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ABSTRACT 

 There is a rich diversity of indigenous edible plants in South Africa. Rural communities have for 

years, been collecting indigenous edible medicinal plants for food and for their medicinal 

properties. However, a combination of a shortage of food and lack of diversity in the diet has 

resulted in many South Africans suffering from malnutrition. Malnutrition, food insecurity and 

nutrient deficiencies which help propogate non-communicable diseases are amongst the top 

concerns in South Africa. Knowledge on the elemental composition, nutritional and medicinal 

value of medicinal plants would allow for safe consumption of these plants and improve overall 

health. The aim of this study was to investigate the secondary metabolites in the Laportea and 

Obetia nettles found in KwaZulu-Natal (South Africa) and to conduct an elemental investigation 

into the nutritional composition of these nettles to determine their suitability for consumption and 

their contribution to recommended dietary allowances. The study showed that cooked and raw 

leaves of nettles (L. peduncularis, L. alatipes, and O. tenax) were rich sources of macronutrients 

and essential elements which are comparable to common vegetables.  The nettles, L. alatipes and 

O. tenax, have higher macronutrient content than elemental content relative to the nettles, L.

peduncularis and U. dioica, after cooking. Soil quality indicators (geo-accumulation indices and 

enrichment factors) showed moderate to no contamination of nettle growth soils around KwaZulu-

Natal. Statistical analysis showed the association of these metals in the different sites. 

Phytochemical analysis of the nettles showed that the nettles were rich in β-carotene and sterols 

owing to their use as natural anti-diabetic agents. This study provides information on the nutritional 

value of nettles and shows that they can serve as an affordable alternative to commercially 

available herbs and it also lends scientific credence to the ethno-medicinal use of nettles. 
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ABBREVIATIONS 

13C NMR - C-13 nuclear magnetic resonance spectroscopy 

1H NMR - proton nuclear magnetic resonance spectroscopy 

ANOVA - analysis of variance 

BAF- bioaccumulation factor 
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CHAPTER ONE 

INTRODUCTION 

The application of indigenous medicinal plants for medical purposes has been in practice since the 

early ages with many discoveries on the medicinal properties of these plants being purely 

accidental (Petrovska, 2012). In developing countries, there is currently a lack of resources for the 

treatment and management of infectious and chronic diseases. Knowledge on the traditional 

system of medicine and its exploration and exploitation may lead to the discovery and management 

or treatment of such diseases. This may also lead to the identification of new bioactive molecules 

(Rai & Kon, 2013). In South Africa alone, an estimated 80% of the population prefers traditional 

medicine to modern mainstream medicine (Mbatha et al., 2012).  Research has shown that the 

focus is now moving towards ethno-medicine, derived from natural growing herbs due to 

accessibility, affordability and potential. 

Studies have shown that 140 million children under the age of five are underweight and this will 

persist if malnutrition is not addressed, especially in developing countries in sub Saharan Africa, 

which are leading countries that suffer with this affliction (Smith & Haddad, 2000; Bouner et al., 

2007). Malnutrition is seen to hinder the intellectual progression, growth and development of many 

children. In South Africa, studies have indicated that malnutrition does not only cause nutritional 

problems amongst children and infants but also leads to serious infections and diseases. These 

include diarrhoea, pneumonia, malaria as well as HIV and AIDS (Ismail & Suffla, 2013). Access 

to foods that contain sufficient nutrients for a balanced diet is becoming increasingly more difficult 

especially for people living in rural areas due to a lack of affordability and availability so the 
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potential of indigenous, locally grown foods needs to be assessed and promoted as a possible 

solution to help alleviate this problem.  

The collection of herbs and leafy green vegetables from the wild has been practiced in South Africa 

for more than 2 000 years (van Rensburg et al., 2007). These leafy vegetables are known for their 

high nutritional and medicinal value. Though this is so, there is not enough information on the 

potential toxicities of these plants.  Hence the matter on safety of wild food plants for human 

consumption needs to be addressed. 

The simultaneous study of plant-soil and plant-human relationships is imperative in order to 

monitor for heavy metal contamination and accumulation. The most common cause of heavy metal 

contamination in plants and soil is human and industrial activities. Soil serves as a reservoir for 

these heavy metals. Plants absorb these heavy metals from contaminated soil and transfer them 

through the food chain to humans and, if at elevated levels, these heavy metals may cause possible 

health risks including cancer (Street et al., 2008; Liu et al., 2013). Examining the anti-nutrient 

content of edible plants is also important in order to assess for possible toxic effects to humans. 

Similar to heavy metals, anti-nutrients can be detrimental to human health if at elevated levels in 

edible plants. Since herbs and leafy green vegetables are used medicinally and as a food source, 

constant monitoring of these plants for contaminants is crucial.   
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AIMS AND OBJECTIVES OF THE STUDY 

The aim of the study was to analytically and phytochemically investigate the nettles (Laportea 

peduncularis susp. peduncularis (river nettle), Laportea alatipes (forest nettle), Obetia tenax 

(mountain nettle) and Urtica dioica (stinging nettle)) found in KwaZulu-Natal, South Africa to 

validate their ethno-medicinal use, to determine their nutritional value and to evaluate the impact 

of soil quality parameters on elemental uptake by nettles. 

The research objectives were: 

• To determine the distribution of macronutrients, anti-nutrients and essential elements in 

nettles, Laportea peduncularis and Urtica dioica.

• To determine the distribution of macronutrients, anti-nutrients and essential elements in 

nettles, Obetia tenax and Laportea alatipes.

• To determine the proximate chemical composition namely carbohydrate, protein, ash and 

oil content of the leaves of nettles.

• To determine the heavy metal distribution in Laportea peduncularis and Obetia tenax and 

corresponding growth soil, sampled from eight to ten different sites in KwaZulu-Natal 

and to assess for potential toxicities.

• To determine the uptake, translocation and bioaccumulation of elements in Laportea 

alatipes.

• To determine the nutritional value of nettles (Laportea peduncularis, Laportea alatipes, 

Obetia tenax and Urtica dioica) by comparing to dietary reference intakes.

• To extract, isolate and identify the secondary metabolites in nettles and to test the crude 

extracts and isolated compounds for biological activity (antioxidant and anti-diabetic). 
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LITERATURE REVIEW 

Soil-Metal-Plant Relationships 

Soil is a heterogeneous material consisting of a mixture of fragments of rocks and organic matter. 

There are three phases of soil namely solid, liquid and gas. All of these phases are responsible 

for the supply of nutrients to the plant (Mengel et al., 2001). The formation of soil is attributed to 

soil forming factors which include parent material, climate, topography, living organisms and 

time. The nutrient distribution in the soil is mainly due to the parent material. The nature of the 

parent material also influences the amount of nutrient present in the soil (Whitehead, 2000). 

Regional climate influences the rate at which processes such as chemical weathering occurs, 

where the mineral composition of the bedrock is altered. Topography which incorporates the 

relief and aspect (geographic coordinates) also influences the type of soil formed. The 

amount of time for soil development is dependent on the action of the other soil forming factors 

(Jenny, 1994).  

The essential nutrients of the plant exists in mineral form that is soluble in water, as ions 

adsorbed on exchange sites of soil colloids and as constituents in soil organic matter. The 

availability and mobility of nutrients for uptake by plants is influenced by soil factors such as 

pH, cation exchange and organic matter (Jones, 2012). Additionally, soil pH affects 

microbiological activities that release nutrients into the soil and the potential toxic effects of 

elements (Figure 1). Soil has organic matter and colloids that have permanent negative charges 

where adsorption and desorption of cations occur by exchange. At these sites substitution of 

cations take place. The organic matter can further decompose, producing weak acid groups that 

can adsorb cations. These acid groups are greatly affected by a change in soil pH, where low 

soil pH may result in protons being tightly held by the group. An increase in soil pH increases 

the exchange capacity of cations at the acid groups. 
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The cationic exchange capacity also relies on the amount of clay in the soil. Clay and organic 

matter are known for their high surface area thus, high water and nutrient holding capacities 

(UNIDO & IFDC, 1998).  

Figure 1: Availability of some essential nutrient in the soil as influenced by soil pH. 

(http://www.cogs.asn.au/organic-principles/soil-basics/) 

The distribution of metals in the fractions of the soil solid and liquid phases is different and exists 

in different forms in the soil. Metals can either be in soil solution form, readily exchangeable, 

sorbed in inorganic colloids, complexed to organic colloids or incorporated into the crystal lattice 

of clay minerals. Extraction methods have been developed to assess the mobility and availability 

of metals in soil; these include single extraction and sequential methods (Sungur et al., 2015). 

Single extraction methods are one step extraction procedures that evaluate the available amounts 

of metals in water soluble, exchangeable or organically bound fractions. Exhaustive research has 

been conducted on the use of different extractants including neutral inorganic salts such as CaCl2 
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and KNO3. Synthetic chelating agents such as ethylenediaminetetraacetic acid (EDTA) and 

diethylenetriaminepentaacetic acid (DTPA) are also used for the estimation of organically bound 

metals (Romic, 2012). Research has shown that the assessment of bioavailable metals predict the 

amount of metal available for absorption by the plant (Xu et al., 2013). 

Bioavailable or exchangeable metal fractions contain free metal ions readily accessed by 

plant roots. In soil solutions a free metal ion may interact simultaneously with more than one 

metal ion. Interaction of Cu and Zn occurs such that one reduces the uptake of the other by the 

plant. Zinc also affects the uptake of Fe by plants. Antagonistic and synergistic effects of 

elements are different at different biochemical processes (Mehra & Farago, 1994). This may 

cause deficiencies or toxicities in the plant. An excess or shortage of nutrients in the plant may 

result in impaired growth and development. If the concentration of a particular nutrient in soil 

solution is relatively low and there is a shortage of this nutrient in the plant, accumulation of the 

nutrient in the plant can likely occur. 

The plant draws up nutrients from the soil by various mechanisms with the main mode of 

transportation to the roots being mass flow and diffusion. Mass flow occurs when nutrients are 

transported to the root surface by the movement of water in soil. The amount of nutrients 

transported to the root surface is dependent on the rate of water flow. Diffusion describes the 

movement of nutrients along a gradient. Nutrients are transported from a region of high 

concentration (eg. soil solution) to a region of low concentration (root surface). Diffusion is 

particularly important when the concentration of nutrients in the soil solution is low and cannot 

be transported by mass flow to the root surface (Mengel et al., 2001). 
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The plants’ ability to manage toxic elements lies in three main strategies which classifies the plant 

as an excluder, indicator or accumulator. Excluders maintain constant elemental concentrations of 

metals in plant tissue over a wide range of soil-metal concentrations. This is achieved by either 

sequestering the uptake of the metal in the roots or by active efflux pumps (van Hoof et al., 2001). 

In indicators plants, there is a linear relationship between uptake of metals by the plant and metal 

concentrations in the soil. Accumulator plants tend to accumulate metals above ground levels 

regardless of the soil-metal concentration (Baker, 1981). Accumulators have the tendency to 

translocate metals from the root to the shoot so that the metal concentrations of the aerial parts of 

the plant are higher than that of the roots (Baker & Walker, 1990).  Hyper-accumulators can 

tolerate metal concentrations at percentages higher than normal in dry plant mass (van der Ent et 

al., 2013). 

Essential nutrients supplied by the soil are required for normal growth of the plant. The essential 

nutrients are classified as either macro-elements or micro-elements. Macro-elements are minerals 

that are required in large amounts whilst micro-elements are required in smaller amounts by plant 

tissue. Non-essential nutrients (As, Cd, Hg and Pb) can cause toxic effects in plants if present in 

high concentrations. 

Nutrients and Anti-nutrients in Edible Plants 

The World Health Organisation (WHO) and Food and Agriculture Organisation (FAO) have for 

every decade reviewed and gathered new evidence on the major nutrient requirements and 

recommended intakes for individuals in a population of all age groups. Trace elements, fats and 

oils, carbohydrate and, recently, vitamins and minerals in human nutrition are research materials 

that have been updated.  
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Nutrients are required in the diet for growth, normal functioning of cells and the maintenance of 

good health. They are categorised as either macronutrients or micronutrients. Macronutrients are 

required by the body in large amounts; these include carbohydrates, proteins and lipids. 

Carbohydrates in the diet supply energy to brain cells, nervous system and blood. They consist of 

simple and complex sugars, most dietary sources of fibre and alcohol sugars. Proteins in food 

provide the body with amino acids used to build and maintain tissues, regulate water and help in 

growth and supply of energy. Fats or lipids supply energy and insulation for internal organs and 

also provide a medium for absorption of fat-soluble vitamins (Brown et al., 2014; McCormack-

Brown et al., 2002).  

Vitamins and minerals are required in smaller amounts and are referred to as micronutrients. 

Vitamins promote specific chemical reactions within cells. The B-complex vitamins and vitamin 

C are water-soluble whilst vitamins, A, D, E and K are fat-soluble and are present in fat

soluble portions of food. Minerals help regulate bodily functions and aids in growth and 

maintenance. Macro-elements (Ca, Cl, K, Mg, Na and P) are required in excess of 100 mg/day 

whilst micro-elements (Cr, Co, Cu. Fe, I, Mn, Mo, Se and Zn) requirements are less than 

100 mg/day (McCormack-Brown et al., 2002). Consuming foods rich in vitamin C can 

increase the bioavailability of Cr, Cu or Fe as vitamin C reduces them in the gastrointestinal 

tract (McGuire & Beerman, 2007). Apart from essential elements, there are also toxic elements 

that can be found in foods. These include As and heavy metals such as Hg, Pb and Cd.  Mercury 

poisoning is caused by food containing organomercury compounds. Vegetables with large 

surface areas grown in Pb contaminated soil accumulate the metal thereby entering the food 

chain. Certain types of foods (wild mushrooms) accumulate Cd and prolonged intake of Cd 

results in the metal accumulating in the liver and kidneys (Belitz et al., 2004). 
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The dietary reference intake (DRI) is the general term used for the nutrient intake standards for 

healthy individuals. It accounts for age, gender, growth, pregnancy and lactation. Recommended 

dietary allowances (RDAs) describe the level of nutrient intake judged to be adequate to meet the 

known nutrient needs of all healthy individuals (Tables 1 and 3). Tolerable upper intake levels 

(ULs) are the highest level of daily nutrient intake that is likely to pose no risk of adverse health 

effects amongst individuals in a population (Tables 2 and 4) (Institute of Medicine, Food and 

Nutrition Board, 2011). 

Table 1: Dietary Reference Intake (DRI): Recommended Dietary Allowances (RDAs) for 

Individuals for Essential Elements. 

Life Stage 

(years) 

Ca 

(mg d-1) 

Cr 

(µg d-1) 

Cu 

(µg d-1) 

Fe 

(mg d-1) 

Mg 

(mg d-1) 

Mn 

(mg d-1) 

Se 

(µg d-1) 

Zn 

(mg d-1) 

Children 

1-3

4-8

700 

1000 

11 

15 

340 

440 

7 

10 

80 

130 

1.2 

1.5 

20 

30 

3 

5 

Females/Males 

9-18

19-70

>70

1300 

1000 

1200 

25-35

35 

30 

700-890

900 

900 

8-11

8

8

240-410

400-420

420 

1.9-2.2 

2.3 

2.3 

40-55

55 

55 

8-11

11 

11 
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Table 2: Dietary Reference Intake (DRI): Tolerable Upper Intake Levels (ULs) for Individuals 

Essential Elements. 

Life Stage (years) Ca 

(mg d-1) 

Cr 

(µg d-1) 

Cu 

(µg d-1) 

Fe 

(mg d-1) 

Mg 

(mg d-1) 

Mn 

(mg d-1) 

Ni 

(mg d-1) 

Se 

(µg d-1) 

Zn 

(mg d-1) 

Children 

1-3

4-8

2500 

2500 

ND 

ND 

1000 

3000 

40 

40 

65 

110 

2 

3 

0.2 

0.3 

90 

150 

7 

12 

Females/Males 

9-18

19-70

>70

3000 

2500 

2000 

ND 

ND 

ND 

8000 

10000 

10000 

40-45

45

45

350 

350 

350 

6-9

11 

11 

0.6-1 

1 

1 

400 

400 

400 

23-34

40

40

ND: Not determinable. 

Table 3: Dietary Reference Intake (DRI): Recommended Dietary Allowances (RDAs) for 

Individuals for Macronutrients and Vitamins. 

Life Stage 

(years) 

Carbohydrates 

(g d-1) 

Total Fibre 

(g d-1) 

Fat 

(g d-1) 

Protein 

(g d-1) 

Vitamin A 

(µg d-1) 

Vitamin C 

(mg d-1) 

Vitamin E 

(mg d-1) 

Children 

1-3

4-8

130 

130 

19 

25 

ND 

ND 

13 

19 

300 

400 

15 

25 

6 

7 

Female/Male 

9-18

19-70

>70

130 

130 

130 

31-38

30-38

30

ND 

ND 

ND 

34-52

56 

56 

600-900

900 

900 

45-75

90 

90 

11-15

15

15

ND: Not determinable. 
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Table 4: Dietary Reference Intake (DRI): Tolerable Upper Intake Levels (ULs) for Individuals for 

Vitamins. 

Life Stage 

(years) 

Vitamin A 

(µg d-1) 

Vitamin C 

(mg d-1) 

Vitamin E 

(mg d-1) 

Children 

1-3

4-8

600 

900 

400 

650 

200 

300 

Females/Males 

9-18

19-70

>70

1700-2800 

3000 

3000 

1200-1800 

2000 

2000 

600-800

1000 

1000 

Apart from the nutritional information on plants, knowledge on the anti-nutritional properties of 

plants is also important since they may reduce the availability of nutrients. Anti-nutrients are 

natural or synthetic compounds that interfere with the absorption of nutrients thereby preventing 

digestion and absorption by the body. An anti-nutritional factor is not the character of the 

compound but the effect it has on the digestive system of humans when consumed in large 

quantities (Kumar, 1992). Polyphenolic compounds, phytates and tannins are deemed anti-

nutrients or inhibitors of Fe absorption in the diet (Somsub et al., 2008). High intake of soluble 

oxalates present in plant tissue can pose a risk of hyperoxaluria (excessive urinary excretion of 

oxalates). This could lead to the recurrence of calcium oxalate kidney stones (Chai & Liebmann, 

2005; Massey et al., 1993). Previous research revealed that an increase in the content of saponins 

from Lucerne plant fed to young male rats decreased Fe absorption in the rats (Southon et al., 

1988). Consumption of lower amounts of cyanide is not lethal, but the FAO/WHO (1991) 

recommends intakes of cyanide in foods to be < 10 mg per kg, dry matter, to prevent acute toxicity. 



12 

A variety of plants are utilized for their dual nature, they are used for their medicinal value and 

consumed as food. These plants are either consumed raw or cooked. Cooking of plants or 

vegetables has been shown to destroy some of the nutrients, but some will be easier to absorb in 

the body. Vitamin C and some minerals may leach into the water whilst cooking; other vitamins 

and enzymes may be destroyed by high temperatures (Kala & Prakash, 2006; Kimura & Itokawa, 

1990; Yuan et al., 2009). On the other hand, cooking of the plant may increase the availability of 

some nutrients and facilitate the breakdown of starch and carotenoids thus allowing the digestive 

enzymes in our body to easily breakdown these molecules further. Brief cooking with minimal 

water is therefore more effective (McGee, 2004; Tull, 1996). 

Cooking also deactivates anti-nutrients present in raw plants and some are heat-labile. Reports 

from previous research by Ilelaboye et al. (2013) on seven leafy vegetables species of 

Nigeria where the effects of two cooking methods were investigated showed that both methods 

reduced the content of cyanides, phytates, oxalates, saponins and tannins in the vegetables. 

Further studies by Oulai et al. (2014) on five different leafy vegetables consumed in the 

northern parts of Côte d’Ivoire revealed that cooking decreased the content of anti-nutrients 

(oxalates and phytates) in the vegetables.  

Nutritional Status in South Africa 

Malnutrition results from a lack of proper nutrition and this occurs when there is an imbalance of 

nutrients required for growth and development. Malnutrition is a major health problem amongst 

South African children from low income families (Faber & Wenhold, 2007; Iversen et al., 2011). 

Some of the main micronutrient deficiencies as highlighted by the United Nations International 

Children’s Emergency Fund (UNICEF) are Ca, Fe, vitamin A and Zn deficiencies (UNICEF, 
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2015). Research by Labadarios et al. (2008) showed that one out of five South African women and 

one out of seven South African children have a poor Fe status whilst 45.3% of children between 

the ages of 1-9 had inadequate Zn levels. Statistical analyses done by De Onis et al. (2012) showed 

that there will be a slow decrease in the percentage of stunted pre-school children in South Africa 

in the period from 1990 to 2015, from 35.4% to 32.3%, respectively. A nationwide survey 

conducted in 2005 by the National Food Consumption Survey-Fortification Baseline (NFCS-FB) 

revealed that almost 20% of children in the age group of 1-9 years were stunted and 10% were 

underweight. Socio-economic conditions, such as poverty and unemployment, were found to be 

the main cause of malnutrition (Iversen et al., 2011). High food prices also contribute to food 

insecurity in South Africa. Food insecurity describes a state in which there are insufficient 

nutritional and safe foods for consumption.  

On the other hand, the global obesity rates have doubled and are accompanied by the growth of 

non-communicable diseases (diet-related illnesses) including cardiovascular diseases and diabetes. 

The increasing availability of fast food outlets in South Africa has contributed to the consumption 

of food with high calories and low-nutritional value (Barilla Center for Food and Nutrition, 2013). 

These are processed foods that are high in trans fats, sugar and salt, which are harmful when 

consumed in large amounts. Although processed foods are deemed to be unhealthy, they are found 

to be more convenient, since preparation time is minimal (Reavley, 1998; Rissman, 2016). A study 

done by Vorster et al. (2013), in South Africa in 2000, on the nutrition-related health outcomes, 

revealed some of the causes of premature mortality to be diabetes (4.3%), low fruit and vegetable 

intake (3.2%), vitamin A deficiency (0.6%) and Fe deficiency (0.4%). South Africa is the second 

largest country in sub-Saharan Africa with the highest number of people with type 2 diabetes. This 

increase in diabetes in the low income groups in developing countries is of great concern due to 
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the combined effect of diabetes with other diseases such as HIV/AIDS and tuberculosis 

(Mendenhall & Norris, 2015). In these countries, such as in South Africa, there is the double 

burden of malnutrition where both over and under nutrition occurs. Availability and accessibility 

to adequate food that is nutritious and safe is therefore crucial (Labadarios et al., 2011).  

Edible and Medicinal Plants 

South Africa has a rich agro-biodiversity with nearly 22 000 species of native plants, accounting 

for almost 10% of the world’s higher plant species (Street & Prinsloo, 2013). Most of these plants 

are medicinal and are used to treat different kinds of ailments. There are 80 000 edible species in 

the 300 000 higher plant species that are present worldwide and 25% have proven medicinal 

application (Duke, 2001).  

Plants in this Study 

Four nettles are discussed in this study (Laportea peduncularis susp. peduncularis (river nettle), 

Laportea alatipes (forest nettle), Obetia tenax (mountain nettle) and Urtica dioica (stinging 

nettle)) from the Urticaceae family. These plants are found in the coastal regions of KwaZulu-

Natal, South Africa and they are known as imbati in isiZulu. Plants from the Urticaceae family are 

known for their medicinal and nutritional value. 

The Urticaceae family 

The Urticaceae family is also known as the nettle family and consists of 49 genera of herbs, shrubs 

and trees (Watson & Dallwitz, 1992).  The family is from the order Urticles with 1300 species 

(Wang et al., 2012) in the wet tropical regions. In South Africa, 11 genera and 22 species exist 
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(Schmidt et al., 2002). Many of the species have stinging hairs on their stems and leaves (Grieve, 

1971).  

Traditional medicinal uses and phytochemicals of plants from the Urticaceae family 

In Europe, nettles are used extensively in herbal preparations; they are used as diuretics, anti-

inflammatory agents, astringents, for stress reduction and scalp conditioning. The leaf is known to 

be an alkalinizer that helps in eliminating acid-waste product build-up in the body. They are also 

known to help with rheumatism, osteoarthritis, gout, and other problems often associated with a 

heavy protein diet. In Fiji, nettles are used medicinally to treat various ailments including, urinary 

and menstrual disorders, rheumatoid arthritis, diabetes, influenza, and infective hepatitis. The 

nettles are also enjoyed as tea and consumed as food (Figure 2). The traditional medicinal uses of 

nettles from different genera show a similar utilisation. The leaf infusion of the genus Laportea 

and Urtica are used to treat and control bleeding, the decoction of roots from Boehmeria, Obetia 

and Urtica are used to treat urinary infections, coughs and colds (Daniel, 2006; Karakaya & Kavas, 

1999; Konrad et al., 2000; Nalumansi et al., 2014; Peteros & Uy, 2010; Xu et al., 2011). A common 

medicinal use of one of the Obetia species, O. rodula, is in the treatment of infertility with the aid 

of the root decoction (Beentje, 1994; Friis, 1983; Friis, 1989). Phytocompounds isolated from 

some genera in the Urticaceae family include carotenoids, fatty acids, flavonoids, polyphenols, 

sterols and triterpenes (Abdeltawab et al, 2012; Ghaima et al, 2013; Maobe et al, 2013; Peteros & 

Uy, 2010). 
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Figure 2: Leaves of Urtica dioica are commercially available as tea in the United Kingdom. 

The genus Laportea 

There are 22 species in the Laportea genus which are mainly found in the tropical and subtropical 

regions of the world, including Africa, eastern Asia and North America (Allaby, 2012).  All of the 

Laportea species contain stinging hairs. The fresh hairs are known to contain chemicals such as 

histamine, serotonin and acetylcholine. The plants in this genus have numerous documented 

medicinal uses (Table 5); L. aestuans, L. interrupta and L. ovafolia leaves have analgesic 

properties (Etukudo, 2003; Pullaiah, 2006; Essiett et al., 2011). The main classes of compounds 

isolated from Laportea include cardiac glycosides, flavonoids, saponins, sterols, tannins and 

triterpenes (Table 5). 
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Table 5: List of Laportea species used as traditional medicine with their active compounds. 

Plant material Traditional uses References Active compounds References 

L. aestuans (Linn.) Chew Leaves: enhances 

childbirth and stomach-ache 

Lans, 2007; Etukudo, 2003 Cardiac glycosides, 

flavonoids, phlobatanins, 

tannins, saponins,  

Essiett et al., 2011 

L. interrupta (L.) Chew Whole plant: gout & 

rheumatism 

Leaves: hepatitis, malaria, 

analgesic 

Roots: diuretic, fever 

Jain, 1994; Pullaiah, 2006; 

Cambie & Ash, 1994 

Alkaloids, flavonoids, 

glycosides, phenols, steroids, 

tannins, triterpenes 

Deepa, 2014 

L. ovalifolia (Schumach.)

Chew 

Leaves: arthritis, enema, 

analgesic, diabetes, diuretic 

Essiett et al., 2011; Hughes, 

2006; Momo et al., 2006 

Cardiac glycosides, 

flavonoids, saponins, 

tannins, laportoside A and 

laportomide B 

Essiett et al., 2011; Tazoo et 

al., 2007 

L. peduncularis (Wedd)

Chew 

Leaves: anti-inflammatory Pooley, 1998 N.D

L. alatipes Hook. f. Whole plant: stomach-ache, 

antiviral, antibacterial, 

bruises, hepatitis 

Quattrochi, 2012; 

Karhagomba et al., 2013 

N.D

N.D Not determined
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Laportea peduncularis subsp. peduncularis 

Figure 3: Laportea peduncularis subsp. peduncularis (river nettle). 

Laportea peduncularis subsp. peduncularis (Figure 3) commonly known as river nettle or imbati 

yasemfuleni in isiZulu is a perennial herb distributed along the coastal zone of KwaZulu-Natal, 

Eastern Cape and some parts of the Western Cape, South Africa. It is also located in Malawi, 

Mozambique, Swaziland, Tanzania and Zimbabwe. It can be a scrambling herb, the stems can 

grow up to 1.5 m long and are greenish to brownish in colour. The leaves are ovate and the apex 

is acuminate. The base of the leaves is broadly rounded or subcordate with serrated margins. The 

margins have 15-25 teeth on each side; the flowers are unisexual and borne in small cymose 

clusters (Friis, 1989). The leaves and stem are covered with stiff and stinging hairs. So far, there 

is no documentation on the compounds found in this plant.  
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Laportea alatipes Hook. f. 

 

Figure 4: Laportea alatipes (stinging forest nettle). 

 

Laportea alatipes (Figure 4) is commonly known as stinging forest nettle; whilst in isiZulu it is 

known as imbati yasehlathini. It is a perennial herb, distributed in East and West tropical Africa. 

In South Africa, it is located in the forest and forest edges in the Eastern Cape, KwaZulu-Natal 

and Limpopo. The plant can grow up to 2 m tall and the stems and leaves contain sparse to dense 

stinging hairs. The leaves are broadly lanceolate to ovate whilst the base is cordate. The margins 

are coarsely serrated. The male flowers are in the axils of lower leaves whilst female flowers are 

in fan-shaped clusters (Friis, 1989; Quattrochi, 2012). There is a lack of detailed information of 

the bioactive compounds responsible for the medicinal use of this plant. 
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The genus Obetia 

Obetia is a new comer to the Urticaceae family; documentation on the genus is not yet available 

but there is a listing of the seven species. The genus is distributed in Eastern and Southern Africa, 

Madagascar and surrounding islands. Obetia rodula is the most widely spread of the species; O. 

madagascariensis is endemic to Malagasy whilst O. tenax is recorded in Zimbabwe, eastern South 

Africa, southern Botswana and Mozambique. The genus consists of shrubs and trees which adapt 

to dry habitats (Burston et al., 1997; Friis, 1983). Like Laportea, the species in this genus have 

stinging hairs.  

Obetia tenax (N.E.Br.) Friis 

Figure 5: Obetia tenax (mountain nettle). 
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Obetia tenax (Figure 5) is commonly known as mountain nettle whilst in isiZulu it known as imbati 

yasentabeni or uluzi. The stems and branches are thick with soft wood whilst the leaves are large 

and deciduous (Burston et al., 1997). The leaves are alternate; the apex has a long-acuminate and 

is rounded, acute or broadly acuminate. The base is broadly cordate, truncate or rounded. The 

margins are serrated with stinging hairs; the stems are pinkish-bronze to grey, the flowers are borne 

in clusters and greenish yellow to white in colour (Boon, 2010; Schmidt et al., 2002). The plant is 

covered with long stinging hairs which cause burns and itchiness on contact with the skin. The 

bark yields a fibre used for thatching and the leaves are cooked as vegetables (Brink & Achigan-

Dako, 2012). Documentation on the bioactive compounds of the plant is lacking and there is 

minimal information on the species. 
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The genus Urtica 

Urtica comprises of 80 species and grows in Asia, Europe, North America and North Africa 

(Jakubczyk et al., 2015). The main varieties under Urtica include Urtica dioica, Urtica urens and 

Urtica pilulifera.  Urtica species have been used in herbal remedies for the treatment of eczema, 

asthma, coughs, kidney infections, anaemia and diabetes (Wetherilt, 1992). Previously isolated 

compounds from Urtica include chlorogenic acid, caffeic acid, sterols, sterol glycosides and 

triterpenes (Gorzalczany et al., 2011; Kraus & Spiteller, 1990). Urtica products are commercially 

available; these include topical creams for eczema, daily food supplements, constituents of 

Prostamed®, Urtica capsules for prostate inflammation and nettle tea. 

Urtica dioica L. 

Figure 6: Urtica dioica L. (stinging nettle). 
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Urtica dioica (stinging nettle) (Figure 6) is a well-known nettle from the Urticaceae family. Like 

the Laportea and Obetia species, it is also referred to as imbati in IsiZulu. It is a perennial shrub 

that grows up to 2 m high.  The leaves have serrated margins, with a cordate base and an acuminate 

apex. The stems have stinging hairs whilst the leaves may occasionally possess stinging hairs. The 

flowers are yellowish-brown in colour. Numerous studies have been done on the chemical 

composition of U. dioica. Isolated compounds from the nettle include β-sitosterol, stigmasterol, 

dotriacotane, erucic acid, ursolic acid, scopoletin, rutin and β-carotene (Motawe et al., 2013; Ji et 

al., 2007). Owing to the use of U. dioica in traditional medicine to treat diabetes, numerous studies 

on the nettle extracts have been done (Ahangarpour et al., 2012; Kianbakht et al., 2013; 

Rahimzadeh et al., 2014; Ranjbari et al., 2016).  Additionally, U. dioica has been found to have 

antioxidant, antimicrobial, anti-ulcer and anti-inflammatory activity (Gülςin et al., 2004).
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CHAPTER TWO 

The distribution of macronutrients, anti-nutrients and essential elements in nettles, 

Laportea peduncularis susp. peduncularis (river nettle) and Urtica dioica (stinging 

nettle) 

ABSTRACT 

Laportea peduncularis and Urtica dioica popularly known as “nettles” belong to the plant family 

Urticaceae and are consumed as a vegetable or used for its medicinal benefit in many countries 

in Africa, Asia, Europe and America.  This study aimed at investigating the effect of cooking on 

the macronutrient, anti-nutrient and elemental composition of Laportea peduncularis and Urtica 

dioica leaves. The results showed a decrease in the crude fat, ash, carbohydrate, and vitamin C 

content with cooking of the leaves, but an increase in the vitamin E content. The anti-nutrient 

content (cyanides, phytates and saponins) increased slightly with cooking, whilst the oxalate 

content decreased. The concentration of essential elements in cooked L. peduncularis leaves 

were found to be in decreasing order of Ca > Mg > Fe > Mn > Zn > Cu > Cr > Ni > Co. Both 

cooked and raw leaves of nettles were found to be rich sources of macronutrients and essential 

elements and may be used as an alternative to commercially available nutrient supplements. 

Statistical analyses (principal component analysis and correlations) indicated that certain 

elements taken up by these plants were from common sources. Positive and negative 

relationships existed between nutrients, anti-nutrients and elements in the plant. 

Keywords: Nettles, Laportea peduncularis, Urtica dioica, nutrients, anti-nutrients, elements, 

edible vegetation. 
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INTRODUCTION 

 The Food and Agricultural Organization (FAO) has reported that 842 million people around the 

world experience chronic hunger and about 98% of these people are from underdeveloped 

countries (FAO, 2013). Although the food security crisis has been a key focal point in recent 

years there is little progress to alleviate this crisis. Food security refers to the ease of access and 

availability to sufficient amounts of nutritious foods for a staple diet (Smith et al., 1992). Lack 

of nutrients in the diet may lead to malnutrition, which is a condition caused by the imbalanced 

intake of nutrients. Asia and Africa were found to be two of the continents with the highest rates 

of child malnutrition in the world (Smith & Haddad, 2000). Whilst in Southern Africa, child 

malnutrition is already a major public health concern, it is expected that number of malnourished 

children in Sub-Saharan Africa will rise in the next few years (Vorster et al., 2013).  

An increase in urbanization is deemed to be one of the factors that have propelled dietary 

changes amongst the South African black population which has led to adverse health effects 

(Kruger et al., 2003; Vorster, 2002). Unhealthy diet increases the risk of nutrition based non--

communicable diseases (NCDs) (Puoane et al., 2008). Low fruit and vegetable intake, childhood 

and maternal underweight, Fe deficiency anaemia and vitamin A deficiency have been listed as 

risk factors which cause death from NCDs amongst the black population in South Africa 

(Norman et al., 2007). NCDs include obesity, cardiovascular diseases and diabetes mellitus.  

In under-developed countries, the foods that are nutritious, accessible and also affordable are 

scarce and alternate sources of such foods need to be identified. Rural communities still rely on 

indigenous plants as a source of food for their daily living (van der Hoeven et al., 2013). Most 

of these plants are found and harvested in the wild (Department of Agriculture, Forestry and 

Fisheries, 2013). These indigenous plants are known for their nutritional value; these are either 

leafy vegetables or fruits. Leafy vegetables are cooked or eaten raw (Modi et al., 2006). Plants 
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from the nettle family (Urticaceae) are native to Asia, Africa, Europe and Americas and are often 

consumed by people due to their availability. These include Laportea peduncularis subspecies 

peduncularis (LPP) (river nettle) and Urtica dioica L (UD) (stinging nettle). LPP is found mostly 

in the coastline of Mozambique and KwaZulu-Natal (KZN), South Africa. It is known as Imbati 

by the people in KZN. The leaves and young shoots of the plant are cooked and eaten as a 

vegetable. LPP is an annual herb with stiff and stinging hairs on the surface of the leaves and 

stem of the plant. The leaves have serrated margins with 15-25 teeth on each side (Friis, 1989). 

UD is found in the cool regions of America, Asia, British Isles and some parts of Africa 

(Weigend, 2006). The UD plant is covered with stinging hairs; the young leaves are cooked as 

a vegetable and added to soups (Rutto et al., 2013). Nettles are known for their high nutritional 

value, with significant amounts of minerals and vitamins (Upton, 2013).

Anti-nutrients are compounds that interfere with the absorption of certain nutrients. Some 

examples of anti-nutrients are cyanates, oxalates, phytates and saponins. Cyanates are salts or 

esters of cyanic acid; as a defence mechanism the plant breaks the cyanates down releasing 

hydrocyanic acid. High levels of the acid are toxic to humans and animals, since it inhibits 

cytochrome oxidase, a protein which acts as the terminal enzyme of respiratory chains (Enneking 

& Wink, 2000). Large amounts of oxalates are found in plant food. Calcium oxalate formation 

in the bladder is known to cause kidney stones. This occurs during the combination of oxalate 

with calcium in urine (Voss et al., 2006). 

Phytates are cationic salts of phytic acid (myo-inositol-1,2,3,4,5,6-hexakisphosphates) bound to 

minerals. These are natural chelators with negatively charged sites that bind metal cations 

(mostly polyvalent) since these bind more strongly than monovalent cations (Lott et al., 2000). 

Though phytates reduce Fe absorption in food, depending on levels in the plant, they possess 

beneficial anticancer and antimicrobial properties (Hurrell et al., 2003; Khokhar & Apenten, 

2003). Saponins are natural defence compounds found in plants. They contain a carbohydrate 
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moiety attached to a triterpernoid or steroid (Shi et al., 2004). Saponins are capable of increasing 

the permeability of cell membranes in the body, thus allowing substances to enter the 

bloodstream, causing destruction of red blood cells (Hoffman, 2003). 

Previously, we reported on the elemental distribution and nutritional value of nuts and 

indigenous fruits and vegetables found in South Africa (Jonnalagadda et al., 2008; Mahlangeni 

et al., 2012; Moodley et al., 2007; Moodley et al., 2013; Reddy et al., 2011). In this study, the 

distribution of nutrients and anti-nutrients in LPP and UD leaves was investigated. This was 

done on both the raw and cooked forms of the leaves to determine the effect of heating on the 

anti-nutrient content (Lott et al., 2000). The elemental concentrations in different nettles was 

also investigated and assessed for their nutritional value.  

MATERIALS AND METHODS 

Sample collection and preparation 

LPP leaves were collected from ten different sites in KZN. The sampling sites were, S1- Umbilo 

Park, S2 - Umhlanga, S3 - Eshowe, S4 - Stanger, S5 - Mona, S6 - Maphumulo, S7 - Umzumbe, 

S8 - Amahlongwa, S9 - Gingindlovu, and S10 - Ndwedwe (Fig. 7).  
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Figure 7: Map of selected sampling sites in KwaZulu-Natal, South Africa. 

 Sampling was done in July and temperatures were typically 25 ºC. Samples of UD leaves (dried 

and crushed) were obtained from Cotswold Health Products Ltd., Gloucestershire, United 

Kingdom. The LPP plant samples were washed with double distilled water then oven dried at 

50 ºC to constant mass.  Dried LPP samples were crushed using a food processor (Braun range). 

A portion of the crushed raw samples (both LPP and UD) were stored in polyethylene bags and 

refrigerated until analysed. A portion of the raw samples (both LPP and UD) were cooked by 

boiling in double distilled water at 70 ºC on a hot plate for 15 min, cooled, and then sieved. The 

sieved samples were dried then crushed in a food processor and stored in polyethylene bags and 

kept aside until analysed.  

Reagents and chemicals 

All chemicals used were supplied by Merck (Kenilworth, USA) and Sigma (St. Louis, USA) 

Chemical Companies and were of analytical-reagent grade.  



41 

Macronutrient, energy and moisture content 

The moisture content was determined by the AOAC method (AOAC, 1990). Two grams of leaf 

samples were oven dried at 105 ºC for 24 hr. Samples were cooled in a desiccator then weighed 

to constant mass. The ash content was determined by incinerating the dried leaf samples (2 g) in 

a muffle furnace at 600 ºC for 12 hr (Elhassan & Yagi, 2010). Crude protein was determined by 

the Kjeldahl method (Skoog et al., 2004). Total protein was calculated by multiplying the 

nitrogen content by a factor of 6.25. The total fat content was obtained by exhaustive extraction 

of leaf samples (2 g) with n-hexane using a soxhlet apparatus. For crude fibre, fat-free samples 

were digested with 0.128 M H2SO4 and 0.313 M NaOH. The insoluble residue was washed with 

hot water and dried at 130 ºC, then weighed to constant mass. The dried residue was then 

incinerated at 600 ºC for 3 hr and the ash was weighed to determine the crude fibre content 

(FAO, 1994). Total carbohydrate was obtained by difference and the energy value was 

determined using Equation 1 (FAO, 2003).

Energy value (kJ 100 g
-1) = [(37 x %lipids])+(17 x %carbohydrates)+(17 x %protein)] (1) 

The vitamin C content was determined by the iodometric method (Igwemmar et al., 2013). A 

sample of ground leaves (0.1 g) was repeatedly extracted with 10 mL of deionized water. The 

extracts were poured into 100 mL volumetric flasks and made up to the mark. An aliquot of 20 

mL was placed into a conical flask, to which, 50 mL of distilled water, 5 mL 0.6 M KI solution, 

5 mL 1M HCl solution and 1 mL starch indicator was added. This was titrated against a 0.002 

M KIO3 solution. The endpoint was marked by the first trace of a dark-blue colour. 

The vitamin E content was determined by the method of Phatak and Hendre (2014) with some 

modifications. The hexane extract (0.1 mL) was mixed with 1 mL of reagent (0.6 M H2SO4, 28 

mM Na2SO4 and 4 mM ammonium molybdate) and incubated at 37 ºC for 1.5 h with vigorous 

shaking. The absorbance of the aqueous phase was measured at 695 nm against a blank 
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containing 0.1 mL pure hexane with 1 mL reagent, treated under the same conditions. The 

vitamin E content was estimated from a standard curve of α-tocopherol acetate at various 

concentrations. 

Anti-nutrient content 

The alkaline titration method of AOAC (1990) was used for the determination of hydrocyanic 

acid. A sample of ground leaves (0.1 g) was placed into a Kjeldahl flask, to which, 100 mL of 

water was added and left to stand for 2 hr. The mixture was steam distilled and 60 mL of distillate 

was collected in 2.5% NaOH solution and diluted to 250 mL. An aliquot (100 mL) was taken, 

to which, 8 mL of NH4OH and 2 mL of 5% KI was added and titrated against a 0.02 M AgNO3 

solution until a permanent turbidity appeared. Equation 2 was used to determine the HCN 

content. 

1 mL AgNO3 = 1.08 mg HCN (2) 

The oxalate content was determined by the method of Day and Underwood (1986). A sample of 

ground leaves (0.1 g) was mixed with 50 mL of 3 M H2SO4 in a conical flask and stirred for 1 h 

with a magnetic stirrer. The mixture was filtered and a 25 mL aliquot of the filtrate was then 

titrated against a 0.05 M KMnO4 solution until a faint violet colour persisted for at least 30 

seconds.  Equation 3 was used to determine the oxalate content. 

1mL 0.05 M KMnO4 = 2.2 mg oxalate (3) 

The phytate content was determined by the method of Reddy and Love (1999) with some 

modifications. A sample of ground leaves (0.1 g) was soaked in 100 mL of 2% HCl for 5 h then 

filtered. To a 25 mL aliquot of the filtrate, 5 mL of 0.3% potassium ferricyanide solution was 

added. The mixture was titrated against a FeCl3 solution until a blue-green colour persisted for 

5 min. 
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The saponin content was determined by the method of Hudson and El Difrawi (1979). A sample 

of ground leaves (10 g) was mixed with 20 mL of 20% aqueous ethanol and agitated with a 

magnetic stirrer for 12 h at 55 ºC. The solution was filtered and the residue was re--extracted 

with 200 mL of 20% aqueous ethanol. The extract was reduced to 40 mL under vacuum and 20 

mL of dichloromethane was added and separated in a separating funnel. The aqueous layer was 

recovered and the DCM layer discarded. The pH of the aqueous layer was adjusted to 4.5 by the 

addition of NaOH. The solution was then shaken with 60 mL of n--butanol. The n--butanol 

extract was washed twice with 10 mL of 5% NaCl and evaporated to dryness in a fume hood to 

produce the crude saponin. 

Elemental analysis 

Digestion of samples (LPP leaves, UD leaves and certified reference material (CRM)) was 

performed using the CEM MARS (CEM Corporation, Matthews, North Carolina, USA) 

microwave reaction system with patented EasyprepTM plus technology. Ground leaf samples (0.2 

g) were accurately weighed into liners, to which 10 mL of 70% HNO3 was added. For digestion,

the power was set at 100% at 1600 W and the temperature was ramped to 180 ºC (15 min) where 

it was held for 15 min. Digested samples were transferred into 25 mL volumetric flasks, diluted 

to the mark with double distilled water and stored in polyethylene bottles for elemental analysis. 

All samples were analysed for the following elements As, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Ni, 

Pb, Se and Zn. Elemental analysis was carried out by Inductively Coupled Plasma-Optical 

Emission Spectrometry (ICP-OES). The accuracy of the elemental determination was measured 

by use of the CRM, White Clover (BCR 402), from the Community Bureau of Reference of the 

Commission of the European Communities. All samples were analysed in quintuplicate (n = 5). 



44 

Statistical analysis 

Analysis of variance (ANOVA) was performed on data and the means were separated by 

Tukey’s Post-hoc test to determine significant differences. Principal component analysis (PCA) 

was performed using the principal component method on the dataset, and the cluster analysis 

(CA) was applied to the standardized matrix of samples using Ward’s method. Pearson’s 

correlation coefficients were obtained using the Statistical Package for the Social Sciences 

(SPSS) (PASW Statistics, Version 22, IBM Corporation, Cornell, New York). 

RESULTS AND DISCUSSION 

Macronutrient, energy and moisture content 

Moisture content of raw LPP leaves was 51.4% whilst that in raw UD leaves was 18.4%. The 

macronutrient and energy content of LPP and UD leaves are presented in Table 6. The crude fat 

content of raw LPP leaves (8.2%) was relatively low compared to that of UD leaves (11.8%). 

There was no significant decrease in the crude fat content of LPP leaves from raw to cooked. 

Both plants were observed to possess high ash content, which generally indicates the plants high 

mineral content. The ash content of LPP leaves decreased in cooked sample relative to raw by 

9.1% and by 2.9% in UD leaves. This could be due to the leaching of minerals into the water 

during the cooking process (Oulai et al., 2014). 
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Table 6: Proximate chemical composition (crude fat, ash, crude protein, crude fibre and 

carbohydrate (Carb)), energy content and vitamin C and E content of L. peduncularis (LPP) and 

U. dioica (UD) leaves, based on a dry mass.

Crude fat 

(%) 

Ash 

(%) 

Crude 

protein 

(%) 

Crude fibre 

(%) 

Carb 

(%) 

Vitamin C 

(mg 100 g-1) 

Vitamin E 

(mg 100 g-1) 

Energy 

(kJ 100g-1) 

LPP Raw 

Cooked 

8.2 (0.7)a* 

6.9 (0.6)a 

44.4 (0.6)a 

35.3 (4.3)b 

2.8 (0.3)a 

3.7 (0.24)b 

0.23 (0.1)a 

1.7 (0.2)b 

44.4 

52.5 

18.1 (2.5)a 

13.0 (1.4)b 

17.9 (1.0)a 

23.2 (2.5)b 

1105 

1208 

UD Raw 

Cooked 

11.8 (0.5)b 

4.9 (0.4)c 

20.9 (0.8)c 

18.0 (1.3)c 

1.81 (0.2)c 

2.2 (0.3)c 

0.3 (0.1)a 

0.6 (0.1)a 

65.2 

74.3 

22.0 (0.7)c 

14.0 (1.4)b 

26.2 (1.1)b 

25.5 (1.1)b 

1576 

1483 

*Values represented as mean (S.D.), n=5. Different letters in a column indicate significantly

different means (Tukey post hoc comparisons, P<0.05).

There was a significant increase in the crude protein and crude fibre content of the plants with 

the cooking of leaves. The crude protein content of raw LPP leaves increased by 0.9% after 

cooking in contrast to the crude protein content of raw UD leaves which increased by 0.4% after 

cooking. Increase in the crude protein content could be a result of denaturing of the protein 

during cooking which exposes the interior parts of the structure thus facilitating the accumulation 

of broken down protein (Ma & Boye, 2015). Heating or cooking of vegetables promotes 

breakdown of indigestible cellulose, complex starch and tough fibres, thus an increase in crude 

fibre and carbohydrate content after cooking is expected (Underkoffler, 2003). High 

carbohydrate content generally indicates high energy content. 

Vitamin C, a water soluble vitamin, is important for the proper functioning of the immune 

system, and also the manufacturing of collagen (Combs, 2008; Hughes, 2002). Both vitamin C 

and E were higher in UD than LPP leaves. However, in both plant species the vitamin C content 

decreased significantly from raw to cooked leaves. In LPP leaves the decrease was by 5.1% and 

in UD leaves, it was by 8%. Previous studies have also shown loss of vitamin C after cooking 

(Yuan et al., 2009).  Vitamin E is a fat-soluble vitamin, and is known to be an antioxidant, 



46 

preventing cell membrane damage (Comeaux, 2007). There was a significant increase in the 

vitamin E content of LPP leaves from raw to cooked. Heat has been found to be effective in 

extracting vitamin E bound to protein membranes or linked to phospholipids by breaking the 

bonds (Ko et al., 2003). The study shows LPP and UD leaves to be richer sources of vitamin C 

and E compared to lettuce (13.0 and 1.2 mg 100 g-1, respectively) and cabbage (13.6 and 0.69 

mg 100 g-1, respectively) (Chun et al., 2006; Ogunlesi et al., 2010). The study indicates that 

cooking reduces the vitamin C content but not the vitamin E content. 

Anti-nutrient content 

The results for the anti-nutrient composition of the raw and cooked leaves are presented in Table 

7. The results reveal a decrease in oxalate content of LPP leaves from raw to cooked (1.46 to

0.89 mg 100 g-1). Cooking reduces the amount of oxalates in LPP leaves through leaching of 

soluble oxalates into the water (Akhathar et al., 2011). There was a slight increase in the cyanide 

content of LPP and UD leaves after cooking (0.30 to 0.45 mg 100 g-1, 0.37 to 0.85 mg 100 g-1, 

respectively). The phytate content in both plant species showed a minor increase in its content 

with cooking. This trend was also observed for the saponin content of LPP leaves where it 

increased from 17.1 to 17.6 mg 100 g-1, after cooking. However, a slight reduction in the saponin 

content was observed in UD leaves with cooking. 
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Table 7: Anti-nutrient composition of L. peduncularis and U.dioica leaves (raw and cooked). 

Cyanides 

(mg 100 g-1) 

Oxalates 

(mg 100 g-1) 

Phytates 

(µg 100 g-1) 

Saponins 

(mg 100 g-1) 

L. peduncularis Raw 

Cooked 

0.30 (0.02)a* 

0.45 (0.05)b 

1.46 (0.13)a 

0.89 (0.02)b 

3.30 (0.40)a 

8.30 (0.50)b 

17.1 (1.6)a 

17.6 (1.6)a 

U. dioica Raw 

Cooked 

0.37 (0.05)b 

0.85 (0.12)c 

2.32 (0.17)c 

0.97 (0.11)b 

5.60 (0.20)c 

6.00 (0.60)c 

18.9 (1.8)a 

24.3 (2.1)b 

*Values represented as mean (S.D.), n=5. Different letters in a column indicate significantly

different means (Tukey post hoc comparisons, P<0.05).

A correlation analysis was done to establish relationships that existed between the macronutrient 

and anti-nutrient content in LPP leaves (Table 8). The correlations between macronutrients and 

anti-nutrients in the plant were evaluated by obtaining correlation coefficients (r) where r values 

ranged from -1 to +1. An r value of -1 indicated a strong negative linear relationship, an r value 

of +1 indicated a strong positive linear relationship and an r value of 0 indicated no relationship. 

The concentration of one variable that causes an increase in the concentration of another 

indicates a positive or synergistic relationship. There were positive correlations between fats and 

energy (0.9) indicating that these two variables are related. There was a 3-way synergy between 

the content of cyanides and oxalates (0.9), vitamin C and oxalates (0.8), and cyanides and 

vitamin C (0.9), indicating that an increase in the content of one increases the content of the 

other two entities. These variables were negatively related to crude fibre and phytates as 

indicated by the negative correlations (-0.9). 



48 

Table 8: Inter-item correlation matrix between macronutrients and anti-nutrients in L. 

peduncularis leaves. 

Ash Fats CP CF Carbs E Sap Ox Phy CN Vit C Vit E 

Ash 1 

Fats 0.8* 1 

CP -0.7* -0.4 1 

CF -0.8 -0.5 0.8 1 

Carbs -0.7 -0.1 0.4 0.6 1 

E -0.2 0.9 0.7 0.6 0.0 1 

Sap -0.3 -0.5 0.0 0.1 -0.6 -0.6 1 

Ox 0.8* 0.6 -0.9** -0.6 0.7 -0.5 -0.1 1 

Phy -0.9** -0.8* 0.9** 0.7 0.5 -0.5 0.2 -0.9** 1

CN 0.9** 0.7* -0.9** -0.8 -0.9** 0.1 -0.1 0.9** -0.9** 1 

Vit C 0.7* 0.5 -0.9** -0.9** -0.8 -0.6 0.1 0.8* -0.9** 0.9** 1 

Vit E -0.9** -0.8* 0.8* 0.7 0.5 -0.6 0.2 -0.8* 0.9** -0.9** -0.9** 1

*,**: correlations significant at p≤ 0.05 and p≤ 0.01, respectively. 

CP: crude protein, CF: crude fibre, Carbs: carbohydrates, E: energy, Sap:  saponins, Ox: 

oxalates, Phy: phytates, CN: cyanides, Vit. C: vitamin C, Vit. E: vitamin E. 

Elemental analysis 

Table 9: Comparison of measured values to certified values (mean (S.D) in µg g-1, dry mass) at 

the 95% confidence interval (n=5) for the certified reference material, White clover, BCR 402. 

Element Wavelength 

(nm) 

Measured value 

(mg kg-1) 

Certified value 

(mg kg-1) 

Se 196.0 7.02 (1.26) 6.70 (0.25) 

Fe 259.9 250 (16) 244 

Ni 231.6 8.00 (0.35) 8.25 

Zn 213.9 30.9 (6.7) 25.2 

The elemental composition of the CRM (White Clover, BCR 402) was used to ensure accuracy 

of the method of determination and the results are represented in Table 9. The measured values 

compared well with certified values. 
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The metal content of LPP leaves obtained from different sites in KZN is shown in Table 10. 

Concentrations of metals in raw leaves were compared to concentrations in cooked leaves from 

different locations. For the toxic element, arsenic, its concentrations in raw leaves ranged from 

1.16 to 4.02 µg g-1, but only samples containing As after cooking were from S2 and S9 sites. 

The concentration of the major elements, Ca and Mg, were also seen to decrease with cooking. 

The Ca content in leaves was found to be the highest of all the elements studied. The 

concentration of Fe was shown to increase with cooking in some sites (S1, S2, S4, S5 and S6).  

If determined, the average percentage of Co remaining after cooking was found to be 88%. 

Chromium concentration ranged from 1.27 to 9.25 µg g-1 in raw leaves and from 0.26 to 7.50 

µg g-1 in cooked leaves, indicating a 56% reduction in Cr. The concentration of Cu in raw leaves 

ranged from 11.5 to 67.8 µg g-1 and decreased after cooking (0.11 to 39.6 µg g-1). Manganese 

concentrations in raw leaves were high (49.4 to 228 µg g-1) with an average of 75% remaining 

after cooking. The Ni concentration in leaves ranged from 2.07 to 11.0 µg g-1 and this was 

reduced by an average of 55% after cooking.  Lead, which is a toxic element, was found in the 

leaves obtained from 6 of the 10 sites. The concentration of Pb in raw leaves ranged from 0.41 

to 4.11 µg g-1 and an average reduction of 34.2% was observed after cooking. On average, 68% 

of Zn remained in the leaves after cooking. This indicates a reduction in the concentration of 

essential elements after cooking. At the same time, cooking can also be beneficial as it enables 

the leaching of toxic elements into the cooking water. In this study, the concentration of essential 

metals in LPP leaves were found to be in decreasing order of Ca > Mg > Fe > Mn > Zn > Cu > 

Cr > Ni > Co. 
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Table 10: Concentration (µg g-1, mean (S.D), n=5) of essential and toxic elements in L. 

peduncularis leaves (raw and cooked) from ten different sites in KwaZulu-Natal. 

Element Site* LPP leaves (raw) LPP leaves (cooked) 

As S1 ND ND 

S2 2.21 (0.27)a 2.02 (0.68)b 

S3 2.34 (0.18)a ND 

S4 3.48 (0.56)b ND 

S5 2.09 (0.33)a ND 

S6 1.16 (0.49)c ND 

S7 4.02 (0.18)b ND 

S8 3.20 (0.17)b,d ND 

S9 3.75 (0.54)b 0.66 (0.03)a 

S10 2.39 (0.20)a,d ND 

Ca S1 36 867 (528)a 15 941 (423)a 

S2 28 787 (467)b 12 773 (186)b 

S3 15 633 (1345)c 5 211 (230)c 

S4 36 438 (3296)a 15 294 (1562)a,d 

S5 12 589 (957)c 5 735 (167)c 

S6 13 632 (279)c 8 443 (131)e 

S7 22 753 (1557)d 6 386 (528)c 

S8 22 790 (1393)d 7 963 (472)e 

S9 36 392 (1835)a 14 136 (661)b,d 

S10 22 125 (991)d 11 683 (545)b 

Co S1 ND ND 

S2 ND ND 

S3 ND ND 

S4 ND ND 

S5 ND ND 

S6 1.29 (0.07)a 1.12 (0.29)b 

S7 ND ND 

S8 0.18 (0.04)b 0.16 (0.03)a 

S9 0.18 (0.03)b 0.16 (0.11)a 

S10 ND ND 

Cr S1 9.25 (0.65)a 7.50 (0.40)a 

S2 4.88 (0.32)b 4.03 (0.17)b 

S3 1.57 (0.20)c 0.26 (0.07)c 

S4 1.60 (0.15)c 0.89 (0.25)d 
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S5 1.94 (0.08)c 0.96 (0.12)d 

S6 4.13 (0.20)b,d 3.07 (0.22)e 

S7 1.27 (0.19)c 0.90 (0.03)d 

S8 4.18 (0.35)b,d 1.20 (0.07)e,f 

S9 4.21 (0.33)b,d 1.51 (0.15)f 

S10 3.56 (0.48)d 2.22 (0.08)g 

Cu S1 62.6 (3.7)a 39.6 (4.0)a 

S2 11.5 (2.0)b 6.09 (0.89)b,e 

S3 53.7 (4.3)a,c ND 

S4 15.4 (3.4)b 0.11 (0.02)c 

S5 30.5 (5.9)b,c 7.80 (0.73)b,e 

S6 67.8 (7.4)a 18.4 (1.5)d 

S7 28.0 (3.4)b,c 3.77 (0.26)b,c 

S8 19.7 (1.9)b 6.22 (0.61)b,e 

S9 25.2 (4.1)b,c 7.99 (0.63)e 

S10 35.3 (6.0)b,c 15.0 (0.5)d 

Fe S1 406 (23)a,b,c 824 (52)a 

S2 123 (17)a,b,c 185 (10)b 

S3 445 (48)a,b,c 116 (12)b 

S4 334 (59)a,b 417 (55)b 

S5 789 (70)a 803 (31)a 

S6 3 707 (76)d 4 230 (305)c 

S7 380 (27)a,b,c 161 (33)b 

S8 1 215 (59)e 471 (38)a,b 

S9 1 205 (171)c,e 823 (117)a 

S10 2 938 (687)f 2 111 (286)d 

Mg S1 5 069 (119)a 2 255 (75)a 

S2 5 415 (119)a,b 2 144 (73)a 

S3 5 173 (259)a 1 621 (82)b 

S4 6 837 (285)c 2 283 (107)a 

S5 1 957 (114)d 1 070 (18)c 

S6 2 266 (65)d 1 393 (38)d 

S7 6 137 (545)b,c 1 425 (95)d 

S8 5 728 (421)a,b 2 054 (57)a,b 

S9 10 787 (556)e 2 663 (43)f 

S10 6 898 (434)b,c 2 517 (53)f 
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Mn S1 49.4 (2.2)a 48.1 (2.12) 

S2 116 (1.0)b 112 (2.38)b,f 

S3 74.6 (5.8)a 20.3 (2.17)c 

S4 186 (17.5)c 183 (28.5)d 

S5 201 (5.8)c,d 174 (5.53)e 

S6 182 (1.5)c 171 (7.58)e 

S7 177 (12.0)c 76.4 (3.22)a,f 

S8 134 (11.8)b 54.1 (8.98)a 

S9 130 (11.8)b 106 (3.89)b,f 

S10 228 (31.1)d 188 (15.03)d,e 

Ni S1 2.46 (0.14)a,b,e 2.37 (0.22)a 

S2 2.28 (0.23)a,b,e 1.34 (0.24)a,b 

S3 3.03 (0.69)a,b,e ND 

S4 2.07 (0.30)b 1.79 (0.16)a,b 

S5 5.02 (0.61)c 1.05 (0.35)b,c 

S6 5.68 (0.30)c 2.52 (0.53)d 

S7 11.0 (1.1)d 0.16 (0.01)c 

S8 3.57 (0.48)e 1.07 (0.85)a,b 

S9 3.11 (0.42)a,b,e 1.50 (0.13)a,b 

S10 7.66 (0.44)f 1.62 (0.47)a,b 

Pb S1 ND ND 

S2 ND ND 

S3 ND ND 

S4 0.41 (0.02)a,b 0.40 (0)a 

S5 1.31 (0.07)b,c 1.24 (0.12)b 

S6 0.57 (0.07)a,b 0.48 (0.04)a 

S7 4.11 (1.25)d 0.44 (0.16)a 

S8 2.22 (0.23)c 1.09 (0.41)b 

S9 2.28 (0.37)c 1.32 (0.57)b 

S10 ND ND 

Zn S1 87.0 (6.0)a 86.5 (8.1)a 

S2 26.6 (1.1)b,e,f 22.4 (2.7)b,c 

S3 27.1 (3.2)b,e,f 22.0 (1.7)b,c 

S4 27.1 (2.4)b,e,f 20.0 (1.3)c 

S5 60.2 (2.8)c 46.6 (1.3)d 

S6 43.1 (1.4)d 30.3 (1.5)e 
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S7 21.9 (1.9)e 13.0 (0.9)f 

S8 63.4 (4.1)c 27.0 (1.6)b,e 

S9 27.9 (3.9)b,e,f 12.5 (2.1)f 

S10 34.0 (0.6)f 15.4 (0.6)c,f 

* Site: S1--Umbilo Park, S2--Umhlanga, S3-Eshowe, S4--Stanger, S5--Mona, S6--Maphumulo,

S7--Umzumbe, S8--Amahlongwa, S9--Gingindlovu, S10—Ndwedwe.

Different letters in a column indicate significantly different means (Tukey post hoc comparisons,

P<0.05).

ND: Not determinable.

Contribution to the diet 

The results in Table 11 show the estimated contribution of LPP and UD leaves (raw and cooked, 

based on dry mass) to the RDA. An average daily serving of LPP and UD leaves is 

approximately one cup, which is equivalent to 100 g (dry mass). Nettles are a good source of 

minerals, as depicted by the results (Institute of Medicine, Food and Nutrition Board, 2011). 

Raw LPP and UD leaves are estimated to contribute more than 100% towards the RDA for the 

elements Ca, Cr, Cu, Fe, Mg and Mn. Cooked leaves, which is the form in which they are 

consumed, had lower concentrations of most elements studied than raw leaves. Too much of the 

leaves should not be consumed due to high amounts of Fe and Mn, however, this can be 

beneficial to those suffering from Fe deficiency anaemia. Statistics on the Fe status in South 

Africa reveals that there is a prevalence of anaemia in women and children; about 9.7% of 

women and 1.9% of children aged five and under have Fe deficiency anaemia (Visser et al., 

2013). These leaves can be taken as a substitute to the commercially available beetroot, green 

onions or spinach that is generally recommended to help alleviate anaemia. Also, Zn deficiency 

amongst young South African children has resulted in their stunted growth and weakened 

immune system (Buhl, 2010). Therefore, LPP and UD leaves, due to their rich nutrient content, 

if consumed, can contribute to the reduction of Zn deficiency as well. In Figure 8, a comparison 

between the Ca and Mg content in a commercial supplement with LPP and UD leaves is shown. 
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The results clearly indicate that both LPP and UD leaves can be used as an alternative to nutrient 

supplements that are generally inaccessible and unaffordable. Both LPP and UD leaves appear 

to be rich sources of the essential elements studied. 

Figure 8: Comparison of Ca and Mg concentration in a nutrient supplement with LPP and UD 

leaves (raw and cooked). 
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Table 11: Dietary Reference Intakes (DRIs) (Recommended Dietary Allowance (RDAs) and Tolerable Upper Intake Levels (ULs)) of elements 

for most individuals and average concentration of elements (n=5) in L. peduncularis (LPP) and U. dioica (UD) leaves (raw and cooked). 

Elements Average concentration (mg day-1, dry mass) DRIa Estimated contribution to RDA (%) 

LPP raw LPP cooked UD raw UD cooked  RDA UL  LPP raw LPP cooked UD raw UD cooked 

Ca 2757 1283 3166 1452 1000-1300 3000 >200 99 >200 112 

Cr 0.310 0.678 0.106 0.166 0.02-0.035 ND >200 1937 >200 474 

Cu 2.30 0.637 1.76 1.62 0.7-0.9 10 >200 71 >200 180 

Fe 131 101 20.8 31.9 8-18 45 >200 561 >200 177 

Mg 700 237 619 227 240-400 350 >100 59 >200 57 

Mn 152 17.4 2.56 4.88 1.6-2.3 11 >200 757 >100 212 

Ni 0.479 0.201 0.24 0.048 ND 1.0 ND ND ND ND 

Zn 3.75 2.52 3.08 2.60 8-11 40 24 23 28 24 

aInstitute of Medicine of the National Academies: Dietary Reference Intakes, 2011. 

ND: Not determinable. 
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Table 12: Dietary Reference Intakes (DRIs) (Recommended Dietary Allowances (RDAs) and Tolerable Upper Intake Levels (ULs)) of 

macronutrients for most individuals and average concentration of macronutrients (n=5) in L. peduncularis (LPP) and U. dioica (UD) leaves (raw 

and cooked). 

 

 

Average concentration (g 100g-1, dry mass) DRIa (g day-1) Estimated contributions to RDA (%) 

LPP raw LPP cooked UD raw UD cooked  RDA UL  LPP raw LPP cooked UD raw UD cooked 

Carbs 21.6 46.1 53.3 61.6 130 ND 17 35 41 47 

Protein  1.37 1.78 1.48 1.83 34-56 ND 2 3 3 3 

Total fibre  0.11 0.82 0.23 0.47 21-38 ND 0.3 2 0.6 1 

Vitamin C 0.0181 0.0130 0.0220 0.0140 0.045-0.075 1.2-2.0 24 17 29 19 

Vitamin E 0.0179 0.0232 0.0262 0.0255 0.011-0.015 0.6-1.0 >100 155 >100 170 

aInstitute of Medicine of the National Academies: Dietary Reference Intakes, 2011. 
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The results in Table 12 indicate that cooked LPP and UD leaves contributed a higher percentage 

of carbohydrates, proteins and total fibre to the diet than raw leaves. The contribution of cooked 

LPP leaves to the RDA for carbohydrates, proteins and total fibre is 35.3 and 2%, respectively. 

The vitamin E content in both plants exceeded its RDA. Cooked leaves from both of the plants 

would provide adequate amounts of vitamin C to the diet (17 to19%). The results indicate that 

LPP and UD leaves are vitamin rich and have high amounts of vitamin E which is essential for 

the protection of low density lipoproteins (LDLs) from oxidation and the formation of red 

blood cells and muscles as well as to maintain normal arterial wall flexibility (Cotter et al., 

2007).

Principal component analysis and cluster analysis 

The results for the principle component loading of heavy metals in LPP leaves are shown in 

Table 13, and the scatter plot shown in Figure 9. Principal component analysis is a multivariate 

technique that estimates the correlation structure of the variables (sites and metal 

concentration) by finding new variables (principal components), describing the data in a 

simplified way. It allows identifying the main direction in which the data varies; component 1 

usually points to the direction where there is a larger variation (Fig. 9).  

Table 13: Principal component loadings of heavy metals in L. peduncularis leaves. 

Pattern matrix 

PC 1 PC 2 

Eigenvalue 3.435 2.914 

Percentage of total variance 38.165 32.378 

Percentage of cumulative variance 38.165 70.543 

Pb 0.889 0.016 

Co 0.835 0.088 

Ni 0.811 -0.024

Fe 0.752 0.133

Mn 0.686 -0.591

As -0.077 -0.938

Cr -0.199 0.919

Zn 0.185 0.901

Cu 0.043 0.407
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Figure 9: Principal component scatter plot of the nine elements studied in LPP leaves 

(constructed for all ten sampling site). 

 A component loading that is greater than 0.4 is considered to belong to that component. Two 

components were extracted explaining the majority of total variance (70.5%). The metals Pb, 

Co, Ni, Fe and Mn were associated with the first loading.  The high loading and close 

association (Fig. 9) of heavy metals Pb (0.889), Co (0.835), Ni (0.811) and Fe (0.752) could 

suggest common anthropogenic inputs. Most sampling sites were close to roads where high 

vehicular emissions could produce similar effects. The separation of Mn from the other metals, 

as indicated by Figure 9, could suggest that it came from a different source i.e. soil parent 

material. The second loading consisted of Cr, Zn and Cu. Higher loadings of Cr and Zn suggest 

that they have a common origin. The cluster analysis using Ward’s method indicates the degree 

of association between metals in the plant, depicted by the Euclidean distance (Fig. 10). The 

shorter the distance the more significant is the association (Gupta & Sinha, 2007). Three main 

clusters corresponded with the PCA results. The first cluster showed close associations between 

Cr, Zn and Cu, indicating the same soil parent material and similar anthropogenic inputs. The 
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second cluster showed close associations between As and Mn, indicating that they originate 

from the same soil parent material and the third cluster showed close associations between Co, 

Pb, Fe and Ni which suggested similar anthropogenic inputs. 

Figure 10: Dendrogram of heavy metals in LPP leaves showing distance between elements, by 

Ward’s method. 

Correlation analysis 

Table 14 represents the significant correlations between macronutrients and anti-nutrients with 

elements that have been extracted from an inter-item correlation matrix. The study showed 

positive correlations between phytates and Ni (0.8), phytates and Pb (0.8). Phytates are known 

to strongly bind to micronutrients such as Ca, Mg, Fe and Zn thus enabling trace elements, Ni 

and Pb, to build up in the leaves (Bohn et al., 2008).  Positive correlations were observed

between vitamin E and Ni (0.8), vitamin E and Pb (0.9) whilst negative correlations were 

observed between vitamin C and Mn (-0.8), vitamin C and Pb (-0.8). Higher levels of vitamin 

C are known to decrease Mn levels (Pfeiffer & Bacchi, 1977). The results indicate that both 

vitamin C and E have the opposite effect on uptake of Pb with vitamin C being antagonistic 
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and vitamin E being synergistic. Negative correlations were also observed between energy and 

Cu (-0.9), Fe (-0.8) and Ni (-0.8).  

Table 14: Correlation matrix of macronutrients, anti-nutrients and elements. 
As Ca Cr Cu Fe Mg Mn Ni Pb Zn 

Ash -0.1 0.7 0.4 -0.2 -0.5 0.6 -0.7* -0.8* -0.6 0.1 

Fats 0.2 0.7 0.1 -0.5 -0.5 0.8* -0.4 -0.6 -0.4 -0.4

CP 0.6 -0.6 -0.5 -0.2 0.4 -0.2 0.6 0.7* 0.8* -0.3

CF 0.3 -0.4 -0.5 0.0 0.7 -0.5 0.9** 0.7 0.7 -0.1

Carbs 0.7 -0.4 -0.1 -0.1 0.5 0.5 0.5 0.3 0.6 -0.6

E 0.7 0.4 -0.3 -0.9** -0.8 0.7 0.9* -0.8 0.6 -0.6

Sap -0.6 0.0 0.5 0.8* 0.5 -0.3 -0.1 0.3 0.0 0.4 

Ox -0.3 0.6 0.2 0.1 -0.5 0.5 -0.6 -0.7 -0.7 -0.1

Phy 0.3 -0.7 -0.4 0.0 0.5 -0.4 0.6 0.8* 0.8* 0.0 

CN -0.3 0.7 0.4 0.0 -0.6 0.5 -0.7 -0.7* -0.7* -0.1

Vit. C -0.7* 0.4 0.7 0.3 -0.3 0.1 -0.8* -0.7* -0.8* 0.3

Vit. E 0.4 -0.5 -0.4 0.0 0.2 -0.3 0.6 0.8** 0.9** 0.1 

*, **: correlations significant at p≤ 0.05 and p≤ 0.01, respectively. 

Carbs: carbohydrates, CF: crude fibre, CN: cyanides, CP: crude protein, E: energy,    Ox: 

oxalates, Phy: phytates, Sap: saponins, Vit. C: vitamin C, Vit. E: vitamin E. 

CONCLUSION 

The results indicate that both the macronutrient and anti-nutrient content of the leaves of nettles 

are affected by cooking. The essential elements in cooked LPP leaves were found to be in 

decreasing order of Ca > Mg > Fe > Mn > Zn > Cu > Cr > Ni > Co. Statistical analyses, PCA 

and CA, indicated that certain elements taken up by the plants were from common sources. 

Correlation analyses revealed relationships between macronutrients, anti-nutrients and 

elements in the leaves; significant amongst these being the antagonistic and synergistic 

relationship between Pb and vitamin C and E, respectively. Both LPP and UD leaves appear to 

be rich sources of essential elements and vitamins and, in South Africa, can be used as a 

cheaper, more organic and more accessible alternative to commercially available nutrient 

supplements.  
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CHAPTER THREE 

The distribution of macronutrients, anti-nutrients and essential elements in nettles, 

Laportea alatipes (forest nettle) and Obetia tenax (mountain nettle) 

ABSTRACT 

Nettles are commonly consumed in South Africa, Europe and Asia for their nutritional benefits 

and are also used in traditional medicine to treat a variety of ailments. In this study, the 

nutritional, anti-nutritional and elemental composition of the leaves of nettles, Laportea 

alatipes (forest nettle) and Obetia tenax (mountain nettle) in the cooked and raw state were 

compared. The contribution of the nettles to the diet was also evaluated. The results show a 

significant decrease in the crude fat, crude protein, vitamin C and E content and a significant 

increase in carbohydrate and crude fibre content with cooking, in both nettles. Also, a decrease 

in the vitamin A content was observed in L. alatipes. The anti-nutrient (cyanide, oxalates, 

saponins and phytates) and toxic element (Cd and Pb) content decreased with cooking. The 

nettles, L. alatipes and O. tenax, have higher macronutrient content than elemental content 

relative to the nettles, L. peduncularis (river nettle) and U. dioica (stinging nettle), after 

cooking. Statistical analysis showed positive correlations between the ash content and minor 

elements in L. alatipes leaves whilst positive correlations between phytates, vitamin E and 

vitamin C were observed. Negative correlations between crude fibre and ash in L. alatipes 

leaves and saponins with Cd and Fe in O. tenax leaves were attributed to the complexing ability 

of crude fibre and saponins with minerals in the plant. Principal component analysis and cluster 

analysis confirmed the correlation between ash content and the presence of elements as well as 

the common origin of the nutrients taken up by the nettles. 

Keywords proximate chemical composition, macro-nutrients, micro-nutrients, vitamins 
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INTRODUCTION 

Malnutrition results from an inadequate intake of food or improper diet and it can affect normal 

functioning of the human body as well as growth and development in children (Rubatzky & 

Yamaguchi, 1997). Malnutrition is a serious concern in developing countries such as Asia, 

Africa, Latin America and the Middle East with one in five people being malnourished and 

experiencing the conditions associated with micronutrient deficiencies (FAO, 1997). For 

proper nourishment, the human body needs foods rich in macronutrients (carbohydrates, fats, 

proteins and vitamins) and micronutrients (minerals) but low in sugar. An unhealthy diet 

consists of high amounts of sugars and calories and low amounts of fruits and vegetables; this 

can be detrimental to human health and was reported to be the number one cause of premature 

death in the United States (Murray et al., 2013). It can also increase the risk of non-

communicable diseases (NCDs) such as cardiovascular diseases, chronic respiratory diseases 

and cancer. In South Africa, NCDs account for 37% of deaths (Puoane et al., 2013); the World 

Health Organization (WHO) has therefore suggested a daily intake of 400 g of fruits and 

vegetable per day to reduce the risk of NCDs (World Health Organization, 2015).  

Food insecurity also plays a role in malnutrition as nutritious foods are inaccessible, 

unaffordable or unavailable. Leafy green vegetables are important in developing countries 

because they are cheap, readily available, nutritious and easy to cook (Gupta & Wagle, 1988). 

Vitamin A (a fat soluble vitamin), can be found as retinoids or carotenoids in plants and the 

carotenoid (β-carotene (provitamin A)) is present in leafy green vegetables. Vitamin A is 

required by the human body for normal vision, growth and immune function and its deficiency 

may compromise the immune system which can lead to infectious illnesses such as diarrhoea 

and respiratory diseases (D’Ambrosio et al., 2011). 



 

71 

 

 Vitamin C (ascorbic acid) is a water soluble vitamin synthesized by plants and animals (not 

humans) to meet their physiological requirements; humans are only able to obtain it from the 

diet (Naidu, 2003). Vitamin C functions as an antioxidant and plays an important role in the 

immune system. It also improves the body's absorption of Cr, Cu and Fe from plants into the 

gastrointestinal tract (Bobroff & Valentín-Oquendo, 2014; McGuire & Beerman, 2007).  

Vitamin E, which is only synthesized by plants, is a fat soluble vitamin which functions as a 

chain breaking antioxidant. It consists of tocopherols and tocotrienols, of which, α-tocopherol 

has high nutritional importance and is found in leafy green vegetables (Brigelius-Flohé & 

Traber, 1999).  

Minerals are the elements that regulate the metabolic activities in the body and consist of 

macro-elements and micro-elements. Macro-elements are needed in amounts greater than 100 

mg day-1 and include Ca, Mg and P. Calcium is essential for the formation of bones and nerve 

conduction, Mg stabilizes the structure of ATP in ATP-dependent enzyme reactions important 

for neuromuscular transmission and activity, and P is found in nucleic acids and is critical in 

the cells’ transfer of energy as part of ATP. Micro-nutrients are needed in smaller amounts in 

the body and include Co, Cr, Cu, Fe, Mn, Ni and Zn. Micro-nutrients may be components of 

many enzymes; Cu is required for the absorption of Fe and forms part of many enzymes, Fe is 

a constituent of red blood cells and Mn is required for several essential enzymes (Driskell, 

2000).  

Plant anti-nutrients are compounds that reduce the body’s ability to absorb essential nutrients 

from the digestive system by disturbing enzymatic processes (Ong, 2008). The presence of 

anti-nutrients in the diet is of concern mostly to vulnerable communities that suffer from 

malnutrition or who base their diet on grains, legumes and wild herbs. Phytates reduce the 

bioavailability of essential nutrients and alter the solubility of proteins (Deshpande, 2002). 

High amounts of cyanide in plant food can cause cyanide poisoning, oxalates can cause renal 
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stones and convulsions, and saponins can cause haemolysis (Deshpande, 2002). Anti-nutrients 

cannot be removed from food completely but cooking for several minutes or hours can denature 

them. Anti-nutrients are only considered harmful if at elevated levels; low levels of anti-

nutrients are deemed beneficial to human health. 

The consumption of nettles is recommended to help alleviate vitamin C, Vitamin A and Fe 

deficiencies as these plants are known to be high in these vitamins and nutrients (Kohlstadt, 

2009). Nettles are consumed for their nutritional value either steamed or cooked, similar to 

spinach, or served as a salad. In traditional medicine, nettles are used to treat arthritis and gout. 

Previously, we reported on the distribution of nutrients and anti-nutrients in the nettles, 

Laportea peduncularis susp. peduncularis (river nettle) and Urtica dioica (stinging nettle). In 

this study, we investigate the concentrations of nutrients and anti-nutrients in the nettles, 

Laportea alatipes (forest nettle) and Obetia tenax (mountain nettle) also found in KwaZulu-

Natal, South Africa and compare these values to those obtained from the previously studied 

nettles. The impact of cooking on nutritional value is also evaluated.  

MATERIALS AND METHODS 

Sample collection and preparation 

Laportea alatipes and Obetia tenax leaves were collected from KwaZulu-Natal, South Africa 

and oven-dried at 50 °C. Dried leaves were divided into two parts, one part was crushed using 

a food processor and placed in polyethylene bottles (uncooked) and the other was subjected to 

conventional cooking on a hotplate at 70 °C by boiling in double distilled water for 15 min. 

Leaves were cooled, sieved, dried and crushed using a food processor then placed in 

polyethylene bottles. 
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Nutrient analysis 

Moisture content was determined by the loss of weight after heating to constant mass in the 

oven at 105 °C for 24 h (AOAC, 1992). The protein content was calculated using a factor of 

6.25 after estimating the nitrogen content using the Kjeldahl distillation method (Skoog et al., 

2004). The ash content was determined by igniting the leaves in a muffle furnace at 600 °C for 

12 h (Elhassan & Yagi, 2010). Fat content was determined by the soxhlet method using n-

hexane. For crude fibre, fat-free samples were digested with 0.128 M H2SO4 and 0.313 M 

NaOH. The insoluble residue was washed with hot water and dried at 130 ºC, then weighed to 

constant mass. The dried residue was incinerated at 600 ºC for 3 h and the ash was weighed to 

determine the crude fibre content (FAO, 1994). Total carbohydrate was obtained by difference 

and the energy value was determined using Equation 7 (FAO, 2003).

Energy value (kJ 100 g
-1) = [(37 x %lipids)+(17 x %carbohydrates)+(17 x %protein)]             (4) 

The vitamin C content was determined by the iodometric method (Igwemmar et al., 2013). The 

vitamin A content (β-carotene) was determined by the methods of Neeld and Pearson (1963) 

and Besler et al. (2002) with some modifications. Raw and cooked leaves (0.2 g) were mixed 

with 1 mL cold ethanol then extracted with 2 mL hexane followed by vortex mixing for 2 min 

and centrifugation at 1500 rpm for 10 min. Beta-carotene was determined 

spectrophotometrically (Biochrom Libra S11, Cambridge, England) at 450 nm. Vitamin E 

content was determined as described by Desai (1984) with some modifications. Raw and 

cooked leaves (0.2 g) were extracted with 1 mL hexane, mixed with 0.5 mL ethanol and 0.25 

mL of 25% ascorbic acid then pre-incubated at 70°C for 5 min. Thereafter, 0.3 mL potassium 

hydroxide was added and the mixture was further incubated for 30 min. The mixture was cooled 

in an ice bath. Hexane (4 mL) was added, and the mixture centrifuged at 1500 rpm for 10 min. 

The separated hexane (supernatant) was used to estimate vitamin E content using a UV 
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spectrophotometer. A calibration curve of α-tocopherol at various concentrations (emission at 

330 nm) was used to determine the vitamin E content in the leaves. 

Elemental analysis was determined by accurately weighing powdered leaf samples into liners 

then adding 10 mL of 70% HNO3. For digestion, the power was set at 100% at 1600 W and the 

temperature was ramped to 180 ºC (15 min) where it was held for 15 min. Digested samples 

were transferred into 25 mL volumetric flasks, diluted to the mark with double distilled water 

and stored in polyethylene bottles until analysed. 

All samples were analysed for the following elements As, Ba, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, 

Ni, P, Pb, Se and Zn. Elemental analysis was carried out by Inductively Coupled Plasma-

Optical Emission Spectrometry (ICP-OES). The accuracy of the elemental determination was 

measured by use of the certified reference material (CRM), White Clover (BCR 402), from the 

Community Bureau of Reference of the Commission of the European Communities. All 

samples were analysed in quadruplicate (n = 4).  

Anti-nutrient analysis 

The alkaline titration method of AOAC (1990) was used for the determination of hydrocyanic 

acid and calculated as: 1 mL AgNO3 = 1.08 mg HCN  (5) 

The oxalate content was determined by the method of Day and Underwood (1986) and 

calculated as: 1mL 0.05 M KMnO4 = 2.2 mg oxalate     (6) 

The phytate content was determined by the method of Reddy and Love (1999) with some 

modifications. A sample of ground leaves (0.1 g) was soaked in 100 mL of 2% HCl for 5 h 

then filtered. To a 25 mL aliquot of the filtrate, 5 mL of 0.3% potassium ferricyanide solution 

was added. The mixture was titrated against FeCl3 solution until a blue-green colour persisted 

for 5 min. The saponin content was determined by the method of Hudson and El Difrawi 
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(1979). A sample of ground leaves (10 g) was mixed with 20 mL of 20% aqueous ethanol and 

agitated with a magnetic stirrer for 12 h at 55 ºC. The solution was filtered and the residue was 

re-extracted with 200 mL of 20% aqueous ethanol. The extract was reduced to 40 mL under 

vacuum and 20 mL of dichloromethane (DCM) was added and separated in a separating funnel. 

The aqueous layer was recovered and the DCM layer discarded. The pH of the aqueous layer 

was adjusted to 4.5 by the addition of NaOH. The solution was then shaken with 60 mL of n-

butanol. The n-butanol extract was washed twice with 10 mL of 5% NaCl and evaporated to 

dryness in a fume hood to produce the crude saponin. 

Statistical analysis 

All data was generated using the Statistical Package for the Social Sciences (PASW Statistics, 

Version 23, IBM Corporation, Cornell, New York). Analysis of variance (ANOVA) was 

performed on data and the means were separated by Tukey’s Post-hoc test to determine 

significant differences. Principal component analysis (PCA) was performed using the principal 

component method on the dataset and cluster analysis (CA) was applied to the standardized 

matrix of samples using Ward’s method. Correlations amongst nutrients and anti-nutrients 

were determined by Pearson’s correlation analysis.  

RESULTS AND DISCUSSION 

Quality Assurance 

Measured values (in µg g-1) of the CRM, White Clover (BCR 402), for Fe (250 ± 18.0), Se 

(6.81 ± 1.40) and Zn (30.3 ± 6.37) were within certified values (in µg g-1) for Fe (244), Se (6.70 

± 0.25) and Zn (25.2). 



 

76 

 

Nutrient and anti-nutrient analysis 

The macronutrient, energy and vitamin content of raw and cooked leaves of the nettles L. 

alatipes and O. tenax are presented in Table 15. The moisture content of raw leaves was 9.7% 

(L. alatipes) and 9.6% (O. tenax). After cooking, the ash, crude fat and crude protein content 

decreased significantly in leaves of both plants. However, there was a significant increase in 

crude fiber (178% in L. alatipes and 233% in O. tenax) and carbohydrate (1.4% in L. alatipes 

and 27% in O. tenax) similar to our previous study on Laportea peduncularis and Urtica dioica 

(Mahlangeni et al., 2016). Previous studies conducted by Pérez-Hildago et al. (1997) showed 

an increase in dietary fibre of chickpeas with cooking. This could be due to the formation of 

resistant starch together with condensed tannin-protein products that increases the fibre content 

(Mongeau & Brassard, 1995). Heat during cooking may modify the cell walls and complex 

sugars thereby reducing the solubility of dietary fibre. Carbohydrates are more bioavailable as 

a result of cooking (Joshi, 2002). The energy content of L. alatipes leaves decreased similar to 

our previous study on U. dioica leaves whilst that of O. tenax leaves increased similar to our 

previous study on L. peduncularis leaves (Mahlangeni et al., 2016). 

Vitamin A is essential for proper functioning of the retina and for the integrity of epithelial 

tissue (van Boxtel, 2008). There was a slight increase (2.6%) in the vitamin A content of O. 

tenax leaves form raw to cooked whilst there was a significant decrease (95%) in L. alatipes 

leaves. A significant decrease in vitamin C (7.2% in L. alatipes and 0.7% in O. tenax) and E 

(60% in L. alatipes and 69% in O. tenax) was observed in leaves of both plants.  Vitamins are 

heat sensitive thus susceptible to loss during cooking. The vitamin C content in leaves of both 

plants (in mg 100 g-1) (39 in L. alatipes and 38.7 in O. tenax) was higher than that of L. 

peduncularis (18.1), U. dioica (22), Bidens pilosa (23) and Spinacia oleracea (28) (Kruger et 

al., 1998; Mahlangeni et al., 2016; Steyn et al., 2001).  
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Table 15: Proximate chemical composition (dry weight basis) (Ash, crude fats, crude fiber, crude protein, carbohydrates), vitamin A, C, E content 

and energy content of raw and cooked nettles.  

Nettles Ash Crude Fats Crude Fiber Crude 

Protein 

Carbs Vitamin A 

(µg 100 g-1) 

Vitamin C 

(mg 100 g-1) 

Vitamin E 

(mg 100 g-1) 

Energy 

(kJ) 

Laportea alatipes Raw 

Cooked 

17.9 ± 2.4 a* 

3.3 ± 0.63 b 

1.7 ± 0.21 a 

0.86 ± 0.09 b 

8.9 ± 1.4 a 

24.7 ± 4.3 b 

6.6 ± 0.01 a 

5.4 ± 0.01 b 

64.9 

65.8 

99 ± 18 b 

4 ± 0.9 a 

39 ± 0.1 a 

36 ± 0.7 b 

98 ± 20 a 

39 ± 6 b 

1278 

1239 

Obetia tenax Raw 

Cooked 

28.1 ± 4.7 c 

2.4 ± 0.48 b 

3.95 ± 0.76 c 

1.4 ± 0.19 ab 

5.9 ± 1.0 a 

19.7 ± 1.6 b 

6.5 ± 0.14 a 

5.7 ± 0.05 c 

55.6 

70.8 

106 ± 17 b 

109 ± 15 b 

39 ± 0.2 a 

39 ± 2 a 

111 ± 12 a 

35 ± 5 b 

1199 

1353 

*Values are represented as mean ± S.D., n=4.

Values in the same column with different superscript letters are significantly different (Tukey’s post hoc comparison, 𝑃 ≤ 0.05). 
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The results of the anti-nutrient content of L. alatipes and O. tenax leaves are presented in Table 

16. Anti-nutrients are known to decrease the bioavailability of nutrients. The results reveal a

decrease in the anti-nutrient content of leaves of L. alatipes and O. tenax for all anti-nutrients 

studied (cyanide, oxalate, phytate and saponin) after cooking. This was contrary to our previous 

study on L. peduncularis and U. dioica leaves that showed an increase in the cyanide, phytate 

and saponin content after cooking. This proves that thermal processing of plants alters the anti-

nutrient content (Arinola & Adesina, 2014; Rehman & Shah, 2005).  

Table 16: Anti-nutrient composition of raw and cooked nettles. 

*Values represented as mean ± S.D., n=4.

Values in the same column with different superscript are significantly different (Tukey post 

hoc comparison, 𝑃 ≤ 0.05. 

Elemental analysis 

Food processing such as cooking has an effect on the amount of elements retained in the plant 

as well as its bioavailability. The raw and cooked leaves of L. alatipes and O. tenax were 

assessed for macro, micro and trace elemental content and the results are presented in Table 

17. Essential plant macro-elements are needed for healthy plant growth (Roy et al., 2006).

There was a significant decrease in the Ca concentration in L. alatipes leaves and Mg 

concentrations in both plants after cooking. There was a 36% increase in P content in L. alatipes 

leaves and a significant increase in Fe concentration in both plants after cooking. Phytic acid 

(myo-inositol 1,2,3,4,5,6 hexakis-dihydrogen phosphate) is the major P storage compound and 

Cyanides 

(mg 100 g-1) 

Oxalate 

(mg 100 g-1) 

Phytate 

(µg 100 g-1) 

Saponin 

(g 100 g-1) 

Laportea alatipes Raw 

Cooked 

932 ± 125 *a 

401 ± 93 b 

332 ± 292 a 

218 ± 14 b 

3.2 ± 0.1 a 

2.6 ± 0.2 b 

12.8 ± 2.3 a 

11.73 ± 0.73 a 

Obetia tenax Raw 

Cooked 

1069 ± 177 a 

598 ± 81 b 

290 ± 50 a 

191 ± 29 b 

2.6 ± 0.1 bc 

2.3 ± 0.2 c 

13.0 ± 1.9 a 

12.2 ± 1.7 a 
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phytates form complexes with Fe. Cooking of the leaves therefore releases the bound P and Fe 

increasing their bioavailability (Kumar et al., 2010). 

Micro-elements are needed by the plant for normal growth and functioning and is a source of 

nutrition for humans (Bruulsema et al., 2012).  A significant decrease in Cr, Mn and Zn whilst 

a significant increase in Ba and Cu concentrations was observed with cooking, in both plants. 

The concentration of Ni decreased by 37% in O. tenax leaves and increased by 86% in L. 

alatipes leaves with cooking. Cobalt concentrations increased by 84% and 87% in L. alatipes 

and O. tenax leaves, respectively, after cooking.  

Cadmium is one of the most mobile trace elements and readily taken up by plants from the soil, 

where it can accumulate (Hajeb et al., 2014). Studies have shown that Pb accumulates in the 

plant only when present in soil (Chary et al., 2008). Concentrations of toxic elements decreased 

significantly in L. alatipes (57% for Cd and 34% for Pb) and O. tenax (74% for Cd and 64% 

for Pb) leaves.  This shows that cooking reduces the levels of toxic elements in the plants. 
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Table 17: Concentration (µg g-1, mean ± S.D., n=4) of essential and toxic elements in L. alatipes and O. tenax leaves (raw and cooked). Dietary 

reference intakes (DRIs) (recommended dietary allowance (RDAs) and tolerable upper intake levels (ULs)) of elements for most individuals and 

average contribution of nettles (L. alatipes (LA), O. tenax (OT) L. peduncularis (LP) and U. dioica (UD)) for essential elements to the diet (in mg 

per 60 g, dry mass) (n=4) in both raw and cooked leaves (raw/cooked). 

 Obetia tenax L. alatipes DRIa LA OT LPb UDb 

Raw 

(µg g-1) 

Cooked 

(µg g-1) 

Raw 

(µg g-1) 

Cooked 

(µg g-1) 

RDA 

(mg day-1) 

UL 

(mg day-1) 

Raw/Cooked 

(mg 60 g-1) 

Raw/Cooked 

(mg 60 g-1) 

Raw/Cooked 

(mg 60 g-1) 

Raw/Cooked 

(mg 60 g-1) 

Macro-elements 

Ca 34084±1 074c* 12652±1598a 21990±1 818b 24316±1 542b 1000-1300 3000 20.5/7.60 13.2/14.6 1654/770 1899/871 

Fe 6114±687c 39196±5376a 12045±1 060bc 16807±2 035b 8-18 45 3.67/23.7 7.27/10.1 78.7/60.6 12.5/19.1 

Mg 12407±432c 2023±212a 10648±544 d 4075±155b 240-400 350 7.50/1.21 6.42/2.45 420/142 371/136 

P 1264±112b 1715±108a 2135±153c 1340±74.6b       

Micro-elements 

Ba 57.7±6.26c 77.0±5.22a 88.1±5.00a 151±7.41b       

Co 1.42±0.139b 2.61±0.439a 6.64±0.430c 0.845±0.118b       

Cr 12.1±1.32b 0.073±0.00a 87.7±6.11c 0.074±0.001a 0.02-0.035 ND 0.007/0 0.053/0 0.186/0.407 0.063/0.099 

Cu 19.1±1.02b 32.0±1.43a 23.9±2.01c 35.1±2.11a 0.7-0.9 10 0.011/0.019 0.015/0.021 1.38/0.382 1.05/0.97 

Mn 260 ± 18.2c 180±24.9a 206±14.3a 76.1±3.34b 1.6-2.3 11 0.15/0.11 0.13/0.045 91.3/10.5 1.53/2.93 

Ni 6.36±1.39a 11.8±0.95b 15.8±1.04c 8.42±1.19a ND 1.0 0.003/0.007 0.009/0.005 0.287/0.121 0.144/0.029 

Zn 60.7±4.51b 50.9±4.31a 34.3±0.705c 47.1±6.76a 8-11 40 0.037/0.031 0.021/0.028 2.25/1.51 1.85/1.56 

Toxic-elements 

Cd 1.86±0.207b 0.806±0.168a 2.97±0.177c 0.780±0.167a       

Pb 2.87±0.250c 1.88±0.134a 2.21±0.128a 0.795±0.157b       
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The results in Table 17 also show the concentration of elements in, L. alatipes, O. tenax, L. 

peduncularis and U. dioica leaves in comparison to the RDAs (Institute of Medicine of the 

National Academies, 2011). The concentrations of elements in the nettles (L. peduncularis and 

U. dioica) from our previous study were compared to the nettles, L. alatipes and O. tenax 

contribution in the current study. Low fruit and vegetable intake by individuals has contributed 

to micronutrient deficiencies. The World Health Organization recommends consumption of a 

minimum of 400 g of fruits and vegetables daily (Joint FAO/WHO, 2004). Studies have shown 

that the average consumption of vegetables is less than 80 g per day (Food and Agriculture 

Organization of the United Nations, 2003). The serving amount was related to spinach where 

two cups are equivalent to 60 g, based on dry mass. This will give an estimate of the 

contribution made by nettles to an individual’s diet thereby decreasing the risk of nutrient 

deficiencies. If nettles are consumed after cooking, a decrease in contribution to the diet is 

observed due to the leaching of nutrients into the cooking water.  

Generally, nettles had high Fe contribution specifically L. peduncularis which would be 

beneficial to individuals who are suffering from Fe deficiency anaemia (Phatlhane et al., 2016). 

The most common elemental deficiencies in humans are for Fe, Zn and Cu (Bruulsema et al., 

2012). L. alatipes and O. tenax both contribute 3% towards the RDA for Cu and both contribute 

0.3% towards the RDA for Zn; this is much lower than the nettles L. peduncularis (42% Cu 

and 108% Zn) and U. dioica (14% Cu and 14% Zn). Therefore, with regards to minerals the 

nettles L. peduncularis and U. dioica are richer in minerals than L. alatipes and O. tenax. 

The mineral content of the nettles (L. alatipes, O. tenax, L. peduncularis and U. dioica) was 

compared to that of common leafy green vegetables (lettuce, spinach and cabbage) (Table 18). 

The results show that Co, Cr, Cu, Mn, Ni and Zn concentrations are higher in L. alatipes and 

O. tenax leaves compared to lettuce, spinach (except for Zn in South African spinach) and 

cabbage. Furthermore, amongst the four nettles, O. tenax had the highest concentrations of Co, 
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Cr, Cu, Fe and Ni. Higher concentrations of Mn were observed in L. alatipes leaves compared 

to the other three nettles. This shows that nettles have higher concentrations of micro-elements 

which can be beneficial to human health.  

Lead content in lettuce, spinach and cabbage ranged from 0.013-3.6 µg g-1, 0.134-82.9 µg g-1 

and 0.4-3.1 µg g-1, respectively. Lead in all nettles was below 3 µg g-1. 
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Table 18: Average concentration of micro-elements in uncooked leafy green vegetables (lettuce, spinach and cabbage) and nettles (µg g-1). 

Vegetables Country Co  

 

Cr  

 

Cu  

 

Fe Mn Ni  

 

Zn  

 

References 

Lettuce  Egypt 

Greece 

Tanzania 

- 

- 

- 

- 

0.036 

- 

1.97 

0.17 

5.8 

- 

4.04 

- 

- 

0.95 

- 

- 

0.05 

- 

9.76 

1.01 

15.9 

Radwan & Salam, 2006 

Stalikas et al., 1997 

Bahemuka & Mubofu, 1999 

Spinach  Egypt 

Greece 

South Africa 

Tanzania 

- 

0.026 

- 

- 

- 

0.130 

10.05 

- 

4.48 

2.45 

10.64 

13.7 

- 

21.5 

2 840 

- 

- 

4.42 

140 

- 

- 

0.52 

5.11 

- 

20.9 

2.99 

70 

48.1 

Radwan &Salam, 2006 

Stalikas et al., 1997 

Lion & Olowoya, 2013 

Bahemuka & Mubofu, 1999 

Cabbage  South Africa 

Tanzania 

Zimbabwe 

- 

- 

- 

- 

- 

0.5 

1.18 

5.6 

0.2 

- 

- 

- 

23.56 

- 

- 

- 

- 

0.5 

29.6 

41.8 

3.2-15 

Bvenura & Afokeyan, 2012 

Bahemuka & Mubofu, 1999 

Mapanda et al., 2007 

Nettles          

Laportea alatipes South Africa 1.42 12.1 19.1 6 114 260 6.36 60.7 This study 

Obetia tenax South Africa 6.64 87.7 23.9 12 045 206 15.8 34.3 This study 

Laportea peduncularis South Africa 0.33 3.10 23.0 1 310 152 4.79 26.0 Mahlangeni et al., 2016 

Urtica dioica South Africa ND 1.06 17.6 208 25.6 2.40 37.5 Mahlangeni et al., 2016 

ND – not determined due to concentrations being below the instrument detection limit. 
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Table 19: Dietary reference intakes (DRIs) (recommended dietary allowance (RDAs) and 

tolerable upper intake levels (ULs)) of macronutrients for most individuals and average 

concentration of macronutrients (n=4) in L. alatipes (LA), O. tenax (OT) L. peduncularis (LP) 

and U. dioica (UD) leaves (raw/cooked). 

Average concentration in raw/cooked leaves 

 (g 60 g-1, dry mass) 

DRIa 

(g day-1) 

LA OT LPb UDb RDA UL 

Carbs 35.1/35.7 30.2/38.4 12.9/27.7 32.0/36.9 130 ND 

Protein 3.22/2.94 3.20/3.11 0.82/1.07 0.89/1.10 34-56 ND 

Total fibre 4.81/12.1 3.21/9.67 0.067/0.49 0.14/0.28 21-38 ND 

Vitamin Ac (µg 60 g-1) 9.93/0.40 10.6/10.9 - - 600-900 3000 

Vitamin C 0.023/0.022 0.023/0.023 0.011/0.010 0.013/0.010 0.045-0.075 1.2-2.0 

Vitamin E 0.059/0.023 0.067/0.021 0.011/0.014 0.016/0.015 0.011-0.015 0.6-1.0 

aInstitute of Medicine of the National Academies: Dietary Reference Intakes, 2011. 
bMahlangeni et al., 2016. 
cVitamin A as retinol; 1 µg β-carotene = 0.167 µg retinol. 

The results in Table 19 show the concentration of macronutrients in the different nettles in 

comparison to the RDA. Cooked leaves of nettles, L. alatipes and O. tenax, contribute more to 

protein (5% and 6%, respectively), fibre content (32% and 25%, respectively), vitamin C (29% 

and 31%, respectively) and vitamin E (153% and 140%, respectively) compared to the nettles, 

L. peduncularis and U. dioica.  The nettles, L. alatipes and O. tenax, have higher macronutrient

content than elemental content relative to the nettles, L. peduncularis and U. dioica, after 

cooking. Vitamin A is one of the most common nutrient deficiencies in South Africa, and this 

deficiency has been linked to non-communicable diseases. The vitamin A content was only 

determined in this study for L. alatipes and O. tenax nettles and contributes 0.04% and 0.1%, 

respectively to the diet.  
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Correlation analysis, principal component and cluster analysis 

The results in Table 20 and 21 represent the correlation coefficients of macronutrients, anti-

nutrients and minerals extracted from an inter-item correlation matrix. Correlation coefficients 

approaching 1 (0.9 to 1) indicated positive correlation and values approaching -1 (-0.9 to 1) 

indicated negative correlation.  In L. alatipes leaves a positive correlation for ash and Cd (1.0) 

and ash and Co (0.9) was observed, whilst a negative correlation between crude fibre and ash 

(-1.0), Cd (-1.0) and Co (-0.9) was observed. Crude fibre is known to bind minerals rendering 

them unavailable (Joshi, 2002). A positive correlation between saponins and vitamin E (0.9), 

and saponins and crude protein (0.9) was observed. Saponins have the ability to complex with 

sterols and since vitamin E is fat soluble, an increase in saponin content will increase vitamin 

E (Waller & Yamasaki, 1996). In O. tenax leaves negative correlations between saponins and 

Cd (-1.0) and saponins and Fe (-1.0) as well as crude fibre and Pb (-1.0), and crude fibre and 

Zn (-1.0) were observed. Saponins are known to form insoluble complexes with Fe. Studies by 

Southon et al. (1988) showed a decreased in Fe absorption in rats with an increase in saponin 

concentration. Positive correlations between phytates and vitamin C (0.9) and vitamin E (1.0) 

were observed.  Decreases in phytates lead to a decrease in the vitamin C and E content. 

Table 20: Correlation matrix of macronutrients, anti-nutrients and elements in L. alatipes 

leaves. 

Ash Crude fibre Cd Co 

Ash 1 

Crude fibre -1.0 1 

Cd 1.0 -1.0 1 

Co 0.9 -0.9 1.0 1 

Saponins 

Crude protein 0.9 

Vitamin E 0.9 
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Table 21: Correlation matrix of macronutrients, anti-nutrients and elements in O. tenax leaves. 

Cd Fe Saponins 

Cd 1 

Fe 0.9 1 

Saponins -1.0 -1.0 1 

Crude fibre Pb Zn 

Crude fibre 1 

Pb -1.0 1 

Zn -1.0 1.0 1 

Phytates Vitamin C Vitamin E 

Phytates 1 

Vitamin C 0.9 1 

Vitamin E 1.0 1.0 1 

Table 22 presents the rotated component matrix of nutrients, anti-nutrients and elements in L. 

alatipes and O. tenax leaves whilst the scatter plots are illustrated in Figure 11.  Principal 

component analysis (PCA) is a statistical tool that examines the interrelations amongst a set of 

variables in order to identify the underlying structure of those variables (Shippenburg 

University, 2012). Correlations between variables close to 1 were considered in each principal 

component (PC). There were three PC’s extracted for L. alatipes and O. tenax leaves which 

accounted for 100% of the total variance for each plant. In L. alatipes leaves, there were high 

loadings of oxalates (0.879), ash (0.978), Cd (0.968), Co (0.975), Cr (0.965) and Pb (0.878) in 

the first PC (40.67%), suggesting that the ash content contained high amounts of trace elements 

Cd, Co, Cr and Pb whilst oxalates functions as chelating agents for these elements. The second 

PC had high loadings of vitamin C (0.962), Ca (0.980), Mg (0.929) and P (0.924). Calcium, 

Mg and P are needed in large amounts for cellular communication. The third PC was in 

agreement with the correlation analysis were high loadings of saponins, vitamin E and crude 

protein were observed. In O. tenax leaves, there were high loadings of ash and the elements 

Cd, Cr, Fe, Mn, and Ni suggesting that the ash content mostly contained these elements. High 

loadings of vitamin A (0.952), crude fats (0.938), Ba (0.964), P (0.947), Pb (0.938) and Zn 
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(0.953) were observed in the second PC. Vitamin A is fat soluble therefore could be found 

incorporated in the cellular lipids of plants. Again, high loadings of vitamin C, Ca and Mg were 

observed in the third PC as in the second PC of L. alatipes.  

Table 22: Principal component loadings of nutrients and anti-nutrients in L. alatipes and O. 

tenax leaves. 

 Rotated component matrix 

 

L. alatipes O. tenax 

1 2 3 1 2 3 

Eigenvalue 9.761 7.420 6.819 8.693 7.776 7.531 

Percentage of total variance 40.672 30.916 28.412 36.220 32.399 31.381 

Percentage of cumulative variance 40.672 71.588 100.000 36.220 68.619 100.000 

Cyanides -0.983 0.149 0.104 0.498 0.402 -0.769 

Oxalates 0.879 -0.173 0.443 -0.042 0.293 -0.955 

Phytates -0.230 0.618 0.752 -0.587 0.432 0.685 

Saponins 0.448 0.200 0.871 -0.905 -0.420 0.068 

Vitamin A -0.437 -0.439 0.785 -0.250 0.952 0.176 

Vitamin C 0.043 0.962 0.271 -0.451 0.312 0.836 

Vitamin E 0.316 0.438 0.841 -0.511 0.414 0.753 

Ash 0.978 0.180 0.109 0.888 -0.139 -0.439 

Crude fats 0.523 -0.843 0.124 0.227 0.938 -0.263 

Crude protein 0.279 0.040 0.959 0.294 0.484 -0.825 

Crude fiber -0.963 -0.235 -0.130 0.126 -0.966 0.228 

Ba 0.669 0.725 -0.165 0.188 0.964 0.187 

Ca 0.021 0.980 0.200 0.282 -0.097 0.955 

Cd 0.968 0.248 0.031 0.920 0.390 0.045 

Co 0.975 0.184 -0.121 0.890 -0.226 0.395 

Cr 0.965 -0.083 -0.250 0.924 -0.153 -0.352 

Cu -0.726 -0.524 -0.446 0.620 -0.035 -0.784 

Fe 0.523 0.521 0.675 0.991 0.119 -0.059 

Mg 0.304 0.929 -0.213 0.410 -0.081 0.908 

Mn 0.418 0.764 0.492 0.877 -0.184 0.445 

Ni 0.170 0.293 -0.941 0.940 -0.142 -0.309 

P 0.140 0.924 -0.357 0.031 0.947 0.321 

Pb 0.878 0.136 0.459 -0.018 0.938 -0.345 

Zn -0.292 -0.547 0.784 -0.122 0.953 -0.279 



 

88 

 

A           B 

    

 

Figure 11: Principal component scatter plots of the nutrients and anti-nutrients studied in L. alatipes (A) and O. tenax (B) leaves.
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Cluster analysis classifies samples on the basis of a set of measured variables (e.g. 

concentration) into a number of different groups such that similar samples are placed in the 

same group (Statstutor, 2007). The cluster analysis of nutrients and anti-nutrients in L. alatipes 

and O. tenax leaves are represented as dendrograms in Figure 12. There were 3 main clusters 

in L. alatipes leaves; cluster A with Cr, Ni, Cu, Cd and Fe; cluster B with Ba, P and Pb; and 

cluster C with vitamin A and crude fats. Elements in cluster A could be from the same 

anthropogenic source such as anti-friction bearings from cars on main roads. Cluster B is 

associated with elements originating from motor oil additives and wearing of automobile 

clutches and tyres (Kanu et al., 2015; Warner et al., 2001). Four main clusters were observed 

in O. tenax leaves; cluster A with vitamin C, crude protein, Ca, Mg and phytates; cluster B with 

cyanides and crude fibre; cluster C with Fe and Mn as well as Ba and P; and cluster D with ash, 

Cd, Co, Cr and Cd. Unlike the other clusters, cluster C may be from anthropogenic sources.  
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A B 

Figure 12: Dendrogram of nutrients and anti-nutrients in L. alatipes (A) and O. tenax (B) leaves showing the distance between elements, by 

Ward’s method. *A, B, C, D - different clusters.
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CONCLUSION 

The results showed that cooking has an effect on both nutrients and anti-nutrients in nettles. The 

findings also indicate an increase in carbohydrates and crude fibre content with a decrease in anti-

nutrient content in the nettles, L. alatipes and O. tenax. A comparison amongst nettles after cooking 

showed L. peduncularis and U. dioica to be are richer in macronutrients and L. alatipes and O. 

tenax to be richer in essential elements. Correlation analysis showed relationships between 

elements, macronutrients and anti-nutrients. Crude fibre and saponins had negative correlations 

with elements due to their complexing ability. An association between ash content and elemental 

concentrations in the nettles was observed by principal component and cluster analysis. This study 

confirms the positive contribution of nettles to the diet due to it being rich in macronutrients, 

essential elements and other minerals therefore its consumption is recommended.  
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CHAPTER FOUR 

Heavy metal distribution in Laportea peduncularis and growth soil from the eastern 

parts of KwaZulu-Natal, South Africa 

ABSTRACT 

Laportea peduncularis is a medicinal plant consumed by the local people in South Africa. Due to 

its oral consumption and therefore its potential for harm to human health, the distribution of metals 

in the leaves of L. peduncularis as a function of soil characteristics was evaluated. Broadly, the 

concentration of metals in the soil were in decreasing order of Fe> Ca> Mg> Mn> Zn> Cr> Cu> 

Ni> As> Co> Cd> Pb. Low molecular weight organic acid, calcium chloride and 

ethylenediaminetetraacetic acid extraction methods were employed to assess for exchangeable 

forms of metals in the soil. Geo-accumulation indices and enrichment factors showed no 

contamination or enrichment for most of the heavy metals studied except for Cd which showed 

moderate contamination and significant enrichment at Mona, KwaZulu-Natal. Principal 

component and cluster analyses revealed that As, Cd, Fe and Ni in the soil came from the same 

source whilst Cu, Pb and Zn in the soil were from a common origin. Correlation analysis showed 

significantly positive correlation between heavy metals As, Cd, Fe, and Ni in the soil as well as 

Cu, Pb and Zn confirming the metals common origin. Concentration of metals in plants and soil 

were influenced by site but the availability and uptake of the metals solely depended on the plant’s 

inherent controls.  

Keywords Heavy metals, enrichment factor, geo-accumulation index, soil quality 



INTRODUCTION 

Due to the rapid development in industrialization, soil contamination is becoming of serious 

concern with typical and significant causes being anthropogenic activities (agricultural, chemical 

and industrial), vehicular emissions and improper waste disposal (Krishna & Govil, 2007). Heavy 

metals in soil are among the most noteworthy contaminants as they are non-biodegradable, have 

long-term toxicity effects and originate from both the weathering of parent rock material (natural 

source) and anthropogenic activities (man-made source) (McLaughlin et al., 2000). Soil is a 

geochemical reservoir for heavy metals and, if polluted, has a significant impact on environmental 

health due to its ability to introduce heavy metals into the food chain through plants. The 

presence of heavy metals at high and toxic levels in food can cause detrimental health effects  

such as cardiovascular disease, cancer and functioning of internal organs, if consumed 

(Tahar & Keltoum, 2011). Therefore, metal contamination in the current industrialized climate 

is of grave concern and soil assessment initiatives with focus on impact on uptake by plants 

should be undertaken (Iqbal & Shah, 2014). 

Metals in soil can be in solution, associated with carbonates, bound to Fe and Mn-oxyhydroxide 

complexes, bound to organic matter or incorporated into the soil lattice. Several approaches to 

assessing and estimating exchangeability of heavy metals in soil with regards to plant uptake have 

been undertaken (Takáč et al., 2009). Single or sequential extraction approaches have been used 

(Kučak & Blanuš, 1998; McGrath, 1996; Novozamsky et al., 1993; Fuentes et al., 2004; Zhu et 

al., 2012). Some of these extraction methods may be less specific to certain metals resulting in the 

uneven extraction of metals in the soil (Ure, 1996). Low-molecular weight organic acids are 

secreted by plant roots in order to lower soil pH to release metals from their bound state in the soil 

rhizosphere for uptake by the plant (Violante et al., 2010). Therefore, the use of organic acids may 
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reasonably depict the amount of metal available for plant uptake. Other chemical methods that 

may be used to predict metal availability include the use of CaCl2 that extracts weakly adsorbed 

metal ions from soil (Houba et al., 2000) or the use of the synthetic chelating agent, 

ethylenediaminetetraacetic acid (EDTA) which forms strong complexes with many heavy metals 

in soil. 

Soil quality also plays a role in the availability of heavy metals. Acidic soils are known to possess 

trace or heavy metals in soluble or ionic form. This can result in the absorption of the metal by the 

plant or reduction in the availability of another metal. Soil organic matter (SOM) also influences 

the availability of metals, high SOM results in metals being bound in organic complexes, therefore 

rendering them unavailable. Cation exchange capacity (CEC) is the measure of the ability of soil 

to hold cations; high CEC results in metals being held on the clay and organic matter particles in 

the soil through electrostatic forces, therefore rendering them unavailable (Oliver et al., 2013; 

Schoenholtz et al., 2000). 

Due to economic reasons, people in rural communities have resorted to consuming indigenous 

vegetables, which are either cultivated or picked from the wild (Schippers, 2000). These 

indigenous vegetables, unlike commercial ones, are readily available and inexpensive (van 

Rensburg et al., 2007). Laportea peduncularis subsp peduncularis, is an indigenous plant 

from the Urticaceae family. Its leaves and stems have stinging hairs therefore it is known as 

stinging nettle by local people in South Africa. In KwaZulu-Natal (South Africa), the plant 

grows abundantly in the wild and the leaves and shoots are picked for cooking. The Laportea 

species are also used traditionally for their anti-inflammatory properties (Quattrocchi, 2012). 
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The elemental distribution in indigenous medicinal plant species in South Africa as a function of 

soil quality has previously been reported (Jonnalagadda et al., 2008; Moodley et al., 2012; 

Moodley et al., 2013). In this study, the distribution of metals in L. peduncularis leaves and 

associated soil from ten different sites in KwaZulu-Natal was investigated. From the ten sampling 

sites the thirteen elements selectively investigated were As, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Ni, 

Pb, Se and Zn. The impact of soil quality parameters on elemental uptake was determined. Three 

single extraction methods (low-molecular weight organic acids, CaCl2 and EDTA) were employed 

to determine the amount of metals available for plant uptake. For each of the selected heavy metals, 

the Enrichment factor (EF) and geo-accumulation index (Igeo) was calculated to assess metal 

contamination in the soil. Multivariate statistical analyses performed on soil data facilitated the 

determination of the source of heavy metals. 

MATERIALS AND METHODS 

Sample collection and preparation 

Plant leaves and soil samples were collected from ten different sites in KwaZulu-Natal. The 

sampling sites were: L1-Umbilo Park, L2-Umhlanga, L3-Eshowe, L4-KwaDukuza, L5-Mona, L6-

Maphumulo, L7-Umzumbe, L8-Amahlongwa, L9-Gingindlovu, and L10-Ndwedwe (Fig. 13). 

Plant and soil samples were collected throughout July; the average temperature on days sampled 

was 25 ºC, with no rain or wind.  Soil was generally sandy or loamy sand in texture. Soil samples 

were systematically collected from six points around the plants at a depth of 15 cm with the use of 

a plastic spade. Representative soil samples were composited in a clean plastic bucket to achieve 

homogeneity and reduced to 500 g by quartering. Soil samples from each site were passed through 

a 2 mm mesh sieve to remove gravel then air-dried to constant mass.  Thereafter, the soil was 
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crushed to reduce particle size with a mortar and pestle. Plant samples were washed with double 

distilled water then oven dried at 50 ºC to constant mass.  Dried plant samples were crushed using 

a food processor (Braun range).  All samples were stored in labelled polyethylene bags in a 

refrigerator at 4 ºC until analysed.  

Figure 13: Sampling sites on the eastern parts of KwaZulu-Natal, South Africa. 

Reagents and chemicals 

All chemicals used were supplied by Merck (Germany) and Sigma Aldrich (USA) and were of 

analytical-reagent grade. Double distilled water was used throughout the experiments. Working 

standards were made up with double distilled water and 10 mL of 70% HNO3 to match the sample 

matrix. To minimize the risk of contamination all glassware and other equipment were cleaned 

with 6.0 M HNO3 and rinsed off with double distilled water. 
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Extraction of exchangeable metals 

Organic acid extractant 

The method of Feng et al. (2005), with some modifications, was used for the organic acid 

extractant. Ground soil samples (2.0 g) were extracted with 20 mL of 10 mM organic acid solution 

(acetic, citric, formic, malic and oxalic acid) in a 1:1:1:1:1 molar concentration ratio, then two 

drops of toluene were added to inhibit microbial activity. This mixture was shaken for 16 hr and 

centrifuged at 3000 x g for 10 min. An aliquot of 5 mL of supernatant was removed by a transfer 

pipette to a 10 mL volumetric flask and diluted to volume with 2% HNO3. 

Calcium chloride extractant 

The method of Novosamsky et al. (1993) was used for the CaCl2 extractant. Approximately 1.0 g 

of soil sample was extracted with 10 mL of 0.01 M CaCl2 and the mixture shaken for 3 hr. The 

resulting solution was centrifuged at 6000 rpm for 10 min then filtered on Millipore 0.45 µm filter 

membranes to permit analysis of extracted metals.  

EDTA extractant 

The method of Quevauriller et al. (1996) was used for the EDTA extractant. Approximately 4.0 g 

of soil sample was extracted with 20 mL of 0.05 M disodium-EDTA salt adjusted to pH 7 with an 

ammonia solution and the mixture shaken for 1 hr. The resulting solution was centrifuged at 6000 

rpm for 10 min then filtered on Millipore 0.45 µm filter membranes to permit analysis of extracted 

metals.  
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Soil organic matter (SOM), cation exchange capacity (CEC) and soil pH 

Soil pH was obtained by measuring a 1:2 soil/ 0.01 M CaCl2 suspension using a pH meter 

calibrated using standard buffer solutions of pH 4 and pH 7. SOM was estimated using the wet 

chemistry extraction technique of Walkley and Black (1934). Ammonium acetate at pH 7 was used 

to determine the CEC of the soil (Chapman, 1965).  All determinations were done in quadruplicate. 

Elemental analysis 

The microwave-assisted closed vessel digestion technique was used for digestion of leaves and 

soil samples. Digestions were performed using the CEM Microwave Accelerated Reaction System 

(MARS) 6 (CEM Corporation, Matthews, North Carolina, USA) with patented EasyPrepTM Plus 

technology. Samples (0.2 g for leaf, certified reference material (CRM) and 0.25 g for soil) were 

accurately weighed into 50 mL liners and 10 mL of 70% HNO3 was added into each liner. The 

mixture was allowed to pre-digest for 30 min before microwave digestion. For leaf samples, the 

power was set to 100% at 1600 W and the temperature was ramped to 180 °C (ramp time 15 min) 

where it was held for 15 min. For soil samples, the power was set to 100% at 1600 W and 

temperature was ramped to 200 °C (ramp time 15 min) where it was held for 15 min. All digests 

were filtered and transferred to 25 mL volumetric flasks, diluted to the mark with double distilled 

water and stored in polyethylene bottles for elemental analysis. All extracted and digested samples 

were analysed for As, Ca, Co, Cr, Cu, Fe, Mg, Mn, Ni, Pb, Se, and Zn by Inductively Coupled 

Plasma-Optical Emission Spectrometry (ICP-OES) with axial plasma observation with the 

exception of Ca and Mg which was analysed using radial plasma observation. 

The accuracy of the elemental determinations was measured by use of CRMs that were chosen 

on the basis of matrix similarities. For soil analyses, Metals in soil (D081-540), from Era 
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Quality Control was used and for plant analyses, White Clover (BCR 402), from the Community

Bureau of Reference of the Commission of the European Communities was used. All 

determinations were done in quintuplicate. 

Bioaccumulation factor (BAF) 

Bioaccumulation describes processes of accumulation of an element in a plant organism from the 

surrounding environment (Ivanciuc et al., 2006). It is defined by the bioaccumulation factor (BAF) 

which is the ratio of the concentration of an element accumulated inside the plant organism and 

the concentration of the element in the soil 

BAF=
Cplant

Csoil
(7) 

Enrichment factor (EF) and geo-accumulation index (Igeo) 

Enrichment factor (EF) describes the magnitude of contamination in the soil. It compares the 

concentration of an element in the soil to concentrations in the earth’s crust. The reference element 

used in this study is Zn since total baseline concentrations for this element is known in 

South African (Herselman et al., 2005; Mendiola et al., 2008).

EF=
[

X

Zn
]
soil

[
X

Zn
]
crust

(8) 

Where [
X

Zn
]

soil
is the mean ratio between the concentration of the target element and Zn in the soil

whilst [
X

Zn
]

crust
is the mean ratio between the concentrate of the target element and Zn in the earth’s

crust. EF values were interpreted as follows: EF<1 background concentration, 1>EF<2 depletion 
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to minimal enrichment, 2>EF<5 moderate enrichment, 5>EF<20 significant enrichment, 

20>EF<40 very high enrichment, and EF>40 extremely high enrichment (Sutherland, 2000).

The geo-accumulation index (Igeo) describes the extent to which metal contamination has occurred 

by comparing measured metal concentrations to that of the earth’s crust (Müller, 1969). It is 

depicted by the following equation:  

Igeo=log
2

[
Cn

1.5 Bn
] (9) 

Where Cn is the measured concentration of the element in the soil sample, Bn is the geochemical 

background value of the earth’s crust (Herselman et al., 2005). The factor 1.5 is introduced to 

minimize possible variations in the background values due to lithological differences. Igeo values 

were interpreted as follows: Igeo≤0 uncontaminated, 0>Igeo<1 uncontaminated to moderately 

contaminated, 1>Igeo<2 moderately contaminated, 2>Igeo<3 moderately to heavily contaminated, 

3>Igeo<4 heavily contaminated, 4>Igeo<5 heavily to extremely contaminated and Igeo>5 extremely 

contaminated soil (Müller, 1969). 

Statistical analysis 

Multivariate statistical analyses (principal component analysis (PCA) and cluster analysis (CA)) 

were performed to determine the relationship between input variables. Analysis of covariance 

(ANCOVA) was performed with concentration in leaves as the dependent variable, element and 

site as factors and total and exchangeable concentrations in soil as covariates. Significance of 

plant-soil relationships was established by computing Pearson’s correlation coefficients (r) for the 

relationship between the concentration of the elements in leaves and the total and exchangeable 

concentrations in the soil. All statistical analyses were performed using the Statistical Package for 

the Social Science (PASW Statistics, Version 22, IBM Corporation, Cornell, New York). 
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RESULTS AND DISCUSSION 

Distribution of elements in the plant and soil 

The method for the elemental analysis was validated by the use of CRMs (Table 23). The recorded 

values for Fe, Mn and Zn in the soil CRM compared well with certified values, whilst those for 

Cd, Co, Cr and Se were within the acceptable limits. For the plant CRM, measured values 

compared well with certified values. 

The concentrations of elements in the leaves and soil (total and exchangeable) and BAFs are 

presented in Table 24.  If present in leaves, Cd and Se concentrations were below the instrument 

detection limits (<0.0034 µg g-1 for Cd and 0.1150 µg g-1 for Se). Soil was rich in Fe, Ca and Mg 

with concentrations ranging between 3 564 - 29 686 µg g-1; 1 472 - 5 117 µg g-1, 600 - 5 589 µg g-

1, respectively. Total soil As at sites L5 and L6 were high whilst no As was detected at site L2. 

The concentrations of elements in soil were generally in decreasing order of Fe> Ca> Mg> Mn> 

Zn> Cr> Cu> Ni> As> Co> Cd> Pb. 
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Table 23: Comparison of measured values (mg kg-1 dry mass, mean ± standard deviation, 95% 

confidence interval, n=5) to certified values and acceptable limits for certified reference 

materials, Metals in soil, D081-540 and White clover, BCR 402. 

Element Wavelength (nm) Measured value Certified value Acceptable limits 

Soil 

Cd 226.5 156.0 ± 4.6 143 ± 5.6 116-159

Co 228.6 238.5 ± 7.8 199 ± 4.1 166-233

Cr 205.6 102.6 ± 2.3 86.8 ± 6.1 69.3-104 

Fe 259.9 13 119 ± 608 12 800 ± 18.0 5 380-20100 

Mn 257.6 448.5 ± 18.7 425 ± 9.7 347-502

Se 196.0 161.5 ± 5.9 127 ± 4.5 98.4-156 

Zn 213.9 136.9 ± 7.9 141 ± 11.5 113-184

White clover 

Se 196.0 7.02 ± 1.26 6.70 ± 0.25 - 

Fe 259.9 250 ± 16 244 - 

Ni 231.6 8.00 ± 0.35 8.25 - 

Zn 213.9 30.9 ± 6.7 25.2 - 

An analysis of extraction results was performed to determine the best extraction method for the 

various metals studied. Organic acids are capable of forming complexes with metal ions and thus 

modify the mobility of metals in the soil rhizosphere (Zhang et al., 1999). Exchangeable forms of 

Cd and Cr in soil were best represented by the organic acid extraction method with exchangeable 

percentages ranging from 0.3 - 1.9% and 0.1 - 0.7%, respectively. The CaCl2 extraction method 

best represented exchangeable As which showed an extraction ability of up to 3.6%. EDTA was 

more representative of the extractable percentage for Co, Cu, Mn, Ni and Zn. 

BAFs showed the plants tendency to accumulate Ca and Mg to meet physiological requirement 

levels, similar to other studies (Mahlangeni et al., 2012; Moodley et al., 2012; Reddy et al., 2014). 

Although Cd was detected in the soil and was found to be in exchangeable form, no Cd was 
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detected in the plant. Previous studies have shown that Cd ions are normally retained in plant roots, 

resulting in small amounts being transported to the shoots (Cataldo et al., 1983). Extremely low or 

undetectable amounts of Co were found in the leaves. High levels of Cu (BAF>1) were observed 

in the leaves for 6 of the 10 sites. Although total and exchangeable soil Fe was high, Fe levels in 

the leaves were low (BAFs<1). High levels of Mn were observed at sites L4 and L5 (186 and 201 

µg g-1, BAFs>1). Some of the factors that contribute to low levels of Fe in the plant include high 

levels of Cu and Mn in the plant and soil (Fageria et al.,1990; Marschner, 1995). These metals 

compete with the Fe for the same absorption sites in the soil and for the same membrane carrier in 

the plant during uptake. Nickel was present in the leaves at moderate levels (BAF<1), with 

accumulation at site L7 only. Lead was present in the leaves at 6 of the 10 sites. Lead forms stable 

complexes with the hydroxyl group of clay minerals, amorphous silicate minerals, and insoluble 

humic substances in the soil reducing its availability. Plants release protons and organic acids 

through the roots to lower the pH of the soil to release essential nutrients from their bound state in 

the soil which also frees Pb for uptake (Huang & Chen, 2003). Zinc accumulation was only 

observed at one site (site L5). 
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Table 24: Concentration of elements (µg g-1dry mass, mean ± standard deviation, 95% confidence interval, n=5) in soil (Total-T and 

Exchangeable-E) and the leaves of L. peduncularis with bioaccumulation factors (BAFs). 

Element Sitesa Soil-T 
     Soil-E 

EAb EBc ECd L. peduncularis BAF 

As 

L1 2.77 ± 0.56 a* 0.021 ± 0.004 ab 0.065 ± 0.008 ab ND ND - 

L2 ND ND ND ND 2.21 ± 0.27 a - 

L3 7.86 ± 1.93 a 0.010 ± 0.003 c 0.065 ± 0.003 ab ND 2.34 ± 0.18 a 0.31 

L4 1.91 ± 0.85 a 0.053 ± 0.012 bc 0.068 ± 0.002 bc ND 3.47 ± 0.56 b 1.82 

L5 30.9 ± 2.1 b 0.009 ± 0.003 abc 0.060 ± 0.001 ad ND 2.09 ± 0.33 a 0.07 

L6 32.4 ± 15.5 b ND 0.064 ± 0.002 ad ND 1.16 ± 0.49 c 0.04 

L7 3.23 ± 0.52 a ND 0.059 ± 0.008 d 0.048 ± 0.004 a 4.02 ± 0.18 b 1.24 

L8 4.39 ± 1.74 a ND 0.064 ± 0.004 abd ND 3.20 ± 0.17 bd 0.73 

L9 6.90 ± 1.40 a ND 0.063 ± 0.002 acd ND 3.75 ± 0.54 b 0.54 

L10 5.86 ± 1.75 a ND 0.062 ± 0.002 ad ND 2.39 ± 0.20 ad 0.41 

Ca 

L1 2 527 ± 135 abc 53.8 ± 1.3 a 234 ± 2 a 384 ± 25 ab 36 867 ± 528 a 14.6 

L2 2 867 ± 272 b 40.6 ± 1.7 b 221 ± 3 b 416 ± 41 bc 28 787 ± 467 b 10 

L3 5 117 ± 345 d 82.1 ± 1.7 c 194 ± 3 c 651 ± 15 d 15 633 ± 1345 c 3.06 

L4 1 941 ± 367 ce 41.7 ± 1.2 b 215 ± 4 b 196 ± 24 e 36 438 ± 3296 a 18.8 

L5 1 472 ± 92 c 20.4 ± 0.8 d 220 ± 5 b 179 ± 12 e 12 589 ± 957 c 8.55 

L6 1 769 ± 458 ce 22.2 ± 0.3 d 199 ± 3 c 252 ± 10 f 13 632 ± 279 c 7.71 

L7 2 776 ± 174 abf 52.0 ± 0.7 a 194 ± 5 c 453 ± 15 c 22 753 ± 1557 d 8.2 

L8 5 030 ± 204 d 65.4 ± 2.0 e 195 ± 4 c 723 ± 13 g 22 790 ± 1393 d 4.53 

L9 4 002 ± 209 g 73.8 ± 1.3 f 177 ± 5 d 703 ± 12 dg 36 392 ± 1835 a 9.09 

L10 2 130 ± 177 aef 52.4 ± 1.1 a 212 ± 5 b 426 ± 4 abc 22 125 ± 991 d 10.4 

Cd 

L1 3.44 ± 0.04 a 0.031 ± 0.002 a 0.002 ± 0.001 a 0.056 ± 0.013 a ND - 

L2 1.29 ± 0.06 b 0.024 ± 0.001 a ND 0.020 ± 0.005 a ND - 

L3 8.44 ± 0.22 c 0.029 ± 0.002 a ND 0.017 ± 0.003 a ND - 

L4 2.97 ± 0.29 a 0.031 ± 0.011 a ND ND ND - 

L5 13.4 ± 0. 3 d 0.009 ± 0 a ND ND ND - 

L6 13.7 ± 1.8 d 0.012 ± 0.001 a ND ND ND - 

L7 3.74 ± 0.23 a 0.015 ± 0.001 a ND ND ND - 

L8 5.22 ± 0.33 e 0.024 ± 0.001 a 0.001 ± 0 b 0.149 ± 0.010 a ND - 

L9 6.87 ± 0.34 f 0.034 ± 0.002 a ND 0.023 ± 0.001 a ND -
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L10 6.19 ± 0.25 ef 0.036 ± 0.001 a ND 0.019 ± 0.002 a ND - 

Co 

L1 7.50 ± 0.30 ab 0.225 ± 0.013 a 0.009 ± 0.001 a 0.687 ± 0.063 a ND - 

L2 3.83 ± 0.48 c 0.095 ± 0.004 b 0.001 ± 0 bc 0.498 ± 0.108 b ND - 

L3 8.87 ± 0.13 bd 0.123 ± 0.001 c ND 0.659 ± 0.025 ab ND - 

L4 5.20 ± 0.45 ce 0.129 ± 0.004 c 0.001 ± 0 bc 0.055 ± 0.025 c ND - 

L5 9.14 ± 0.04 bd 0.032 ± 0 d 0.003 ± 0.001 cd 0.054 ± 0.004 c ND - 

L6 11.8 ± 1.9 fg 0.127 ± 0.004 c 0.007 ± 0.001 a 0.218 ± 0.015 c 1.29 ± 0.07 a 0.11 

L7 10.4 ± 0.9 df 0.280 ± 0.004 e 0.018 ± 0.002 d 1.10 ± 0.09 d ND - 

L8 11.3 ± 1.4 f 0.190 ± 0.009 f 0.002 ± 0.001 d 1.14 ± 0.12 d 0.176 ± 0.039 b 0.02 

L9 13.6 ± 0.8 g 0.268 ± 0.007 e 0.011 ± 0.001 a 1.50 ± 0.06 e 0.177 ± 0.032 b 0.01 

L10 6.73 ± 0.40 ae 0.188 ± 0.008 f 0.004 ± 0.001 c 0.645 ± 0.045 ab ND - 

Cr 

L1 43.0 ± 2.2 a 0.085 ± 0.002 a 0.003 ± 0 a 0.020 ± 0.005 ac 9.25 ± 0.65 a 0.22 

L2 28.3 ± 0.8 bcd 0.191 ± 0.006 b 0.005 ± 0 a 0.176 ± 0.048 b 4.88 ± 0.32 b 0.17 

L3 21.6 ± 1.0 cde 0.033 ± 0.001 cd 0.002 ± 0 a 0.003 ± 0.001 a 1.57 ± 0.20 c 0.07 

L4 25.7 ± 6.0 bcde 0.038 ± 0.001 de 0.002 ± 0 a ND 1.60 ± 0.15 c 0.06 

L5 84.0 ± 1.7 f 0.126 ± 0.003 f 0.005 ± 0.001 a 0.046 ± 0.008 c 1.94 ± 0.08 c 0.02 

L6 23.8 ± 5.4 de 0.030 ± 0.001 c 0.002 ± 0 a ND 4.13 ± 0.20 bd 0.17 

L7 18.7 ± 1.3 e 0.032 ± 0.001 cd 0.004 ± 0.001 a ND 1.27 ± 0.19 c 0.07 

L8 33.0 ± 3.3 b 0.040 ± 0.002 e 0.013 ± 0.005 b 0.006 ± 0.002 a 4.18 ± 0.35 bd 0.13 

L9 52.8 ± 3.5 g 0.071 ± 0.004 g 0.010 ± 0.001 b 0.030 ± 0.005 ac 4.21 ± 0.33 bd 0.08 

L10 23.8 ± 1.2 e 0.047 ± 0.003 h 0.009 ± 0.002 b 0.003 ± 0 a 3.56 ± 0.48 d 0.15 

Cu 

L1 49.5 ± 4.5 a 0.471 ± 0.024 a 0.036 ± 0.005 a 6.36 ± 0.55 a 62.6 ± 3.7 a 1.26 

L2 14.3 ± 3.2 b 0.242 ± 0.008 b 0.024 ± 0.003 bc 3.39 ± 0.47 b 11.5 ± 2.0 b 0.8 

L3 21.1 ± 0.2 cd 0.153 ± 0.020 c 0.031 ± 0.003 ab 3.08 ± 0.28 b 53.7 ± 4.3 ac 2.55 

L4 16.0 ± 1.5 bd 0.187 ± 0.010 d 0.026 ± 0.006 bc ND 15.4 ± 3.4 b 0.96 

L5 26.8 ± 1.7 c 0.102 ± 0.002 e 0.021 ± 0.002 cd 1.14 ± 0.09 de 30.5 ± 5.8 bc 1.14 

L6 23.6 ± 4.6 c 0.113 ± 0.008 e 0.015 ± 0.003 d 0.875 ± 0.112 ce 67.8 ± 7.4 a 2.87 

L7 15.3 ± 0.6 bd 0.122 ± 0.015 ce 0.023 ± 0.002 bc 1.39 ± 0.10 de 28.0 ± 3.3 bc 1.83 

L8 40.6 ± 2.0 e 0.253 ± 0.007 b 0.044 ± 0.002 a 9.60 ± 0.75 f 19.7 ± 1.9 b 0.49 

L9 38.5 ± 1.4 e 0.172 ± 0.009 cd 0.040 ± 0.002 a 6.18 ± 0.22 a 25.2 ± 4.1 bc 0.65 

L10 17.2 ± 0.8 bd 0.153 ± 0.016 c 0.026 ± 0.003 bc 1.85 ± 0.03 d 35.3 ± 6.0 bc 2.05 

Fe 

L1 9 893 ± 109 a 63.9 ± 0.8 a ND 2 655 ± 215 a 406 ± 23 abc 0.04 

L2 3 564 ± 166 b 53.8 ± 2.6 b ND 2 139 ± 156 a 123 ± 17 abc 0.03 

L3 20 885 ± 385 c 67.4 ± 0.8 a ND 7 193 ± 825 c 445 ± 48 abc 0.02 

L4 8 299 ± 539 a 74.6 ± 2.0 c 0.031 ± 0.012 bc 565 ± 179 d 334 ± 59 ab 0.04 
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L5 28 715 ± 537 d 12.6 ± 0.2 d 0.348 ± 0.026 d 2 383 ± 71 a 789 ± 70 a 0.03 

L6 29 686 ± 2523 d 20.0 ± 0.2 e ND 805 ± 16 d 3 707 ± 76 d 0.12 

L7 9 923 ± 477 a 31.3 ± 1.6 f 0.008 ± 0.002 a 2 172 ± 143 a 380 ± 27 abc 0.04 

L8 13 045 ± 921 e 46.0 ± 2.7 g 0.051 ±0.014 c 4 404 ± 366 e 1 215 ± 59 e 0.09 

L9 17 309 ± 731 f 85.6 ± 4.5 h 0.052 ± 0.005 c 8 438 ± 108 f 1 205 ± 171 ce 0.07 

L10 15 863 ± 583 f 83.2 ± 2.2 h 0.027 ± 0.002 b 4 311 ± 86 e 2 938 ± 687 f 0.19 

Mg 

L1 1 237 ± 114 ab 13.1 ± 0.5 a 10.0 ± 0.4 a 30.5 ± 1.8 ab 5 069 ± 119 a 4.1 

L2 600 ± 151 c 13.1 ± 0.4 a 10.9 ± 0.3 ab 33.6 ± 4.5 b 5 415 ± 119 ab 9.03 

L3 1 562 ± 38 d 39.6 ± 0.5 b 33.4 ± 0.4 c 18.1 ± 4.4 c 5 173 ± 259 a 3.31 

L4 957 ± 43 b 14.5 ± 0.2 c 12.5 ± 0.3 b 6.93 ± 1.86 d 6 837 ± 285 c 7.14 

L5 1 262 ± 34 a 9.09 ± 0.23 d 10.8 ± 0.5 b 27.2 ± 2.1 abe 1 957 ± 114 d 1.55 

L6 5 589 ± 189 e 6.46 ± 0.04 e 7.7 ± 0.4 d 24.2 ± 1.0 acef 2 266 ± 65 d 0.41 

L7 2 126 ± 175 f 23.7 ± 0.3 f 19.9 ± 1.5 e 32.0 ± 6.2 ab 6 137 ± 545 bc 2.88 

L8 2 291 ± 130 f 45.2 ± 0.6 g 32.8 ± 1.3 c 21.2 ± 2.6 ce 5 728 ± 421 ab 2.5 

L9 2 142 ± 109 f 56.7 ± 1.0 h 44.0 ± 0.9 f 16.3 ± 0.5 c 10 787 ± 556 e 5.04 

L10 1 130 ± 83 ab 22.4 ± 0.5 i 21.7 ± 1.2 e 20.1 ± 1.7 cf 6 898 ± 434 bc 6.1 

Mn 

L1 186 ± 8 a 7.44 ± 0.28 a 1.00 ± 0.02 a 35.1 ± 2.9 a 49.4 ± 2.2 a 0.27 

L2 156 ± 17 ab 8.65 ± 0.25 a 1.67 ± 0.06 b 80.2 ± 14.2 b 116 ± 1 b 0.74 

L3 386 ± 22 c 11.2 ± 0.2 b 1.62 ± 0.04 b 91.0 ± 4.3 b 74.6 ± 5.8 a 0.19 

L4 123 ± 12 ab 4.55 ± 0.10 c 0.390 ± 0.020 c 3.21 ± 1.07 c 186 ± 18 c 1.51 

L5 81.0 ± 3.2 b 1.38 ± 0.03 d 0.370 ± 0.020 c 5.04 ± 0.41 ac 201 ± 6 cd 2.48 

L6 211 ± 19 a 2.88 ± 0.06 cd 0.520 ± 0.040 c 10.7 ± 0.4 ac 182 ± 2 c 0.86 

L7 407 ± 27 c 14.5 ± 0.1 e 3.19 ± 0.32 d 90.0 ± 6.7 b 177 ± 12 c 0.43 

L8 1 105 ± 114 d 20.6 ± 2.4 f 1.27 ± 0.07 a 194 ± 36 d 134 ± 12 b 0.12 

L9 335 ± 21 c 10.7 ± 0.5 b 1.89 ± 0.08 b 93.2 ± 2.3 b 130 ± 12 b 0.39 

L10 404 ± 18 c 18.5 ± 0.4 g 3.21 ± 0.20 d 104 ± 4 b 228 ± 31 d 0.56 

Ni 

L1 16.0 ± 2.6 a 0.157 ± 0.007 a 0.024 ± 0.002 a 0.674 ± 0.056 a 2.46 ± 0.14 abe 0.15 

L2 6.44 ± 0.41 b 0.081 ± 0.001 b  0.013 ± 0.001 bcde 0.470 ± 0.104 b 2.28 ± 0.23 abe 0.35 

L3 9.65 ± 1.37 bc 0.025 ± 0.002 c 0.011 ± 0 bcd 0.188 ± 0.025 c 3.03 ± 0.69 abe 0.31 

L4 9.66 ± 2.29 bc 0.071 ± 0.001 bd 0.015 ± 0.002 ce 0.050 ± 0.008 d 2.07 ± 0.30 b 0.21 

L5 37.7 ± 1.1 d 0.018 ± 0.002 c  0.010 ± 0.001 d 0.029 ± 0.005 d 5.02 ± 0.61 c 0.13 

L6 19.9 ± 2.5 e 0.030 ± 0.008 c 0.011 ± 0.001 bd 0.035 ± 0.005 d 5.68 ± 0.30 c 0.29 

L7 6.82 ± 0.85 b 0.060 ± 0.013 d  0.017 ± 0.004 ef 0.204 ± 0.010 c 11.0 ± 1.1 d 1.61 

L8 14.7 ± 1.0 af 0.109 ± 0.005 e 0.022 ± 0.003 ag 0.811 ± 0.094 e 3.57 ± 0.48 e  0.24 

L9 17.7 ± 1.6 ae 0.084 ± 0.005 b 0.023 ± 0.001 ag 0.867 ± 0.047 e 3.11 ± 0.42 abe 0.18 
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L10 11.7 ± 0.7 cf 0.073 ± 0.003 bd 0.019 ± 0.003 fg 0.397 ± 0.008 b 7.66 ± 0.44 f 0.65 

Pb 

L1 32.8 ± 4.1 a 0.231 ± 0.005 a 0.012 ± 0.003 ab 2.23 ± 0.09 a ND - 

L2 11.2 ± 0.9 b 0.058 ± 0.006 b 0.012 ± 0.001 ab 0.621 ± 0.109 b ND - 

L3 ND ND ND ND ND - 

L4 5.14 ± 0.83 c 0.096 ± 0.006 c 0.011 ± 0.001 a 0.080 ± 0.023 c 0.406 ± 0.019 a 0.08 

L5 ND ND ND ND 1.31 ± 0.07 b - 

L6 ND ND ND ND 0.574 ± 0.07 a - 

L7 ND ND ND ND 4.11 ± 1.25 a - 

L8 21.8 ± 5.6 d 0.045 ± 0.003 d 0.012 ± 0.002 ab 1.99 ± 0.25 d 2.22 ± 0.23 b 0.1 

L9 ND ND ND ND 2.28 ± 0.37 b - 

L10 ND ND ND ND ND - 

Zn 

L1 247 ± 20 a 10.9 ± 0.5 a 2.43 ± 0.17 a 61.1 ± 3.7 a 87.0 ± 6.0 a 0.35 

L2 61.2 ± 5.2 b 1.06 ± 0.01 b 0.129 ± 0.03 b 6.16 ± 1.03 b 26.6 ± 1.1 bc 0.43 

L3 55.0 ± 5.9 b 0.410 ± 0.030 b 0.109 ± 0.033 b 3.84 ± 0.17 b 27.1 ± 3.2 bc 0.49 

L4 43.5 ± 7.5 b 0.920 ± 0.010 b 0.077 ± 0.009 b 3.80 ± 0.02 b 27.1 ± 2.4 c 0.62 

L5 50.4 ± 3.4 b 0.320 ± 0.010 b 0.100 ± 0.022 b 1.78 ± 0.15 b 60.2 ± 2.8 d 1.19 

L6 97.9 ± 7.2 b 0.460 ± 0.040 b 0.089 ± 0.018 b 1.97 ± 0.01 b 43.1 ± 1.4 e 0.44 

L7 35.8 ± 2.9 b 0.420 ± 0.030 b 0.077 ± 0.009 b 2.55 ± 0.31 b 21.9 ± 1.9 f 0.61 

L8 439 ± 170 c 11.4 ± 1.2 a 0.290 ± 0.011 c 111 ± 13 c 63.4 ± 4.1 be 0.14 

L9 39.9 ± 1.0 b 0.480 ± 0.030 b 0.052 ± 0.004 b 4.28 ± 0.79 b 27.9 ± 3.9 f 0.7 

L10 54.8 ± 4.4 b 0.540 ± 0.020 b 0.058 ± 0.012 b 2.78 ± 0.09 b 34.0 ± 0.6 cf 0.62 

aSites - L1-Umbilo Park, L2-Umhlanga, L3-Eshowe, L4-KwaDukuza, L5-Mona, L6-Maphumulo, L7-Umzumbe, L8-Amahlongwa, L9-

Gingindlovu, L10-Ndwedwe. 
bEA - soil exchangeable (organic acids), cEB - soil exchangeable (CaCl2), 

dEC - soil exchangeable (EDTA), BAF- [leaves]/[Soil-T]. 

ND - not determinable. 

*Different letters within columns indicate mean separation by Tukey’s Post-hoc test at the 5% level.
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Values for soil parameters (pH, SOM and CEC) for each site are presented in Table 25. The pH of 

the soil at all sites proved to be acidic by nature (pH<6) and ranged from 4.47 (site L2) to 5.56 

(site L5). SOM ranged from 0.8 (site L4) to 30.5% (site L2). The CEC of soil ranged from 7.9 to 

23.1 meq 100 g-1.   

Table 25: Soil pH, soil organic matter (SOM) and cation exchange capacity (CEC) (mean ± 

standard deviation, n=4) of soil samples from ten different sites. 

Sitesa Soil pH (CaCl2) SOM (%) CEC (meq.100g-1) 

L1 5.36 ± 0.01 a* 29.4 ± 1.7 a 9.7 ± 0.0 a 

L2 5.56 ± 0.03 b 30.5 ± 1.1 a 11.8 ± 0.1 b 

L3 5.44 ± 0.01 c 7.3 ± 0.2 bc 23.1 ± 0.2 c 

L4 5.44 ± 0.01 c 0.8 ± 0.0 d 9.8 ± 0.1 a 

L5 4.47 ± 0.01 d 8.1 ± 0.3 bc 17.1 ± 0.1 d 

L6 4.58 ± 0.02 e 1.3 ± 0.0 d 13.6 ± 0.5 e 

L7 4.86 ± 0.01 f 5.9 ± 0.1 b 14.4 ± 0.2 f 

L8 5.10 ± 0.02 g 8.4 ± 0.0 bc 13.5 ± 0.3 e 

L9 5.21 ± 0.02 h 10.7 ± 0.1 e 18.0 ± 0.3 g 

L10 5.19 ± 0.02 h 6.2 ± 0.1 b 7.9 ± 0.1 h 

Enrichment factors (EFs) and geo-accumulation indices (Igeos) 

The EF and Igeo values of heavy metals in soil samples from different sites are shown in Table 

26. Both the EF and Igeo values are used to quantify the degree of metal enrichment or 

contamination in the soil (Zhou et al., 2014). The normal or natural concentrations of metals in the 

soil are described as background concentrations. Background concentrations for heavy metals in 

South African soils were as follows (in μg g−1): 2.7 for Cd, 69 for Co, 353 for Cr, 117 for Cu, 159 

for Ni, 65.8 for Pb and 115 for Zn (Herselman et al., 2005). EF is the relative abundance of

heavy metals compared to background concentrations. EFs are designated to distinguish natural 

and anthropogenic involvements. EF values above 1.5 indicate anthropogenic contributions; the 

higher 
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the EF the more severe the contribution (Zhang & Liu, 2002). EFs for selected heavy metals (Co, 

Cr, Cu, Ni, Pb and Zn) in soil at different sites were below 1 indicating no enrichment. Cadmium 

enrichment was found to vary with site. Sites L1, L2 and L8 showed no Cd enrichment; these sites 

were along river banks. Site L4 showed minimal Cd enrichment whereas sites L3, L6, L7, L9 and 

L10 showed moderate Cd enrichment. Site L5 indicated significant enrichment with an EF value 

of 11.3.  Sites L3 to L7 were located next to main roads whilst sites L9 and L10 were located in 

the forest. Studies have shown that petroleum, diesel soot, tire rubber and asphalt contribute to 

heavy metal pollution of Cd, thus causing high enrichment of the heavy metal in the soil next to 

main roads (Al-Dousari et al., 2012).  Cadmium enrichment of forest soil can be attributed to 

atmospheric deposition and the air-filtering effect of the vegetation (Hernandez et al., 2003; Nickel 

et al., 2015; Zaccherio & Finzi, 2007).  

Table 26: Enrichment factors (EF) and geo-accumulation indices (Igeo) of metals in soil from ten 

different sites. 

ND-Not determinable. 

Site Cd Co Cr Cu Ni Pb Zn 

EF Igeo EF Igeo EF Igeo EF Igeo EF Igeo EF Igeo Igeo

L1 0.6 -0.2 0.1 -3.8 0.1 -3.5 0.2 -1.8 0.1 -3.9 0.2 -1.6 0.5 

L2 0.9 -1.7 0.1 -4.7 0.2 -4.2 0.2 -3.6 0.1 -5.2 0.3 -3.1 -1.5

L3 6.5 1.1 0.3 -3.5 0.1 -4.6 0.4 -3 0.1 -4.6 ND ND -1.6

L4 2.9 -0.4 0.2 -4.3 0.2 -4.3 0.4 -3.4 0.2 -4.6 0.2 -4.2 -2

L5 11.3 1.7 0.3 -3.5 0.5 -2.6 0.5 -2.7 0.5 -2.6 ND ND -1.8

L6 6.0 1.8 0.2 -3.1 0.1 -4.5 0.2 -2.9 0.2 -3.6 ND ND -0.8

L7 4.5 -0.1 0.5 -3.3 0.2 -4.8 0.4 -3.5 0.1 -5.1 ND ND -2.3

L8 0.5 0.4 0 -3.2 0 -4 0.1 -2.1 0 -4 0.1 -2.2 1.3 

L9 7.3 0.8 0.6 -2.9 0.4 -3.3 0.9 -2.2 0.3 -3.7 ND ND -2.1

L10 4.8 0.6 0.2 -3.9 0.1 -4.5 0.3 -3.3 0.2 -4.3 ND ND -1.6
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The Igeo value provides the degree or levels of contamination of metals in the soil as described by 

Müller (1969).  Igeo values for Co, Cr, Cu, Ni and Pb in soil were less than 0 indicating no 

contamination by the metals. Sites L1, L2, L4, L7, L8, L9 and L10 showed no Cd contamination, 

whilst sites L3, L5 and L6 showed moderate Cd contamination. This further suggests that Cd is 

the main pollutant in soils from sites next to main roads. Similarly, most sites showed no Zn 

contamination. Site L8 indicated moderate Zn contamination. 

Statistical analysis 

Site, element and their interaction affected elemental concentrations in L. peduncularis leaves. 

Therefore, elements in the leaves were analysed separately (Table 27). For the elements As, Ca, 

Co, Cr, Fe, Mg, Ni and Pb, total or exchangeable soil concentrations had no effect on the elemental 

concentrations in the leaves. On the other hand, total and exchangeable soil concentrations of Zn, 

and total soil Cu and Mn had a significant effect on the elemental concentrations in the leaves.  

This indicates that soil concentrations of these metals are good predictors of metal concentrations 

in the plant. There was also a significant difference (P≤0.001) in the elemental concentrations at 

the different sites. This could be due to soil quality parameters pH, SOM, CEC, environmental 

conditions such as temperature, moisture and wind at the different sites.  
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Table 27: Analysis of covariance of all sites involving the presence of elements in L. peduncularis 

leaves. 

Element 

Source As Ca Co Cr Cu Fe Mg Mn Ni Pb Zn 

Soil (T)a ns ns ns ns * ns ns * ns ns * 

Soil (EA)b ns ns ns ns * ns ns * ns ns ns 

Soil (EB)c ns ns ns ns ns ns ns ns ns ns *** 

Soil (EC)d ns ns ns * ns ns ns ns ns ns *** 

Site *** *** *** *** * *** *** *** *** *** ***

ns - not significant; *,***, significant at P≤0.05 and P≤0.001 
aT - Total  
bEA - Exchangeable (organic acids), cEB - Exchangeable (CaCl2), 

dEC - Exchangeable (EDTA) 

To determine if heavy metals in the soil were from a common source, multivariate PCA and CA 

analysis was performed. The PCA loadings of the metals in the soil are given in Table 28 and the 

corresponding loading scatter plots are presented in Figure 14. The PCA reduces the data by 

extracting new variables (principal components, PCs) from previous variables (metal 

concentration and site) that will describe the data in a simplified way. The first component points 

to the direction in which the larger variation is obtained. A component loading higher than 0.71 

was considered excellent (Nowak, 1998). Three PCs were extracted with eigenvalues >1 

explaining 89% of the total variance. The first PC (44.9% of the variance) indicated high loadings 

of As, Cd, Fe and Ni. The second PC showed significant loadings of Cu, Pb and Zn (29.3% of the 

variance). The third PC (14.6% of the variance) revealed higher loadings of Mn and Co could be 

from natural sources (soil mineral forming processes).  
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Table 28: Principal component loadings of heavy metals in soil. 

PC1 PC2 PC3 

Eigenvalues 4.498 2.931 1.460 

Percentage of total variance 44.979 29.314 14.603 

Percentage of cumulative variance  44.979 74.292 88.895 

As 0.940 -0.043 0.031 

Cd 0.959 0.000 0.186 

Co 0.525 0.439 0.547 

Cr 0.638 0.287 -0.586

Cu 0.103 0.901 -0.217

Fe 0.947 0.017 0.222

Mn -0.259 0.638 0.627

Ni 0.877 0.264 -0.348

Pb -0.465 0.731 -0.398

Zn -0.228 0.912 0.114

Figure 14: Three dimensional PCA loading plot for ten heavy metals in the soil (constructed for 

ten sampling sites). 



120 

Cluster analysis was done to identify relatively homogenous groups of heavy metals (Hu et al., 

2013). Ward’s method was used to indicate the degree of associations between metals in the soil, 

shown by the Euclidean distance (Fig. 15). In the dendrogram, the shorter the distance the more 

significant is the association. The metals were grouped into two main clusters (A and B) with 

cluster A having two sub-clusters (A1 and A2). Sub-cluster A1 consisted of As, Cd, Cr, Fe and Ni 

whilst A2 consisted of Co and Cu. This indicates that these metals have similar distribution 

patterns in the soil. In cluster B there was close association between Mn, Pb and Zn. PCA and CA 

yielded similar results indicating three different factors responsible for the distribution of heavy 

metal concentrations in the soil. Arsenic, Cd, Fe and Ni in soils around industries originate from 

an anthropogenic source. Lead and Zn could be due to vehicular emissions.   

Figure 15: Cluster analysis using Ward’s method of heavy metals in soil measured by Euclidean 

distance. 
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The correlations between elements in the plant and soil were evaluated by obtaining correlation 

coefficients (r) where r values ranged from -1 to +1. An r value of -1 indicated a strong negative 

linear relationship, an r value of +1 indicated a strong positive linear relationship and an r value of 

0 indicated no relationship. An inter-correlation matrix between the soil (total and exchangeable) 

and plant concentrations of elements, soil pH, SOM and CEC was done. Only the strong 

correlations were extracted and are presented in Table 29. 

Table 29: Correlation matrix for concentration of elements in soil, total (T) and exchangeable (E). 

AsT CdT FeT CrT CuT PbT 

CdT 0.9** 1 1.0** ns ns ns 

FeT 0.9** 1.0** 1 ns ns ns 

NiT 0.8** 0.7* 0.7* 0.9** ns ns 

PbT ns ns ns ns 0.7* 1 

ZnT ns ns ns ns 0.7* 0.8** 

CuE ZnE 

PbT ns 0.8** 

ZnT 0.8** 1.0** 

*,** -  correlations significant at P≤0.05 and P≤0.01. 

ns - not significant. 

There was a four way synergy between As, Cd, Fe and Ni in the soil, indicating that these elements 

have a common origin as confirmed by PCA and CA. This trend has been observed and reported 

in other studies (Wu et al., 2013). There was also a three way synergy between Cu, Pb and Zn, 

indicating that these elements come from a common origin as confirmed by PCA (Oze et al., 2008). 

There was a positive correlation between total soil Cr and total soil Ni (r=0.9), which was also 

observed in the CA. 
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There was a significantly positive correlation between total soil Zn with exchangeable Cu (r=0.8) 

and total soil Pb with exchangeable Zn (r=0.8) indicating a synergistic effect between these metals 

in soil. There was no significant correlation between soil concentration (total and exchangeable) 

and plant concentrations thereby indicating that uptake was not dependent on soil concentrations 

and that the plant controlled uptake to meet physiological needs. 

CONCLUSION 

Heavy metals in soil can threaten human health if introduced into the food chain at toxic levels. 

However, the results indicate that though there was moderate contamination and significant 

enrichment of Cd in the soil, the plant tended to exclude this metal, therefore posing no risk of Cd 

toxicity if consumed. PCA and CA revealed the dominance of As, Cd, Fe and Ni in the soil, 

possibly adsorbed onto iron oxide minerals. Correlations between the concentrations of As, Fe, Cd 

and Ni in soil further indicated the metals common origin. Although site had an effect on the metal 

concentration levels in the plant and soil, the plant exhibited control on the uptake amounts to meet 

its physiological requirement levels, as evidenced by the selective accumulation and exclusion of 

different elements. 
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CHAPTER FIVE 

Elemental analysis of edible mountain nettle (Obetia tenax) and the influence of soil 

quality on its chemical composition  

ABSTRACT 

Trace element toxicity due to soil pollution has been implicated as a causative factor in a number 

of health-related conditions such as cancer. Its greatest impact is in developing countries, where 

the dietary intake of essential elements is largely dependent on the consumption of wild edible 

fruits and leafy vegetables. Therefore, the aim of this study was to investigate the distribution of 

elements in the indigenous edible plant, Obetia tenax (mountain nettle), as a function of soil 

quality, from eight different sites in KwaZulu-Natal, South Africa. The results show concentrations 

of elements in the leaves to be in decreasing order of Ca > Mg > Fe > Mn > Zn > Cr > Cu > Ni > 

Pb > Co > As > Cd > Se, and in the stems and roots to be in decreasing order of Ca > Mg > Fe > 

Mn > Zn > Cu > Ni > As > Pb > Co > Cd > Cr > Se. The quality and pollution status of soil was 

evaluated by applying pollution indices to soil data. Soil quality indicators (geo-accumulation 

indices and enrichment factors) indicated moderate Cd contamination at Msinga which was 

confirmed by the pollution index and ecological risk levels of single factor pollution. An 

assessment of overall contamination of soil using Nemerow pollution index showed moderate 

pollution by Cd whilst the potential toxicity index indicated low-grade risk for all elements at all 

sites. Principal component and cluster analysis revealed two groups of elements with similarities, 

As, Cd, Co, Cr, Cu, Mn, Ni and Fe, suggesting a lithogenic source and an anthropogenic source 

for Pb and Zn. Correlation analysis showed significantly positive correlations between As, Co, Cr, 

Cu, Fe and Ni/Cd in the soil, confirming the elements common origin.  
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INTRODUCTION 

Soil formation occurs through the weathering of parent material in the earth’s crust which is 

influenced by biota and climate (Schaetzl & Anderson, 2005). Soil minerals are inorganic solids 

with physical, chemical and crystalline properties that are incorporated into the soil. As part of the 

development of soil, chemical and physical weathering of the parent material results in the 

transformation of solid-state primary minerals (eg. quartz, amphiboles and pyroxenes) into more 

stable secondary minerals (Chesworth, 2008). The most common secondary mineral classes are 

clay minerals, hydrous Al, Fe and Mn oxides, carbonates and sulfates. Trace elements are normally 

found co-precipitated with secondary minerals in the soil. Trace elements include trace metals and 

micronutrients (Sparks, 1995). Co-precipitation is defined as the simultaneous precipitation of an 

element in conjunction with other elements by any mechanism at any rate (Sposito, 1983). 

Weathering of these minerals can release soluble ions that are then transported into the 

groundwater or removed through surface run off processes (Osman, 2013). Considering the 

presence of metal ions in the soil at different concentrations and their implication in soil 

pollution, concentrations (total and bioavailable) of these elements should be assessed. This is 

important since the exchangeable form of a metal ion in the soil is known to correspond to its 

level in the plant. 

Quantification of the exchangeable form of metal ions will disclose their mobility and is 

essential to determine potential toxic effects if levels are above those that are permissible. 

There are several well documented methods for the extraction of exchangeable metal ions and 

these are based mainly on extraction with dilute acids, buffered and unbuffered inorganic 
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salts, organic salts and chelating agents (Adamo & Zampella 2008). Extraction with inorganic salt 

solutions at a neutral pH results in the extraction of exchangeable or easily mobile metal ions 

(Meers et al., 2007a; Meers et al., 2007b; Sager, 1992). The change in the ionic composition could 

cause competition between sorbed and excess ions for the adsorption sites. Weak acids such as 

acetic acid (0.43 M and 0.11 M) render the carbonates, hydroxides and trace elements 

exchangeable (Abedin et al., 2012; Rauret et al., 1999; Ure et al., 1993; Zhang et al., 1998). 

Synthetic compounds such as ethylenediaminetetraacetic acid (EDTA) desorb the exchangeable 

forms of elements and carbonates and partially desorb the organic matter complexes (Rauret, 1998) 

and, as such, have been used in the United Kingdom to estimate exchangeable Cu in soil (Ministry 

of Agriculture, Fisheries and Food, 1981).  

Plant roots have the ability to alter soil pH and redox potential by releasing organic exudates and 

chelating agents thereby extracting metal ions from soil. Soils polluted with potentially toxic 

elements such as As, Cd, Hg and Pb, pose an environmental and health risk as they can accumulate 

in plants and move to the human food chain (Singh, 2007). Such soil contamination may arise 

from industrial activities, mining, agricultural practices and atmospheric deposition. These 

elements, although non-essential to plant growth, due to their chemical similarity to essential 

elements under the altered soil conditions, are taken up by plant transporters and integrated into 

the plant. 

Rural communities have for generations consumed wild edible fruits and traditional leafy 

vegetables, due to geographic availability and financial accessibility (Mahlangeni et al., 2016a). 

Obetia tenax N.E. Br, a traditional leafy vegetable commonly known as mountain nettle, is located 

on the rocky hillsides and forests of Southern Africa. In South Africa, it grows in six of the nine 

provinces. The branches and leaves are densely covered in stinging hairs, which is a common trait 
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in the Urticaceae family. O. tenax leaves are used multi-contextually as a green vegetable for their 

nutritional value (usually prepared with maize meal porridge) and for their medicinal properties 

(van Wyk & van Wyk, 1997).  

Previously, we reported on the distribution of trace elements in some indigenous, edible and 

medicinal plant species found in South Africa (Jonnalagadda et al., 2008; Mahlangeni et al., 2016a; 

Moodley et al., 2012). We have also reported on the distribution of nutrients in Laportea 

peduncularis subspecies peduncularis (river nettle) and Urtica dioica (stinging nettle) 

(Mahlangeni et al., 2016b). In this study, we report on the concentration and distribution of 

elements in the mountain nettle (O. tenax leaves, stems and roots) and associated growth soil, 

collected from eight different sites in KwaZulu-Natal, South Africa. The soil quality was assessed 

by obtaining geo-accumulation indices, enrichment factors, pollution indices and potential 

ecological risk. Multivariate statistical analysis of data was performed to reveal potential sources 

of elements in the soil and correlation analysis revealed relationships between elements in soil and 

plant 

MATERIALS AND METHODS 

Sample collection and sample preparation 

Plant samples (leaves, stems and roots) and associated soil samples were collected from eight 

different sites in KwaZulu-Natal, South Africa (Fig. 16). 
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Figure 16: Map showing eight selected sampling sites in KwaZulu-Natal, South Africa. 

 Sampling sites are classified as either forest land, urban (next to a main road) or suburban areas 

(Table 30).  Plant and soil samples were collected in May when temperatures ranged from 23 ºC 

to 27 ºC (in autumn). Soil samples were taken from a depth of 15 cm and the sample size was 

reduced by coning and quartering.  Soil was generally loamy sand in texture. The soil was then 

passed through a 2 mm mesh sieve to remove gravel, air-dried to constant mass then crushed with 

a mortar and pestle to reduce particle size. Plant samples were washed with double distilled water 

to remove debris, oven dried at 50 ºC to constant mass then crushed using a food processor.  All 

samples were stored in labelled polyethylene bags in a refrigerator at 4 ºC until analysed. 
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Table 30:  Site description and geographical coordinates, in decimal degrees, for the eight different 

sites. 

Site description  Sites Latitude Longitude 

Forest land Montebello 

Msinga 

Opongola 

Tongaat 

-29.822382

-28.796667

-27.276730

-29.569330

30.946485 

30.495556 

31.275310 

31.085177 

Urban area Bhambayi 

Westville 

-29.703003

-29.822382

30.977200 

30.946485 

Suburban area Goqokazi 

Nkwazi 

-29.690948

-29.281758

30.927423 

31.361105 

 Soil analysis 

Soil pH, soil organic matter and cation exchange capacity 

Soil pH was measured using a CaCl2 solution (0.01 mol L-1) in a 1:2 ratio (dry wt/v). Soil organic 

matter was determined by the Walkley-Black wet extraction technique (Walkley & Black 1934). 

Cation exchange capacity of soil was determined by the Chapman method (1965) using ammonium 

acetate at pH 7. 

Extraction of exchangeable elements 

The exchangeable form of elements in soil was estimated using three methods which were briefly 

described: (i) as per method of Quevauriller et al. (1997). 1.0 g of soil in 10 mL of 0.11 mol L-1 

acetic acid was shaken for 16 h; (ii) as per method described by Novosamsky et al. (1993), 1.0 g 

of soil in 10 mL a combined unbuffered salt solution of 0.01 mol L-1 CaCl2, NH4C2H3O2 and 

NH4NO3 was shaken for 2 h and (iii) as per method of Quevauriller et al. (1996), 1.0 g of soil in 

10 mL 0.05 mol L-1 disodium-EDTA salt was shaken for 2 h. All determinations were done in 

quadruplicate and samples were stored in the refrigerator until elemental analysis. 
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Digestion of soil 

The microwave-assisted closed vessel digestion technique (Microwave Accelerated Reaction 

System (MARS 6, CEM Corporation, Matthews, North Carolina, USA) with patented Xpress Plus 

technologyTM, was used for digestion of samples (Mahlangeni et al., 2016a). Soil samples and soil 

certified reference material (CRM, 0.25 g) were placed in 50 mL liners with 10 mL of HNO3 and 

digested. Digests were filtered into 25 mL volumetric flasks and made up to the mark with double 

distilled water, transferred into polyethylene bottles and stored in a refrigerator until elemental 

analysis. All determinations were done in quadruplicate. 

Digestion of plant material 

Plant samples and plant CRM (0.20 g) were digested with 10 mL of HNO3 as above and filtered 

into 25 mL volumetric flasks, diluted to the mark with double distilled water and stored in 

polyethylene bottles (Mahlangeni et al., 2016a). All determinations were done in quadruplicate 

and samples were stored in the refrigerator until elemental analysis. 

Elemental analysis 

All elements (As, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Ni, Pb, Se, and Zn) were analysed by 

Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES) and reported as µg g-1, 

dry matter. Elemental standards (1000 mg L-1) were supplied by Sigma Aldrich (St Louis, USA) 

and were of analytical-reagent grade. Working standards were made up with double distilled water 

and 10 mL of 70% HNO3 to match the sample matrix.  
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Indicators of soil quality 

The bioaccumulation factor is the ratio of the concentration of element in the edible part of the 

plant organism (Cplant) and the concentration of the element in the soil (Csoil) 

BAF=
Cplant

Csoil
(10) 

The enrichment factor (EF) gives the ratio of the concentration of an element in the soil to its 

concentration in the earth’s crust.  This factor is used to assess for elemental contamination in 

soils. In this study, Zn is used as reference metal, since total baseline concentrations for Zn 

in South Africa are known (Herselman et al., 2005; Mendiola et al., 2008).

EF=
[

X

Zn
]
soil

[
X

Zn
]
crust

 (11) 

where [
X

Zn
]

soil
is the mean concentration ratio between the element and Zn in the soil whilst [

X

Zn
]

crust
is

the mean concentration ratio between the element and Zn in the earth’s crust. Background 

concentrations for elements in South African soils were obtained from Herselman et al. (2005) 

and are as follows (in μg g−1): 2.7 for Cd, 69 for Co, 353 for Cr, 117 for Cu, 159 for Ni, 65.8 for 

Pb and 115 for Zn. The EFs were interpreted as suggested by Zhang and Liu (2002) where 0.5 < 

EF ≤ 1.5 indicate that the element is from crustal minerals or natural processes, and EF > 1.5 

indicates sources are more likely to be anthropogenic. 

The geo-accumulation index (Igeo) is another soil quality indicator that describes the extent to 

which elemental contamination has occurred by comparing measured elemental concentrations to 

that of the earth’s crust (Müller, 1969). It is determined by the following equation: 
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Igeo=log
2

[
Cn

1.5 Bn
]   (12) 

Where Cn is the measured concentration of the element in the soil sample, Bn is the geochemical 

background value of the earth’s crust and 1.5 is the factor used to minimise possible variations in 

background values due to lithological differences (Herselman et al., 2005). The geo-

accumulation value (degree of metal contamination) in soil as described by Müller (1969) are: 

Igeo ≤ 0 (uncontaminated), 0 < Igeo ≤ 1 (uncontaminated to moderately contaminated), 1 < Igeo ≤2 

(moderately contaminated), 2 < Igeo ≤ 3 (moderately to heavily contaminated), 3 < Igeo ≤ 4 (heavily 

contaminated), 4 < Igeo ≤ 5 (heavily to extremely contaminated), and Igeo >5 (extremely 

contaminated). 

The extent of elemental pollution in the soil was evaluated by assessing the degree of elemental 

pollution by a single pollution index (PI) and Nemerow integrated pollution index (Yang et al., 

2011).  

PI=
Ci

Si
    (13) 

Where Ci is the concentration of the element and Si is the background concentration of the element 

in the earth’s crust. Pollution index is classified as non-polluted if PI < 1, lowly polluted if 1 < PI 

≤ 2, moderately polluted if 2 < PI ≤ 3, strongly polluted if 3 < PI ≤ 5 and very strongly polluted if 

PI > 5. The Nemerow integrated pollution index (NIPI) can be expressed as 

NIPI=√PIiave
2

+PIimax
2

2
(14) 

where PI2
iave and PI2

max refer to mean and maximum pollution index values of each element, 

respectively. Nemerow integrated pollution indices are classified as non-polluted if NIPI < 0.7, 
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warning of pollution if 0.7 < NIPI ≤ 1, lowly polluted if 1 < NIPI ≤ 2, moderately polluted if 2 < 

NIPI ≤ 3, and highly polluted if NIPI > 3 (Jiang et al., 2014). 

The potential ecological risk is an assessment of the harmful effects of elements in the environment 

which includes water, soils and sediments (Hakanson, 1980; Du et al., 2015). Considering the toxic 

response and the total risk index, actual pollution conditions of seriously polluted sediments are 

exhibited (Li et al., 2014). The potential toxicity response index (RI) is calculated as the sum of 

the risk factors (Ei) of elements: 

RI = ∑ E𝑖                                                                                  (15)

where Ei is the single risk factor for element i, and is defined as 

Ei = Tifi = Ti
Ci

Bi
    (16) 

where Ti is the toxic-response factor for element i, which accounts for the toxic and sensitivity 

requirements. The Ti values for Cd, As, Ni, Cu, Pb, Cr, and Zn are 30, 10, 5, 5, 5, 2, and 1, 

respectively (Hakanson, 1980). The ratio fi is the elemental pollution factor calculated from the 

measured concentration Ci and the background concentration Bi of the elements in the earth’s crust. 

The ecological risk level of single-factor pollution is classified as low if Ei < 40, moderate if 40 < 

Ei ≤ 80, higher if 80 < Ei ≤ 160, high if 160 < Ei ≤ 320; and serious if Ei > 320. Potential toxicity 

index (RI) is classified as low-grade, if RI < 150, moderate 150 < RI ≤ 300, severe if 300 <RI ≤ 

600, and serious if RI > 600 (Guo et al. 2010). 
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Statistical analysis 

Multivariate statistical analyses (principal component analysis and cluster analysis) were 

performed to determine the relationship between input variables. An analysis of covariance was 

performed to assess for significant differences between plant and soil at the different sites. 

Correlation analysis was performed by computing Pearson’s correlation coefficients (r) for the 

relationships between the concentrations of the elements in leaves and total and exchangeable 

concentrations in the soil. All statistical analyses were performed using the Statistical Package for 

the Social Science (PASW Statistics, Version 23, IBM Corporation, Cornell, New York). 

RESULTS AND DISCUSSION 

The accuracy of the method for elemental analysis was measured by comparing experimental 

results obtained with certified values (Table 31). The recorded values for Cd and Pb in the soil 

CRM compared well with certified values, whilst those for As, Co, Cr, Cu, Ni and Zn were within 

the acceptable limits. For the plant CRM, measured values compared well to certified values. 
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Table 31: Measured values (mg kg-1, dry mass, mean ± standard deviation, 95% confidence 

interval, n=4) compared to certified values for certified reference materials (Elements in soil - 

D081-540 and White clover - BCR 402). 

Element  Certified value Accepted limits Measured value 

White Clover 

Cr 5.19 - 5.10 ± 0.170 

Fe 244 - 237 ± 18.0 

Se 6.70 ± 0.25 - 6.81 ± 1.40 

Zn 25.2 - 30.3 ± 6.37 

Soil 

As 101 ± 5.92 61.0-116 63.6 ± 5.25 

Cd 143 ± 5.60 104-182 131 ± 11.4 

Co 232 ± 4.10 148-250 170 ± 13.2 

Cr 86.8 ± 6.1 60.0-104 69.0 ± 5.65 

Cu 268 ± 4.72 204-332 210 ± 6.2 

Ni 236 ± 4.17 175-302 189 ± 14.0 

Pb 97.9 ± 11.3 69.3-126 89.7 ± 12.5 

Zn 130 ± 11.5 87-173 104 ± 10.4 

Elemental distribution in plants and soil 

The concentrations of elements in soil (total and exchangeable), leaves, stems, roots and 

bioaccumulation factors are presented in Table 32. The analysis showed 12 of the 13 elements to 

be present in the soil (total and exchangeable) and plants. If present, Se was found to be below the 

instrument detection limit (0.1150 µg g-1). Exchangeable forms of elements were predicted using 

different extraction methods (acetic acid, combined inorganic salts and EDTA). For most elements, 

the extraction efficiency by EDTA was generally higher than acetic acid and combined inorganic 

salts. For Cr, Mg and Mn, exchangeable forms were best predicted by acetic acid with 
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exchangeable percentages ranging between 0.1 - 1.9%, 1.3 - 5.8% and 2.6 - 7.6%, respectively. 

For As and Ca, exchangeable forms were best predicted by the combined inorganic salts. 

Exchangeable forms of Co, Cu, Fe, Ni, Pb and Zn were best predicted by EDTA. These elements 

are known to have greatest affinity for carbonates (Kabata-Pendias & Pendias, 1984). 

All soils were rich in Fe, Ca and Mg with concentrations ranging between 4664 - 60733 µg g-1, 

1220 - 7788 µg g-1 and 302 - 3189 µg g-1, respectively. Although total soil Fe was high, only 0.2 - 

3.2% was in exchangeable form and bioaccumulation factors were less than one, similar to 

previous studies (Jonnalagadda et al., 2008; Mahlangeni et al., 2012; Moodley et al., 2012). The 

toxic elements, As and Cd were only present in soil at Msinga and Opongola, yet present in plant 

roots at all sites. Plant roots have the ability to increase the solubility of As and Cd in the 

rhizosphere by the formation of complexes with inorganic ligands (eg. Cl-, SO4
2- and NO3

-) and 

soluble organics (eg. low molecular organic acids) thus allowing these elements to diffuse into the 

root surface (Mengel et al., 2001; Welch & Norvell, 1999).  

 



 

143 

 

Table 32: Concentration of elements in µg g-1 (mean ± standard deviation, 95% confidence interval, n=4) in leaves, stems, roots of 

Obetia tenax and soil (total and exchangeable) samples with bioaccumulation factors (BF) and Exchangeable percentages (%Ex). 

 Sites Soil-total Soil-exchangeable %Ex Leaves Stem Roots BF 

Method 1 Method 2 Method 3 

As Bhambayi ND ND ND ND - 4.39 ± 0.585 a 3.86 ± 0.537 a 4.07 ± 0.523 ab - 

 Msinga 11.9 ± 2.24 a* ND 0.216 ± 0.0411 a 0.0458 ± 0.0084 a 1.8 5.95 ± 0.917 ab 4.88 ± 0.886 ab 3.48 ± 0.306 b 0.41 

 Opongola 10.4 ± 1.68 a ND 0.262 ± 0.0500 a 0.0564 ± 0.0056 b 2.5 5.10 ± 0.864 a ND 4.13 ± 0.779 ab - 

 Nkwazi ND ND ND ND - 4.54 ± 0.776 a ND 4.12 ± 0.133 ab - 

 Westville ND ND ND ND - 4.70 ± 0.640 a 3.94 ± 0.388 a 4.07 ± 0.900 ab - 

 Montebello ND ND ND ND - 5.09 ± 0.973 a 5.95 ± 1.12 b 3.69 ± 0.567 b - 

 Tongaat ND ND ND ND - 4.86 ± 0.850 a ND 3.93 ± 0.601 ab - 

 Goqokazi ND ND ND ND - 7.63 ± 1.25 b ND 5.15 ± 0.628 a - 

           

Ca Bhambayi 3 821 ± 229 a 280 ± 6.99 a 397 ± 22.4 a 198 ± 43.9 ad 10.4 25 759 ± 792 a 31 896 ± 1 950 a 15 552 ± 610 a 8.35 

 Msinga 3 952 ± 99.6 a 259 ± 9.38 a 360 ± 13.1 ab 239 ± 29.1 a 9.1 16 433 ± 828 bc  23 207 ± 1 708 b 17 664 ± 3 385 a 5.87 

 Opongola 7 788 ± 501 b 649 ± 24.6 b 362 ± 26.7 ab 432 ± 65.0 b 4.7 18 768 ± 1 033 30 739 ± 996 a 17 554 ± 2 239 a 3.95 

 Nkwazi 1 220 ± 95.7 c 76.0 ± 6.38 c 337 ± 11.4 b 48.6 ± 4.88 c 27.6 12 979 ± 1 575 15 284 ± 3 516 c 5 942 ± 363 b 12.5 

 Westville 3 656 ± 177 a 196 ± 10.4 d 361 ± 13.5 ab 159 ± 25.2 de 9.9 14 330 ± 856 23 631 ± 1 021 b 16 554 ± 2 175 a 6.46 

 Montebello 1 965 ± 94.7 d 146 ± 10.4 e 351 ± 38.3 ab 104 ± 2.13 ce 17.9 13 770 ± 475 13 719 ± 1 819 c 14 934 ± 724 a 6.98 

 Tongaat 1 301 ± 76.3 c 95.8 ± 15.6 cf 339 ± 26.7 b 71.3 ± 3.36 c 26.1 26 339 ± 3 395 23 759 ± 1 019 b 10 610 ± 1 555 c 18.3 

 Goqokazi 1 699 ± 186cd 134 ± 23.4 ef 352 ± 28.5 ab 98.6 ± 5.28 ce 20.7 21 051 ± 1 104  15 940 ± 1 232 c 9 248 ± 643 bc 9.38 

           

Cd Bhambayi ND ND ND ND - 0.409 ± 0.0700 a ND ND - 

 Msinga 9.83 ± 0.915 a ND ND ND - 2.49 ± 0.306 b 2.97 ± 0.177 a 0.453 ± 0.0720 ac 0.30 

 Opongola 1.95 ± 0.528 b ND ND ND - 1.00 ± 0.151 cd ND ND - 

 Nkwazi ND ND ND ND - 0.400 ± 0.0627 a ND ND - 

 Westville ND ND ND ND - 1.12 ± 0.379 c 1.88 ± 0.100 b 0.878 ± 0.205 b  - 

 Montebello ND ND ND ND - 1.11 ± 0.0925 c 1.68 ± 0.203 b 0.398 ± 0.0646 ac - 

 Tongaat ND ND ND ND - 0.643 ± 0.105 ad 0.633 ± 0.115 c 0.292 ± 0.0554 c - 

 Goqokazi ND ND ND ND - 1.80 ± 0.0711 e 0.688 ± 0.108 c 0.566 ± 0.0772 a - 

           

Co Bhambayi 10.3 ± 1.24 a 0.340 ± 0.0287 a ND 0.702 ± 0.127 a 6.8 0.886 ± 0.0486 ad 0.726 ± 0.0564 a 0.602 ± 0.0658 ad 0.07 

 Msinga 29.3 ± 2.81 b 0.827 ± 0.0291 b ND 2.09 ± 0.246 b 7.1 3.54 ± 0.377 b 6.64 ± 0.431 b 1.37 ± 0.0767 b 0.23 

 Opongola 21.8 ± 0.900 c 0.192 ± 0.0172 c ND 1.05 ± 0.134 ce 4.8 1.58 ± 0.0297 ce 1.28 ± 0.0512 ac 0.693 ± 0.0230 acd 0.06 

 Nkwazi ND ND ND ND - 0.562 ± 0.0699 d 0.669 ± 0.0757 a 0.467 ± 0.0529 d - 

 Westville 2.20 ± 0.428 d 0.173 ± 0.0067 c ND 0.344 ± 0.0358 d 15.6 1.35 ± 0.392 ac 3.15 ± 0.207 d 0.966 ± 0.0539 ce 1.43 

 Montebello 6.93 ± 1.46 e 0.524 ± 0.0316 d ND 0.870 ± 0.0502 ac 12.6 1.66 ± 0.126 ce 6.11 ± 1.00 b 0.760 ± 0.0738 ae 0.88 



144 

Tongaat 11.4 ± 0.690 a 0.338 ± 0.0082 a ND 1.26 ± 0.108 e 11.1 1.28 ± 0.226 ac 1.54 ± 0.253 ac 0.786 ± 0.0765 ae 0.14 

Goqokazi ND ND ND ND - 2.20 ± 0.504 e 1.72 ± 0.0777 c 2.30 ± 0.286 f - 

Cr Bhambayi 61.8 ± 3.21 a 0.203 ± 0.0178 a 0.0703 ± 0.0019 ab 0.0988 ± 0.0067 ab 0.3 0.0044 ± 0.0007 a 7.38 ± 0.896 ac 0.0101 ± 0.0014 a 0.12 

Msinga 361 ± 19.5 b 0.172 ± 0.0032 b 0.0688 ± 0.0019 ab 0.0858 ± 0.0028 b 0.1 0.0430 ± 0.0067 b 87.7 ± 6.11 b 0.0070 ± 0.0016 b 0.24 

Opongola 308 ± 32.9 c 0.172 ± 0.0032 b 0.0713 ± 0.0025 ab 0.0978 ± 0.0044 ab 0.1 0.0179 ± 0.0018 c 12.8 ± 0.613 c 0.0019 ± 0.0002 c 0.04 

Nkwazi 7.54 ± 0.624 d 0.142 ± 0.0016 c 0.0695 ± 0.0019 ab 0.0853 ± 0.0046 b 1.9 0.0018 ± 0.0004 a 5.48 ± 1.22 a 0.0013 ± 0.0003 c 0.73 

Westville 52.3 ± 3.92 ae 0.159 ± 0.0083 bc 0.0700 ± 0.0020 ab 0.0903 ± 0.0039 b 0.3 0.0184 ± 0.0045 c 144.1 ± 3.00 d 0.0093 ± 0.0008 a 2.76 

Montebello 27.7 ± 2.69 de 0.159 ± 0.0105 bc 0.0738 ± 0.0067 a 0.112 ± 0.0165 a 0.6 0.0116 ± 0.0013 c 28.6 ± 3.03 e 0.0026 ± 0.0004 c 1.03 

Tongaat 48.3 ± 2.53 ae 0.145 ± 0.0039 c 0.0660 ± 0.0023 b 0.0850 ± 0.0029 b 0.3 0.0028 ± 0.0005 a 6.23 ± 1.02 a 0.0022 ± 0.0008 c  0.59 

Goqokazi 48.7 ± 2.23 ae 0.155 ± 0.0068 bc 0.0685 ± 0.0033 ab 0.0925 ± 0.0013 b 0.3 0.0136 ± 0.0023 c 10.2 ± 1.53 ac 0.0054 ± 0.0013 b 0.21 

Cu Bhambayi 28.4 ± 1.30 a ND ND 0.965 ± 0.121 a 3.4 5.25 ± 0.828 a 14.0 ± 1.08 ac 12.8 ± 2.05 a 0.49 

Msinga 101 ± 2.56 b ND ND 1.80 ± 0.252 b 1.8 29.6 ± 5.63 b 23.9 ± 2.02 b 8.19 ± 1.95 ab 0.24 

Opongola 53.3 ± 1.35 c ND ND 0.870 ± 0.105 a 1.6 14.6 ± 1.41 c 10.2 ± 1.82 c 8.65 ± 1.76 ab 0.19 

Nkwazi 8.12 ± 2.59 d ND ND 0.338 ± 0.0382 c 4.2 7.83 ± 1.55 a 9.19 ± 1.80 c 7.33 ± 1.06 b 1.13 

Westville 26.5 ± 1.81 a ND ND 0.826 ± 0.0705 a 3.1 16.4 ± 2.96 cd 44.2 ± 4.86 d 12.5 ± 1.81 a 1.67 

Montebello 12.6 ± 1.24 e ND ND 0.419 ± 0.0420 c 3.3 29.5 ± 2.45 b 17.9 ± 1.66 a 6.69 ± 1.47 b 1.42 

Tongaat 15.2 ± 1.42 e ND ND 0.434 ± 0.0132 c 2.9 8.79 ± 1.45 ac 10.4 ± 0.888 c 5.12 ± 0.836 b 0.68 

Goqokazi 13.6 ± 1.52 e ND ND 0.324 ± 0.0170 c 2.4 21.1 ± 2.86 d 9.23 ± 1.51 c 21.3 ± 3.61 c 0.68 

Fe Bhambayi 16 505 ± 1 372 ae 19.5 ± 3.15 a ND 158 ± 34.8 a 1.0 559 ± 59.8 a 697 ± 59.8 a 397 ± 69.7 ae 0.04 

Msinga 60 733 ± 1 634 b 9.62 ± 1.24 bc ND 131 ± 19.5 a 0.2 9 229 ± 1 284 b 12 045 ± 1 060 b 918 ± 74.6 b 0.20 

Opongola 38 900 ± 1 940 c 11.7 ± 2.18 c ND 237 ± 33.2 b 0.6 3 139 ± 373 c 1 407 ± 100 ac 261 ± 52.1 ac 0.04 

Nkwazi 4 664 ± 570 d 22.5 ± 0.440 a ND 130 ± 10.9 a 2.8 270 ± 50.7 a 410 ± 31.0 a 138 ± 13.2 c 0.09 

Westville 18 760 ± 524 e 18.2 ± 2.81 ac 1.37 ± 0.219 a 163 ± 19.5 a 0.9 3 983 ± 703 c 6 346 ± 397 d 1 602 ± 161 d 0.34 

Montebello 11 538 ± 849 f 32.5 ± 6.70 d 2.45 ± 0.361 b 373 ± 9.77 c 3.2 3 598 ± 346 c 6 059 ± 668 d 539 ± 93.1 e 0.53 

Tongaat 15 539 ± 769 a 3.42 ± 0.731 b ND 178 ± 16.3 a 1.2 1 427 ± 244 a 2 468 ± 125 c 213 ± 12.4 ac 0.16 

Goqokazi 17 956 ± 1 705 ae 20.6 ± 1.20 a ND 80.1 ± 5.15 d 0.5 8 041 ± 1 316 b 1 961 ± 327 c 1 469 ± 93.6 d 0.11 

Mg Bhambayi 1 865 ± 106 a 42.6 ± 0.966 af 27.9 ± 1.48 a 19.0 ± 3.21 ae 2.3 5 336 ± 173 a 4 333 ± 156 a 6 591 ± 658 ab 2.33 

Msinga 2 702 ± 77.4 b 103 ± 2.84 b 79.2 ± 4.82 b 53.6 ± 5.60 b 3.8 8 090 ± 409 b 10 648 ± 544 b 8 214 ± 1 028 bc 3.94 

Opongola 3 189 ± 146 c 186 ± 6.81 c 86.2 ± 3.98 c 68.0 ± 9.72 c 5.8 10 157 ± 509 c 1 563 ± 468 c 11 881 ± 1 494 d 0.49 

Nkwazi 302 ± 20.3 d 11.7 ± 0.854 d 8.07 ± 0.466 d 6.38 ± 0.386 d 3.9 3 876 ± 467 d 4 064 ± 897 a 2 189 ± 171 e 13.5 

Westville 3 074 ± 127 c 38.9 ± 3.34 ef 34.9 ± 1.69 e 25.9 ± 3.01 e 1.3 6 946 ± 186 e 7 457 ± 160 d 9 256 ± 831 c 2.43 

Montebello 1 034 ± 53.1 e 42.2 ± 5.61 af 33.8 ± 3.26 ae 21.7 ± 0.316 e 4.1 5 812 ± 269 af 3 809 ± 316 a 4 910 ± 229 a 3.68 

Tongaat 1 044 ± 35.4 e 29.2 ± 9.37 e 20.7 ± 0.515 f 13.3 ± 1.36 ad 2.8 6 599 ± 223 ef 7 474 ± 391 d 2 568 ± 368 e 7.16 

Goqokazi 1 510 ± 96.1 f 53.8 ± 3.38 a 38.5 ± 2.77 e 26.1 ± 1.60 e 3.6 6 032 ± 318 af 9 194 ± 593 e 8 357 ± 981 bc 6.09 

Mn Bhambayi 335 ± 23.2 a 17.3 ± 0.709 a 2.47 ± 0.197 a 16.4 ± 2.07 a 5.2 20.6 ± 2.55 a 58.2 ± 3.16 ac 39.3 ± 1.73 ab 0.17 
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Msinga 605 ± 22.3 b 32.8 ± 1.56 b 4.25 ± 0.492 b 36.7 ± 4.25 b 5.4 132 ± 11.5 b 207 ± 14.5 b 47.3 ± 6.62 b 0.34 

Opongola 805 ± 33.7 c 54.5 ± 2.93 c 1.55 ± 0.134 ac 41.7 ± 6.51 b 6.8 109 ± 7.50 bc 85.3 ± 0.766 c 32.1 ± 4.64 abc 0.11 

Nkwazi 73.9 ± 10.0 d 4.55 ± 0.346 d 1.27 ± 0.0827 ac 3.01 ± 0.310 c 6.2 34.8 ± 6.04 a 30.8 ± 5.99 a 13.5 ± 1.11 c 0.42 

Westville 317 ± 25.6 a 16.0 ± 1.55 a 5.47 ± 0.460 b 17.8 ± 2.26 a 5.1 101 ± 22.7 ac 142 ± 3.86 d 51.5 ± 2.57 b 0.45 

Montebello 648 ± 72.6 b 49.5 ± 1.76 ce 17.2 ± 1.94 d 38.6 ± 1.52 b 7.6 347 ± 33.0 ac 330 ± 27.4 e 78.0 ± 9.24 d 0.06 

Tongaat 802 ± 57.7 c 43.0 ± 7.34 e 12.4 ± 0.501 e 63.9 ± 4.89 d 5.4 146 ± 9.28 ac 371 ± 19.5 f 86.4 ± 19.9 d 0.08 

Goqokazi 43.2 ± 2.30 d 1.14 ± 0.106 d 0.178 ± 0.0126 c 0.670 ± 0.0730 c 2.6 51.1 ± 4.60 d 28.7 ± 2.70 a 26.7 ± 6.00 ac 0.66 

Ni Bhambayi 10.4 ± 1.41 a 0.317 ± 0.0188 a 0.0938 ± 0.0022 a 0.317 ± 0.0402 a 3.1 2.51 ± 0.243 a 2.14 ± 0.149 a 4.06 ± 0.342 a 0.21 

Msinga 84.4 ± 4.62 b 0.410 ± 0.0090 b 0.0985 ± 0.0037 a 0.542 ± 0.0505 b 0.6 11.4 ± 1.22 b 15.8 ± 1.04 b 8.54 ± 0.671 a 0.19 

Opongola 122 ± 2.38 c 0.299 ± 0.0178 a 0.109 ± 0.0031 b 1.16 ± 0.155 c 1.0 9.07 ± 0.489 bc 4.90 ± 0.224 c 6.79 ± 0.474 a 0.04 

Nkwazi ND ND ND ND - 1.82 ± 0.0990 a 1.54 ± 0.140 a 1.73 ± 0.101 a - 

Westville 11.7 ± 1.23 a 0.224 ± 0.0038 c 0.0985 ± 0.0037 a 0.216 ± 0.0129 ad 1.9 4.37 ± 0.504 ac 6.31 ± 0.402 c 2.93 ± 0.304 a 0.54 

Montebello ND ND  ND ND  - 3.43 ± 0.259 ac 4.98 ± 0.684 c 1.74 ± 0.0837 a - 

Tongaat 3.68 ± 0.512 d 0.293 ± 0.0105 a 0.0895 ± 0.0047 a 0.286 ± 0.0169 a 7.8 4.63 ± 0.981 ac 19.5 ± 1.79 d 3.69 ± 0.219 a 5.30 

Goqokazi 7.96 ± 0.932 ad 0.201 ± 0.0057 c 0.0913 ± 0.0083 a 0.118 ± 0.0068 d 1.5 38.3 ± 7.48 d 4.94 ± 0.683 c 79.6 ± 9.04 b 0.62 

Pb Bhambayi 19.8 ± 3.10 a 0.0096 ± 0.0014 ND 1.34 ± 0.282 a 6.8 0.627 ± 0.0759 ab 1.22 ± 0.260 a 0.148 ± 0.0205 a 0.06 

Msinga 2.63 ± 0.311 b ND ND 0.340 ± 0.0499 bc 12.9 1.07 ± 0.0836 b 2.17 ± 0.181 a ND 0.82 

Opongola 2.09 ± 0.325 b ND ND 0.177 ± 0.0322 c 8.5 0.0520 ± 0.0095 a 0.860 ± 0.150 a 0.196 ± 0.0273 ab 0.41 

Nkwazi ND ND ND ND - ND 0.817 ± 0.0695 a 0.354 ± 0.0715 ab - 

Westville 42.9 ± 4.58 d 0.144 ± 0.0013 ND 3.09 ± 0.349 d 7.2 4.26 ± 0.610 c 19.6 ± 2.26 b 3.68 ± 0.297 c 0.46 

Montebello 4.31 ± 0.891 b ND ND 0.442 ± 0.0129 bc 10.3 4.34 ± 0.484 c 8.61 ± 1.19 c 0.742 ± 0.124 de 2.00 

Tongaat 6.40 ± 0.971 b ND ND 0.579 ± 0.0681 b 9.1 0.454 ± 0.0420 ab 0.798 ± 0.123 a 0.507 ± 0.0763 be 0.12 

Goqokazi 2.45 ± 0.337 b ND ND 0.403 ± 0.0207 bc 16.4 2.23 ± 0.324 d 1.65 ± 0.194 a 1.05 ± 0.261 d 0.67 

Zn Bhambayi 170 ± 19.2 a 3.72 ± 0.24 a ND 4.67 ± 0.966 a 2.8 15.3 ± 2.72 a 35.2 ± 5.98 a 55.0 ± 5.08 a 0.21 

Msinga 89.6 ± 7.93 b 0.420 ± 0.0700 be ND 0.656 ± 0.0770 b 0.7 41.1 ± 7.24 a 34.4 ± 0.705 a 53.5 ± 4.93 a 0.38 

Opongola 84.0 ± 6.38 b 0.410 ± 0.0577 be ND 1.67 ± 0.305 c 2.0 30.3 ± 2.30 a 35.5 ± 4.64 ab 40.1 ± 7.19 ab 0.42 

Nkwazi 88.7 ± 11.3 b 7.13 ± 0.538 c 0.523 ± 0.0461 a 5.62 ± 0.431 a 6.3 51.9 ± 8.28 a 55.7 ± 3.81 c 42.8 ± 7.31 ab 0.63 

Westville 101 ± 5.69 b 2.61 ± 0.315 d 0.161 ± 0.0295 b 3.39 ± 0.399 d 3.4 60.9 ± 9.08 a 127 ± 3.65 d 50.7 ± 6.31 ab 1.26 

Montebello 43.9 ± 4.58 c 0.918 ± 0.0235 e ND 0.598 ± 0.0255 b 1.4 58.5 ± 6.71 a 50.2 ± 11.2 bc 37.0 ± 4.39 b 1.14 

Tongaat 54.7 ± 7.48 c 0.302 ± 0.0499 b ND 0.195 ± 0.0331 b 0.4 34.0 ± 4.23 a 38.9 ± 1.16 abe 41.7 ± 8.08 a 0.71 

Goqokazi 62.0 ± 4.89 c 1.52 ± 0.142 f ND 1.12 ± 0.0873 bc 1.8 663 ± 130 b 51.7 ± 10.6 ce 91.7 ± 10.6 c 0.83 

ND - not determinable 

*Different letters within columns indicate mean separation by Tukey’s Post-hoc test at the 5% level.

Method 1 - 0.11 mol L-1 CH3COOH, Method 2 - 0.01 mol L-1 CaCl2, NH4C2H3O2, NH4NO3, Method 3 - 0.05 mol L-1 EDTA.
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These elements can also enter by competing with essential elements of the same radii for specific-

ion transporters of the plant tissue (Saxena et al., 1999). Lead was observed to be present in soil at 

all sites except in Nkwazi.  Total soil Pb was highest at Westville (42.9 µg g-1) with 7.2% being in 

exchangeable form; however, bioaccumulation factors were less than one.  

Msinga and Opongola had higher concentrations of the elements Co, Cr, Cu and Ni however there 

was no accumulation of these elements in the leaves (BAFs < 1) indicating the plants control on 

elemental uptake by adaptive mechanisms to meet physiological needs. Higher Cr concentrations 

in the leaves compared to stems and roots across all sites indicated higher mobility of Cr to the 

leaves. Chromium is not essential for plant growth but it is important for animal and human 

nutrition (Rodionava, 2001). At Goqokazi, total soil Zn was 62.0 µg g-1 and Zn in the roots was 

663 µg g-1 (ten times higher) showing the plants ability to accumulate high concentrations of Zn 

in the roots to balance storage and transport of this metal to other parts of the plant. The study 

shows concentrations of elements in O. tenax leaves to be in decreasing order of Ca > Mg > Fe > 

Mn > Zn > Cr > Cu > Ni > Pb > Co > As > Cd, and O. tenax stems and roots to be in decreasing 

order of Ca > Mg > Fe > Mn > Zn > Cu > Ni > As > Pb > Co > Cd > Cr. 

The soil parameters (pH, soil organic matter and cation exchange capacity) for each site are 

presented in Table 33. Soil pH ranged from 3.94 (Montebello) to 4.73 (Msinga). Higher 

availability of micronutrients is observed between pH 5 and 7; above and below these pH values 

micronutrients become less available for uptake by plants (Strawn et al., 2015). Soil organic matter 

is a major source of carbon and plant nutrients; soil organic matter ranged from 2.18% (Goqokazi) 

to 18.24% (Opongola). Cation exchange capacity throughout the sites were relatively low with 

values ranging from 3.04 meq 100 g-1 (Nkwazi) to 5.35 meq 100 g-1 (Montebello).  
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Table 33: Soil pH, soil organic matter and cation exchange capacity (mean ± standard deviation, 

n=4) of soil samples from eight different sites. 

Site pH Soil organic matter (%) Cation exchange capacity (meq 100g-1) 

Bhambayi 4.54 ± 0.06 a* 5.41 ± 0.37 a 3.38 ± 0.42 a 

Msinga 4.73 ± 0.06 b 10.01 ± 0.84 b 4.86 ± 0.20 b 

Opongola 4.70 ± 0.08 b 18.24 ± 1.48 c 3.35 ± 0.35 a 

Nkwazi 4.23 ± 0.04 c 2.83 ± 0.63 d 3.04 ± 0.29 a 

Westville 4.12 ± 0.02 c 11.24 ± 1.19 be 3.64 ± 0.53 a 

Montebello 3.94 ± 0.07 d 13.05 ± 0.53 e 5.35 ± 0.68 b 

Tongaat 4.16 ± 0.04 c 3.72 ± 0.32 ad 4.83 ± 0.06 b 

Goqokazi 4.20 ± 0.02 c 2.18 ± 0.12 d 5.04 ± 0.20 b 

*Different letters within columns indicate mean separation by Tukey’s Post-hoc test at the 5%

level.

Indicators of soil quality 

Soil enrichment factor and geo-accumulation index values were determined to assess the level of 

elemental contamination and enrichment in the soil. Soils are considered contaminated if levels 

are above background levels (Wu et al., 2014). Enrichment factor and geo-accumulation index 

values of elements in soil samples from different sites are shown in Table 34. For elements, Co, 

Cr, Cu, Ni and Pb, enrichment factors (EF) were below 1 for all sites indicating no enrichment. 

There was enrichment of Cd at Msinga with an EF value of 4.6. EF values greater than 1.5 suggest 

that the sources are more likely to be anthropogenic (Zhang & Liu, 2002). Geo-accumulation index 

values for elements Co, Cr, Cu, Ni, Pb and Zn indicated non-contamination by these elements and 

moderate contamination by Cd at Msinga (along the roadside) possibly due to deposition of 

airborne particles from vehicular emissions. 
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Table 34: Enrichment factors and geo-accumulation indices of soil from eight different sites. 

Sites Elements Enrichment factor Geo-accumulation index 

Bhambayi Cd 

Co 

Cr 

Cu 

Ni 

Pb 

Zn 

ND 

0.1 

0.1 

0.2 

0.0 

0.2 

1 

ND 

-3.3

-0.6

-2.6

-4.5

-2.3

0.0

Msinga Cd 

Co 

Cr 

Cu 

Ni 

Pb 

Zn 

4.6 

0.5 

1.3 

1.1 

0.7 

0.1 

1 

1.3 

-1.8

-0.6

-0.8

-1.5

-5.2

0.9

Opongola Cd 

Co 

Cr 

Cu 

Ni 

Pb 

Zn 

1.0 

0.4 

1.2 

0.6 

1.1 

0.0 

1 

-1.1

-2.2

-0.8

-1.7

-1.0

-5.6

-1.0

Nkwazi Cd 

Co 

Cr 

Cu 

Ni 

Pb 

Zn 

ND 

ND 

0.0 

0.1 

ND 

0.7 

1 

ND 

ND 

-6.1

-4.4

ND

-1.2

-1.0

Westville Cd 

Co 

Cr 

Cu 

Ni 

Pb 

Zn 

ND 

0.0 

0.2 

0.3 

0.1 

0.2 

1 

ND 

-5.6

-3.3

-2.7

-4.3

-4.5

-0.8

Montebello Cd 

Co 

Cr 

Cu 

Ni 

Pb 

Zn 

ND 

0.3 

0.2 

0.3 

ND 

0.2 

1 

ND 

-3.9

-4.3

-3.8

ND

-4.5

-2.0

Tongaat Cd 

Co 

Cr 

Cu 

Ni 

Pb 

Zn 

ND 

0.3 

0.3 

0.3 

0.0 

0.2 

1 

ND 

-3.2

-3.5

-3.5

-6.6

-3.9

-1.7
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Goqokazi Cd 

Co 

Cr 

Cu 

Ni 

Pb 

Zn 

ND 

ND 

0.3 

0.2 

0.1 

0.1 

1 

ND 

ND 

-3.4

-3.7

-4.9

-5.3

-1.5

ND - not determinable. 

Pollution is defined as contamination in the soil that can cause adverse biological effects (Wu et 

al., 2014). The pollution index (PI) values of elements at different sites and Nemerow integrated 

pollution indices (NIPI) for each element are shown in Table 35. Pollution indices indicated no 

pollution by elements Co, Cu, Ni and Pb; low levels of pollution for Cr (Msinga) and Zn 

(Bhambayi); and high levels of pollution for Cd (Msinga). NIPIs, which assessed overall 

contamination of soils, indicated no pollution by Co, Cu, Ni and Pb, gave a warning-line of 

pollution for Cr and Zn and moderate levels of pollution for Cd.  

Table 35: Single pollution indices and Nemerow integrated pollution indices of soil from eight 

different sites. 

Sites Pollution index 

Cd Co Cr Cu Ni Pb Zn 

Bhambayi ND 0.15 0.18 0.24 0.07 0.30 1.48 

Msinga 3.59 0.42 1.02 0.86 0.53 0.04 0.78 

Opongola 0.71 0.32 0.87 0.46 0.77 0.03 0.73 

Nkwazi ND ND 0.02 0.07 ND ND 0.77 

Westville ND 0.03 0.15 0.23 0.07 0.65 0.88 

Montebello ND 0.10 0.08 0.11 ND 0.07 0.38 

Tongaat ND 0.17 0.14 0.13 0.02 0.10 0.48 

Goqokazi ND ND 0.14 0.12 0.05 0.04 0.54 

Nemerow integrated 

pollution index 

2.96 0.33 0.76 0.64 0.57 0.48 1.06 

ND - not determinable. 
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The potential ecological risk assessment reflects the effects of various contaminants and reveals 

the extensive influence of multiple contaminants in an environment (Wang et al., 2013). The single 

risk factor and potential ecological risk factor for elements in soils are presented in Table 36. The 

ecological risk levels of single factor pollution indicated low pollution for all elements (less than 

40) except Cd at Msinga (single risk factor = 108) where it indicated higher pollution similar to

pollution index. The potential ecological risk of elements at the eight sites were in decreasing order 

of Cd > Cu > Ni > Pb > Zn > Cr. The potential toxicity index indicated low-grade risk for all 

elements at the eight sites. 

Table 36: Single risk factor and potential ecological risk factor of soil from eight different sites. 

Sites Single risk factor Potential ecological risk factor 

Cd Cr Cu Ni Pb Zn 

Bhambayi ND 0.35 1.21 0.33 1.50 1.48 4.87 

Msinga 108 2.05 4.32 2.65 0.20 0.78 118 

Opongola 21.4 1.75 2.28 3.84 0.16 0.73 30.1 

Nkwazi ND 0.04 0.35 ND ND 0.77 8.75 

Westville ND 0.30 1.13 0.37 3.26 0.88 5.93 

Montebello ND 0.16 0.54 ND 0.33 0.38 1.40 

Tongaat ND 0.27 0.65 0.12 0.49 0.48 2.00 

Goqokazi ND 0.28 0.58 0.25 0.19 0.54 1.83 

ND - not determinable 

Statistical analysis 

The significance of principal component analysis is the reduction of the dimensionality of a set of 

datasets consisting of a large number of related variables, whist retaining as much as possible, the 

variation present in the dataset. This is done by extracting new sets of variables called the principal 
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components from the original dataset. Principal components point to the direction where there is 

the most variance (Jolliffe, 1986). Component loadings higher than 0.71 are deemed to be excellent 

(Nowak, 1998). The component matrix and rotated component matrix of the elements in the soil 

and roots are given in Table 37 and the resultant loading scatter plots are presented in Figure 17. 

The components were rotated using Varimax rotation. The components of minor elements (As, 

Cd, Co, Cr, Cu, Fe, Mn and Ni) present in the soil and roots were obtained to deduce their possible 

origin. In soil, two principal components were extracted with eigenvalues >1 explaining 83% of 

the total variance. The first principal component (66.1% of the variance) had high loadings of As, 

Cd, Co, Cr, Cu, Fe, Ni and partially Mn which could be from natural sources (eg. Fe and Mn oxides 

and hydroxides). The second principal component (16.5% of the variance) had high loadings of 

Pb and Zn, indicating that these elements could be from a common source such as automobile 

emissions. Zinc could be emitted from the erosion of automobile tyres (Brimblecombe, 1996; Dale  

& Freedman, 1982). In roots, three components were extracted with eigenvalues >1 explaining 

91% of the total variance. The first principal component (40.7% of the variance) had high loadings 

of Cd, Co, Cr, Cu and Fe, similar to soil. The second principal component (29.7% of the variance) 

had high loadings of As, Ni and Zn. The third principal component (20.3% of the variance) had 

high loadings of Mn and Pb. Minor elements enter the roots from the soil solution into the xylem 

and are generally bound by organic chelates upon entry into the plant cells. Non-essential elements 

such as Cd and Pb are transported via the apoplastic pathway which aids in the transportation of 

water and ions from soil through roots into the plant (White, 2012). 



 

152 

 

Table 37: Component matrices for elements in the soil and roots. 

Elements Rotated component matrix 

Soil Roots 

Principal component 1 Principal component 2 Principal component 1 Principal component 2 Principal component 3 

Eigenvalues 6.607 1.651 4.065 2.972 2.028 

% Total variance 66.069 16.505 40.652 29.718 20.279 

% Cumulative variance  66.069 82.574 40.652 70.370 90.649 

As 0.967 -0.166 0.356 0.786 0.043 

Cd 0.888 -0.047 0.913 0.351 0.155 

Co 0.949 -0.150 0.949 0.223 0.114 

Cr 0.985 -0.101 0.974 -0.031 0.061 

Cu 0.977 0.087 0.673 0.176 0.650 

Fe 0.976 -0.023 0.836 0.504 0.165 

Mn 0.505 -0.445 0.164 -0.251 0.868 

Ni 0.893 -0.134 0.275 0.933 -0.064 

Pb -0.176 0.772 0.036 0.170 0.882 

Zn 0.154 0.876 0.022 0.966 0.029 
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Figure 17: Principal component analysis loading plot for ten elements in the soil and roots (constructed for eight sampling sites).
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Ward’s method was used to indicate the degree of association between elements in the soil and 

roots, shown by the Euclidean distance (Fig. 17). In this study, cluster analysis was used to further 

analyse the possible source of elements. In soil, there were two main clusters, A and B, where A 

showed close associations amongst As, Cd, Co, Cr, Cu, Fe and Ni, similar to principal component 

analysis, and B showed close associations between Pb and Zn, also similar to principal component 

analysis of soil, thereby confirming that these elements are from a common source. Three clusters 

were observed in the roots; cluster A showed close associations between Ni and Zn, Cluster B 

showed close associations amongst As, Cd, Co, Cr and Fe, and cluster C showed close associations 

between Mn and Pb, similar to principal component analysis of roots.
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Figure 18: Cluster analysis using Ward’s method of elements in soil and roots measured by Euclidean distan.
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Site, element and their interaction affected elemental concentrations in O. tenax leaves. Therefore, 

elements in the leaves were analysed separately (Table 38). For all elements analysed, total and 

exchangeable soil concentrations alone had no effect on plant concentrations but there were 

significant differences between the concentrations found at the different sites (P≤0.001). This 

could be due to factors such as soil quality parameters (pH, soil organic matter and cation exchange 

capacity) and environmental conditions such as temperature, moisture and wind at the different 

sites (Mahlangeni et al., 2016a). 
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Table 38: Analysis of covariance at all sites involving the presence of elements in O. tenax leaves. 

Element 

Source As Ca Co Cr Cu Fe Mg Mn Ni Pb Zn 

Soil-total not 

significant 

not 

significant 

not 

significant 

not 

significant 

not 

significant 

not 

significant 

not 

significant 

not 

significant 

not 

significant 

not 

significant 

not 

significant 

Soil-

exchangeable 

not 

significant 

not 

significant 

not 

significant 

not 

significant 

not 

significant 

not 

significant 

not 

significant 

not 

significant 

not 

significant 

not 

significant 

not 

significant 

Site significant significant significant significant significant significant significant significant significant significant significant 

significant at calculated probability values ≤ 0.001. 
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As described previously in our work (Mahlangeni et al., 2012; Mahlangeni et al., 2016a; Moodley 

et al., 2012; Reddy et al., 2014), the correlations between elements in the plant and soil were 

evaluated by obtaining correlation coefficients (r) where r values ranged from -1 to +1. Correlation 

coefficients >0.8 indicates a strong positive linear relationship, < -0.8 indicates a strong negative 

linear relationship and 0 indicates no relationship. An inter-item correlation matrix between the 

soil (total and exchangeable) and plant concentrations of elements, soil pH, soil organic matter and 

cation exchange capacity was obtained and only the strong correlations are presented in Table 39 

and 40.  

A significant positive correlation was observed between soil pH and exchangeable As, Cu and Ni 

and a significant negative correlation was observed between cation exchange capacity and 

exchangeable Zn. Soil organic matter correlated positively with Ca in the stem and Mg in the roots. 

There was a six-way synergy between total soil As, Co, Cr, Cu, Fe and Ni/Cd, indicating that these 

elements have a common origin as indicated by principal component analysis and cluster analysis 

(Table 40). Iron oxides and hydroxides have high sorption capacities, particularly for trace 

elements, which can accumulate at the Fe rich points. Singh and Gilkes (1992) reported that major 

portions of Co, Cr, Cu and Ni, amongst other elements in the soils of South-Western Australia, 

were concentrated with the Fe oxides. Studies by Liao et al. (2010) on the sorption of Ni and Cd 

in single and binary Ni-Cd systems in three different soils showed that from the estimated Kf values 

of the absorption isotherms, there was significant mutual inhibition of Cd and Ni sorption in soils; 

the suppression effect was increased with higher concentrations of metal ions in soil. This could 

explain the six-way synergy with either Cd or Ni as the sixth element. 
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Table 39: Inter-correlation matrix of soil pH, soil organic matter, cation exchange capacity and elements in soil (exchangeable), in stems and roots 

of O. tenax. 

As-exchangeable Cu-exchangeable Ni-exchangeable Zn-exchangeable Ca-stem Mg-roots 

pH 0.8* 0.8* 0.8* not significant not significant not significant 

Soil organic matter not significant not significant not significant not significant 0.8* 0.8* 

Cation exchange capacity not significant not significant not significant -0.8* not significant not significant 

* -  correlations significant at calculated probability values ≤ 0.05.
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Table 40: Inter-correlation matrix of elements in soil (total and exchangeable), in leaves and stems 

of O. tenax. 

 As-total Cd-total Co-total Cr-total Cu-total Fe-total 

Cd-total 0.8*      

Co-total 0.9** 0.8*     

Cr-total 1.0** 0.8* 0.9**    

Cu-total 0.9** 1.0** 0.9** 0.9**   

Fe-total 0.9** 0.9** 0.9** 1.0** 1.0**  

Ni-total 1.0** not significant 0.8* 0.9** 0.8* 0.8* 

       

 As-total Co-total Cr-total Cu-leaves Zn-leaves 

Cu-exchangeable 0.8* 0.8* 0.8* not significant  not significant  

Mg-exchangeable 0.9** 0.7* 0.9** not significant  not significant  

Ni-exchangeable 0.8* 0.8* 0.8* not significant  not significant  

Pb-exchangeable not significant  not significant  not significant  0.9** 0.8* 

 

A synergistic relationship occurs when an increase in total soil concentration of one element 

increases exchangeability of another, indicating that these elements are competing for the same 

adsorption sites (Kalavrouziotis et al., 2008). There was a significantly positive correlation 

between total soil As, Co and Cr with exchangeable Cu, Mg and Ni, indicating a synergistic 

relationship. A positive correlation was observed between exchangeable Pb with Zn and Cu in the 

leaves. This indicates that high concentrations of Pb in the soil solution promotes uptake of Cu and 

Zn. The plasma membrane metal uptake system has a high affinity for certain metal ions, thus Cu 

and Zn are preferentially absorbed by the plant when ion concentrations increase, leaving more Pb 

in the soil solution (Alloway, 1995; Krämer et al., 2007). 
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CONCLUSION 

Entry of toxic trace elements into the food web via plant-soil interactions poses a health risk for 

both animals and humans. In this study, although there was Cd contamination and pollution at 

Msinga, there was no accumulation of the metal in the plant. Plant roots stored trace elements As, 

Cd, Pb and controlled the amounts that were transported into the stems and edible leaves. Principal 

component and cluster analysis revealed that As, Cd, Co, Cr, Cu, Ni and Fe were from the same 

natural source (Fe and Mn hydroxides and oxides) which was confirmed by correlation data. Site 

location had influence on elemental concentrations in the plant, however the plant controlled 

uptake as evidenced by the root and stem elemental concentrations, as well as accumulation and 

exclusion of elements in the leaves. The plant therefore takes up elements in order to accomplish 

its normal functions. 
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CHAPTER SIX 

Uptake, translocation and bioaccumulation of elements in the forest nettle (Laportea 

alatipes) from KwaZulu-Natal, South Africa 

ABSTRACT 

Elements found in the edible parts of plants are considered the main source of nutrients for humans 

and animals. In this study, the distribution of elements in the edible forest nettle (Laportea alatipes) 

was evaluated as a function of geographical region by sampling from eight different locations in 

KwaZulu-Natal, South Africa. Translocation and bioaccumulation factors were used to assess the 

transport of elements between roots, stems and leaves. Translocation factors for Co, Cr, Cu, Mn, 

Ni, Pb and Zn showed effective translocation from stems to leaves. Bioaccumulation factors for 

Co, Cr, Mn, Ni, Pb and Zn indicated that the plant excluded these elements to meet physiological 

requirements whilst storing the elements As, Cd, Co, Cr, Cu, Mn, Ni, Pb and Zn in the roots thereby 

reducing its translocation to the aerial parts of the plant. Concentrations of minor elements in the 

leaves were found to be in decreasing order of Fe> Mn> Zn> Cu> Cr> Ni> Co> Pb> Se> As>Cd. 

Geo-accumulation indices and enrichment factors showed no contamination or minimal 

enrichment of trace elements in the soil. Principal component and cluster analysis of soil showed 

Co, Cr, Cu, Fe, Ni, Pb and Zn to come from the same source, whilst Mn was from a natural source, 

chelated on the soil organic matter. Correlation analysis showed significantly positive correlation 

between total soil Ni with Co, Cr and Pb as well as total soil Pb with Fe and Zn.  

Keywords Trace metals, Bioaccumulation factor, Translocation factor, Nettle 
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INTRODUCTION 

In the plant, elements such as Cu, Cr, Mn, Fe and Zn are essential for various enzymatic processes, 

structural formation and the functioning of various membranes; their deficiency in the plant may 

result in metabolic disruptions and their superfluity may cause toxic effects (Marschner, 1983). 

The source of plant nutrients is exogenous; these nutrients are present naturally in the soil but their 

levels are affected by anthropogenic inputs (Chibuike & Obiora, 2014).  

The distribution and content of elements in the soil as well as their form and availability differs 

(Lawlor, 1991). The different tissue organs of the plant contain varying amounts of nutrients 

(Epstein, 1972). Nutrients are taken up or absorbed through the roots of the plant in inorganic 

form, from where they are transported to the various plant tissues via xylem vessels. Translocation 

is the movement of elements, in the complexed form, from the roots to the shoots or leaves of the 

plant through the xylem vessels (Greger, 2004). These nutrients, through various processes in the 

roots can also become immobile and this restricted uptake may result in nutrient deficiency’s 

(Kabata-Pendias, 2011). Conversely, increased uptake and translocated to the various tissue organs 

of the plant may result in bioaccumulation. Bioaccumulation is the accumulation of a chemical 

entity in the tissue of an organism and, in the case of plants, soil characteristics such as elemental 

soil concentrations influence bioaccumulation (Environmental Protection Agency, 2000). Other 

soil characteristics that affect bioaccumulation include cation exchange capacity (CEC), pH, 

organic matter and competition of elements at the uptake sites (Hardiman et al., 1984). An increase 

in CEC of the soil increases elemental uptake and a decrease in soil pH promotes an increase in 

elemental uptake (Marschner, 1995).  
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Wild edible plants have been a source of food for centuries, as they are accessible and affordable 

but, more importantly, they are a rich source of minerals and nutrients. Laportea alatipes Hook. f. 

(forest nettle) belonging to the Urticaceae family, is found in three discrete areas in South Africa 

namely Limpopo, KwaZulu-Natal and Eastern Cape (JSTOR, 2015). The local people of these 

regions eat this plant although it has dense stinging hairs on the surface leaves and stems.  

Studies on the translocation and bioaccumulation of elements of edible plant species have shown 

good correlation between plant and soil concentrations (Nouri et al., 2009).  These studies indicate 

that soil enrichment influences absorption and uptake of these elements by the plant and is the 

route of human exposure to toxic elements. Previously, we reported on the distribution and 

bioaccumulation of metals in edible medicinal plant species and the following nettles (Laportea 

peduncularis subspecies peduncularis (river nettle) and Urtica dioica (stinging nettle)) 

(Jonnalagadda et al., 2008; Mahlangeni et al., 2016a; Mahlangeni et al., 2016b; Moodley et al., 

2012). In this study, we report on the concentration of elements in the plant species Laportea 

alatipes Hook. f. (forest nettle) and corresponding growth soil to evaluate the impact of soil quality 

on elemental uptake by the plant and to determine its influence on bioaccumulation and 

translocation by the plant.  
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MATERIALS AND METHODS 

 Collection and preparation of soil and plant samples 

Plant and soil (0-15 cm depth, cone and quartering method) samples were collected from the 

different sites in KwaZulu-Natal, South Africa (Umgababa beach, Hluhluwe, Esigedleni, 

Ndwedwe, Penicuik, Sokhulu, Montebello and Amagcino) (Fig. 19). The samples were from 

forestlands, rural, suburban and urban areas (Table 41). Plant samples were divided into roots, 

stems and leaves, washed with double distilled water, oven dried at 50 ºC, and crushed. Soil 

samples were sieved (2 mm mesh), oven dried at 50 ºC and ground with a mortar and pestle to 

reduce the particle size. All samples were stored in labelled polyethylene bags in a refrigerator at 

4 ºC until analysed. 

Figure 19: Map showing eight selected sampling sites in KwaZulu-Natal, South Africa. 
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Table 41: Sampling area description, geographical coordination, in decimal degrees, and altitude 

for eight different sites. 

Sampling area Sites Site description Latitude Longitude Altitude (m) 

Forest land Amagcino 

Hluhluwe 

Montebello 

-Brown loamy soil in forest

next to main road (220m)

-Blackish loamy soil in forest

next to main road (5m)

- Dark brown loamy soil in

deep forest

-30.129913

-28.002701

-29.448814

30.822694 

32.073632 

30.813846 

9 

468 

868 

Rural area Esigedleni 

Ndwedwe 

Sokhulu 

-Brown loamy soil in a

vegetable garden

-Brown loamy soil in a

vegetable garden

-Light grey beach sand

-29.2832458

-29.518063

-28.518145

30.9719488 

30.9652310 

32.3962810 

293 

557 

94 

Suburban area Penicuik 

Umgababa beach 

-Greyish beach sand in

controlled plantation next to

N2 highway road (100m)

-Reddish beach sand, next to

R102 main road (60m)

-28.578557

-30.141663

32.103398 

30.837976 

115 

14 

Instrumentation 

All extracted and digested samples were analyzed by Inductively Coupled Plasma-Optical 

Emission Spectrometry (ICP-OES) (Optima 5300 DV, Perkin Elmer, Shelton, Conn.) 

Analytical methods 

The pH of the soil was obtained using a 1:2 ratio of dry soil: 0.01 mol L-1 CaCl2 solution (wt/v). 

The Walkley-Black wet extraction technique was used for the determination of soil organic matter 

(SOM) (Walkley & Black, 1934). The cation exchange capacity (CEC) was determined by using 
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ammonium acetate at pH 7 (Chapman, 1965). Three extractant solutions were used to represent 

the exchangeable form of elements in the soil. These were an acetic acid (0.11 mol L-1 CH3COOH) 

extractant (1:10 ratio of soil: extractant) (Quevauriller et al., 1997), combined unbuffered salt 

solution (0.01 mol L-1 CaCl2, NH4C2H3O2, NH4NO3) (1:10 ratio of soil: extractant) (Hall, 1998; 

Novosamsky et al., 1993), EDTA extractant (0.05 M Na2EDTA) (1:10 ratio of soil: extractant) 

(Quevauriller et al., 1996).  

For both plant and soil, digestions were performed using the Microwave Accelerated Reaction 

System (MARS 6, CEM Corporation, Matthews, North Carolina, USA) with patented Xpress Plus 

technologyTM (Table 42). Thereafter, digests were filtered into 25 mL volumetric flasks, diluted to 

the mark with double distilled water and stored in polyethylene bottles for elemental analysis. The 

analytical technique was validated by use of a certified reference material (CRM). Samples 

(extracted and digested) were analysed for As, Ca, Co, Cr, Cu, Fe, Mg, Mn, Ni, Pb, Se, and Zn by 

ICP-OES in quadruplicate.  All chemicals used were supplied by Merck (Kenilworth, USA) were 

of analytical-reagent grade. Working standards were prepared in double distilled water and 10 mL 

of 70% HNO3 to match the sample matrix. To prevent contamination, glassware and other 

equipment was soaked in 20% HNO3 and rinsed off with double distilled water, prior to use.  

Table 42: Microwave digestion programs with parameters for soil and plant. 

Type of sample, 

 mass (g) 

Reagent Power, W Temperature, °C Ramp time, min Hold time, min 

Soil and soil CRM, 

0.25 

70% HNO3 1600 200 15 15 

Plant and plant CRM, 

0.20 

70% HNO3 1600 180 15 15 
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Bioaccumulation and translocation factor 

The bioaccumulation factor (BAF) is the ratio of the concentration of element accumulated inside 

the edible parts of the plant organism (Cplant) and the concentration of the element in the soil (Csoil). 

For plant analysis, BAF values <1 indicates an excluder, from 1-10 indicates an accumulator and 

>10 indicates a hyper-accumulator (Ma et al., 2001)

BAF=
Cplant

Csoil
(17) 

The translocation factor is the ratio of the concentration of metal in the leaves (Cleaves) or stems 

(Cstems) to roots (Croots)  (Rezvani & Zaefarian, 2011). An effective translocation between the

various plant parts is indicated by a TF value >1 (Baker & Brooks, 1989).

TF=
Cleaves

Croots
or TF=

Cstems

Croots
(18) 

Soil pollution indices 

The presence, level and extent of anthropogenic based contamination in the soil may be assessed 

by the Enrichment factor (EF) and geo-accumulation index (Igeo) (Barbieri, 2016). These factors 

are obtained by comparing the concentration of the element in the soil to the background

concentration in the earth’s crust. 

EF values are calculated using the following equation: 

EF=
[

X

RE
]
soil

[
X

RE
]
crust

(19)



Where [
X

RE
]

soil
is the mean ratio between the concentration of the target element and RE is the 

reference element in the soil whilst [
X

RE
]

crust
is the mean ratio between the concentration of the target

element and RE is the reference element in the earth’s crust. Zinc is the reference element used 

in South Africa since total baseline concentrations is known (Herselman et al., 2005; 

Mendiola et al., 2008).  

The geo-accumulation index as described by Müller (1969) measures the extent to which metal 

contamination has occurred by comparing measured metal concentrations to that of the earth’s 

crust and is calculated by the following equation: 

Igeo=log
2

[
Cn

1.5 Bn
] (20) 

Where Cn is the measured concentration of the element in the soil sample and Bn is the 

geochemical background value of the earth’s crust (Herselman et al., 2005). The factor 1.5 is 

introduced to minimise possible differences in the background values due to lithological 

differences.  

Data analysis 

Statistically significant differences between the four means was revealed using one-way analysis 

of variance (ANOVA) and Tukey’s post hoc test was applied to determine where these 

differences occurred at the 5% level.  The relationship between input variables was classified 

using Principal component analysis (PCA) and cluster analysis (CA). PCA transforms a 

number of correlated variables into a smaller number of uncorrelated variables called principal 

components; these are rotated (using Varimax rotation) to maximize the total sum of squares of 

the loadings along the new axis (Brereton, 1990). In this study, component loadings greater 

than 0.71 was considered excellent (Nowak, 1998). Cluster analysis revealed similarities 
177 

between elemental concentrations 
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and physicochemical characteristics of soil from different sites. Correlation analysis, using 

Pearson’s correlation coefficients (r), was performed using elemental concentrations in plant tissue 

and soil (total and exchangeable) to establish significant plant-soil relationships. All statistical 

analyses were done using the Statistical Package for the Social Science (PASW Statistics, Version 

23, IBM Corporation, Cornell, New York). 

RESULTS AND DISCUSSION 

Quality Assurance 

The statistical data obtained from the analysis of the CRMs (metals in soil (D081-540) and White 

clover (BCR 402)) is presented in Table 43.  The data, which was statistically evaluated using the 

statistical mean and standard deviation, showed that the experimental results for the different 

elements are within the acceptable ranges of that stipulated for the CRMs, meaning that the method 

is accurate at the 95% confidence interval.  
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Table 43: Comparison of measured values (mg kg-1 dry mass, mean ± standard deviation, 95% 

confidence interval, n=4) to certified values for certified reference materials, Metals in soil, D081-

540 and White clover, BCR 402. 

Elements Certified Value Accepted value Measured value 

White clover 

Fe 244 - 237 ± 18.0 

Se 6.70 ± 0.25 - 6.81 ± 1.40 

Zn 25.2 - 30.3 ± 6.37 

Soil 

Ca 26 200 ± 7.27 5 620-9 440 5 476 ± 241 

Co 232 ± 4.10 148-250 170 ± 13.2 

Cr 86.8 ± 6.1 60.0-104 69.0 ± 5.65 

Cu 268 ± 4.72 204-332 210 ± 16.2 

Fe 12 800 ± 18.0 5 380-20 100 9 217 ± 673 

Mg 2 850 ± 5.51 1 860-3 840 2 221 ± 166 

Ni 236 ± 4.17 175-302 189 ± 14.0 

Pb 97.9 ± 11.3 69.3-126 89.7 ± 12.5 

Zn 130 ± 11.5 87-173 104 ± 10.4 

Soil properties pH, soil organic matter (SOM) and cation exchange capacity (CEC) 

The measured soil properties (pH, SOM and CEC) for the various sites are presented in Table 44. 

The availability of trace elements in soil is influenced by the pH, SOM and CEC (Škrbić & Đurišić-

Mladenović, 2013). Soil pH ranged from 4.13 – 4.91, soils with pH less than 5 are considered 

acidic and low in the nutrients Ca and Mg, as observed at the site, Sokhulu.  Soil organic matter 

ranged from 1.83 – 13.94 %, the lowest being at Sokhulu and CEC ranged from 0.41 – 11.47 meq 
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100g-1.  In soil, low pH, low organic matter and low CEC decreases fixation of metals to soil 

particles and results in leaching of metals.  

Table 44: Soil pH, soil organic matter (SOM) and cation exchange capacity (CEC) (mean ± 

standard deviation, n=4) of soil samples from eight different sites. 

Sampling area Site pH SOM (%) CEC (meq 100g-1) 

Forest land Amagcino 

Hluhluwe 

Montebello 

4.9 ± 0.05 a 

4.9 ± 0.04 a 

4.4± 0.02 b 

13.3 ± 0.61 b 

13.9 ± 0.66 b 

5.2 ± 0.47 e 

4.8 ± 0.57 c 

6.3 ± 0.27 b 

3.3 ± 0.17 e 

Rural Esigedleni 

Ndwedwe 

Sokhulu 

4.4 ± 0.05 b 

4.4 ± 0.13 b 

4.1 ± 0.05 d 

12.7 ± 1.37 b 

7.9 ± 0.44 d 

1.8 ± 0.22 a 

4.8 ± 079 c 

11.5 ± 0.17 d 

3.3 ± 0.50 e 

Suburban Penicuik 

Umgababa beach 

4.6 ± 0.05 c 

4.8 ± 0.05 a 

2.0 ± 0.44 a 

2.8 ± 0.19 a 

0.4 ± 0.04 a 

0.4 ± 0.08 a 

Elemental concentrations in soil and plant 

Concentration of elements in the plant (leaves, stems and roots) and soil (total and exchangeable) 

as well as the exchangeable percentage (%Ex) which is the percentage of total element in soil that 

is in exchangeable form ((Soil Ex/Soil T) x 100), is presented in Table 45. The extraction of mobile 

or exchangeable fraction of elements from the soil was conducted by three single extraction 

methods. The results showed acetic acid to best extract exchangeable Cr and Mg, the combined 

unbuffered salt solution to best extract exchangeable Ca and the EDTA solution to best extract 

exchangeable Co, Cu, Fe, Mn, Ni, Pb and Zn. Concentrations of the elements Ca (772 – 5 077 µg 

g-1), Fe (1 859 – 33 112 µg g-1) and Mg (186 – 3 325 µg g-1) were found to be high in the soil.

These elements were higher in forestland soils than rural and suburban soils. These findings are 

similar to findings of previous studies done on elemental concentrations in KwaZulu-Natal soils 

(Mahlangeni et al., 2012; Mahlangeni et al., 2016a; Moodley et al., 2007; Moodley et al., 2012; 
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Reddy et al., 2014). Although total soil Fe was high, it was present in mostly insoluble form (Fe3+); 

on average only about 2.4% was in exchangeable form. Previous studies have indicated a positive 

relationship between SOM and exchangeable soil Fe and Cu (Zhanbin et al., 2013). The higher the 

SOM, the higher the adsorption of metals onto soil particles by way of complexing with organic 

acids. High SOM at sites Amagcino, Hluhluwe and Esigedleni could therefore explain high soil 

concentrations of Fe and Cu.  
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Table 45: Concentration of elements in µg g-1 (mean ± SD, n=4) in leaves, stems and roots of L. alatipes and soil (Total (T) and 

Exchangeable (Ex)) samples and exchangeable percentage. 

Elements Sampling 

areas 

Sites Soil-T Soil-Ex [Soil 

Ex/Soil T] 

(%) 

Leaves Stems Roots 

As Forest land 

Rural 

Suburban 

Amagcino 

Hluhluwe 

Montebello 

Esigedleni 

Ndwedwe 

Sokhulu 

Penicuik 

Umgababa 

beach 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

- 

- 

- 

- 

- 

- 

- 

- 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

4.69 ± 0.763 b* 

4.00 ± 0.361 ab 

3.07 ± 0.442 a 

4.22 ± 0.538 ab 

3.65 ± 0.735 ab 

4.09 ± 0.827 ab 

4.26 ± 0.951 ab 

3.66 ± 0.393 ab 

6.23 ± 0.970 bc 

4.74 ± 0.580 ab 

3.76 ± 0.373 a 

6.99 ± 1.03 c 

6.19 ± 0.739 bc 

3.32 ± 0.301 a 

3.79 ± 0.845 a 

4.04 ± 0.829 a 

Ca Forest land 

Rural 

Suburban 

Amagcino 

Hluhluwe 

Montebello 

Esigedleni 

Ndwedwe 

Sokhulu 

Penicuik 

Umgababa 

beach 

5 077 ± 96.2 e 

4 374 ± 284 b 

1 875 ± 129 c 

1 962 ± 68.7 c 

1 864 ± 146 c 

772 ± 40.8 d 

939 ± 120 d 

3 280 ± 402 a 

324 ± 22.1 c 

455 ± 27.0 b 

337 ± 12.8 ac 

335 ± 24.7 ac 

348 ± 17.7 ac 

362 ± 23.8 ac 

373 ± 15.0 a 

378 ± 11.1 a 

6.5 

10.4 

18.0 

17.1 

18.7 

46.9 

39.7 

11.5 

12 033 ± 211 d 

23 180 ± 2 452 b 

17 215 ± 680 a 

35 971 ± 1134 c 

9 687 ± 463 d 

10 974 ± 1 058 d 

18 168 ± 2 573 a 

18 545 ± 771 a 

6 731 ± 478 c  

9 621 ± 1 055 b 

6 871 ± 423 c 

6 107 ± 930 c 

9 871 ± 1 840 b 

12 289 ± 386 d  

16 314 ± 1 038 a 

16 776 ± 1 025 a 

13 706 ± 1 749 a 

8 236 ± 432 b 

4 820 ± 522 c 

9 336 ± 1 534 b 

5 134 ± 220 c 

8 019 ± 907 b 

15 665 ± 1 317 a 

16 010 ± 1 535 a 

Cd Forest land 

Rural 

Suburban 

Amagcino 

Hluhluwe 

Montebello 

Esigedleni 

Ndwedwe 

Sokhulu 

Penicuik 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

- 

- 

- 

- 

- 

- 

- 

1.17 ± 0.227 b 

ND 

ND 

1.86 ± 0.206 a 

ND 

ND 

1.86 ± 0.293 a 

0.961 ± 0.133 b 

ND 

ND 

ND 

ND 

ND 

0.512 ± 0.0726 a 

1.91 ± 0.396 d  

1.14 ± 0.160 b 

0.486 ± 0.0973 a 

2.70 ± 0.233 c 

1.82 ± 0.204 d 

ND 

1.09 ± 0.0999 b 
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Umgababa 

beach 

ND ND - ND ND 0.449 ± 0.0303 a 

Co Forest land 

Rural 

Suburban 

Amagcino 

Hluhluwe 

Montebello 

Esigedleni 

Ndwedwe 

Sokhulu 

Penicuik 

Umgababa 

beach 

11.3 ± 0.221 b 

5.41 ± 1.31 a 

4.30 ± 1.62 a 

ND 

ND 

ND 

ND 

3.85 ± 0.884 a 

1.06 ± 0.0500 b  

1.01 ± 0.0556 b 

0.883 ± 0.0357 c 

ND 

ND 

ND 

ND 

0.740 ± 0.0330 a 

9.4 

18.7 

20.5 

- 

- 

- 

- 

19.2 

2.45 ± 0.558 c  

0.880 ± 0.149 a 

1.28 ± 0.0645 a 

1.42 ± 0.140 a 

0.805 ± 0.162 a 

0.975 ± 0.138 a 

3.65 ± 0.533 b 

1.11 ± 0.050 a 

1.61 ± 0.218 d  

0.683 ± 0.0331 a 

1.20 ± 0.091 c 

0.348 ± 0.0069 b 

0.553 ± 0.0378 ab 

0.806 ± 0.064 a 

1.20 ± 0.186 c 

0.751 ± 0.0272 a 

2.56 ± 0.498 bc 

2.33 ± 0.270 bc 

2.65 ± 0.453 bc 

1.65 ± 0.0588 ad 

2.87 ± 0.297 b 

2.14 ± 0.0893 cd 

0.517 ± 0.0247 a 

1.11 ± 0.117 a 

Cr Forest land 

Rural 

Suburban 

Amagcino 

Hluhluwe 

Montebello 

Esigedleni 

Ndwedwe 

Sokhulu 

Penicuik 

Umgababa 

beach 

84.6 ± 3.28 e 

12.7 ± 1.27 b 

25.6 ± 6.08 bc 

29.9 ± 2.35 c 

18.1 ± 4.34 bc 

14.3 ± 3.74 bc 

47.0 ± 9.87 d 

124 ± 14.6 a 

0.150 ± 0.0042 b  

0.156 ± 0.0045 bc 

0.179 ± 0.0056 ac 

0.166 ± 0.0070 ac 

0.149 ± 0.0044 b 

0.148 ± 0.0096 b 

0.146 ± 0.0066 b 

0.175 ± 0.0099 a 

0.2 

1.2 

0.7 

0.6 

0.8 

1.0 

0.3 

0.1 

20.8 ± 1.31 d 

5.46 ± 1.00 a 

5.43 ± 0.750 a 

12.1 ± 1.32 a 

5.25 ± 0.516 a 

12.3 ± 5.23 a 

41.8 ± 6.58 c 

9.48 ± 0.866 a 

0.0098 ± 0.0012 c  

0.0012 ± 0.0003 ab 

0.0015 ± 0.0003 ab 

0.0006 ± 0.0001 b 

0.0009 ± 0 ab 

0.0067 ± 0.0007 d 

0.0084 ± 0.0013 c 

0.0025 ± 0.0004 a 

0.0231 ± 0.0036 d 

0.0060 ± 0.0010 a 

0.0039 ± 0.0009 a 

0.0127 ± 0.0009 c 

0.0215 ± 0.0047 d 

0.0013 ± 0.0002 a 

0.0195 ± 0.0018 d 

0.0066 ± 0.0008 a 

Cu Forest land 

Rural 

Suburban 

Amagcino 

Hluhluwe 

Montebello 

Esigedleni 

Ndwedwe 

Sokhulu 

Penicuik 

Umgababa 

beach 

61.6 ± 10.6 c 

39.2 ± 1.48 b 

14.1 ± 2.89 a 

14.8 ± 1.83 a 

12.7 ± 2.57 a 

5.53 ± 0.274 a 

6.83 ± 0.781 a 

11.8 ± 3.27 a 

1.81 ± 0.0649 f  

1.38 ± 0.0471 b 

0.415 ± 0.0306 d 

0.753 ± 0.0324 c 

0.565 ± 0.0650 a 

0.306 ± 0.0109 e 

0.351 ± 0.0219 de 

0.617 ± 0.0415 a 

2.9 

3.5 

2.9 

5.1 

4.5 

5.5 

5.1 

5.2 

14.8 ± 0.619 ace 

16.3 ± 0.752 ab 

10.6 ± 1.78 c 

19.1 ± 1.05 b 

12.0 ± 1.19 ce 

15.5 ± 1.08 abe 

26.2 ± 3.18 d 

17.5 ± 2.99 ab 

15.5 ± 1.49 ac 

19.5 ± 2.29 a 

9.84 ± 1.71 b 

7.99 ± 0.782 b 

8.18 ± 1.45 b 

31.2 ± 4.16 d 

10.9 ± 2.55 bc 

18.4 ± 2.56 a 

17.4 ± 1.47 bc 

23.9 ± 4.83 b 

8.32 ± 0.644 ad 

13.8 ± 2.14 ac 

19.5 ± 3.64 bc 

5.16 ± 0.921 d 

14.7 ± 3.45 ac 

14.4 ± 2.21 ac 
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Fe Forest land 

Rural 

Suburban 

Amagcino 

Hluhluwe 

Montebello 

Esigedleni 

Ndwedwe 

Sokhulu 

Penicuik 

Umgababa 

beach 

26 256 ± 373 f  

13 387 ± 699 ab 

12 850 ± 1 894 b 

33 112 ± 824 c 

8 464 ± 1 122 d 

1 859 ± 246 e  

3 554 ± 713 e 

15 698 ± 1 941 a 

247 ± 17.3 d 

430 ± 28.6 b 

434 ± 24.6 b 

758 ± 15.6 c 

262 ± 12.3 d 

64.3 ± 3.68 e 

86.4 ± 5.56 ae 

119 ± 8.31 a 

0.9 

3.2 

3.4 

2.3 

3.1 

3.5 

2.4 

0.8 

3 803 ± 384 c 

623 ± 133 a 

740 ± 81.4 a 

6 114 ± 687 b 

725 ± 114 a 

596 ± 99.3 a 

6 034 ± 704 b 

1 111 ± 906 a 

2 926 ± 424 d 

220 ± 46.1 ab 

183 ± 16.9 b 

180 ± 33.1 b 

115 ± 9.98 b 

556 ± 103 ab 

1 709 ± 123 c 

584 ± 124 a 

5 935 ± 734 cd 

2 949 ± 351 b 

774 ± 131 a 

7 278 ± 1206 c 

5 375 ± 805 d 

65.0 ± 9.80 a 

2 649 ± 545 b 

982 ± 146 a 

Mg Forest land 

Rural 

Suburban 

Amagcino 

Hluhluwe 

Montebello 

Esigedleni 

Ndwedwe 

Sokhulu 

Penicuik 

Umgababa 

beach 

3 305 ± 49.7 e 

990 ± 25.8 b 

1 137 ± 128 ab 

1 107 ± 36.6 ab 

908 ± 74.1 b 

186 ± 22.6 d 

376 ± 36.2 c 

1 229 ± 105 a 

97.2 ± 6.63 d 

59.8 ± 4.54 b 

33.5 ± 1.55 a 

57.4 ± 2.48 b 

39.0 ± 3.18 a 

7.33 ± 1.42 c 

11.8 ± 0.263 c 

34.1 ± 3.31 a 

2.9 

6.0 

3.0 

5.2 

4.3 

3.9 

3.1 

2.8 

9 492 ± 290 ae  

4 959 ± 441 bd 

4 529 ± 219 bf 

12 407 ± 432 c 

5 894 ± 467 d 

3 661 ± 335 f 

8 573 ± 1 055 e 

9 878 ± 468 a 

4 717 ± 277 cd 

2 582 ± 240 b 

2 228 ± 132 b 

3 995 ± 380 c 

2 315 ± 221 b 

4 644 ± 184 cd 

5 378 ± 639 d 

8 111 ± 591 a 

5 130 ± 370 a  

1 338 ± 151 b 

1 900 ± 80.5 bd 

3 784 ± 499 c 

2 307 ± 70.4 d 

2 419 ± 148 d 

4 611 ± 418 a 

5 253 ± 493 a 

Mn Forest land 

Rural 

Suburban 

Amagcino 

Hluhluwe 

Montebello 

Esigedleni 

Ndwedwe 

Sokhulu 

Penicuik 

Umgababa 

beach 

598 ± 15.8 bc 

576 ± 23.3 b 

516 ± 72.8 b 

606 ± 9.83 bc 

693 ± 86.6 c 

53.9 ± 5.32 e 

262 ± 48.4 a 

369 ± 43.1 a 

40.0 ± 1.84 f 

64.3 ± 3.90 b 

36.9 ± 1.71 f 

44.0 ± 1.25 cd 

47.2 ± 1.64 d 

2.25 ± 0.259 e 

23.6 ± 1.26 a 

26.5 ± 1.68 a 

6.7 

11.2 

7.2 

7.3 

6.8 

4.2 

9.0 

7.2 

73.3 ± 10.1 a 

79.4 ± 10.0 a 

211 ± 24.1 c 

260 ± 18.4 b 

102 ± 7.51 a 

88.8 ± 4.26 a 

283 ± 47.6 b 

55.8 ± 2.23 a 

71.1 ± 6.53 a 

110 ± 22.8 ab 

201 ± 15.2 b 

71.0 ± 13.1 a 

58.2 ± 8.51 a 

342 ± 10.2 d 

540 ± 119 c 

50.1 ± 7.27 a 

147 ± 15.5 ab 

185 ± 25.5 ab 

191 ± 65.0 ab 

244 ± 31.7 b 

437 ± 100 c 

208 ± 30.9 b 

442 ± 69.6 c 

84.9 ± 5.58 a 

Ni Forest land 

Rural 

Amagcino 

Hluhluwe 

Montebello 

Esigedleni 

20.1 ± 1.27 c 

3.78 ± 1.10 b 

ND 

3.00 ± 0.77 b 

0.487 ± 0.0274 c 

0.425 ± 0.0231 a 

ND 

0.167 ± 0.0036 b 

2.4 

11.2 

- 

5.6 

8.94 ± 2.07 bd 

2.27 ± 0.216 a 

2.19 ± 0.136 a 

6.36 ± 1.39 bc 

14.3 ± 1.38 d  

1.81 ± 0.280 ab 

1.96 ± 0.290 ac 

1.28 ± 0.0827 b 

9.57 ± 2.05 d  

3.41 ± 0.327 ab 

2.36 ± 0.285 ac 

3.97 ± 0.196 bc 
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Suburban 

Ndwedwe 

Sokhulu 

Penicuik 

Umgababa 

beach 

ND 

ND 

ND 

16.0 ± 1.93 a 

ND 

ND 

ND 

0.443 ± 0.0125 a 

- 

- 

- 

2.8 

4.06 ± 0.296 ac 

4.09 ± 0.257 ac 

10.0 ± 1.82 d 

2.26 ± 0.0698 a 

1.27 ± 0.137 b 

3.73 ± 0.638 c 

2.67 ± 0.207 ac 

1.60 ± 0.109 ab 

4.64 ± 0.486 b 

1.71 ± 0.168 a 

4.87 ± 0.437 b 

2.45 ± 0.278 ac 

Pb Forest land 

Rural 

Suburban 

Amagcino 

Hluhluwe 

Montebello 

Esigedleni 

Ndwedwe 

Sokhulu 

Penicuik 

Umgababa 

beach 

13.2 ± 0.920 d 

7.20 ± 0.876 b 

3.88 ± 0.967 c 

9.80 ± 0.735 a 

3.70 ± 0.716 c 

ND 

ND 

9.88 ± 2.01 a 

1.12 ± 0.0702 a  

0.457 ± 0.0149 b 

0.503 ± 0.0452 b 

0.730 ± 0.0343 c 

0.514 ± 0.0293 b 

ND 

ND 

1.06 ± 0.101 a 

8.5 

6.4 

13.0 

7.5 

13.9 

- 

- 

10.7 

3.23 ± 0.172 e  

0.663 ± 0.0378 a 

0.813 ± 0.0768 ac 

2.87 ± 0.250 b 

1.04 ± 0.132 c 

0.918 ± 0.0574 ac 

2.39 ± 0.168 d 

0.620 ± 0.0548 a 

1.61 ± 0.285 c  

0.705 ± 0.885 ab 

0.488 ± 0.0986 b 

0.473 ± 0.0651 b 

0.472 ± 0.0737 b 

1.00 ± 0.309 a 

0.861 ± 0.0955 ab 

1.10 ± 0.280 a 

3.13 ± 0.502 c  

1.58 ± 0.298 b  

0.798 ± 0.161 a 

3.35 ± 0.247 c 

6.57 ± 0.558 d 

ND 

1.14 ± 0.161 ab 

0.738 ± 0.108 a 

Se Forest land 

Rural 

Suburban 

Amagcino 

Hluhluwe 

Montebello 

Esigedleni 

Ndwedwe 

Sokhulu 

Penicuik 

Umgababa 

beach 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

- 

- 

- 

- 

- 

- 

- 

- 

ND  

0.793 ± 0.0873 b 

1.93 ± 0.356 c 

ND 

0.838 ± 0.109 b 

1.98 ± 0.142 c 

ND 

0.123 ± 0.022 a 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 
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Zn Forest land 

Rural 

Suburban 

Amagcino 

Hluhluwe 

Montebello 

Esigedleni 

Ndwedwe 

Sokhulu 

Penicuik 

Umgababa 

beach 

106 ± 12.4 b 

164 ± 2.72 a 

60.1 ± 7.36 c 

96.3 ± 11.4 b 

55.7 ± 7.05 c 

55.2 ± 8.29 c 

34.3 ± 5.99 c 

154 ± 32.6 a 

1.91 ± 0101 e  

0.971 ± 0.0413 b 

0.348 ± 0.0269 c 

0.914 ± 0.0499 b 

0.683 ± 0.0356 a 

1.63 ± 0.183 d 

0.333 ± 0.0236 c 

0.683 ± 0.0442 a 

1.8 

0.6 

0.6 

1.0 

1.2 

3.0 

1.0 

0.4 

36.2 ± 6.24 c 

56.2 ± 8.50 ab 

33.9 ± 4.93 c 

60.7 ± 4.51 ab 

55.2 ± 5.85 ab 

45.2 ± 5.12 ac 

65.6 ± 10.1 b 

54.1 ± 10.1 ab 

43.7 ± 8.77 ab  

55.6 ± 6.86 a  

39.9 ± 8.42 abc 

33.4 ± 5.44 bc 

24.8 ± 3.51 c 

74.8 ± 5.77 d 

52.6 ± 8.12 a 

49.9 ± 5.17 a 

40.8 ± 4.20 a 

44.1 ± 5.23 a 

23.6 ± 5.70 c 

44.2 ± 3.58 a 

65.3 ± 8.10 b 

12.7 ± 2.30 c 

51.5 ± 9.21 a 

40.8 ± 5.50 a 

ND – Not determinable. 

*Different letters within columns indicate mean separation by Tukey’s Post-hoc test at the 5% level.



Studies have shown suburban soils to have higher concentrations of elements relative to rural or 

forestland soils (Sieghardt et al., 2005). In this study, forestland soils had higher concentrations of 

minor elements (Cr, Cu, Ni, and Zn) compared to rural and suburban soils. The concentration of 

the microelements in the soil were compared to the South African maximum permissible levels 

(MPLs) in order to assess for potential of elements to cause health hazards. The location of the 

forestland sites (Amagcino and Hluhluwe) next to main roads may cause higher concentrations of 

elements in the soil due to particulate matter emissions from automobile tyres and exhaust systems 

(Akbar et al., 2006; Naser et al., 2012; Pagotto et al., 2001; Sieghardt et al., 2005). However, 

concentrations of minor elements were still below South African MPLs in soil for Cr (350 µg 

g-1), Cu (120 µg g-1), Ni (150 µg g-1), and Zn (200 µg g-1) (Herselman et al., 2005).

Exchangeable Cu was slightly higher in rural (5.0%) and suburban (5.2%) soils compared to 

forest soil (3.1%) and exchangeable Cr (0.8%) and Zn (1.7%) was higher in rural soils.   

For the toxic elements (As, Cd and Pb) concentrations of As and Cd were below the instrument 

detection limits. Total soil Pb was below the instrument detection limits at sites Sokhulu and 

Penicuik and highest at Amagcino (13.2 µg g-1) however this did not exceed the MPL for Pb in 

soil (100 µg g-1). In this study, total soil concentrations of elements were found to be in the 

decreasing order of Fe > Ca > Mg > Mn > Zn > Cu > Cr > Pb > Ni > Co > As~Cd~Se with 

concentrations being lowest in rural soil and highest in forestland soil. 

In the plant, Ca aids in the stabilization of the cell wall, stimulates root and shoot development and 

is required in large quantities for nodulation and nitrogen fixation (Camberato & Pan, 2012; Price, 

2006). Magnesium is the central atom in the chlorophyll molecule, it also aids in activation of 

numerous enzyme systems (Price, 2006). Iron is needed in small amounts in the plant however; it 

plays a role in energy production and redox reactions (Miller et al., 1995). Since humans consume 
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the leaves of the plant, the concentrations of the minor elements were compared to the South 

African MPLs for micro and trace nutrients in vegetables (Department of Health, South Africa, 

2014). Copper concentration in leaves ranged from 10.6 – 26.2 µg g-1, below South African set 

maximum permissible limit of 30 µg g-1. For Zinc (33.9-65.6 µg g-1), only two sites were within 

permissible limits of 40 µg g-1 whilst Ni (2.0 µg g-1) and Mn (10 µg g-1) concentrations were above 

permissible limits for vegetables for all sites.  

For the toxic elements (As, Cd and Pb), if present, As in the leaves was below detection limits of 

the instrument. Cadmium present in leaves of sites Amagcino (1.17 µg g-1), Esigedleni (1.86 µg g-

1) and Penicuik (1.86 µg g-1) were above permissible limits for vegetable (0.2 µg g-1). Lead

concentrations in the leaves of sites, Amagcino, Esigedleni and Penicuik were above maximum 

permissible limits for vegetables (1.0 µg g-1). 

In this study the elements in the edible leaves were in the decreasing order of Ca > Mg > Fe > Mn 

> Zn > Cu > Cr > Ni > Co > Pb > Se > Cd > As.

Bioaccumulation and translocation of elements in plant 

The bioaccumulation and translocation factors of some of the minor and toxic elements in the plant 

in different sites are represented in Figure 20. The BAFs for As and Cd could not be determined 

due to soil concentrations being below detection limits, however Pb was present in soil and leaves. 

The trace element, Se was observed to be present in the plant organs but not detected in the soil 

across all sites. Therefore, As, Cd and Se were not included in Figure 20A. Changes in 

environmental conditions such as climate and soil pH, time together with plant roots and microbial 

activities may cause metal ions in the soil phase to become available for plant uptake. These 

elements move along the same pathway as in the plant. Cadmium was present in leaves at 
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Esigedleni, Penicuik and Amagcino whilst Se was present in leaves at Umgababa beach, 

Hluhluwe, Ndwedwe, Sokhulu and Montebello.  Studies conducted by Cary (1980) on the effect 

of Se and Cd addition to soil on uptake by lettuce and wheat indicated that increased soil Cd 

decreased Se uptake by the first crop of lettuce and wheat. According to a study conducted by Feng 

et al. (2013), Se in soil inhibited uptake of Cd by paddy rice suggesting an antagonistic relationship 

between Cd and Se. There was no translocation of As and Cd from the roots to the leaves therefore 

these elements were not included in Figure 20B. Previous studies on the accumulation and 

translocation of As in mangrove (Aegiceras corniculatum L.) grown in As contaminated soil 

revealed higher accumulation of As in the roots compared to stems and leaves (Wu et al., 2015).  

Chromium is an essential trace element for humans and animals (Felcman & Bragança, 1988). No 

Cr accumulation in the leaves was observed across all sites (BAF<1) yet effective translocation of 

Cr from the root to the leaves (TFL/R>100) was observed.  

Translocation of Cr from the roots to the stems was below 1, except at site Sokhulu.  Dube et al. 

(2003) observed that the exposure of Citrullus to different Cr concentrations (0.05 – 0.4 mM) 

resulted in low Cr concentration in the roots and high Cr concentration in the leaves. The lowest 

Cr concentrations were in the stems which was deemed to be due to uptake and translocation. 

There was an even distribution of Cu, Mn and Zn in the leaves, stems and roots of the plant. There 

was effective translocation of Co from the root to the leaves at the sites, Penicuik and Umgababa 

beach (TFL/R ≥1), while no accumulation was observed (BAF<1) (Fig. 20B). There was effective 

translocation of Ni from roots to leaves (1.60).  
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C 

Figure 20: Bioaccumulation factors (BAF) of elements in the edible leaves  (A), translocation of 

elements from the  roots to the leaves (TFl/r) (B) and from the roots to stem (TFs/r) (C) of the eight 

sites. 

BAF plots 

The bioaccumulation plots (BAF vs total soil concentrations) for L. alatipes for micronutrient Cu 

and toxic element Pb, are show in figure 21. The BAF of each replicate was show in the graph. In 

order to determine the essentiality or non-essentiality of an element, relative accumulation plots 

are obtained, and the resulting curve examined. BAF graphs giving hyperbolic shaped graphs (Cu) 

indicated essentiality of these nutrients (Timperley et al., 1970). When the soil concentration where 

below plant requirements, accumulation occurred until the required physiological level was 

reached. An element is essential when without it the plant cannot complete its life cycle and it is 

part of an essential plant constituent or metabolite (Mehra & Farago, 1994). A linear graph as in 
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the case of Pb indicates non essentiality of the element. Lead is considered toxic to plants as it 

inhibits activities of various enzymes and affects the mineral nutrition (Sharma & Dubey, 2005).  

High levels of Cu pose no toxic risk to humans but phytotoxic to the plant.   

Figure 21: Bioaccumulation factor (BAF) vs total soil concentration in µg g-1 for the essential 

minor element; Cu, and trace and toxic element, Pb. 
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Enrichment factors and geo-accumulation index 

Enrichment factor is used to assess the level of metal contamination and possible anthropogenic 

impact in the soil (Ghrefat et al., 2011). The background baseline metal concentrations in South 

African soils are 2.7 µg g-1for Co, 353 µg g-1for Cr, 117 µg g-1for Cu, 159 µg g-1for Ni, 65.8 µg 

g-
1 for Pb, and 115 µg g-1for Zn (Herselman et al., 2005). The EFs were interpreted as

suggested by Sutherland (2000) where, EF<2 indicates deficiency to minimal enrichment,

2<EF<5 moderate enrichment, 5<EF<20 significant enrichment, 20<EF<40 very high 

enrichment, and EF>40 extremely high enrichment. EF values between 0.5 and 1.5 are deemed to 

be from natural processes whilst above 1.5 indicate anthropogenic sources. The EF and Igeo of 

heavy metals in soil for the various sites are presented in Table 46. The resulting EF values 

indicated minimal enrichment (EF<1) for all the metals (Co, Cr, Cu, Ni, and Pb) in the soil in 

the different sites.  

Table 46: Enrichment factor and geo-accumulation indices of metals in soil from eight 

different sites. 
Sampling 

area 

Sites Co Cr Cu Ni Pb Zn 

EF Igeo EF Igeo EF Igeo EF Igeo EF Igeo EF Igeo

Forest land Amagcino 

Hluhluwe 

Montebello 

0.2 

0.1 

ND 

-3.2

-4.3

-4.6

0.3 

ND 

0.1 

-2.6

-5.4

-4.4

0.6 

0.2 

0.2 

-1.5

-2.2

-3.6

0.1 

ND 

ND 

-3.6

-6.0

ND 

0.2 

0.1 

0.1 

-2.9

-3.8

-4.7

1 

1 

1 

-0.7

-0.2

-1.5

Rural Esigedleni 

Ndwedwe 

Sokhulu 

ND 

ND 

ND 

ND 

ND 

ND 

0.1 

0.1 

0.1 

-4.1

-4.9

-5.2

0.2 

0.2 

0.1 

-3.6

-3.8

-5.0

ND 

ND 

ND 

-6.3

ND 

ND 

0.2 

0.1 

ND 

-3.3

-4.7

ND 

1 

1 

1 

-0.8

-1.6

-1.6

Suburban Penicuik 

Umgababa Beach 

ND 

ND 

ND 

-4.7

0.4 

0.3 

-3.5

-2.1

0.2 

0.1 

-4.7

-3.9

ND 

0.1 

ND 

-3.9

ND 

0.1 

ND 

-3.3

1 

1 

-2.3

-0.2
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Geo-accumulation index evaluates the possible enrichment of the metal in the soil (Ghrefat et al., 

2011). The geo-accumulation index (Igeo) classification and degree of metal contamination where 

described by Müller (1969) as, Igeo≤0 indicates uncontaminated, 0<Igeo<1 uncontaminated to 

moderately contaminated, 1<Igeo<2 moderately contaminated, 2<Igeo<3 moderately to heavily 

contaminated, 3<Igeo<4 heavily contaminated, 4<Igeo<5 heavily to extremely contaminated, and 

Igeo≥5 extremely contaminated soil. The negative Igeo values indicated no contamination of all the 

metals (Co, Cr, Cu, Ni, Pb and Zn) in the soil in the different sites. 

Statistical analysis 

To determine if heavy metals in the soil were from a common source, multivariate PCA analysis 

was performed. The rotated component matrix of the metals in the soil is given in Table 47 and 

the corresponding loading scatter plots are presented in Figure 22. Two PCs were extracted with 

eigenvalues >1 explaining 77% of the total variance.  The first PC (48.3% of the variance) 

indicated high loadings of Co, Cr, Cu, Fe, Ni, Pb, pH and Zn. These metals may be from vehicular 

emission, wearing of brake lining and tyres of vehicles, for sites are situated on local roads (Carrero 

et al., 2010). The second PC (28.8% of the total variance) showed high loadings of Mn, CEC and 

SOM. Manganese may be bound to the soil organic matter of the soil therefore from geochemical 

origin (Zhang & Wang, 2009).  
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Table 47: Component matrices of elements in soil. 

Rotated Component Matrix 

1 2 

Eigenvalues 5.313 3.173 

Percentage of total variance 48.298 28.844 

Percentage of cumulative variance  48.298 77.141 

Co 0.817 0.222 

Cr 0.794 -0.454

Cu 0.710 0.505 

Fe 0.584 0.510 

Mn 0.264 0.855 

Ni 0.949 -0.065

Pb 0.864 0.398 

Zn 0.733 0.181 

pH 0.821 0.118 

SOM 0.397 0.877 

CEC -0.288 0.833 

Figure 22: Principal component analysis loading plot for heavy metals, SOM, CEC and pH of the 

soil (constructed for eight sampling sites). 
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Ward’s method was used to indicate the degree of association between metals in the soil, shown 

by the Euclidean distance (Fig 23). In this study, CA was used to further analyse the possible 

source of elements based on the similarities of their chemical properties. There were three main 

clusters, A, B, and C where A showed close associations amongst Fe-Pb-Zn, B showed close 

associations between Mn-SOM-CEC, C showed close association between Co-Cr-Cu-Ni which 

agreed with the PC analysis.  

Figure 23: Cluster analysis using Ward’s method of heavy metals, SOM, CEC and pH of the soil 

measured by Euclidean distance. 
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An inter-correlation matrix between the soil (total and exchangeable) and plant concentrations of 

elements, soil pH, SOM and CEC was done. Only the strong correlations were extracted and are 

presented in Table 48 and 49. Correlation coefficients (r) >0.8 indicated a strong negative linear 

relationship, between 0.8 and 0.7 positive, < -0.8 a strong negative linear relationship, between -

0.7 and -0.8 negative and 0 indicated no relationship (Mahlangeni et al., 2016a). There was a 

significantly positive correlation between total soil Ni, Co, Cr and Pb. Again, a significant positive 

correlation between total soil Pb, Fe and Zn was observed, indicating their common origin 

confirmed by PCA and CA. Competition between elements for the same adsorption sites

would be synergistic as an increase in total soil concentration of one element would reduce the 

soil retention capacity of another, increasing its exchangeability (Moodley et al., 2013). This was 

observed for exchangeable Ni with total soil Co and Cu as well as exchangeable Pb with total 

soil Fe and Ni. SOM correlated positively with total soil Mn, exchangeable Cu, Mn and Ni. 

Manganese is readily chelated by organic complexes and adsorbed onto the soil organic matter 

(Allison, 1973). There was also a positive correlation between SOM and As, Cd and Fe in the 

roots as well as CEC with Pb in the roots. Plant roots release low molecular mass organic ligands 

which displace the adsorbed As, Cd and Fe on the soil organic matter thereby allow for their 

uptake (Mehmood et al., 2009; Violante et al., 2010). Cations can be retained on the negatively 

charged particles of the soil surface thus allowing for the replacement of Pb ions by other 

cations on the exchange sites and for the absorption of the Pb ions in the roots (Adriano, 1986). 
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Table 48: Inter-correlation of elements in soil, total (T) and exchangeable (E) of L. alatipes. 

CoT CrT FeT PbT 

CoT 1 ns ns ns 

CrT ns 1 ns ns 

CuT 0.9** ns ns ns 

FeT ns ns 1 ns 

NiT 0.8* 0.9** ns 0.8* 

PbT ns ns 0.9** 1 

ZnT ns ns ns 0.7* 

CoE CuE NiE PbE 

CoT 0.9** 0.9** 0.8* ns 

CuT 0.9** 1.0** 0.7* ns 

FeT ns ns ns 0.8* 

NiT ns ns 0.9** 0.8* 

PbT ns 0.8* 0.9** 0.9** 

*,** -  correlations significant at P≤ 0.05 and P≤ 0.01. 

ns - not significant. 

Table 49: Inter-correlation of elements in soil, total (T), exchangeable (E), SOM, leaves (L), stems 

(S), and roots (R) of L. alatipes. 

CuE MnE MnT NiE AsR CdR FeR PbR 

SOM 0.8* 0.8* 0.8* 0.9** 0.8* 0.7* 0.8* ns 

CEC ns ns ns ns ns ns ns 0.8* 

*,** -  correlations significant at P≤ 0.05 and P≤ 0.01. 

ns - not significant. 

CONCLUSION 

Despite high translocation of Cr from the stems to the leaves (>100), no Cr accumulation was 

observed. The plant roots stored trace and toxic elements, As and Cd, thereby controlling the 
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amounts translocated into the stems and leaves. Translocation factor values showed effective 

translocation of minor and trace elements from stem to the leaves. Bioaccumulation plots showed 

that accumulation of elements occurred when the concentration of the element in the soil was low 

so that the plant meets physiological needs. There was no metal enrichment or contamination in 

the soil on all sites. PCA and CA analysis showed that the close association between metals Co, 

Cr, Cu, Fe, Ni, Pb and Zn was from anthropogenic sources. Manganese in the soil was found to be 

chelated into the soil organic matter. Correlation analysis further validated the association of these 

metals in the different sites.  
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CHAPTER SEVEN 

Chemical composition, antioxidant activity and anti-diabetic properties of nettles 

(Laportea peduncularis, Laportea alatipes and Obetia tenax) found in KwaZulu-Natal, 

South Africa 

ABSTRACT 

Nettles are highly nutritious herbs and are eaten by the local people in KwaZulu-Natal, South 

Africa. They are also used in traditional medicine to treat a variety of ailments such as   rheumatoid 

arthritis, eczema, fever, diabetes and hyperglycaemia. In this study, a phytochemical analysis on 

nettles (Laportea peduncularis, Laportea alatipes and Obetia tenax) found in KwaZulu-Natal, 

South Africa was conducted to identify the secondary metabolites that impart medicinal properties 

to these herbs. The antioxidant and anti-diabetic activity of the crude extracts and phytocompounds 

was also investigated. Extracts from L. peduncularis and O. tenax nettles were found to be rich in 

β-sitosterol and β-carotene. The methanol extracts of leaves and stems of all nettles showed higher 

DPPH radical scavenging activity relative to the other extracts but lower activity relative to 

ascorbic acid and α-tocopherol. ß-carotene had higher DPPH radical scavenging activity relative 

to the sterol The ferric reducing power (FRAP) assay showed the methanol extract of O. tenax to 

have higher antioxidant activity (250-500 µg mL-1) than α-tocopherol. The anti-diabetic assay 

showed extracts of nettles to have comparable activity to the known standard, acarbose. This study 

provides scientific validation for the ethno-medicinal use of nettles. 

Keywords radical scavenger, medicinal plant, phytochemicals, sterols 
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INTRODUCTION 

Oxidative stress results when the equilibrium between the production of free radicals and 

antioxidant defences in the body is disturbed which may result in premature ageing, cardiovascular 

and neurodegenerative diseases (Bettridge, 2000; Wu & Cederbaum, 2003). The most important 

class of free radicals are the reactive oxygen species that include superoxide anions (O2
-), hydroxyl 

ions (OH-), singlet oxygen ions (O-) and hydrogen peroxide (H2O2). The reduction of oxygen in 

the system gives rise to the superoxide anion that is converted to H2O2 by superoxidase 

dismutase. Hydrogen peroxide binds with metals such as Fe2+ or Cu2+ to release OH- ions which 

attack proteins, lipids and DNA thereby causing damage to the body (Noori, 2012; Bogaerts et 

al., 2008).  

Diabetes mellitus is a metabolic disorder characterised by hyperglycaemia (a high blood glucose 

condition) resulting in defects in the secretion of insulin, impaired action of insulin or both 

(American Diabetes Association, 2004). In the absence of insulin, glucose (from broken 

down carbohydrates and starch) builds up in blood vessels as it cannot be absorbed into the cells 

of the body which results in organ and tissue failure. The International Federation of Diabetes 

(IDF) reported an increase in the number of diabetes cases to 382 million in 2013, with 80% 

of these cases being from low to middle income countries and 2.6 million being from South 

Africa (IDF Annual Reports, 2013; IDF Diabetes Atlas, 2013).  

There are numerous therapeutic drugs available for the treatment of diabetes, the most common 

commercial agents being acarbose and miglitol. However, these agents are known to have 

side effects, which include severe constipation and bowel obstruction. The exploitation of 

plants for medicinal purposes is one of the oldest practices that still exist throughout the world. 

Nearly 80% of the population in developing countries such as Africa and Asia use traditional 

medicine for their 
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healthcare needs (Hussain et al., 2013; WHO, 2002). Plants found to have medicinal properties are 

used to treat a variety of conditions from the common cold to cancer. Medicinal plants have also 

played a key role in modern medicine in the development of breakthrough drugs. Secondary 

metabolites (phytochemicals) are responsible for the medicinal properties of these plants; these 

secondary metabolites are being investigated for leads into commercial therapeutic agents.  

The growing popularity of nutraceuticals has led to a greater demand for the identification of new 

plants that are both nutritional and medicinal. Laportea peduncularis (Wedd.) Chew subspecies 

peduncularis, Laportea alatipes Hook. f. and Obetia tenax (N.E.Br.) Friis are from the Urticaceae 

(nettle) family and are known for their nutritional and medicinal value. These nettles are found in 

KwaZulu-Natal, South Africa. They are generally known as the river nettle (L. penducularis), 

forest nettle (L. alatipes) and mountain nettle (O. tenax) or Imbati in isiZulu. In traditional 

medicine, nettles are used to treat conditions such as rheumatoid arthritis, gout, eczema, benign 

prostatic hyperplasia, anaemia, influenza, asthma and diabetes (Phillips, 2014; Warren, 2006).  

Laportea peduncularis is an annual herb that grows up to 1.5 m tall and is mostly found next to 

river banks. The leaves are triangular with margins serrated with 15-25 teeth on each side. The 

leaves and stem are covered with short stinging hairs (Friis, 1989). Laportea alatipes is a shrub 

that grows up to 2 m high and is found in the forest or forest edges. The leaves are broadly 

lanceolate to ovate, the base is cordate and the margins are coarsely serrated (Friis, 1989). The 

stems and leaves contain stinging hairs. Obetia tenax is a small tree that grows 5-7 m tall and is 

found mostly on rocky locations. The base of the leaves is cordate or truncate, the apex is 

acuminate and the margins are serrated (Brink & Achigan-Dako, 2012). The leaves and younger 

branches are covered with stinging hairs.  



211 

The aim of the study was to extract, isolate and identify the secondary metabolites from the leaves 

and stems of L. peduncularis, L alatipes and O. tenax nettles to provide a scientific basis for their 

ethno-medicinal use. The plant extracts as well as isolated compounds were further assessed for 

their antioxidant, α-amylase and α-glucosidase inhibitory activity. 

MATERIALS AND METHODS 

General experiment 

1H and 13C nuclear magnetic resonance (NMR) spectra were recorded on a Bruker Avance III 

spectrometer at 400 MHz in deuterated chloroform (CDCl3) at room temperature with 

tetramethylsilane (TMS) as an internal standard.  Infra-Red (IR) spectra were obtained using a 

Perkin Elmer Spectrum 100 FT-IR spectrometer with Universal ATR sampling accessory. 

Ultraviolet-Visible (UV-Vis) spectra were obtained on a UV-Vis-NIR Shimadzu UV-3600 

spectrophotometer. For gas chromatography - mass spectrometry (GC-MS), the Agilent GCMSD 

apparatus equipped with a DB-5SIL MS (30 m x 0.25 mm i.d., 0.25 μm film thickness) fused silica 

capillary column, operated in the EI mode (70 eV) was used. Helium (2 mL/min) was used as a 

carrier gas and hexane was used to dissolve the samples. The injector was kept at 250 ℃ whilst 

the transfer line was at 280 ℃. The column temperature was held at 50 ℃ for 2 min, and then 

ramped to 280 ℃ at 20 ℃/min where it was held for 15 min. Fractions were profiled using thin 

layer chromatography (TLC) (Merck silica gel 60, 20 x 20 cm F254 aluminium sheets) and 

visualized using anisaldehyde spray reagent (97: 2: 1; MeOH: conc. H2SO4: anisaldehyde). The 

absorbance was measured using a UV spectrometer (UV Spectrophotometer Biochrom Libra S11, 

Cambridge, England). 
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Chemicals and reagents 

DPPH (2,2-diphenyl-1-picrylhydrazyl), potassium hexaferricyanide [K3Fe(CN)6], TCA (trichloro 

acetic acid), porcine pancreatic α-amylase, α-glucosidase from Saccharomyces cerevisiae, 

acarbose and p-nitrophenyl-α-D-glucopyranoside were purchased from Sigma Aldrich chemicals, 

USA.  All other chemicals were of analytical grade. 

Collection of plant material 

Leaves and stems of all plants (L. peduncularis peduncularis, L. alatipes and O. tenax) were 

collected from various sites in KwaZulu-Natal, South Africa and were identified by curator, Mr E. 

Khathi, from the School of Life Sciences, University of KwaZulu-Natal, Westville and voucher 

specimens (Mahlangeni NT1, Mahlangeni NT2 and Mahlangeni NT3) were deposited in the ward 

herbarium at the university. Leaves and stems, respectively of L. peduncularis (474 & 391 g), of 

L. alatipes (196 & 386 g), and O. tenax (292 & 474 g) were air-dried, ground and extracted with

hexane, dichloromethane (DCM), and methanol (MeOH) in turn by continuous shaking on an 

orbital shaker for 48 h. The aqueous extract was obtained by boiling leaves and stems (5 g each) 

in 200 mL for 15 min as per instructions by the herbalist for preparation of the tonic. The aqueous 

MeOH extract was partitioned with DCM followed by ethyl acetate (EA). All mixtures were 

filtered thereafter the filtrate (extract) was concentrated to dryness and stored in the fridge until 

analysed. The extracts were spotted on TLC plates and were subjected to column chromatography 

(Merck Kieselgel 60, 0.063-0.200 mm, 70-230 mesh ASTM).  
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Extraction and isolation of compounds 

The hexane (1.46 g) and DCM extract (7.30 g) of L. peduncularis leaves were combined due to 

similar TLC profiles. The extract was loaded onto the column and separated using a hexane: EA 

step gradient from 100% hexane to 100% EA. At 100% hexane, fraction 16 yielded compound C1 

(4.12 mg). Fractions 99-131 were combined and re-recrystallized with 100% MeOH affording 

compound C2 as a white solid (9.0 mg). Similarly, hexane and DCM extracts (4.28 g) of stem 

were combined and after elution with 30% hexane: 70% EA, fraction 127-151 afforded compound 

C2 (69.1 mg) as a precipitate. 

In a similar manner, the combined DCM extracts (12.23 g) of L. alatipes leaves and stems were 

separated with 90% hexane: 10% EA solvent system affording fraction 51-72, were recrystallized 

with 100% MeOH affording compound C2 (12.1 mg).  

The DCM extracts (5.91 g) of O. tenax leaves and stems were separated using 90% hexane: 10% 

EA solvent system and afforded compound C2 (12.1 mg) in fractions 4-5. The aqueous 

MeOH extract (150 mL) of leaves and stems (combined) were partitioned with 150 mL DCM in 

triplicate then subjected to column chromatography using a DCM: MeOH solvent system. 

Compound C1 (3.23 mg) was eluted with 99% DCM: 1% MeOH. 

Antioxidant activities 

DPPH assay 

The scavenging activity of the plant phytocompounds on the stable free radical, DPPH, was 

evaluated according to the method as described by Murthy et al. (2012) with some modifications. 

A volume of 150 μL of ethanolic solution of plant extracts and compounds at different 

concentrations 
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were mixed with 2850 μL of the ethanolic solution of DPPH (0.1 mM). An equal amount of ethanol 

and DPPH without sample served as a control. After 30 min of reaction at room temperature in the 

dark, the absorbance was measured at 517 nm against ethanol as a blank using a UV 

spectrophotometer. Ascorbic acid and α-tocopherol served as positive controls. All procedures 

were done in triplicate. 

% Scavenging [DPPH]= [
Ac-As

Ac
] x100 (21) 

where AC is the absorbance of the control and AS is the absorbance of the sample. 

Ferric reducing antioxidant power (FRAP) assay 

The total reducing power of the compounds from plant material was determined according to the 

FRAP method as described by Murthy et al. (2012) with some modifications. A 2.5 mL volume of 

different concentrations of the plant extracts or compounds were mixed with 2.5 mL phosphate 

buffer solution (0.2 M, pH 6.6) and 2.5 mL of 1% potassium ferricyanide [K3Fe(CN)6] in test 

tubes. The mixture was placed in a water bath of 50℃, for 20 min. A volume of 2.5 mL of 10% 

trichloro acetic acid (TCA) was added to the mixture and mixed thoroughly. A volume of 2.5 mL 

of this mixture was then mixed with 2.5 mL distilled water and 0.5 mL FeCl3 of 0.1% solution and 

allowed to stand for 10 min. The absorbance of the mixture was measured at 700 nm using a UV-

Vis spectrophotometer; the higher the absorbance of the reaction mixture, the greater the reducing 

power. Ascorbic acid and α-tocopherol were used as positive controls. All procedures were 

performed in triplicate. 
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Enzyme inhibitory activities 

Alpha amylase inhibition assay 

The alpha amylase inhibition assay was performed as described by Saravanan and Parimelazhagan 

(2014), with some modifications. Porcine pancreatic α-amylase was dissolved in 20 mM sodium 

phosphate buffer (pH 6.9) containing 6.7 mM sodium chloride to give a concentration of 0.5 mg 

mL-1 enzyme solution. Plant extracts or compounds (400 µL) and enzyme solution (400 µL) was 

incubated at 25 ℃ for 10 min. Thereafter 400 µL potato starch (0.5%; w/v) in 20 mM sodium 

phosphate buffer (pH 6.9 with 6.7 mM sodium chloride) were added and the reaction mixture was 

incubated at 25 ℃ for a further10 min. Thereafter, 1.0 mL of dinitrosalicylic acid (DNS) reagent 

(1 g of 3,5-dinitrosalicylic acid, 30 g sodium potassium tartrate and 20 mL of 2 M sodium 

hydroxide in 100 mL) was added and the reaction was stopped by incubating in boiling water for 

5 min then cooled to room temperature. The reaction mixture was diluted with 10 mL distilled 

water, and the absorbance taken at 540 nm using a spectrophotometer. Acarbose was used a 

positive control. All experiments were done in triplicate. A mixture containing all of the reagents 

except test sample was used as a control. The percentage inhibition was calculated as follows: 

% Inhibition = [
Ac-As

Ac
] x100 (22) 

Where AC is the absorbance of the control and AS is the absorbance of the sample. 

Alpha glucosidase inhibition assay 

The alpha glucosidase inhibition assay was performed as described by Saravanan and 

Parimelazhagan (2014), with some changes. Plant extracts or compounds (200 µL) and 200 µL α-

glucosidase (0.5 mg mL-1) with 1 mL 0.1 mM phosphate buffer (pH 6.9) solution were incubated 
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at 25 ℃ for 10 min. Thereafter, 200 µL of 5 mM p-nitrophenyl-α-D-glucopyranoside (pNPG) 

solution was added. The reaction mixture was incubated at 25 ℃ for 5 min then diluted with 4 mL 

distilled water. The 𝛼-glucosidase activity was determined by measuring the yellow-colored 

paranitrophenol released from pNPG at 405 nm using a spectrophotometer. Acarbose was used a 

positive control. All experiments were done in triplicate. A mixture containing all of the reagents 

except test sample was used as a control. The percentage inhibition was calculated using equation 

22.  

Statistical analysis 

All experiments were done in triplicate and expressed as mean ± standard error (SE). Separation 

of the means was done by Tukey’s Post hoc range test and Pearson’s correlation coefficients were 

obtained using the Statistical Package for the Social Sciences (PASW Statistics, Version 23, IBM 

Corporation, Cornell, New York). The differences between the means were considered significant 

for values of p < 0.05. 

RESULTS AND DISCUSSION 

 Chemical composition of nettles 

DCM extracts of the nettles yielded known compounds, C1 (β-carotene) and C2 (β-sitosterol). 

Additionally, DCM/MeOH fraction of O. tenax leaves/stems also yielded C1.  β carotene and β-

sitosterol were previously isolated from Laportea species (Njogu et al., 2011; Zhu et al., 2011) but 

this is the first report of it being isolated from Obetia species. β-sitosterol is a ubiquitous compound 

found in almost all plant species. The 1H-NMR and 13C-NMR spectral data for compounds C1-C2 

are in agreement with literature data for β-carotene and β-sitosterol, respectively (Chaturvedula & 

Prakash, 2012; Miglietta & Lamanna, 2006; Moss, 1976) (Fig. 24). 
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C1: β-carotene: EIMS: [M]+ 536 C40H56;  
 1H-NMR (CDCl3, 400 MHz):  δ 1.00 (6H, s, Me-16/17), 

1.44 (2H, dd, J=3.28, 3.48 Hz, H-2), 1.61 (2H, m, H-3), 1.69 (3H, s, Me-5), 1.95 (6H, s, Me-19/20), 

2.00 (2H, t, J=6.16 Hz, H-4), 6.14 (1H, d, J=5.80 Hz, H-8), 6.17 (1H, d, J=7.16 Hz, H-7), 6.24 

(1H, s, H-14), 6.35 (1H, s, H-12), 6.63 (1H, d, J=11.0 Hz, H-15), 6.66 (1H, s, H-11). ); 13C-NMR 

(CDCl3, 400 MHz): 12.66 (C-19), 12.72 (C-20), 19.18 (C-3), 21.66 (C-18), 29.60 (C-16/17), 33.02 

(C-4), 34.18 (C-1), 39.57 (C-2), 124.94 (C-11), 126.56 (C-7), 129.28 (C-5), 129.89 (C-15), 132.32 

(C-14), 135.92 (C-9), 136.37 (C-13), 137.10 (C-12), 137.67 (C-8), 137.83 (C-6). 

C2: β-sitosterol: EIMS [M]+ 414 C29H50O;  1H-NMR (CDCl3, 400 MHz): δ 0.65 (3H, s, H-18), 

0.80 (3H, H-26), 0.82 (3H, H-27), 0.84 (3H, H-29), 0.90 (3H, d, J=6.56 Hz, H-21), 0.98 (3H, s, H-

19), 1.06 (2H, m, H-1b), 1.07 (2H, m, H-15b), 1.09 (1H, m, H-17), 1.11 (2H, m, H-22b), 1.15 

(2H, m, H-12b), 1.16 (2H, m, H-23), 1.21 (2H, m, H-16b), 1.23 (2H, m, H-28), 1.47 (2H, m, H-

2b), 1.48 (2H, m, H-7), 1.49 (2H, m, H-11), 1.54 (2H, H-15a), 1.65 (1H, m, H-25), 1.83 (2H, m, 

H-1a), 1.84 (2H, m, H-2a), 1.85 (2H, m, H-16a), 1.97 (1H, H-8), 2.00 (2H, m, H-12a), 2.26 (2H, m,

H-4), 3.50 (1H, s, H-3), 5.30 (1H, s, H-6); 13C-NMR (CDCl3, 400 MHz): 11.76 (C-18), 11.88 (C-

29), 18.68 (C-21), 18.93 (C-27), 19.30 (C-19), 19.72 (C-26), 20.99 (C-11), 22.97 (C-28), 24.20 

(C-15), 25.98 (C-23), 28.15 (C-16), 29.05 (C-25), 31.56 (C-2), 31.81 (C-7), 31.81 (C-8), 33.85 (C-

22), 36.05 (C-20), 36.41 (C-10), 37.15 (C-1), 39.68 (C-12), 42.20 (C-4), 42.23 (C-13), 45.74 (C-

24), 50.04 (C-9), 55.96 (C-17), 56.67 (C-14), 71.72 (C-3), 121.63 (C-6), 140.68 (C-5). 
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Figure 24: Compounds isolated from the nettles; C1 (β-carotene) and C2 (β-sitosterol) 

Antioxidant activity 

The DPPH assay is based on the measurement of the ability of antioxidants to scavenge the 

DPPH free radical. When the antioxidant donates a proton to the DPPH radical in solution there is 

colour change of the solution from deep violet to yellow (Kedare & Singh, 2011). This assay 

showed that all nettles had moderate inhibition of the DPPH radical when compared to known 

standards, ascorbic acid and α-tocopherol, as seen in Figures 25 and 26. Previous studies by 

Krishna et al (2014) on extracts of L. interrupta showed similar results. Generally, MeOH extracts 

from stem and leaves had higher DPPH radical scavenging activity for all nettles, above 20% for 

L. peduncularis and O. tenax. These findings are similar to previous studies on plants from the 

Urticaceae family (Pilea microphylla) (Chahardehi et al., 2010) where the MeOH extracts were 

found to have the highest DPPH radical scavenging activity. β-carotene, known to be an efficient 

scavenger of radicals, was found to have the highest scavenging activity relative to the other 

compounds, up to 90% at a concentration of 500 µg mL-1. 
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Figure 25: DPPH radical scavenging activity of extracts from L. peduncularis (A), L. alatipes (B) 

and O. tenax (C) leaves and stem. Different letters indicate mean separation by Tukey’s post-hoc 

test at the 5% level. 

Figure 26: DPPH radical scavenging activity of compounds isolated from the nettles. Different 

letters indicate mean separation by Tukey’s post-hoc test at the 5% level. 

aaa

a

a

aa

a
aa

a

a
aa

b
bbbb

bb

bcbcbcbcbcbcbc

bd
bdbdbdbdbdbd

d
d

d

dd
dd

cdcd

cdcdcdcdcd

0

20

40

60

80

100

120

0 200 400 600 800 1000 1200

D
P

P
H

 s
ca

v
en

g
in

g
 a

ct
iv

it
y
 (

%
)

Concentration (µg mL-1)

Ascorbic acid

α-tocopherol

DCM leaves

DCM stem

MeOH leaves

MeOH stem

Aqueous leaves+stem

aaa

a

a

aa

a
aa

a

a
aa

bb

b

b

bbb
ccccccc

0

20

40

60

80

100

120

0 200 400 600 800 1000 1200

D
P

P
H

 s
ca

v
en

g
in

g
 a

ct
iv

it
y
 (

%
)

Concentration (µg mL-1)

Ascorbic acid

α-tocopherol

β-carotene

β-sitosterol

C 



221 

The FRAP assay evaluates the reduction of Fe3+ to Fe2+ by the donation of an electron by the 

antioxidant (Soumya et al., 2014). There was a positive relationship between the concentration of 

plant extract or compound with absorbance (Figures 27 and 28). The DCM extract of the stem of 

L. peduncularis had the highest reducing capacity compared to the other extracts but lower than

ascorbic acid and α-tocopherol. For both L. alatipes and O. tenax, the MeOH extracts of the stem 

had the highest activity compared to the other extracts. Obetia tenax and L. alatipes showed higher 

ferric reducing power compared to L. peduncularis. Beta -sitosterol exhibited the higher reducing 

capacity compared β-carotene but lower than ascorbic acid and α-tocopherol. 
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B 

C 

Figure 27: Ferric reducing power of extracts from L. peduncularis (A), L. alatipes (B) and O. tenax 

(C) leaves and stem. Different letters indicate mean separation by Tukey’s post-hoc test at the 5%

level. 
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Figure 28: Ferric reducing power of compounds isolated from the nettles. Different letters indicate 

mean separation by Tukey’s post-hoc test at the 5% level. 

Enzyme inhibitory activity 

Alpha amylase is responsible for the digestion of dietary carbohydrates in humans. Inhibition of 

this enzyme slows down the rate of digestion of carbohydrates, glucose absorption and thereby 

lowers blood glucose levels. High levels of glucose absorption give rise to a condition known as 

hyperglycemia (Tadera et al., 2006).  The effects of plant extracts and isolated compounds on the 

inhibition of α-amylase are represented in Figures 29 and 30. The IC50 values were determined for 

plant extracts and compounds with inhibition ≥50%. The aqueous extract of L. peduncularis had 

an IC50 value of 48.2 µg mL-1, which was lower than that of the reference standard, acarbose (544 

µg mL-1). Considering the activity of the aqueous extract, studies on Urtica dioca, showed that 

aqueous extracts had antihyperglycemic activity (Bnouham et al., 2003; Das et al., 2011; Momo 

et al., 2007; Sasan et al., 2011). Furthermore, studies conducted by Momo et al (2006) showed that 

the administration of aqueous extract from L. ovalifolia on diabetic rats had positive effects on 

their body weight and the blood glucose levels of the diabetic rats decreased significantly. Extracts 
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of L. alatipes also showed inhibition of α-amylase but this was lower than acarbose. The DCM 

extract of the stems of O. tenax was shown to be the most active with an IC50 value of 21.39 µg 

mL-1. The results suggest that extracts from nettles block the hydrolysis of 1,4 glycosidic linkage 

of starch into simple sugars (Dutta & Kalita, 2016). Laportea peduncularis and O. tenax are most 

effective in the inhibition of α-amylase activity. It was observed β-sitosterol (511 µg mL-1) had 

lowest IC50 value, followed by β-carotene (527 µg mL-1) relative to acarbose. These two 

compounds were both found in both O. tenax and L. peduncularis. 
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B 
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Figure 29: Inhibition of α-amylase activity by extracts from L. peduncularis (A), L. alatipes (B) 

and O. tenax (C) leaves and stem. Different letters indicate mean separation by Tukey’s post-hoc 

test at the 5% level. 
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Figure 30: Inhibition of α-amylase activity by compounds isolated from the nettles. Different 

letters indicate mean separation by Tukey’s post-hoc test at the 5% level. 

The inhibition of α-glucosidase activity of the extracts and compounds from nettles is presented in 

Figures 31 and 32. There was a milder inhibition of α-glucosidase activity compared to α-amylase 

activity for L. peduncularis and O. tenax. DCM extract from leaves (75.0 µg mL-1) and stems (65.2 

µg mL-1) of L. alatipes had the lowest IC50 values compared to acarbose (153 µg mL-1). The results 

show L. alatipes to be the nettle that is most active in the inhibition of α-glucosidase. ß-sitosterol 

(IC50 value of 256 µg mL-1) was observed to be the most active inhibitor of α-glucosidase activity 

compared to the other compounds but this was still lower than acarbose.  
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Figure 31: Inhibition of α-glucosidase activity by extracts from L. peduncularis (A), L. alatipes 

(B) and O. tenax (C) leaves and stem. Different letters indicate mean separation by Tukey’s post-

hoc test at the 5% level. 

Figure 32: Inhibition of α-glucosidase activity by compounds isolated from the nettles. Different 

letters indicate mean separation by Tukey’s post-hoc test at the 5% level. 
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CONCLUSION 

The phytochemical analyses lead to the isolation of β-carotene from L. peduncularis and O. tenax 

and β-sitosterol from all three nettles. Extracts from nettles showed moderate DPPH radical 

scavenging activity. The MeOH extracts of leaves and stems of O. tenax had higher ferric reducing 

antioxidant power compared to α-tocopherol. The aqueous extract of L. peduncularis leaves and 

the DCM extract of the stems of O. tenax appeared to have high α-amylase inhibitory activity, 

whilst β-sitosterol and β-carotene had high α-amylase inhibitory activity. Overall, the α-

glucosidase inhibitory activity of L. alatipes was higher than the other two nettles studied. ß-

sitosterol was observed to have the highest α-glucosidase inhibitory activity. Our study suggests 

that nettles can be used as natural therapeutic agents for type 2 diabetes and therefore provides a 

scientific basis for its ethno-medicinal use.  

Acknowledgements 

The authors like to thank the National Research Foundation (NRF), South Africa for financial 

support and the School of Chemistry and Physics, UKZN for the research facilities.  

 

 

 

 

 



 

230 

 

REFERENCES 

American Diabetes Association. 2004. Diagnosis and classification of diabetes mellitus. Diabetes 

Care, 27(suppl 1): S5-S10. 

Betteridge, DJ. 2000. What is oxidative stress?. Metabolism, 2 suppl 1: 3-8. 

Bnouham, M, Merhfour, FZ, Ziyyat, A, Mekhfi, H, Aziz, M, Legssyer, A. 2003. 

Antihyperglycemic activity of the aqueous extract of Urtica dioica. Fitoterapia, 74: 677–681. 

Bogaerts, V, Theuns, J. van Broeckhoven, C. 2008. Genetic findings in Parkinson’s disease and 

translation into treatment: a leading role for mitochondria?. Genes, Brain and Behaviour, 7: 129-

151. 

Brink, M, Achigan-Dako, EG. 2012. Fibres. Plant Resources of Tropical Africa 1b. PROTA 

Foundation: Wagenigen, Netherlands, p 343. 

Chahardehi, AM, Ibrahim, D, Sulaiman, SF. 2010. Antioxidant, antimicrobial activity and toxicity 

test of Pilea microphylla. International Journal of Mcrobiology, 2010: 1-6. 

Chaturvedula, VSP, Prakash, I. 2012. Isolation of stigmasterol and β-sitosterol from the 

dichloromethane extract of Rubus suavissimus. International Current Pharmaceutical Journal, 1(9): 

239-242. 

Das, S, Singh, S, Sharma, V, Soni, ML. 2011. Biotechnological applications of industrially 

important amylase enzyme. International Journal of Pharmacy and Biological Science, 2(1): 486–

496. 



 

231 

 

Dutta, J, Kalita, MC. 2016. In vitro hypoglycaemic evaluation of seven culinary plants of north 

east India against type 2 diabetes. Asian Journal of Pharamceutical and Clinical Research, 9(2): 

209-212. 

Friis, I. 1989. Urticaceae. In Flora of Tropical East Africa, Polhill, R.M., Ed., A.A. Balkema: 

Rotterdam, Netherlands, pp 1-64. 

Hussain, W, Hussain, J, Hussain, S, Shinwari, ZK, Ali, R, Basir, A. 2013. Ethono- medicinal study 

of Parachinar, Kurram Valley (FATA) KPK, Pakistan. Journal of Applied Pharmaceutical Science, 

3(11): 85-88. 

International Diabetes Federation. 2013. International Diabetes Federation Atlas, 6th edition,  

http://www.diabetesatlas.org/, accessed online (30/10/2016). 

International Diabetes Federation. 2013.The International Diabetes Foundation annual reports, 

https://www.idf.org/sites/default/files/attachments/IDF-AR2013-final-rv.pdf, accessed online 

(30/10/2016). 

Kedare, SB, Singh, RP. 2011. Genesis and development of DPPH method of antioxidant 

assay. Journal of Food Science and Technology, 48: 412–422. 

Krishna, C, Sajeesh, T, Parimelazhagan, T. 2014. Evaluation of nutraceutical properties of 

Laportea interrupta (L.) Chew. Food Science and Biotechnology, 23(2): 577-585. 

Miglietta, ML, Lamanna, R. 2006. 1H HR-MAS NMR of carotenoids in aqueous samples and raw 

vegetables. Magnetic Resonance in Chemistry, 44: 675-685. 

http://www.diabetesatlas.org/
https://www.idf.org/sites/default/files/attachments/IDF-AR2013-final-rv.pdf


 

232 

 

Momo, CE, Oben, JE, Tazoo, D, Dongo, E. 2006. Antidiabetic and hypolipidaemic effects of a 

methanol/methylene-chloride extract of Laportea ovalifolia (Urticaceae), measured in rats with 

alloxan-induced diabetes. Annals of Tropical Medicine and Parasitology, 100: 69–74. 

Momo, NEC, Oben, EJ, Blaise, K, Dagobert, T, Ignѐs, FDG, Dongo E. 2007. Acute and sub acute 

toxicities of methanol/methylene chloride (CH3OH/CH2Cl2) extract of Laportea ovalifolia 

(Urticaceae) in rats. Pharmacologyonline, 2: 391-406. 

Moss, GP. 1976. Carbon-13 NMR spectra of carotenoids. Pure and Applied Chemistry, 47: 97-

102. 

Murthy, SP, Manjunatha MR, Sulochannama, G, Naidu, MM. 2012. Extraction, characterization 

and bioactivity of coffee anthocyanins. European Journal of Biological Sciences, 4(1): 13-19. 

Njogu, PM, Thoithi, GN, Mwangi, JW, Kamau, FN, Kibwage, IO, Kariuki, ST, Yenesew, A, 

Mugo, HN, Mwalukumbi, JM. 2011. Phytochemical and Antimicrobial Investigation of 

Girardinia diversifolia (Link) Friis (Urticaceae). East and Central African Journal of 

Pharmaceutical Sciences, 14: 89-94. 

Noori, S. 2012. An overview of oxidative stress and antioxidant defensive system. Open Acess 

Scientific Reports,  https://www.omicsonline.org/scientific-reports/2167-0390-SR-413.pdf, 

accessed online (30/10/2016). 

Phillips, R. 2014. Roger Phillips wild foods: A complete guide for foragers. Macmillan: Oxford, 

London, p. 124. 

https://www.omicsonline.org/scientific-reports/2167-0390-SR-413.pdf


 

233 

 

Saravanan, S, Parimelazhagan, T. 2014. In vitro antioxidant, antimicrobial and anti-diabetic 

properties of polyphenols of Passiflora ligularis Juss, fruit pulp. Food Science and Human 

Wellness, 3: 56-64. 

Sasan, TA, Goodarzi, MT, Jamshid, K, Panah, MH. 2011.  Antidiabetic effects of the aqueous 

extract of Urtica dioica on high-fructose fed rats. Clinical Biochemistry, 44: S332. 

Soumya, V, Indira Muzib, Y, Venkatesh, P, Hariprasath, K. 2014. GC–MS analysis of Cocus 

nucifera flower extract and its effects on heterogeneous symptoms of polycystic ovarian disease 

in female Wistar rats. Chinese Journal of Natural Medicines, 12(9): 677–684. 

Tadera, K, Minami, Y, Takamatsu, K, Matsuoka T. 2006. Inhibition of α-glucosidase and α-

amylase by flavonoids. Journal of Nutritional Science and Vitaminology, 52: 149-153. 

Warren, P. 2006. 101 uses for stinging nettles. Wildeye: United Kingdom, pp. 33-35. 

World Health Organization. 2002. WHO traditional medicine strategy 2002-2005. Geneva, 

Switzerland. 

Wu, D, Cederbaum, AI. 2003. Role of p38 MAPK in CYP2E1-dependent arachidonic acid 

toxicity. Journal of Biological Chemistry, 278(2): 1115-11124. 

Zhu, Z, Ma, L, Zhu, HY, Yang, XS, Hao, XJ. 2011. Studies on the chemical constituents of 

Laportea bulbifera. Journal of Chinese Medicinal Materials, 34(2): 223-225. 

 

 

 



 

234 

 

CHAPTER EIGHT 

OVERALL SUMMARY 

The ongoing food security crisis in South Africa has caused an increase in child malnutrition, 

undernutrition and negative health effects. The development of non- communicable diseases such 

as hypertension and diabetes has been linked to nutrient deficiencies (vitamins and minerals). 

There are numerous indigenous edible plants that are underutilised in South Africa as information 

on the chemical composition of these plants is lacking; this information would highlight the 

nutritional potential of these plants which can be exploited to alleviate hunger and malnutrition 

and would also validate the ethno-medicinal use of these plants. Nettles are indigenous medicinal 

plants that can be exploited as a food source and for their biologically active compounds; they are 

comparable to commonly used vegetables such as spinach and cabbage. The aim of this study was 

to analytically and phytochemically investigate the nettles (Laportea peduncularis susp. 

peduncularis (river nettle), Laportea alatipes (forest nettle), Obetia tenax (mountain nettle) and 

Urtica dioica (stinging nettle)). The distribution of macronutrients, anti-nutrients and essential 

elements in the four nettles was determined. The heavy metal distribution in Laportea 

peduncularis and Obetia tenax and corresponding growth soil was determined to evaluate the 

impact of soil quality on uptake by nettles and to assess for potential metal toxicities. Additionally, 

the uptake, translocation and bioaccumulation of elements in nettles were determined by looking 

at Laportea alatipes. The nutritional value of the four nettles was also evaluated by comparing to 

dietary reference intakes. Finally, the secondary metabolites in nettles were isolated and identified 

and these were tested for their biological activity (antioxidant and anti-diabetic). 
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FINDINGS FROM THE STUDY 

The concentration of essential elements in cooked L. peduncularis leaves were found to be in 

decreasing order of Ca > Mg > Fe > Mn > Zn > Cu > Cr > Ni > Co. Both cooked and raw leaves 

of L. peduncularis and U. dioica nettles were found to be rich sources of macronutrients and 

essential elements and may be used as an alternative to commercially available vegetables or herbs. 

According to the findings in O. tenax, the results showed that the concentrations of elements in the 

leaves to be in decreasing order of Ca > Mg > Fe > Mn > Zn > Cr > Cu > Ni > Pb > Co > As > Cd 

> Se, and in the stems and roots to be in decreasing order of Ca > Mg > Fe > Mn > Zn > Cu > Ni 

> As > Pb > Co > Cd > Cr > Se. Findings on Laportea alatipes revealed that concentrations of 

minor elements in the leaves were in decreasing order of Fe> Mn> Zn> Cu> Cr> Ni> Co> Pb> 

Se> As>Cd.  

Soil quality indicators (geo-accumulation indices and enrichment factors) indicated moderate Cd 

contamination in nettles. The concentration of metals in the soil were in decreasing order of Fe> 

Ca> Mg> Mn> Zn> Cr> Cu> Ni> As> Co> Cd> Pb. Principal component and cluster analyses 

revealed that certain elements were from a common origin. 

Findings from the proximate analysis of L. alatipes and O. tenax showed a significant decrease in 

the crude fat, crude protein, vitamin C and E content and a significant increase in carbohydrate 

and crude fibre content with cooking. Also, a decrease in the vitamin A content was observed in 

L. alatipes. The anti-nutrient (cyanide, oxalates, saponins and phytates) and toxic element (Cd and 

Pb) content decreased with cooking.  

Nettles grown near main roads were found to contain higher concentration of toxic elements As, 

Cd and Pb, yet moderate contamination was observed. It would be therefore recommended that 
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nettles grown near main roads be cooked in order to decrease the concentration of harmful 

elements. The nettles were found to be rich in β-carotene and sterols. The nettle extracts were 

found to have moderate antioxidant activity and higher anti-diabetic activity than the known 

standard, acarbose.  

 

CONCLUSION 

An investigation of the phytochemical composition of the nettles revealed the presence of β-

carotene and β-sitosterol. Extracts from the nettles were found to possess anti-diabetic potential 

which indicates that they can be beneficial to individuals suffering from hyperglycaemia which is 

one of its uses in traditional medicine. Nettles were found to be rich in macronutrients, essential 

elements and other minerals, thus they can contribute positively to the diet. Cooking of nettles was 

found to decrease the levels of toxic elements and anti-nutrients in the plants. Nettles were found 

to be rich in Fe therefore, they can be used as Fe supplements for individuals suffering from Fe 

deficiency anaemia. Since nettles are readily available they can serve as an affordable alternative 

to commercially available herbs. This study lends scientific credence to the ethno-medicinal use 

of nettles and provides information on their nutritional value. 

 

RECOMMENDATION FOR FUTURE WORK 

 Isolation and structural elucidation of all phytocompounds in nettles. 

 Determination of the fatty acid composition of nettles. 

 Further investigation of the anti-diabetic potential of nettles. 
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APPENDIX  

SUPPORTING INFORMATION 

Supporting information include NMR, IR, MS, UV spectra.  
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13C-NMR spectrum of C2(β-sitosterol) 
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IR spectrum of C2(β-sitosterol)
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GC-MS spectrum of C2(β-sitosterol) 
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UV-Vis spectrum of C2(β-sitosterol) 
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1H-NMR spectrum of C1(β-carotene)
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13C-NMR spectrum of C1(β-carotene)
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IR spectrum of C1(β-carotene)
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GC-MS spectrum of  C1(β-carotene)
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UV-Vis spectrum of C1(β-carotene)
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