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Abstract 

In the following study, the potential role that microorganisms play in the removal of Mn (II) 

and Fe (II) was assessed using biofilter sand and water samples collected from a biofiltration 

system (operated by Umgeni Water in KwaZulu-Natal, Nottingham Road, at the Nottingham 

combined school, South Africa) treating borehole water containing manganese and iron. 

Initially the presence of Mn (II) and Fe (II) oxidizing bacteria was demonstrated in the 

biofiltration system. Thereafter, the contribution of individual microorganisms to the overall 

removal of manganese and iron was assessed in the laboratory by determining the difference 

in metal oxidation in the presence and absence of active bacteria at neutral pH, simulating 

conditions in the biofilter. Controls were run to verify the elimination via physiochemical 

reactions occurring within the biofiltration system. Finally a diversity snapshot of the bacteria 

present within the biofilter matrix was established via analysis of a clone library. Viable 

bacterial counts for the biofiltration system were established using MSVP (minimal salts 

vitamins pyruvate) medium - plus added manganese sulfate or iron sulfate targeting Mn (II) 

and Fe (II) oxidizing bacteria - and R2A for heterotrophic bacteria.  

 

In the first experimental chapter, batch tests using MSVP were employed to determine 

manganese oxidation, by measuring the pH and ORP (oxidation reduction potential) in 

experimental flasks and controls over time. There was a clear drop in pH and a concomitant 

increase in ORP when an isolated manganese oxidizing strain (designated LB1) was grown in 

MSVP plus added manganese sulfate, indicating manganese oxidation. Based on 

physiological characteristics established by the VITEK-2 system as well as by 16S rRNA 

gene sequence analysis and MALDI-TOF (Matrix assisted laser desorption ionization-time of 

flight mass spectrometry) mass spectrometry of cell extracts, the isolate was identified as a 

member of the genus Acinetobacter. EDX (energy dispersive X-ray analysis) analysis of 

crystals formed in batch culture tests, containing MSVP plus either added manganese or iron 

sulfate, confirmed the ability of the isolate to oxidize both Mn (II) and Fe (II). The 

leucoberbelin blue colorimetric assay and batch tests using MSVP both demonstrated that in 

the presence of the isolated strain, Acinetobacter sp. LB1, the rate of Mn (II) oxidation at 

neutral pH was enhanced as compared to abiotic controls. 
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In the second experimental chapter the difference in Fe (II) oxidation between biological and 

abiological systems at neutral pH was determined using batch tests run with Acinetobacter sp. 

LB1 and Fe (II) in saline. In addition, the rate of Fe (II) oxidation was also determined at 

acidic pH and at alkaline pH in experimental and control flasks. To determine Fe (II) removal 

under conditions simulating those in the biofiltration system, batch tests were set up using 

borehole water freshly collected from the biofiltration system. In order to verify the 

contribution of native microorganisms in the borehole water to Fe (II) oxidation, these flasks 

were spiked with bacterial strains isolated from the biofiltration system - Acinetobacter sp. 

LB1 and Burkholderia sp. strain LB2 - and two known iron oxidizing strains Leptothrix 

mobilis (DSM 10617) and Sphaerotilus natans (DSM 565) were used to determine the 

contribution of reference iron oxidizers to Fe (II) oxidation. A separate set of the same flasks 

with the addition of filter sand was used to qualitatively demonstrate iron oxidation as it 

would occur within the biofiltration system. The ferrozine assay was employed to quantify 

the amount of Fe (II) in batch tests employing saline medium and in batch tests employing 

borehole water. EDX analysis was employed to confirm the presence of Fe (II) in oxidation 

products in the batch test flask with filter sand spiked with Acinetobacter sp. LB1.   

 

In the presence of Acinetobacter sp. LB1 at neutral pH in saline medium, the rate of Fe (II) 

oxidation was very similar to that in the abiological controls thus demonstrating that the 

presence of metabolically active microorganisms does not per se enhance the oxidation of Fe 

(II) like in the case of Mn (II) at neutral pH. Surprisingly, in the heat inactivated control, 

apparently the highest amount of Fe (II) was oxidized. As expected, at acidic pH very little 

oxidation of Fe (II) took place and at alkaline pH almost all Fe (II) in the flasks was removed 

and small amounts oxidized as determined by the amount of Fe (III) produced. Batch tests 

using borehole water proved that native microorganisms within the biofiltration system were 

more efficient in the oxidative removal of Fe (II) from the system, in comparison to the 

reference iron oxidizing strains. In the final experimental chapter, the presence of biofilms 

with actively metabolizing cells was examined on a pooled sample of biofilter matrix from 

the manganese and iron filter using CLSM (confocal laser scanning microscopy) image 

analysis. DNA was extracted from the biofilm material associated with biofilter matrix to 

establish a diversity snapshot of the bacteria present within the biofilter matrix.  
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ARDRA (amplified “rDNA” restriction analysis) analysis of the clone library revealed the 

presence of 15 unique OTU’s (operational taxonomic unit) based upon restriction patterns of 

amplified 16S rRNA genes of a total of 100 randomly selected clones. The majority of the 

clones were closely related to the genera Nitrospira and Lactococcus. Overall, 42% of the 

clones were assigned to the phylum Proteobacteria, 13% to the phylum Actinobacteria, 24% 

to the phylum Firmicutes and 21% to the phylum Nitrospirae. Overall, the results 

demonstrate that bacteria present within an established biofiltration system at neutral pH can 

contribute to the oxidative removal of Mn (II) and, apparently only to a smaller degree, to 

that of Fe (II) present in borehole water and that species within the proteobacterial genus 

Acinetobacter are potentially involved in the geochemical cycling of these two metals. 

 

Keywords: Biofiltration, iron and manganese oxidation, Acinetobacter sp. LB1, batch tests, 

16S rRNA, MALDI-TOF MS analysis, Mn (II) and Fe (II) colorimetric assays, EDX 

analysis, biofilm formation, CLSM image analysis, 16S rRNA clone library 

 

Abbreviations: MSVP (minimal salts vitamins pyruvate), ORP (oxidation reduction 

potential), EDX (energy dispersive X-ray analysis), MALDI-TOF MS (Matrix assisted laser 

desorption ionization-time of flight mass spectrometry), rRNA (ribosomal RNA), ARDRA 

(amplified “rDNA” restriction analysis), CLSM (confocal laser scanning microscopy), OTU 

(operational taxonomic unit) 

 

 

 

 

 

 

 

 

 

 



xv 

 

Acknowledgements 

 

This thesis would not have been completed without the grace and mercy of God. I would also 

like to thank the following people:  

 

My family and friends for their support and encouragement 

 

My supervisor, Prof. Stefan Schmidt for his guidance and support 

 

The technical staff at the University of KwaZulu-Natal Pietermaritzburg 

 

The staff at Umgeni Water head office, Pietermaritzburg and at processing in Durban, for 

their hard work and support during the project 

 

Finally, I would like to thank TATA Africa, Umgeni Water and FoodBev Seta for the 

funding they provided towards the accomplishment of the project. 



1 
 

Chapter 1 

 

General Introduction 

 

In order to ensure the safety and quality of potable water, it is important to maintain the naturally 

occurring biochemical reactions taking place within aquatic systems (Salomons and Förstner, 

1984). Metals such as manganese and iron are classified as elements that form positive ions 

when in solution and their oxides typically form hydroxides in water (Tsezos and Volesky, 

1982). Iron is a key component in many proteins that are necessary for microbial respiration and 

metabolism and both manganese and iron are essential trace elements in 

biological/biotechnological systems (Lovley, 2000). These two metals are prevalent in water 

bodies and their removal is typically mediated by a combination of microbial and abiotic 

oxidation reactions (Jakob, 1970). Manganese is naturally occurring, present in almost all 

environments and comprises approximately 0.1% of the Earth’s crust (IPCS, 2004). It occurs in 

11 oxidation states of which oxidation states 2 (most stable and predominate in nature), 4 and 7 

are the most important (Gerber et al., 2002).  

 

In aquatic environments manganese exists in two major forms: Mn (II) and Mn (IV) and the 

conversion between these two forms takes place through oxidation and reduction reactions which 

are either abiotically or microbially mediated (IPCS, 2004). Manganese (Mn (II)) is more 

prevalent at low pH and redox potential (IPCS, 2004). Public concern about environmental 

pollution as well as new applications of manganese compounds such as potassium permanganate 

and cyclopentadienyl manganese tricarbonyl (CMT), have directed attention to the toxic 

properties of manganese compounds and the possible involvement of these compounds in 

causing malformations (Gerber et al., 2002; De Meo et al., 1991). Biological manganese 

oxidation is carried out by microorganisms which are also responsible for the biological 

oxidation of Fe (II) except for the stalked members of the genus Gallionella which are strict iron 

oxidizers (Katsoyiannis and Zouboulis, 2004). Leptothrix, Crenothrix, Hyphomicrobium, 

Siderocapsa and Metallogenium (Katsoyiannis and Zouboulis, 2004) are some of the well-known 

manganese oxidizing genera. 
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Iron is a key metal in environmental microbe-metal interactions due to its abundance in the 

earth’s crust and its ability to readily convert between the Fe (II) and Fe (III) states (Lovley, 

2000). Lithotrophic Fe (II) oxidizing microorganisms (FOM) use Fe (II) as an electron donor to 

provide reducing equivalents for the assimilation of carbon into biomass (Weber et al., 2006; 

Emerson et al., 2010) and Fe (III) is used as a terminal electron acceptor under anaerobic 

conditions by lithotrophic and heterotrophic Fe (III)-reducing microorganisms (FRM) (Weber et 

al., 2006). Nitrate (NO3
-
) can also be used as a terminal electron acceptor for iron oxidation 

under anaerobic conditions, although the kinetics of Fe (II) oxidation by nitrate are much slower 

than for nitrite (NO2
-
) (Picardal, 2012). The iron bacteria are defined as a group of bacteria which 

utilize the oxidation of ferrous and/or manganous ions as an essential component in their 

metabolism and these bacteria typically get their apparent brown/rust-red colour from the 

production of ferric ions and/or manganic salts, either within the cell or attached on the outside 

(Cullimore and Mc Cann, 1977).  

 

On the basis of acceptability aspects, the WHO (2011) recommends concentrations for drinking 

water not exceeding 0.3 mg/L for Fe (II) and 0.1 mg/L for Mn (II). Concentrations of Fe (II) 

exceeding the recommended level in water systems result in a brown/rust-red discoloration in the 

water and pipes and reduction in water flow rates, which is typically caused by coatings of iron 

bacteria inside the pipes (Cullimore and Mc Cann, 1977). High levels of manganese - ingested 

via drinking water - have recently been seen to negatively impact the health of school children 

(Bouchard et al., 2011). Both manganese and iron impart a metallic, bitter, astringent or medical 

taste to water and they both contribute to corrosion in water distribution systems (Cullimore and 

Mc Cann, 1977). As a result the quality of the water is reduced and therefore the need to explore 

sustainable biotechnological processes for water purification. To establish biotechnological 

processes for the aerobic treatment of manganese or iron contaminated water, it is important to 

assess the potential of microorganisms for the oxidative elimination of these two metals. Bacteria 

play important roles in the activation, modification and detoxification of both manganese and 

iron in aerated water through changing the valence states of these metals and subsequently 

converting them into insoluble compounds that are easily removed from water systems (Urrutia 

et al., 1992). The manganese and iron oxidizing bacteria react with metal cations with an 

intimate association to their surfaces. This occurs via the interaction of negative charges of 
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anionic functional groups on the surface of bacteria leading to permanently or temporarily 

chelated metal cations (Salomons and Förstner, 1984). Whether a metal is going to be 

permanently or temporarily fixed by functional groups present at the bacterial surface, is 

governed by parameters such as the cell surface constant Km - which is a measure of the affinity 

for a metal of interest - and by the pH and ORP of the system. 

 

To date limited information on biological manganese oxidation exists as the process is 

considered more complex than biological iron oxidation. Water treatment systems frequently 

employ chemical reagents to remove manganese and iron from groundwater, but the results of 

such treatment are not regarded as sustainable (Burger et al., 2008). This is due to an increase in 

the cost of operation as a result of costly chemicals for treatment and secondary impacts that 

arise from the formation of residuals and by-products (Gallard and von Gunten, 2002). 

Biological water treatment systems have proven to be more effective than chemical treatment for 

the removal of iron and manganese from borehole water (Burger et al., 2008; Trevors, 1989). 

Biological treatment requires less attention during operation and results in a reduced amount of 

sludge due to no residuals or by-product formation which arise from the addition of chemicals to 

the water. Chemical treatment of water demands a substantial amount of time and labour, 

producing large masses of sludge which increases operation costs (Burger et al., 2008). The 

above reasons validate the use of biological manganese and iron oxidation as a viable and more 

sustainable alternative as compared to the use of chemical reagents for the treatment of borehole 

water. 

 

This study aimed to demonstrate the presence of Mn (II) and Fe (II) oxidizing bacteria in a 

biofiltration system (Nottingham road, KwaZulu Natal, South Africa) (see thesis supplementary 

figures S1 and S2) treating borehole water containing Mn (II) and Fe (II) at concentrations of 

0.35 mg/L and 2-8 mg/L respectively. In addition, the contribution of these microorganisms to 

the overall removal of manganese and iron was assessed via qualitative and quantitative 

methods, taking into account the oxidative elimination via physiochemical reactions typically 

occurring within biofiltration systems. Finally a clone library was established from metabolically 

active biofilm material to assess the diversity of bacteria present within the biofilter matrix. 
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Chapter 2: Literature Review 

 

A. Manganese Oxidation 

 

1. Microbial oxidation of manganese  

 

Microorganisms involved in manganese oxidation include bacteria, fungi and algae. Bacteria and 

fungi are considered the main groups of manganese oxidizers whilst algae are usually found to 

enhance the oxidation of manganese in combination with bacteria (Stuet et al., 1996). 

Manganese oxidation can occur via enzymatic or non-enzymatic processes. The non-enzymatic 

manganese oxidation process involves the direct chemical oxidation of Mn (II) or the oxidation 

by metabolic end products (Linhardt, 1997). The enzymatic process is performed by three groups 

of microorganisms: (i) those that oxidize dissolved Mn (II), (ii) those that oxidize Mn (II) that is 

prebound to solids and (iii) organisms that oxidize dissolved Mn (II) by the metabolite H2O2 via 

catalase. The abiotic/non-enzymatic oxidation of Mn (II) to MnO2 is slow and occurs by the 

chemical reaction of dissolved Mn (II) and oxygen in natural waters (Linhardt, 1997). The 

enzymatic/biological manganese oxidation of higher manganese oxides and hydroxides takes 

place faster than abiotic oxidation, with a wide variety of ubiquitous microorganisms capable of 

converting Mn (II) to solid Mn (III/IV) oxides (Ghiorse, 1984). The diversity of these 

microorganisms is based on the different mechanisms they use to biochemically induce the 

transformation of Mn (II) (Ehrlich, 1990). The common microbial manganese oxides are 

Birnessite (MnO2), Manganite (MnOOH) and Hausmannite (Mn3O4)  (Ehrlich and Newman, 

2009; Schweisfurth and Gattow, 1966).  

 

1a. Microbial Mn (II) oxidation 

 

Heterotrophic microorganisms such as Bacillus sp., Pseudomonas putida and Pedomicrobium sp. 

were previously described as using a multicopper oxidase (MCO) in the oxidation of Mn (II) to 

Mn (IV) (Brouwers et al., 2000; Spiro et al., 2008). The genes that encode putative Mn (II)-

oxidizing enzymes like mofA in Leptothrix discophora, cumA in Pseudomonas putida GB-1, and 

moxA in Pedomicrobium sp. strain ACM 3067, are thought to produce multicopper oxidases, this 
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was based on the presence of conserved, predicted amino acid motifs  (El Gheriany et al., 2009). 

Homogenates from the endospores of a Bacillus sp. contained distinct proteins that produced a 

solid brown precipitate when exposed to Mn (II) when non denaturing polyacrylamide gel 

electrophoresis was used (Francis et al., 2002). Upon disruption of the MCO gene this Bacillus 

sp. lost the ability to oxidize manganese (Spiro et al., 2008) which indicates that the MCO gene 

is responsible for manganese oxidation in its endospores (da Silva and Williams, 1991). 

Multicopper oxidases are described as one electron transferring enzymes were single electrons 

are transferred from the substrate to O2 through intervening copper ions (da Silva and Williams, 

1991).  

 

For experimental purposes, a variety of poisons were tested by Rosson and Nealson (1982) to 

check whether they inhibit manganese oxidation. Azide can inhibit the formation of Mn (III) 

whilst the addition of Cu (II) enhances the formation thereof (Ehrlich and Newman, 2009; Spiro 

et al., 2008). Whilst it was found that some poisons do not potentially interfere with manganese 

oxidation it was suggested that the added poisons may interfere in unknown ways with 

manganese adsorption due to the difference in ion-exchange capacities of manganates (Murray, 

1974). In a separate study conducted by Ghiorse and Hirsch (1979), it was established that heat 

treatment did not completely inhibit manganese oxidation which indicated that the suspected 

MCO protein responsible for manganese oxidation is somewhat heat stable. Other compounds 

that were found to inhibit manganese oxidation were SDS, NaCl, cyanide and HgCl2 (Boogerd 

and de Vrind, 1987; Ehrlich and Newman, 2009). The oxidation of Mn (II) to Mn (IV) is 

catalyzed via the following reaction (1). 

 

 

2Mn
2+

 + 8H2O                 2Mn (OH) 4 + 4e
-
 +8H

+ 

2Mn (OH) 4                2MnO2 + 4H2O 

4e
-
 + 4H

+
 + O2               2H2O 

                                 ________________________________________   (1) 

2Mn
2+

 + 2H2O + O2                          2MnO2 + 4H
+
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The end product of bacterial Mn (II) oxidation, Mn (IV), is a powerful oxidant and cannot be 

stabilized by carboxylate groups, which are weak donor ligands from protein side chains (Spiro 

et al., 2008). Most Mn (IV) complexes are polynuclear and are stabilized by oxo bridges (Pizarro 

et al., 2004). The Mn (IV) complexes further polymerize to form solid-phase MnO2 complexes, 

in the absence of capping ligands (Pizarro et al., 2004). If a bacterial MCO accommodates 

multiple Mn (III) ions in its holding sites, a polynuclear Mn (IV) complex may form as a 

nucleation site for MnO2 nanoparticle formation (Brouwers et al., 2000; Spiro et al., 2008). The 

first step in the formation could be further oxidation of Mn (III), either via the MCO or possibly 

by direct reaction with O2 to form a polynuclear oxo-bridged Mn (IV) complex (Brouwers et al., 

2000; Spiro et al., 2008). Numerous Mn (III) ions can also disproportionate to a polynuclear Mn 

(IV) complex and Mn (II) ions, which are then reoxidized at the MCO substrate site, ensuring a 

continuous supply of Mn (III) ions (Spiro et al., 2008). The polynuclear Mn (IV) complex 

formed at the nucleation site in each of these cases, would ultimately be released to grow into 

MnO2 nanoparticles (Spiro et al., 2008). 

 

1b. Mn (II) oxidizing bacteria 

 

Mn (II) oxidation is carried out by a variety of microorganisms. Microorganisms found in sites 

that are high in concentrations of manganese and iron form distinct metallic casts and can be 

recognized by their distinct morphotypes in natural samples (Emerson and Revsbech, 1994). The 

most common manganese oxidizing microorganism found in these sites is Leptothrix ochracea 

(Emerson and Revsbech, 1994). Other bacteria that oxidize manganese are Hyphomicrobium 

manganoxidans, Pseudomonas putida and Leptothrix cholodinii, which attack dissolved 

manganese enzymatically. Arthrobacter spp. and Oceanospirillium sp. are known to oxidize 

manganese prebound to manganese oxides while Pseudomonas manganoxidans and Bacillus sp. 

strain SG-1 oxidize manganese enzymatically (Ehrlich and Newman, 2009). In addition, the 

ability of an Acinetobacter species to oxidize Mn (II) was recently reported (Beukes and 

Schmidt, 2012). The Sphaerotilus-Leptothrix group of microorganisms is the most common 

group of manganese oxidizing microorganisms and the species within these genera share a 

number of common characteristics like the formation of a sheath, the requirement of vitamin B12 

for growth and the formation of poly-β-hydroxybutyrate (PHB) as reserve material (vanVeen et 
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al., 1978). The bacteria of the Sphaerotilus-Leptothrix  group of microorganisms typically occur 

in low numbers in slightly polluted or non-polluted waters (vanVeen et al., 1978). S. natans 

possesses a pronounced response to organic nutrients, producing high yields of cell material. 

This is in contrast to Leptothrix sp. which hardly responds to added nutrients (vanVeen et al., 

1978). S. natans has much larger cells than most of the Leptothrix spp. and false branching only 

occurs in S. natans and in L. lopholea (Takeda et al., 2012; vanVeen et al., 1978).  

 

The presence of a sheath has nutritional and ecological consequences for members of the 

Sphaerotilus-Leptothrix group of bacteria. Their growth in slow running waters low in nutrients 

requires a sheath enabling the bacteria to attach themselves to solid surfaces during nutrient 

depletion. The sheath also protects the bacteria against phages and bacterial or eukaryotic 

predators (vanVeen et al., 1978). Cell propagation of sheath-forming bacteria is not necessarily 

dependant on the presence of the sheath, as can be concluded from the ability of the sheath-less 

mutants of this group of microorganisms to grow and divide (Takeda et al., 2012; Mulder and 

vanVeen, 1963). Leptothrix cholodnii, which was previously classified as Leptothrix discophora 

(Spring et al., 1996) is the most common species that is able to form a sheath and maintain it 

under laboratory conditions (Emerson and Ghiorse, 1992; Takeda et al., 2010, 2012). 

 

1c. Mn (II) oxidizing fungi and algae  

 

Fungi and algae (to a lesser extent) are also important groups of manganese oxidizing 

microorganisms. Like bacteria, these microorganisms also play an important role in the 

production of biogenic Mn oxides. Fungi that oxidize manganese are ubiquitous in nature, and 

have been isolated from freshwater systems, Mn nodules (Cahyani et al., 2009), soil 

environments (Santelli et al., 2010) including building materials (de la Torre and Gomez-

Alarcon, 1994). They are able to thrive in these environments because they possess multiple 

mechanisms to tolerate environmental stresses such as nutrient fluctuations, desiccation or high 

levels of metals (Santelli et al., 2010). They have thus been implicated in the remediation of a 

wide range of pollutants and it was previously found that fungi contributed to the remediation of 

Mn-contaminated mine drainage and were also found growing in a Mn-attenuating bioreactor for 

treatment of mine waters (Mariner et al., 2008). Some examples of fungi involved in manganese 
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oxidation include Plectosphaerella cucumerina and Stilbella aciculosa, both isolated from mine 

waters, which both belong to the phylum Ascomycota (Mariner et al., 2008). These two fungi are 

soil inhabitants (de Hoog et al., 2000) that have never previously been known to oxidize 

manganese and were not phylogenetically related to known manganese oxidizing species. 

 

Similarly, fungi isolated from freshwater and marine systems have been identified as 

ascomycetes via analysis of the 18S rRNA genes (Tebo et al., 2005). The main proteins involved 

in bacterial manganese oxidation are also involved in fungal manganese oxidation. An 

extracellular protein involved in manganese oxide formation found in L. discophora SS-1 was 

also found in an ascomycete; strain KR21-2, previously investigated by Tani et al. (2003). The 

manganese oxidation inhibitor for bacteria, azide, was also found to inhibit manganese oxidation 

in the ascomycete strain KR21-2 (Tebo et al., 2005). This suggests that the same protein - MCO-

type enzyme - responsible for manganese oxidation in bacteria is also responsible for manganese 

oxidation in fungi.  Fungi also use heme-containing Mn peroxidases and laccases, used in the 

degradation of lignin, for manganese oxidation (Tebo et al., 2005). The peroxide-oxidized 

enzyme and most laccase enzymes catalyse the oxidation of Mn (II) to Mn (III) (Schlosser and 

Höfer, 2002).  

 

In terms of metal toxicity, fungi are considered more tolerant than bacteria to high concentrations 

of metals in the environment (Chander et al., 2001). Fungi and bacteria that oxidize manganese 

are heterotrophs that do not gain energy from the oxidation of manganese but rather benefit from 

the presence of Mn oxide minerals, through the uptake of dissolved Mn (II) or via scavenging of 

reactive oxygen species (Tebo et al., 1997). Besides their ability to oxidize Mn (II), fungi can 

also mediate the reduction of this metal via abiotic reactions and/or with enzymatic reduction 

(Gomah et al., 1980; Ghiorse and Ehrlich, 1976). In culture media the oxidation of manganese 

by fungi can be detected in a similar manner to that of bacteria, by using a triphenyl-compound 

(Leucoberbelin blue) which is oxidized by Mn IV and insensitive to Mn (II) and other metals in 

trace quantities (Altmann, 1972; Krumbein and Altmann, 1973). 
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2. Bacteriogenic manganese oxides 

 

2a. Properties of bacteriogenic manganese oxides 

 

Bacteriogenic/biogenic manganese oxides (manganese dioxide and manganese tetroxide) 

produced as a result of Mn (II) oxidation by bacteria are used in the oxidative removal of toxic 

metals from contaminated soils and wastewaters and have been studied extensively (Bargar et 

al., 2009). These manganese oxides have highly reactive surfaces and thus contribute to the 

remediation of water contaminated with toxic metals, by scavenging metals such as Pb, Ni, Co 

and Zn (Peña et al., 2010; Takahashi et al., 2007). The reactivities of biogenic manganese oxides 

in comparison to abiotically produced manganese oxides is greater due to the smaller size, 

increased surface area, disorder and/or the sheet symmetry distortion of biogenic manganese 

oxides (Hochella et al., 2008). Manganese oxides are poorly soluble in water and are used in the 

manufacturing of catalysts, colorants, metal sorbents and batteries (IPCS, 2004) and they can 

also be used as a terminal electron acceptor by other bacteria in respiration (Spiro et al., 2008). 

Due to its high surface area and oxidizing potential, MnO2 is capable of efficiently degrading 

biologically recalcitrant organic molecules such as benzene and naphthalene to lower- 

molecular-mass compounds, indicating the potential of these compounds in bioremediation of 

xenobiotic organic compounds (Forrez et al., 2010; Spiro et al., 2008). Whilst MnO2 is the stable 

form of manganese it can however be reduced to Mn (II) in the presence of exogenous ligands or 

UV rays, which helps to regulate the bioavailability of Mn (II) (Spiro et al., 2008).  

 

2b. Structural composition of bacteriogenic manganese oxides 

 

The manganese dioxides produced by microorganisms consist of stacked hexagonal sheets of 

octahedral MnO6 and are categorized as having either a layer or tunnel structure (Jurgensen et al., 

2004; Santelli et al., 2011; Spiro et al., 2008). The layer-type oxides - phyllomanganates - which 

are most abundant in soils, nodules and rock varnishes, are poorly crystalline and highly reactive 

with metal cations (Fig. 1). This is the most dominant bacteriogenic manganese oxide formed at 

circumneutral pH which is also structurally similar to hexagonal birnessite (Bargar et al., 2005; 

Jurgensen et al., 2004). Tunnel structure oxides (Tectomanganates) are comprised of chains with 
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edge-sharing octahedral manganese complexes, linked through corner-sharing, forming square or 

rectangular cross-sections e.g., todorokite (Jurgensen et al., 2004; Santelli et al., 2011). 

Depending on the physical properties and mineral particle size of the manganese oxides, they are 

able to absorb a wide variety of cations onto their surfaces (Hochella et al., 2008). Cation 

vacancies and random stacking arrangements create structural defects on the layer-type oxides, 

which provide binding sites for exogenous metal ions, thus controlling the bioavailability of 

exogenous metal ions in the natural environment (Spiro et al., 2008). 

 

 

 

Figure 1 (Adapted from Spiro et al., 2008): Binding of Pb (II) ions onto two crystal structures 

of bacterial manganese oxides. (A) triple-corner-sharing and (B) double-edge-sharing inner 

sphere surface complexes formed respectively above cation vacancy sites and at sheet edges. 
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In earlier studies conducted by Greene and Madgwick (1991), solid phases of manganese oxides 

were identified as Mn3O4 (Hausmannite), Buserite (a hydrated layer-type Mn (IV) oxide), 

Manganite (γ-MnOOH, a tunnel-type Mn (III) oxide) and Nsutite (γ-MnO2, a tunnel-type Mn 

(IV) oxide). These are well-known products of biological and abiotic oxidation of Mn (II). In 

recent studies, the origin (via biological or abiotic oxidation) of the different minerals has been 

disproven except for Buserite. Buserite, most probably stemmed from the autocatalytic oxidation 

of adsorbed Mn (II) present on the surface of freshly precipitated Mn (IV) oxides (Bargar et al., 

2005). EXAFS (extended X-ray absorption fine structure) spectroscopy indicates that each Mn 

ion in Buserite is di-μ-oxo bridged to six Mn neighbours with a 2.82-2.90 Å Mn-Mn distance 

(Figure 2B) (Spiro et al., 2008). In addition, 3.5-3.8 Å Mn-Mn distances were found in Buserite, 

which suggests the presence of Mn (III) positioned above or below the Mn (IV) vacancy sites 

(Figure 2A) (Gaillot et al., 2003). The negative charge from Mn (IV) vacant sites can be 

overcome by the incorporation of hydrated metal cations, which results in basal plane spacings 

of 7-10 Å, depending on the degree of hydration (Post, 1999).  

 



14 
 

 

 

Figure 2 (Adapted from Spiro et al., 2008): Crystal structure of the bacteriogenic Mn oxide - 

Buserite. (A) Sheet structure of Buserite, with hexagonal symmetry, highlighting a monoclinic 

unit cell (a-b). (B) Sheet structure (a-b), illustrating di-μ-oxo bridging between neighboring Mn 

atoms. Manganese atoms illustrated as large black circles and oxygen atoms as the grey smaller 

circles.  

 

3. General properties of manganese compounds 

 

3a. General toxicity associated with manganese compounds 

 

Symptoms of manganese toxicity in plants consist of necrotic lesions, marginal chlorosis, and 

distorted development of the leaves (IPCS, 2004). In humans, manganese seems to be the one of 

the least toxic minerals from a nutritional point of view. There is no known toxicity arising from 
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“normal” manganese uptake via food or from taking reasonable amounts in supplements (Gerber 

et al., 2002). Increased levels of manganese in the environment are no threat to man as long as 

they are not inhaled or ingested with contaminated drinking water (Gerber et al., 2002). 

However, acute toxic effects and consequences have been seen after the administration of 

potassium permanganate (Henderson and Watt, 1951). The inhalation of manganese fumes can 

cause “metal fume” fever which is characterized by acute pneumonitis, tracheobronchitis and 

pulmonary oedema (Nemery, 1990). Chronic toxicity to the central nervous system (CNS) can 

also take place when manganese is inhaled, which is much more important than the acute toxicity 

(Huang et al., 1989). In general, Mn toxicity results from exposure to high levels of manganese 

from various industrial settings like welding (Park et al., 2007), metal smelting, Mn mining 

(Myers et al. 2003a, b) and/or battery manufacturing (Bader et al., 1999). Cyclopentadienyl 

manganese tricarbonyl (CMT) which is used in petrol as a substitute for lead, produces 

convulsions and pulmonary oedema in Sprague-Dawley rats (Gerber et al., 2002). The LD50s for 

an oral and intraperitoneal administration are 22 mg and 14 mg per kg body weight respectively 

(Penney et al., 1985). The toxic effects of methylcyclopentadienyl manganese tricarbonyl 

(MMT) are similar as those of CMT and appear mainly in the lungs, liver and kidney (Hinderer, 

1979).  

 

In a previous report it was also found that an increase in the use of MMT 

(methylcyclopentadienyl) in gasoline had caused elevated levels of Mn in the environment and 

subsequently in the blood of children that resided in the surrounding environment (Batterman et 

al., 2011; Röllin et al., 2005). Chronic manganism affects carbohydrate metabolism, and patients 

with chronic manganism often have hypoglycaemia following a high glucose load (Gerber et al., 

2002). Whilst an essential element for nutrition in human beings, manganese has been reported 

to have toxic side effects (neurobehavioral development problems) on children after the intake  

of  water containing high levels of Mn (II) that exceed the US EPA recommended level (Woolf 

et al., 2002; Bouchard et al., 2007). The recommended intake levels of manganese for children 

(9-13 yrs. old) are between 1.9 and 1.6 mg per day for males and females respectively 

(Batterman et al., 2011). A very recent study conducted by Batterman et al. (2011) revealed that 

8.1% of children tested in the study site in Durban (KwaZulu-Natal, South Africa), had blood 

manganese concentrations above the normal range (15 μg/L) reaching a maximum concentration 
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of 25 μg/L
 
(Batterman et al., 2011). The average manganese in the children’s blood was around 

10.1±3.4 μg/L
 
(Batterman et al., 2011).  

 

3b. Mutagenic properties of manganese compounds 

 

The presence of toxic manganese compounds causes a decrease in the fidelity of DNA 

replication by modifying the activity of DNA polymerase, however it does not seem to interfere 

with the repair of chemically induced DNA damage (van de Sande et al., 1982). Mn (II) 

compounds and to a lesser extent Mn (VII) compounds, at micromolar concentrations can induce 

the cellular SOS repair when the normal progression fork is impeded (Olivier and Marzin, 1987). 

Divalent manganese compounds may also mediate in vitro mispairing of ethylating agents or 

aliphatic epoxides (Bhanot and Solomon, 1994). Manganese sulfate induces mutations in T4 

phage DNA when developing in Escherichia coli and enhances UV induced mutagenesis 

(Rossman and Molina, 1986). Potassium permanganate can cause damage to the integrity of the 

DNA chain (De Meo et al., 1991) but is less effective than MnSO4 in the above mentioned 

aspects of mutagenicity (Gerber et al., 2002). Although a proven mutagen, previous studies of 

cancer development after manganese exposure indicated that manganese is not a cancer risk in 

man (Gerber et al., 2002).   

 

4. Sources of manganese in the environment 

 

Manganese is naturally occurring in numerous environments and the highest exposure of 

manganese is from industrial activities (such as ferroalloy production, iron and steel foundries, 

power plants, and coke ovens), combustion of fossil fuels, and reentrainment of manganese-

containing soils (Lioy, 1983). Manganese occurs as a component of more than 100 minerals, 

such as sulfides, oxides, carbonates, silicates, phosphates and borates (NAS, 1973). The common 

manganese minerals include Pyrolusite (manganese dioxide), Rhodochrosite (manganese 

carbonate [MnCO3]), Rhodonite (manganese silicate) and Hausmannite (manganese tetroxide) 

(NAS, 1973; Ehrlich, 1990).  
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5. Biochemical aspects of manganese  

 

Metals of biological importance - required by microorganisms for structural or metabolic 

functions - are usually tolerated in higher quantities whilst the opposite is true for those without 

biological function (Haferburg and Kothe, 2007). Homeostasis is essential for controlling metal 

uptake by bacterial cells and bacteria have developed a modified regulatory system that controls 

metal uptake and excretion (Haferburg and Kothe, 2007). Manganese is a component of the 

eukaryotic mitochondrial enzymes pyruvate carboxylase, certain superoxide dismutases, 

glutamine synthetase, alkaline phosphatase and arginase and is responsible for the activation of a 

wide variety of enzymes (Gerber et al., 2002). Manganese-containing superoxide dismutase 

intervenes in antioxidant activity and tumour defences (Gerber et al., 2002) and is essential for 

normal bone structure and the formation of mucopolysaccharides (Keen and Leach, 1988). 

Whilst these are essential metal ions in microorganisms, manganese and iron have the potential 

of being toxic to the cells which means that homeostatic regulation of their concentrations is 

necessary (Jakubovics and Jenkinson, 2001).  

 

The ionic radius of manganese is similar to that of magnesium, calcium and iron in aqueous 

solution, which allows the interchange of manganese and other cations in the metal binding sites 

of proteins (Jakubovics and Jenkinson, 2001). Manganese is essential for certain metabolic 

reactions like oxygenic photosynthesis in cyanobacteria (Christianson, 1997) and glycolysis in 

several Gram positive endospore forming bacteria and also plays an important role in the 

detoxification of reactive oxygen species such as peroxides and oxygen ions which are 

byproducts of metabolism (Jakubovics and Jenkinson, 2001; Chander et al., 1998). In earlier 

research it was found that manganese promoted endospore formation and spore germination in 

Bacillus spp., contributing to the overall development cycle in this bacterial genus (Charney et 

al., 1951; Gould, 1969). Oxidative stress is caused by the inability of the bacterium to efficiently 

resist or repair damage caused by reactive oxygen species like peroxides and oxygen ions and 

this is a major challenge facing bacteria growing in oxygenated environments (Jakubovics and 

Jenkinson, 2001). Manganese plays an important role in bacterial homeostasis by reducing 

oxidative stress through interaction with reactive oxygen species without generating harmful free 



18 
 

radicals within bacterial cells (Cornelis et al., 2011; Cheton and Archibald, 1988; Stadtman et 

al., 1990). 

 

6. Impact of manganese oxidizing bacteria on the corrosion of stainless steel 

 

Manganese oxidizing bacteria play a vital role in the corrosion of stainless steel, which occurs as 

a result of the deposition of manganese oxides and hydroxides onto the surface of this metal 

through the activity of these microorganisms (Linhardt, 2004). The term used to describe the 

phenomenon of stainless steel corrosion is called ennoblement. This describes the shift from the 

free corrosion potential of stainless steel (i.e. abiotic) toward the anodic direction which is 

coincident with biofilm formation on metal surfaces (Linhardt, 2004). Corrosion by 

microorganisms consists of a biotic and an abiotic step. The biotic step takes place in the biofilm 

were biomineralization of MnO2 takes place and the deposits placed directly on the surface of the 

metal (Linhardt, 2004). The abiotic step is the corrosion process, which is based on the 

electrochemical properties of the higher manganese oxides (Linhardt, 2004). The 

microorganisms modify the medium of the corrosion system by creating strong concentration 

gradients generating unexpected chemicals at the metals surface (Linhardt, 1997).  

 

The two corrosion mechanisms relevant to metal depositing microorganisms are the 

accumulation of chlorides under deposits containing Fe (III) and Mn (IV), which are aggressive 

to stainless steel (Kobrin, 1976; Tatnall, 1981; Pope et al., 1984) and the effect of the redox 

couples, Fe (II)/Fe (III) and Mn (II)/Mn (IV), which may influence the Eoc (open circuit 

potential), leading to pitting of the metal (Pope et al., 1984; Duquette, 1986). The first 

mechanism appears to be unrealistic as high chloride concentrations are often a consequence of a 

corrosion reaction rather than the cause of the corrosion and are not found in deposits free of 

corrosion products (Linhardt, 1997). The second mechanism is considered more relevant as it is 

based on the redox properties of the deposits and has been previously proposed as a mechanism 

for corrosion by Linhardt (1994, 1996). The properties of MnO2 that make it an effective 

cathodic material is its higher than practical oxygen potentials, it is not diffusion limited if 

reduced, it may act as an oxygen-electrode (Matsuki and Kamada, 1986) and the electronic 

conductivity allows a layer of MnO2 to be reduced from the outer surface and not only at the 

interfacial layer (Linhardt, 1997). 
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B. Iron Oxidation 

 

1. Bacterial oxidation of iron   

In terms of biological reactivity, the most important oxidation states of iron are Fe (II) and Fe 

(III), the oxidized form and an abundant supply of Fe (II) must be available for bacteria to gain 

sufficient energy from the oxidation of Fe (II) (Cornelis et al., 2011; Liang et al., 1993). 

However, at neutral pH and under fully aerated conditions, rapid chemical oxidation of Fe (II) 

takes place and this poses a problem for the bacteria. When Fe (II) enters a fully aerobic zone, its 

half-life is only in the range of minutes (Liang et al., 1993). Microorganisms are able to 

overcome the inherent Fe (II) instability under fully aerated conditions by either thriving at very 

low pH, which is what Acidithiobacillus ferrooxidans and Leptospirillum ferrooxidans (both 

well-known for bioleaching of metals from sulfidic ores (Gehrke et al., 1998; Sand et al., 1992)) 

do, or in the case of Gallionella ferruginea, by growing at very low O2 concentrations at 

circumneutral pH where the half-life of Fe (II) may be much longer (Liang et al., 1993). A 

second problem faced by these microorganisms is that the product of the oxidation is an 

insoluble ferric hydroxide (Lovley, 2000; Ehrlich and Newman, 2009). To avoid a build-up of 

toxic levels of this oxidation product within the cells, iron oxidation must occur at the exterior of 

the cell surface and this requires that cells possess a chemical mechanism for transporting 

electrons to the cytoplasmic membrane where a chemiosmotic potential is established (Lovley, 

2000; Ehrlich and Newman, 2009). At a pH range between 6 and 7, the Fe (II) will often be in 

the form of FeCO3 and the Fe (III) in the form of an insoluble ferric hydroxide (2), thus the 

product of oxidation is continuously removed from solution (Widdel et al., 1993). This process is 

somewhat important as it drives the oxidation of Fe (II) to Fe (III). 

 

         

4 FeCO3 + O2 + 6 H2O                   4 Fe (OH)3 (s) + 4 CO2                                      (2) 

 

1a. Bacterial Fe (II) oxidation mechanisms 

 

Aerobic Fe (II) oxidation - Aerobic Fe (II) oxidation is the oxidation of Fe (II) by molecular 

oxygen to form a simple insoluble Fe (III) hydroxide (3). The aerobic oxidation of Fe (II) was 
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previously neglected due to the rapid rate of abiotic Fe (II) oxidation coupled to oxygen 

reduction (Davison and Seed, 1983). Environments that encourage aerobic Fe (II) oxidation are 

groundwater iron seeps, stream sediments, wetland surface sediments, irrigation ditches, cave 

walls, subsurface boreholes, municipal and industrial water distribution systems, deep ocean 

basalt and hydrothermal vents (Emerson and Weiss, 2004). Microaerophilic Fe (II) oxidizing 

microorganisms in the above environments compete successfully with the kinetics of abiotic Fe 

(II) oxidation through the conservation of energy from the oxidation of Fe (II) via the conversion 

of inorganic carbon into biomass (Emerson and Moyer, 1997; Weber et al., 2006). The Fe 

(III)/Fe (II) couple has a reduction potential which is sufficient to provide reducing power 

between bacterial photosystems or alternative terminal electron acceptors which are  involved in 

respiratory processes to sustain microbial growth (Weber et al., 2006). 

 

4 Fe
2+

 + O2 + 10 H2O                4 Fe (OH) 3 (s) + 8 H
+ 

               (3) 

 

Anaerobic, photoautotrophic Fe (II) oxidation – The first demonstration of microbially 

mediated Fe (II) oxidation in anoxic environments was the phototrophic anaerobic Fe (II) 

oxidation process (Widdel et al., 1993). The microorganisms (FOM) involved in this process 

oxidize Fe (II) via the utilization of light energy to fix CO2 into biomass (Weber et al., 2006). 

The bacteria in this group include Chlorobium ferrooxidans, Rhodomicrobium vannielii, 

Thiodictyon spp., Rhodopseudomonas palustris and Rhodovulum spp. (Weber et al., 2006). With 

the exception of Rhodomicrobium vannielii, these bacteria can completely oxidize Fe (II) to Fe 

(III) (Weber et al., 2006). The incomplete oxidation of Fe (II) by R. vannielii was due to the 

encrustation of the cell wall of this bacterium with biogenic Fe (III) oxides which inhibited 

further metabolic activity (Widdel et al., 1993). In order to prevent the cells from being 

encrusted with biogenic Fe (III) oxides, the production of low-molecular weight compounds that 

can solubilize these oxides has been suggested (Ehrenreich and Widdel, 1994). The phototrophic 

oxidation of Fe (II) results in the formation of poorly crystalline Fe (III) oxides but in the 

presence of metabolically active iron oxidizing microorganisms, they are transformed into the 

more crystalline Fe (III) oxide minerals such as lepidocrocite and goethite (Kappler and 

Newman, 2004). Phototrophic Fe (II) oxidation processes are typically limited by the maximum 

penetration of light at wavelengths between 275 and 700 nm to a depth of 200 µm in soil and 
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sediments (Ciania et al., 2005). Phototrophic FOM are only of minor importance in the global 

iron biogeochemical cycling because they are unable to promote Fe (II) mineral dissolution and 

are limited by the solubility of the mineral (Kappler and Newman, 2004).   

 

Anaerobic, nitrate-dependent Fe (II) oxidation – At neutral pH, the light-independent 

microbially mediated oxidation of iron coupled to nitrate reduction occurs and is thus not limited 

to anaerobic environments exposed to sunlight (Weber et al., 2006). These reactions occur in 

various fresh water and saline environmental systems that support - in the presence of abundant 

nitrate - the nitrate Fe (II) oxidizing microbial communities which potentially contribute to the 

iron redox cycle (Chaudhuri et al., 2001; Weber et al., 2006). Light-independent reactions such 

as nitrate-dependent Fe (II) oxidation, have the potential to contribute to anaerobic Fe (II) 

oxidation on a global scale, provided that adequate concentrations of a suitable electron acceptor 

are readily available (Weber et al., 2006). This is due to the ubiquity and diversity of anaerobic 

FOM. FOM, to date, have been demonstrated to exploit the favourable thermodynamics between 

Fe (II) (OH3)/Fe (III) and nitrate reduction redox pairs (NO3
–
/½N2, NO3

–
/NO2

–
 and NO3

–
/NH4

+
) 

(Straub et al., 1996) and also between Fe (II) (OH3)/Fe (III) and perchlorate (ClO4
–
/Cl

–
) and 

chlorate (ClO3
–
/Cl

–
) (Bruce et al., 1999). Fe (II) oxidation coupled to nitrate reduction yields 

enough energy to support carbon fixation and microbial growth (Weber et al., 2006) (4). Nitrite 

(NO2
–
) and nitrogen gas (N2) were thought to be the sole products of nitrate reduction until the 

recent demonstration of nitrate-dependent Fe (II) oxidation by Geobacter metallireducens 

(Straub et al., 1996).  

 

 

    10 FeCO3 + 2 NO3
-
+ 24 H2O                10 Fe (OH) 3 (s) + N2+ 10 HCO3

- 
+ 8H

+                   
(4) 

 

 

1b. Representative neutrophilic, aerobic Fe (II) oxidizing bacteria 

 

Iron bacteria are commonly referred to as metal depositing bacteria due to their ability to deposit 

iron hydroxides extracellularly. This phenomenon has caused them to become notorious in 

drinking water systems due to biofouling and corrosion (Little and Wagner, 1997; Tatnall, 1981). 
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Sphaerotilus/Leptothrix group - This group of bacteria is found in rivers below sources of 

organic pollution, also in water distribution pipes and they are capable of both iron and 

manganese oxidation (Avery, 1970). They form brown fluffy filamentous layers that are visible 

with the naked eye. A microscopic inspection of this material reveals a tangled matrix of tubular 

sheaths encrusted with iron (vanVeen et al., 1978; Emerson et al., 2010). The 

Sphaerotilus/Leptothrix group prefers eutrophic environments and is often implicated in causing 

bulking problems in activated sludge and is well recognized for its capacity to deposit iron 

oxides on their sheaths. The sheaths are straight tubes that appear quite robust and refractile by 

phase-contrast microscopy and as the sheaths age, they continue to accumulate Fe (III) oxides. 

One consistent observation of L. ochracea morphotypes is that it is rare to see filaments of cells 

inside the sheaths (vanVeen et al., 1978; Emerson et al., 2010). It has been speculated that as this 

organism oxidizes iron, it deposits the ferric hydroxides on the sheath and in this way prevents 

itself from becoming encrusted in the Fe oxide precipitate (vanVeen et al., 1978; Emerson et al., 

2010). Previous studies have suggested that L. discophora, which is a manganese oxidizer, 

possesses an Fe-oxidizing protein that is involved in the oxidation of Fe (II) to Fe (III) (Corstjens 

et al., 1991).  

 

Gallionella spp. and Metallogenium spp. – Gallionella species are found in aquatic 

environments always associated with iron (Ridgway et al., 1981). These organisms are auto-

/mixotrophs, recognized by the helical stalk that they form and the cells typically consist of 

kidney-shaped mycoplasmodial-like cell bodies that lack the usual peptidoglycan component 

providing rigidity to the bacterial cell wall (Ridgway et al., 1981; Herschel, 1999). This suggests 

an evolutionary kinship to the mycoplasmas and to Metallogenium spp., a related wall-less 

polymorphic iron oxidizing bacterium.  

 

Metallogenium spp. consist of a single elongated stalk constructed from many helically wound 

mineralized fibrils which extend outwards from the convex side of the cell body (Ridgway et al., 

1981; Herschel, 1999). These organisms can grow in a pH range of 3.5-4.1 and are therefore 

somewhat intermediate between true acidophiles and neutrophiles (Ehrlich and Newman, 2009). 

The cells are bean-shaped and grow at the termini of the stalks; thus one cell is capable of 

producing large amounts of stalk material. The stalk is composed mainly of Fe (III) hydroxides 
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and continues to accumulate Fe (III) after the producing cells have left (Heldal and Tumyr, 

1983). The stalk seems to form the substratum upon which further Fe (II) oxidation occurs and 

represents a survival structure, which the organism produces as a means of protection until more 

favourable growth conditions arise (Heldal and Tumyr, 1983). Gallionella spp. and certain other 

iron oxidizing bacterial genera derive their energy through a strictly chemolithotrophic process 

(Ridgway et al., 1981). This process is known as the enzyme-mediated oxidation of ferrous ions 

with the concomitant fixation of carbon dioxide (Ridgway et al., 1981). The result thereof is the 

precipitation of ferric salts in the hydroxide form, which colours cells brown or reddish-brown.  

 

Other proteobacteria – A novel stalk-forming iron-oxidizing bacterium, strain R-1, was 

recently isolated from a freshwater iron seep (Krepski et al., 2012). This microorganism showed 

strong morphological similarities to G. ferruginea - like the production of stalks - but a low 16S 

rRNA gene sequence similarity of 93.55% to this strain (Krepski et al., 2012). This bacterium 

grew only on Fe (II) substrates at a maximum temperature of 35°C and in a pH range of 5.6 – 7.0 

and was most closely related to uncultured bacteria from iron-rich groundwater springs in the 

betaproteobacterial group (Krepski et al., 2012).  

 

1c. Growth requirements for iron oxidizing bacteria 

 

Iron - Iron performs a key role in controlling the growth of microorganisms. In previous studies 

it was found that the large sized iron oxidizing bacteria that belong to the genera Leptothrix and 

Gallionella grew in static water conditions i.e. in ponds at circumneutral pH with 1.6 to 12 mg/L 

Fe (II), with growth inhibition taking place at ≥ l4 mg/L iron (Hasselbarth and Ludemann, 1972). 

In flowing water, encrustations of iron bacteria can be found if the iron concentration exceeds 

0.2-0.5 mg/L due to the continuous flow of nutrients (Cullimore and Mc Cann, 1977; Hedrich et 

al., 2011).   

 

Manganese - Most iron bacteria prefer to grow in media containing higher concentrations of iron 

than in media that containing equivalent molar concentrations of manganous ions (Cullimore and 

Mc Cann, 1977). However, manganese plays an important role in bacterial homeostasis by 

reducing oxidative stress in microorganisms (Cornelis et al., 2011).  
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pH - Heterotrophic iron bacteria generally grow well over a pH range of 5.4 to 7.2 (Hasselbarth 

and Ludemann, 1972). High alkaline conditions lead to the rapid oxidation of ferrous and 

manganous ions by normal physiochemical processes, making them less available as a potential 

energy source (Cullimore and Mc Cann, 1977). However, the acidophilic iron oxidizing bacteria 

such as Acidithiobacillus or their archael, thermophilic counterparts such as Ferroplasma spp., 

grow at a very low pH thus overcoming Fe (II) instability under fully aerated conditions 

(Hedrich et al., 2011). 

   

Temperature and oxygen - Iron oxidizing bacteria are either aerobic or, given the instability of 

Fe (II) at neutral pH values, microaerophilic with massive growth of iron bacteria reported in 

wells containing less than 5 mg/L oxygen (Ehrlich and Newman, 2009; Hasselbarth and 

Ludemann, 1972). The common iron bacteria from the Sphaerotilus-Leptothrix group of bacteria, 

prefer temperatures ranging between 15 and 30°C (Hasselbarth and Ludemann, 1972). However, 

the anaerobic thermophilic oxidation of Fe (II) coupled to nitrate reduction at neutral pH has 

been reported for the archaeal species Ferroglobus placidus (Hafenbradl et al., 1996). 

 

Carbon - Organic carbon in growth media required by heterotrophic iron bacteria such as 

Leptothrix discophora used in lab based studies, is typically provided in a variety of forms like 

citrate, acetate, glucose and peptone (Hasselbarth and Ludemann, 1972). The most common  

source of carbon in growth media is citrate, which is provided in the form of ferric ammonium 

citrate (Cullimore and Mc Cann, 1977; Hedrich et al., 2011). The total available organic carbon 

present in the water is a function of the flow rate of the water as well as concentration of carbon 

in the water. Therefore it is difficult to predict a threshold concentration of carbon below which 

iron oxidizing bacterial growth would be restricted or totally inhibited in flowing water 

(Cullimore and Mc Cann, 1977). 

 

2. Bacteriogenic iron oxides 

 

In the presence of molecular oxygen at circumneutral pH, the oxidation of Fe (II) is very rapid, 

resulting in the formation of poorly crystalline ferric oxyhydroxide, following Fe (III) hydrolysis. 

The reduction of these hydroxides is coupled to the degradation and/or sequestration of 
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contaminants within biological and engineered systems (Hansel and Lentini, 2011). The 

bacteriogenic iron oxides consists of a mixture of poorly crystalline hydrous ferric oxide, 

bacterial cells, organic material and are considered important sinks for inorganic contaminants 

and nutrients within soils, sediments and waters (Ferris et al., 1999; Hansel and Lentini, 2011). 

These oxides have been considered for environmental in situ remediation of contaminants due to 

their highly reactive surface properties and the wide range of functional groups provided by the 

organic fraction of these oxides (Ferris et al., 1999; Kennedy et al., 2011). Their high surface 

areas and density of reactive surface sites, allow the Fe (III) hydroxides to absorb numerous 

organics such as pesticides, nutrients and metals such as Pb, As and U (Cornell and 

Schwertmann, 2003). The common iron hydroxides are ferrihydrite, goethite, lepidocrocite and 

hematite. Ferrihydrite is considered the most bioavailable hydroxide from microbial Fe (III) 

formation (Lovley and Phillips, 1986). Fe (III) hydroxides consist of an array of Fe (III) and O
2-

 

or OH
- 
ions and differ in how their basic structural units - Fe (O/OH)6 or FeO6 - are arranged in 

space (Hansel and Lentini, 2011). 

 

Ferrihydrite (Fe5HO8 ∙ 4H2O): This is a poorly crystalline and the least thermodynamically 

stable hydroxide form with the highest surface area of the four most common iron hydroxides. 

The exact formula for ferrihydrite is not yet established. Ferrihydrite is a group of oxyhydroxide 

minerals that lack long-range order and have varying degrees of crystallinity. It has a hexagonal 

crystal system and its dominant morphology is in the shape of spheres (Cornell and 

Schwertmann, 2003; Hansel and Lentini, 2011). 

 

Goethite (α-FeOOH): The structure of this Fe (III) hydroxide is comprised of octahedral double 

chains linked through corners. It has an orthorhombic crystal system and exists in an acircular 

form (Cornell and Schwertmann, 2003; Hansel and Lentini, 2011). 

 

Lepidocrocite (γ-FeOOH): This structure is composed of octahedral double chains in 

corrugated layers which are cross-linked through edges.  It also has an orthorhombic crystal 

system and exists in the form of laths (Cornell and Schwertmann, 2003; Hansel and Lentini, 

2011). 
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Hematite (α - Fe2O3): This is the most thermodynamically stable and well-structured crystalline 

Fe (III) hydroxide form. The structure of Hematite consists of octahedra linked through edge- 

and corner-sharing as well as face-sharing along the c axis. Like ferrihydrite, it has a hexagonal 

crystal system and exists in the form of plates (Cornell and Schwertmann, 2003; Hansel and 

Lentini, 2011).  

 

The oxidized Fe (III) species can exist in a number of primary and secondary minerals including 

Fe-containing phyllosilicates and hydroxides. Above pH 4 and at low solubility, Fe (III) 

hydroxides are the predominant form of Fe (III) in most soils and sediments (Cornell and 

Schwertmann, 2003). The stability of the Fe (III) hydroxides is a function of the crystal structure 

and particle size which also determines the solubility of the phase. Solubility is a function of 

ionic strength, temperature, particle size and crystal defects, to name a few. The solubility of the 

common pure Fe (III) hydroxides progresses in the order of two-line ferrihydrite > six-line 

ferrihydrite > lepidocrocite > goethite and > hematite at circumneutral pH (Baes and Mesmer, 

1976; Cornell and Schwertmann, 2003). Fe (III) hydroxides always contain co-precipitated ions 

in the environment and the trace metals that usually substitute into Fe (III) hydroxides are Cd 

(II), Co (III), Cr (III), Cu (II), Mn (III), Ni (II), V (III) and Zn (II) (Trolard et al., 1995; Hansel 

and Lentini, 2011). Most of these metals substitute to levels below 10% within Fe (III) 

hydroxides whilst manganese occupies a significant fraction of these Fe (III) sites (Hansel and 

Lentini, 2011).  

 

3. General properties and biochemical aspects of iron 

 

Iron plays a crucial role in energy production and is important for normal health and metabolism 

(Beard and Dawson, 1997). One of the major biotechnological applications for iron oxidizing 

bacteria is to solubilize metals from mineral ores making them accessible for chemical 

extraction. This process is called biomining or bioleaching and has been widely used for copper 

production and to a lesser extent for nickel, cobalt, uranium, zinc and gold (Rawlings and 

Johnson, 2007). Iron is also an essential cofactor for cytochromes and other iron-sulfur unit 

containing enzymes such as oxygenases and forms an essential structural component of catalase 

and peroxidase enzymes which prevent oxidative stress (Beard and Dawson, 1997). Whilst an 
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essential nutrient, iron, in excess accumulation can lead to the production of reactive oxygen 

species (ROS), such as peroxides and oxygen ions (Beard and Dawson, 1997). The excess 

accumulation of iron can result in or contribute to the development of diseases such as 

hemochromatosis, thalassemia and/or chronic liver disease (Beaton and Adams 2007; Kohgo et 

al., 2008). The deficiency of iron is however more common than iron overload and affects a 

large group of people worldwide, resulting in anaemic disease (Jarrah et al., 2007). 

  

Bacterial iron homeostasis and responses to oxidative stress are interlinked and must be 

controlled for the effective functioning of the bacterial cell. Iron is an essential nutrient for the 

growth of microorganisms but is also a dangerous metal as it generates reactive oxygen species 

such as superoxide ions (O2
-
), hydrogen peroxide (H2O2) and the destructive hydroxyl radical 

(OH
·
), via the Fenton reaction (5). Bacteria must therefore control the uptake and storage of iron 

so as to avoid the build-up of reactive oxygen species that cause oxidative stress (Cornelis et al., 

2011).  

 

Fe
3+

 + O2
-                     

Fe
2+

 + O2 

        Fe
2+

 + H2O2                         Fe
3+

 + OH
-
 + OH

∙
 

                          ______________________________________               (5) 

       O2
-
+ H2O2                         OH

∙
 + OH

-
 + O2 

 

Reactive oxygen species cause damage to Fe-S clusters and can lead to protein carbonylation, 

Cys/Met-residue oxidation, membrane lipid peroxidation and cause DNA damage in bacterial 

cells (Imlay and Linn, 1988; Winterbourn, 1995). One of the ways that ROS are produced is by 

aerobes through incomplete reduction of O2 during respiration processes (Cornelis et al., 2011; 

Imlay, 2002). Bacteria have thus developed mechanisms to resist oxidative stress through the 

production of enzymes such as superoxide dismutases (catalyze the dismutation of O2), catalases 

(inactivate H2O2 and catalyze the reduction of alkyl hydroperoxides), alkylhydroperoxidases, 

superoxide reductases and peroxidases (inactivate H2O2 and catalyze the reduction of alkyl 

hydroperoxides) that degrade ROS (Hassett et al., 1995; Ueda et al., 2003). Iron is a major 

contributor to oxidative stress and is also required by some ROS-degrading enzymes, thus 

linking iron homeostasis and oxidative stress and highlighting the need for the two processes to 
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be carefully controlled in order to avoid the accumulation of potentially dangerous free iron in 

the cell (Cornelis et al., 2011; Faulkner and Helmann, 2011). One of the ways bacteria can 

protect themselves against ROS, is by sequestering iron and storing it in proteins like ferritins 

and bacterioferritins (Andrews, 1998). These proteins provide a source of iron when this metal 

becomes scarce and also protect the cell from ROS through the sequestration thereof (Andrews, 

1998). 

 

A variety of regulators can be used to control iron regulation in bacteria, of particular interest is 

the Fur protein, which regulates the uptake of iron. This is a conserved protein in many Gram 

positive and Gram negative bacteria and operates primarily as a repressor of iron uptake genes 

involved in siderophore biosynthesis or in transport across the membrane. Repression is achieved 

when Fur is associated with its co-repressor, Fe (II) (Bsat et al., 1998; Lee and Helmann, 2007). 

The Fur-Fe (II) complex controls expression by binding to the consensus sequence (iron or Fur 

box) and blocks access of the RNA polymerase to the promoter thus inhibiting transcription of 

the downstream genes. Thus iron uptake components are down regulated when iron levels 

become too high (Cornelis et al., 2009; Lee and Helmann, 2007). Whilst Fur typically behaves as 

a repressor, it has also been shown to positively regulate the expression of genes that encode iron 

proteins like bacterioferritins and the iron co-factored superoxide dismutase (Delany et al., 2004; 

Grifantini et al., 2004). 

 

4. Impact of iron oxidizing bacteria in water systems and on the corrosion of carbon steel 

 

Iron bacteria have caused problems in water distribution systems for many years, causing ‘red’ 

undrinkable water covered in slime (Cullimore and Mc Cann, 1977). The major problems in 

wells include plugging of screens; coating of pipe systems, impellers and motors, thereby 

reducing flow rates and the potability of water (Hasselbarth and Ludemann, 1972). Acidophilic 

iron oxidizing bacteria such as Acidithiobacillus ferrooxidans, including other sulfide-oxidizing 

bacteria, generate a very acidic iron oxidation product due to the simultaneous release of sulfuric 

acid, in the presence of oxygen (Cullimore and Mc Cann, 1977). Iron oxidizing bacteria consume 

oxygen creating microaerobic/anaerobic niches which are colonized by sulfate-reducing bacteria 

which are actively involved in corroding metal surfaces (Hamilton, 2003). The microorganisms 
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involved in the corrosion of steel, discolour the water through the release of iron from within the 

corrosion scales or as particulate matter when suspended and also contribute to the odour that 

accompanies the discoloured water. Manganese and iron oxidizing microorganisms that are 

usually implicated for problems in drinking water systems belong to genera such as 

Pedomicrobium, Hyphomicrobium, Crenothrix, Leptothrix and Clonothrix (Cerrato et al., 2010). 

 

In a previous experiment conducted by Rao et al. (2000), it was found that filamentous sheathed 

sulfate reducing bacteria were encrusted with corrosion products of carbon steel coupons. 

Through this finding it was inferred that iron bacteria and sulfate reducing bacteria were 

responsible for the corrosion of carbon steel. A similar study by Starosvetsky et al. (2001) 

revealed that the addition of iron bacteria to a solution of sodium chloride in the presence of 

carbon steel induced corrosion and surface passivation. The key factor in the corrosion is the 

ability of iron bacteria to metabolize ferrous ions to ferric ions, followed by the formation of low 

density hydrated iron oxides in the tubercles of the metal (Emerson and Moyer, 1997). The 

sheaths of Leptothrix spp. form a membrane on the metal surface that is impermeable to oxygen, 

thus creating an anaerobic micro-environment that favours the growth of sulfate reducing 

bacteria.   

 

An increase in pH in the solution in the vicinity of the metal is due to the cathodic reduction of 

oxygen and thus the metal will form metal cations at anodic sites (Borenstein, 1994; Mettel, 

1998). In turn, the difference in potential between the iron surface outside and under the metal 

tubercle increases, thus accelerating the corrosion through the dissolution of iron oxides 

(Borenstein, 1994). The bacterial growth is thus pronounced leading to the accumulation and 

sedimentation of large amounts of ferric hydroxide (Borenstein, 1994; Rao et al., 2000). In the 

presence of iron oxidizing bacteria, corrosion occurs via the crevice corrosion mechanism, which 

partitions the metal into small anodic sites and large surrounding cathodic areas (Borenstein, 

1994). The iron bacteria responsible for carbon steel corrosion are also capable of stainless steel 

corrosion and the corrosion of other passivated metals that are usually prone to crevice corrosion 

(Borenstein, 1994; Little and Wagner, 1997). 
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C. Microbe-Metal Interactions 

 

1. Microbial uptake of metals 

 

Due to the small size and consequently high surface area to volume ratio of bacteria, their 

surfaces provide a large area for contact with the surrounding environment (Haferburg and 

Kothe, 2007). Since bacteria probably lack highly specific metal uptake systems (Haferburg and 

Kothe, 2007), the negative net charge of the cell envelope of bacteria assists them in 

accumulating metal cations from the environment (Collins and Stotzky, 1992). Two important 

metal uptake systems that exist in bacteria are siderophore- and heme-mediated iron uptake 

(Cornelis et al., 2011). Siderophores are strong extracellular Fe (III) chelators that assist in the 

transport of Fe (III) into the bacterial cell, where it is reduced and Fe (II) is then released leaving 

behind the iron chelator which is left intact allowing recycling (Cornelis et al., 2011). Heme is an 

important source of iron for bacteria and is not found unbound due to its potential toxicity and 

hydrophobicity (Wyckoff et al., 2005). Bacteria obtain heme from the hosts that they colonize 

and it is first extracted from hemoproteins such as haemoglobin or hemopexin. Once inside the 

cytoplasm of the bacteria, the heme is broken down into biliverdin and CO via heme oxygenase 

or it can be de-ferrated, releasing Fe (II) and leaving the tetrapyrrole ring intact (Letoffe et al., 

2009; Wandersman and Delepelaire, 2004). The metal absorption to the cell envelope is 

influenced by the cell envelope components such as phosphoryl groups of lipopolysaccharides, 

carboxylic groups of teichoic and teichuronic acids, or capsule forming extracellular polymers 

such as sheaths (Haferburg and Kothe, 2007). Metal accumulation can take place via two 

processes, passive attachment onto the bacterial cell or via the active uptake into the bacterial 

cell. The passive uptake of metals is normally the dominant mode of metal accumulation due to 

nutrient scarcity in many natural environments such as soils (Haferburg and Kothe, 2007). The 

active uptake process is usually slower, requires energy and is dependent on metal-specific 

transport systems (Gadd, 1988). 
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2. Microbial mechanisms providing metal resistance 

 

Metal resistance seems to be more prevalent in environmental systems than in pure cultures 

(Sprocati et al., 2006). An important resistance mechanism of bacteria to metals is the use of 

efflux transporters, characterized by a high substrate affinity. The transporters keep the metal 

concentration in the cytosol low via the excretion of over concentrated or toxic metals (Nies, 

2003; Haferburg and Kothe, 2007). Another survival strategy is the release of metal binding 

compounds such as siderophores into the external environment of the bacterial cell where metals 

are then chelated and blocked from entering the cell (Haferburg and Kothe, 2007). This is an 

important mechanism as membrane transport systems of the cell cannot differentiate between 

potentially toxic and non-toxic metals (Haferburg and Kothe, 2007). A metal resistance 

mechanism for bacteria found in soil habitats is a combination of biosolubilization and 

bioprecipitation (Haferburg and Kothe, 2007), which typically involves the excretion of organic 

compounds that solubilize metals such as oxalates (Gadd, 1999). Some bacteria develop internal 

inclusion bodies e.g., polyphosphate granules, which bind the metal cations in the cytosol if they 

enter the bacterial cell and cannot be excreted via the efflux transporters (Gonzalez and Jensen, 

1998). Another metal resistance mechanism, is the sorption of metals by the cell membrane in 

combination with the cell wall, which also facilitates bioreduction (Haferburg and Kothe, 2007). 

The four main metal resistance mechanisms employed by microbes are summarized in figure 3.  
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Figure 3 (Adapted from Haferburg and Kothe, 2007): Overview of the four microbial metal 

resistance mechanisms. (X) - Cell constituents interacting with metal cations, (M) - Metal cation. 

 

3. Metal toxicity for microbes 

 

The ionic form of a metal is its most active form. Properties used to predict the toxicity of a 

metal ion are related to the solubility, stability and electrochemical characteristics of the metal 

(Venugopal and Luckey, 1978). In biological systems, the toxicity of a metal ion is associated 

with the difference in binding of these ions to biological structures such as tissues, cells, 

organelles etc., the stability of the metal ligand bonds and the form of the metal ion in the target 

biological structure (Venugopal and Luckey, 1978). The biological activity of a dissolved metal 

is correlated to its free ion concentration and the electrochemical properties consist of the 

oxidation potential, ionization potential, electropositivity, electronegativity, electron affinity and 

the oxidation state of the metal (Walker et al., 2003). The oxidation potential of a metal couple is 

the tendency of a metal ion to undergo oxidation from a lower oxidation state to a higher 
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oxidation state (Walker et al., 2003). Whilst the ionization potential is the difference in energy 

between the ground state and the state of ionization and it gives an indication of the electron 

affinity or electronegativity of the metal ion (Walker et al., 2003). Electropositivity is defined as 

the ability of a metal ion to lose electrons whilst electronegativity is defined as the ability of a 

metal ion to gain electrons or similarly the power of an atom to attract electrons to itself from a 

ligand (Rossotti, 1960). Electron affinity of a metal is the energy released when atom and ion are 

in their lowest energy states.  

 

Yatsimirskii (1994) described the oxidation state of a metal ion as the charge of the metal ion in 

a purely ionic model for the complex. Overall, the toxicity of a metal is a combination of the 

physical and chemical properties of the metal and the interaction between metals and their 

biological targets (Luckey and Venugopal, 1977). Fe (II) and Mn (II) are trace elements and 

generally have a low toxicity. The minimum inhibitory concentration (MIC) of Mn (II) in E. coli 

was determined as 20 mM (Mergeay et al., 1985). The toxic potential of manganese and most 

other metals is determined by their ability to form complex compounds (Nies, 1999). Fe (II) is 

rapidly oxidized under aerobic conditions to Fe (III), which has a very low solubility and under 

most circumstances it is generally not toxic to aerobic bacteria (Nies, 1999).  

 

D. Environmental Biotechnology and Purification of Metal Contaminated 

Waters 

 

Factors that render drinking water unsafe for human consumption are related to the disinfection 

stage, biofilm growth, nitrification, microbially mediated corrosion and the persistence of 

pathogens in drinking water distribution systems (Berry et al., 2006; Kormas et al., 2010). Not 

only do these factors impact on the health of those who consume the water but it also affects the 

aesthetic appeal of drinking water and undermines the confidence of consumers which in turn 

reflects badly on the efficiency of water utility companies (Kormas et al., 2010). Purification of 

contaminated water using biofiltration systems is one of the processes viewed as a sustainable 

environmental biotechnology as it employs microbial communities that remove contaminants 

such as metals from water and provide society with clean drinking water. Environmental 

biotechnology in purification of groundwater involves oxidation and reduction reactions which 
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are beneficial to both microbe and man (Rittmann, 2010). The aim of this technology is to 

optimize systems performance wise by characterizing microbial communities in terms of: (1) the 

types of microorganisms present, (2) the metabolic functions these microorganisms carry out and 

(3) their interaction with each other and their surrounding environments (Rittmann, 2010). 

 

Both biological and chemical methods are employed to remove manganese and iron from 

groundwater (Mamchenko et al., 2009). During the biological treatment raw water is passed 

through a filter which contains both Mn- and Fe-oxidizing bacteria (Burger et al., 2008). This 

water is passed through the filter with compressed air to ensure that heterotrophic organisms 

responsible for oxidation have enough oxygen to function normally (Burger et al., 2008). The 

physical-chemical removal processes involves raising the oxidation-reduction potential (ORP) of 

the water so that the iron and manganese present will be converted into their insoluble oxidized 

forms (Gage et al., 2001). An increase in the volumes of underground water used for 

consumption requires the development of new efficient but at the same time quicker methods for 

removal of manganese, iron, hydrogen sulfur and other impurities (Mamchenko et al., 2009). 

Purification of water containing iron and manganese involves filtration through a granular 

filtering medium which is typically coated with a film of manganese oxides.  

 

The presence of manganese oxides increase adhesion forces thereby improving the removal of 

impurities from the water through the interaction of van der Waals forces and ionic interactions 

(Mamchenko et al., 2009). The filtering media includes Birm, Greensand, Filox, and Pyrolox 

(Mamchenko et al., 2009). Iron must be removed first through one aeration-filtration step, 

because it is rapidly oxidized in the presence of oxygen and the product of Fe (II) oxidation 

serves as a catalyst for manganese oxidation (Gage et al., 2001). Thereafter, the pH is raised by 

stripping carbon dioxide (CO2) and manganese is removed with another aeration-filtration step 

(Gage et al., 2001). Products of manganese and iron oxidation are removed from the filter via 

back washing and some of the remaining products settle on the filter matrix serving as an 

additional catalyst for further oxidation to take place (Mamchenko et al., 2009). The purification 

of water contaminated with iron is not complicated but the presence of manganese in the water 

complicates the process as manganese is more stable than iron under aerobic conditions 

(Mamchenko et al., 2009). Albeit the contribution of bacteria to the removal of such metals is 
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important, it is not clear for individual biofiltration systems to which degree the microbial 

activity contributes to the removal of Fe (II) and Mn (II) in these systems. 
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Chapter 3 

 

Isolation and characterization of a manganese-oxidizing bacterium from a 

biofiltration system for the treatment of borehole water in KwaZulu-Natal 

(South Africa) 

 

The majority of this chapter dealing with the manganese oxidizing isolate Acinetobacter sp. 

strain LB1, has recently been published under the title: Isolation and characterization of a 

manganese oxidizing bacterium from a biofiltration system for the treatment of borehole 

water in KwaZulu-Natal (South Africa) in Engineering and Life Sciences (2012, 12:544–552) 

and the published manuscript is reproduced on the following pages. However, additional 

data not included in the published manuscript are presented in an appendix following this 

chapter. 
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water samples of a biofiltration system treating borehole water in KwaZulu-Natal,
South Africa. The nonmotile Gram-negative and oxidase-negative isolate was sub-
sequently characterized microbiologically. Based on its morphological and physio-
logical characteristics and on the analysis of its 16S rRNA gene sequence, the isolate
was assigned to the genus Acinetobacter. Growth of the isolated strain in MSVP with
added manganese sulfate gave rise to a drop in pH and a concomitant increase in
oxidation–reduction potential, which was absent in controls, thus indicating man-
ganese oxidation. The ability of Acinetobacter sp. strain LB1 to oxidize Mn (II) was
further verified using the leucoberbelin blue dye assay as well as by energy disper-
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1 Introduction

Manganese represents the 12th most abundant element in the
Earth’s crust [1]. It can exist in 11 oxidation states ranging from
–3 to +7 with two major forms in aquatic environments: Mn
(II) and Mn (IV) [2]. Changes between the two major oxidation
forms occur via oxidation and reduction reactions that may be
abiotic or microbially mediated [2]. Manganese is in addition an
essential cofactor for bacteria as this metal is involved in tran-
scriptional regulation, developmental and metabolic processes,

Correspondence: Prof. Stefan Schmidt (schmidts@ukzn.ac.za)
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KwaZulu-Natal, Private Bag X01, Pietermaritzburg 3209, South
Africa

Abbreviations: EDX, energy dispersive X-ray; EPS, extracellular poly-
meric substances; ESEM, environmental scanning electron microscopy;
MSVP, minimal salts vitamins pyruvate; ORP, oxidation reduction po-
tential; TEM, transmission electron microscopy

and at the same time protects bacterial cells against oxidative
stress [3]. For South Africa, the Department of Water Affairs
and Forestry [4] recommends a concentration for Mn (II) in
potable water of below 0.05 mg/L. The presence of manganese
(II) in drinking water has sparked a growing interest in Mn (II)
removal techniques to treat groundwater, as the consumption of
water high in manganese can exhibit toxic effects upon humans
[5]. Bouchard et al. [6] reported only recently that the intake of
manganese from ingested water can negatively impact on the IQ
scores in school-age children and a recent study from Durban
(South Africa) demonstrated elevated blood levels of manganese
in about 8% of school children analyzed [7].

The first symptoms of the so called manganism are anorexia,
weakness, and apathy while Parkinson symptoms such as tremors
and muscle rigidity may appear in the later stages [5]. The ox-
idation of manganese (II) is generally very slow at neutral pH
and would therefore require a very long time in the absence
of catalysts or photochemical enhancements [8]. Unlike Fe (II),
Mn (II) is quite stable under fully aerobic conditions at pH 7,
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and only at pH ≥ 8 does chemical oxidation of manganese (II)
begin to become appreciable [9]. Manganese often occurs in the
same types of oxic–anoxic interfacial environments where iron
is found; although it is generally 5 to 10 times less abundant,
reflecting the relative total abundance of these two metals [10].
These properties have made it much easier to unequivocally
demonstrate that manganese (II) oxidation can be biologically
mediated [11].

Manganese removal systems typically rely on physiochemical
reactions using manganese greensands (glauconite with man-
ganese oxides of various Mn valence states), designed specifically
to remove Mn (II), Fe (II), hydrogen sulfide, and arsenic [12] by
employing intense aeration enabling chemical oxidation. Biofil-
tration systems were first developed to treat water rich in iron
as this metal is not only more common but also because iron is
more readily oxidized. Although these processes provide a feasi-
ble treatment option, they can be prone to operational problems.
These are prolonged ripening periods for new filter media or tur-
bidity problems when treating iron-rich groundwater, which are
difficult to prevent even at low dissolved oxygen concentrations
(i.e. <3 mg/L) thus producing effluents not always meeting water
quality objectives [13].

Heterotrophic bacteria are well known to catalyze the ox-
idation of Mn (II) by direct and indirect processes [14]. An
important side effect of the bacterial oxidation of manganese is
its potential to trigger the so called microbially influenced cor-
rosion of stainless steel via the deposition of manganese oxides
and hydroxides onto the metal surface, a process that typically
involves the formation of biofilms on the stainless steel surface
[15]. As the Mn (IV) oxides generated via the bacterial oxida-
tion of Mn (II) behave as strong oxidants, they might enable a
cathodic reaction potentially driving anodic metal dissolution
given direct contact with the metallic substrate [16].

Direct catalysis involves the production of polysaccharides
or enzymes [17]. Extracellular polysaccharides may be found
as a capsule attached to the bacteria or may be released to
the environment as slime [18]. Such polysaccharides are im-
portant to the bacterium as they typically enable adhesion to
surfaces (i.e. biofilm formation) and provide protection against
desiccation [18]. Indirect catalysis of Mn (II) oxidation occurs
when organisms modify the pH and redox conditions of the
medium or release metabolic end products that chemically ox-
idize Mn (II) [17]. Thus, oxidation reduction potential (ORP)
and pH measurements of microbial cultures provide a useful
means for the confirmation of manganese oxidation in biological
systems [14].

In addition to pH and ORP measurements, the dye leu-
coberbelin blue (N,N′-dimethylamino-p,p′-triphenylmethane-
o′-sulfonic acid) can be used to reliably demonstrate the oxi-
dation of Mn (II) to Mn (IV) in microbial culture media [19].
Due to the oxidation of leucoberbelin blue by Mn (III)/(IV)
species to a blue reaction product with an absorption maximum
at 618 nm, the oxidation of Mn (II) can be detected in micro-
bial culture media in a pH range between 3.5 and 10 [19]. The
primary objective of this study was to demonstrate the presence
of manganese-oxidizing bacteria in a biofiltration system em-
ployed to remove iron and manganese from groundwater and to
demonstrate the ability of isolates to perform the oxidation of
manganese.

2 Materials and methods

2.1 Quantification of aerobic oligotrophic and
manganese-oxidizing bacteria in biofilter water
samples

R2A [20], a medium originally developed to enumerate olig-
otrophic bacteria, and minimal salts vitamins pyruvate (MSVP)
agar [21] targeting heterotrophic bacteria, both with added man-
ganese sulfate, were used to quantify manganese-oxidizing bac-
teria present in biofilter water samples. The MSVP medium
was generated by adding filter sterilized (0.2 μm) stock so-
lutions of sodium pyruvate (final concentration of 0.1 g/L
in MSVP), MnSO4 (manganese sulfate; final concentration of
1 mM in MSVP), and a vitamin solution (final concentration
of 25 μL/L in MSVP) [21, 22] to the minimal salts after steril-
ization. In addition, the final medium contained 1 mg/L of Fe
(II). Water samples used were collected at about 120 cm above
the surface of the filter matrix in the biofiltration system treating
borehole water (located in Nottingham Road, KwaZulu-Natal,
South Africa). Decimal dilutions of samples were prepared using
R2A and MSVP plus added manganese sulfate as diluents and
100 μL of appropriate decimal dilutions (typically in a range
from 10−2 to 10−6) were spread plated in duplicate using both
R2A and MSVP agar. Plates were incubated at 25◦C for 3 weeks
in the dark to provide adequate time for the growth of slow-
growing bacteria.

2.2 Microbiological characterization

Ten randomly selected colonies, originally obtained from solid
MSVP medium with added manganese sulfate spread plated
with biofilter water samples, were inoculated into 30 mL MSVP
medium plus manganese sulfate in 100 mL Erlenmeyer flasks.
An isolate showing the formation of a brown precipitate in the
Erlenmeyer flask after 8 days incubation was selected for fur-
ther characterization. Stock cultures of Mn (II) oxidizing strains
isolated from the biofilter were kept at −80◦C in MSVP in the
presence of 20% glycerol. The morphological and physiological
characterization of this isolate obtained from the biofilter water
via MSVP plus added manganese sulfate was done by following
standard procedures [23]. The size and motility of the isolate
was determined via the hanging drop method by phase contrast
microscopy (Motic BA 310, China).

For morphological analysis of cells by electron microscopy,
the selected isolate was cultivated in MSVP medium plus man-
ganese sulfate on a shaker incubator (25◦C, 150 rpm, 48 h). A
1 mL sample was centrifuged (5 min, 25◦C, 14 000 g), the cell pel-
let obtained was resuspended in 500 μL sterilized tap water, again
centrifuged, and the cell pellet resuspended in 100 μL of sterile
distilled water. One droplet (i.e. about 20 μL) of this suspension
was placed on carbon tape mounted on a specimen stub and
viewed using a Philips XL 30 environmental scanning electron
microscopy (ESEM, Netherlands) at low vacuum mode. Samples
were subsequently sputter coated with gold palladium using a
Polaron E5100 sputter coater (Eiko IB-3, Japan) and viewed in
high vacuum mode. Negative staining using uranyl acetate was
used to check for the presence of flagella via transmission electron
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microscopy (TEM; Philips CM 120 Biotwin, Netherlands). In
addition, the isolate was analyzed using the BioMérieux Vitek-2
compact system (France) with a Gram-negative identification
card.

2.3 16S rRNA gene sequence analysis

A single colony of the selected strain from MSVP plates with
1 mM manganese sulfate was suspended in 100 μL of ster-
ile distilled water and treated by five freeze–thaw cycles (i.e.
5 min at 95◦C followed by 10 min in liquid nitrogen). A
2 μL sample was amplified by PCR using the published
primer pair fd1 and rp2 and the corresponding PCR proto-
col [24]. The amplification product (1400 bp) was sequenced
(Inqaba Biotec, Pretoria, South Africa). The sequence obtained
was deposited under accession number JN315799 with Gen-
Bank (NCBI) and compared to 16S rRNA gene sequences de-
posited in GenBank using the NCBI Basic Local Alignment
Search Tool (BLAST, http://www.ncbi.nlm.nih.gov). A phylo-
genetic tree using type strain sequences for 16 species within the
genus Acinetobacter deposited within RDP (ribosomal database
project, rdp.cme.msu.edu) was generated, based on sequence
alignment established with clustal w and the neighbor join-
ing method using MEGA 5 [25] with resampling for 1000
replicates.

2.4 Manganese oxidation in MSVP

Manganese oxidation tests using the selected isolate were
carried out in order to verify its ability to oxidize man-
ganese. A volume of 30 mL sterile MSVP medium con-
taining 1 mM manganese sulfate was added to sterile
100 mL Erlenmeyer flasks. Flasks were inoculated using bac-
terial cells pregrown in liquid MSVP to an initial cell den-
sity of about 5 × 107 cells/mL of MSVP medium and
growth was followed over time using a Helber-type bacte-
rial counting chamber. Abiotic control flasks contained MSVP
medium with 1 mM manganese sulfate in the presence of
heat-inactivated cells. The flasks were incubated in a shaker
incubator (MRC orbital shaker incubator, Israel) at 25◦C
and 150 rpm for 8 days. The sodium pyruvate concentra-
tion was lowered in our experiments 10 times (i.e. to a
final concentration of 0.1 g sodium pyruvate per liter MSVP)
from the original recipe [21] as the higher pyruvate concen-
tration seemed to mask manganese (II) oxidation in the sys-
tem [26]. Sets of three individual flasks for pH, ORP, and cell
counts including control flasks with inactivated cells and flasks
with active cells were analyzed once every 2 days over an 8-
day period. Samples taken were centrifuged (14 000 g, 15 min,
25◦C) and the supernatant was used for pH and ORP anal-
ysis using a calibrated electrode (Hach sension1, Germany).
Crystals formed in flasks over the 8-day period were detected
via phase contrast microscopy (Motic BA310) and analyzed
by an Oxford (X-MAX) energy dispersive X-ray (EDX) detec-
tor coupled to scanning electron microscopy (Zeiss Evo LS 15,
Germany).

2.5 Detection of manganese oxidation using
leucoberbelin blue

Leucoberbelin blue was employed to check for the presence of
oxidized manganese in bacterial cultures after incubation [19].
Hence, the selected bacterial isolate was cultivated in the medium
(i.e. LBB medium, containing 3 g bacto-peptone and 1 g yeast
extract per liter) suggested by the same authors specifically for the
leucoberbelin blue assay. However, it contained 1 mM MnSO4,
1 mg/L of Fe (II), and distilled water was used as a substitute
for the aged sea water in the original medium. Erlenmeyer flasks
(100 mL) containing 30 mL of the above medium were inoculated
with 3 × 107 cells (pregrown in LBB medium) per milliliter and
incubated for 5 days in a shaker incubator at 25◦C and 150 rpm.

Controls were incubated in the absence of bacterial cells with
and without 1 mg/L Fe (II). As it is known that certain proteins
or other biomolecules involved in manganese (II) oxidation pro-
cesses are heat stable [27], an additional control was run with
heat-inactivated (20 min at 121◦C) bacterial cells in the presence
of 1 mg/L Fe (II). For the qualitative detection of manganese
oxidation, 1 mL of 0.04% (w/v) leucoberbelin blue solution in
45 mM acetic acid was added to flasks after incubation and vi-
sually analyzed for the formation of a blue color in comparison
to abiotic controls. For the spectrophotometric quantification of
manganese (II) oxidation, 1 mL of culture supernatant (diluted
with LBB medium prior to measurement if required) was added
to 2 mL of the above leucoberbelin blue solution, vortexed for
30 s and incubated in the dark for 5 min at ambient temperature.
Thereafter the absorbance was measured at 628 nm [26] using a
Bio-Rad Smartspec Plus (USA). Calibration curves were gener-
ated using culture medium containing known quantities of Mn
(IV) in a linear range from 0 to 80 μM.

2.6 Biofilm formation assay

Biofilm formation assays were carried out according to Maldon-
ado et al. [28] with the following modifications. The isolate was
cultivated in 75 mL LBB medium (as specified under 2.5) in
250 mL Erlenmeyer flasks until the late logarithmic phase. Trip-
licate samples of 15 mL were aseptically dispensed into sterile
90 mm Petri dishes and incubated for 24, 48, 72, and 96 h, re-
spectively. Controls contained only sterile, noninoculated LBB
medium. Additional controls employed the known manganese-
oxidizing bacterial species Leptothrix mobilis (DSM 10617). After
incubation, the bacterial suspension was discarded from the Petri
dish and the Petri dish gently rinsed twice with distilled water
to remove unattached cells. Thereafter, 20 mL of a 0.1% (w/v)
crystal violet (CV) solution was added to each Petri dish that was
incubated for 20 min at room temperature with occasional mild
shaking. The CV solution was discarded and the plates gently
rinsed twice with distilled water to remove any excess dye not
absorbed. Thirty milliliters of 95% ethanol was added to each
plate. These were then incubated at room temperature for 5 min
with manual, occasional mild shaking to extract the bound CV.
The ethanol solution was collected and the absorbance mea-
sured at 540 nm in centrifuged samples (samples were diluted
with 95% ethanol where necessary) using 95% ethanol as blank.
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2.7 Chemicals

Leucoberbelin blue was obtained from Sigma-Aldrich (USA).
Unless otherwise stated, all other chemicals used were of the
highest purity commercially available.

3 Results and discussion

3.1 Quantification of aerobic oligotrophic and
manganese-oxidizing bacteria in biofilter water
samples

After 2 weeks incubation, MSVP agar (with 1 mM added man-
ganese sulfate) gave rise to 1.35 × 106 cfu/mL while R2A
agar (with 1 mM added manganese sulfate) gave rise to 8.8 ×
104 cfu/mL for biofilter water samples. In most freshwater aquatic
environments, microbial cell densities fall in a range of 105 to
106 cell/mL [29, 30]. The values determined are in a range re-
ported for other biofiltration systems used to eliminate man-
ganese from groundwater. Vandenabeele et al. [31] reported cell
counts ranging from 2 × 103 to 7.9 × 104 cfu/g of biofilter sand
and of 1.4 × 103 cfu/mL for the influent water treated using PYM
agar, while Burger et al. [32] reported heterotrophic counts of
106–108 cfu/g of biofilter sand using MSVP and R2A. The count
reported by Vandenabeele et al. [31] for the biofilter sand is lower
than the number established for the biofilter water analyzed in
our study, which might be due to a low recovery of cells from the
sand and the fact that a different medium (PYM) was employed
in this study.

3.2 Microbiological characterization of the selected
isolate

The isolate selected for further characterization was Gram neg-
ative with cells appearing as plump short rods (1 × 1.5 μm) and
cells typically showed a substantial amount of clumping (Fig. 1).
Cells had capsules and were nonmotile, oxidase negative, and
catalase positive. The above characteristics of the strain are typ-
ical features of species within the genus Acinetobacter [33, 34].
In order to further verify the taxonomic affiliation of the un-
known isolate, a commercial test system (Vitek 2) and sequence
analysis of the 16S rRNA gene were employed. The results of the
Vitek analysis confirmed that strain LB1 belongs to the genus
Acinetobacter based on the biochemical reaction pattern ob-
tained. In addition, the sequence obtained for strain LB1 showed
high similarity (≥ 99%) to 16S rRNA gene sequences of en-
vironmental isolates identified as Acinetobacter calcoaceticus
(DQ187381.1, JF683591.1). This result was confirmed by phylo-
genetic analysis depicting a close relationship between the iso-
lated strain LB1 and A. calcoaceticus (Fig. 2).

3.3 Manganese oxidation by the isolated strain
Acinetobacter sp. LB1 in MSVP

The pH of the MSVP medium containing 1 mM manganese sul-
fate remained fairly constant in heat-inactivated controls over

Figure 1. TEM (A) and ESEM (B) image of the manganese-
oxidizing isolate Acinetobacter sp. strain LB1. (A) Negatively
stained single cell. (B) Sputter coated cell aggregate.

the 8-day incubation period (Fig. 3B). However, in replicate Er-
lenmeyer flasks with the isolated Acinetobacter sp. LB1 present,
the pH dropped between day 6 and 8 from about 7 to be-
low 4 (Fig. 3B) This was accompanied by an increase in ORP
from about 0 mV to a value of +198 mV in the presence of
strain LB1, while the ORP in controls remained virtually con-
stant over the 8-day period (Fig. 3A). At the same time, the
cell number had increased to about 8 × 108 cells/mL between
day 6 and day 8, thus indicating that the pH and ORP changes
were triggered by the presence of increased cell numbers indi-
cating that stationary phase was reached (Fig. 3C). Adams and
Ghiorse [35] reported that the highest Mn (II) oxidizing activity
of the well known β-proteobacterial species L. discophora SS1
was present in early stationary-phase cultures. Similarly, Tebo
et al. [36] concluded that most bacterial strains known to oxidize
Mn (II) perform this oxidative process in the stationary growth
phase.

The ORP of the medium is directly related to the pH [13]
and the pH in turn can drop due to the formation of both
CO2, manganese oxides as well as hydroxycarboxylic acids [37].
The hydroxycarboxylic acids of microbial origin exert a cat-
alytic effect on Mn (II) oxidation, establishing the formation
of an insoluble, brown manganese complex presumably con-
taining Mn (III) [37]. The presence of oxygen in water is not
sufficient for quantitative Mn (II) oxidation to take place at
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Figure 2. Phylogenetic affiliation of the
strain LB1 (black circle) based on the com-
parison of its 16S rRNA gene sequence
with 16 selected 16S rRNA gene sequences
for type strains of the genus Acinteobacter
(open circles). The alignment of selected
sequences and the construction of the tree
are specified in section 2. The scale bar rep-
resents two estimated changes per 100 nu-
cleotides. Numbers shown at nodes indi-
cate calculated bootstrap values (only val-
ues > 50% are shown). Escherichia coli was
used as an out-group (open diamond).

neutral pH [17], while the presence of previously oxidized
manganese or Fe (II) allows the normally slow oxidation re-
action to go to completion [13]. Brownish crystals were formed
in MSVP in the presence of Acinetobacter sp. LB1 and in minute
quantities even in control flasks containing Fe (II) and heat-
inactivated cells while being virtually absent in controls, lacking
both Acinetobacter sp. strain LB1 and Fe (II) (data not shown).
This result is not unexpected on chemical grounds as Mn (II)
can be oxidized abiologically—albeit slowly—in the presence of
Fe (II) [17,38]. The appearance of crystal complexes formed was
analyzed by light microscopy and ESEM (Fig. 4A). EDX anal-
ysis verified that these crystals contained both manganese and
oxygen thus suggesting that these crystals contained manganese
oxides (Fig. 4B).

The above results indicated that the strain Acinetobacter sp.
LB1 was able to oxidize manganese (II) as neither pH nor ORP
changed in controls inoculated with inactivated cells. It is evident
that with Fe (II) present and sufficient oxygenation, Mn (II)
oxidation can occur to a limited extent, but in the presence of
manganese-oxidizing bacteria such as Acinetobacter sp. LB1, this
activity is clearly enhanced. Vandenabeele et al. [31] reported
that the incubation of manganese-oxidizing bacterial consortia
in the presence of manganese sulfate led to a pH drop of about 0.7
units over a 0.5 h incubation period. This pH drop is consistent
with the stoichiometry of the bacterial manganese oxidation
according to the reaction shown below (1), which is a proton-
generating process [17, 31].

Mn2+ + 0.5 O2 + H2O → MnO2 + 2H+ (1)

3.4 Detection of manganese (II) oxidation using
leucoberbelin blue

In comparison to controls with heat-inactivated cells, the qualita-
tive leucoberbelin blue assay clearly demonstrated an enhanced
manganese (II) oxidation in the presence of Acinetobacter sp.
strain LB1. Flasks with Acinetobacter sp. strain LB1 showed a
deep blue color formation after incubation while flasks with-
out active bacteria present displayed at most a pale blue color
(see Supporting Information, Fig. S1). This confirmed that man-

ganese (II) oxidation had taken place in Acinetobacter sp. LB1
containing flasks and only to a much lesser extent even in abi-
otic controls containing Fe (II). Similarly, MSVP plates contain-
ing added manganese sulfate showed blue color formation after
staining with leucoberbelin blue demonstrating that Acinetobac-
ter sp. strain LB1 and L. mobilis (DSM 10617) are able to oxidize
Mn (II) while controls without added manganese sulfate present
or plates inoculated with Escherichia coli (ATCC 8739) showed
no color formation due to Mn (II) oxidation (see Supporting
Information Fig. S2). In addition, Fig. S2 illustrates a principal
difference between the two Mn (II) oxidizing proteobacterial
strains. In case of Acinetobacter sp. strain LB1, the oxidation of
leucoberbelin blue by Mn (III/IV) species to its blue oxidation
product was evident throughout the medium, while this reaction
was in case of L. mobilis (DSM 10617) apparently limited to the
proximity of the bacterial cells. This verifies that oxidized man-
ganese species, as reported previously [39], attach preferably to
the sheath of Leptothrix spp. This appears not to be the case in
Acinetobacter sp. strain LB1 to the same degree, which might be
due to a lesser affinity of oxidized manganese species to attach
to the cell surface or excretion of Mn (II) oxidizing agents into
the surrounding medium.

Using the medium outlined in section 2.5, spectrophotomet-
ric analysis using leucoberbelin blue demonstrated that in flasks
containing Acinetobacter sp. strain LB1 in the presence of Fe (II),
about 11% of Mn (II) present (i.e. 1 mM) had been oxidized af-
ter 5 days incubation. In the absence of added Fe (II), still about
7% of Mn (II) had been oxidized by the bacterial strain (Fig. 5).
However, in all three different controls employed (no bacteria,
no added Fe (II), heat-inactivated cells with Fe (II) present), less
than 1% of Mn (II) initially present had been oxidized (Fig. 5).
As leucoberbelin blue is quickly oxidized by Mn (III) and Mn
(IV) but neither by Mn (II) nor other metals when present at
small concentrations [19], our data confirmed that Mn (II) was
oxidized by active cells of Acinetobacter sp. strain LB1. Similar
to our results, El Gheriany et al. [26] monitored manganese (II)
oxidation over time in the presence of L. discophora SS-1 cells
using the leucoberbelin blue colorimetric assay and found that
Fe (II) is essential for this particular strain to achieve maximum
oxidation rates for Mn (II).
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Figure 3. Impact of Mn (II) oxidation on ORP (A) and pH (B)
and correlation with growth (C) over time. Data shown are the
means of experiments performed in triplicate in the presence of
actively growing cells of the manganese-oxidizing strain Acineto-
bacter sp. strain LB1 (open symbols) in comparison to controls
(heat-inactivated cells, filled symbols). Error bars indicate the stan-
dard deviation.

3.5 Microscopical detection of an EPS-like structure
surrounding cells of Acinetobacter sp. strain LB1

Quantifying the oxidation of Mn (II) to brownish manganese
oxides is not always straightforward as Mn (II) can adsorb to

Figure 4. ESEM image (A) of a representative crystal formed in
MSVP medium with 1 mM manganese sulfate in the presence of
Acinetobacter sp. strain LB1 after 8 days incubation. Correspond-
ing EDX spectrum of the crystal analyzed (B).

cellular materials such as sheaths or extracellular polymeric sub-
stances (EPS) layers or even MnO2 produced at an earlier stage
[40]. In addition, it was reported that the proteinaceous com-
pound responsible for the catalysis of Mn (II) oxidation is co-
precipitated proportionally to the amount of manganese dioxide
produced [41]. Lastly, manganese dioxide produced during the
early stationary growth phase of the microorganisms catalyzing
the oxidation of Mn (II) may be partly reduced by respiring
cells, thus somewhat masking part of the manganese-oxidizing
activity [41].

Light microscopy showed the presence of an EPS-like cap-
sule for Acinetobacter sp. strain LB1. As indicated in Fig. 1A,
TEM analysis of negatively stained individual cells of Acineto-
bacter sp. strain LB1 revealed the presence of an EPS-like layer
surrounding individual cells. This structure could be assisting in
the oxidation of manganese (II) as it is known that extracellu-
lar polysaccharides can contribute to the bacterial oxidation of
Mn (II) and their production is directly related to the growth
of the bacteria [39]. Such exopolysaccharides may be found as
a tightly attached capsule or a slime layer surrounding the cell
or may even be released into the surrounding environment [18].
Previous studies conducted on the exopolysaccharide layer of
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Figure 5. Oxidation of 1 mM Mn (II) after 5 days incubation in the
presence and absence of 1 mg/L Fe (II) by Acinetobacter sp. strain
LB1 in LBB medium in comparison to controls without cells in the
presence and absence of 1 mg/L Fe (II) and heat-inactivated cells
in the presence of 1 mg/L Fe (II). Error bars indicate the standard
deviation.

A. calcoaceticus BD4 revealed a high rhamnose content of the
polysaccharide layer, which was a function of the carbon source
and the growth rate [18].

The association of manganese oxides with the surface of
microbial cells is well known in aquatic and terrestrial habi-
tats [36, 42] and has been shown to develop through microbe-
mediated oxidation of Mn (II) both in the environment [43] and
in pure cultures [44]. Binding of MnO2 to an EPS layer could
involve formation of specific manganese complexes with carbo-
hydrate groups of EPS layers and is enhanced by an increase in
pH, suggesting that surface charges and ionic attraction may also
be involved [45].

3.6 Biofilm formation by Acinetobacter sp. strain LB1

The production of extracellular polymers enabling adhesion to
surfaces and subsequently leading to biofilm formation is a fea-
ture protecting bacterial cells from gradual desiccation and is
frequently encountered in water treatment systems in the pres-
ence of metals [46, 47]. In metal-rich environments, the biofilm
can act as a chemical buffer at the cell’s surface, immobilizing
metals and thus protecting against metal accumulation within
the cell to toxic levels [46].

Under conditions supporting biofilm formation, the isolated
manganese-oxidizing strain Acinetobacter sp. LB1 has the ability
to form a biofilm, apparently to a greater capacity than a species
from the well-known iron and manganese-oxidizing genus
Leptothrix (Fig. 6). Similar to studies reporting the ability of

Figure 6. Biofilm-formation capacity of Acinetobacter sp. strain
LB1 in comparison to the manganese (II) oxidizing strain L. mobilis
(DSM 10617) and noninoculated controls. The data shown are the
means obtained from measurements done in triplicate. Error bars
indicate the standard deviation.

L. discophora biofilms to remove manganese [48], the ability to
form a biofilm indicates that the Mn (II) oxidizing strain Acine-
tobacter sp. LB1 can assist in the biotechnological removal of
manganese from the treated borehole water by being able to at-
tach to the biofilter matrix. The metals present can attach to the
surface of the biofilm and are subsequently removed from the
water via precipitation reactions.

4 Concluding remarks

A Gram-negative bacterial strain isolated from a biofiltration
plant treating borehole water in KwaZulu-Natal was able to oxi-
dize Mn (II). This was demonstrated via detection of a decreasing
pH and concomitantly increasing ORP in MSVP medium con-
taining 1 mM manganese sulfate in the presence of Acinetobacter
sp. LB1 and confirmed with EDX analysis of crystals formed
therein. Employing the leucoberbelin blue dye assay confirmed
that the bacterial oxidation of Mn (II) was more important in
quantitative terms than purely chemical oxidation. To the best of
our knowledge, this is the first report demonstrating the isolation
and characterization of a Mn (II) oxidizing species of the genus
Acinetobacter from a biofiltration system in South Africa. This
study highlights the potential role of Acinetobacter species for
the biotechnological elimination of Mn (II) and is an additional
example demonstrating the important role of heterotrophic
proteobacterial species in the biogeochemical cycling of
manganese.
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Supplemental figures 

 

 

 

 

   

 

Figure S1: Qualitative detection of Mn (II) oxidation by the manganese (II) oxidizing 

isolate Acinetobacter sp. strain LB1 using leucoberbelin blue.  

[A] Non-inoculated LBB medium with 1 mM manganese sulfate after 2 weeks 

incubation.  

[B] LBB medium with 1 mM manganese sulfate inoculated with Acinetobacter sp. 

strain LB1 after 2 weeks incubation. 
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Figure S2: Qualitative detection of Mn (II) oxidation by the manganese (II) oxidizing 

isolate Acinetobacter sp. strain LB1 using leucoberbelin blue.  

[A] LBB agar without 1 mM manganese sulfate inoculated with Acinetobacter sp. strain 

LB1 after 2 weeks incubation.  

[B] LBB agar with 1 mM manganese sulfate inoculated with Acinetobacter sp. strain 

LB1 after 2 weeks incubation. 

[C] LBB agar with 1 mM manganese sulfate inoculated with Leptothrix mobilis (DSM 

10617) after 2 weeks incubation. 

[D] LBB agar with 1 mM manganese sulfate inoculated with E. coli (ATCC 8739) after 

2 weeks incubation. 

Schmidts
Typewriter
65



66 
 

Chapter 3 – Appendix 

 

MALDI-TOF MS analysis of Acinetobacter sp. LB1 

 

Introduction 

 

In addition to 16S rRNA gene sequence analysis and biochemical tests, Acinetobacter sp. 

LB1 was further characterized by MALDI-TOF MS (matrix assisted laser desorption 

ionization time of flight mass spectrometry) analysis of whole cells and cell extracts using a 

Bruker Microflex MALDI-TOF MS bench top system (Bruker Daltonics, Bremen, Germany). 

The proteobacterial genus Acinetobacter contains Gram-negative, strictly aerobic, oxidase 

negative, nonmotile coccobacilli. Members of the genus Acinetobacter are widely distributed 

in both clinical and environmental settings and are currently comprised of 33 genomic 

species (Dijkshoorn et al., 2007; Nemec et al., 2010). MALDI-TOF MS has the capacity for 

high throughput identification of microorganisms in both clinical (Carbonnelle et al., 2011) 

and environmental settings (Ruelle et al., 2004). This method has previously been reported to 

enable an accurate, quick and cost-effective identification of bacterial isolates for example 

Acinetobacter baumannii as well as species from other genera (Böhme et al., 2010; Šedo et 

al., 2011; Krishnamurthy and Ross, 1996). In clinical settings MALDI-TOF MS of whole 

cells and cell extracts identified over 84% of isolates correctly at species level and over 95% 

of isolates correctly at genus level (Degand et al., 2008; Eigner et al., 2009). MALDI-TOF 

MS was first employed for the identification of small ribosomal proteins released from 

bacterial cells (Anhalt and Fenselau, 1975). During MALDI-TOF MS analysis, these target 

proteins (either released via laser induced lysis of the bacterial cells or by being present in the 

form of cell extracts) become ionized and each protein or protein fragment gains a unique 

m/z value thereby providing a specific fingerprint for the bacterium under investigation 

(Koubek et al., 2012; Ryzhov and Fenselau, 2001). 
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Materials and methods 

 

Bacterial cultivation  

 

The isolate was cultivated in LBB medium as initially specified by Krumbein and Altmann 

(Krumbein and Altmann, 1973), modified as reported by Beukes and Schmidt (2012). A 100 

µl sample from an overnight culture of Acinetobacter sp. LB1 grown in LBB medium (late 

logarithmic growth phase) was spread plated onto LBB agar followed by incubation for 24 h 

at 25°C to obtain single colonies.  

 

Sample preparation 

 

A single colony of Acinetobacter sp. LB1 was selected and further processed for whole cell 

analysis or analysis of extracts according to standard protocols (Freiwald and Sauer, 2009; 

Maier and Kostrzewa, 2007). For whole cell analysis, a colony of Acinetobacter sp. LB1 

grown for 24h was spotted at 2 positions on the MALDI-TOF MS analysis plate and allowed 

to air dry. E. coli (ATCC 8739, using a colony from an overnight nutrient agar plate grown at 

37°C) was analysed in parallel. Thereafter 1 µl of saturated α- cyano-4-hydroxy-cinnamic 

acid (HCCA) matrix solution was applied to each spot and air dried before analysis. For cell 

extract analysis, the bacterial cells were initially suspended in 300 µl of sterile distilled water, 

mixed thoroughly, and then treated with 900 µl of 75% ethanol. The mixture was then 

centrifuged and the pellet obtained was thoroughly dried to remove all ethanol. Thereafter, 50 

µl of 70% formic acid was added to the pellet which was vortexed at 2000 rpm for 1 min to 

disrupt the cells. An equal volume of acetonitrile was then added to the bacterial/formic acid 

solution, centrifuged (2 min, 14000 g) and 1 µl of the supernatant was spotted on 10 target 

positions on the MALDI-TOF MS analysis plate; the spots were allowed to dry at room 

temperature. Thereafter each spot was overlain with 1 µl saturated α-cyano-4-hydroxy-

cinnamic acid (HCCA) matrix solution (Bruker) and allowed to air dry. Measurements were 

done at 3 times per spot to generate a sum spectrum using cell extracts.  
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MALDI-TOF MS analysis 

 

Ionization was done using a 337 nm nitrogen laser and cell extract spectra were established as 

the average of 300 laser shots (30 shots, 10 spot positions) in positive linear mode at 60.0 Hz, 

analysed in the mass range from 2 to 20 kDa. Analysis and processing of the spectrum was 

done using the Bruker software (FlexControl, V.2.4 and Biotyper V. 3). Identification was 

done using the Bruker Biotyper 3.0 Reference Library 1.0 (V. 3.1.2, 2011, 3395 entries). The 

system was calibrated using E. coli DH5α as a bacterial standard (Bruker Daltonics). 

MALDI-TOF MS was also used to establish main spectra projections (MSP) of Acinetobacter 

strain LB1 protein extracts as described by Barbuddhe et al. (2008). The spectrum was 

created using mMass Version 5.3 (Strohalm et al., 2010). 

 

Results and discussion 

 

Using whole cells, Acinetobacter sp. LB1 was successfully identified to genus level, with the 

best match obtained for Acinetobacter genomospecies_3 [Tab. 1] with a score value of 2.02. 

This score value reveals a secure genus and possible species identification [Tab. 2]. The 

result obtained was in agreement with results obtained by Beukes and Schmidt (2012) for 16S 

rRNA gene sequence analysis and analysis of the isolate using a commercial test system 

(Vitek 2). E. coli (ATCC 8739) was used as a control for the MALDI-TOF MS system and 

was correctly identified to species level [Tab. 1].  

 

Table 1. Score values generated on the Bruker Microflex MALDI-TOF MS bench top 

system for Acinetobacter sp. LB1 and E. coli (control) using whole cells in comparison to 

the best matched organism in the database. 

 

Sample Name (score symbol) Best Match Score Value 

F1 (++) Acinetobacter genomospecies_3 2.02 

F2 (+++)  Escherichia coli (ATCC 8739, control) 2.324 
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Table 2. Description of the score ranges generated on the Bruker Microflex MALDI-

TOF MS bench top system. 

 

Score Range Description Symbols 

2.300 - 3.000 Highly possible species identification (+++) 

2.000 - 2.299 
Secure genus identification, possible 

species identification 
(++) 

1.700 - 1.999 Possible genus identification (+) 

0.000 - 1.699 Not reliable identification (-) 

 

 

Table 3. Main spectra projections for cell extracts of Acinetobacter sp. LB1 in relation to 

other species within the same genus from the literature* 

 

Organism Genus specific signature peak masses Probable protein 

Acinetobacter sp. LB1 3718, 5177 
unknown/50S 

ribosomal protein L34 

Acinetobacter baumannii ATCC 

15308 
5172 

50S ribosomal protein 

L34 

Acinetobacter beijerinckii NIPH 

2111 
3724, 5176 

unknown /50S 

ribosomal protein L34 

Acinetobacter beijerinckii NIPH 

838 
3725, 5176 

unknown /50S 

ribosomal protein L34 

Acinetobacter haemolyticus NIPH 

510 
3725, 5176 

unknown /50S 

ribosomal protein L34 

 

*Peak masses for Acinetobacter beijerinckii NIPH 2111, Acinetobacter beijerinckii NIPH 

838 and Acinetobacter haemolyticus NIPH 510 were obtained from Šedo et al. (2011) and 

data for Acinetobacter baumannii ATCC 15308 was obtained from Böhme et al. (2010). 
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Figure 1: MALDI-TOF MS profile for cell extracts of Acinetobacter sp. LB1 with selected m/z peak values 
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The MS profile obtained for cell extracts of Acinetobacter sp. LB1 (Figure 1) was compared 

to published MS profiles for species from the same genus (Šedo et al., 2011; Böhme et al., 

2010). A peak in the m/z range of 5172-5177, probably resembling the protein L34 of the 

large subunit of the bacterial ribosome,  present in extracts of Acinetobacter sp. strain LB1, 

was common amongst three other Acinetobacter species (Acinetobacter baumannii ATCC 

15308, Acinetobacter beijerinckii NIPH 2111, Acinetobacter beijerinckii NIPH 838, 

Acinetobacter haemolyticus NIPH 510) [Tab. 3]. Similarly, a peak in the range of 3718-3725 

was found in Acinetobacter sp. LB1 and all of the above species except Acinetobacter 

baumannii ATCC 15308 [Tab. 3]. 

 

Bacterial identification using MALD-TOF MS analysis is based on the generation of bacterial 

protein profiles, the majority being ribosomal proteins (Ryzhov and Fenselau, 2001). In 

comparison to 16S rRNA gene sequence analysis and biochemical profiling such as Vitek 2, 

the time taken to obtain results using MALDI-TOF MS was much shorter. Analysis of 

proteins using MALDI-TOF MS does not require lengthy biochemical reactions thus making 

it a more rapid technique (Carbonnelle et al., 2011). Given that pure culture material is 

available, the entire analysis procedure using MALDI-TOF can take 30 minutes from the 

time of sample/smear preparation to the final results (He et al., 2010). Conventional 

biochemical tests can take up to 48 h for identification, depending on the system employed 

for the analysis and the bacterial species analysed (Klein et al., 2012). Biochemical tests are 

limited in that two microorganisms belonging to the same genus can have fairly different 

biochemical profiles (Koubek et al., 2012). In a study conducted by Klein et al. (2012), 

MALDI-TOF MS correctly identified 31% more Gram-negative bacterial isolates than a 

separator gel tube-based method typically employed in blood culture diagnostics. However, 

both methods fell short in identifying clinical isolates of Gram-positive grape-like clustered 

cocci. In another study, the Bruker Biotyper correctly identified 33% more Gram-negative 

bacilli to the genus level and 22% more to species level than a conventional biochemical test 

system (Saffert et al., 2011).  

 

16S rRNA gene sequence analysis has been established as a reliable and accurate technique 

for the identification of bacterial isolates although it does have disadvantages which include a 

high price for reagents, a somewhat longer analysis period and that it is a labour - intensive 

process (Koubek et al., 2012). The MALDI-TOF mass spectrometry also has limitations in 

that spectra obtained might contain a small number of peaks, thereby not allowing proper 
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taxonomic identification or grouping according to spectral similarities. This problem can be 

attributed to various experimental factors as well as to the components of the bacteria (e.g., 

composition of the cell wall) (Koubek et al., 2012). Another limitation to MALDI-TOF MS 

analysis is that identifications of microorganisms are limited to the spectral profiles available 

in a compiled database generated by the MALDI-TOF system used. However, optimization 

of the sampling procedure and sample preparation, can allow the identification of bacteria to 

the strain level using MALDI-TOF MS analysis given a reliable spectral database is available 

(Arnold and Reilly, 1998; Vargha et al., 2006; Grosse-Herrenthey et al., 2008).  
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Chapter 4 

 

Do microorganisms enhance Fe (II) oxidation in the Nottingham 

biofiltration system at circumneutral pH? 

 

The potential contribution of microorganisms to the oxidative removal of Fe (II) in a 

biofiltration system at neutral pH was determined by measuring the difference in Fe (II) 

oxidation rates in the presence and absence of selected metabolically active microorganisms 

at neutral pH, with controls run at acidic pH and alkaline pH, in the presence of the biocide 

formaldehyde and in the presence of heat inactivated bacterial cells. Two strains, 

Acinetobacter sp. LB1 and Burkholderia sp. strain LB2, isolated from the biofiltration system 

and able to oxidize Fe (II) were used to evaluate the potential contribution of microorganisms 

to Fe (II) oxidation. Initially, Fe (II) toxicity tests were carried out to determine the 

concentration of Fe (II) inhibiting the growth of two microorganisms, Acinetobacter sp. LB1 

and E.coli (ATCC 8739). A nominal concentration of Fe (II) between 2 and 4 mg/L inhibited 

the growth of both microorganisms. The ferrozine colorimetric Fe (II) assay was employed in 

a test comparing the biological and abiotic Fe (II) oxidation rates using saline solution and in 

batch tests using borehole water. The comparative test employing saline solution confirmed 

that the rate of Fe (II) oxidation in the presence of active microorganisms at neutral pH was 

not very different to that in the abiotic controls. Surprisingly, the rate of Fe (II) oxidation in 

the heat inactivated control took place at a faster rate than in all other flasks. In the batch tests 

employing borehole water at neutral pH, Fe (II) oxidation took place at a faster rate in flasks 

containing Acinetobacter sp. LB1 than in flasks containing the reference Fe (II) oxidizing 

strains and EDX (energy dispersive X-ray analysis) analysis of crystals formed in this flask 

further verified the ability of this strain to oxidize Fe (II). As expected, at acidic pH, very 

little oxidation of Fe (II) took place whilst at alkaline pH a large amount of Fe (II) was 

removed from the flasks after 60 minutes. These results demonstrate that the presence of 

metabolically active microorganisms does not per se enhance Fe (II) oxidation at neutral pH 

under fully aerobic conditions.  

Keywords: Fe (II) oxidation, biofiltration system, abiotic and biological, Acinetobacter sp. 

LB1, Fe (II) toxicity,  batch tests, ferrozine colorimetric Fe (II) assay, EDX analysis  

 



77 

 

Abbreviations: EDX (energy dispersive X-ray analysis), EC50 (half maximal effective 

concentration), ESEM (environmental scanning electron microscopy) 

 

1. Introduction 

 

Iron often occurs in the same environment as manganese and is one of the most widely 

distributed metals in the earth’s crust and (Katsoyiannis and Zouboulis, 2004). At 

circumneutral pH  iron exists primarily in the form of insoluble, solid-phase minerals in the 

divalent [Fe (II)] or trivalent [Fe (III)] oxidation states (Cornell and Schwertmann, 2003). Fe 

(III) is more soluble at low pH (Stumm and Morgan, 1996) and at a pH below 4, even in the 

presence of oxygen, Fe (III) exists as an aqueous species (Weber et al., 2006). Iron is an 

essential cofactor for bacteria but is also responsible for oxidative stress, as it generates 

reactive oxygen species (ROS) such as superoxide ions (O2
-
), hydrogen peroxide (H2O2) and 

the destructive hydroxyl radical (
•
OH), via the Fenton reaction (1). In order to prevent 

oxidative stress, bacteria must control the uptake and storage of iron so as to avoid the 

buildup of reactive oxygen species (Cornelis et al., 2011).  

 

Fe
3+

 +
 
O2

-              
Fe

2+
 + O2 

Fe
2+

 + H2O2                 Fe
3+

 + OH
-
 +

 •
OH 

                             ____________________________________ (1) 

O2
-
+ H2O2                  

•
OH + OH

-
 + O2 

 

Reactive oxygen species can cause damage to Fe-S clusters, induce protein carbonylation, 

bring about Cys/Met-residue oxidation and membrane lipid peroxidation and cause DNA 

damage in bacterial cells (Imlay and Linn, 1988; Winterbourn, 1995). High concentrations of 

Fe (II) are not desired in drinking water as the excess accumulation of this metal can result in 

or contribute to the development of diseases such as hemochromatosis, thalassemia and/or 

chronic liver disease (Beaton and Adams 2007; Kohgo et al., 2008). The biological process 

used to remove iron from water involves the use of naturally or genetically engineered 

microbes which oxidize Fe (II) to Fe (III), producing an insoluble product that can easily be 

removed (Haferburg and Kothe, 2007). Abiotic oxidation involves the chemical oxidation of 

Fe (II) and/or the surface-mediated oxidation on abiogenic iron oxides (Rentz et al., 2007). 
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The efficiency of abiotic oxidation depends on the physical and chemical properties of the 

water being treated (Søgaard et al., 2000). These properties have to be adjusted in order for 

the process to function optimally and is facilitated by the reaction with oxidized manganese 

[Mn (IV)] or by the diffusion of aqueous Fe (II) into an aerobic environment where it reacts 

with molecular oxygen (O2) (Weber et al., 2006). At anoxic-oxic transition zones the oxygen 

concentrations are very low, causing the chemical oxidation of Fe (II) to proceed at a slow 

rate (Emerson and Moyer, 1997). It is at this stage that biological Fe (II) oxidation at neutral 

pH becomes more appreciable.  

 

Biological oxidation of Fe (II) is a consequence of lithotrophic metabolism and oxidation 

catalyzed by biogenic iron oxides (Rentz et al., 2007). Biogenic iron oxides consist of 

bacterial cells in combination with variable amounts of hydrous ferric oxide minerals, which 

form as a result of chemical or bacterial Fe (II) oxidation, resulting in Fe (III) (Hansel and 

Lentini, 2011; Ferris, 2005).  Fe (III) undergoes hydrolysis to precipitate in the form of iron 

hydroxides in association with bacterial cells, allowing bacteria to compete kinetically by 

exploiting steep redox gradients (Hansel and Lentini, 2011; Ferris, 2005). Due to the very 

reactive surface properties of these oxides, they are considered good sorbents of metal ions 

(Ferris, 2005; Ferris et al., 1999). At circumneutral pH, chemical Fe (II) oxidation is rapid 

(Liang et al., 1993) but in acidic environments were chemical Fe (II) oxidation is slow; 

bacteria such as Acidithiobacillus or their archael, thermophilic counterparts such as 

Ferroplasma spp., accelerate the reaction (Ferris, 2005; Hedrich et al., 2011). The aerobic 

microbial oxidation of Fe (II) has been recognized for many years and the detection of 

anaerobic Fe (II) bio-oxidation has closed a gap in the iron redox cycle (Widdel et al., 1993).  

 

Some of the common bacteria found in iron containing aquatic environments at neutral pH 

are Leptothrix ochracea, Gallionella spp., members of the Sphaerotilus/Leptothrix group and 

members of the Siderocapsaceae group. Fe (II) oxidizing bacteria can be beneficial in the 

biological removal of Fe (II) in engineered systems that treat water used for human 

consumption (Rentz et al., 2007). The role that these bacteria play in the oxidation of Fe (II) 

at circumneutral pH has been enigmatic for both geochemical and microbiological reasons 

(Emerson and Moyer, 1997). The negative net charge of the bacterial cell envelope enables 

them to accumulate metal cations from the environment (Haferburg and Kothe, 2007). Whilst 

iron bacteria are beneficial for the removal of Fe (II), they are also problematic. Through 
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their oxidation activities they corrode metal surfaces, particularly carbon steel (Hamilton, 

2003). These bacteria consume oxygen creating microaerobic/anaerobic niches which are 

colonized by sulfate-reducing bacteria that are actively involved in metal-surface corrosion 

(Hamilton, 2003). In addition these bacteria discolour the water through the release of iron 

from within the corrosion scales and also contribute to the odour that accompanies the 

discoloured water (Hamilton, 2003). The objective of this study was to determine if 

microorganisms like the previously isolated Acinetobacter sp. LB1 (Beukes and Schmidt, 

2012) are able to enhance the oxidation of Fe (II) under fully aerobic conditions at neutral pH 

like in the case of Mn (II) oxidation. 

 

2. Materials and methods 

 

2.1 Bacterial strains used for Fe (II) oxidation tests  

 

Acinetobacter sp. LB1 and an isolated strain of Burkholderia sp. strain LB2 (identity 

confirmed via API20 NE analysis (see supplementary data) were previously isolated from a 

biofiltration system treating borehole water and routinely maintained and cultivated in MSVP 

medium (minimal salts medium containing vitamins and pyruvate) as reported by Beukes and 

Schmidt (2012). Leptothrix mobilis (DSM 10617) was grown and maintained in a medium 

suggested by Spring et al. (1996) and Sphaerotilus natans (DSM 565) (Stokes, 1954) was 

grown and maintained using beef extract agar as suggested by the supplier’s instructions. 

Sphaerotilus natans was inoculated into tap water covered beef extract agar slants and 

incubated between 20-25°C
  

 for at least 48 hours before further use in experiments. Stock 

cultures of the aforementioned strains were kept at -80°C in their respective culture media in 

the presence of 20% glycerol. 

 

2.2 Fe (II) toxicity tests 

 

The impact of varying concentrations of Fe (II) on the growth of two selected proteobacterial 

strains was used to establish the minimum Fe (II) concentration potentially inhibiting 

microbial growth in the biofiltration system. E. coli (ATCC 8739) was used as a well-known 

non-iron oxidizing reference strain representing the proteobacterial group of microorganisms. 
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Acinetobacter sp. LB1 was used to determine the toxicity of Fe (II) on an organism isolated 

from the biofiltration system. The assay was carried out in LBB (Leucoberbelin blue) 

medium suggested by Krumbein and Altmann (1973) and modified according to Beukes and 

Schmidt (2012). The nominal concentrations of Fe (II) used were: 0, 2, 4, 6, 8 and 10 mg/L. 

Erlenmeyer flasks (100 mL) containing 30 mL of the above medium were inoculated with 

3×10
5
 cells (pregrown in LBB medium) per mL and incubated in a shaker incubator (MRC 

orbital shaker incubator, Israel) at 25°C
 
and 150 rpm. To monitor cell growth, 1 mL samples 

from each flask were sampled at 2hr intervals and the density of biomass formed was 

measured at OD600. One milliliter of sterile LBB medium was used as a blank. 

 

2.3 Ferrozine based Fe (II) quantification 

 

A ferrozine assay suggested by To et al. (1999) was used to test for the presence of Fe (II) 

and total iron within samples. The assay was carried out in 25 mL volumetric flasks.  

Reagents used for the assay were as follows: ferrozine [4.9 mM - stock solution in distilled 

water], Fe (II) supplied in the form of ammonium ferrous sulfate [100 mg/L in acidified (6M 

HCl, pH 2) distilled water for the standard samples - stock solution], hydroxylamine 

hydrochloride [10% w/v - stock solution in distilled water] and ammonium acetate buffer (pH 

7-7.5) [30% ammonium hydroxide - 467 mL, glacial acetic acid - 230 mL, made up to 1L 

with distilled water - stock solution]. The presence of Fe (II) was detected by a violet color 

resulting from the interaction of Fe (II) ions and ferrozine. Two standard curves were 

prepared, one employing hydroxylamine hydrochloride and the other without. The addition of 

hydroxylamine hydrochloride served to reduce Fe (III) to Fe (II), in order to measure the total 

iron in the system. Fe (III) values were obtained by subtracting Fe (II) from the total iron. For 

the standard curve, standard Fe (II) samples were prepared from the ammonium ferrous 

sulfate stock solution as follows: 0, 2, 4, 6, 8 and 10 mg/L Fe (II).  

 

Analysis of experimental and standard samples for Fe (II) without the addition of 

hydroxylamine hydrochloride included an initial centrifugation step (3 minutes, 25°C, 14000 

g) to remove any Fe (III) formed in the flasks. Samples with hydroxylamine hydrochloride 

for total Fe (II) measurements were measured directly. The Fe (II) standard and experimental 

samples were prepared by adding 0.5 mL ferrozine reagent, 20 mL of the respective Fe (II) 

standard (diluted appropriately using acidified distilled water, pH 2) or experimental sample, 
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0.5 mL hydroxylamine hydrochloride (when measuring total iron), 1.25 mL ammonium 

acetate buffer and the volume was made up to 25 mL in a volumetric flask with distilled 

water. The samples were thoroughly mixed and incubated in the dark at room temperature for 

15 minutes to allow for color development. For the spectrophotometric quantification of Fe 

(II) in the system, the absorbance of a 2 mL sample was measured at 562 nm using a BIO-

RAD Smartspec™ Plus. A sample without the addition of iron but only 20 mL of distilled 

water was used as a blank. 

 

2.4 Comparison of biological and abiotic Fe (II) oxidation rates  

 

Acinetobacter sp. LB1 was employed for the biological Fe (II) oxidation test with the 

intention to determine whether this Mn (II) oxidizing isolate has the ability to oxidize Fe (II) 

and to determine the potential contribution of microorganisms to Fe (II) oxidation at neutral 

pH under aerobic conditions. Iron oxidation tests were carried out in separate sets of 100 mL 

Erlenmeyer flasks containing 30 mL of 0.85% saline at pH 7 with additional controls run at 

pH 2.42 (acidified with HCl) and at pH 8.76 (5 mM HEPES buffer). Tests were conducted in 

the absence of bacteria (abiotic), in the presence of resting cells (Acinetobacter sp. LB1) 

(biological), in the presence of heat inactivated bacterial cells (Acinetobacter sp. LB1, 121°C 

for 15 minutes) or bacterial cells poisoned with 3.5% v/v formaldehyde. Resting cells were 

prepared by growing an overnight culture of Acinetobacter sp. LB1 in LBB medium and then 

washing and resuspending the cells in 0.85% saline. The tests were conducted over a 120 

minute period for the test conducted at neutral pH and for 60 minutes for the low and high pH 

tests. The samples were incubated in a shaker incubator at 25°C and 250 rpm (MRC orbital 

shaker incubator, Israel). Flasks used for the test conducted at neutral pH were spiked with 

4.50 mg/L Fe (II) and 5.70 mg/L for the low and high pH tests.  Flasks containing bacterial 

cells were inoculated with 1×10
8
 cells/mL. The ferrozine assay was employed to measure Fe 

(II) concentrations in samples before and after incubation, using the sample analysis 

procedure outlined in 2.3.  
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2.5 Fe (II) tests simulating biofilter conditions 

 

This test was divided into two parts, quantitative and qualitative analysis of Fe (II) oxidation.  

For the qualitative analysis, flasks (500 mL) containing borehole water (100 mL) and filter 

sand (10 g) (manganese greensands - glauconite with manganese oxides of various Mn 

valence states - intended to specifically remove Mn (II), Fe (II), hydrogen sulfide, and arsenic 

(Casale et al., 2002)) were set up. The sand granules were washed three times with distilled 

water and autoclaved at 121°C for 15 minutes prior to experimental analysis. Both control 

and experimental flasks were set up. Separate sets of flasks (500 mL Erlenmeyer flasks) were 

set up, employing borehole water (100 mL) and filter sand, spiked with the previously 

isolated Acinetobacter sp. LB1, an additional proteobacterial isolate from the biofiltration 

system - Burkholderia sp. strain LB2 (isolated in the same manner as Acinetobacter sp. LB1 

as specified in Beukes and Schmidt (2012)) and two known manganese and iron oxidizing 

reference strains, Leptothrix mobilis (DSM 10617) and Sphaerotilus natans (DSM 565). 

Flasks containing 100 mL of borehole water and filter sand were spiked with 1×10
3
 cells/mL 

of the respective bacterial strains to determine whether the addition of these microorganisms 

had any effect on the oxidation of Fe (II) in these flasks. A control containing borehole water 

and filter sand with native microorganisms (7.04×10
5
 cfu/mL for the iron oxidizers, iron 

oxidizing bacteria were quantified in a similar manner to MOB although the MSVP (minimal 

salts vitamins pyruvate) medium used to quantify the iron oxidizers contained 2 mg/L iron 

sulfate instead of manganese sulfate (Beukes and Schmidt, 2012)), without the addition of 

any other microorganisms was also established.  

 

Samples were incubated in a shaker incubator (MRC orbital shaker incubator) at 25°C and 

150 rpm for 7 days. As particulate matter from the filter sand affected the detection of Fe (II) 

in the system, only flasks without the addition of filter sand were analyzed using the ferrozine 

assay (2.3) to determine the amount of Fe (II) present in samples.  Flasks with filter sand 

were therefore only used to visually demonstrate the effects of Fe (II) oxidation in the flasks, 

simulating conditions in the biofiltration system. The flask spiked with Acinetobacter sp. LB1 

was checked for the presence of Fe (II) oxidation products formed over the 7-day period, 

using an Oxford (X-MAX) energy dispersive X-ray (EDX) detector coupled to a scanning 

electron microscope (Zeiss Evo LS 15, Germany). For the quantitative analysis, batch tests 

were conducted using freshly collected borehole water (pH 7) from the borehole water tank at 
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the biofiltration system to somewhat simulate the biofilter conditions. This test was used to 

determine the difference in Fe (II) oxidation rates in the presence of native microorganisms 

and in the presence of iron oxidizing reference strains. The same sets of experimental and 

control flasks were set up like in the qualitative analysis except only borehole water was used 

in the quantitative analysis. 

 

2.6 Chemicals 

  

Ferrozine and hydroxylamine hydrochloride were obtained from Sigma-Aldrich (South 

Africa). Unless otherwise stated all other chemicals used were of the highest purity 

commercially available. 

 

3. Results and Discussion 

 

3.1 Fe (II) toxicity tests 

 

The initial concentration of Fe (II) in the borehole water used in this study - as determined by 

the ferrozine assay - was 5.27 mg/L and after biofiltration the value dropped to < 0.02 mg/L 

in the effluent. Normal concentrations of Fe (II) in this biofiltration system range between 2-8 

mg/L (Personal communication, Dudu Gwebu, Collin Van Der Merwe and Peter Thompson, 

Umgeni Water, Durban). E. coli grew with a doubling time of approximately 2 hours [pH 7.0, 

25°C] in flasks containing up to 2 mg/L Fe (II) while growth was completely inhibited at 

concentrations ≥ 4 mg/L Fe (II) [Fig. 1A]. Acinetobacter sp. LB1 grew with a doubling time 

of approximately 40 minutes [pH 7.0, 25°C] in flasks containing up to 2 mg/L Fe (II) and, 

similar to E. coli, growth was completely inhibited at concentrations ≥ 4 mg/L Fe (II) [Fig. 

1B].  Acinetobacter sp. LB1 reached the stationary growth phase at about 10 hrs while E. coli 

reached the stationary growth phase at about 16 hrs. An EC50 value for inhibition of biomass 

formation via OD600 at 16 hr was determined as approximately 2.9 mg /L nominal Fe (II) for 

E. coli and for Acinetobacter sp. LB1. 
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Figure 1: Growth of E. coli (ATCC 8739) [A] and Acinetobacter sp. LB1 [B] in LBB 

medium in the presence of 0-10 mg/L nominal Fe (II) concentrations over an 18hr period. All 

data shown are the average of duplicate flasks.  
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The complete inhibition of cell growth at concentrations ≥ 4 mg/L proved that Fe (II) 

becomes potentially toxic at this level. According to figure 1B, the strain isolated from the 

biofilter,  Acinetobacter sp. LB1 grew much better than E.coli in LBB medium at 25°C with a 

doubling time of approximately 40 minutes at ≤ 2 mg Fe (II)/L. It must be noted that these 

values for toxicity were established on a small scale in the laboratory to determine the level 

of Fe (II) these microorganisms can tolerate. However, the bacteria in the biofiltration system 

are able to survive concentrations of iron exceeding 5.27 mg/L which can be attributed to the 

formation of biofilms containing high numbers of bacterial cells that are known to limit the 

toxic effect of metals in environmental systems (Trevors, 1989). In previous studies it was 

found that the large iron oxidizing bacteria, Gallionella spp. and Leptothrix spp. grew under 

static conditions in water with Fe (II) concentrations of up to 12 mg/L and growth of these 

bacteria was inhibited at l4 mg/L iron (Hasselbarth and Ludemann, 1972). These bacteria are 

able to grow at circumneutral pH but unlike Acinetobacter sp. LB1 and E. coli, they prefer 

environments where there are high concentrations of Fe (II) (Hanert, 1992). Whilst iron can 

be toxic to cells at high concentrations, it still forms a vital role in controlling and stimulating 

the growth of microorganisms (Emerson and Moyer, 1997).  

 

3.2 Comparison of biological and abiotic Fe (II) oxidation rates  

 

In order to measure Fe (II) oxidation over time the ferrozine assay was employed, without 

hydroxylamine hydrochloride in order to determine the amount of Fe (II) present in flasks 

before and after incubation. The addition of hydroxylamine hydrochloride was employed to 

determine the total iron concentration after incubation. Fe (II) oxidation took place in all 

experimental samples at neutral pH spiked with 4.50 mg/L Fe (II), however the time required 

to oxidize Fe (II) differed to some degree [Fig. 2A]. After 30 minutes incubation at neutral 

pH (7.0), approximately half of the initial Fe (II) present was oxidized in both the abiological 

control and resting cells flasks, thereafter oxidation took place at a slower rate [Fig. 2A]. 

Whilst Acinetobacter sp. LB1 did not clearly enhance Fe (II) removal or oxidation at neutral 

pH, it must be noted that iron oxidizing bacteria like Gallionella ferruginea (Hanert, 1992) 

have been frequently reported to enhance iron oxidation at neutral pH and it was also found 

that the sheath present on these microorganism was responsible for the enhanced iron 

oxidation in previous experiments (Rentz, et al., 2007; Katsoyiannis and Zouboulis, 2004; de 

Vet et al., 2011).  
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The Sphaerotilus/Leptothrix group of sheathed bacteria has also been previously found to 

oxidize iron at circumneutral pH and has been found in surface water environments in the 

presence of encrustations of iron (Dondero, 1975). Neubauer et al. (2002) found that between 

70-80% of the iron oxides present in bacterial cultures isolated from a wetland-plant 

rhizosphere were present in the form of sheaths or stalks. The same authors found that 

biological oxidation accounted for 18-53% of the total iron oxidized. Katsoyiannis and 

Zouboulis (2004) found that 50% of the total iron removal in groundwater was due to abiotic 

iron oxidation. In the current study it was also determined that approximately 50% of the iron 

oxidized was due to abiological activity. Also, the abiotic iron oxidation rates in this study 

were slightly higher than in the biological control. This indicated that the abiotic oxidation of 

iron largely contributes to the overall oxidation of iron in these experiments 

 

Surprisingly, almost all of the Fe (II) present was removed in the heat inactivated control 

after 30 minutes and thereafter the concentration of Fe (II) in the saline solution seemed to 

remain constant [Fig. 2A].  Also, the formation of Fe (III) was highest in the heat inactivated 

control, indicating that Fe (II) was not merely bound by the cells but was in fact oxidized as 

indicated in figure 2B. To date, only limited literature is available on the use of heat 

inactivated cells for Fe (II) oxidation experiments, to determine the contribution of biology to 

iron oxidation at circumneutral pH. Presumably, this is because of the difficulty in explaining 

the results obtained. In a study conducted by Ghiorse and Hirsch (1979), cells of 

Pedomicrobium-like budding bacteria were grown in the presence of 10 mg/L Fe (II) in the 

form of iron sulfate and in separate experiments these bacterial cells were incubated in the 

presence of manganese. To establish abiotic controls the bacterial cultures were treated with 

the addition of 0.05% (w/v) glutaraldehyde, 1mM HgCl2, or were heat treated at 93
o
C for 15 

minutes and later incubated at 30
 o

C for up to 30 days (Ghiorse and Hirsch, 1979). The 

viability of the formaldehyde treated bacterial cells was checked after incubation and results 

indicated that the cells were not viable as judged by the absence of colonies formed on PYGV 

agar (Ghiorse and Hirsch, 1979). Results of these experiments indicated that iron removal 

was not inhibited by the bactericidal treatment as reported by Ghiorse and Hirsch (1979). 

After incubation, microscopic analysis of the cultures in these treatments revealed a dense 

layer of material attached to the outer surface of the bacterial cells which was found to be 

iron oxides and was extracted using oxalic acid (Ghiorse and Hirsch, 1979). 
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Figure 2: Fe (II) oxidation at neutral pH [A] in the presence of resting cells (Acinetobacter 

sp. LB1, 1×10
8
 cells/mL), heat inactivated bacterial cells (Acinetobacter sp. LB1, 1×10

8 

cells/mL), poisoned bacterial cells (Acinetobacter sp. LB1, 1×10
8
 cells/mL) and in the 

absence of bacteria. The subsequent formation of Fe (III) is shown in [B]. Error bars indicate 

the standard deviation. n.d. = not determined. 
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After extraction of the dense material, staining of the cells with ruthenium red revealed the 

presence of a residual polymer layer surrounding the cells. This indicates that the polymer 

surrounding the cells was not completely destroyed by any of the bactericidal treatments and 

that it was somehow involved in the oxidation of Fe (II) (Ghiorse and Hirsch, 1979). 

Similarly, in this study, in the dead cell control, Fe (II) oxidation was highest as compared to 

the other flasks even after the cells were heat treated. This could possibly indicate that 

components within the EPS (extracellular polymeric substances) layer of Acinetobacter sp. 

LB1 were activated via heat treatment allowing more Fe (II) oxidation to take place at a faster 

rate, not forsaking the contribution of abiotic oxidation of Fe (II) in this flask. Acinetobacter 

spp. are known to contain a polysaccharide capsule which consists of L-rhamnose, D-

glucose, D-glucuronic acid, and D-mannose (Kaplan et al., 1985), which contributes to the 

hydrophilic nature of the surface of these microorganisms.  

 

The level of Fe (III) produced in the abiological control and in the presence of resting cells 

correlated with the amount of Fe (II) removed in these flasks [Fig. 2B]. In the flask 

containing Acinetobacter sp. LB1, poisoned with formaldehyde, very little oxidation of Fe 

(II) took place [Fig. 2A] and similarly very little Fe (III) was produced [Fig. 2B]. The use of 

formaldehyde to poison cells was based on the fact that this compound is an efficient biocide 

almost quantitatively killing heterotrophic bacteria such as Pseudomonas fluorescens 

(Whistler and Sheldon, 1989). The use of formaldehyde for poisoning cells was motivated by 

the study conducted by Ghiorse and Hirsch (1979) were 0.05% (w/v) glutaraldehyde was 

used as a bactericidal treatment and by a study conducted by Lies et al. (2005) were 20% 

formaldehyde was used to kill cells by exposure for 1 hour. However, at the same time 

formaldehyde is a reducing agent and caused a drop in pH in the saline to approximately 4 

which could have also contributed to the reduction of Fe (III) in the saline solution.  

 

Under aerobic conditions at neutral pH in the abiological flasks, flasks with resting cells and 

the heat inactivated control, Fe (II) was not merely precipitated out of the solution but 

oxidized as confirmed by the formation of Fe (III) over time [Fig. 2B]. Iron can exist in the 

divalent [Fe (II)] or trivalent [Fe (III)] oxidation states at circumneutral pH (Cornell and 

Schwertmann, 2003). Overall, Fe (II) oxidation in the presence of active bacterial cells 

seemed to only appear slightly faster than in the abiological control. This difference was not 

sufficient to confirm that microorganisms such as Acinetobacter sp. LB1 can speed up Fe (II) 
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oxidation at neutral pH and aerobic conditions like in the case of manganese oxidation 

(Beukes and Schmidt, 2012). However, it must be noted that the lab experiments using saline 

and Acinetobacter sp. LB1 do not reliably simulate conditions in the biofiltration system. 

There was very little Fe (II) removal in all experimental and control flasks at acidic pH (2.42) 

after 60 minutes incubation [Fig. 3A] and only very small quantities of Fe (III) were 

produced in these flasks, which confirmed that Fe (II) is very stable at acidic pH [Fig. 3B].  

 

At acidic pH ≤ 4, even in the presence of oxygen, Fe (II) will exist in an aqueous form and 

the solubility of Fe (III) increases with a decrease in pH (Weber et al., 2006; Stumm and 

Morgan, 1996). At alkaline pH (8.76) almost all Fe (II) was removed from all experimental 

and control flasks [Fig. 4A]. However, very little Fe (III) was formed [Fig. 4B], indicating 

that the Fe (II) was basically removed via precipitation and apparently very little oxidation of 

Fe (II) took place. At acidic pH under aerobic conditions, the contribution of bacteria to the 

oxidation of Fe (II) was negligible. At acidic pH almost all Fe (II) is kept in solution thus 

preventing Fe (III) formation. It is at this pH that the presence of bacteria like 

Acidithiobacillus ferrooxidans becomes appreciable (Cullimore and Mc Cann, 1977). This 

bacterium obtains energy from the oxidation of inorganic sulphur and iron simultaneously 

(Temple and Colmer, 1951) and has been previously cultivated in a medium with a pH as low 

as 1.3 (Tuovinen et al., 1971a). A. ferrooxidans also showed a high tolerance to sulphur and 

iron, which is an important ecological feature of this microorganism in comparison to other 

microbial competitors (Tuovinen et al., 1971b).  
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Figure 3: Fe (II) oxidation at low pH (2.42) [A] in the presence of resting cells 

(Acinetobacter sp. LB1, 1×10
8
 cells/mL), heat inactivated bacterial cells (Acinetobacter sp. 

LB1, 1×10
8
 cells/mL) and in the absence of bacteria. The subsequent formation of Fe (III) is 

shown in [B]. Error bars indicate the standard deviation. 
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Figure 4: Fe (II) oxidation at alkaline pH (8.76) [A] in the presence of resting cells 

(Acinetobacter sp. LB1, 1×10
8
 cells/mL), heat inactivated bacterial cells (Acinetobacter sp. 

LB1, 1×10
8
 cells/mL) and in the absence of bacteria. The subsequent formation of Fe (III) is 

shown in [B]. Error bars indicate the standard deviation. 
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The flasks incubated at high pH contained HEPES buffer, which was used to establish a pH 

of 8.76. A high level of Fe (III) was expected given the rapid removal of Fe (II) after 60 

minutes, however HEPES buffer is also known to chelate/bind iron and probably therefore 

only very little Fe (III) was formed as shown in figure 4B. Welch et al. (2002) measured the 

rate of Fe (II) removal in different buffers such as HEPES (50 mM) and phosphate buffer (50 

mM), and found that with an increase in pH in the buffer, the rate of Fe (II) removal 

increased. The same authors also compared ultra-pure HEPES to regular grade HEPES 

(containing micromolar concentrations of iron, copper and other transition metals) and found 

that Fe (II) removal was slower in the ultra-pure HEPES as compared to the regular grade 

HEPES and it was also found that phosphate buffers and bicarbonate buffers were much 

stronger Fe (II) chelators than HEPES.  

 

The redox potential and pH of the water being treated are the main factors that determine to 

which degree Fe (II) oxidation is going to take place either biologically or abiotically, with a 

shift to the latter being the most favourable due to an 80% reduction in operational costs 

(Mouchet, 1992). In experiments conducted on wetland-plant rhizospheres by Neubauer et al. 

(2002), Fe (II) oxidation in the presence of actively respiring cells accounted for 18-53% of 

the total Fe (II) oxidized, whilst in the presence of inactive cells (poisoned with sodium 

azide), the oxidation rate dropped by only 6%. This indicates that biological oxidation of Fe 

(II) does occur at neutral pH but at a very slow rate. The results from the study conducted by 

Neubauer et al. (2002), by Ghiorse and Hirsch (1979) and this study therefore indicate that it 

is not sufficient to demonstrate that the presence of microorganisms speeds up the oxidation 

of Fe (II) at neutral pH under aerobic conditions as demonstrated in this study in batch tests 

employing saline 

 

3.3 Fe (II) batch tests simulating biofilter conditions 

 

A. Qualitative test for iron oxidation using borehole water in the presence of filter sand  

 

The batch culture test employing freshly collected borehole water aimed to simulate Fe (II) 

oxidation as possibly occurring within the biofiltration system. Four bacterial strains were 

employed, Acinetobacter sp. LB1, Leptothrix mobilis, Sphaerotilus natans and Burkholderia 

sp. strain LB2. All flasks before incubation were free of turbidity [Fig. 5B] and the initial Fe 
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(II) concentration in the borehole water used in the flasks was determined as 5.27 mg/L (pH 7 

and ORP > 300 mV). The poisoned control flask served to demonstrate the removal of iron in 

the presence of inactive cells. Two flasks poisoned with 3.5% formaldehyde were set up, one 

which contained just the borehole water and formaldehyde and one which contained borehole 

water, formaldehyde and 10g filter sand. These flasks were incubated for seven days and 

thereafter checked for the presence of viable cells via streaking out samples on LBB agar. 

The turbidity in the flask containing filter sand and formaldehyde was not due to bacterial 

growth but due to particulate matter from the sand particles during incubation [Fig. 5C]. In 

the first set of experimental flasks used for the qualitative analysis of Fe (II) oxidation, flask 

A spiked with Acinetobacter sp. LB1 developed a black colour, flask C spiked with 

Leptothrix mobilis and flask F containing normal borehole water with no added bacteria 

developed an orange colour [Fig. 5A].  

 

These colour developments in the above mentioned flasks are indicative of manganese (black 

colour) and iron (orange colour) oxidation (vanVeen, 1972) and are similarly present in the 

manganese and iron  filters in the biofiltration system. The rest of the flasks did not show any 

colour development except for turbidity formation. The colour formation in flask A spiked 

with Acinetobacter sp. LB1 was a result of the co-precipitation of both iron and manganese as 

determined by EDX analysis. EDX analysis of the black precipitate formed in this flask 

revealed the presence of crystals which contained iron and manganese with a higher 

proportion being iron [Fig. 6] as would be expected given the high concentrations of Fe (II) 

in the borehole water. It was previously established that the strain Acinetobacter sp. LB1 used 

in flask A was capable of oxidizing Mn (II) (Beukes and Schmidt, 2012); these results 

indicate that the isolate is also able to contribute somewhat to the oxidation of Fe (II) at 

neutral pH under aerobic conditions.  
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Figure 5: Fe (II) oxidation in batch culture tests before and after the 7 day incubation [A] and 

the contribution of the filter sand to the turbidity formed in the flask poisoned with 3.5% 

formaldehyde [B+C].  

 

Constituents of flasks in image [A]: 

[A] Borehole water + filter sand spiked with Acinetobacter sp. LB1 (1×10
3
 cells/mL) 

[B] Borehole water + filter sand spiked with Burkholderia sp. strain LB2 (1×10
3
 cells/mL) 

[C] Borehole water + filter sand spiked with Leptothrix mobilis (1×10
3
 cells/mL) 

[D] Borehole water + filter sand spiked with Sphaerotilus natans (1×10
3
 cells/mL) 

[E] Borehole water with native bacteria poisoned with 3.5% formaldehyde 

[F] Normal borehole water with native bacteria (7.04×10
5
 cfu/mL - iron oxidizers) 
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Flasks containing Burkholderia sp. strain LB2 and Sphaerotilus natans did not develop any 

distinct colour, which does not mean iron oxidation did not take place in these flasks [Fig. 5], 

but could have been taking place at a slower rate than in the other flasks. The other possibility 

for the lack of colour development could be that these two strains produce chelating agents 

like siderophores, which bind the metal and prevent it from being oxidized, thus the lack in 

the orange colour formation which should have formed due to Fe (II) oxidation. The largest 

class of compounds known to bind and transport Fe (II) are called siderophores (Gadd, 2010). 

These compounds are highly specific Fe (II) ligands which are released by a wide variety of 

bacteria and fungi to assist in iron absorption (Gadd, 2010). Siderophores can also complex 

other metals but iron is the only known essential element for which these shuttles operate 

because Fe (II) is needed in large amounts by cells and also because the solubility of ferric 

hydroxides at neutral pH is low, thus the free Fe (III) concentration is too low to support 

microbial growth (Gadd, 2010). Bacteria present in environments containing iron and 

manganese are capable of producing and releasing siderophores  into the extracellular milieu 

to chelate these metals (Salomons and Förstner, 1984; Babich and Stotzky, 1985). 

Pseudomonas fluorescens in particular, is capable of producing siderophores to chelate 

metals such as Fe (II) (Dhanya and Potty, 2007). As particulate matter released from the filter 

sand during incubation interfered with the ferrozine assay, the quantification of Fe (II) 

oxidation was only employed in the second set of flasks which did not contain any filter sand. 

However, the flasks containing filter sand did provide a good visual demonstration of the 

oxidation processes occurring within the biofiltration system. 
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Figure 6: ESEM image [A] of crystals formed in the flask with the black precipitate in 

borehole water containing 5.27 mg/L Fe (II) in the presence of Acinetobacter sp. LB1 after 7 

days incubation and the corresponding EDX spectrum of the crystals [B].  
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B. Quantitative test for iron oxidation using borehole water in the absence of filter sand 

 

In the second set of flasks without filter sand, more than 97% of the Fe (II) was removed after 

7 days incubation from the borehole water in the presence of Acinetobacter sp. LB 1, while 

about 90% was removed from the borehole water flasks spiked with Leptothrix mobilis and 

Sphaerotilus natans [Fig. 7]. More than 95% of Fe (II) was removed in flasks spiked with 

Burkholderia sp. strain LB2 and in the normal borehole water flask (with native 

microorganisms). Although the number of bacterial cells inoculated into these flasks was low, 

the addition of these microorganisms did seem to have a marked effect on the removal of Fe 

(II) in the borehole water [Fig. 7].  The borehole water contains trace quantities of nutrients 

which might support the growth of the native microorganisms, like Burkholderia sp. strain 

LB2 and Acinetobacter sp. LB1, whilst the other microorganisms like Leptothrix mobilis and 

Sphaerotilus natans which are not native to the system might struggle to grow in this 

environment and therefore may not be able to remove Fe (II) as efficiently as the native 

microorganisms. The flask containing formaldehyde showed the least amount of Fe (II) 

removal which verifies that actively metabolizing bacteria are necessary for the efficient 

removal of Fe (II). However the effect of formaldehyde on the rate of Fe (II) removal in the 

saline solution was not the same as in the borehole water. This is possibly due to the longer 

incubation period in the borehole water flask which could have also caused the pH of the 

medium to change, allowing more of the abiotic removal of Fe (II) to take place.  The results 

confirm that the presence of active microorganisms is necessary for the efficient removal of 

Fe (II) in biofiltration systems like the system under investigation.  
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Figure 7: Initial and final Fe (II) concentrations (after a 7 day incubation period) in borehole 

water in batch culture flasks. All data shown are the average of duplicate flasks.  

 

[A] Borehole water spiked with Acinetobacter sp. LB1 (1×10
3
 cells/mL) 

[B] Borehole water spiked with Burkholderia sp. strain LB2 (1×10
3
 cells/mL) 

[C] Borehole water spiked with Leptothrix mobilis (DSM 10617) (1×10
3
 cells/mL) 

[D] Borehole water spiked with Sphaerotilus natans (DSM 565) (1×10
3
 cells/mL) 

[E] Normal borehole water with native bacteria (7.04×10
5
 cfu/mL - iron oxidizers) 

[F] Borehole water containing native bacteria poisoned with 3.5% formaldehyde 
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There are a number of challenges that are faced by microorganisms that gain energy from the 

oxidation of iron at circumneutral pH. The first problem is the low level of energy obtained 

from iron oxidation at circumneutral pH (Ehrlich et al., 1991), secondly, under fully aerobic 

conditions the half-life of iron in circumneutral freshwaters is approximately 2-10 minutes 

depending on the pH (Stumm and Morgan, 1981) and under the above conditions, the shortest 

reported doubling time for a lithotrophic iron oxidizer was reported to be 8h (Emerson and 

Moyer, 1997). The circumneutral lithotrophic microorganisms are thus limited to 

microaerophilic zones because abiotic iron oxidation rates in these zones are much lower due 

to the lower oxygen levels (Liang et al., 1993; Stumm and Morgan, 1981). Finally the 

competition for Fe (II) at circumneutral pH is enhanced by the fact that iron oxides as well as 

the surfaces of microorganisms are able to catalyze the abiotic oxidation of Fe (II). 

Separating these two mechanisms in order to determine the contribution of bacterial cells to 

Fe (II) oxidation is therefore challenging. 

 

Total iron oxidation includes abiotic and biological oxidation. Abiotic oxidation is comprised 

of the chemical oxidation of aqueous Fe (II) including the surface-mediated oxidation of Fe 

(II) on abiogenic iron oxides, which is also known as autocatalysis (Stumm and Morgan, 

1981). The biological oxidation of Fe (II) consists of catalysis that is directly mediated by 

metabolism of lithotrophic Fe (II) oxidizers and surface-mediated oxidation on biogenic iron 

oxides (autocatalysis) (Stumm and Morgan, 1981). Another form of autocatalysis is through 

the passive adsorption of Fe (II) to bacterial cells (Chatellier and Fortin, 2004, Warren and 

Ferris, 1998) and then the facilitation of iron oxide formation (Konhauser, 1997). Surface-

mediated Fe (II) oxidation on biogenic iron oxides would not take place in the absence of iron 

oxidizing microorganisms even though it is not directly linked to bacterial metabolism (James 

and Ferris, 2004). The rate at which these processes occur and the contribution of 

microorganisms to these processes is not clearly understood. 

 

4. Conclusion 

 

The results in this study show that there is apparently very little difference in the rate of 

abiological and biological Fe (II) removal in batch tests performed at neutral pH under 

aerobic conditions in saline solution. However, it was confirmed that the presence of active 

microorganisms is necessary for the efficient removal of Fe (II) at neutral pH under aerobic 
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conditions when compared to flasks containing poisoned bacterial cells in batch tests with 

borehole water. The results also confirmed that the previously isolated manganese oxidizing 

strain - Acinetobacter sp. LB1- can contribute to Fe (II) removal from borehole water. Whilst 

estimating biological and abiological Fe (II) oxidation rates at neutral pH presents a 

challenge, the above results demonstrate that microorganisms can play a role in Fe (II) 

oxidation at neutral pH under aerobic conditions although apparently only to a limited extent. 
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Chapter 5 

 

The detection of active biofilms and the assessment of the bacterial diversity 

in a biofiltration system treating borehole water in  

KwaZulu-Natal (South Africa) 

 

In order to assess the microbiological status of a biofiltration system used to treat borehole water, 

filter matrix samples were initially analyzed for the presence of active biofilms using confocal 

laser scanning microscopy (CLSM). CLSM revealed the presence of biofilms on the filter matrix 

with actively metabolizing microbial cells being present. Thereafter, heterotrophs and manganese 

oxidizing bacteria (MOB) and iron oxidizing bacteria (IOB) present in the biofilms on the filter 

matrix in both manganese and iron filters were quantified in the combined filter matrix sample. 

For heterotrophs a count of 2.9×10
7 

cfu/g was established using R2A agar. Counts for MOB and 

IOB were established as 2.4×10
7 

cfu/g and 3.1×10
7 

cfu/g respectively. In addition, a clone library 

was established using DNA extracted to from a pooled filter matrix sample from both manganese 

and iron filters to assess the diversity of bacteria present within the biofilter matrix in both filters. 

A total of 100 randomly selected clones were further separated into 15 unique OTU’s 

(operational taxonomic unit) based upon restriction patterns of amplified partial 16S rRNA 

genes. Seventy three percent of clones analyzed had sequence similarity scores of ≥ 94% to the 

closest related genus. The remaining 27% of the clones had sequence similarity scores of < 94% 

to the closest related genus. The majority of the clones were closely related to the genera 

Nitrospira and Lactococcus. Overall, 42% of the clones were assigned to the phylum 

Proteobacteria, 13% to the phylum Actinobacteria, 24% to the phylum Firmicutes and 21% to 

the phylum Nitrospirae. 

 

Keywords: Biofiltration system/ biofilm/ CLSM image analysis/ microbial counts/ 16S rRNA 

gene clone library 

 

Abbreviations: ARDRA (amplified “rDNA” restriction analysis), OTU (operational taxonomic 

unit), MOB (manganese oxidizing bacteria), IOB (iron oxidizing bacteria), PCR (polymerase 
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chain reaction), rRNA (ribosomal RNA), CTAB (cetyltrimethylammoniumbromide), SDS 

(sodium dodecyl sulfate), TBE (Tris-borate EDTA), CTC (5-cyano-2,3-ditolyltetrazolium 

chloride), DMSO (dimethyl sulfoxide), CLSM (confocal laser scanning microscopy) 

 

1. Introduction 

 

One of the top priorities in civil society with regards to human health concerns is the provision 

of safe drinking water (Kormas et al., 2010; WHO/UNICEF, 2012). Iron and manganese are 

natural constituents in the earth’s crust and are found in surface and groundwater in varying 

concentrations, whilst even at low levels they remain a problem from an aesthetic, health, 

technical and economic point of view (Bouchard et al., 2011; Hamilton, 2003; Lovley, 2000). 

Biological filtration of groundwater is one of the methods employed in successfully removing 

these metals from water (Gage et al., 2001). This process involves passing aerated water free of 

chlorine through a column of filter sand, thereby allowing microorganisms to multiply as 

biofilms on interfaces within the column (Gage et al., 2001). The majority of microorganisms in 

aquatic environments grow in the form of biofilms which are considered a prominent mode of 

microbial colonization and mode of survival in metal-rich environments (Harrison et al., 2007), 

yet their identity and physiology remain poorly understood (Stein et al., 2002).  

 

Biofilms typically consist of a large variety of microorganisms which exist in a highly organized 

community were nutrients are continuously recycled (Harrison et al., 2007). Bacteria in these 

biofilms produce capsular material which contributes to the stability of the biofilm (Sheng et al., 

2010). This capsular material also acts as a chemical buffer at the cell’s surface were essential 

ions are accumulated and toxic substances immobilized when a critical level is reached within 

the cell (Sheng et al., 2010; Trevors, 1989). The microorganisms commonly involved in iron and 

manganese sequestration belong to genera such as Leptothrix, Crenothrix, Hyphomicrobium, 

Metallogenium and Siderocapsa (Takeda et al., 2012; Hedrich et al., 2011; Mouchet, 1992). 

Previous studies on a water distribution system in the Southeastern USA revealed the presence of 

over fourteen separate MOB (manganese oxidizing bacteria) species, indicating that multiple 

organisms are involved in the oxidation of this metal within water distribution systems (Cerrato 

et al., 2006). Similarly, large numbers of bacteria such as Gallionella ferruginea and Leptothrix 
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orchracea - responsible for oxidizing iron in water distribution systems - were found in 

backwash sludge in a filtration system in Canada (Gage et al., 2001).  

 

Monitoring and assessing microbial communities in biotechnological systems involved in water 

purification can be useful in controlling potential microbial risks associated with these systems 

(Kormas et al., 2010). Culture based techniques used to analyze microorganisms present in such 

systems typically target a specific selection of relevant hygiene indicator organisms and do not 

usually target all possible potentially pathogenic and biofilm forming bacterial species (Kormas 

et al., 2010). Therefore, an approach targeting bacterial DNA via PCR based amplification of 

target genes can assist in detecting waterborne pathogens such as Legionella pneumophila which 

are not usually detected by commonly employed culture based techniques targeting selected fecal 

indicator bacteria (Colwell et al., 1985). RNA is unstable outside of bacterial cells due to the 

abundance and stability of RNases in the environment and is also rapidly degraded in stressed 

cells (Keinänen-Toivola et al., 2006), which make DNA targeting approaches more useful in 

characterizing active bacterial communities (Spiegelman et al., 2005; Morgan et al., 2002). The 

following study aimed to assess the microbial diversity of the biofilter matrix within the 

manganese and iron filters of a biofiltration system, by initially analyzing the filter matrix for the 

presence of active biofilms in the manganese and iron filters and thereafter quantifying viable 

heterotrophs as well as MOB and IOB in these biofilms. Finally, a snapshot of the bacterial 

population present on the biofilter matrix was determined via the establishment of a 16S rRNA 

gene based clone library from a pooled sample of filter matrix from both the manganese and iron 

filters. 

 

2. Materials and Methods 

 

2.1 Biofilm detection on the biofilter matrix 

 

Two staining methods were employed for the detection of biofilms on the filter matrix, namely 

acridine orange (AO) and 5-cyano-2,3-ditolyltetrazolium chloride (CTC) staining. Staining of 

filter matrix samples collected from the manganese and iron biofilters was carried out using AO 

according to procedures suggested by Kepner and Pratt (1994) with the following modifications. 
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A pooled filter matrix sample of 5 g wet weight and matrix particle size in the range of 3-5 mm 

was gently rinsed three times with 20 mL sterile distilled water before staining. Thereafter a 2 

ng/mL solution of acridine orange was prepared in distilled water containing 1% DMSO 

(dimethyl sulfoxide), for staining of the filter matrix. The filter matrix was covered with 20 mL 

of the stain solution in a sterile 90 mm petri dish and stained for one minute in the dark. 

Thereafter, the stained sample was directly analyzed via confocal laser scanning microscopy 

(Zeiss LSM 710, Germany) with excitation at 488 nm and green fluorescence detection with a 

long pass filter between 520-560 nm. Red fluorescence was detected after excitation at 568 nm 

with a long pass filter at 590 nm.  

 

The CTC staining procedure was carried out in accordance with procedures reported by Bartosch 

et al. (2003), with the following modifications. The pooled filter matrix sample of 5 g wet weight 

was stained with 20 mL of a 15 mM CTC solution in a sterile 90 mm petri dish at room 

temperature for 24 hours in the dark. After staining, samples were rinsed with sterile distilled 

water to remove any unbound stain followed by CLSM visualization. The formazan of CTC, 

CTF, formed upon enzymic reduction of CTC was detected via its emitted red fluorescence after 

excitation at 568 nm using a long pass filter at 590 nm. A sample of the filter matrix before the 

biofiltration plant started operation was stained with AO and CTC and used as a control to verify 

that AO and CTC were not staining any material other than the biofilm established during 

filtration. An additional control using a filter matrix sample before the biofiltration plant started 

operation and without any stain was employed to determine whether the surface of the filter 

matrix emitted any background fluorescence during CLSM analyses. 

 

2.2 Quantification of bacteria in biofilms associated with the biofilter matrix 

 

Filter matrix samples - so called manganese greensand (Casale et al., 2002) - for the 

quantification of bacteria within the biofilter were collected from 5, 20 and 35 cm (top, middle 

and bottom layers) within the manganese and iron filters of the biofiltration system. A pooled 

filter matrix sample from both filters was used to quantify MOB, IOB and heterotrophs. 

Manganese oxidizing bacteria were quantified according to procedures recently reported by 

Beukes and Schmidt (2012). Iron oxidizing bacteria and heterotrophs were quantified in a similar 
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manner to MOB although the MSVP (minimal salts vitamins pyruvate) medium used to quantify 

the iron oxidizers contained 2 mg/L iron sulfate instead of manganese sulfate. Filter matrix 

samples were processed by mixing 5 g wet weight of the pooled matrix sample into 45 mL of 

sterile MSVP medium followed by 3 minutes vortexing at maximum speed to displace the 

biofilm from the filter matrix. Thereafter decimal dilutions of samples were prepared, using R2A 

or MSVP plus added manganese sulfate or iron sulfate as a diluent. One hundred microlitres of 

the appropriate decimal dilutions (typically in a range from 10
-2

 to 10
-6

) were spread plated in 

triplicate using R2A or MSVP agar with added manganese sulfate or iron sulfate. Plates were 

incubated at 25
°
C for seven days in the dark to provide adequate time for the growth of slow-

growing bacteria.  

 

2.3 DNA extraction and PCR based amplification of 16S rRNA fragments 

 

A pooled filter matrix sample from the manganese and iron filters was used for the establishment 

of the clone library. DNA was extracted from biofilm material attached to the filter matrix, using 

a CTAB (cetyltrimethylammoniumbromide) and SDS (sodium dodecyl sulfate) based procedure 

which is known to be effective in reducing humic acid contamination (Zhou et al., 1996). Prior 

to DNA extraction, 5 g of the pooled filter matrix sample was washed three times with 20 mL of 

sterile saline to remove non-biofilm planktonic cells. The sample was then added to a 50 mL 

Nalgene tube and an initial vortexing step for 3 min at maximum speed was employed using 13.5 

mL DNA extraction buffer (100 mM Tris-HCl, 100 mM sodium EDTA, 100 mM sodium 

phosphate, 1.5 M NaCl and 1% CTAB, pH 8) to displace the biofilm from the filter matrix. 

Thereafter, DNA was extracted from the biofilm material. The pellet of crude nucleic acids 

obtained after extraction was washed with cold 70% ethanol, and resuspended in sterile distilled 

water to give a final volume of 500 µl. Amplification of the isolated DNA was carried out using 

Hot Start PCR in a Labnet Multi GENE II Cycler with the following quantities of reagents per 25 

μl reaction: 2 μl MgCl2 [25mM], 3 μl of PCR Buffer (Fermentas Hot Start PCR Buffer), 3 μl of a 

2 mM dNTP mix, 0.25 μl of forward and reverse primers (100 μmol), 0.2 μl Maxima Taq 

polymerase (5 u/µl), 1μl of the DNA template and 15.3 μl of nuclease free water.  
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The primer pair Eub 338 (forward primer 5΄-GCTGCCTCCCGTAGGAGT-3΄) (Amann et al., 

1990) and Eub 907 (reverse primer 5΄-CCGTCAATTCCTTTRAGTTT-3΄) (Muyzer et al., 1995) 

was used to amplify a 16S rRNA gene fragment used in the establishment of the clone library. 

Parameters used for PCR were as follows: an initial denaturing cycle was carried out at 95°C for 

3 minutes, followed by a total of 35 cycles of: denaturing at 95°C for 1 minute, annealing at 

65°C for 1 minute and extension at 72°C for 3 minutes. An additional extension cycle was 

carried out at 72°C for 7 minutes and holding at 4°C for ∞. The yield and purity of the 16S 

rRNA gene amplicons was analyzed by gel electrophoresis of 5 µl amplification reaction sample 

in a 2% agarose gel [1x TBE (Tris-borate EDTA) buffer (10 mM, pH 8), run time 45 minutes at 

100V] after post-staining with ethidium bromide. The size of amplification products was verified 

by using a 100-1000 bp DNA ladder (Fermentas). E.coli (ATCC 8739) served as a positive and 

sterile MilliQ water as a negative control for the PCR.  

 

2.4 Clone library construction and analysis of recombinant clones 

 

The 16S rRNA amplicons were cloned using a CloneJET
™

 PCR cloning kit (Fermentas, Lucigen 

Corporation) and transformed into E.cloni
® 

10G chemically competent cells (Stratagene) 

according to the manufacturer’s specifications. After transformation, the competent cells were 

spread plated on LB agar containing ampicillin (50 mg/mL) and incubated at 37°C overnight. 

One hundred clones were randomly selected from the established clone library and checked for 

the correct insert via colony PCR. For this purpose one colony was placed in 100 µl of sterile 

distilled water and treated by five freeze-thaw cycles (i.e. 5 minutes at 95°C followed by 10 

minutes in liquid nitrogen). Samples were then centrifuged at 14,000 × g for 5 minutes and a 2 µl 

sample was either directly used for PCR or samples were stored at -20°C for further use. The 

presence and correct size of inserts was determined using the supplied primer pair (pJET 1.2 

forward primer, 5΄-CGACTCACTATAGGGAGAGCGGC-3΄, pJET 1.2 reverse primer, 5΄-

AAGAACATCGATTTTCCATGGCAG-3΄) flanking the cloning site on the pJET 1.2 blunt 

cloning vector. 
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After amplification of inserts according to the manufacturer’s instructions, the PCR products 

were checked on a 2% agarose gel and further screening of PCR fragments was done via 

ARDRA (amplified “rDNA” restriction analysis) to select clones representing phylotypes for 

subsequent sequence analysis. A double digestion was done at 37°C for 5 minutes using the 

following restriction enzyme reagents per 30 µl reaction: water, 16 µl; 10x Green Buffer, 3 µl; 

FastDigest
®
 (Fermentas) Hin P1l, 0.5 µl; FastDigest

®
 (Fermentas)

 
Hae lll, 0.5 µl; PCR product, 

10 µl. Restriction fragments were then separated on a 2% agarose gel (1x TBE buffer) at 90 V 

for 1 hr 15 minutes [Fig. S1], the fragment size was verified as described in 2.3. Band patterns on 

DNA restriction gels were analyzed using GeneSnap version 7.09.06 (SynGene, Cambridge, 

United Kingdom). Enzymes were selected based on the expected number of restriction sites 

present on the amplified fragment as checked via NCBI (http://www.ncbi.nlm.nih.gov).  

 

2.5 Phylogenetic analysis of the clone library 

 

For each OTU, one representative clone containing an insert of the correct size was analyzed by 

sequencing (Inqaba Biotec, Pretoria, South Africa). The partial 16S rRNA gene sequences 

obtained were compared to 16S rRNA gene sequences deposited in RDP (ribosomal database 

project, rdp.cme.msu.edu). A phylogenetic tree using sequences deposited within RDP, was 

generated based on sequence alignment established with Muscle and the tree was constructed 

using the maximum likelihood method in MEGA 5.1 (Tamura et al., 2011) with resampling for 

1000 bootstrap replicates. Rarefaction analysis was carried out using Estimate S (Version 9.0, R. 

K. Colwell, http://viceroy.eeb.uconn.edu/estimates) as a means to assess the species diversity 

covered by the clone library established using DNA isolated from biofilm material within the 

manganese and iron biofilters. In addition, Chao-1 values were calculated to estimate the total 

species richness expected for the clone library. 

 

2.6 Chemicals 

 

Acridine orange and CTC were obtained from Merck (South Africa). Unless otherwise stated, all 

other chemicals used were of the highest purity commercially available. 
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3. Results and Discussion 

  

3.1 Biofilm detection on the biofilter sand 

 

Filter matrix samples were analyzed for biofilm formation approximately three weeks after the 

biofiltration system started operating. It was found that the filter matrix provided a suitable 

support matrix enabling biofilm formation within the biofilters. CLSM (confocal laser scanning 

microscopy) analysis proved to be a useful tool in the detection of biofilm material on the matrix. 

According to Quader and Bock (1995), CLSM allows for the in situ visualization of 

microorganisms within the pore system of mineral materials. The results obtained from AO and 

CTC staining clearly demonstrated the presence of active biofilms on the filter matrix. The 

unused biofilter matrix (filter sand - manganese greensand (Casale et al., 2002) - before use in 

the biofiltration system) showed some degree of green fluorescence [Fig. 1A] after staining with 

AO while no red fluorescence was detected [Fig. 1B] after staining with CTC. This indicates that 

a metabolically active biofilm was not present on the filter matrix before operation started and 

the biofilm only developed during biofiltration of the borehole water, as demonstrated by the 

difference in fluorescence intensities between figures 1A and 2A and between figures 1B and 3. 

It also indicates that AO is not entirely specific in staining biofilm material, as a slight green 

fluorescence on the washed and autoclaved filter matrix was detected even before biofiltration.  

 

This green fluorescence could have been emitted from the rough surface of the matrix upon 

excitation due to interaction with AO. However, no fluorescence was emitted from a matrix 

particle used before biofiltration, without any stain. The AO staining revealed the presence of 

metabolically active and metabolically inactive microorganisms with metabolically inactive 

microorganisms shown in areas with green fluorescence [Fig. 2A] and metabolically active 

microorganisms in areas with red fluorescence [Fig. 2B]. The interaction of acridine orange with 

double stranded DNA, usually predominant in inactive bacterial cells, emits fluorescence at a 

wavelength of 530 nm whilst the interaction of acridine orange with single-stranded RNA, 

usually predominant in active bacterial cells, results in fluorescence at a wavelength of 640 nm 

(Hobbie et al., 1977; Darzynkiewicz et al., 1975). 
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Figure 1: Confocal laser scanning micrographs of a filter matrix particle before use in the 

biofiltration system stained with acridine orange (A) and CTC (B). 

 

Acridine orange binds to DNA and RNA, emitting orange-red fluorescence when bound to RNA 

and green fluorescence when bound to DNA (Kasten, 1981). Similarly, Pettipher et al. (1980) 

found that active microorganisms emitted orange fluorescence and inactive microorganisms 

emitted green fluorescence. The orange fluorescence is believed to be due to high dye/nucleotide 

ratios (Back and Kroll, 1991). Although useful in determining the presence of microorganisms 

on the filter matrix, AO staining falls short in reliably distinguishing metabolically active from 

metabolically inactive microorganisms as both can in fact emit green fluorescence (Bartosch et 

al., 2003). This is due to DNA retaining its staining properties even in the presence of nonviable 

bacterial cells (Kepner and Pratt, 1994). Another problem associated with AO staining is that the 

rough surface of the filter matrix apparently interacts with the stain thereby emitting green 

fluorescence upon excitation in the same manner as the inactive cells [Fig. 2B]. Thus living cells 

present within the biofilm cannot be reliably differentiated when using the filter matrix employed 

in the biofiltration system analyzed in this study.  

 

 

 

 

A B 
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Figure 2: Confocal laser scanning split micrograph of the filter matrix after 3 weeks biofiltration 

showing the presence of apparently inactive cells in the biofilm (A), active cells (B), and a 

combination of the two (C), after staining with acridine orange.  

 

In a study conducted by Rapposch et al. (2000), it was found that the direct epifluorescent filter 

technique (DEFT) using acridine orange was not successful in determining the bacterial counts 

of Gram-negative microorganisms when compared with the standard plate counting method. 

Overall, the same authors also found that the detection of microorganisms, when using acridine 

orange, depended on the degree of cell metabolism, which was influenced by environmental 

conditions, the Gram reaction of the microorganism and the species. Mason and Lloyd (1997) 

found that in bacterial cell suspensions exceeding 10
6
 cells/ml, the differential staining of nucleic 

acids with acridine orange did not occur. The alternative approach using CTC in combination 

with CLSM proved useful in detecting actively metabolizing bacteria within the biofilm. The 

CTC reduction product - CTF (formazan crystals) formed by actively metabolizing bacteria - 

emits red fluorescence upon excitation [Fig. 3] and is therefore suitable for the visualization of 

active microorganisms on the filter matrix using CLSM  (Bartosch et al., 2003). Only actively 

respiring microorganisms on the filter matrix reduce CTC to CTF. This was evident on a matrix 

particle used before biofiltration, without any stain and on a matrix particle used before 
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biofiltration, with CTC stain were no emitted red fluorescence was detected by CLSM (data not 

shown). Tetrazolium salts make it possible to visualize and quantify actively respiring 

microorganisms in situ by acting as artificial electron acceptors within functional electron 

transport systems or for certain active dehydrogenases (Bartosch et al., 2003). To date only 

limited data is available using CTC on stone/sand material while CTC was mainly applied 

previously to quantify active bacteria in aquatic environments (Servais et al., 2001; del Giorgio 

et al., 1997). 

 

 

 

Figure 3: Confocal laser scanning micrograph of a CTC stained filter matrix particle showing 

actively metabolizing cells in red. 

 

3.2 Quantification of bacteria in biofilter sand samples 

 

MSVP agar with added iron sulfate gave rise to 3.1×10
7
 cfu/g for the presumptive iron oxidizers 

and MSVP agar (with added manganese sulfate) gave rise to 2.4×10
7
 cfu/g for the presumptive 

manganese oxidizers while counts of 2.9×10
7
 cfu/g were established for the heterotrophs using 

R2A agar. The values determined are in a range reported for other biofiltration systems used to 

eliminate manganese from groundwater. Burger et al. (2008) reported heterotrophic counts of 

10
6
-10

8
 cfu/g for biofilter sand/matrix using R2A similar to the heterotrophic counts reported in 

this study when using R2A agar. Using PYM agar supplemented with manganese sulfate 
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Vandenabeele et al. (1992) reported counts of 10
3
 - 10

4
 cfu/g for Mn-oxidizing bacteria and for 

heterotrophs after two weeks incubation from sand material used in biofilters treating 

groundwater from two different locations. More recently, Cerrato et al. (2010) reported counts 

for manganese oxidizers in biofilms isolated from drinking water systems using Mn-oxidation 

agar supplemented with manganese sulfate, in the range of 5×10
1
 to 5×10

4 
per gram of biofilm 

material. In a study conducted on groundwater seeps at neutral pH, Fe (II) oxidizing 

microorganisms accounted for 10
3
-10

5 
cells/ml using the MPN tube method (Blӧthe and Roden, 

2009). Hirsch and Rades-Rohkohl (1988) established counts of 7.3×10
3 

cfu/g of iron oxidizers 

and 1.5×10
3 

cfu/g of manganese oxidizers using PYGV and PM medium.  

 

3.3 Phylogenetic analysis of the clone library 

 

The clone library was established from the filter matrix samples with the assumption that most of 

the bacteria found in the water flowing through the system would ultimately colonize the filter 

matrix during biofiltration, thus forming active biofilms with high microbial densities as 

confirmed by confocal imaging [Fig. 2A, Fig. 3]. One hundred randomly selected clones were 

divided into 15 different OTU’s based on ARDRA analysis [Tab. 1]. In a previous study, De 

Santis et al. (2007) determined that a 16S rRNA gene sequence similarity of ≥ 94% allowed for a 

reliable assignment of the clones to genus level and a similarity of ≥ 97% for species level 

assignment. Similarly, Revetta et al. (2011) used 97% as the taxonomic unit cut off threshold. 

These thresholds were therefore used for the 15 OTU’s analyzed in this study.  

 

Based on the analysis of sequences representing the 15 OTU’s established, seventy three percent 

of the clones had sequence similarities equal to and above 94% and were divided into eleven 

groups as defined by ARDRA analysis, in order of descending predominance - Lactococcus, 

Corynebacterium, Enterobacter, Staphylococcus, Bradyrhizobium, Legionella, Methylobacter, 

Anaeromyxobacter, Bacteriovorax and uncultured alpha- and gamma- Proteobacteria. The 

remaining OTU’s had sequence similarity scores of < 94% to the closest related genus. The 

phylogenetic tree [Fig. 4] confirmed the results summarized in table one. OTU BFS-6 contained 

the highest number of clones (21 representing Nitrospira) while OTU BFS-7 contained only one 

clone closely related to uncultured bacteria. Similarly, in previous studies, Nitrospira and 
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Nitrobacter have been the dominant nitrogen oxidizing bacteria (NOB) commonly found in 

wastewater treatment effluents, rivers and sediment environments (Cébron and Garnier, 2005; 

Dionisi et al., 2002). The potential disadvantages of PCR-based methods are due to the 

inefficient and preferential extraction of intact DNA from samples (Head et al., 1998; Niemi et 

al., 2001; von Wintzingerode, 1997), differences in bacterial 16S rRNA gene copy numbers 

(Crosby and Criddle, 2003), sensitivity to the template concentration (Chandler et al., 1997), 

primer specificity (Nocker et al., 2007) and the amplification bias and efficiency (Liesack et al., 

1991), all of which limit the reliability of PCR-based methods (Polz and Cavanaugh, 1998). 

Advantages of cloning and sequencing include a high phylogenetic resolution and the 

identification of species or the determination of the closest phylogenetic neighbour within 

samples (Singleton et al., 2001; Tyson et al., 2004).  

 

Whilst sequencing is an automated procedure, cloning can be time-consuming (Nocker et al., 

2007). Despite the limitations of clone libraries to reflect diversity, they are still highly 

considered the “gold standard” for primary microbial diversity assessments and surveys 

(Spiegelman et al., 2005). The ideal size of 16S rRNA sequences for phylogenetic analysis is 

considered ~1,500 bp (Spiegelman et al., 2005). A study conducted by Schmeisser et al. (2003) 

using a small insert library from biofilms in water distribution systems revealed that 

approximately half of the sequences obtained were of poor quality due to short lengths of reads 

or vector contamination. However clone libraries based on inserts of 400-600 bp have been used 

successfully in analyzing mixed microbial populations (Amann et al., 1990) and to determine the 

genetic diversity of hydrothermal vent bacterial populations (Muyzer et al., 1995). 
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Table 1: Partial 16S rRNA gene sequences representing OTU clones established from the 

biofilm material on the filter matrix and the closest related taxa from RDP for each phylotype. 

 

Phylotypes 
No. of 

clones 

Size 

(bp) 
Closest related Genus 

RDP acc. no. 

of closest 

related Genus 

Putative 

Affiliation 

Sequence 

similarity 

% 

BFS-1 4 467 Methylobacter  S001990601 Gammaproteobacteria 97 

BFS-2 4 442 Unclassified bacteria S001077809 Deltaproteobacteria 89 

BFS-3 10 489 Enterobacter S000398862 Gammaproteobacteria 99 

BFS-4 20 497 Lactococcus  S000591889 Firmicutes 99 

BFS-5 3 492 Uncultured bacteria S001225280 Alphaproteobacteria 95 

BFS-6 21 494 Nitrospira S001021547 Nitrospirae 92 

BFS-7 1 545 Uncultured bacteria S001115490 Gammaproteobacteria 94 

BFS-8 3 545 Bacteriovorax S002205007 Deltaproteobacteria 97 

BFS-9 3 546 Anaeromyxobacter S000401094 Betaproteobacteria 97 

BFS-10 2 546 Acidithiobacillus S002337221 Gammaproteobacteria 92 

BFS-11 4 544 Legionella S002871182 Gammaproteobacteria 98 

BFS-12 13 546 Corynebacterium S000358606 Actinobacteria 99 

BFS-13 4 547 Bradyrhizobium S001224760 Alphaproteobacteria 99 

BFS-14 4 545 
Unclassified 

Gammaproteobacteria 
S001167827 Gammaproteobacteria 91 

BFS-15 4 545 Staphylococcus S000765688 Firmicutes 99 
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ARDRA does not provide information about the type of microorganisms present in 

environmental samples but is useful for assessing the microbial diversity in environmental 

samples (Smit et al., 1997). It is a procedure commonly employed to identify unique clones and 

for estimating the diversity of OTU’s in environmental samples (Smit et al., 1997). ARDRA 

does not require the use of specialised equipment but does require several restrictions for 

adequate genotypic resolution (Moyer et al., 1996) and can be time and labour-intensive (Nocker 

et al., 2007). However, Ramos et al. (2010) analysed a clone library of 162 clones and found 28 

unique OTU’s using only one restriction enzyme, indicating the usefulness of the ARDRA 

approach in reducing the sequencing effort when assessing microbial diversity. A major 

limitation of this procedure is that the restriction patterns produced by complex microbial 

communities are often problematic to resolve on agarose gels (Dunbar et al., 1999). However, a 

second agarose gel with initially sorted clones can allow for a more accurate sorting of OTU’s, to 

determine the most dominant groups in the library and to detect small differences in RFLP 

(restriction fragment length polymorphisms) patterns that might be missed by commonly 

employed image analysis programs (Vergin et al., 2001). Krakat et al. (2010) determined the 

detection limit of ARDRA by spiking an autoclaved fermentor matrix with various cell 

concentrations of five different strains of methanogenic Euryarchaeota and established the 

detection limit of ARDRA as approximately 10
5
 cells/mL, a value similar to the detection limit 

of epifluorescence microscopy, thus validating the reliability and sensitivity of ARDRA.  

 

Some of the identified taxa in the biofilter matrix clone library are typically associated with or 

are present in human beings, some of which are even pathogenic. The majority of rural 

communities in South Africa do not have access to clean water or proper sanitation facilities 

such as toilets (WHO/UNICEF, 2012). If toilets are present they may be situated upstream from 

a drinking water source, which increases the risk of fecal contamination in the water which can 

have adverse health effects on those who consume it. The groundwater in turn can also become 

contaminated. This is a possible explanation for the presence of bacteria such as Legionella spp., 

Lactococcus, Enterobacter or Staphylococcus that might be of human origin in the current 

biofiltration system. In the current study common MOB and IOB representatives like the 

previously isolated manganese oxidizing bacterium - Acinetobacter sp. LB1 (Beukes and 

Schmidt, 2012) - were however not detected via the establishment of the clone library.  
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This could be due to the fact that Acinetobacter sp. LB1 was originally isolated from water 

samples of the manganese filter while the clone library was established from DNA extracted 

from the filter matrix. The detection limit of ARDRA is about 10
5 

cells/mL and individually, 

Acinetobacter sp. LB1 comprised about 10
5 

cells/mL of a mixed microbial community in water 

samples in the manganese filter. The pooled filter matrix sample contained ≈ 10
7 

presumptive 

MOB/IOB from a mixed microbial population. In order for a reliable detection of Acinetobacter 

sp. LB1, individual representatives must be present at about 10% of the viable count. Thus 

individual representatives might not be detected via ARDRA if they are close to the reported 

detection limit of this method. This is further complicated by the fact that DNA extractions will 

not quantitatively capture the DNA of the less abundant groups from biofilter material. It must 

also be noted that before DNA was extracted from the biofilm material for the construction of the 

clone library, planktonic cells were washed away using saline, these cells could have constituted 

a major proportion of the genus Acinetobacter.  

 

 

 



123 

 

 BFS_11

 BFS_7

 Legionella_S002871182

 Uncultured_bacteria_S001115490

 BFS_14

 BFS_1

 Unclassified_Gammaproteobacteria_S001167827

 Methylobacter_S001990601

 BFS_3

 Enterobacter_S000398862

 BFS_8

 Bacteriovorax_S002205007

 BFS_9

 Anaeromyxobacter_S000401094

 BFS_10

 Acidithiobacillus_S002337221

 BFS_13

 Bradyrhizobium_S001224760

 BFS_5

 Uncultured_bacteria_S001225280

 BFS_15

 Staphylococcus_S000765688

 BFS_4

 Lactococcus_S000591889

 BFS_12

 Corynebacterium_S000358606

 BFS_2

 Unclassified_bacteria_S001077809

 BFS_6

 Nitrospira_S001021547

100

100

100

100

100

100

100

100

98

97

97

95

99

98

61

89

81

97

67

0.05  

 

Figure 4: Phylogenetic affiliation of 16S rRNA genes of 15 OTU representatives based on 

sequence comparisons to environmental strains in RDP. Numbers shown at nodes indicate 

calculated bootstrap values (only values of > 50% are shown). The alignment of selected 

sequences and the construction of the tree are specified in section 2. The scale bar indicates five 

estimated changes per 100 nucleotides. 



124 

 

 

 

Figure 5: Quantitative assignment of the 15 OTU’s from the 16S rRNA gene clone library to 

their closest phylogenetic groups. 

 

The phylum Proteobacteria has been shown to be the most dominant group of microorganisms 

in water distribution systems around the world (Schmeisser et al., 2003). Other studies based on 

sequences obtained from both bulk water and biofilm material indicated that alpha-, beta-, and 

gamma-Proteobacteria were the most predominant microorganisms in bacterial communities 

inhabiting water distribution systems (Santo Domingo et al., 2003; Williams et al., 2004). 

Similarly, a study conducted on biofilm communities on copper pipes revealed that dominant 

members of the clone library were closely related to the phyla gamma- and beta- Proteobacteria, 

such as Acinetobacter and Pseudomonas species respectively, and the less abundant groups were 

closely related to the phyla alpha- and delta- Proteobacteria, Flavobacteria, Sphingobacteria, 

and uncultured bacteria (Pavissich et al., 2010). The results obtained in this study are in 

agreement with previous studies were the dominant group of bacteria was most closely related to 

the phylum Proteobacteria which comprised 42% of the clone library in this study.  
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The rest of the clone library was comprised of the following phyla: Nitrospirae - 21%, 

Firmicutes - 24% and Actinobacteria - 13% [Fig. 5]. OTU BFS-6 contained the highest number 

of clones which belonged to the genus Nitrospira. The level of nitrite in the borehole water was 

< 0.050 mg/L (Personal communication, Dudu Gwebu, Collin Van Der Merwe and Peter 

Thompson Umgeni Water, Durban) which is much lower than the recommended level (3 mg/L 

as nitrite ion or 0.9 mg/l as a nitrite-nitrogen couple) (WHO, 2011). Thus the high levels of 

Nitrospira could be due to contamination of the borehole water with urine. A study by Cébron 

and Garnier (2005) found that large amounts of nitrogen present in river water were due to 

contamination from agricultural activities and from urban effluents. The urine contains urea 

which can be hydrolysed to NH3 which undergoes oxidation by AOB’s (ammonium oxidizing 

bacteria) to form nitrite; the oxidation of which to nitrate is carried out by NOB’s (nitrogen 

oxidizing bacteria) (Bock et al., 1992). This is possible, as there was a toilet situated upstream 

from the biofiltration system.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Rarefaction curve depicting the relationship between the number of clones collected 

and the number of OTU’s (phylotypes) detected, computed using Estimate S. 
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Typical clone libraries of 16S rRNA genes contain less than 1000 sequences and would therefore 

display only a partial view of the microbial diversity in such samples (Dunbar et al., 2002). For 

the clone library analyzed in this study, the rarefaction curve indicated that the number of clones 

analyzed only partially covered the diversity of bacteria present on the filter matrix in the 

population [Fig. 6]. However, Chao-1 calculations matched the established number of OTU’s. 

 

Conclusion 

 

The results indicate that about 10
7 

MOB and IOB and heterotrophs were present per gram of 

filter matrix of the manganese and iron filters respectively. As confirmed by CLSM, actively 

metabolizing cells were present within the biofilm formed on the filter matrix, demonstrating that 

the filter sand is a suitable support matrix enabling biofilm formation. Via the establishment of a 

clone library, it was determined that the majority of OTU’s belonged to the Proteobacteria group 

and that 27% percent of clone sequence similarities fell below the 94% sequence similarity 

threshold. Molecular techniques pose a challenge in environmental technology in that the 

important microorganisms detected via these techniques have often not been identified, cultured 

or sequenced (Rittmann, 2010). Nevertheless these techniques provide a deeper understanding 

into the microbial community that needs to be controlled or manipulated in order to ensure that 

systems like the one under investigation are able to function efficiently.  
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Supplementary figures 

 

 

 

 

Figure S1: [A] Representative 2% agarose gel depicting unique banding patterns after ARDRA 

of 19 out of 100 randomly selected clones. Lane M - Molecular weight marker, lane 1-19 - 

samples 59 – 87. [B] Representative 2% agarose gel as for image A, highlighting band regions 

analysed using GeneSnap program version 7.09.06 (SynGene, Cambridge, United Kingdom).  
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Chapter 6 

Concluding Remarks  

 

Analyses of the biofilter water using selective media revealed the presence of moderately high 

numbers of MOB (manganese oxidizing bacteria) and IOB (iron oxidizing bacteria) which 

subsequently led to the isolation and characterization of a manganese and iron oxidizing bacterial 

strain belonging to the genus Acinetobacter. Species within this genus are classified as strict 

Gram negative aerobes, incapable of carbohydrate fermentation, denitrification, or reduction of 

nitrate to nitrite (Baumann et al., 1968). This group of microorganisms is ubiquitous in the 

environment occurring in soil, water, on human skin (causing opportunistic and nosocomial 

infections) (Wagner et al., 1994) and plays a vital role in the aerobic mineralization of organic 

matter in nature (Baumann, 1968). Previous studies have linked these organisms to the biological 

removal of phosphate in the environment (EBPR) (Fuhs and Chen, 1975; Kӓmpfer et al., 1992). 

They are also able to thrive at 30
o
C and have the ability to grow at the expense of a wide range 

of organic compounds as sole carbon sources (Baumann, 1968). The metabolic versatility of this 

group suggests that these organisms may play an important role in the solution of pollution 

problems associated with petroleum, as well as in with the decomposition of motor oils, due to 

their ability to grow in the presence of a variety of carbon compounds (Juni, 1978). These are 

some unique properties of the genus Acinetobacter that make it applicable to tackle pollution by 

aliphatic compounds. However, so far there is no information concerning the ability of members 

of the genus Acinetobacter regarding metal oxidation.  

 

However, in this study, evidence is provided regarding the ability of a member of the genus 

Acinetobacter for the oxidative removal of Mn (II) and to a lesser extent Fe (II) from 

groundwater. Manganese oxidation tests conducted in the presence of appropriate abiotic 

controls at neutral pH showed that manganese oxidation was invariably enhanced in the presence 

of metabolically active Acinetobacter sp. LB1 cells. These results clearly link manganese 

oxidation in this biofiltration system to microbial processes. Not only was the isolate effective in 

the oxidation and subsequent removal of manganese but also, albeit to a lesser extent, able to 

oxidatively remove Fe (II). Although the oxidation of iron in the biofiltration system is very 
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rapid in the presence of oxygen, experimental analysis confirmed that the presence of 

metabolically active microorganisms is necessary for the more efficient removal of iron in the 

system when compared to poisoned controls. Batch tests employing borehole water and saline 

further confirmed the ability of Acinetobacter sp. LB1 to oxidize iron. The manganese and iron 

oxidation tests demonstrated that the auto catalytic removal of manganese and iron is not 

sufficient to explain the oxidation rates observed within the system. Analysis of the biofilter 

matrix revealed the presence of active microbial consortia attached to the filter matrix in the 

form of biofilms as confirmed by confocal laser scanning microscopy (CLSM) when stained 

with either CTC (5-cyano-2,3-ditolyltetrazolium chloride) or acridine orange. CTC proved to be 

more reliable at detecting actively metabolizing bacterial cells within the biofilm. A snapshot of 

the bacterial population present on the biofilter matrix was determined via the establishment of a 

partial 16S rRNA gene based clone library from a pooled sample of filter matrix from both the 

manganese and iron filters. Based on ARDRA (amplified “rDNA” restriction analysis) analysis 

of 100 randomly selected clones, 15 unique OTU’s were detected with the majority of the clones 

analyzed closely related to the genera Nitrospira and Lactococcus. However, Proteobacteria 

dominated the microbial population (42% of all clones) and the rest of the population was 

comprised of 13% of clones falling into the phylum Actinobacteria, 24% belonging to the 

phylum Firmicutes and 21% assigned to the phylum Nitrospirae.  

A recent study in Durban (South Africa) confirmed the need for removing manganese from 

groundwater thus highlighting the importance of the research conducted (Batterman et al., 2011). 

Whilst an essential element for nutrition in human beings, manganese (Mn (II)) has been 

reported to have toxic effects (neurobehavioral development problems) on children after the 

intake of water containing high levels of Mn (II) that exceed the US EPA recommended level 

(Woolf et al., 2002; Bouchard et al., 2007). Similarly, high concentrations of Fe (II) can result in 

or contribute to the development of diseases such as hemochromatosis, thalassemia and/or 

chronic liver disease (Beaton and Adams 2007; Kohgo et al., 2008). Not only is the removal of 

these metals important for health reasons but also for the aesthetic appeal of water (Cullimore 

and Mc Cann, 1977) and to avoid the corrosion of stainless steel (Rao et al., 2000) in water 

systems as a result of bacterial oxidation activities. For application purposes, an understanding of 

environmental conditions that favour or inhibit the growth of native microorganisms responsible 
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for manganese and iron oxidation is a prerequisite for the design of a successful technology that 

uses microorganisms for removal of metals from groundwater sources.  

 

It can be concluded that in the presence of bacteria like the isolated Acinetobacter sp. LB1, the 

oxidative removal of manganese from borehole water is enhanced and, to a smaller degree, the 

removal of Fe (II). The use of biofiltration systems for the treatment of borehole water provides a 

cost effective way of providing rural communities with potable water in South Africa. 

Biofiltration systems like the system currently under investigation require basic process control 

and operator intervention unlike the conventional processes that require chemical dosing, 

advanced oxidation processes, sophisticated process control and operator skills which are a 

challenge in rural communities. In the current study, a total of 99% iron and 96% manganese 

were typically removed from the borehole water after biofiltration (Personal communication, 

Dudu Gwebu, Umgeni Water, Durban). The current research highlights that the high removal 

rate of manganese in this system is attributed to the presence of metabolically active 

microorganisms and the high removal of iron is attributed in part to physiochemical reactions 

within the biofiltration system and in part to biological processes.  
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Thesis supplementary figures 

 

Figure S1: The biofiltration system employed to remove manganese and iron from borehole 

water in Nottingham road outside the Nottingham combined school, KwaZulu Natal, South 

Africa. 

 

[A] Borehole water tank  

[B] Aeration cascade  

[C] Iron biofilter  

[D] Manganese biofilter 

[E] Final receiving tank 
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Figure S2: Location of the biofiltration system (sampling site) in Nottingham road outside the Nottingham combined school, 

KwaZulu Natal, South Africa. Maps adapted from http://www.maps-africa.blogspot.com. 

 

 




