0.05, with results presented as mean ± SEM using Graph Pad Prism, version 5.01. 
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5.5 Results 

5.5.1 NO in the cerebral cortex and the cerebellum at PND 60 

As shown in Fig. 5.1A and B, there was a significant increase in the level of NO within the  

cortex of both the EOPE and LOPE groups compared to control (p < 0.05), likewise within 

the cerebellum of both the EOPE and LOPE groups compared to the control (p < 0.01).  

As represented in Fig. 5.2A and B, there was increase in the level of NO in the cortex of 

both male and female pups at PND 60; albeit non significantly (p >0.05). In contrast there 

was significant difference (p < 0.05) of NO between the control and the LOPE groups of 

the female cerebellum, 

5.5.2 Lipid peroxidation in the cerebral cortex and the cerebellum at PND 60 

MDA level of the maternal rat at PND 60 (Fig 5.1A and B) was significantly increased in 

the cortex (p < 0.01) and cerebellum (p < 0.05) of EOPE and LOPE groups vs control 

groups. 

As shown in Fig 5.2A and B, the MDA level displayed the same trend as that of NO, in that 

there was no significant difference (p >0.05) within the cortex.  A significant difference of 

MDA within the cerebellum was noted between the control vs the LOPE in the female (p < 

0.05) pups compared to their male counterparts (p >0.05) at PND 60. 
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Fig. 5.1: NO and MDA levels of (A) cortex and (B) cerebellum of maternal rats at PND 60. 

Values = mean ± SEM; n = 5. Comparison of differences across treatment groups indicated 

as * p < 0.05, ** p < 0.01 compared to control. 
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Fig. 5.2: NO and MDA levels of (A) cortex and (B) cerebellum of pups at PND 60. Values 

= mean ± SEM; n = 7. Comparison of differences across treatment groups indicated as * p 

< 0.05 compared to control. 

 

5.5.3 GSH and SOD activity in the cerebral cortex and the cerebellum at PND 60 

Both GSH and SOD activity declined within the cerebral cortex and the cerebellum of the 

EOPE and LOPE maternal groups compared to control as represented in Fig 5.3A and 5.3B. 

A greater difference in expression occurred within the cerebellum (p < 0.001) compared to 

the cortex (p < 0.05). 

As represented in Fig 5.4A and 5.4B, more specifically, the GSH within the cerebral cortex 

of the pups at PND 60 was significantly down-regulated between control vs EOPE (p < 

0.001) and between control vs LOPE (p < 0.001) irrespective of the sex. In the cerebellum, 
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there was significant decrease (p < 0.001) between control vs EOPE group and between 

control vs LOPE in the female compared to their male counterpart (p >0.05).  
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Fig. 5.3: GSH level and SOD activity of (A) cortex and (B) cerebellum of maternal rats at 

PND 60. Values = mean ± SEM; n = 5. Comparison of differences across treatment groups 

indicated as * p < 0.05, ** p < 0.01, *** p < 0.001 as compared to control. 
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Fig. 5.4: GSH level and SOD activity of (A) cortex and (B) cerebellum of pups at PND 60. 

Values = mean ± SEM; n = 7. Comparison of differences across treatment groups indicated 

as * p < 0.05, ** p < 0.01, *** p < 0.001 as compared to control. 

 

5.5.4 Acetylcholinesterase activity and α-chymotrypsin activity in the cerebral cortex 

and the cerebellum at PND 60 

There was significant elevation of acetylcholinesterase activity (p < 0.05), with concomitant 

suppression of α-chymotrypsin activity in the both the maternal cortex and cerebellum of 

the EOPE group compared to the control. Likewise, acetylcholinesterase activity within 

both cerebral and cerebellum was up-regulated (p < 0.01) in the LOPE group compared to 

the control, while there was no significant difference in the level of acetylcholinesterase 

between the EOPE and the LOPE group as represented by Fig 5.5A and 5.5B. 

There was significant increase (p < 0.01) in acetylcholinesterase activity with concomitant 

significant decrease (p < 0.001) in the activity of α-chymotrypsin between LOPE compared 

to control groups in both the male and female pup cortex at PND 60. In contrast there was 

no significant difference between EOPE vs control in the female but significantly increased 

in the male cortex (p < 0.05). Meanwhile, there was significant increase (p < 0.01) in 
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acetylcholinesterase activity only in the female between EOPE and LOPE compared to 

control, but no significant in the male cerebellum at PND 60. Likewise, no significant 

difference in the activity of α-chymotrypsin was noted between in both male and female 

cerebellum of EOPE, LOPE vs control at PND 60 as shown in Fig. 5.6A and 5.6B.  
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Fig. 5.5: Acetylcholinesterase and α-chymotrypsin activities of (A) cortex and (B) 

cerebellum of maternal rats at PND 60. Values = mean ± SEM; n = 5. Comparison of 

differences across treatment groups indicated as * p < 0.05, ** p < 0.01 as compared to 

control. 
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Fig. 5.6: Acetylcholinesterase and α-chymotrypsin activities of (A) cortex and (B) 

cerebellum of pups at PND 60. Values = mean ± SEM; n = 7. Comparison of differences 

across treatment groups indicated as * p < 0.05, ** p < 0.01, *** p < 0.001 as compared to 

control. 

 

5.5.5 ATPase and E-NTPDase in the cerebral cortex and the cerebellum at PND 60 

There was significant decrease in the activities of ATPase and E-NTPDase within the 

maternal cortex and the cerebellum of the EOPE and LOPE groups compared to control (fig 

5.7A and 5.7B). There was significant increase in maternal cerebellar expression of both 

ATPase and E-NTPDase (p < 0.01) of the EOPE group more than in the LOPE group (p < 

0.05). 

There was significant decrease (p < 0.001) in E-NTPDase activity across the EOPE, LOPE 

compared to control groups in both the male and female pup cortex at PND 60. In contrast 

there was no significant difference in between EOPE vs control in the male but significantly 

reduced in the female (p < 0.01) for the cerebellum. Likewise, no significant difference of 

E-NTPDase activity was noted between LOPE vs control in the male pups.  In contrast, a 

significant difference was noted between LOPE and controls in the female pups. However, 
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there was significant difference in the activities of ATPase between control and LOPE both 

in male and female cortex but no significant difference between EOPE and cortex male 

cortex. Meanwhile, cerebellar expression of ATPase only shows significant difference 

between control and EOPE in male but not in female. (Fig 5.8A and 5.8B). 
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Fig. 5.7: ATPase and E-NTPDase activities of (A) cortex and (B) cerebellum of maternal 

rats at PND 60. Values = mean ± SEM; n = 5. Comparison of differences across treatment 

groups indicated as * p < 0.05, ** p < 0.01 as compared to control. 
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Fig. 5.8: ATPase and E-NTPDase activities of (A) cortex and (B) cerebellum of pups at 

PND 60. Values = mean ± SEM; n = 7. Comparison of differences across treatment groups 

indicated as * p < 0.05, ** p < 0.01, *** p < 0.001 as compared to control. 
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5.6 DISCUSSION 

Women with preeclamptic index pregnancy have been reported to be at high risk of 

developing hypertension, cardiovascular disease, cognitive deficit, stroke and dementia later 

in life (Mielke et al., 2016, Postma et al., 2014a, Postma et al., 2016, Siepmann et al., 2017, 

Soma-Pillay et al., 2017). Systemic oxidative stress, a balance shift in favour of ROS 

generation leads to oxidative or cellular damage occurs in mild cognitive impairment and 

late onset Alzheimer’s disease (Cervellati et al., 2014). Oxidative stress is also one of the 

mechanisms underlying neuronal damage associated with deep brain microstructural 

changes such as white matter lesion (Lin et al., 2014). Oxidative stress seems to be the main 

factor responsible for low cognitive performance (Baierle et al., 2015) and is associated with 

most neurodevelopment disorders (Ross, 2000).  

In this present study, we report a significant increase in the oxidative stress marker, MDA 

with concomitant suppression of GSH level and SOD activity in both the maternal 

cerebellum and the cortex of the L-NAME treated rats compared to control. The high MDA 

level indicates lipid peroxidation LPO, and these may be attributed to the decreased GSH 

level and SOD activity (Figs. 5.1 – 5.4). A decreased GSH and SOD activity has been 

implicated in increased production of hydrogen peroxide (H2O2), which if not mopped by 

catalase contributes to increased MDA level (Erukainure et al., 2019a).  The high level of 

NO in the maternal cortex and the cerebellum tissue of L-NAME groups compared with the 

control (Figs. 5.1 and 5.2) also indicates pro-inflammation.  NO in the presence of low SOD 

activity reacts with superoxide anion (O2
−) that leads to the production of the potent radical, 

peroxynitrite (ONOO-), which triggers nitrosative stress  (Erukainure et al., 2019c). Women 

with history of PE have been reported to develop white matter lesion years after index 

pregnancy (Pantoni et al., 1996, Soma-Pillay et al., 2017) and oxidative stress is one of the 

underlying mechanism in the development of white matter lesion (Lin et al., 2014). 

Therefore, alteration in oxidative stress markers present in the cerebellum and the cortex of 

L-NAME induced PE in the present study may be correlated with white matter lesion 

reported in women with history of PE. Cognitive impairment such as short term memory 

loss (Brussé et al., 2008), attention deficit (Baecke et al., 2009), slower motor speed with 

poor score in cognitive questionnaire (Postma et al., 2014a, Postma et al., 2014b) have been 

reported in women with a history of severe or mild form of PE and the mechanism 

underlying this is unclear, although peripheral inflammation can affect the function of CNS 

alongside memory and cognition (Wan et al., 2007). One of the mechanism involve in low 
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cognitive performance has been reported to be oxidative stress (Baierle et al., 2015). In the 

present study, we report that oxidative stress is present in the cerebral cortex and cerebellum 

of L-NAME induced PE rats at post-natal day 60.  These findings may be one of the 

mechanisms through which cognitive impairment occurs in women with a history of PE 

although we did not check for baseline of oxidative stress markers nor any cognitive 

impairment test in the present study. Nonetheless, Revel and colleagues reported increase 

in systemic glutathione in relation to cognitive decline in AD patient in a six-month follow-

up which they reported to be paradoxical since high intracellular glutathione content is 

considered protective against cell damage caused by free radical.  

Also, in this present study the pups born to preeclamptic rat group showed increase in MDA 

and NO in both cerebral cortex and the cerebellum in male and female at PND 60 though 

the increase is more pronounce in the LOPE. Likewise, the present study showed decrease 

in SOD and glutathione in the cerebral cortex and cerebellum tissue of PND 60 pups in both 

the EOPE and LOPE male and female. The same trend was observed in the mother. Veronica 

et al., hypothesis that change observed in anti-oxidant status of PE mother is similar to that 

of their new-borns (Veronica et al., 2006). Likewise infants born to PE mother are associated 

with increased oxidative stress, low activities of anti-oxidant activity and increased lipid 

peroxidation and protein oxidation (Howlader et al., 2009). The fetal and neonatal brain are 

vulnerable to the effect of oxygen and nitrogen-based free radicals. Oxidative stress is 

implicated in the pathogenesis of most neurological disease such as hypoxic-ischemic injury 

(Ten and Starkov, 2012), epilepsy (Waldbaum and Patel, 2010), haemorrhagic and cerebral 

injury (Chua et al., 2010), therefore oxidative stress serves as a component of early aging 

process (Marseglia et al., 2014). The imbalance in oxidative stress in this study might be the 

reason for developmental and neurological deficit reported in children born to PE mother. 

This study is the first to demonstrate oxidative stress at postnatal day in pups born to 

preeclamptic mothers. 

Acetylcholine, a major parasympathetic neurotransmitter inhibits the release of pro-

inflammatory cytokines from macrophages and microglia (Shytle et al., 2004). It is 

hydrolysed by acetylcholinesterase. Patients with AD display an elevation of plasma and 

tissue activity of acetylcholinesterase; hence it is linked to the pathogenesis and the 

progression of neurodegenerative disease (Mushtaq et al., 2014, Wang et al., 2009a). In our 

study, there was significant increase in the activity of acetylcholinesterase in the cerebral 

cortex and the cerebellar tissue at PND 60 of the L-NAME induced PE groups compared to 
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control in both the mother and the pups. An elevation of acetylcholinesterase activity is also  

associated with systemic inflammation as well as impaired cognitive and motor neuron 

dysfunction (Das, 2007). Our findings are corroborated by the induction of 

neuroinflammation concomitant with elevated acetylcholinesterase activity (Tyagi et al., 

2010) and also corroborated with presence of peripheral inflammation that leads to increased 

number of neuronal damage with elevation of acetylcholinesterase activity in the cortex 

(Kalb et al., 2013). Moreover, one should be cognisant of the fact that PE is a hyper 

exaggerated inflammatory condition. It is therefore plausible that there may be a higher 

tendency of neurodegenerative disease in relation to PE.  

However, our study showed a suppression of α-chymotrypsin activity in the both the 

maternal cortex and cerebellum of the EOPE group compared to the control, with a 

significant difference in the pups cortex but not in the cerebellum in both L-NAME PE 

induced groups compared to control. Chymotrypsin is a proteolytic enzyme with anti-

inflammatory activity (Mundhava et al., 2016). In PE, chymotrypsin is known to be 

implicated in the endothelial expression of P-selectin and E-selectin that are usually 

expressed on endothelial activation (Wang et al., 2003). It is also involved in the facilitation 

of tissue repair by providing better resolution of inflammatory symptoms (Chandanwale et 

al., 2017). The decreased activity in the present study (Fig. 5) is suggestive of 

neurodegeneration. 

The neuroprotective functions of purinergic enzymes and signaling have been reported (Wu 

et al., 2007, Akomolafe et al., 2017). These enzymes catalyze the production of adenosines 

which facilitates the suppression of inflammation and tissue injury (Ademiluyi et al., 2016). 

There was decreased in ATPase and E-NTPDase activities in cerebellums and cortexes of 

L-NAME PE induced treated groups compared to control in both the mother and the pups at 

PND 60 in the present study (Figs. 7 and 8) therefore, insinuates neurotoxicity. These 

decreased activities also indicate a decreased level of adenosine, which may also portray an 

induction of proinflammation (Ademiluyi et al., 2016). Impairments of these enzymes have 

been implicated in the pathogenesis and progression of neurotoxicity (Ademiluyi et al., 

2016, Akomolafe et al., 2017). 

5.7 Conclusion 

These results indicate the involvement of oxidative stress, increased cholinergic activity and 

depleted proteolytic and purinergic activities in PE – induced neurotoxicity. Modulation of 
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these activities may be therapeutic in the management and treatment of neurotoxicity 

associated with PE. 
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6.1 SYNTHESIS  

In South Africa, hypertension in pregnancy accounts for above 14% of all maternal death 

and one of the direct contributions to maternal deaths caused by pregnancy related 

hypertension (Saving mothers 2014-2016, 2017). This disorder affects several organs 

including the brain.  Moreover, a neurological deficit may be present in women with a 

history of hypertension in pregnancy years after the index pregnancy. However, the 

progression of the deficit and the molecular mechanism of this deficit remains unclear.  

Neuro-inflammation is a major hallmark of most central nervous system diseases (Morales 

et al., 2014). Neuroinflammation including microglia activation is evident in both 

neurodevelopmental as well as in neurodegenerative disease, therefore, the microglial 

response is an attractive target in understanding the pathogenesis of many 

neurodegenerative diseases  (Cherry et al., 2014). Microglia expresses excitatory amino acid 

transporter 1 (EAAT1) and this transporter is responsible for uptake of L-glutamate to 

prevent neurotoxicity that could be due to glutamate excitotoxicity, and thereby causing 

CNS functional damage (Merkle et al., 2004, Parkin et al., 2018). Oligodendrocytes cell 

death can also result from glutamate excitotoxicity (Matute et al., 2007). Oxidative stress 

also plays a major role in the pathogenic pathway of CNS pathologies (Popescu, 2013) and 

has been implicated as mediators of demyelination and axonal damage which leads to 

structural damage of the CNS (Gilgun-Sherki et al., 2004). 

This study undertook a comprehensive review of the literature for structural and functional 

changes that may occur post pregnancy complications such as hypertension in pregnancy. 

We found that long term pathological changes such as reduction in brain size (Oatridge et 

al., 2002), smaller brain volume (Mielke et al., 2016), cognitive deficit has been reported in 

hypertension in pregnancy long after the index pregnancy (Andolf et al., 2017, Aukes et al., 

2012, Aukes et al., 2007, Baecke et al., 2009). These changes that occur  in women with a 

history of PE are similar to those observed in patients with neurological diseases such as 

Alzheimer’s and dementia (Ijomone et al., 2018a). Considering that these long-term 

neurologic risk factors may be associated with hypertension in pregnancy. We employed an 

animal model to understand the molecular mechanism by which hypertension in pregnancy 

may lead to   short and the long term neurological and neurodevelopment disorders in both 

the mother and the offspring.  
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In this study, a nitric oxide inhibitor, (L-NAME) was used to induce hypertension in a 

pregnancy like syndrome mimicking both early (EOPE) and late (LOPE) onset of the 

disease in pregnant female rats as previously reported (Baijnath et al., 2014, Liu et al., 2016, 

Soobryan et al., 2017). L-NAME was administered in drinking water at 0.3g/L within 

gestational day 8-12 for EOPE groups and gestation days 12-16 for LOPE groups.  Our 

results showed an increase in systolic blood pressure, followed by proteinuria, intra-uterine 

growth restriction with increased reabsorption of the pups and limb impairment. These 

results corroborate the findings of Liu et al. (2017), who similarly reported increased blood 

pressure associated with proteinuria and hind limb necrosis; with a lower pup survival rate 

in the treated group. 

To understand the role of neuroinflammation, we examined the role of IBA1 a microglia 

marker and EAAT1 in the cerebral cortical and cerebellar brain regions of both the mother 

and the pup. Our findings revealed significant upregulation of IBA1 expression in the treated 

groups at GD 19, PND 1 and 60 in the cerebellum and the cortex of the EOPE and LOPE 

compared to the control group. Peripheral inflammation that occurs during pregnancy causes 

morphological changes to macrophage cells within the brain (Faas et al., 2014). In the 

exaggerated inflammatory state of PE the BBB is vulnerable eventuating in  the passage of 

solute that then causes neuroinflammation in the brain (Cipolla et al., 2010, Johnson et al., 

2014). Moreover the activated microglia produce oxygen and nitrogen free radicals which 

release inflammatory cytokines that exacerbate the neurodegenerative process (Tanaka et 

al., 2006).  

Activated glial cells are reported to cause a shift in glutamate transporter secretion therefore 

causing functional damage of the CNS that is more often associated with neuroinflammatory 

conditions (Guo et al., 2012, Parkin et al., 2018). One of the most important excitatory 

neurotransmitter in the CNS is astrocyte L-glutamate (L-Glu) which in excess leads to 

neurotoxicity (Kumar et al., 2010). EAAT1 a major astrocytic L-Glu transporter in human 

CNS plays a major role in preventing neurotoxicity by maintaining extracellular L-Glu from 

reaching a toxic level (Rothstein et al., 1996). EAAT1 are the main glutamate transporters 

in the cerebellum (Takatsuru et al., 2007). Changes in CNS structure and function can be 

induced through the intervention of glutamate transporters (Hamilton and Attwell, 2010). 

Altered expression of glutamate transporters could lead to neurological deficit and neuronal 

cell death (Guo et al., 2012). In this present study, we observed significant decrease in the 

EAAT1 immunoreactivity in the cerebral cortex and the cerebellum at GD 19 and PND 1 



161 

 

but no significant difference in the immunoreactivity of EAAT1 at PND 60 in the EOPE 

and LOPE compared to control of mothers. Activation of microglia with concomitant 

decrease in immunoreactivity of EAAT1 is an indication of structural and functional damage 

to the CNS through neuroinflammation.  

Inflammatory response plays a key role in the development and progression of white matter 

lesion and neuronal loss, thereby leading to learning and memory deficit (Tong et al., 

2019).We, therefore, investigated the effect of hypertension in pregnancy on OLIG2 which 

is a marker for myelin sheath and neuronal health.  Our results showed significant reduction 

in OLIG2 positive cell numbers. These changes were present at GD 19, PND 1 and 60 in 

both the cerebellum and the cerebral cortex of the EOPE and LOPE induced groups 

compared to control. Likewise, reduction in OLIG positive cell was also present in the 

cerebellum and the cortex of the pups born to PE induced rats at PND 1 and 60 compared 

to the control. The reduction in the number of OLIG2+ cells within the cerebral cortex and 

the cerebellum implies a degeneration and/or apoptosis/necrosis of oligodendrocytes. 

Oligodendrocytes cells plays a vital role in the maintenance of axonal health in adult brain 

and in the production of myelin (Bhat and Steinman, 2009). Oligodendrocytes are 

vulnerable to damage under pathological condition due to their susceptibility to oxidative 

stress (Bradi and Lasmann 2010). PE is well characterised by hypoxic conditions and 

oxidative stress (Hansson et al., 2015). This result indicates that demyelination occurs in PE 

as oligodendrocytic loss after injury is a significant factor underlying demyelination 

(Caprariello et al., 2012) whilst remyelination after axonal death is responsible for  

oligodendrocyte cells  (Nave, 2010).  

Demyelination is associated with cognitive deficit (Hoyos et al., 2014). Altered myelin 

structure leads to behavioural abnormalities such as anxiety, altered locomotor activities 

(Pasquini et al., 2011). We therefore, studied behavioural changes such as memory and 

locomotor activities in the pup born to PE induced rats. We observed that offspring born to 

PE mother exhibits adulthood impairment in learning, memory, balance and locomotor 

functions through significant difference in latency time spent using Morris water maze, 

significant reduction in time spent in holding the wire in string test and significant in the 

time spent to cross the beam and increased in the number of slipped paw why crossing the 

beam in balance beam test. Cardoso and colleagues report that systemic inflammation is 

associated with structural changes in the neonate brain which may be associated with 

neurobehavioural deficits found later in neonate with sepsis (Cardoso et al., 2015). Our 
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result corroborate the findings of  Liu et al who reported impaired spatial learning and 

memory in male offspring of L-Name PE model, this may be attributed to deficiency in 

neurogenesis with an under expression of proliferation related genes such as cAMP response 

element binding, fibroblast growth factor-2 and histone acetyl transferase (Ep300) (Liu et 

al., 2016). We compared neurobehavioural changes between male and female pups, we 

observed more pronounced deficit in learning and memory among the female LOPE pups 

compared to male LOPE pups while the male shows more deficit in locomotor test. 

Neuromotor and neurological outcome in children may be influenced by gender due to sex 

hormone (Frick et al., 2015, Andreano and Cahill, 2009).  

Furthermore, we observed that PE is associated with oxidative damage in the cerebellar and 

cortex of the mother at PND 60. We found a significant increase in the level of nitric oxide 

(NO) and malondialdehyde (MDA) with a concomitant reduction in the glutathione (GSH) 

and superoxide dismutase (SOD) level in the cerebellum and the cortex of the PE induced 

group compared to control. These results are indication that oxidative damage may be 

present in the studied brain regions in women with previous experience of PE. Also, we 

observed that oxidative damage occurs in both male and female pups from PE mother at 

PND 60 with a concomitant increase in NO and MDA and decrease in GSH and SOD level 

in the cerebral cortex and the cerebellum. This further implicates neuroinflammation in in 

the long-term effects of hypertension in pregnancy.  

Neuroinflammation is associated with an increase in pro-inflammatory cytokines, oxidative 

stress and perturbed acetylcholinesterase activity (Tyagi et al., 2008). In brain injury, 

oxidative stress has been reported to be associated with deep brain microstructural changes 

such as white matter lesion (Lin et al., 2014). Finally, our result revealed an increase in 

acetylcholinesterase activity with a decrease in chymotrypsin, ATPase and ENTPDase 

activities in both the cerebral cortex and the cerebellum of the mother and the pups at PND 

60.  

Acetylcholinesterase inhibitor has been reported to help in reducing the neuroinflammatory 

response, thereby implicating increase of acetylcholinesterase activity in the process of 

neuroinflammation inhibition (Kalb et al., 2013). Likewise, chymotrypsin, a proteolytic 

enzyme with anti-inflammatory activity has also been reported to be increased during 

inflammation (Mundhava et al., 2016). Moreover, the neuroprotective function of purinergic 

enzymes and signaling have been reported (Wu et al., 2007, Akomolafe et al., 2017).  



163 

 

In conclusion, our results suggest that the neuroinflammation which occurs during 

pregnancy still persists later in life in both the mother and their offspring as revealed by 

presence of activated microglia, with down-regulated expression of one of the main 

glutamate transporters. This is accompanied with neuronal damage, oxidative damage; 

increase in the activity of acetylcholinesterase; decrease in chymotrypsin and purinergic 

enzymes in the cerebral cortex and the cerebellar of the brain. PE is associated with 

peripheral inflammation and inflammation in the CNS. Activation of the glial cell is a 

hallmark of neuroinflammation and this activated glia cells affects glutamate circulation 

within the CNS then leads to excitotoxicity. Excitotoxicity emanating from the 

overwhelming release of glutamate as demonstrated by the down-regulation of the 

excitatory amino acid transporter implies increased level of L-glutamate within the brain 

(Takaki et al., 2012); this then leads to oligodendrocyte cell death (Matute et al., 2007). It is 

of note also that increase in glutamate plasma levels have been reported in women with mild 

to severe PE (Terán et al., 2012). Furthermore, activated microglia releases reactive oxygen 

species which lead to oxidative stress exacerbating neuronal damage (Wang and Michaelis, 

2010) as present in this study.  

We also found an increase in acetylcholinesterase activity in the cerebral cortex and 

cerebellar tissue of the offspring born to PE mother with impaired learning and memory 

with locomotor behavioural dysfunction.   

An increase in chymotrypsin may be a feedback response to the inflammation that occurs in 

PE. Likewise, an increase in proteolytic enzyme within the brain tissue of the PE treated 

group probably reflects a feedback response to the presence of neuroinflammation. 

Proteolytic enzymes such as chymotrypsin and trypsin normally facilitate tissue repair by 

resolving  inflammation (Chandanwale et al., 2017).   

To the best of our knowledge, this is the first study that provides insight into the possible 

short- and long-term role of neuroinflammation in PE animal model both in the mother and 

their offspring.  

We recommend that future studies should be carried out to identify the genetic indices that 

investigate why men born to PE mothers are likely to father children prone to the 

development of PE. Further studies are required to identify candidate genes that may be 

associated with this predisposition.  
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Additionally, further studies will include the following research questions: 

• Are there any associations between the reduction in brain white matter in PE and the 

placenta weight? 

• Can there be expression of placental-like antigens in the brain that produces 

inflammation? 

• Is there a different response in the salt loading model of hypertension in pregnancy? 

• Can certain anti-inflammatory agents mitigate the deleterious effects of hypertension 

on the brain? 

 

 

 

 



165 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER SEVEN 

 

 

 

 

 

 

 

 

 

 

 

  

 

 



166 

 

7.1 REFERENCES 

Aagaard-Tillery, K. M., Silver, R. & Dalton, J. Immunology of normal pregnancy.  Seminars in Fetal 
and Neonatal Medicine, 2006. Elsevier, 279-295. 

Abalos, E., Cuesta, C., Carroli, G., Qureshi, Z., Widmer, M., Vogel, J. & Souza, J. 2014. Pre‐
eclampsia, eclampsia and adverse maternal and perinatal outcomes: a secondary analysis 
of the World Health Organization Multicountry Survey on Maternal and Newborn Health. 
BJOG: An International Journal of Obstetrics & Gynaecology, 121, 14-24. 

Abalos, E., Cuesta, C., Carroli, G., Qureshi, Z., Widmer, M., Vogel, J. & Souza, J. 2014. Pre‐
eclampsia, eclampsia and adverse maternal and perinatal outcomes: a secondary analysis 
of the World Health Organization Multicountry Survey on Maternal and Newborn Health. 
An International Journal of Obstetrics & Gynaecology, 14-24. 

Abheiden, C. N., Van Doornik, R., Aukes, A. M., Van Der Flier, W. M., Scheltens, P. & De Groot, C. 
J. 2015. Hypertensive disorders of pregnancy appear not to be associated with 
Alzheimer's disease later in life. Dementia and geriatric cognitive disorders extra, 5, 375-
385. 

Ademiluyi, A. O., Ogunsuyi, O. B. & Oboh, G. 2016. Alkaloid extracts from Jimson weed (Datura 
stramonium L.) modulate purinergic enzymes in rat brain. Neurotoxicology, 56, 107-117. 

Adewoye, O., Bolarinwa, A. & Olorunsogo, O. 2000. Ca++, Mg++-ATPase activity in insulin-
dependent and non-insulin dependent diabetic Nigerians. African Journal of Medicine 
and Medical Sciences, 29, 195-199. 

Akomolafe, S., Akinyemi, A., Ogunsuyi, O., Oyeleye, S., Oboh, G., Adeoyo, O. & Allismith, Y. 2017. 
Effect of caffeine, caffeic acid and their various combinations on enzymes of cholinergic, 
monoaminergic and purinergic systems critical to neurodegeneration in rat brain—in 
vitro. NeuroToxicology, 62, 6-13. 

Alexander, B. T., Kassab, S. E., Miller, M. T., Abram, S. R., Reckelhoff, J. F., Bennett, W. A. & 
Granger, J. P. 2001. Reduced uterine perfusion pressure during pregnancy in the rat is 
associated with increases in arterial pressure and changes in renal nitric oxide. 
Hypertension, 37, 1191-1195. 

Amaral, L. M., Cunningham Jr, M. W., Cornelius, D. C. & Lamarca, B. 2015. Preeclampsia: long-
term consequences for vascular health. Vascular health and risk management, 11, 403. 

Amburgey, Ö. A., Chapman, A. C., May, V., Bernstein, I. M. & Cipolla, M. J. 2010. Plasma From 
Preeclamptic Women Increases Blood-Brain Barrier Permeability. Hypertension, 56, 1003-
1008. 

Andolf, E. G., Sydsjö, G., Bladh, M. K., Berg, G. & Sharma, S. 2017. Hypertensive disorders in 
pregnancy and later dementia: a Swedish National Register Study. Acta obstetricia et 
gynecologica Scandinavica, 96, 464-471. 

Andreano, J. M. & Cahill, L. 2009. Sex influences on the neurobiology of learning and memory. 
Learning & memory, 16, 248-266. 

Aukes, A., De Groot, J. C., Wiegman, M., Aarnoudse, J., Sanwikarja, G. & Zeeman, G. 2012. Long‐
term cerebral imaging after pre‐eclampsia. BJOG: An International Journal of Obstetrics & 
Gynaecology, 119, 1117-1122. 

Aukes, A. M., De Groot, J. C., Aarnoudse, J. G. & Zeeman, G. G. 2009. Brain lesions several years 
after eclampsia. American journal of obstetrics and gynecology, 200, 504. e1-504. e5. 

Aukes, A. M., Wessel, I., Dubois, A. M., Aarnoudse, J. G. & Zeeman, G. G. 2007. Self-reported 
cognitive functioning in formerly eclamptic women. American Journal of Obstetrics & 
Gynecology, 197, 365. e1-365. e6. 

Backes, C. H., Markham, K., Moorehead, P., Cordero, L., Nankervis, C. A. & Giannone, P. J. 2011. 
Maternal preeclampsia and neonatal outcomes. Journal of pregnancy, 2011. 



167 

 

Baecke, M., Spaanderman, M. E. & Van Der Werf, S. P. 2009. Cognitive function after pre-
eclampsia: an explorative study. Journal of Psychosomatic Obstetrics & Gynecology, 30, 
58-64. 

Baierle, M., Nascimento, S. N., Moro, A. M., Brucker, N., Freitas, F., Gauer, B., Durgante, J., 
Bordignon, S., Zibetti, M. & Trentini, C. M. 2015. Relationship between inflammation and 
oxidative stress and cognitive decline in the institutionalized elderly. Oxidative medicine 
and cellular longevity, 2015. 

Baijnath, S., Soobryan, N., Mackraj, I., Gathiram, P. & Moodley, J. 2014. The optimization of a 
chronic nitric oxide synthase (NOS) inhibition model of pre-eclampsia by evaluating 
physiological changes. European Journal of Obstetrics & Gynecology and Reproductive 
Biology, 182, 71-75. 

Baik, S. H., Cha, M.-Y., Hyun, Y.-M., Cho, H., Hamza, B., Kim, D. K., Han, S.-H., Choi, H., Kim, K. H. & 
Moon, M. 2014. Migration of neutrophils targeting amyloid plaques in Alzheimer's 
disease mouse model. Neurobiology of aging, 35, 1286-1292. 

Barker, D. J. 2006. Adult consequences of fetal growth restriction. Clinical obstetrics and 
gynecology, 49, 270-283. 

Bell, M. J. & Hallenbeck, J. M. 2002. Effects of intrauterine inflammation on developing rat brain. 
Journal of neuroscience research, 70, 570-579. 

Bellamy, L., Casas, J.-P., Hingorani, A. D. & Williams, D. J. 2007. Pre-eclampsia and risk of 
cardiovascular disease and cancer in later life: systematic review and meta-analysis. Bmj, 
335, 974. 

Bhandiwad, A. & Gowda, S. L. 2015. Eclampsia Precedes Pre-Eclampsia. 
Bhat, R. & Steinman, L. 2009. Innate and adaptive autoimmunity directed to the central nervous 

system. Neuron, 64, 123-132. 
Boghossian, N. S., Yeung, E., Mendola, P., Hinkle, S. N., Laughon, S. K., Zhang, C. & Albert, P. S. 

2014. Risk factors differ between recurrent and incident preeclampsia: a hospital-based 
cohort study. Annals of epidemiology, 24, 871-877. e3. 

Bradl, M. & Lassmann, H. 2010. Oligodendrocytes: biology and pathology. Acta neuropathologica, 
119, 37-53. 

Bridges, J. P., Gilbert, J. S., Colson, D., Gilbert, S. A., Dukes, M. P., Ryan, M. J. & Granger, J. P. 
2009. Oxidative stress contributes to soluble fms-like tyrosine kinase-1 induced vascular 
dysfunction in pregnant rats. American journal of hypertension, 22, 564. 

Brown, D. W., Dueker, N., Jamieson, D. J., Cole, J. W., Wozniak, M. A., Stern, B. J., Giles, W. H. & 
Kittner, S. J. 2006. Preeclampsia and the risk of ischemic stroke among young women. 
Stroke, 37, 1055-1059. 

Brown, M. A., Magee, L. A., Kenny, L. C., Karumanchi, S. A., Mccarthy, F. P., Saito, S., Hall, D. R., 
Warren, C. E., Adoyi, G. & Ishaku, S. 2018. Hypertensive disorders of pregnancy: ISSHP 
classification, diagnosis, and management recommendations for international practice. 
Hypertension, 72, 24-43. 

Brussé, I., Duvekot, J., Jongerling, J., Steegers, E. & De Koning, I. 2008. Impaired maternal 
cognitive functioning after pregnancies complicated by severe pre‐eclampsia: a pilot 
case‐control study. Acta obstetricia et gynecologica Scandinavica, 87, 408-412. 

Buonocore, G., Perrone, S., Longini, M., Vezzosi, P., Marzocchi, B., Paffetti, P. & Bracci, R. 2002. 
Oxidative Stress in Preterm Neonates at Birth and on the Seventh Day of Life. Pediatric 
Research, 52, 46. 

Cadnapaphornchai, M. A., Ohara, M., Morris, K. G., Knotek, M., Rogachev, B., Ladtkow, T., Carter, 
E. P. & Schrier, R. W. 2001. Chronic NOS inhibition reverses systemic vasodilation and 
glomerular hyperfiltration in pregnancy. American Journal of Physiology-Renal 
Physiology, 280, F592-F598. 



168 

 

Caprariello, A. V., Batt, C. E., Zippe, I., Romito-Digiacomo, R. R., Karl, M. & Miller, R. H. 2015. 
Apoptosis of oligodendrocytes during early development delays myelination and impairs 
subsequent responses to demyelination. Journal of Neuroscience, 35, 14031-14041. 

Caprariello, A. V., Mangla, S., Miller, R. H. & Selkirk, S. M. 2012. Apoptosis of oligodendrocytes in 
the central nervous system results in rapid focal demyelination. Annals of neurology, 72, 
395-405. 

Cardoso, F. L., Herz, J., Fernandes, A., Rocha, J., Sepodes, B., Brito, M. A., Mcgavern, D. B. & 
Brites, D. 2015. Systemic inflammation in early neonatal mice induces transient and 
lasting neurodegenerative effects. Journal of neuroinflammation, 12, 82. 

Carver, A. R., Andrikopoulou, M., Lei, J., Tamayo, E., Gamble, P., Hou, Z., Zhang, J., Mori, S., Saade, 
G. R. & Costantine, M. M. 2014a. Maternal pravastatin prevents altered fetal brain 
development in a preeclamptic CD-1 mouse model. PloS one, 9, e100873. 

Carver, A. R., Tamayo, E., Perez-Polo, J. R., Saade, G. R., Hankins, G. D. & Costantine, M. M. 2014b. 
The effect of maternal pravastatin therapy on adverse sensorimotor outcomes of the 
offspring in a murine model of preeclampsia. International Journal of Developmental 
Neuroscience, 33, 33-40. 

Cauli, O., Herraiz, S., Pellicer, B., Pellicer, A. & Felipo, V. 2010. Treatment with sildenafil prevents 
impairment of learning in rats born to pre-eclamptic mothers. Neuroscience, 171, 506-
512. 

Cervellati, C., Romani, A., Seripa, D., Cremonini, E., Bosi, C., Magon, S., Bergamini, C. M., Valacchi, 
G., Pilotto, A. & Zuliani, G. 2014. Systemic Oxidative Stress and Conversion to Dementia 
of Elderly Patients with Mild Cognitive Impairment. BioMed Research International, 2014. 

Chaiworapongsa, T., Chaemsaithong, P., Yeo, L. & Romero, R. 2014. Pre-eclampsia part 1: current 
understanding of its pathophysiology. Nature Reviews Nephrology, 10, 466. 

Chan, R. W., Ho, L. C., Zhou, I. Y., Gao, P. P., Chan, K. C. & Wu, E. X. 2015. Structural and functional 
brain remodeling during pregnancy with diffusion tensor MRI and resting-state functional 
MRI. PLoS One, 10, e0144328. 

Chandanwale, A., Langade, D., Sonawane, D. & Gavai, P. 2017. A randomized, clinical trial to 
evaluate efficacy and tolerability of trypsin: chymotrypsin as compared to 
serratiopeptidase and trypsin: bromelain: rutoside in wound management. Advances in 
therapy, 34, 180-198. 

Chen, Q., Zhao, M., Guo, F., Yin, Y., Xiao, J., Stone, P. & Chamley, L. 2015. The reduction of 
circulating levels of IL-6 in pregnant women with preeclampsia by magnesium sulphate 
and nifedipine: in vitro evidence for potential mechanisms. Placenta, 36, 661-666. 

Chen, W. W., Zhang, X. & Huang, W. J. 2016. Role of neuroinflammation in neurodegenerative 
diseases. Molecular medicine reports, 13, 3391-3396. 

Cheng, S.-W., Chou, H.-C., Tsou, K.-I., Fang, L.-J. & Tsao, P.-N. 2004. Delivery before 32 weeks of 
gestation for maternal pre-eclampsia: neonatal outcome and 2-year developmental 
outcome. Early human development, 76, 39-46. 

Cherry, J. D., Olschowka, J. A. & O’banion, M. K. 2014. Neuroinflammation and M2 microglia: the 
good, the bad, and the inflamed. Journal of neuroinflammation, 11, 98. 

Chowdhury, P. & Soulsby, M. 2002. Lipid peroxidation in rat brain is increased by simulated 
weightlessness and decreased by a soy-protein diet. Annals of Clinical & Laboratory 
Science, 32, 188-192. 

Chua, C., Vinukonda, G., Hu, F., Labinskyy, N., Zia, M., Pinto, J., Csiszar, A., Ungvari, Z. & Ballabh, 
P. 2010. Effect of hyperoxic resuscitation on propensity of germinal matrix haemorrhage 
and cerebral injury. Neuropathology and applied neurobiology, 36, 448-458. 

Cipolla, M. J., Sweet, J. G. & Chan, S.-L. 2010. Cerebral vascular adaptation to pregnancy and its 
role in the neurological complications of eclampsia. Journal of Applied Physiology, 110, 
329-339. 



169 

 

Conde-Agudelo, A., Villar, J. & Lindheimer, M. 2008. Maternal infection and risk of preeclampsia: 
systematic review and metaanalysis. American journal of obstetrics and gynecology, 198, 
7-22. 

Cunningham, C. L., Martínez-Cerdeño, V. & Noctor, S. C. 2013. Microglia regulate the number of 
neural precursor cells in the developing cerebral cortex. Journal of Neuroscience, 33, 
4216-4233. 

Dachew, B. A., Mamun, A., Maravilla, J. C. & Alati, R. 2018. Pre-eclampsia and the risk of autism-
spectrum disorder in offspring: meta-analysis. The British Journal of Psychiatry, 212, 142-
147. 

Das, U. N. 2007. Acetylcholinesterase and butyrylcholinesterase as possible markers of low-grade 
systemic inflammation. Medical Science Monitor, 13, RA214-RA221. 

Davis, E. F., Lazdam, M., Lewandowski, A. J., Worton, S. A., Kelly, B., Kenworthy, Y., Adwani, S., 
Wilkinson, A. R., Mccormick, K. & Sargent, I. 2012. Cardiovascular risk factors in children 
and young adults born to preeclamptic pregnancies: a systematic review. Pediatrics, 129, 
e1552-e1561. 

De Leeuw, F. E., De Groot, J. C., Oudkerk, M., Witteman, J., Hofman, A., Van Gijn, J. & Breteler, M. 
2002. Hypertension and cerebral white matter lesions in a prospective cohort study. 
Brain, 125, 765-772. 

Debette, S. & Markus, H. 2010. The clinical importance of white matter hyperintensities on brain 
magnetic resonance imaging: systematic review and meta-analysis. Bmj, 341, c3666. 

Dent, K. A., Christie, K. J., Bye, N., Basrai, H. S., Turbic, A., Habgood, M., Cate, H. S. & Turnley, A. 
M. 2015. Oligodendrocyte birth and death following traumatic brain injury in adult mice. 
PloS one, 10, e0121541. 

Devi, S. A. & Satpati, A. 2017. Oxidative stress and the brain: an insight into cognitive aging. 
Topics in Biomedical Gerontology. Springer. 

Duley, L. The global impact of pre-eclampsia and eclampsia.  Seminars in perinatology, 2009. 
Elsevier, 130-137. 

Ehrenkranz, R. A., Dusick, A. M., Vohr, B. R., Wright, L. L., Wrage, L. A. & Poole, W. K. 2006. 
Growth in the neonatal intensive care unit influences neurodevelopmental and growth 
outcomes of extremely low birth weight infants. Pediatrics, 117, 1253-1261. 

Ellman, G. L. 1959. Tissue sulfhydryl groups. Archives of Biochemistry and Biophysics, 82, 70-77. 
Ellman, G. L., Courtney, K. D., Andres Jr, V. & Featherstone, R. M. 1961. A new and rapid 

colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology, 7, 
88-95. 

Eltounali, S. A., Moodley, J. & Naicker, T. 2017. Role of kidney biomarkers [Kidney injury 
molecule-1, Calbindin, Interleukin-18 and Monocyte chemoattractant protein-1] in HIV 
associated pre-eclampsia. Hypertension in pregnancy, 36, 288-294. 

Endeshaw, M., Abebe, F., Bedimo, M., Asrat, A., Gebeyehu, A. & Keno, A. 2016. Family history of 
hypertension increases risk of preeclampsia in pregnant women: a case-control study. 
Universa Medicina, 35, 181-191. 

English, F. A., Kenny, L. C. & Mccarthy, F. P. 2015. Risk factors and effective management of 
preeclampsia. Integrated blood pressure control, 8, 7. 

Erukainure, O. L., Ijomone, O. M., Oyebode, O. A., Chukwuma, C. I., Aschner, M. & Islam, M. S. 
2019a. Hyperglycemia-induced oxidative brain injury: Therapeutic effects of Cola nitida 
infusion against redox imbalance, cerebellar neuronal insults, and upregulated Nrf2 
expression in type 2 diabetes rats. Food and Chemical Toxicology, 127, 206-217. 

Erukainure, O. L., Mopuri, R., Oyebode, O. A., Koorbanally, N. A. & Islam, M. S. 2017. Dacryodes 
edulis enhances antioxidant activities, suppresses DNA fragmentation in oxidative 
pancreatic and hepatic injuries; and inhibits carbohydrate digestive enzymes linked to 
type 2 diabetes. Biomedicine & Pharmacotherapy, 96, 37-47. 



170 

 

Erukainure, O. L., Oyebode, O. A., Ibeji, C. U., Koorbanally, N. A. & Islam, M. S. 2019b. Vernonia 
Amygdalina Del. stimulated glucose uptake in brain tissues enhances antioxidative 
activities; and modulates functional chemistry and dysregulated metabolic pathways. 
Metabolic Brain Disease. 

Erukainure, O. L., Reddy, R. & Islam, M. S. 2019c. Raffia Palm (Raphia hookeri) Wine Extenuates 
Redox Imbalance and Modulates Activities of Glycolytic and Cholinergic Enzymes in 
Hyperglycemia Induced Testicular Injury in Type 2 Diabetes Rats. Journal of Food 
Biochemistry. 

Faas, M. M., Schuiling, G. A., Baller, J. F., Visscher, C. A. & Bakker, W. W. 1994. A new animal 
model for human preeclampsia: ultra-lowdose endotoxin infusion in pregnant rats. 
American journal of obstetrics and gynecology, 171, 158-164. 

Faas, M. M., Spaans, F. & De Vos, P. 2014. Monocytes and macrophages in pregnancy and pre-
eclampsia. Frontiers in immunology, 5, 298. 

Fan, R. G., Portuguez, M. W. & Nunes, M. L. 2013. Cognition, behavior and social competence of 
preterm low birth weight children at school age. Clinics, 68, 915-921. 

Farina, C., Aloisi, F. & Meinl, E. 2007. Astrocytes are active players in cerebral innate immunity. 
Trends in immunology, 28, 138-145. 

Ferretti, M., Merlini, M., Späni, C., Gericke, C., Schweizer, N., Enzmann, G., Engelhardt, B., Kulic, 
L., Suter, T. & Nitsch, R. 2016. T-cell brain infiltration and immature antigen-presenting 
cells in transgenic models of Alzheimer’s disease-like cerebral amyloidosis. Brain, 
behavior, and immunity, 54, 211-225. 

Fields, J. A., Garovic, V. D., Mielke, M. M., Kantarci, K., Jayachandran, M., White, W. M., Butts, A. 
M., Graff-Radford, J., Lahr, B. D. & Bailey, K. R. 2017. Preeclampsia and cognitive 
impairment later in life. American Journal of Obstetrics & Gynecology, 217, 74. e1-74. 
e11. 

Filiano, A. J., Gadani, S. P. & Kipnis, J. 2015. Interactions of innate and adaptive immunity in brain 
development and function. Brain research, 1617, 18-27. 

Frick, K. M., Kim, J., Tuscher, J. J. & Fortress, A. M. 2015. Sex steroid hormones matter for learning 
and memory: estrogenic regulation of hippocampal function in male and female rodents. 
Learning & Memory, 22, 472-493. 

Gadonski, G., Lamarca, B. B. D., Sullivan, E., Bennett, W., Chandler, D. & Granger, J. P. 2006. 
Hypertension Produced by Reductions in Uterine Perfusion in the Pregnant Rat. 
Hypertension, 48, 711-716. 

Gathiram, P. & Moodley, J. 2016. Pre-eclampsia: its pathogenesis and pathophysiolgy: review 
articles. Cardiovascular journal of Africa, 27, 71-78. 

Gee, P. & Davison, A. J. 1989. Intermediates in the aerobic autoxidation of 6-hydroxydopamine: 
relative importance under different reaction conditions. Free Radical Biology and 
Medicine, 6, 271-284. 

Gilgun-Sherki, Y., Melamed, E. & Offen, D. 2004. The role of oxidative stress in the pathogenesis 
of multiple sclerosis: the need for effective antioxidant therapy. Journal of neurology, 
251, 261-268. 

Gillis, E. E., Mooney, J. N., Garrett, M. R., Granger, J. P. & Sasser, J. M. 2016. Sildenafil treatment 
ameliorates the maternal syndrome of preeclampsia and rescues fetal growth in the dahl 
salt–sensitive rat. Hypertension, 67, 647-653. 

Giovanoli, S., Weber-Stadlbauer, U., Schedlowski, M., Meyer, U. & Engler, H. 2016. Prenatal 
immune activation causes hippocampal synaptic deficits in the absence of overt microglia 
anomalies. Brain, behavior, and immunity, 55, 25-38. 

Gorelick, P. B. 2004. Risk factors for vascular dementia and Alzheimer disease. Stroke, 35, 2620-
2622. 



171 

 

Govender, N., Moodley, J. & Naicker, T. 2018. The use of soluble fms-like tyrosine kinase 
1/placental growth factor ratio in the clinical management of pre-eclampsia. African 
journal of reproductive health, 22, 135-143. 

Govender, N., Naicker, T. & Moodley, J. 2013. Maternal imbalance between pro-angiogenic and 
anti-angiogenic factors in HIV-infected women with pre-eclampsia: cardiovascular topics. 
Cardiovascular journal of Africa, 24, 174-179. 

Grace, T., Bulsara, M., Pennell, C. & Hands, B. 2014. Maternal hypertensive diseases negatively 
affect offspring motor development. Pregnancy Hypertension: An International Journal of 
Women's Cardiovascular Health, 4, 209-214. 

Griffith, M. I., Mann, J. R. & Mcdermott, S. 2011. The risk of intellectual disability in children born 
to mothers with preeclampsia or eclampsia with partial mediation by low birth weight. 
Hypertension in pregnancy, 30, 108-115. 

Guo, F., Sun, F., Yu, J.-L., Wang, Q.-H., Tu, D.-Y., Mao, X.-Y., Liu, R., Wu, K.-C., Xie, N. & Hao, L.-Y. 
2010. Abnormal expressions of glutamate transporters and metabotropic glutamate 
receptor 1 in the spontaneously epileptic rat hippocampus. Brain research bulletin, 81, 
510-516. 

Guo, Q., Lan, J., Zhang, W., Guo, P., Guo, L., Li, Z. & Qiu, Y. 2012. Dynamic expression of cerebral 
cortex and hippocampal glutamate transporters in a rat model of chest compression-
induced global cerebral ischemia. Neural regeneration research, 7, 125. 

Gupte, S. & Wagh, G. 2014. Preeclampsia–eclampsia. The Journal of Obstetrics and Gynecology of 
India, 64, 4-13. 

Hamilton, N. B. & Attwell, D. 2010. Do astrocytes really exocytose neurotransmitters? Nature 
Reviews Neuroscience, 11, 227. 

Hansson, S. R., Nääv, Å. & Erlandsson, L. 2014. Oxidative stress in preeclampsia and the role of 
free fetal hemoglobin. Frontiers in physiology, 5. 

Hansson, S. R., Nääv, Å. & Erlandsson, L. 2015. Oxidative stress in preeclampsia and the role of 
free fetal hemoglobin. Frontiers in physiology, 5, 516-516. 

Hasan, M., Tripathi, S., Ali Mahdi, A., Mitra, K. & Singh Negi, M. P. 2009. Lipofuscin, lipid 
peroxidation and antioxidant status in discrete regions of the aged rat brain. Proceedings 
of the Indian National Science Academy-Part A: Physical Sciences, 75, 173. 

Helmo, F., Lopes, A., Carneiro, A., Campos, C., Silva, P., Dos Reis, M. M., Rocha, L., Dos Reis, M., 
Etchebehere, R. & Machado, J. 2017. Angiogenic and antiangiogenic factors in 
preeclampsia. Pathology, research and practice. 

Helmo, F. R. & Moed, A. M. 2007. Angiogenic and antiangiogenic factors in preeclampsia. Matern 
Child Health J, 11, 199-206. 

Heneka, M. T., Carson, M. J., El Khoury, J., Landreth, G. E., Brosseron, F., Feinstein, D. L., Jacobs, A. 
H., Wyss-Coray, T., Vitorica, J. & Ransohoff, R. M. 2015. Neuroinflammation in 
Alzheimer's disease. The Lancet Neurology, 14, 388-405. 

Hirose, N., Ohkuchi, A., Usui, R., Matsubara, S. & Suzuki, M. 2014. Risk of Preeclampsia in women 
with CKD, dialysis or kidney transplantation. Med J Obstet Gynecol, 2, 1028. 

Hoekzema, E., Barba-Müller, E., Pozzobon, C., Picado, M., Lucco, F., García-García, D., Soliva, J. C., 
Tobeña, A., Desco, M. & Crone, E. A. 2017. Pregnancy leads to long-lasting changes in 
human brain structure. Nature Neuroscience, 20, 287. 

Hopkins, R. O., Beck, C. J., Burnett, D. L., Weaver, L. K., Victoroff, J. & Bigler, E. D. 2006. 
Prevalence of white matter hyperintensities in a young healthy population. Journal of 
Neuroimaging, 16, 243-251. 

Howlader, M. Z. H., Parveen, S., Tamanna, S., Khan, T. A. & Begum, F. 2009. Oxidative stress and 
antioxidant status in neonates born to pre-eclamptic mother. Journal of tropical 
pediatrics, 55, 363-367. 



172 

 

Hoyos, H. C., Rinaldi, M., Mendez-Huergo, S. P., Marder, M., Rabinovich, G. A., Pasquini, J. M. & 
Pasquini, L. A. 2014. Galectin-3 controls the response of microglial cells to limit 
cuprizone-induced demyelination. Neurobiology of disease, 62, 441-455. 

Hu, X., Leak, R. K., Shi, Y., Suenaga, J., Gao, Y., Zheng, P. & Chen, J. 2015. Microglial and 
macrophage polarization [mdash] new prospects for brain repair. Nature Reviews 
Neurology, 11, 56-64. 

Hubel, C. A., Powers, R. W., Snaedal, S., Gammill, H. S., Ness, R. B., Roberts, J. M. & Arngrímsson, 
R. 2008. C-reactive protein is elevated 30 years after eclamptic pregnancy. Hypertension, 
51, 1499-1505. 

Ijomone, O., Shallie, P. & Naicker, T. 2018a. Changes in the structure and function of the brain 
years after Pre-eclampsia. Ageing research reviews, 47, 49. 

Ijomone, O. K., Shallie, P. & Naicker, T. 2018b. Changes in the structure and function of the brain 
years after Pre-eclampsia. Ageing research reviews. 

Ijomone, O. M. & Nwoha, P. U. 2015. Nicotine inhibits hippocampal and striatal 
acetylcholinesterase activities, and demonstrates dual action on adult neuronal 
proliferation and maturation. Pathophysiology, 22, 231-239. 

Ikonomidou, C. & Kaindl, A. M. 2011. Neuronal death and oxidative stress in the developing brain. 
Antioxidants & redox signaling, 14, 1535-1550. 

Infante, S. K., Rea, H. C. & Perez-Polo, J. 2013. Transgenerational effects of neonatal hypoxia-
ischemia in progeny. International Journal of Developmental Neuroscience, 31, 398-405. 

Jeerakathil, T., Wolf, P. A., Beiser, A., Massaro, J., Seshadri, S., D’agostino, R. B. & Decarli, C. 2004. 
Stroke risk profile predicts white matter hyperintensity volume: the Framingham Study. 
Stroke, 35, 1857-1861. 

Jensen, E. C. 2013. Quantitative analysis of histological staining and fluorescence using ImageJ. 
The Anatomical Record, 296, 378-381. 

Johnson, A. C., Tremble, S. M., Chan, S.-L., Moseley, J., Lamarca, B., Nagle, K. J. & Cipolla, M. J. 
2014. Magnesium sulfate treatment reverses seizure susceptibility and decreases 
neuroinflammation in a rat model of severe preeclampsia. PloS one, 9, e113670. 

Kalb, A., Von Haefen, C., Sifringer, M., Tegethoff, A., Paeschke, N., Kostova, M., Feldheiser, A. & 
Spies, C. D. 2013. Acetylcholinesterase inhibitors reduce neuroinflammation and-
degeneration in the cortex and hippocampus of a surgery stress rat model. PLoS One, 8, 
e62679. 

Kaplan, P. W. 2001. The neurologic consequences of eclampsia. The neurologist, 7, 357-363. 
Katz, V. L., Farmer, R. & Kuller, J. A. 2000. Preeclampsia into eclampsia: toward a new paradigm. 

American journal of obstetrics and gynecology, 182, 1389-1396. 
Kay, V. R., Rätsep, M. T., Cahill, L. S., Hickman, A. F., Zavan, B., Newport, M. E., Ellegood, J., 

Laliberte, C. L., Reynolds, J. N. & Carmeliet, P. 2018. Effects of placental growth factor 
deficiency on behavior, neuroanatomy, and cerebrovasculature of mice. Physiological 
genomics, 50, 862-875. 

Kelley, M. H., Wu, W. W., Lei, J., Mclane, M., Xie, H., Hart, K. D., Pereira, L., Burd, I. & Maylie, J. 
2017. Functional changes in hippocampal synaptic signaling in offspring survivors of a 
mouse model of intrauterine inflammation. Journal of neuroinflammation, 14, 180. 

Kettenmann, H., Hanisch, U.-K., Noda, M. & Verkhratsky, A. 2011. Physiology of microglia. 
Physiological reviews, 91, 461-553. 

Khan, K. S., Wojdyla, D., Say, L., Gülmezoglu, A. M. & Van Look, P. F. 2006. WHO analysis of causes 
of maternal death: a systematic review. The lancet, 367, 1066-1074. 

Kinsley, C. H. & Lambert, K. G. 2006. The maternal brain. Scientific American, 294, 72-79. 
Kirsten, T. B., Taricano, M., Maiorka, P. C., Palermo-Neto, J. & Bernardi, M. M. 2010. Prenatal 

lipopolysaccharide reduces social behavior in male offspring. Neuroimmunomodulation, 
17, 240-251. 



173 

 

Kivipelto, M., Helkala, E.-L., Hänninen, T., Laakso, M., Hallikainen, M., Alhainen, K., Soininen, H., 
Tuomilehto, J. & Nissinen, A. 2001. Midlife vascular risk factors and late-life mild cognitive 
impairment a population-based study. Neurology, 56, 1683-1689. 

Koeberle, P. & Bähr, M. 2008. The upregulation of GLAST-1 is an indirect antiapoptotic 
mechanism of GDNF and neurturin in the adult CNS. Cell death and differentiation, 15, 
471. 

Kolb, B., Mychasiuk, R., Williams, P. & Gibb, R. 2011. Brain plasticity and recovery from early 
cortical injury. Developmental Medicine & Child Neurology, 53, 4-8. 

Konrad, K. & Eickhoff, S. B. 2010. Is the ADHD brain wired differently? A review on structural and 
functional connectivity in attention deficit hyperactivity disorder. Human brain mapping, 
31, 904-916. 

Krause, D. L. & Müller, N. 2010. Neuroinflammation, microglia and implications for anti-
inflammatory treatment in Alzheimer's disease. International journal of Alzheimer’s 
disease, 2010. 

Kronenberg, M. E., Raz, S. & Sander, C. J. 2006. Neurodevelopmental outcome in children born to 
mothers with hypertension in pregnancy: the significance of suboptimal intrauterine 
growth. Developmental Medicine and Child Neurology, 48, 200-206. 

Kuller, L. H., Margolis, K. L., Gaussoin, S. A., Bryan, N. R., Kerwin, D., Limacher, M., Wassertheil‐
Smoller, S., Williamson, J. & Robinson, J. G. 2010. Relationship of hypertension, blood 
pressure, and blood pressure control with white matter abnormalities in the Women’s 
Health Initiative Memory Study (WHIMS)—MRI trial. The Journal of Clinical Hypertension, 
12, 203-212. 

Kumar, A., Singh, R. L. & Babu, G. N. 2010. Cell death mechanisms in the early stages of acute 
glutamate neurotoxicity. Neuroscience research, 66, 271-278. 

Kundu, B., Ghosh, I., Sengupta, G. & Bhattarcharyya, S. 2014. Anomalous origin of left vertebral 
artery. 

Lamarca, B., Parrish, M., Ray, L. F., Murphy, S. R., Roberts, L., Glover, P., Wallukat, G., Wenzel, K., 
Cockrell, K. & Martin, J. N. 2009. Hypertension in response to autoantibodies to the 
angiotensin II type I receptor (AT1-AA) in pregnant rats. Hypertension, 54, 905-909. 

Lamarca, B., Speed, J., Ray, L. F., Cockrell, K., Wallukat, G., Dechend, R. & Granger, J. 2011. 
Hypertension in response to IL-6 during pregnancy: role of AT1-receptor activation. 
International journal of interferon, cytokine and mediator research: IJIM, 2011, 65. 

Lamarca, B. B. D., Bennett, W. A., Alexander, B. T., Cockrell, K. & Granger, J. P. 2005a. 
Hypertension produced by reductions in uterine perfusion in the pregnant rat. 
Hypertension, 46, 1022-1025. 

Lamarca, B. B. D., Cockrell, K., Sullivan, E., Bennett, W. & Granger, J. P. 2005b. Role of endothelin 
in mediating tumor necrosis factor-induced hypertension in pregnant rats. Hypertension, 
46, 82-86. 

Leffert, L. R., Clancy, C. R., Bateman, B. T., Bryant, A. S. & Kuklina, E. V. 2015. Hypertensive 
disorders and pregnancy-related stroke: frequency, trends, risk factors, and outcomes. 
Obstetrics and gynecology, 125, 124. 

Lin, W.-M., Chen, M.-H., Wang, H.-C., Lu, C.-H., Chen, P.-C., Chen, H.-L., Tsai, N.-W., Su, Y.-J., Li, S.-
H. & Kung, C.-T. 2014. Association between peripheral oxidative stress and white matter 
damage in acute traumatic brain injury. BioMed research international, 2014. 

Lindheimer, M. D., Taylor, R. N., Roberts, J. M., Cunningham, F. G. & Chesley, L. 2015. 
Introduction, history, controversies, and definitions. Chesley's Hypertensive Disorders in 
Pregnancy (Fourth Edition). Elsevier. 

Lisonkova, S. & Joseph, K. 2013. Incidence of preeclampsia: risk factors and outcomes associated 
with early-versus late-onset disease. American journal of obstetrics and gynecology, 209, 
544. e1-544. e12. 



174 

 

Liu, X., Zhao, W., Liu, H., Kang, Y., Ye, C., Gu, W., Hu, R. & Li, X. 2016. Developmental and 
functional brain impairment in offspring from preeclampsia-like rats. Molecular 
neurobiology, 53, 1009-1019. 

Liu, Y., Xie, X., Xia, L.-P., Lv, H., Lou, F., Ren, Y., He, Z.-Y. & Luo, X.-G. 2017. Peripheral immune 
tolerance alleviates the intracranial lipopolysaccharide injection-induced 
neuroinflammation and protects the dopaminergic neurons from neuroinflammation-
related neurotoxicity. Journal of neuroinflammation, 14, 223. 

Liu, Y. P., Yang, C. S., Chen, M. C., Sun, S. H. & Tzeng, S. F. 2010. Ca2+‐dependent reduction of 
glutamate aspartate transporter GLAST expression in astrocytes by P2X7 receptor‐
mediated phosphoinositide 3‐kinase signaling. Journal of neurochemistry, 113, 213-227. 

Luan, Y. & Yao, Y. 2018. The Potential Role and Clinical Significance of C-reactive Protein in 
Chronic Inflammatory and Neurodegenerative Diseases. Frontiers in immunology, 9, 
1302. 

Lubarsky, S. L., Barton, J. R., Friedman, S. A., Nasreddine, S., Ramadan, M. K. & Sibai, B. M. 1994. 
Late postpartum eclampsia revisited. Obstetrics & Gynecology, 83, 502&hyhen. 

Mackay, A. P., Berg, C. J. & Atrash, H. K. 2001. Pregnancy-related mortality from preeclampsia 
and eclampsia. Obstetrics & Gynecology, 97, 533-538. 

Maguire, J., Ferando, I., Simonsen, C. & Mody, I. 2009. Excitability changes related to GABAA 
receptor plasticity during pregnancy. Journal of Neuroscience, 29, 9592-9601. 

Mallard, C. 2012. Innate immune regulation by toll-like receptors in the brain. ISRN neurology, 
2012. 

Mallard, C., Welin, A.-K., Peebles, D., Hagberg, H. & Kjellmer, I. 2003. White matter injury 
following systemic endotoxemia or asphyxia in the fetal sheep. Neurochemical research, 
28, 215-223. 

Mann, J. R. & Mcdermott, S. 2011. Are maternal genitourinary infection and pre-eclampsia 
associated with ADHD in school-aged children? Journal of attention disorders, 15, 667-
673. 

Marchi, N., Tierney, W., Alexopoulos, A. V., Puvenna, V., Granata, T. & Janigro, D. 2011. The 
etiological role of blood-brain barrier dysfunction in seizure disorders. Cardiovascular 
psychiatry and neurology, 2011. 

Markesbery, W. R. & Lovell, M. A. 2006. DNA oxidation in Alzheimer's disease. Antioxidants & 
redox signaling, 8, 2039-2045. 

Marseglia, L., D’angelo, G., Manti, S., Arrigo, T., Barberi, I., Reiter, R. J. & Gitto, E. 2014. Oxidative 
stress-mediated aging during the fetal and perinatal periods. Oxidative medicine and 
cellular longevity, 2014. 

Matute, C., Torre, I., Pérez-Cerdá, F., Pérez-Samartín, A., Alberdi, E., Etxebarria, E., Arranz, A. M., 
Ravid, R., Rodríguez-Antigüedad, A. & Sánchez-Gómez, M. 2007. P2X7 receptor blockade 
prevents ATP excitotoxicity in oligodendrocytes and ameliorates experimental 
autoimmune encephalomyelitis. Journal of Neuroscience, 27, 9525-9533. 

Maynard, S. E. & Karumanchi, S. A. Angiogenic factors and preeclampsia.  Seminars in nephrology, 
2011. Elsevier, 33-46. 

Mcdonald, S. D., Malinowski, A., Zhou, Q., Yusuf, S. & Devereaux, P. J. 2008. Cardiovascular 
sequelae of preeclampsia/eclampsia: a systematic review and meta-analyses. American 
heart journal, 156, 918-930. 

Melchiorre, K., Sutherland, G. R., Liberati, M. & Thilaganathan, B. 2011. Preeclampsia is 
associated with persistent postpartum cardiovascular impairment. Hypertension, 
HYPERTENSIONAHA. 111.176537. 

Merkle, F. T., Tramontin, A. D., García-Verdugo, J. M. & Alvarez-Buylla, A. 2004. Radial glia give 
rise to adult neural stem cells in the subventricular zone. Proceedings of the National 
Academy of Sciences, 101, 17528-17532. 



175 

 

Mielke, M. M., Milic, N. M., Weissgerber, T. L., White, W. M., Kantarci, K., Mosley, T. H., 
Windham, B. G., Simpson, B. N., Turner, S. T. & Garovic, V. D. 2016. Impaired cognition 
and brain atrophy decades after hypertensive pregnancy disorders. Circulation: 
Cardiovascular Quality and Outcomes, 9, S70-S76. 

Minire, A., Mirton, M., Imri, V., Lauren, M. & Aferdita, M. 2013. Maternal complications of 
preeclampsia. Med Arh, 67, 339-341. 

Moodley, J. 2011. Maternal deaths associated with hypertension in South Africa: lessons to learn 
from the Saving Mothers report, 2005-2007: cardiovascular topics. Cardiovascular journal 
of Africa, 22, 31-35. 

Morales, I., Guzmán-Martínez, L., Cerda-Troncoso, C., Farías, G. A. & Maccioni, R. B. 2014. 
Neuroinflammation in the pathogenesis of Alzheimer’s disease. A rational framework for 
the search of novel therapeutic approaches. Frontiers in cellular neuroscience, 8, 112. 

Moya, J., Phillips, L., Sanford, J., Wooton, M., Gregg, A. & Schuda, L. 2014. A review of 
physiological and behavioral changes during pregnancy and lactation: Potential exposure 
factors and data gaps. Journal of Exposure Science and Environmental Epidemiology, 24, 
449. 

Mundhava, S. G., Mehta, D. S. & Thaker, S. J. 2016. A comparative study to evaluate anti-
inflammatory and analgesic activity of commonly used proteolytic enzymes and their 
combination with diclofenac in rats. Int. J. Pharm. Sci. Res, 7, 2615-2619. 

Murphy, S. R., Lamarca, B. B. D., Cockrell, K. & Granger, J. P. 2010. Role of endothelin in mediating 
soluble fms-like tyrosine kinase 1–induced hypertension in pregnant rats. Hypertension, 
55, 394-398. 

Mushtaq, G., H Greig, N., A Khan, J. & A Kamal, M. 2014. Status of acetylcholinesterase and 
butyrylcholinesterase in Alzheimer's disease and type 2 diabetes mellitus. CNS & 
Neurological Disorders-Drug Targets (Formerly Current Drug Targets-CNS & Neurological 
Disorders), 13, 1432-1439. 

Myatt, L. 2002. Role of placenta in preeclampsia. Endocrine, 19, 103-111. 
Mychasiuk, R., Ilnytskyy, S., Kovalchuk, O., Kolb, B. & Gibb, R. 2011. Intensity matters: brain, 

behaviour and the epigenome of prenatally stressed rats. Neuroscience, 180, 105-110. 
Nafee, T., Farrell, W., Carroll, W., Fryer, A. & Ismail, K. 2008. Review article: Epigenetic control of 

fetal gene expression. BJOG: An International Journal of Obstetrics & Gynaecology, 115, 
158-168. 

Nankali, A., Malek-Khosravi, S., Zangeneh, M., Rezaei, M., Hemati, Z. & Kohzadi, M. 2013. 
Maternal complications associated with severe preeclampsia. The Journal of Obstetrics 
and Gynecology of India, 63, 112-115. 

Nathan, H. L., Seed, P. T., Hezelgrave, N. L., De Greeff, A., Lawley, E., Conti-Ramsden, F., Anthony, 
J., Steyn, W., Hall, D. R. & Chappell, L. C. 2018. Maternal and perinatal adverse outcomes 
in women with pre-eclampsia cared for at facility-level in South Africa: a prospective 
cohort study. Journal of global health, 8. 

Nave, K.-A. 2010. Myelination and support of axonal integrity by glia. Nature, 468, 244. 
Negi, R., Pande, D., Karki, K., Khanna, R. & Khanna, H. 2011. Oxidative stress and preeclampsia. 

Advances in Life Sciences, 1, 20-3. 
Nelander, M., Cnattingius, S., Åkerud, H., Wikström, J., Pedersen, N. & Wikström, A.-K. 2016. 

Pregnancy hypertensive disease and risk of dementia and cardiovascular disease in 
women aged 65 years or older: a cohort study. BMJ open, 6, e009880. 

Oatridge, A., Holdcroft, A., Saeed, N., Hajnal, J. V., Puri, B. K., Fusi, L. & Bydder, G. M. 2002. 
Change in brain size during and after pregnancy: study in healthy women and women 
with preeclampsia. American Journal of Neuroradiology, 23, 19-26. 

Oby, E. & Janigro, D. 2006. The blood–brain barrier and epilepsy. Epilepsia, 47, 1761-1774. 
Organization, W. H. & Unicef 2017. Managing complications in pregnancy and childbirth: a guide 

for midwives and doctors. 



176 

 

Pantoni, L. 2010. Cerebral small vessel disease: from pathogenesis and clinical characteristics to 
therapeutic challenges. The Lancet Neurology, 9, 689-701. 

Pantoni, L., Garcia, J. H. & Gutierrez, J. A. 1996. Cerebral white matter is highly vulnerable to 
ischemia. Stroke, 27, 1641-6; discussion 1647. 

Parkin, G. M., Udawela, M., Gibbons, A. & Dean, B. 2018. Glutamate transporters, EAAT1 and 
EAAT2, are potentially important in the pathophysiology and treatment of schizophrenia 
and affective disorders. World journal of psychiatry, 8, 51. 

Pasquini, L. A., Millet, V., Hoyos, H. C., Giannoni, J., Croci, D., Marder, M., Liu, F.-T., Rabinovich, G. 
A. & Pasquini, J. M. 2011. Galectin-3 drives oligodendrocyte differentiation to control 
myelin integrity and function. Cell death and differentiation, 18, 1746. 

Patel, J. R. & Klein, R. S. 2011. Mediators of oligodendrocyte differentiation during remyelination. 
FEBS letters, 585, 3730-3737. 

Pellicer, B., Herraiz, S., Leal, A., Simón, C. & Pellicer, A. 2011. Prenatal brain damage in 
preeclamptic animal model induced by gestational nitric oxide synthase inhibition. 
Journal of pregnancy, 2011. 

Pescosolido, M. F., Yang, U., Sabbagh, M. & Morrow, E. M. 2012. Lighting a path: genetic studies 
pinpoint neurodevelopmental mechanisms in autism and related disorders. Dialogues in 
clinical neuroscience, 14, 239. 

Pinheiro, M. B., Martins-Filho, O. A., Mota, A. P. L., Alpoim, P. N., Godoi, L. C., Silveira, A. C., 
Teixeira-Carvalho, A., Gomes, K. B. & Dusse, L. M. 2013. Severe preeclampsia goes along 
with a cytokine network disturbance towards a systemic inflammatory state. Cytokine, 
62, 165-173. 

Pinheiro, T., Brunetto, S., Ramos, J., Bernardi, J. & Goldani, M. 2016. Hypertensive disorders 
during pregnancy and health outcomes in the offspring: a systematic review. Journal of 
developmental origins of health and disease, 7, 391-407. 

Podjarny, E., Bernheim, J., Rathaus, M., Pomeranz, A., Tovbin, D. & Shapira, J. 1992. Adriamycin 
nephropathy: a model to study effects of pregnancy on renal disease in rats. American 
Journal of Physiology-Renal Physiology, 263, F711-F715. 

Podjarny, E., Haskiah, A., Bernheim, J., Green, J. & Rathaus, M. 1995. Effect of diltiazem and 
methyldopa on gestation-related renal complications in rats with adriamycin nephrosis. 
Relationship to glomerular prostanoid synthesis. Nephrology Dialysis Transplantation, 10, 
1598-1602. 

Podjarny, E., Losonczy, G. & Baylis, C. Animal models of preeclampsia.  Seminars in nephrology, 
2004. Elsevier, 596-606. 

Popescu, B. O. 2013. Triggers and effectors of oxidative stress at blood-brain barrier level: 
relevance for brain ageing and neurodegeneration. Oxidative medicine and cellular 
longevity, 2013. 

Popovich, P. G., Guan, Z., Wei, P., Huitinga, I., Van Rooijen, N. & Stokes, B. T. 1999. Depletion of 
hematogenous macrophages promotes partial hindlimb recovery and neuroanatomical 
repair after experimental spinal cord injury. Experimental neurology, 158, 351-365. 

Postma, I. R., Bouma, A., Ankersmit, I. F. & Zeeman, G. G. 2014a. Neurocognitive functioning 
following preeclampsia and eclampsia: a long-term follow-up study. American journal of 
obstetrics and gynecology, 211, 37. e1-37. e9. 

Postma, I. R., Bouma, A., De Groot, J. C., Aukes, A. M., Aarnoudse, J. G. & Zeeman, G. G. 2016. 
Cerebral white matter lesions, subjective cognitive failures, and objective neurocognitive 
functioning: a follow-up study in women after hypertensive disorders of pregnancy. 
Journal of clinical and experimental neuropsychology, 38, 585-598. 

Postma, I. R., Slager, S., Kremer, H. P., De Groot, J. C. & Zeeman, G. G. 2014b. Long-term 
consequences of the posterior reversible encephalopathy syndrome in eclampsia and 
preeclampsia: a review of the obstetric and nonobstetric literature. Obstetrical & 
gynecological survey, 69, 287-300. 



177 

 

Poston, L. 2006. Endothelial dysfunction in pre-eclampsia. Pharmacological reports, 58, 69. 
Pott Godoy, M. C., Tarelli, R., Ferrari, C. C., Sarchi, M. I. & Pitossi, F. J. 2008. Central and systemic 

IL-1 exacerbates neurodegeneration and motor symptoms in a model of Parkinson's 
disease. Brain, 131, 1880-1894. 

Purves, D., Augustine, G., Fitzpatrick, D., Hall, W., Lamanita, A. & Mcnamara, J. 2008. 
‘Neurotransmitter and their receptors. Neuroscience, 4th Edn. ed. GJ Augustine 
(Sunderland, MA: Sinauer Associates, Inc.), 129-131. 

Puschett, J., Agunanne, E. & Uddin, M. 2010. Marinobufagenin, resibufogenin and preeclampsia. 
Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1802, 1246-1253. 

Qin, X.-Y., Zhang, S.-P., Cao, C., Loh, Y. P. & Cheng, Y. 2016. Aberrations in peripheral 
inflammatory cytokine levels in Parkinson disease: a systematic review and meta-
analysis. JAMA neurology, 73, 1316-1324. 

Ransohoff, R. M., Schafer, D., Vincent, A., Blachère, N. E. & Bar-Or, A. 2015. Neuroinflammation: 
ways in which the immune system affects the brain. Neurotherapeutics, 12, 896-909. 

Rathaus, M., Podjarny, E., Pomeranz, A., Green, J. & Bernheim, J. 1995. Adriamycin-related 
hypertension in pregnant rats: response to a thromboxane receptor antagonist. Clinical 
Science, 88, 623-627. 

Rätsep, M., Kay, V., Luna, R., Zavan, B., Hickman, A., Maser, B., Smith, G., Reynolds, J., Paolozza, 
A. & Stroman, P. 2015. Impact of placental growth factor and preeclampsia on brain 
development, cognition, and behaviour. Placenta, 36, A37. 

Rätsep, M., Paolozza, A., Hickman, A., Maser, B., Kay, V., Mohammad, S., Pudwell, J., Smith, G., 
Brien, D. & Stroman, P. 2016. Brain structural and vascular anatomy is altered in offspring 
of pre-eclamptic pregnancies: a pilot study. American Journal of Neuroradiology, 37, 939-
945. 

Redman, C. & Sargent, I. 2003. Pre-eclampsia, the placenta and the maternal systemic 
inflammatory response—a review. Placenta, 24, S21-S27. 

Redman, C. W. & Sargent, I. L. 2005. Latest advances in understanding preeclampsia. Science, 
308, 1592-1594. 

Riazi, K., Galic, M. A., Kuzmiski, J. B., Ho, W., Sharkey, K. A. & Pittman, Q. J. 2008. Microglial 
activation and TNFα production mediate altered CNS excitability following peripheral 
inflammation. Proceedings of the National Academy of Sciences, 105, 17151-17156. 

Rich-Edwards, J., Ness, R. & Roberts, J. 2014. Epidemiology of pregnancy-related hypertension. 
Chesley's Hypertensive Disorders in Pregnancy. Fourth ed: Academic Press/Elsevier. 

Roberts, J. M. & Hubel, C. A. 2009. The two stage model of preeclampsia: variations on the 
theme. Placenta, 30, 32-37. 

Roberts, J. M. & Redman, C. W. 1993. Pre-eclampsia: more than pregnancy-induced 
hypertension. The Lancet, 341, 1447-1451. 

Romero, R. & Chaiworapongsa, T. 2013. Preeclampsia: a link between trophoblast dysregulation 
and an antiangiogenic state. The Journal of clinical investigation, 123, 2775. 

Roos, N. M., Wiegman, M. J., Jansonius, N. M. & Zeeman, G. G. 2012. Visual disturbances in (pre) 
eclampsia. Obstetrical & gynecological survey, 67, 242-250. 

Rosenberg, T. J., Garbers, S., Lipkind, H. & Chiasson, M. A. 2005. Maternal obesity and diabetes as 
risk factors for adverse pregnancy outcomes: differences among 4 racial/ethnic groups. 
American journal of public health, 95, 1545-1551. 

Rosenblatt, J. S., Mayer, A. D. & Giordano, A. L. 1988. Hormonal basis during pregnancy for the 
onset of maternal behavior in the rat. Psychoneuroendocrinology, 13, 29-46. 

Ross, M. 2000. Could oxidative stress be a factor in neurodevelopmental disorders? 
Prostaglandins, Leukotrienes and Essential Fatty Acids (PLEFA), 63, 61-63. 

Rothstein, J. D., Dykes-Hoberg, M., Pardo, C. A., Bristol, L. A., Jin, L., Kuncl, R. W., Kanai, Y., 
Hediger, M. A., Wang, Y. & Schielke, J. P. 1996. Knockout of glutamate transporters 



178 

 

reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. 
Neuron, 16, 675-686. 

Saleem, Z. M., Ahmed, S. & Hasan, M. M. 2016. Phaseolus lunatus linn: botany, medicinal uses, 
phytochemistry and pharmacology. World Journal of Pharmacy and Pharmaceutical 
Sciences, 5, 87-93. 

Samra, K. A. 2013. The eye and visual system in the preeclampsia/eclampsia syndrome: What to 
expect? Saudi Journal of Ophthalmology, 27, 51-53. 

Sanchez, S. E., Qiu, C., Williams, M. A., Lam, N. & Sorensen, T. K. 2008. Headaches and migraines 
are associated with an increased risk of preeclampsia in Peruvian women. American 
journal of hypertension, 21, 360-364. 

Saving Mothers 2014-2016: Seventh triennial report on confidential enquiries into maternal 
deaths in South Africa: Short report 

Schetinger, M. R. C., Morsch, V. M., Bonan, C. D. & Wyse, A. T. 2007. NTPDase and 5'-
nucleotidase activities in physiological and disease conditions: new perspectives for 
human health. Biofactors, 31, 77-98. 

Schiessl, B. 2007. Inflammatory response in preeclampsia. Molecular aspects of medicine, 28, 
210-219. 

Schmidt, R., Ropele, S., Enzinger, C., Petrovic, K., Smith, S., Schmidt, H., Matthews, P. M. & 
Fazekas, F. 2005. White matter lesion progression, brain atrophy, and cognitive decline: 
the Austrian stroke prevention study. Annals of neurology, 58, 610-616. 

Schreurs, M. P. & Cipolla, M. J. 2013. Pregnancy enhances the effects of hypercholesterolemia on 
posterior cerebral arteries. Reproductive Sciences, 20, 391-399. 

Serenius, F., Källén, K., Blennow, M., Ewald, U., Fellman, V., Holmström, G., Lindberg, E., 
Lundqvist, P., Maršál, K. & Norman, M. 2013. Neurodevelopmental outcome in extremely 
preterm infants at 2.5 years after active perinatal care in Sweden. Jama, 309, 1810-1820. 

Shingo, T., Gregg, C., Enwere, E., Fujikawa, H., Hassam, R., Geary, C., Cross, J. C. & Weiss, S. 2003. 
Pregnancy-stimulated neurogenesis in the adult female forebrain mediated by prolactin. 
Science, 299, 117-120. 

Shoji, H., Ikeda, N., Hosozawa, M., Ohkawa, N., Matsunaga, N., Suganuma, H., Hisata, K., Tanaka, 
K. & Shimizu, T. 2014. Oxidative stress early in infancy and neurodevelopmental outcome 
in very low‐birthweight infants. Pediatrics International, 56, 709-713. 

Shytle, R. D., Mori, T., Townsend, K., Vendrame, M., Sun, N., Zeng, J., Ehrhart, J., Silver, A. A., 
Sanberg, P. R. & Tan, J. 2004. Cholinergic modulation of microglial activation by α7 
nicotinic receptors. Journal of neurochemistry, 89, 337-343. 

Sibai, B. M., Lindheimer, M., Hauth, J., Caritis, S., Vandorsten, P., Klebanoff, M., Macpherson, C., 
Landon, M., Miodovnik, M. & Paul, R. 1998. Risk factors for preeclampsia, abruptio 
placentae, and adverse neonatal outcomes among women with chronic hypertension. 
New England Journal of Medicine, 339, 667-671. 

Siepmann, T., Boardman, H., Bilderbeck, A., Griffanti, L., Kenworthy, Y., Zwager, C., Mckean, D., 
Francis, J., Neubauer, S. & Grace, Z. Y. 2017. Long-term cerebral white and gray matter 
changes after preeclampsia. Neurology, 88, 1256-1264. 

Siqueira, I. R., Fochesatto, C., De Andrade, A., Santos, M., Hagen, M., Bello-Klein, A. & Netto, C. A. 
2005. Total antioxidant capacity is impaired in different structures from aged rat brain. 
International journal of developmental neuroscience, 23, 663-671. 

Sobaih, B. H. 2018. Long-term cognitive outcome of very low birth-weight Saudi preterm infants 
at the corrected age of 24-36 month. Saudi medical journal, 39, 368. 

Soleimani, F., Zaheri, F. & Abdi, F. 2014. Long-term neurodevelopmental outcomes after preterm 
birth. Iranian Red Crescent Medical Journal, 16. 

Soma-Pillay, P., Suleman, F., Makin, J. & Pattinson, R. 2017. Cerebral white matter lesions after 
pre-eclampsia. Pregnancy Hypertension: An International Journal of Women's 
Cardiovascular Health, 8, 15-20. 



179 

 

Soobryan, N., Murugesan, S., Phoswa, W., Gathiram, P., Moodley, J. & Mackraj, I. 2017. The 
effects of sildenafil citrate on uterine angiogenic status and serum inflammatory markers 
in an L-NAME rat model of pre-eclampsia. European journal of pharmacology, 795, 101-
107. 

Steegers, E. A., Von Dadelszen, P., Duvekot, J. J. & Pijnenborg, R. 2010. Pre-eclampsia. The Lancet, 
376, 631-644. 

Stolp, H. B., Turnquist, C., Dziegielewska, K. M., Saunders, N. R., Anthony, D. C. & Molnar, Z. 2011. 
Reduced ventricular proliferation in the foetal cortex following maternal inflammation in 
the mouse. Brain, 134, 3236-3248. 

Streit, W. J., Mrak, R. E. & Griffin, W. S. T. 2004. Microglia and neuroinflammation: a pathological 
perspective. Journal of neuroinflammation, 1, 14. 

Szarka, A., Rigó, J., Lázár, L., Bekő, G. & Molvarec, A. 2010. Circulating cytokines, chemokines and 
adhesion molecules in normal pregnancy and preeclampsia determined by multiplex 
suspension array. BMC immunology, 11, 59. 

Tahraoui, S., Marret, S., Bodenant, C., Leroux, P., Dommergues, M., Evrard, P. & Gressens, P. 
2001. Central role of microglia in neonatal excitotoxic lesions of the murine 
periventricular white matter. Brain pathology, 11, 56-71. 

Takaki, J., Fujimori, K., Miura, M., Suzuki, T., Sekino, Y. & Sato, K. 2012. L-glutamate released from 
activated microglia downregulates astrocytic L-glutamate transporter expression in 
neuroinflammation: the ‘collusion’hypothesis for increased extracellular L-glutamate 
concentration in neuroinflammation. Journal of neuroinflammation, 9, 275. 

Takatsuru, Y., Iino, M., Tanaka, K. & Ozawa, S. 2007. Contribution of glutamate transporter GLT-1 
to removal of synaptically released glutamate at climbing fiber-Purkinje cell synapses. 
Neuroscience letters, 420, 85-89. 

Tanaka, S., Ide, M., Shibutani, T., Ohtaki, H., Numazawa, S., Shioda, S. & Yoshida, T. 2006. 
Lipopolysaccharide‐induced microglial activation induces learning and memory deficits 
without neuronal cell deathin rats. Journal of neuroscience research, 83, 557-566. 

Taylor, R. N., Roberts, J. M., Cunningham, F. G. & Lindheimer, M. D. 2014. Chesley's hypertensive 
disorders in pregnancy, Elsevier. 

Ten, V. S. & Starkov, A. 2012. Hypoxic-ischemic injury in the developing brain: the role of reactive 
oxygen species originating in mitochondria. Neurology research international, 2012. 

Terán, Y., Ponce, O., Betancourt, L., Hernández, L. & Rada, P. 2012. Amino acid profile of plasma 
and cerebrospinal fluid in preeclampsia. Pregnancy Hypertension: An International 
Journal of Women's Cardiovascular Health, 2, 416-422. 

Tilleux, S. & Hermans, E. 2007. Neuroinflammation and regulation of glial glutamate uptake in 
neurological disorders. Journal of neuroscience research, 85, 2059-2070. 

Tong, X.-K., Trigiani, L. J. & Hamel, E. 2019. High cholesterol triggers white matter alterations and 
cognitive deficits in a mouse model of cerebrovascular disease: benefits of simvastatin. 
Cell death & disease, 10, 89. 

Tosun, M., Celik, H., Avci, B., Yavuz, E., Alper, T. & Malatyalioğlu, E. 2010. Maternal and umbilical 
serum levels of interleukin-6, interleukin-8, and tumor necrosis factor-α in normal 
pregnancies and in pregnancies complicated by preeclampsia. The Journal of Maternal-
Fetal & Neonatal Medicine, 23, 880-886. 

Tyagi, E., Agrawal, R., Nath, C. & Shukla, R. 2008. Influence of LPS-induced neuroinflammation on 
acetylcholinesterase activity in rat brain. Journal of neuroimmunology, 205, 51-56. 

Tyagi, E., Agrawal, R., Nath, C. & Shukla, R. 2010. Effect of melatonin on neuroinflammation and 
acetylcholinesterase activity induced by LPS in rat brain. European journal of 
pharmacology, 640, 206-210. 

Van Eldik, L. J., Carrillo, M. C., Cole, P. E., Feuerbach, D., Greenberg, B. D., Hendrix, J. A., Kennedy, 
M., Kozauer, N., Margolin, R. A. & Molinuevo, J. L. 2016. The roles of inflammation and 



180 

 

immune mechanisms in Alzheimer's disease. Alzheimer's & Dementia: Translational 
Research & Clinical Interventions, 2, 99-109. 

Van Putten, M., Aartsma-Rus, A. & Louvain-La-Neuve, L. 2016. The use of hanging wire tests to 
monitor muscle strength and condition over time. TREAT-NMD Neuromuscular Network, 
4, 1-12. 

Vanderlelie, J., Venardos, K. & Perkins, A. V. 2004. Selenium deficiency as a model of 
experimental pre-eclampsia in rats. Reproduction, 128, 635-641. 

Vaughan, J. E. & Walsh, S. W. 2012. Activation of NF-κB in placentas of women with preeclampsia. 
Hypertension in pregnancy, 31, 243-251. 

Veltkamp, R., Kupsch, A., Polasek, J., Yousry, T. & Pfister, H. 2000. Late onset postpartum 
eclampsia without pre-eclamptic prodromi: clinical and neuroradiological presentation in 
two patients. Journal of Neurology, Neurosurgery & Psychiatry, 69, 824-827. 

Veronica, M., Jaime, L. & Alvaro, C. 2006. Antioxidant activity and lipid peroxidation in 
preeclampsia. Biol Res, 39, 229-36. 

Von Dadelszen, P., Magee, L. A. & Roberts, J. M. 2003. Subclassification of preeclampsia. 
Hypertension in pregnancy, 22, 143-148. 

Vorhees, C. V. & Williams, M. T. 2006. Morris water maze: procedures for assessing spatial and 
related forms of learning and memory. Nature protocols, 1, 848-858. 

Waldbaum, S. & Patel, M. 2010. Mitochondrial dysfunction and oxidative stress: a contributing 
link to acquired epilepsy? Journal of bioenergetics and biomembranes, 42, 449-455. 

Wallace, K., Harris, S. & Bean, C. 2019. The Cerebral Circulation During Pregnancy and 
Preeclampsia. Sex Differences in Cardiovascular Physiology and Pathophysiology. Elsevier. 

Wan, Y., Xu, J., Ma, D., Zeng, Y., Cibelli, M. & Maze, M. 2007. Postoperative impairment of 
cognitive function in ratsa possible role for cytokine-mediated inflammation in the 
Hippocampus. Anesthesiology: The Journal of the American Society of Anesthesiologists, 
106, 436-443. 

Wang, J., Zhang, H.-Y. & Tang, X.-C. 2009a. Cholinergic deficiency involved in vascular dementia: 
possible mechanism and strategy of treatment. Acta pharmacologica sinica, 30, 879. 

Wang, L.-W., Chang, Y.-C., Lin, C.-Y., Hong, J.-S. & Huang, C.-C. 2010. Low-dose lipopolysaccharide 
selectively sensitizes hypoxic ischemia-induced white matter injury in the immature 
brain. Pediatric Research, 68, 41. 

Wang, X., Hellgren, G., Löfqvist, C., Li, W., Hellström, A., Hagberg, H. & Mallard, C. 2009b. White 
matter damage after chronic subclinical inflammation in newborn mice. Journal of child 
neurology, 24, 1171-1178. 

Wang, X. & Michaelis, E. K. 2010. Selective neuronal vulnerability to oxidative stress in the brain. 
Frontiers in aging neuroscience, 2, 12. 

Wang, Y., Zhang, Y., Lewis, D., Gu, Y., Li, H., Granger, D. & Alexander, J. 2003. Protease 
chymotrypsin mediates the endothelial expression of P-and E-selectin, but not ICAM and 
VCAM, induced by placental trophoblasts from pre-eclamptic pregnancies. Placenta, 24, 
851-861. 

Ware‐Jauregui, S., Sanchez, S. E., Zhang, C., Laraburre, G., King, I. B. & Williams, M. A. 1999. 
Plasma lipid concentrations in preeclamptic and normotensive Peruvian women. 
International Journal of Gynecology & Obstetrics, 67, 147-155. 

Whitehouse, A. J., Holt, B. J., Serralha, M., Holt, P. G., Kusel, M. M. & Hart, P. H. 2012. Maternal 
serum vitamin D levels during pregnancy and offspring neurocognitive development. 
Pediatrics, 129, 485-493. 

Wiegman, M. J., Zeeman, G. G., Aukes, A. M., Bolte, A. C., Faas, M. M., Aarnoudse, J. G. & De 
Groot, J. C. 2014. Regional distribution of cerebral white matter lesions years after 
preeclampsia and eclampsia. Obstetrics & Gynecology, 123, 790-795. 



181 

 

Wilson-Costello, D., Friedman, H., Minich, N., Fanaroff, A. A. & Hack, M. 2005. Improved survival 
rates with increased neurodevelopmental disability for extremely low birth weight 
infants in the 1990s. Pediatrics, 115, 997-1003. 

Witlin, A., Saade, G. & Mattar, F. 1999. Neonatal Outcome In Women With Severe Preeclampsia 
Or Eclampsia Between 24 () And 33 Weeks. American Journal of Obstetrics and 
Gynecology, 180, 19S. 

Women's, N. C. C. F. & Health, C. S. 2010. Hypertension in pregnancy: the management of 
hypertensive disorders during pregnancy. 

Woodworth, M. B., Greig, L. C., Kriegstein, A. R. & Macklis, J. D. 2012. SnapShot: cortical 
development. Cell, 151, 918-918. e1. 

Wu, J., Holstein, J. D., Upadhyay, G., Lin, D.-T., Conway, S., Muller, E. & Lechleiter, J. D. 2007. 
Purinergic receptor-stimulated IP3-mediated Ca2+ release enhances neuroprotection by 
increasing astrocyte mitochondrial metabolism during aging. Journal of Neuroscience, 27, 
6510-6520. 

Yallampalli, C. & Garfield, R. E. 1993. Inhibition of nitric oxide synthesis in rats during pregnancy 
produces signs similar to those of preeclampsia. American journal of obstetrics and 
gynecology, 169, 1316-1320. 

Yi, P.-L., Tsai, C.-H., Lu, M.-K., Liu, H.-J., Chen, Y.-C. & Chang, F.-C. 2007. Interleukin-1β mediates 
sleep alteration in rats with rotenone-induced parkinsonism. Sleep, 30, 413-425. 

Yigzaw, M., Zakus, D., Tadesse, Y., Desalegn, M. & Fantahun, M. 2015. Paving the way for 
universal family planning coverage in Ethiopia: an analysis of wealth related inequality. 
International journal for equity in health, 14, 77. 

Zhang, D., Ye, D. & Chen, H. 2013. Placental vacuolar ATPase function is a key link between 
multiple causes of preeclampsia. ISRN obstetrics and gynecology, 2013. 

Zhang, F., Zhong, R., Li, S., Fu, Z., Cheng, C., Cai, H. & Le, W. 2017. Acute hypoxia induced an 
imbalanced M1/M2 activation of microglia through NF-κB signaling in Alzheimer’s disease 
mice and wild-type littermates. Frontiers in aging neuroscience, 9, 282. 

Zhao, Y., Yang, N., Li, H., Cai, W., Zhang, X., Ma, Y., Niu, X., Yang, G., Zhou, X. & Li, Y. 2018. 
Systemic Evaluation of Vascular Dysfunction by High‐Resolution Sonography in an Nω‐
Nitro‐l‐Arginine Methyl Ester Hydrochloride–Induced Mouse Model of Preeclampsia‐Like 
Symptoms. Journal of Ultrasound in Medicine, 37, 657-666. 

Zlokovic, B. V. 2005. Neurovascular mechanisms of Alzheimer's neurodegeneration. Trends in 
neurosciences, 28, 202-208. 

 

  



182 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 8 

 

 

 

 

 

 

 

 

 

 

 

 

 



183 

 

APPENDIX 1 

 

 



184 

 

APPENDIX II 

 

 

 

 



185 

 

 


