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ABSTRACT 

 

Water temperature is a critical factor affecting the abundance and richness of freshwater 

stream aquatic macroinvertebrate communities. Variable seasonal river temperature 

patterns are a critical factor in maintaining temporal segregation in aquatic invertebrate 

communities, allowing for resource partitioning and preventing competitive exclusions, 

while spatial differences in water temperatures permit zonation of species. This research 

investigated whether the degree of predictability in a stream’s water temperature profile 

may provide some indication of the degree of structure and functional predictability of 

macroinvertebrate communities. Quarterly aquatic macroinvertebrate sampling over a 

single year along the longitudinal axes of two river systems, Keurbooms River in the 

southern Cape, and the Kowie River in the Eastern Cape, were undertaken as the core 

component of this research. The two river systems shared similar ecoregions and profile 

zones, however were expected to differ in their thermal variability, based on the 

hydrological index and flow regimes for their respective quaternary catchments. Hourly 

water temperature data were collected at each sampling site from data loggers installed 

at five paired sites on each stream system. The aquatic biotopes sampled were in close 

proximity to the loggers. Multivariate analysis techniques were performed on the 

macroinvertebrate and water temperature data. Macroinvertebrate taxon richness was 

greater on the perennial Keurbooms than the non-perennial Kowie River where, on a 

seasonal basis, taxon richness increased from winter to autumn on both systems. 

Macroinvertebrate species turnover throughout the seasons was higher for sites having 

lower water temperature predictability values than sites with higher predictability 

values. This trend was more apparent on the Keurbooms with a less variable flow 

regime. Temporal species turnover differed between sites and streams, where reduced 

seasonal flows transformed the more dominant aquatic biotopes from stones-in-current 

into standing pools. Findings included aquatic macroinvertebrates responding typically 

in a predictable manner to changing conditions in their environment, where water 

temperature and flow varied. The findings of this research demonstrate that 

macroinvertebrate taxa do respond in a predictable manner to changes in their 

environment. This was particularly evident in relation to variability in water temperature 

and flow. 
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CHAPTER 1 
INTRODUCTION 

 

1.1 Introduction 

South Africa, classified as a semi-arid country, has a mean annual rainfall of 500 mm 

(Dallas and Rivers-Moore, 2008a), where this low mean belies an uneven rainfall 

distribution, causing precipitation to be unpredictable and variable (Rivers-Moore et al., 

2008a). Rainfall ranges from below 100 mm to greater than 1200 mm per annum 

(Lynch, 2004, cited in Schulze and Lynch, 2007), where the general trend is high in the 

south-east and low in the north-west of the country. This high variability results in a 

diverse range of aquatic ecosystems, where associated species have had to adapt 

accordingly to either regular or irregular flows on perennial or non-perennial streams 

respectively. Variability, as a consequence, plays a crucial role in the survival of 

freshwater ecosystems (Vannote and Sweeney, 1980). 

 

Water is the key to survival, where one of its many roles is to maintain aquatic and 

terrestrial ecosystems and associated biodiversity (DEAT, 2006). Stream ecosystems are 

affected and driven by a large number of biotic and abiotic aspects that create biotic 

patterns through their interactions, resulting in complex systems (Dallas, 2007; Dollar et 

al., 2007). Unfortunately, many freshwater systems are under threat, predominantly as a 

result of direct anthropogenic impact (Bates et al., 2008), with South Africa being no 

exception (DEAT, 2006). As a consequence of these impacts, aquatic invertebrates have 

become widely recognized as identifiers of water quality, both in South Africa (Dickens 

and Graham, 2002; Thirion, 2007; Oberholster et al., 2008) and other parts of the world 

(Buffagni et al., 2001; Bonada et al., 2006; Dinakaran and Anbalagan, 2007; Macedo-

Sousa et al., 2008). One of these water quality variables is water temperature.  

 

Temperature affects various factors in water, including water quality (chemical 

characteristics, dissolved oxygen and sewage fungus) and the aquatic biota (stages in 

life cycles, physiological effects and effects on the communities as a whole) (Dallas and 

Day, 1993). Water temperature is a primary abiotic driver affecting the types and 

quantities of species in streams (Vannote and Sweeney 1980; Quinn and Wright-Stow, 
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2008), and is a particularly important parameter to monitor within sensitive aquatic 

environments. Diel temperature ranges impact on the potential diversity of species that 

can coexist within freshwater ecosystems, due to every individual occurring in the zone 

of its most optimum temperature during part of the day (Vannote and Sweeney 1980). 

According to Vannote and Sweeney (1980), the key to sustaining temporal segregation 

within aquatic invertebrate communities is seasonal stream temperature patterns, 

enabling resource partitioning to occur, thus preventing the competitive exclusions, 

while species zonation occurs partly due to water temperature differing spatially.  

 

In streams, it is hypothesised that the biotic diversity role becomes less crucial for 

sustaining stability of ecosystems within physical systems that are highly stable, for 

example, headwaters (Rivers-Moore et al., 2008a). On the contrary, as increases in 

variability with downstream distance occur (for example, water temperature), the biotic 

diversity role becomes increasingly important for maintaining the stability of the 

ecosystem (Rivers-Moore et al., 2008a). This paradigm indicates how water 

temperatures contribute towards system stability (Vannote et al., 1980). Therefore, a 

correlation between daily temperature variability and biotic diversity becomes evident 

along a stream’s longitudinal axis, peaking in mid-reach regions (Rivers-Moore et al., 

2008a). According to Vannote et al. (1980), aquatic diversity is lower in the headwaters 

compared to the remaining stream profile as only macroinvertebrates with narrow 

temperature tolerances are present. 

 

Predictions such as this have significant consequences in terms of assessing the 

applicability of the River Continuum Concept to streams in South African (Rivers-

Moore et al., 2008a; Rivers-Moore, 2010), and ultimately, developing an ecologically 

meaningful water temperature classification for the ecological Reserve provided for in 

the National Water Act 36 of 1998 (Rivers-Moore, 2009).  

 

From a South African perspective, there is still a great deal to be learnt about water 

temperatures, as quoted by Rivers-Moore et al. (2008a, pp. 47): “What is known about 

water temperatures in South African rivers is considerably less than what is unknown”. 
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This research aims to enhance our understanding of water temperature variability and 

how it affects macroinvertebrate community structures. 

 

With the above-mentioned in mind, the core component of this research was to perform 

quarterly surveys of aquatic macroinvertebrates along the longitudinal axes of two 

stream systems, Keurbooms River in the Western Cape, and the Kowie River in the 

Eastern Cape. The two stream systems are comparable in their ecoregions, stream orders 

and profile zones; however they differ in their thermal variability, based on the 

hydrological index for their respective quaternary catchments (Rivers-Moore, 2009). 

 

1.2 Aim and Objectives 

The aim of this research was to determine whether the degree of predictability in a 

stream’s water temperature regime may provide an indication of the degree of structure 

and functional predictability of macroinvertebrate communities (Vannote and Sweeney, 

1980). Objectives were:  

 

1. To establish whether aquatic macroinvertebrates typically respond in a 

predictable manner to changing environmental conditions, temperatures and 

flows; 

2. To test whether the temporal partitioning of macroinvertebrate species, such as 

diversity indices and functional feeding groups, are related to water temperature 

variability. 

 

This thesis includes a literature review in chapter two, summarizing the findings of 

other authors’ work in preparation for the results of this research. The thesis concludes 

with the outcomes of this research in the conclusions chapter, highlighting the impacts 

of the findings upon macroinvertebrates in freshwater ecosystems. 
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CHAPTER 2 
LITERATURE REVIEW 

 

2.1 Role of variability in ecosystems 
There are three different components that contribute towards stream ecosystems, 

namely; riparian, surface and subsurface systems (Ward and Tockner, 2001), with 

variability in each of these components playing a crucial role in changing stream 

dynamics. Frissel et al. (1986) emphasise the importance of understanding the physical 

patterns influencing biological relationships within stream ecosystems, particularly 

across space and time, as macroinvertebrate distribution, along with their microhabitat 

distribution, are controlled by physical attributes. Studies undertaken by Skoulikidis et 

al. (2009) mention several characteristics that determine macroinvertebrate faunal 

assemblages, including water temperature, altitude, geographical position, current 

velocity, catchment area, slope and conductivity. At a local geographic context, Dallas 

(2004) found that macroinvertebrate assemblages were distinctly different between 

streams in the Western Cape and Mpumalanga with temperate and tropical climates 

respectively. Dallas (2004) further noted that taxa richness was higher in the tropical 

region than the temperate region, with exclusive taxa being higher in Mpumalanga than 

the Western Cape. 

 

Richter et al. (1996) emphasise how seasonal hydrologic variation is critical to the 

survival of species living in different aquatic habitats, where natural disturbances and 

reproductive cycles are important components of population dynamics. Variability is 

scale-dependant, where daily, weekly, monthly, seasonal and annual flows are all 

equally important temporal measurements that contribute towards the function of 

aquatic ecosystem communities (Jewitt and Görgens, 2000).  

 

Ecosystems on a typical river can be broken into different zones. These zones consist of 

the headwater zone, the middle zone and the lower zone (Dallas and Day, 1993), where 

certain characteristics are generally prominent in these different zones. Headwater 

zones, typically in mountain streams, have clear, swift flowing oxygenated waters, with 

steep gradients and stream beds consisting of boulders and stones (Gerber and Gabriel, 

2002). Particular characteristics define the middle zones, where streams become wider 
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and more turbid than the headwaters, velocity is reduced due to a more gentle gradient, 

water flow is less turbulent and water temperatures are higher that mountain streams 

(Gerber and Gabriel, 2002). Finally, features of the lower zones are that they are wider 

and velocity is slower than the middle zones, where stream beds consist of sand and silt 

and waters are rich in nutrients as a result of contributing tributaries (Gerber and 

Gabriel, 2002). Within each of these zones, particular biotopes are present. 

 

There are several types of aquatic biotopes (or habitats) that have been explained in 

freshwater streams. A biotope, as defined by Dallas and Day (1993, pp. 214) is “a 

homogeneous environment that satisfies the habitat requirements of a biotic 

community”. Some of the more common types of biotopes in streams, described by 

Gerber and Gabriel (2002) include the following: runs (tranquil flow without any 

broken surface water); riffles (fast-flowing, shallow water, creating turbulent flows 

resulting in broken surface water); pools (generally deep water that is slow-flowing); 

aquatic vegetation (fully or partially submerged plants living within the stream 

channel); marginal vegetation (plants living at the water’s edge, particularly reeds and 

grasses – can be in or out of current, Dickens and Graham, 2002) and algae (simple 

plants occurring in either colonial, filamentous or unicellular forms). Other biotopes that 

occur in freshwater streams include stones-in-current (Palmer, 1997, Dickens and 

Graham, 2002), stones-out-of-current (Dickens and Graham, 2002), stony backwaters 

(Palmer et al., 1991) and biotopes on the stream bed, including gravel, sand and mud 

(Dickens and Graham, 2002).  

 

Certain macroinvertebrate species have adapted to different regions in streams. An 

example of how certain invertebrates evolve to inhabit specific biotopes is explained in 

O’Keeffe and de Moor (1988), who deduced that certain beetle families, including 

Hydrophilidae and Dytiscidae, are frequently associated with pools and marginal 

vegetation surroundings. Palmer et al. (1991) found that several Ephemeroptera, 

Plecoptera and Trichoptera taxa had over 50 % occurrences in certain biotopes, 

particularly riffles and stony backwaters. 
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2.2 Variability in freshwater systems 

2.2.1 Variability and the River Continuum Concept 

Streams vary significantly as they progress from the headwaters towards the mouth, 

particularly width, depth, gradient, flow discharge and water temperature. These abiotic 

features influence aquatic ecosystems differently along the longitudinal gradient. The 

River Continuum Concept (Vannote et al., 1980) explains this with particular emphasis 

on aquatic fauna. The concept states that in physically stable stream systems, biotic 

diversity may appear low, whereas a high biotic diversity may be prevalent in systems 

with physical variation of higher magnitudes. Physical variability may be stable in 

certain positions along a stream gradient, particularly headwaters and the lower reaches, 

where the mid-regions may exhibit higher degrees of physical variation. This is as a 

consequence of variability, where diel temperatures are greatest in the mid-regions; 

flow, riparian influence, food and substrate may effect the community structure 

variations along the course of the stream (Vannote et al., 1980).  

 

Within the diel temperature range, each organism is exposed to its optimum temperature 

range, where energy processed by organisms oscillates around its optimum mean 

temperature, where energy processing rates may increase or decrease amongst aquatic 

populations (Vannote et al., 1980). Therefore, high diel ranges in the mid-regions may 

promote optimum temperatures to become available to a greater number of 

macroinvertebrate species, possibly being one of the reasons for yielding a high 

biodiversity.  

 

2.2.2 Flow variability patterns 

No two catchments are alike. There are several driving forces that control how streams 

navigate their route within catchments, which may significantly control invertebrate 

grouping. These include: area of upstream catchment, distance from the source, channel 

slope (gradient), altitude, geology and latitude/longitude (Dallas, 2007; Skoulikidis et 

al., 2009). On a smaller scale, particularly affecting sampling sites, stream depth, 

velocity and width, flow pattern and canopy cover may alter invertebrate community 

structure (Vannote et al., 1980; Dallas, 2007), particularly on a seasonal basis. 
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Therefore, with different rainfall seasonality, the abovementioned may have a 

significant impact on water temperatures and thus structuring invertebrate communities. 

 

Stream flow is considered the primary driver of aquatic faunal distribution (Hart and 

Finelli, 1999), as it affects the biota in a variety of ways (King et al., 2008). With 

regards to stream velocity, studies undertaken by Chutter (1969) recorded that 

invertebrates are found in a wide variety of stream velocities, with some species 

responding positively to fluctuation in velocities, for example, certain species prefer 

specific stream conditions, such as several Blackfly species preferring running waters 

(Lautenschläger and Kiel, 2005; Rivers-Moore et al., 2008b). The geology of a 

catchment influences the chemistry of the stream, particularly pH, cation, anion and 

total dissolved solids concentrations (Dallas, 2007). In catchments with different 

geological types, the above-mentioned factors could fluctuate. 

 

2.2.3 Thermal variability 

Water temperature is a major species pattern driver in aquatic ecosystems (Rivers-

Moore et al., 2008a). Furthermore, water temperature is considered an important 

seasonal fluctuation that many fauna adapt to (Resh et al., 1988). The geographic 

spreading of aquatic organisms is determined predominantly by water temperature, 

considered one of the most important abiotic factors (Bartholow, 1989); thus the effect 

that temperature has on aquatic invertebrate life is undeniable (Vannote and Sweeney, 

1980), particularly affecting metabolism, respiration and reproduction. 

 

There are several factors that influence water temperature regimes in natural streams; 

including climate (altitude, latitude and continentality), hydrology (source, flow, 

tributaries and groundwater) and insolation (topography, channel form and riparian 

vegetation) (Ward, 1985). Controlled by wind speed, cloud cover, precipitation events 

and vapour pressure, air temperature is regarded as the most significant climatic factor 

on water temperature, having a direct impact on stream and groundwater temperatures 

(Ward, 1985). Day-length also contributes to temperature (Palmer et al., 1996). As a 

result of a plethora of factors controlling macroinvertebrate assemblages, many species 

have adapted to specific regions along stream profiles. Attributed to water temperatures, 
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Oliff (1960) discovered that the species structure in the headwaters of the Thukela River 

in KwaZulu-Natal differed significantly to the downstream reaches, whilst Palmer et al. 

(1991) found that macroinvertebrate assemblages on the Buffalo River in the Eastern 

Cape differed between upper reaches and middle to lower reaches, and between 

biotopes. 

 

Stream temperatures progressively increase from the headwaters towards the mouths 

within stream profiles, usually attributed to altitudinal changes (Ward, 1985; Jacobsen 

et al., 1997). This is due to temperature having a strong correlation with altitude 

(Dallas, 2007). Temperature variability occurs at different temporal scales, including 

daily (diel), monthly, annually and inter-annually (Rivers-Moore, 2009). Jacobsen et al. 

(1998) concluded that the number of invertebrate orders and families had a linear 

increase with maximum water temperature, thus both temperatures and invertebrate 

orders decreasing with increasing latitude and altitude. Regarding diel temperature 

fluctuations, stream depth is considered one of the principal drivers, where greater 

variability occurs in shallower waters (Ward, 1985).  

 

Secondary drivers of water temperature are mentioned by Brunke et al. (2001), who 

highlight immersed tree roots, woody debris, mussel banks, plants and assorted 

inorganic sediments as affecting microhabitat thermal heterogeneity by creating slight 

shading or the protection of invertebrates from direct current. 

 

2.3 Role of macroinvertebrates in ecosystems and response to habitat 

variability 

2.3.1 Effects of temperature on aquatic biota 

Water temperature plays a significant role on stream biota, supported by a growing 

literature (Vannote and Sweeney, 1980; Brittain and Campbell, 1991; Hogue and 

Hawkins, 1991; Dallas and Day, 1993; Johnson, 2003 Allan et al., 2006; Woods and 

Bonnecaze, 2006; Haidekker and Hering, 2008; Webb et al., 2008; Dallas, 2009). 

Aquatic macroinvertebrates are poikilothermic, meaning their body temperatures are not 

controllable; as a result, their body is the same temperature as the water in which they 
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exist (Dallas and Day, 1993). Therefore, water temperature affects biota by several 

means, including the triggering of migration and spawning, reproduction, growth, 

general fitness, respiration, metabolic rate (Dallas and Day, 1993) and the development 

and hatching of eggs (Brittain and Campbell, 1991; Dallas and Day, 1993). Thus, water 

temperature changes affects riverine biota by several means, where macroinvertebrates 

may become exposed to conditions that are lethal or sublethal (Dallas and Day, 1993). 

 

2.3.2 Functional feeding groups 
The river continuum concept is similar to the equilibrium state reached within the 

physical system, where faunal producer and consumer functional feeding groups may 

rapidly adjust to any alterations to their surroundings (Vannote et al., 1980). The 

location of aquatic macroinvertebrates along stream profiles varies depending on their 

feeding technique. Vannote et al. (1980) and Covich et al. (1999) describe this in terms 

of functional feeding groups: collectors, shredders and scrapers, where some species 

have feeding accessories or specialized mouthparts for breaking up bigger organic 

detritus into smaller portions, particularly in headwaters, where an estimated 20-73 % of 

leaf litter entered into headwater streams from riparian areas is processed by benthic 

invertebrates. As this breakdown of detritus matter occurs during the feeding process, 

parts are transported further downstream from shredder species, where specialised filter 

species exploit this food source (Covich et al., 1999). Suspension feeders, grazers, 

predators, surface and subsurface deposit feeders are other types of invertebrates that 

contribute to an aquatic ecosystem’s continued existence (Dallas and Day, 1993; 

Gamito and Furtado, 2009). The location of functional feeding groups along the stream 

profile is explained further by Vannote et al. (1980) in the river continuum concept. 

 

The stream order or relative position along the stream profile determines the relative 

dominance of functional feeding groups, where riparian vegetation in headwater regions 

contribute leaf litter (course particulate organic matter – CPOM > 1mm) towards the 

aquatic ecosystem, fed upon by shredders (Vannote et al., 1980). Collectors rely on 

gathering from sediments or filtering from suspended fine and ultra-fine particulate 

organic matter (FPOM 50 µm - 1mm and UPOM 0.5 – 50 µm, respectively), suggested 

by Vannote et al. (1980) to increase in importance and dominance down the stream 
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profile due to a reduction in size of detrital particles and increasing stream size. 

Scrapers feed by shearing algae attached to surfaces and predators prey upon other 

invertebrates (Vannote et al., 1980). 

 

Another aquatic specialist group are the sub-surface invertebrates, residing in sediments 

in the stream-bed. Covich et al. (1999) portrays their functions within ecosystems as 

that of nutrient cycling, sediment mixing and energy flow via food webs. Pertaining to 

macroinvertebrates burrowing in the benthos, the nutrient cycling process and microbial 

growth is accelerated, where sediments are mixed, aerated and macro- and micro-

nutrients recycled at increased rates, as a result of digging crayfish, insect larvae, 

tubificid worms and bivalves (Covich et al., 1999; King et al., 2008).  

 

Not all authors agree with the notion of functional feeding groups (Lake et al., 1985, 

cited in Palmer et al., 1993; King et al., 1988), stating that aquatic invertebrates are 

polyphagous, or opportunistic generalists (Cummins, 1973) and different locations and 

diverse life history stages may alter their diet and feeding habits (Minshall, 1988). 

Palmer et al. (1993) examined the gut content of twelve taxa in the Buffalo River 

between the middle and lower reaches and recorded that detritus was the dominant diet 

for all the taxa, where invertebrate remains were found in the guts of Cheumatopsyche 

afra and Macrostemum capense. Two broad functional feeding groups were categorised 

from their results: fine detritus microvores (including the mayfly species in their study) 

and mixed diet microvores (including the caddisfly species due to invertebrate remains) 

(Palmer et al., 1993). 

 

A disturbance in a system could impact the biota negatively, for instance suspension 

feeder food availability reduction if headwater shredder species are reduced in numbers 

or missing completely (Covich et al., 1999). This is an example of how certain aquatic 

feeders are reliant on others. Drastic changes to aquatic invertebrate habitats may be 

detrimental to their, as well as other species, survival. This may occur as a result of 

sensitive species redistributing themselves or dying off due to their surroundings being 

altered (for example, anthropogenic impacts); this causes their ecosystem function to no 
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longer be carried out, thus a disproportional imbalance occurs, where others attempt to 

compensate for their absence (Covich et al., 1999).  

 

All macroinvertebrates play a specific role within their niche. According to Covich et 

al. (1999), some of these ecosystem services provided by benthic populations include 

the roles of predators, herbivores, performing as a primary consumers, or detrivores. 

Gamito and Furtado (2009) explain how other species in aquatic ecosystems are 

dependant upon larger species’ survival, where bacteria and detritus in the benthic layer 

are nourished by benthic invertebrates, where these may further be preyed upon by 

larger carnivores, such as fish. 

 

2.4 Indicators of variability 
There are two types of indicators for variability for freshwater ecosystems, namely 

abiotic and biotic. This section briefly discusses these indicators. 

2.4.1 Abiotic indicators 
Abiotic indicators essentially break down time series (flow and temperature) into 

metrics to ‘measure’ variability (Rivers-Moore, 2009). For instance, Colwell (1974) 

derived indices that are useful for classifying the predictability of rivers. Colwell (1974, 

pp. 1152) defines predictability as “...a measure of the variation among successive 

periods in the pattern of a periodic phenomena”. When it comes to predicting the 

presence or absence of certain invertebrates, the relationship strength between the 

environmental and biological factors at particular locations plays a significant role 

(Dallas, 2007). One of the foremost phenomena concerning predictability is that it is 

high when a system’s variation is low (Colwell, 1974). 

 

Richter et al. (1996) derived the Indicators of Hydrologic Alteration (IHA) method, 

consisting of 32 parameters including magnitude, duration, timing and frequency of 

flow events that are ecologically relevant, where one of the purposes was to provide 

researchers with biotic responses to certain parameters (Table 2.1). These parameters 

relate predominantly to surface water flows, but incorporates groundwater, including the 

following: magnitude (mean for a given month); ranges of daily to seasonal extremes of 

annual conditions (for duration and magnitude); the Julian-date timing of the extremes; 
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Table 2.1: A summary of the hydrological parameters applied in the Indicators of Hydrologic Alteration (IHA), with associated 

characteristics (after Richter et al., 1996). 

IHA statistics group Regime characteristics Hydrologic parameters 
Group 1: Magnitude of monthly water 
conditions 

Magnitude 
Timing 

Mean value for each calendar month 

Group 2: Magnitude and duration of annual 
extreme water conditions 

Magnitude 
Duration 

Annual minima 1-day means 
Annual maxima 1-day means 
Annual minima 3-day means 
Annual maxima 3-day means 
Annual minima 7-day means 
Annual maxima 7-day means 
Annual minima 30-day means 
Annual maxima 30-day means 
Annual minima 90-day means 
Annual maxima 90-day means 
 

Group 3: Timing of annual extreme water 
conditions 

Timing Julian date of each annual 1 day maximum 
Julian date of each annual 1 day minimum 
 

Group 4: Frequency and duration of high 
and low pulses 

Magnitude 
Frequency 
Duration 

Number of high pulses each year 
Number of low pulses each year 
Mean duration of high pulses within each year 
Mean duration of low pulses within each year 
 

Group 5: Rate and frequency of water 
condition changes 

Frequency 
Rate of change 

Means of all positive differences between consecutive daily 
means 
Means of all negative differences between consecutive daily 
means 
Number of hydrograph rises 
Number of hydrograph falls 
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duration and frequency of low and high pulses; and the frequency and rate of alteration in 

conditions. This technique is useful when rivers need to be ecologically restored (Richter 

et al., 1996). 

 

Similarly to flow indices, ecologically relevant water temperature metrics have been 

suggested. Comparable to the IHA parameters derived by Richter et al. (1996), Indicators 

of Thermal Alteration (ITA) were suggested by Rivers-Moore et al. (2010), adapted from 

Richter et al. (1996). These parameters aim to assist with the interpretation of ecological 

data, where the magnitude, duration, timing and frequency of water temperature events 

are used. 

2.4.2 Biotic indicators 
Whittaker (1972) explains how species evolve to occupy diverse positions along a habitat 

gradient. The initial species richness at a particular site is termed its alpha diversity, 

occupying a niche hypervolume; alpha diversity relates to the complexity of the 

community. Niche partitioning over time and space allow different species to coexist 

within the same ecosystems along the same resource gradient. Where these niches 

overlap, a continuum is formed. The extent to which other species fit into the existing 

continuum causes an increase in species along the habitat gradient within the community 

composition. The degree to which these communities differentiate (turnover) is known as 

beta diversity (Whittaker, 1972). Thus, Whittaker’s alpha and beta (between sites) 

diversity become a useful technique to detect change in species community composition 

over time, in other words, their species turnover. 

 

Thus, by sampling aquatic macroinvertebrates along a stream profile, their diversity at 

different locations along the profile may indicate thermal variability without measuring 

any abiotic factor, for example, water temperature. De Moor (1999, cited in de Moor, 

2002) identified Trichoptera as being adaptable to many ecological conditions, where this 

order may be used as an early warning indicator for change. 

 

Diptera are considered one of the most prolific orders of aquatic invertebrates, so much 

so that Hutchinson (1993, cited in Covich et al., 1999, pp. 120) deduced that “…the 
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Diptera are by far the most diverse order of insects in fresh water; they are in fact the 

most diversified of any major taxon of freshwater organisms”. Thus, a diverse order such 

as Diptera could have some species more sensitive to ecological changes than others, thus 

may be an important order for identifying species to indicate change (de Moor, 2002). 

2.5 Anthropogenic impacts on variability  
Anthropogenic activities have had significant negative impacts on the dynamics of 

aquatic environments (Dallas and Day, 1993; Azrina et al., 2006; Macedo-Sousa et al., 

2008), where destructive adjustments to physical and chemical water characteristics 

become detrimental to these ecosystems. Jones (2005; cited in Thieme et al., 2005) 

describes a number of anthropogenic activities that contribute towards the degradation of 

freshwater habitats, such as interbasin transfers, runoff of several pollutants (pesticides), 

water abstraction and dams (particularly relating to agriculture) and prolific urban 

development. Within aquatic systems, certain fauna, particularly sensitive species, are 

affected by minor temperature modifications, which may or may not result from human 

practices upstream. Variability in streams is greatly affected by anthropogenic influences, 

where thermal signatures are altered due to activities that cause changes in flow volumes, 

shading and groundwater inputs (Ward, 1985; Dallas and Day, 1993).  

 

Human activities can severely influence a stream flow regime, often negatively. 

According to Ward (1985), some of these alterations include stream regulation (for 

example, reservoir construction, interbasin transfers (de Moor, 2002; Rivers-Moore et al., 

2007)), thermal pollution and alterations to riparian vegetation (including logging and 

shading) within the catchment. Changes such as these cause interruptions in species’ life 

cycles to which they have adapted (Ward, 1985). DEAT (2006) mention how the human 

alterations to environments can lead to the increase of invasive alien species and 

biodiversity loss. Such anthropogenic manipulations to water courses may cause drastic 

alterations to aquatic faunal community structures (O’Keeffe and de Moor, 1988), 

particularly sensitive species. It is thus vital that watersheds are managed efficiently, with 

particular emphasis on riparian zones (Allan et al., 1997), ensuring the vegetation is not 

interfered with, as it is a vital component of the stream system.  
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Field work undertaken by O’Keeffe and de Moor (1988) in the Great Fish River (Eastern 

Cape) revealed that 41 macroinvertebrate taxa were identified before an interbasin 

transfer was implemented and 47 taxa afterwards, with 22 taxa common to both periods. 

Rivers-Moore et al. (2007) identified 38 taxa on the same river post-interbasin transfer, a 

decline of nine taxa 19 years later. The significance of this is that flow variability was 

different before versus after the construction of the interbasin transfer. This is an 

indication of how interbasin transfers may be detrimental to certain aquatic species 

ecosystems, linked to anthropogenic alterations as a result of man causing disruptions to 

natural stream processes. 

 

According to Allan (2004) and Allan et al. (1997), landuse practices within a catchment 

influence several characteristics of a river system, both directly and indirectly; these 

include biotic integrity, water quality and habitats. A particular conclusion of these 

authors was that an increase in sediment was positively correlated to the area of land 

under agricultural use up-river. Landuse change to agriculture or urban use often results 

in loss of biodiversity due to aquatic ecosystems becoming degraded (Utz et al., 2009). 

Different landuse types contribute greatly towards changes in flow variability. This is 

caused by surface runoff, where more impermeable surfaces, such as tar or cement under 

urban landuse initiate more surface runoff than a pristine grassland or forest landuse.  

 

Reservoir discharge may affect biota depending on the method of release: bottom (or 

hypolimnetic) discharges are often cool, oxygen deficient and nutrient rich, whereas top 

(epilimnetic) discharges are warmer (Hart and Allanson, 1984; Malan and Day, 2002). 

The presence of dams along a stream have shown to cause adverse conditions on water 

quality and quantity in streams (Mantel et al., 2010a), also negatively effecting 

macroinvertebrate distribution, particularly opportunistic and sensitive taxa quantities 

(Mantel et al., 2010b). 

 

Other factors that may result in biodiversity loss in the systems include growing human 

populations and alien species introductions, placing negative impacts upon water quantity 
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and quality and future concerns such as rising sea levels relating to climate change in 

coastal regions (Jones, 2005; cited in Thieme et al., 2005). 

 

Although temperature is regarded as one of the more comprehensible factors effecting 

community structure changes, flow, substrate, food and riparian influence are equally 

important (Vannote et al., 1980). McKee and Atkinson (2000) simulated climate change 

scenarios on Cloeon dipterum by heating water to 3 °C for different trials over a period of 

time. Their results demonstrated adult emergences starting earlier in the year from ponds 

that had been heated, particularly ponds with added nutrients. Studies undertaken by 

Allan et al. (2006) demonstrate how water temperature influences the respiration rate of 

the Palaemon peringueyi shrimp, where respiration rates increased with increasing 

temperature. These are two examples of how water temperature changes effect taxa in 

different ways, where anthropogenic actions impacting upon climate change and global 

warming may affect many other aquatic macroinvertebrates by various means. 

 

2.6 Conclusions 
A plethora of factors, both biotic and abiotic, have been mentioned in this literature 

review that affect macroinvertebrate community structures. From this review, it is evident 

from the authors’ findings that macroinvertebrate community structures and distribution 

varies depending on the type of stream and its location, particularly climate, which is the 

driver for seasonal variability of flows, scale-dependant temperature variation and 

different types of aquatic biotopes present in streams. Of the abiotic factors influencing 

the macroinvertebrates community structures, water temperature and its associated 

variability will be the core focus for this research. 



 17

CHAPTER 3 
METHODS 

 

3.1 Study sites 
Five paired sites were sampled along two rivers (Keurbooms and Kowie/Bloukrans 

Rivers) on a seasonal basis between June 2009 and April 2010 (Figure 3.1). To 

synchronize sites on each river system, several conditions had to be met for site selection, 

the installation of water temperature loggers and macroinvertebrate sampling.  

 

3.1.1 Keurbooms River 
The source of the Keurbooms River is situated close to the town of Uniondale, flowing 

through the Prince Alfred pass and entering the sea at Plettenberg Bay, over 70 km 

downstream from the K1 site at the headwaters (Figure 3.1). The ecoregions are 

classified by Kleynhans et al. (2005) as south eastern coastal belt for most of the study 

area, and southern folded mountains with the underlying geology classified as Table 

Mountain. The Acocks’ veld type groups along this system include False Sclerophyllous 

Bush Types (for a small segment of the uppermost part of the river), where Coastal 

Tropical Forest Types is present for the remaining parts of the river (ARC-ISCW, 2004). 

More detailed vegetation types along this stream system include North Outeniqua 

Sandstone Fynbos, Tsitsikamma Sandstone Fynbos, Langkloof Shale Renosterveld, 

South Outeniqua Sandstone Fynbos and Southern Afrotemperate Forest (Mucina and 

Rutherford, 2006).  

 

The top two sites are both of first river order, site 3 is second order and sites 4 and 5 are 

both third order (1:500 000 river coverage, DWAF, 2009). This river is classified by 

DWAF (2009) as being perennial. The longitudinal profile for sites, altitude plotted 

against downstream distance, is presented (Figure 3.2), where the uppermost site was at 

583 m.a.s.l (meters above sea level) and the lowest site 1 m.a.s.l. A gauging weir, 

K6H019, is present along this stream, located approximately one kilometre downstream 

of the K4 site. 
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Figure 3.1: Study area, showing the paired sample sites from each river system. 
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Figure 3.2: Longitudinal profile of the study sites along the Keurbooms River.  
 

3.1.2 Kowie/Bloukrans River 
Since the source of the Kowie River is situated in the middle of the town of 

Grahamstown (Figure 3.1), the upper-most site on this system was ‘offset’ to B1, an 

equivalent headwater site that was not affected by urban pollution, runoff or other 

anthropogenic activity that may hinder aquatic macroinvertebrate communities. This is 

the reason why the upper-most site is situated outside the secondary catchment (Figure 

3.1). This river flows through agricultural land in the middle reaches, where water is 

abstracted for irrigation. Along with drought, this practice attributed to the no flows 

experienced at some sites in summer and autumn downstream of these irrigated lands.  

 

The mouth of this system enters the sea at Port Alfred, situated 100 km downstream of 

B1. The ecoregions here are classified by Kleynhans et al., (2005) as southern folded 

mountains for the top three sites and south eastern coastal belt for the bottom two. The 

underlying geology is classified as Witteberg for all sites, except the B2 site, being 
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Dwyka. According to ARC-ISCW (2004), the Acocks’ veld types present along this river 

include the following: Coastal Tropical Forest Types, False Sclerophyllous Bush Types 

and Karoo and Karroid Types, similar vegetation types to those on the Keurbooms River. 

More detailed vegetation types along this stream system include Suurberg Quartzite 

Fynbos, Suurberg Shale Fynbos and Kowie Thicket (Mucina and Rutherford, 2006). 

 

The top three sites are all of first river order, where this segment of river is classified by 

DWAF (2009) as being non-perennial. Sites 4 and 5 are second and third order 

respectively and are on a perennial river segment (DWAF, 2009). However, due to a 

drought in this region, these segments were not flowing during summer and autumn. 

 

The longitudinal profile for sites, altitude plotted against downstream distance, is 

presented (Figure 3.3), where the upper-most site was at 400 m.a.s.l and the lowest site 5 

m.a.s.l. A gauging weir, P4H001, is present along this stream, located approximately 800 

meters downstream of the B4 site. 

 

3.1.3 Site selection criteria 
The initial method used to assess the appropriate location for the temperature data loggers 

and corresponding sample sites was by using a number of criteria using GIS layers. 

Paired sites in two river systems were chosen based on their ecoregions (Kleynhans et al., 

2005) and geomorphological zones, with their primary differences being differences in 

flow variability (which were assumed to translate into thermal variability). The 

headwater, mid-reaches and bottom sites on the Kowie River were selected to be similar 

to the corresponding sites on the Keurbooms River (Table 3.1). 

 

The two quaternary catchments were similar in their stream orders, profile zones and 

ecoregions. Jones (2005; cited in Thieme et al., 2005) names the ecoregion for these two 

river systems as Cape Fold, with the major habitat type being defined as Mediterranean 

Systems. This ecoregion classification was too coarse, thus the Level I ecoregions of 

Kleynhans et al. (2005) were used.  
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Figure 3.3: Longitudinal profile of the study sites along the Kowie/Bloukrans River (the 

upper-most site on this system was ‘offset’ to B1, an equivalent headwater site that was 

not affected by anthropogenic activity). 

 

3.2 Data collection  
This section provides a detailed account on how the data were collected. 

 

3.2.1 Aquatic macroinvertebrate sampling  
Macroinvertebrate sampling was undertaken in close proximity to where the water 

temperature loggers were positioned, to relate water temperature data to aquatic 

macroinvertebrate data. Only hydraulic biotopes close to the temperature logger were 

sampled. The depth at which macroinvertebrate sampling occurred varied, depending on 

the stream discharge.  
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Table 3.1: Summary of site criteria characteristics taken into consideration for the 

Kowie/Bloukrans and Keurbooms river systems (the Hydrological Index Class is a 

measure of variability in the river systems – Hughes and Hannart, 2003). 

River Name Site Name 

Mean 
annual 
Rainfall 
(mm) 

Mean 
annual 
Temp 
(oC) 

Geology Ecoregion 
Level 1 

Stream 
Order  

Longitudinal 
Zone 

Hydrological 
Index Class 

Altitude 
(m.a.s.l) 

PALMIET B1 587 17.6 Witteberg
Southern Folded 

Mountains 
1 Transitional 4 363 

BLOUKRANS B2 560 16.7 Dwyka 
Southern Folded 

Mountains 
1 Upper foothill 4 480 

BLOUKRANS B3 541 18.1 Witteberg
Southern Folded 

Mountains 
1 

Lower 
foothill 

4 367 

KOWIE B4 589 18.6 Witteberg
South Eastern 
Coastal Belt 

2 
Rejuvenated 

foothill 
5 44 

KOWIE B5 622 18.3 Witteberg
South Eastern 
Coastal Belt 

3 Lowland 5 2 

KEURBOOMS K1 787 14.4 
Table 

Mountain
South Eastern 
Coastal Belt 

1 Transitional 2 583 

KEURBOOMS K2 730 15.0 
Table 

Mountain 
Southern Folded 

Mountains 
1 Upper foothill 2 324 

KEURBOOMS K3 732 15.6 
Table 

Mountain 
South Eastern 
Coastal Belt 

2 Upper foothill 2 275 

KEURBOOMS K4 699 16.8 
Table 

Mountain 
South Eastern 
Coastal Belt 

3 
Lower 
foothill 

1 30 

KEURBOOMS K5 767 16.6 
Table 

Mountain 
South Eastern 
Coastal Belt 

3 
Lower 
foothill 

1 0 

Reference:  Schulze 
(2007) 

Schulze 
(2007) 

ARC-
ISCW, 
(2004) 

Kleynhans et al. 
(2005) 

DWAF 
(2009) 

Dallas and 
Rivers-Moore 

(2008b) 

Hughes and 
Hannart 

(2003); Dallas 
and Rivers-

Moore (2008b) 

 

 
Hydrological Index Class: 1 = very low variability; 2 = moderately low variability; 4 = moderate variability; 
5 = moderately high variability 

 

Precautions were taken to ensure the selected macroinvertebrate sample sites had 

minimal anthropogenic disturbance. Several biotopes were sampled separately (Table 

3.2), which were likely to exhibit macroinvertebrate presence. The biotopes that were 

sampled were as follows:  

 

• for fast flowing water, the only biotope sampled was stones-in-current; 
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• for standing waters, macroinvertebrate sampling was performed in muddy, sandy 

and at times, pools and stony bottoms, particularly for sites at low altitudes with 

meandering river channels; where stones-out-of-current and marginal vegetation 

were included if present. 

 

Table 3.2: Summary of the biotopes sampled per site. Biotopes sampled at the sites varied 

throughout the seasons, depending on water availability. 

  
Stones-in-

current 
Stones-out-
of-current 

Pools Marginal 
vegetation 

Gravel, sand, 
mud 

K1 * * *     
K2 * * *   * 
K3 *   * * * 
K4 * * *    
K5   *   * * 

B1 * * *     
B2 *   *     
B3 *         
B4 * * *     
B5   *   * * 

 

 

For the headwater sites, a common feature on both streams was fast-flowing water and 

shade provided by riparian vegetation. The common macroinvertebrate biotope sampled 

was stones-in-current (where some sites turned into stones-out-of-current due to 

insufficient water flow). Although samples were dominantly in-current, stones from 

pools, glides and runs, and marginal vegetation in current were sampled, with the 

intention of obtaining taxa from as many different habitats as possible. 

 

For the sites second from the top, stones-in-current remained the dominant biotope, 

where samples were again taken from pools, glides and runs, together with riffles. These 

biotopes were sampled, as different macroinvertebrates adapt to various extents of 

features including current, depth, and temperature, which may alter depending on their 

biotope habitat. 

 



 24

The middle sites were dominated by stones-in-current. This was the only biotope sampled 

on the Kowie/Bloukrans until the site dried up in the summer and autumn seasons. 

Marginal vegetation and stony bottom habitats were sampled in and around pools at the 

K3 site.  

 

K4 and B4 were sampled in stones-in-current. B4 was no longer flowing in summer and 

autumn, but water was present in a big pool, where stones-out-of-current were sampled.  

 

The manner in which river profiles form is by more sediment accumulating towards the 

mouth of the river than the headwaters or mid-reaches, where stones are more dominant. 

This was observed on the Kowie/Bloukrans and Keurbooms rivers for the lowest sites. 

For this reason, gravel, sand and mud habitats were included in sampling at the lowest 

sites for sub-surface macroinvertebrates, including any other predominant biotope 

present. For example, the stones-out-of-current biotope was present on flood-plains 

bordering the water’s edge at lowest sites on both rivers, and reed and sedge marginal 

vegetation out of current1. 

 

Aquatic macroinvertebrates were sampled from the stones-in-current and stones-out-of-

current biotopes as follows (Rivers-Moore, 2009): 

• For each repetition, five to seven stones were identified for sampling. 

• A stone fitting into one hand was identified (between 10 and 20 cm diameter). 

Before removing it from the stream, a net of 250 µm mesh size was positioned 

downstream of the stone to capture macroinvertebrates either attempting to escape 

or becoming dislodged from the stone in the removal process.  

• The stone was placed in a bucket of water along with the net contents. The surface 

of the stone was carefully scraped to dislodge the contents on the stone. When 
                                                
1After the first survey trip at the B5 site, it was confirmed that the logger was positioned in estuarine 

conditions. On the second trip, the water temperature logger was repositioned further upstream in more 

freshwater conditions. For consistency, the estuarine site was surveyed for macroinvertebrates for the 

remainder of the study, however the more freshwater site was also surveyed, but only for spring, summer 

and autumn. 
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necessary, substances not becoming dislodged with fingers were displaced using a 

scrubbing brush.  

• The contents in the bucket and the water were then poured through the 250 µm net 

to separate the macroinvertebrates from the water.  

• The contents in the net were emptied into a plastic jar containing 80 % alcohol for 

preservation. 

 

The method used for obtaining macroinvertebrates from the marginal vegetation biotope 

was as follows (Rivers-Moore, 2009): 

• A net with 1 000 µm mesh size and a frame with dimensions of 30 x 30 cm was 

used to disturb the vegetation, enabling disrupted and dislodged invertebrates to 

become captured in the net. This procedure was carried out for approximately five 

minutes. 

• The contents in the 1 000 µm net were emptied into a bucket of water, which was 

then transferred into the 250 µm mesh size net for making the transfer of the 

invertebrates into the jar containing 80 % alcohol easier.  

 

The method used to sample macroinvertebrates from soft sediments was performed using 

a surber sampler in the same way as Cucherousset et al. (2008): 

• Pointing the container downstream, sediment is disturbed within the rectangular 

base, where the benthos flows into the netting. The container at the end of the net 

(mesh size of 250 µm) has the lid covered with mesh (1000 µm) on the outside, 

allowing the sediment to flow out, where the invertebrates remain captured in the 

jar. Thereafter, the contents are emptied into a jar with 80 % alcohol for 

preservation. 

 

Macroinvertebrates were identified to finest taxonomic resolution possible using the 

Guides to the Freshwater Invertebrates of Southern Africa (Day et al., 2001; Day et al., 

2002; Day and de Moor, 2002a; Day and de Moor, 2002b; de Moor et al., 2003a; de 

Moor et al., 2003b; Stals and de Moor, 2007). Where identification was uncertain, expert 
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assistance was sought. The procedure carried out for macroinvertebrate identification and 

counting is explained in detail in Appendix A.  

 

Macroinvertebrates were assigned functional feeding groups categories. The references to 

the macroinvertebrate FFG categories were obtained from the following sources, unless 

stated otherwise: Day et al., 2001; Day et al., 2002; Day and de Moor, 2002a Day and de 

Moor, 2002b; de Moor et al., 2003a; de Moor et al., 2003b; Stals and de Moor, 2007. 

 

3.2.2 Environmental data 
Water temperature, flow and certain water quality data were collected to correspond with 

the macroinvertebrate data.  

 

3.2.2.1 Flow 
A single flow gauging weir was present on each river system containing reliable data, 

namely K6H019 (Keurbooms River @ Newlands) and P4H001 (Kowie River @ 

Bathurst) stations (DWA, 2010). The period of data common to both sites was 12 years, 

enabling comparison of sites. 

 

Due to insufficient gauging weirs or gauging weir data in both of the secondary river 

catchments, simulated flow data for each of the quinary catchments along the rivers was 

used. In this way, there was consistent flow data for each site (based upon the quinary 

catchment) for corresponding periods. These data were obtained from the School of 

Bioresouces, Engineering and Environmental Hydrology at the University of KwaZulu-

Natal, Pietermaritzburg (BEEH, 2010) from 1950 – 1999. These flow data were 

simulated under a baseline climate, based upon Acocks natural vegetation (BEEH, 2010).  

 

3.2.2.2 Water Temperature 
Water temperature was recorded using Hobo UTB1-001 TidBit V2 data loggers (Onset, 

2008). These data loggers were programmed to record hourly water temperatures, which 

were downloaded using a mobile shuttle device on seasonal macroinvertebrate sampling 
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trips. If on seasonal trips the loggers were close to the surface of the water, they were 

repositioned if possible to be further submerged in the water to avoid the loggers 

recording air temperature rather than water temperature. 

 

The following criteria were met for water temperature site selection:  

 

• Representativeness of the entire longitudinal profile was required, thus 

distribution of the loggers was to be as evenly-spread as possible, but at the same 

time striving to achieve the research aim and objectives.  

• As a result of high and low seasonal flows, loggers were positioned such that they 

remained submerged as often as possible, but ultimately striving for them to be 

submerged for the entire duration of the study. This was achieved by securing the 

loggers to boulders in or to the side of the stream where possible, otherwise large 

tree roots were used.  

• The positioning of the loggers was carried out such that they were out of sight of 

passers-by, thus reducing the possibility of vandalism or theft.  

 

The hourly water temperature data were converted into daily temperature values (mean, 

minimum and maximum). This was achieved by running the hourly data through macros 

calculations in Microsoft excel (created by Rivers-Moore, 2009). 

 

The K4 and K5 water temperature loggers did not record data for a complete years’ cycle. 

To patch these time series, a scatter graph was plotted using the temperature data 

common to K4 and the next closest site, namely K3. The trend line and equation for the 

scatter plot were included in the graph. The unknown mean, minimum and maximum 

water temperatures were calculated using this equation from the known values at the K3 

site. The equations used for the mean, minimum and maximum temperatures at K4 

(Equation 1, Equation 2 and Equation 3 respectively) are as follows: 

    y = 1.005x + 0.978 (R2 = 0.991)          [1] 

    y = 0.913x + 3.554 (R2 = 0.989)          [2] 

    y = 0.931x + 1.728 (R2 = 0.952)          [3] 
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The equations used for the mean, minimum and maximum temperatures at K5 (Equation 

4, Equation 5 and Equation 6 respectively) are as follows:  

    y = 0.992x – 1.959 (R2 = 0.982)          [4] 

    y = 0.858x + 1.284 (R2 = 0.948)          [5] 

    y = 0.961x - 3.074  (R2 = 0.976)          [6] 

 

3.2.2.3 Water quality data 
Conductivity, pH and total dissolved solids were measured using a hand-held meter 

(Cyberscan 200, with ±0.05 % accuracy), along with a reference temperature using a 

probe attached to the meter. The depths of the rivers/pools were measured with a depth 

stick and wetted width measured with a measuring tape. Turbidity was determined using 

a Secchi disc. All these criteria were measured seasonally at every site, except for the B3 

site (site 3), which dried up completely for the summer and autumn seasons due to 

drought conditions in the region. The freshwater site at B5 was not measured for spring, 

as the batteries in the hand-held meter became depleted and spare batteries were not taken 

into the field. 

3.3 Statistical analyses 

3.3.1 Species diversity indices 
Sørensen’s similarity index was used (Sørensen, 1948; cited in Stratton et al., 1978) to 

quantify how different macroinvertebrate communities differed seasonally (Equation 7). 

This was calculated to compare the two streams with sites situated along a similar 

position on each stream, i.e., top site on the Keurbooms compared to top site on the 

Kowie/Bloukrans, and so on.  

     QS = 2C / (A + B)            [7] 

where C is the number of species common to both sites and A and B are the number of 

species at sites A and B respectively.  
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3.3.2 Determination of generalist and specialist taxa 
Generalist and specialist macroinvertebrate taxa were determined by the number of times 

taxa were present at sites over seasons, i.e. spatial and temporal presence (Rivers-Moore, 

2009). If present over many seasons at the same site or many sites on the same stream, 

taxa were categorized as generalist, whereas if taxa were present for few or one season at 

few or one site on the same stream, taxa were categorized as specialist. Thus, generalist 

(common) and specialist (rare) species were identified using the following method: 

• A presence value of one was assigned to a macroinvertebrate taxon if present at a 

site for a season. If this taxon were present at the same site for all four seasons, it 

was assigned a value of four (being a common taxon at that specific site), for 

three seasons, a value of three, and so on. 

• Thereafter, if this taxon were present at one site on the stream system (for 

however many seasons), it was assigned a value of one. If it were present at five 

sites for however many seasons, it was assigned a value of five. 

• Thus, two values were needed to assign a taxon to a certain group. The first value 

being number of seasons and the second value being number of sites. Thus, a 

matrix was formed where number of sites was represented in columns and number 

of seasons represented in rows. Once all the taxa from each category in the matrix 

were summed, the taxa in the matrix were expressed as percentages, where 

number of taxa in a category (for example, six taxa in the three sites-four seasons 

category) were divided by the total taxa present on that stream throughout all 

seasons (for example, six taxa divided by sixty-one taxa, multiplied by one 

hundred percent). 

 

The method used to determine the macroinvertebrate turnover throughout the seasons 

was by determining the coefficient of variability in seasonal macroinvertebrate diversity. 

This was achieved by calculating the mean taxon richness values and standard deviation 

(SD, number of variables = 4 and degrees of freedom = 3) from all seasons and for each 

site. The coefficient of variation was determined by equation below (Equation 8), 

     CV = (100 x SD) /            [8] 

where SD is standard deviation and  is the mean. 
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This procedure was carried out for all sites on both streams. These CV values were used 

to gain an understanding of the relationship between macroinvertebrate turnover and 

water temperature predictability.  

3.3.3 Flow and temperature metrics – IHA and ITA 
The quinaries chosen for the simulated flow were selected based on having a site situated 

in that quinary or by being the closest quinary to a site. The date format was altered to the 

correct format for the IHA software to read, where the flow data was left as cubic meters 

per second. The flow data was then run through the IHA software (Table 2.1 - Richter et 

al., 1996). Analysis was performed for each quinary and the output data saved in a 

spreadsheet. Once all the quinaries had been run through the software, the data was 

collated into a single spreadsheet to enable easier visual data comparisons.  

 

Daily mean, minimum and maximum water temperature values were used to calculate 

Indicators of Thermal Alteration (or ITA – adapted from the IHA by Richter et al., 1996), 

obtained from Rivers-Moore et al. (2010) (Table 3.3). These calculations were created in 

Microsoft Excel spreadsheets using Microsoft Visual Basic Editor, creating macros. 

Similar to the parameters in Table 2.1, the macros were used to calculate values for 

parameter groups 1, 2 and 4, where group 3 was determined by visual means of the data, 

ascertaining what the Julian date was for the minimum and maximum daily temperatures 

for each site. The values in parameter group four were calculated by determining how 

many times the minimum or maximum temperature exceeded a temperature threshold. 

For example, minimum temperature count is the sum of how many days the minimum 

temperature was less than 12 °C, where the maximum temperature threshold value used 

was 18 °C (Rivers-Moore, 2009). The minimum temperature duration was calculated by 

the amount of consecutive days where the values were either above or below the set 

minimum or maximum temperature threshold. Further descriptive statistics that were 

calculated either manually or by using macros in Microsoft Excel are equally important 

to the groups mentioned above, which included: mean annual temperature, annual 

coefficient of variation and standard deviation, temperature predictability, annual range, 
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range coefficient of variation and standard deviation, summer and winter range and 

degree days (Table 3.3). 

 

Before the flow and temperature data was run through a Principal Component Analysis 

(PCA), a correlation analysis was performed in Microsoft Excel to remove the redundant 

variables, resulting in a more meaningful PCA. 

 

The ITA data for temperature was calculated using macro calculations in Microsoft Excel 

(Rivers-Moore, 2009) and was not run through the same software used for the flow data. 

The IHA software was not used as it was specifically created for flow data over a number 

of years, whereas the water temperature recorded is for a year’s cycle only. 

 

3.3.4 Multivariate Analyses 
Multivariate analysis allows comparison of more than one set of statistical variables with 

one another, particularly in this research where sites were characterised by numbers of 

species and their abundances, where these were affected by environmental factors, 

enabling multivariate analyses to be performed (Gauch, 1982). Multivariate statistics 

were performed using species and water quality data, including temperature and flow 

parameters, in order to identify which environmental variables affect certain 

macroinvertebrate groups. 
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Table 3.3: Indicators of Thermal Alteration parameters used for water temperature analyses (adapted from Rivers-Moore et al., 2010). 

Annual descriptive statistics Mean annual temperature 
  SD of mean annual temperature 
  Annual coefficient of variability 
  Predictability (Colwell 1974) 
  Annual range (mean) 
  SD of annual range 
  Annual coefficient of variability of range 
  Summer range 
  Winter range 
Group 1 Monthly magnitudes (measure of central tendency) Oct – Sept mean temperatures 

Group 2 
Magnitude and Duration of annual extreme water 
temperature conditions 1, 3, 7, 30 & 90-day minima 

 (Based on moving averages of different durations) 1, 3, 7, 30 & 90-day maxima 
  Degree days (annual/ monthly/ seasonal) 
  Mean daily minimum 
  Maximum diel range 

Group 3 
Timing - Julian date of maximum and minimum metrics 
(thermal triggers) Date of minimum 

  Date of maximum 

Group 4 
Frequency and duration (successive days of event above 
or below a threshold) Min. temp threshold count & duration 

  Max. temp threshold count & duration 

  
Duration between two  temperatures (an upper and lower as 
determined either the temp data or biological cues) 
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3.3.4.1 Principal Component Analysis 
Principal Component Analyses (PCA) are one of the more common (Jackson, 1993; Fore 

and Karr, 1996) and simple (Jackson, 1993) multivariate methods. PCAs were undertaken 

for temperature and flow data per site to obtain an understanding of how sites compare 

with each other. The software used to perform PCAs for the flow and temperature data 

was PC-ORD 4 (McCune and Mefford, 1999).  

 

3.3.4.2 Canonical Correspondence Analysis 
Canonical Correspondence Analysis (CCA – ter Braak, 1986) was used to relate the 

temporal species data per site to certain flow and temperature parameters. This analysis 

was performed using PC-ORD 4 (McCune and Mefford, 1999). This technique assisted in 

the recognition of how different metrics impact on macroinvertebrate communities. In 

this way, an indication of which environmental variables driving the various sites could 

be obtained. 

 

3.3.4.3 Bray-Curtis 
Bray-Curtis (1957) is an ordination technique to assess how dissimilar diversity is 

between sites or regions, where environmental data is used to ascertain how species 

distribution differs (Gauch, 1982). The Bray-Curtis statistic was used as the distance 

measure in the PC-ORD 4 software as a basis for performing the non-metric 

multidimensional scaling (NMS) ordination. Similarly, the Bray-Curtis dissimilarity 

index was used in the multivariate analyses performed using CANOCO software (ter 

Braak and Šmilauer, 1998), for example, a NMS was performed for sites using species 

data and the type of distance between the sites that was used was Bray-Curtis. 

 

3.3.4.4 CANOCO software 

CANOCO (ter Braak and Šmilauer, 1998) software was used for presenting the species 

data statistically and graphically, where NMS were performed using this software. The 

purpose of performing NMS was to identify dissimilarities between sites, 
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macroinvertebrate taxa and environmental data by the arrangement of points in a two-

dimensional space (Cox and Cox, 2008). 

 

3.4 Research Limitations 

The scope of this research limited the timeframe for recording water temperature at the 

sites to one year. If the water temperature could have been recorded for a five year cycle 

(along with continuous water presence at all the sites), the data may reveal different 

results in the sense that one year may be an outlier year (for instance, in this study, where 

the study areas were under drought conditions especially for the later part of the sampling 

period). However, this would be particularly difficult to achieve, especially on a variable, 

non-perennial stream such as the Kowie/Bloukrans River.  

 

The collection of macroinvertebrate data at the same sites on both rivers over a greater 

time span (two – three years) without any dry sites and fairly consistent flow may well 

have yielded different results. This may have yielded a more true reflection of how water 

temperature impacts upon macroinvertebrates, particularly due to the biotopes remaining 

constant throughout the research period. Biotope differences at the same position on both 

streams made the comparison of macroinvertebrate taxa difficult. This, however, would 

have been particularly difficult to achieve, especially on a non-perennial system like the 

Kowie/Bloukrans River. Drier conditions experienced along the streams resulted in 

reduced flows, resulting in changes to the macroinvertebrate biodiversity and biotopes. 

The waste water treatment works on the Kowie/Bloukrans was unfortunate, as tolerant 

taxa may have been the only macroinvertebrates present at this site (B3) due to poor 

water quality. Unfortunately the paired sites were not perfect, as site access was difficult 

due to insufficient roads, harsh vegetation and sheer slopes. 

 

3.5 Conclusions 

This research involved the collection of large amounts of data. Data had to be collated 

and statistically analysed to interpret into more meaningful values. This data is presented 

in the succeeding chapter. 
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CHAPTER 4 
RESULTS 

 

4.1 Flow analyses 

4.1.1 IHA data analysis for observed flow 
From the observed twelve years of raw flow data, low flow periods regularly occurred at 

both weirs, particularly on the Kowie/Bloukrans. Flow levels over the macroinvertebrate 

sampling period (June 2009 – April 2010, Figure 4.1) were significantly lower in 

comparison to the flow data for previous years. The abundance of the Keurbooms River 

peaks (perennial) was more prevalent compared to the Kowie/Bloukrans River peaks 

(non-perennial), experiencing no flow between January and April 2010 (Figure 4.1). 

 

 

Figure 4.1: Gauging weir flow data for both rivers from the beginning of the sampling 

period (June 2009) to the end (April 2010). The mean and standard deviation (SD) lines 

are for the 12 year timeframe common to both streams. 
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The IHA analyses were performed for the same 12 years of data for both weirs to avoid 

bias. The Keurbooms River had more predictable (0.43) flows than the Kowie/Bloukrans 

River (0.33) (Table 4.1). A predictability value of 1 interprets the streamflow to be totally 

predictable, whereas a value of 0 indicates a totally unpredictable system. These results 

are interpreted by the categories in Table 2.1. Variables that indicate variability are 

shaded in grey; annual coefficient of variation (CV) is almost three times greater on the 

Kowie/Bloukrans than the Keurbooms, indicating a more variable system. Streams with a 

high base flow index are less variable than streams with a low base flow index (Hughes 

and Hannart, 2003), suggesting that the Kowie/Bloukrans is more variable than the 

Keurbooms. 

 

Table 4.1: IHA results for the Keurbooms and Kowie/Bloukrans Rivers for observed flow 

data between 1998 and 20092 (shaded cells highlight the parameters which particularly 

demonstrate flow variability). 

 

 Keurbooms River 
Kowie/Bloukrans 

River 
Mean annual flow 2.53 0.40 
Annual CV 2.52 6.96 
Flow predictability 0.43 0.33 
Constancy/predictability 0.68 0.47 
Percentage of floods in 
60 day period 

0.29 0.33 

Flood-free season 37 82 
      
  Mean CV Mean CV 
Parameter Group 
number 1     
January 3.07 0.84 0.13 0.94 
February 1.78 0.69 0.10 1.33 
March 3.65 0.85 0.18 1.50 
April  2.11 0.62 0.37 1.56 
May 2.15 1.11 0.25 1.68 
June 1.26 0.83 0.09 1.10 
July 1.38 0.64 0.10 1.03 
August 3.42 1.90 1.05 2.26 

                                                
2 2009 was the latest year used for this analysis rather than 2010, as there was not a full years’ flow data 
available at the time when this analysis was run (January to April 2010). The output values of the IHA 
software become skewed if a full year is not used, hence 2009 was used instead of 2010. 
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September 2.78 1.30 1.20 2.80 
October 2.74 0.64 0.47 2.39 
November 2.52 0.71 0.55 1.54 
December 3.31 1.24 0.26 1.26 
      
 
Parameter Group 
number 2     
1-day minimum 0.21 0.88 0.01 2.44 
3-day minimum 0.23 0.84 0.01 2.22 
7-day minimum 0.28 0.65 0.01 1.64 
30-day minimum 0.46 0.47 0.01 1.35 
90-day minimum 0.81 0.49 0.03 0.90 
1-day maximum 58.34 0.66 16.75 1.88 
3-day maximum 42.29 0.79 11.32 1.97 
7-day maximum 24.64 0.80 6.37 1.80 
30-day maximum 9.75 0.63 2.70 1.80 
90-day maximum 5.24 0.49 1.24 1.60 
Number of zero days 6.25 2.72 43.17 1.60 
Base flow index 0.10 0.56 0.01 1.98 
      
Parameter Group 
number 3     
Date of minimum 310.8 0.28 12.75 0.16 
Date of maximum 295.0 0.26 88.25 0.31 
      
Parameter Group 
number 4     
Low pulse count 9.08 0.37 3.58 0.44 
Low pulse duration 9.55 0.43 19.76 0.96 
High pulse count 6.50 0.36 1.25 1.19 
High pulse duration 2.50 0.48 4.34 0.95 
Low Pulse Threshold 0.63  0.01  
High Pulse Threshold 8.90  3.17  
      
Parameter Group 
number 5     
Rise rate 1.88 0.53 0.38 1.56 
Fall rate -0.73 -0.46 -0.12 -1.57 
Number of reversals 89.58 0.14 63.92 0.25 
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4.1.2 IHA data analysis for simulated flow 
The common timeframe overlap for both the observed and simulated flow was two years 

(1998 – 1999). Graphs were plotted for observed versus simulated streamflow for both 

streams (Figure 4.2 and Figure 4.3). The R2 values were low for both systems, where a 

longer common timeframe or a calibration of the model used to simulate the flow data 

may have resulted in a higher R2 value. The observed values were higher than the 

simulated values on the Keurbooms, and vice versa for the Kowie/Bloukrans. The main 

reason why simulated streamflow data was used rather than only observed is that each 

quinary catchment had simulated flow data, enabling the comparison of sites with stream 

systems to occur. Observed streamflow had one gauging weir on each stream, therefore, 

observed flow enabled easier stream comparisons, whereas simulated flow enabled easier 

site comparisons. 

 

 

Figure 4.2: Simulated versus observed streamflow for the Keurbooms River (the 

simulated streamflow data was used from the quinary catchment in which the gauging 

weir was situated).  

 

Simulated flow data for each quinary was run through the IHA software (Table 4.2). 

Results indicate similar trends for simulated flow data to the observed flow data, such 
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that the predictability values were higher for all the Keurbooms River quinaries than the 

Kowie/Bloukrans Rivers quinaries, albeit the differences were small (Table 4.2). 

 

 

Figure 4.3: Simulated versus observed streamflow for the Kowie/Bloukrans River (the 

simulated streamflow data was used from the quinary catchment in which the gauging 

weir was situated).  

4.1.3 Flow statistical data analysis 

Not all the variables (first column in Table 4.2) were used in the statistical analysis, as 

several were repetitive, exhibiting high correlations with each other, for example, most of 

the monthly flow conditions yielded similar values (Parameter group number 1) and 

particular magnitude and duration of annual extreme water conditions parameters 

(Parameter group number 2). Only variables that were correlated (> 80 %) were used, 

which contribute towards the points in the PCA (Figure 4.4), where the corresponding 

eigenvectors are represented (Table 4.3). Variation on axis one was largely explained by 

mean annual flow, 30 day minimum and low threshold, clearly separating the two river 

systems from each other, primarily due to the Keurbooms being perennial and the 

Kowie/Bloukrans non-perennial. Variation on axis two was driven by flow predictability, 

low duration and high duration, indicating the Keurbooms is more predictable, where 

values increase progressively down the longitudinal profile, similarly for the 

Kowie/Bloukrans (indicated by arrows).  
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Table 4.2: IHA results for the Keurbooms and Kowie/Bloukrans River sites for simulated flow data between 1950 and 1999 (50 

years). The values given for groups 1 – 5 are all means. 

 K1 K2 K3 K4 K5 B1 B2 B3 B4 B5 

Mean annual flow 0.39 0.62 1.09 1.69 3.39 0.32 0.60 0.94 1.58 2.70 
Annual CV. 3.77 3.79 2.92 2.60 2.57 3.12 3.27 3.44 3.26 3.25 
Flow predictability 0.31 0.31 0.35 0.36 0.37 0.28 0.29 0.29 0.29 0.30 
Constancy/ 
predictability 

0.86 0.86 0.87 0.86 0.84 0.90 0.90 0.90 0.87 0.86 

Percentage of floods in 
60 day period 

0.29 0.29 0.29 0.31 0.3 0.28 0.29 0.29 0.27 0.25 

Flood-free season 28 28 14 12 13 36 37 33 21 14 
Parameter Group 
number 1 

          

January 0.26 0.41 0.69 1.10 2.01 0.32 0.59 0.88 1.31 2.10 
February 0.19 0.30 0.56 0.94 1.91 0.21 0.38 0.57 0.97 1.57 
March 0.20 0.32 0.63 1.03 1.93 0.33 0.66 1.03 2.03 3.21 
April  0.26 0.41 0.78 1.23 2.41 0.31 0.59 0.87 1.46 2.34 
May 0.37 0.59 1.06 1.62 3.01 0.32 0.63 0.98 1.73 2.99 
June 0.69 1.10 1.58 2.14 3.55 0.23 0.42 0.66 1.17 2.21 
July 0.41 0.65 1.11 1.62 3.56 0.34 0.67 1.11 1.64 2.81 
August 0.57 0.90 1.47 2.13 4.57 0.31 0.57 0.94 1.39 2.47 
September 0.53 0.84 1.66 2.70 6.13 0.29 0.53 0.86 1.73 3.38 
October 0.44 0.71 1.35 2.21 4.80 0.33 0.59 0.95 1.66 2.95 
November 0.48 0.76 1.31 2.06 4.03 0.36 0.65 1.01 1.69 2.94 
December 0.30 0.48 0.88 1.45 2.72 0.49 0.91 1.37 2.08 3.40 
Parameter Group 
number 2 

          

1-day minimum 0.08 0.13 0.25 0.39 0.75 0.06 0.12 0.19 0.32 0.53 
3-day minimum 0.08 0.13 0.25 0.40 0.75 0.06 0.12 0.19 0.32 0.54 
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7-day minimum 0.08 0.13 0.25 0.40 0.76 0.06 0.12 0.19 0.32 0.54 
30-day minimum 0.09 0.14 0.27 0.44 0.83 0.07 0.13 0.21 0.36 0.60 
90-day minimum 0.12 0.19 0.36 0.58 1.12 0.09 0.18 0.28 0.49 0.83 
1-day maximum 7.86 12.74 19.81 28.63 60.51 7.13 14.23 23.60 41.37 70.83 
3-day maximum 6.21 10.06 15.62 22.60 48.04 5.47 10.88 18.00 31.73 54.30 
7-day maximum 4.29 6.91 10.82 15.80 33.24 3.68 7.27 11.91 20.72 35.09 
30-day maximum 1.78 2.84 4.65 7.04 14.20 1.47 2.82 4.44 7.45 12.49 
90-day maximum 0.92 1.46 2.49 3.81 7.74 0.81 1.54 2.40 3.97 6.67 
Number of zero days 0 0 0 0 0 0 0 0 0 0 
Base flow index 0.32 0.32 0.33 0.33 0.31 0.29 0.31 0.31 0.31 0.30 
Parameter Group 
number 3 

          

Date of minimum 269.1 269.1 268.4 278.4 208.2 311.4 306.5 310.2 300.4 299.1 
Date of maximum 199.8 199.7 198.7 274.2 198 61.88 61.74 62.24 64.36 80.08 
Parameter Group 
number 4 

          

Low pulse count 1.00 0.98 1.30 1.38 1.72 0.70 0.82 0.86 1.04 1.08 
Low pulse duration 95.65 100.50 85.48 76.11 51.04 144.00 117.10 118.20 100.20 96.43 
High pulse count 1.36 1.36 1.68 1.76 1.92 1.34 1.30 1.38 1.72 1.78 
High pulse duration 5.34 5.22 6.06 7.51 6.79 9.40 9.25 8.01 6.85 6.67 
Low Pulse Threshold 0.09 0.14 0.29 0.44 0.91 0.06 0.11 0.17 0.29 0.48 
High Pulse Threshold 1.88 2.99 4.27 6.08 12.08 1.32 2.58 4.17 6.72 11.50 
Parameter Group 
number 5 

          

Rise rate 1.03 1.73 2.35 3.34 6.48 1.31 2.79 4.09 5.96 9.68 
Fall rate -0.04 -0.06 -0.09 -0.14 -0.29 -0.03 -0.06 -0.10 -0.18 -0.30 
Number of reversals 12.32 12.04 14.98 15.78 17.68 9.46 9.10 10.00 12.88 13.52 
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Figure 4.4: PCA of simulated flow data with sites. Axis one accounts for 74.9 % of the 

data, whereas axis two accounts for 13.5 %. Associated dendrogram in Appendix B. 

Arrows connect the sites as one progresses from highest to lowest. 

 

Table 4.3: Eigenvectors of the flow parameters from axes one and two that contributed 

towards the PCA. Shaded cells contributed to the distribution of points in Figure 4.4 the 

most. 

 
 Axis one Axis two 
Cum. Variance 74.9 88.4 
Mean Flow      -0.3225 -0.1590 
Annual CV      0.2348 0.1549 
Flow Pred      -0.2456 0.4114 
January       -0.2953 -0.2927 
30 day Min      -0.3280 -0.1204 
30 day Max      -0.3158 -0.1917 
Low Count      -0.3026 0.2855 
Low Durat       0.2872 -0.3728 
High Count      -0.3173 -0.0118 
High Durat       0.0855 -0.6218 
Low Thresh      -0.3278 -0.0324 
High Thresh      -0.3108 -0.1905 
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4.2 Temperature analyses  
The cumulative mean temperature for each site over a single year yielded expected 

results, such that the sites at higher altitude have lower degree day values (K1 and B1), 

whereas sites at lower altitudes had greater values (K5 and B5; Figure 4.5). All sites 

corresponding to each other on both rivers had similar total cumulative degree day 

values, except the highest sites on both rivers. This may be attributed to the differences in 

altitude (Table 3.1) and the reason why B1 was selected as an equivalent headwater site 

at a lower altitude than what would have been the headwater site in the town of 

Grahamstown. 

 

4.2.1 ITA data-related criteria regarding predictability values 
The predictability results infer that both river systems are predictable, where all ten sites 

fell between 0.6 and 0.7 (Table 4.4). The duration of the recorded data and the amount of 

classes that temperatures are partitioned into may have affected the calculated values 

(Gordon et al., 2004). In this case, the duration was a single year owing to the scope of 

this research, resulting in the high values; it has been suggested that 10 – 20 years is a 

sufficient duration for measures to be stable (Esterby 1996), whereas other authors 

suggest 40 years (Gan et al., 1991; cited in Gordon et al., 2004). 
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Figure 4.5: Cumulative mean temperature degree days for the duration of a year (2009-

2010) for each site. Site names in the legend are arranged to correspond to each site on 

each river, i.e. K1 and B1 are the uppermost sites on the Keurbooms and 

Kowie/Bloukrans Rivers respectively. These corresponding sites have similar degree day 

values for a yearly period. Degree day values are displayed to the right of the graph, 

colour-coded according to the site. 
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Table 4.4: ITA results for the Keurbooms and Kowie/Bloukrans River sites for temperature for one years’ cycle. The values given for 

Groups 1 are all means. 

 
K1 K2 K3 K4 K5 B1 B2 B3 B4 B5 

Mean annual temp. 14.91 16.68 17.37 18.53 20.35 15.95 16.46 17.05 18.51 20.65 
Annual SD 4.02 4.47 4.23 4.21 4.56 2.98 3.65 4.00 4.60 3.89 
Annual CV 26.99 26.81 24.34 22.72 22.39 18.67 22.18 23.45 24.83 18.85 
Predictability 0.63 0.60 0.63 0.65 0.64 0.68 0.69 0.66 0.64 0.63 
Annual range 22.52 24.69 22.56 19.07 19.9 15.15 17.34 19.80 23.64 23.89 
Range SD 3.95 4.41 4.17 4.15 4.5 2.91 3.59 3.94 4.55 3.80 
Range CV 17.55 17.88 18.51 21.78 22.6 19.19 20.71 19.91 19.23 15.93 
Range summer 6.65 6.55 6.3 5.94 6.57 7.26 6.65 7.13 9.37 5.49 
Range winter 5.06 6.43 5.76 7.16 7.66 5.03 5.85 5.91 6.80 6.41 
Degree days 5440.1 6089.3 6347.2 6773.7 7441.4 5831.2 6016.3 6230.1 6763.9 7555.7 
Parameter Group 
number 1 

          

January 19.92 22.11 22.72 23.67 26.13 19.24 20.40 21.99 23.36 24.82 
February 19.88 21.83 22.20 23.38 25.41 20.32 21.51 21.22 25.17 24.75 
March 19.04 20.73 21.43 22.71 24.62 19.03 20.08 20.89 23.19 24.56 
April  15.61 17.41 18.11 19.12 21.21 16.96 17.30 18.05 18.82 22.24 
May 12.55 13.42 14.64 15.93 17.46 14.96 14.70 14.30 15.31 18.82 
June 10.68 11.26 12.41 13.83 14.99 12.92 11.82 11.77 12.47 15.61 
July 9.04 9.91 11.15 11.69 12.81 11.86 10.49 10.65 11.30 14.64 
August 10.13 11.73 12.40 14.07 15.47 12.76 12.94 13.33 14.23 17.15 
September 12.25 14.63 15.01 16.44 18.51 13.18 14.31 15.36 16.31 18.18 
October 14.97 17.70 17.87 18.68 20.74 15.69 17.05 17.71 19.57 20.44 
November 17.23 19.47 20.02 21.54 23.35 17.42 18.83 19.50 21.34 22.99 
December 17.93 20.38 21.05 22.01 24.32 17.69 18.73 20.33 21.78 24.47 
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Mean spring 14.81 17.27 17.64 18.88 20.86 15.43 16.74 17.53 19.08 20.54 
Mean summer 19.22 21.43 21.98 23.01 25.28 19.04 20.17 21.18 23.38 24.68 
Mean autumn 15.73 17.18 18.06 19.25 21.1 16.98 17.36 17.75 19.11 21.87 
Mean winter 9.94 10.96 11.98 13.19 14.42 12.51 11.75 11.92 12.67 15.80 
Parameter Group 
number 2 

          

1-day minimum 5.92 5.18 6.56 8.93 8.99 9.21 7.14 8.37 8.69 7.32 
3-day minimum 6.26 5.73 6.70 9.00 9.23 9.76 7.98 8.70 8.74 8.73 
7-day minimum 6.69 6.14 7.97 9.58 9.80 10.16 8.59 9.06 9.72 9.95 
30-day minimum 7.64 7.95 9.21 11.33 11.49 11.14 9.56 9.95 10.44 11.18 
90-day minimum 8.58 9.45 10.34 12.76 11.49 11.80 11.05 11.04 11.89 12.98 
1-day maximum 28.44 29.87 29.12 28.00 28.89 24.36 24.48 28.17 32.33 31.20 
3-day maximum 20.48 23.02 23.26 25.02 26.49 21.45 22.75 22.47 26.10 24.40 
7-day maximum 19.69 22.25 22.67 24.39 25.94 20.83 22.21 22.23 25.31 23.34 
30-day maximum 18.05 20.54 21.02 22.82 25.11 19.51 20.88 21.38 23.30 22.28 
90-day maximum 17.52 19.83 20.57 22.43 24.34 18.78 19.96 20.37 22.28 22.25 
Parameter Group 
number 3 

          

Date of minimum 199 199 208 207 208 180 204 199 182 181 
Date of maximum 40 58 13 13 13 40 40 26 40 26 
Parameter Group 
number 4 

          

Minimum Temp count 146 120 85 27 21 51 69 74 42 27 
Maximum Temp 
count 

164 213 220 229 263 142 167 198 219 320 

Minimum Temp 
duration 

101 55 19 11 11 17 38 38 18 5 

Maximum Temp 
duration 

82 175 186 192 241 89 125 121 193 194 
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There is a trend for parameter group number 4 (Table 4.4), where maximum counts and 

durations increase from high to low altitudes for both rivers, whereas minimum counts 

and durations decrease in value from higher to lower altitudes for the Keurbooms, but not 

Kowie/Bloukrans, which is highest at the middle site and lower at the upper and lower 

sites.  

 

4.2.2 Temperature statistical data analysis 
Similarly to flow, not all the temperature variables (first column in Table 4.4) were used 

in the statistical analysis. The PCA (Figure 4.6) illustrates how the sites vary from one 

another across the two river systems and in between sites, where Table 4.5 represents the 

eigenvectors for the various parameters. The trends for temperature were not as clear as 

the trends for flow, where a clear division was delineated by the first axis. From the 

eigenvectors (Table 4.5), deductions can be made that the major drivers of variability on 

axis one are annual temperature (mean), degree days, and mean spring and summer 

temperatures. Within the PCA (Figure 4.6), the temperatures increase as one moves from 

right to left, increasing with decreasing altitude along the longitudinal gradient (depicted 

by the arrows). Variability on axis two was explained by annual standard deviation, 

coefficient of variation, predictability, annual range and the standard deviation of the 

range. Two of the major drivers are annual range and the related range coefficient of 

variation, where range increases from top (B1 having the least range of 15.15 – Table 

4.4) to bottom (K2 having the greatest range of 24.69 – Table 4.4).  
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Figure 4.6: PCA of temperature data with sites. Axis one accounts for 65.7 % of the data, 

whereas axis two accounts for 25.4 %. Associated dendrogram in Appendix B. Arrows 

connect the sites as one progresses from highest to lowest altitude. 

 

4.3 Water Quality data 
The main trends from the water quality data revealed that for all the variables measured, 

there was a general increase from the headwater sites to the lower-most sites for both 

streams (Appendix C). Water quality variables did not differ greatly between seasons. 

 

4.3.1 Water quality statistical data 
To enable certain water quality variables to contribute towards the PCA, avoiding 

skewness or bias, values were log-transformed to reduce the range of the values. For 

example, the maximum and minimum conductivity values across all seasons were 44 700 

and 37.4 µS/cm respectively. When log-transformed, these values are calculated to be  
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Table 4.5: Eigenvectors of the temperature parameters from axis one and two that 

contributed towards the PCA (Figure 4.6). Shaded cells contributed to the distribution of 

points in Figure 4.6 the most. 

 Axis one Axis two 
Cum. Variance 65.70 91.10 
Annual Temp     -0.2931 0.0845 
Annual SD      -0.1771 -0.3675 
Annual CV      0.0708 -0.4516 
Predictability    0.0978 0.3834 
Annual Range   -0.1062 -0.3813 
Range SD  -0.1748 -0.3677 
Range Winter     -0.2657 -0.0653 
Degree days  -0.2928 0.0866 
November     -0.2985 0.0123 
Mean Spring      -0.2976 0.0269 
Mean Summer    -0.2983 -0.0264 
Mean Autumn  -0.2852 0.1217 
Mean Winter -0.2474 0.2470 
30 Day Min -0.1817 0.3540 
30 Day Max -0.2741 0.0475 
Max Count -0.2728 -0.0304 
Max Duration -0.2798 -0.0929 

 

4.65 and 1.57, reducing the range between maximum and minimum significantly. The 

variables that were log-transformed included depth, width, total dissolved solids and 

conductivity. The trend in the PCA (Figure 4.7) is for the logDEPTH, logWIDTH, 

logTDS and logCOND3 water quality variables to increase in value progressively 

downstream for both rivers (differs in a spatial context), whereas TEMP (reference 

temperature for pH, conductivity and total dissolved solids) differs seasonally (temporal 

context). Distribution of the points is supported by the eigenvectors (Table 4.6). Within 

the same sample site, the further the points are from one another (creating larger 

polygons), the greater the seasonal variation (for example, K2), whereas the closer the 

points are together, less variance occurred (K3). The way in which these polygons are 

distributed vertically and horizontally are explained by the variables (arrows in Figure 

4.7). 

                                                
3 The B5 conductivity values used in this PCA were from the estuary site to ensure consistency, as 
measurements were not taken at the freshwater site for winter (Appendix C). 
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Figure 4.7: PCA of all the water quality parameters for all seasons for each site, where 

certain parameters were log-transformed to reduce amount of outliers. This PCA was 

produced using CANOCO software (ter Braak and Šmilauer, 1998). Axis one accounts 

for 54.9 % of the data, whereas axis two accounts for 19.4 %. Season abbreviations are as 

follows: SU = summer; AU = autumn, WI = winter; SP = spring.  
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Table 4.6: Eigenvectors of the water quality variables from axis one and two that 

contributed towards the PCA (Figure 4.7).  

 Axis one Axis two 
Cum. Variance 54.89 74.26 
pH 0.2961 -0.7227 
logTDS 0.5332 -0.1080 
logCond 0.5214 -0.1502 
logDepth 0.3676 0.5160 
logWidth 0.4535 0.2636 
RefTemp 0.1240 0.3282 

 

4.4 Macroinvertebrate data 

A total of 32 394 specimens from 67 different families were identified and counted 

(Table 4.7). The Keurbooms River had more macroinvertebrate taxa than the 

Kowie/Bloukrans, primarily as a result of better flows for the duration of this research. A 

total of 73 and 61 taxa (ranging between family and species level of identification) were 

recorded on the Keurbooms and Kowie/Bloukrans rivers respectively. Sites with a higher 

number of biotopes generally yielded more taxa compared to sites with a single biotope. 

Seasonal taxa for sites are represented in Appendix D4. 

 

4.4.1 Seasonal pattern of taxa 
The taxon richness (total macroinvertebrate taxa at a site) per season with downstream 

distance for the Keurbooms River provides a clear trend for each season and the totals per 

site, where there is an increase towards the middle reaches, thereafter a tapering off of 

species towards the lower reaches of the river (Figure 4.8). This is a similar trend to what 

Vannote et al. (1980) describes. Interestingly, an inverse trend was found for the 

Kowie/Bloukrans River, where there was greater taxon richness at the upper and lower 

sites and a lower diversity at the middle sites (Figure 4.9). The middle site (B3) was dry 

for the summer and autumn seasons, thus no macroinvertebrates were present. The site 

higher up from this one (B2) is situated approximately six kilometres downstream of a 

sewerage works, thus only taxa resilient to the moderately polluted water were found.

                                                
4 The K4 site was not sampled in winter due to adverse weather conditions. 
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Table 4.7: Pooled macroinvertebrate data from all seasons for all sites. Detailed seasonal macroinvertebrate data available in 

Appendix D. 

GROUP/ORDER FAMILY GENUS/SPECIES K1 K2 K3 K4 K5 B1 B2 B3 B4 B5 TOTAL 

Amphipoda Paramelitidae sp.1           88         116 204 

  Paramelitidae sp.2           1158         390 1548 

  Sternophysingidae                     22 22 

Mollusca 
(Basommatophora) Lymnaiedae   

  4 1               5 

Mollusca 
(Caenogastropoda)  Littorinidae   

                  9 9 

Coleoptera Dytiscidae     4 1     13       1 19 

  Elmidae   186 4 6 18   4   4   1 223 

  Gyrinidae   15 28 7 1   16         67 

  Hydraenidae   4 12             1   17 

  Hydrophilinae             1     5 71 77 

  Ptilodactylidae         1             1 

  Scirtidae   1         4         5 

Decapoda Atyidae                     19 19 

  Palaemonidae         1 2         1 4 

  Potamonautidae           8 4 5   3 14 34 

Diptera Ceratopogonidae   3 8 7 4 1 1     15 34 73 

  Chironomidae   203 339 575 258 34 299 1924 80 686 116 4514 

  Culicidae     32 5     7     27 38 109 

  Dixidae             1         1 

  Forcipomyiinae             1         1 

  Muscidae       1               1 

  Simullidae S (Meilloniellum)   5                 5 
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    S (M) hargreavesi 23 5 5457 880             6365 

    S (P) alcocki       5             5 

    S (P) bequaerti 388   200 985             1573 

    S (P) harrisoni 270                   270 

    S (P) merops       30             30 

    S. (Nevermania) sp.       170   32         202 

    Simulium nigritarse 36 44 965       1830 1475 23   4373 

  Stratiomyidae                     2 2 

  Tabanidae       2               2 

  Tipulidae       279     1         280 

Ephemeroptera Baetidae Afroptilum sudafricanum 38   97     59 639 1020 155   2008 

    Baetis harrisoni 147 9 651 37     204       1048 

    Centroptiloides bifasciata     6 1             7 

    Cloeon sp. 39 25 2     2     760 292 1120 

    Demoreptus rapensis 109 86                 195 

    Demoulinia crassi 2 14 6     1     12   35 

    Pseudocloen vinosum 139 34 383 152   12 6       726 

    Pseudopannota sp.     197 35             232 

  Caenidae Caenis sp. 18 11 14     19 10   448   520 

  Heptageniidae Afronurus sp. 31         103   58 1   193 

  Leptophlebiidae Adenophlebia sp.     89 15             104 

    Choroterpes nigrescens                 22   22 

    Euthraulus elegans   8 40 26             74 

    Lestagella penicillata 5                   5 

  Teloganodidae 
Nadinetella sp.(unidentifiable 
species) 

4                   4 

Hemiptera Belostomatidae       1 1           2 4 
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  Corixidae   8         6       3 17 

  Gerridae   1 9 2     8 4     28 52 

  Mesoveliidae             1       2 3 

  Naucoridae     3 6     7         16 

  Notonectidae     32 6     8       5 51 

  Pleidae                   52   52 

  Veliidae     5 34   1       6 19 65 

Isopoda  Anthuridae                     6 6 

  Sphaeromatidae           76         249 325 

Lepidoptera Nymphulinae     1 1               2 

Megaloptera Corydalidae   9 5 12 2             28 

Mollusca (Mytiloida) Mytilidae           2724         16 2740 

Odonata (Anisoptera) Aeshnidae     3 5 1   7       15 31 

  Corduliidae     3 4 1             8 

  Gomphidae     26 90               116 

  Libellulidae   4 13 23 1   3     2 37 83 

Odonata (Zygoptera) Chlorocyphidae         1             1 

  Coenagrionidae     3 22     11     1 66 103 

  Lestidae     2       9 2       13 

  Platycnemididae             1 1       2 

  Protoneuridae             3         3 

Oligocheata             157         101 258 

Plecoptera Notonemouridae Aphanicercella sp 1 23         3         26 

    Aphanicercella sp 2     1               1 

    Desmonemoura sp. 6                   6 

  Perlidae Neoperla sp.       1             1 

Mollusca (Pulmonata) Ancylidae               57 10 316 8 391 
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 Physidae                   1 26 27 

  Planorbidae                     7 7 

Trichoptera Ecnomidae Ecnomus thomasseti           1     13   14 

  Glossosomatidae Agapetus agilis 4                   4 

  Hydropsychidae Cheumatopsyche afra     688 3   2 116 68     877 

    Cheumatopsyche type 2     31 66             97 

    Cheumatopsyche type 7 66 2 7     1         76 

    Hydropsyche longifura     72 49             121 

    Macrostemum capense     1               1 

  Hydroptilidae Hydroptila cruciata       22             22 

  Leptoceridae Athripsodes sp.     10               10 

    Athripsodes bagensis 21     14             35 

    Leptocerus sp.                   78 78 

    Oecetis sp. 4     30   4         38 

  Philopotamidae Chimarra sp. 6   4 60             70 

  Pisuliidae Pisulia sp.           6         6 

  Sericostomatidae Cheimacheramus caudalis           5         5 

Turbellaria Rhabdocoela       5       125 13 3   146 

Mollusca 
(Veneroida:Sphaeriacea) Sphaeriidae   

                  3 3 

TOTAL TAXA     31 31 44 31 10 37 13 8 21 33 94 
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A further reason for low taxon richness at the B2 site was that there was only one biotope 

present (stones-in-current), where it was assumed that if another biotope were present, the 

diversity may have been higher. 
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Figure 4.8: Taxon richness with downstream distance for the Keurbooms River per 

season (Polynomial trendlines are of the 2nd order).  

 

The total macroinvertebrate richness from all seasons and each stream system is 

represented (Figure 4.10), obtained from the total taxa in the last row of the pooled 

macroinvertebrate data (Table 4.7). This exhibits similar trends to the graphs for each 

stream per season (Figure 4.8 and 4.9). 
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Figure 4.9: Taxon richness with downstream distance for the Bloukrans/Kowie River per 

season (Polynomial trendlines are of the 2nd order).  
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Figure 4.10: Total macroinvertebrate richness for all seasons for both rivers (Polynomial 

trendlines are of the 2nd order). 
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Sørensen’s similarity indices between site pairs did not yield clear trends (Table 4.8). For 

the upper-most sites, the macroinvertebrate taxa progressively increased in similarity 

from winter to autumn. This trend was not evident for any of the other paired sites. The 

sites sharing the highest similarity were the lowest paired sites, with an average of 55.9 % 

over all four seasons. The three middle sites exhibited lower average similarity values 

than the upper- and lower- most sites.  

 

Table 4.8: Sørensen’s similarity indices, comparing sites situated at similar positions 

along both stream longitudinal gradients. N/A means that the similarity value was not 

available. 

 K1 and B1 K2 and B2 K3 and B3 K4 and B4 K5 and B5 

winter 21.6% 24.0% 27.6% N/A 76.9% 

spring 22.2% 25.0% 31.3% 6.5% 41.7% 

summer 35.9% 24.0% N/A 19.4% 47.1% 
autumn 46.8% 20.0% N/A 11.8% 58.1% 

AVERAGE 31.6% 23.3% 29.4% 12.5% 55.9% 

 

 

In a similar way that Vannote et al. (1980) describe their trends comparable to the trend 

in Figure 4.8, a related trend was found for stream order for both streams (Figure 4.11). 

Taxon richness values showed distinct seasonal trends, where for both of the streams, 

lowest taxon richness was recorded for winter (where daily water temperature range was 

lowest) and thereafter increasing towards autumn, where the highest taxon richness was 

recorded (Table 4.9), except on the Kowie/Bloukrans River from summer to autumn, 

decreasing by one taxon. These values were calculated by summing all the individual 

taxon richness values for sites in a season (Total taxa at the bottom of each seasonal table 

in Appendix D).  
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Figure 4.11: Taxon richness per stream order per season for both the Keurbooms and 

Kowie/Bloukrans Rivers. The mean was calculated by summing all the taxon richness 

values for each stream order, then dividing that value by the number of individual stream 

orders. Polynomial trendlines are of the 2nd order.  

 

 

Table 4.9: Total taxon richness for all sites per season for the Keurbooms and 

Kowie/Bloukrans Rivers. 

Season Winter Spring Summer Autumn 

Keurbooms Taxon 

Richness 

60 75 86 107 

Kowie/Bloukrans Taxon 

Richness 

53 64 69 68 

 

 



 60

4.4.2 Functional feeding groups in relation to the River Continuum Concept 
Certain functional feeding group (FFGs) similarities were evident, both on a temporal and 

spatial basis, on both streams. A full list of the FFG’s assigned to most of the 

macroinvertebrates in this study are at the end of this thesis (Appendix E). 

 

A temporal and spatial shift in FFGs was evident at several sites over the duration of this 

research, particularly spatially (Appendix D). Similar to the River Continuum Concept 

(Vannote et al., 1980), macroinvertebrate community structure varied spatially along the 

longitudinal profile. Where riparian vegetation was abundant in the upper reaches, 

Notonemouridae shredders were present for all seasons at the highest site (K1) on the 

Keurbooms River, and only one season (autumn) at the highest site (B1) on the 

Kowie/Bloukrans (Appendix D). Pisuliidae shredders were found at B1 for all seasons 

except winter (Appendix D). Other shredders that were at the upper-most sites were 

Elmidae (especially at K1) and Leptoceridae (Appendix D).  

 

Similar results to the River Continuum Concept were those of collector-gatherers, where 

many different Ephemeropteran species were found in the headwaters of both streams for 

all seasons. In terms of taxa abundance, the lowest FFG contribution at headwater sites 

were predators and grazers, particularly Odonata (opportunistic predators), Hemiptera 

(predators), Gyrinidae (Predators), Leptoceridae and Notonemouridae (with certain 

genera belonging to the grazer FFG). 

 

The middle sites of both streams were dominated by the collector and grazer FFGs, 

particularly in the form of Simullidae (collector-filterers), Chironomidae (collector-

gatherers and scrapers; although Chironomidae were present throughout both stream 

profiles, highest numbers were recorded at the three middle sites), several 

Ephemeropterans, mostly Baetidae genera (most Ephemeropterans are described as 

collector-gatherers or grazers, where others are collector-filterers and few are predatory) 

and Trichoptera, primarily Hydropsychidae (both collectors and predators). These high 

abundances of collector and grazer FFGs are similar to the River Continuum Concept, 
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where the predator minority occurred mostly as Odonata and Hemiptera taxa. This trend 

was more apparent on the Keurbooms River, attributed to the continuous water supply. 

 

Lower-most sites on both streams, analogous to the River Continuum Concept, largely 

comprised collectors. This included families from the orders Amphipoda and Isopoda, 

where most species are described as detritus feeders (detritivores) or scavengers. 

Mytilidae (Mollusca) were also present in high abundances, categorized as collector-

filterers, along with Oligochaeta making up collector-gatherer numbers. Few Odonata 

and Hemiptera predators were present, particularly in still waters on the Kowie/Bloukrans 

River. The collector FFG abundances were high for these lower-most sites due to the 

amount of sediment on the river-bed due to reduced flow velocity. 

 

The FFG taxa on both streams were similar to one another, including the River 

Continuum Concept.  

4.4.3 Generalist versus specialist taxa 

The Keurbooms and Kowie/Bloukrans generalist and specialist macroinvertebrate taxa 

were assigned values based on their spatial and temporal distribution (Table 4.10 and 

Table 4.11). The information from these tables was used to generate graphs (Figure 4.12 

and 4.13). 

 

From the percentage presence at one site for one season, i.e. specialists (Figure 4.12 and 

Figure 4.13), it is evident that the Keurbooms River yielded more taxa than the 

Kowie/Bloukrans River, with values of 23.3 % and 19.7 % respectively. Similarly, 27.4 

% of the taxa on the Keurbooms River were present for one season compared to 23 % on 

the Kowie/Bloukrans. Conversely, the total presence values over all four seasons from all 

five sites were greater on the Kowie/Bloukrans than the Keurbooms, with values of 34.4 

% and 32.9 % respectively. 
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Table 4. 10: Keurbooms River assigned values of generalist and specialist taxa, 

determined by spatial and temporal distribution. 

 1 Site 2 Sites 3 Sites 4 Sites 5 Sites 
1 Season 23.3% 4.1%    
2 Seasons 1.4% 9.6% 6.8% 1.4%  

3 Seasons 6.8% 6.8% 5.5%  1.4% 
4 Seasons 11.0% 8.2% 4.1% 8.2% 1.4% 

 

 
Table 4.11: Kowie/Bloukrans River assigned values of generalist and specialist taxa, 

determined by spatial and temporal distribution. 

 1 Site 2 Sites 3 Sites 4 Sites 5 Sites 
1 Season 19.7% 3.3%    
2 Seasons 11.5% 4.9% 8.2%   
3 Seasons 11.5% 3.3% 3.3%   
4 Seasons 9.8% 8.2% 9.8% 4.9% 1.6% 

 

For the streams, sites and seasons, certain taxa were more abundant than others, where a 

single taxon may have been present at one site for only one season (for example, 

Macrostemum capense) and others were found at all sites on both rivers for all seasons 

(Chironomidae). A summary of this data was compressed into a single graph for each 

stream system. In this way, one obtains an idea of the specialists, with a single 

occurrence, and the generalists, which had several occurrences across seasons (Figure 

4.12 contains this data for the Keurbooms River and Figure 4.13 for the Kowie/Bloukrans 

River). Two seasons were not sampled at the B3 site on the Kowie/Bloukrans River due 

to the absence of water. This missing data may affect the graph, as seven out of eight of 

the taxa were present for both seasons sampled. Thus, these two seasons contribute 

largely to the two seasons category in the graph (Figure 4.13), where it may have been 

possible for these taxa to spread over three or four seasons across more sites, classifying 

them further into the generalists category. 

 

The Keurbooms (Figure 4.12) had more specialist taxa (present for one season) and the 

Kowie/Bloukrans (Figure 4.13) had more generalist taxa (present for four seasons). The 

trend evident for both streams is that taxa numbers decrease from the one site category to- 
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Figure 4.12: Percentage of taxa present on the Keurbooms River across number of 

seasons and sites. 
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Figure 4.13: Percentage of taxa present on the Kowie/Bloukrans River across number of 

seasons and sites. 
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wards the five sites category. Furthermore, for both the four and five sites categories on 

both streams, taxa were present primarily for all four seasons. The reduced flow over the 

duration of this research on the Kowie/Bloukrans (and to a lesser extent, the Keurbooms) 

altered certain biotopes, especially from stones-in-current to stones-out-of-current. This 

may have masked certain taxa and introduced others. 

 

4.4.4 Macroinvertebrate association with predictability values 

The water temperature predictability values were plotted against macroinvertebrate 

coefficient of variation (CV) values (Figure 4.14), calculated using Equation 8. A trend 

for CV to decrease with increasing predictability values was evident for both streams, 

more so for the Keurbooms (R2 = 0.698) than the Kowie/Bloukrans (R2 = 0.296). 

 

Water temperature predictability was plotted against stream order to determine how 

predictability changed with longitudinal stream gradient (Figure 4.15). The two streams 

were opposite, such that temperature predictability increased with increasing stream order 

for the Keurbooms (R2 = 0.642) but decreased for the Kowie/Bloukrans (R2 = 0.769), 

similar to the findings of Rivers-Moore et al. (2008c). Their findings were decreasing 

water temperature predictability values with increasing stream order on the Sabie River.  

 

The first graph (Figure 4.14) indicated how macroinvertebrate turnover varies with water 

temperature predictability, where the second graph (Figure 4.15) indicated how water 

temperature predictability varies with stream order. These graphs were created in order to 

get an indication of the whereabouts on the stream where the water temperature 

predictability was highest and lowest and to see how seasonal macroinvertebrate turnover 

was linked to predictability values. For example, in Figure 4.15, a site on the Keurbooms 

had a water temperature predictability value of 0.6 on a first order stream; in Figure 4.14, 

this site has the highest seasonal turnover, with a macroinvertebrate CV value of 0.25. 

This indicates that seasonal macroinvertebrate turnover on this stream was greatest on a 

first order stream with a low water temperature predictability. 
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Figure 4.14: Water temperature predictability values plotted against macroinvertebrate 

coefficient of variation (CV) for each stream system  
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Figure 4.15: Water temperature predictability plotted against stream order, with 

corresponding trendline for each stream. 
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4.4.5 Macroinvertebrate distribution 
One of the main issues that were to be addressed with regards to water temperature 

influencing the taxa was to identify which temperature variables (range, CV, and others) 

were the main drivers at the various sites. Non-metric multidimensional scaling (NMS) 

was used to determine how species abundance data varied across sites and between the 

two streams. This NMS ordination was performed to identify which taxa were dominant 

at which sites, using only those taxa that had a correlation of 0.7 or more (Figure 4.16 and 

Appendix F). This NMS (Figure 4.16) indicates similarity amongst the top four sites on 

the Keurbooms, as all these sites are grouped close to each other. However, the lower-

most site was different to the other four sites. On the Kowie/Keurbooms, sites differ 

more, as the sites are distributed further apart from one another. B2 and B3 have the most 

similar macroinvertebrate taxa, with six out of fifteen taxa common to both sites. 

 

Certain taxa had a higher presence at particular sites, especially the lower-most sites on 

both rivers, where only certain taxa were found at the lowest sites on both streams. These 

included: Mytilidae, Oligochaeta, Paramelitidae sp.1 and Paramelitidae sp. 2. This could 

be predominantly due to higher salinity levels, motionless waters and the 

gravel/sand/mud biotope at the lower-most sites, suiting these taxa only. The low 

correlations in Appendix F are indicated by the short arrows, compared to the long arrows 

for correlations of 0.7 and above. 

 

Several environmental variables appeared to be driving the highly corresponding taxa, 

particularly at the lower-most sites (Figure 4.17). The environmental parameters driving 

the downstream sites at B5 and K5 are partially due to these sites having the warmest 

temperatures (DegreDay, AnnuTemp), highest flows (MeanFlow), deepest (LogDepth) 

and widest (LogWidth) streams and the highest conductivity readings (LogCond). 

Temperature variability (AnnTemCV and AnualRng) was the main driver for the K1, K2 

and K3 sites, whereas temperature predictability (TempPred) drives B1, B2 and B3. The 

associated axis one and two values for this NMS are situated below Figure 4.17 (Table 

4.12). 
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Figure 4.16: Non-metric multidimensional scaling (NMS) ordination (based on Bray-

Curtis distance), rotated by principal component analysis (PCA), of species (italics) 

abundance data (square-root transformed) from Keurbooms and Kowie/Bloukrans River 

sites. Stress = 0.06. Species with a single occurrence were excluded from the analysis. 

Only species with a correlation of ≥ 0.7 (absolute value) are displayed.  
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Figure 4. 17: NMS of the environmental parameters with the highest correlations, 

indicating which sites were driven by them. Axis one accounts for 49.3 % of the data, 

whereas axis two accounts for 26.6 %. Sites are represented by the points and the 

environmental parameters are represented by the arrows. Dashed oval indicates the three 

sites most affected by annual temperature coefficient of variation. 
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Table 4.12: Eigenvectors for axes one and two that contributed towards the NMS. Shaded 

cells indicate the environmental parameters that mostly effected the distribution of the 

arrows in Figure 4.17. 

NAME Axis 1 Axis 2 

   

Cum. Variance 49.3 75.9 

   
pH 0.2171 0.0188 
LogCOND 0.7528 0.1559 

RefTEMP 0.7701 -0.3161 

LogDepth 0.8418 0.2203 
LogWidth 0.8936 -0.1824 
MeanFlow 0.9783 -0.0062 

FlowPred 0.4292 -0.2923 

HigDurat -0.1459 0.9717 
30FloMin 0.9611 -0.01 
DegreDay 0.9756 0.051 

AnnuTemp 0.9758 0.0469 

AnnTemCV -0.3843 -0.805 
TempPred -0.2399 0.9173 
AnualRng 0.2735 -0.8864 

30TemMin 0.6456 0.6818 
 

 

One of the objectives for this research was to gain a better understanding of 

macroinvertebrate taxa turnover variation with seasons at the sites (temporal changes). A 

CCA was performed for all the sites from all seasons, with the species data and particular 

environmental variables (Figure 4.18). The environmental variables used included the 

following: temperature and flow coefficient of variation, temperature range, mean flow, 

pH, conductivity (log-transformed), temperature CV / flow CV and temperature CV x 

flow CV. The ratios between temperature and flow CV (Tcv/Fcv) for all seasons and sites 

were greater than 1, indicating temperature variability was a greater contributor than flow 

variability. In the CCA output, the environmental variables having correlations above 0.7 

are present. This analysis indicated the dominant environmental variables driving the 

macroinvertebrate distribution at the different sites: conductivity (LogCond) driving B5, 
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mean flow (FlowMean) driving K5, pH driving B3, B4 and B2, and the ratio between 

temperature and flow CV (Tcv/Fcv) driving the remainder of the sites (Figure 4.18). 

 

 

Figure 4.18: CCA of temporal macroinvertebrate taxa distribution with sites. Taxa with 

single occurrences were not included. Polygons enclose sites that yielded similar taxa 

over the seasons. Season abbreviations are as follows: SU = summer; AU = autumn, WI 

= winter; SP = spring. Environmental variable abbreviations are as follows: pH = pH; 

LogCond = log-transformed conductivity; FlowMean = mean annual flow; Tcv/Fcv = 

temperature coefficient of variation / flow coefficient of variation. 
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4.5 Conclusions 

From these results, it is apparent that the streams in this research are different from one 

another. This could largely be a result of the different flow regimes, namely perennial 

versus non-perennial, affecting the macroinvertebrate community structures and 

distributions. The next chapter discusses these findings, with particular emphasis on how 

different water temperature metrics affect macroinvertebrate communities. 
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CHAPTER 5 
DISCUSSION 

 
This chapter will discuss the findings outlined in the results section and whether the aim 

and objectives of the research were achieved, i.e., whether macroinvertebrate 

communities respond in a predictable manner depending on the water temperature 

predictability, whether macroinvertebrates respond in a predictable way to changes in 

their environment and test whether the temporal partitioning of macroinvertebrate taxa 

are related to water temperature variability. 

 

5.1 Relationship between water temperature predictability values and 

macroinvertebrate data 

There was a tendency for macroinvertebrate assemblages to differ on a temporal basis as 

temperature predictability values decreased (higher macroinvertebrate CV, indicating 

seasonal turnover). This trend was more evident on the Keurbooms River (R2 = 0.698 – 

Figure 4.14) than the Kowie/Bloukrans River (R2 = 0.296). This may be attributed to the 

more frequent supply of water on the perennial Keurbooms than on the non-perennial 

Kowie/Bloukrans.  

 

Water temperature predictability values calculated from the year cycle did not provide a 

direct relationship with macroinvertebrate communities. The range of predictability 

values for all ten sites was between 0.60 and 0.69, which indicated that there were no 

sites that stood out having either highly or poorly predictable thermal regimes. The site 

having the highest predictability value was B2 (0.69, Table 4.4), which, over the seasons, 

yielded 13 different taxa under flowing conditions. Of these taxa, six (46 %) were present 

for every season, leading to the assumption that these taxa are not greatly influenced by 

temperature. One of the reasons for the high temperature predictability at this site was 

attributed to riparian vegetation, where constant shading over the stream was provided 

throughout the research period. Shading reduces direct solar radiation, thus reducing 

temperature fluctuations and ranges (Dallas and Day, 1993). These six taxa are: 
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Chironomidae, Simulium nigritarse, Afroptilum sudafricanum, Baetis harrisoni, 

Ancylidae (Mollusca) and Rhabdocoela (Platyhelminthes) (Appendix D).  

 

The lowest water temperature predictability value calculated was for K2 (0.6), where 

thirty-one different taxa were collected over the seasons. Of these taxa, three (10 %) were 

present for all the seasons, namely Gyrinidae, Chironomidae and Gomphidae. It must be 

noted that there was flowing water at this site for the first two sampling seasons (winter 

and spring), and only pools for the remaining seasons, due to a drought in the region. This 

shift from flowing waters to pools may be the reason for the low predictability value at 

this site, as temperatures differ between flowing and non-flowing systems (Dallas and 

Day, 1993), which furthermore, may have hindered the findings of taxa preferring 

flowing water (Simulium nigritarse, Cheumatopsyche type 7) in the drier seasons. 

Therefore, an inference is made that the more temperature predictable sites have less 

macroinvertebrate taxa turnover across seasons (Figure 4.14), making it easier to predict 

what macroinvertebrate taxa may be present for a particular season due to more stable 

communities, depending on the flow regime (flowing versus non-flowing). This trend 

was more conclusive for the Keurbooms than the Kowie/Bloukrans (R2 values in Figure 

4.14). 

 

Throughout the seasons, total taxon richness increased from winter to autumn for all sites 

on both stream systems, except for the Kowie/Bloukrans system, which increased from 

winter through to summer, then decreased by one taxon between summer and autumn 

(Table 4.9). This may be attributed to the middle site (B3) not being sampled due to the 

absence of water. This increase in richness from winter to autumn is similar to the 

findings across seasons for Closs and Lake, (1994) and Minshall et al. (1985), where 

several sites experienced greater species diversity in autumn. This could illustrate how 

taxon richness tended to increase temporally due to increasing water temperature over the 

seasons. Similar results were obtained by Palmer (1997), who found that total number of 

taxa was highest at temperatures above 25 °C. This trend is similar to the results obtained 

by Dallas (2004) for taxa richness varying spatially (or geographically) due to 
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temperature differences associated with latitude and climate (temperate in Western Cape 

and sub-tropical in the Mpumalanga Province, South Africa).  

 

The results from this research are similar to those of Minshall et al. (1985), who sampled 

invertebrates in spring, summer and autumn, where autumn yielded the greatest richness 

for several of the sites. These authors found similar trends to those found on the 

Keurbooms River (Figure 4.8), such that species richness is low in the headwaters, peaks 

in the mid-reaches, then decreases in the lower reaches as the stream becomes 

progressively larger (Minshall et al., 1985). These trends were found be similar to both 

Minshall et al. (1985) and Vannote et al. (1980) for both streams in this research, where 

along the longitudinal gradient, taxon richness increases from 1st to 2nd stream order, then 

further decreases from 2nd to 3rd stream order (Figure 4.11). This is attributed to 

variability being the greatest in the mid-regions of the stream (Vannote et al., 1980). 

 

The major environmental drivers at the K1, K2 and K3 sites are annual temperature 

coefficients of variation and annual temperature range (Figure 4.17). Thus, these sites 

have high temperature variability over the years’ cycle, encouraging a range of thermal 

niches for macroinvertebrate communities to establish. Out of these sites, the greatest 

macroinvertebrate diversity is present, being K3 with 44 different taxa, where K2 had 31 

taxa and K1 31 taxa (Table 4.7). This could indicate that the high annual temperature 

fluctuations and persistent flowing conditions (K3) may well be the driver for a high 

temporal macroinvertebrate turnover. Although altitude is a primary driver of 

temperature, more site specific conditions may alter temperature trends (range, standard 

deviation, coefficient of variation); where riparian vegetation contributing towards 

shading (Dallas and Day, 1993), flowing versus non-flowing systems and depth of the 

logger (Dallas and Day, 1993; DWAF, 1996) may alter the site temperatures. 

 

A plausible reason for higher numbers of taxa being present in warmer seasons may be 

linked to planktonic algae. Palmer (1997) sampled for planktonic algae over a five year 

period on the Orange River, finding concentrations were lowest in winter and highest in 

autumn. Several taxa had a positive correlation with this increase in algae concentration 
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in Palmer’s research. Similarly in this research, even though planktonic algae was not 

measured, several taxa yielded positive correlations with taxa abundance generally 

increasing between winter and autumn, across all sites and both river systems. These taxa 

included Hydrophilinae (Coleoptera), Chironomidae, Culicidae (Diptera), Caenis sp. 

(Ephemeroptera), Veliidae (Hemiptera), Libellulidae (Anisoptera), Oligocheata, 

Cheumatopsyche afra, Cheumatopsyche type 2, Hydropsyche longifura, Oecetis sp., 

Chimarra sp. and Pisulia sp. (Trichoptera). Similarly, certain taxa yielded clear negative 

correlations, where abundances decreased between winter and autumn, across all sites 

and both river systems. These taxa included Elmidae (Coleoptera), Afroptilum 

sudafricanum (Ephemeroptera) and Cheumatopsyche type 7 (Trichoptera). Taxa were 

more sensitive to variation over seasons and within the same biotope than others. For 

example, particular Simullidae species were abundant in the cooler seasons and scarce in 

the warmer seasons (Simulium (Pomeroyellum) bequaerti and Simulium (Pomeroyellum) 

harrisoni), whereas other species were relatively abundant over all seasons (Simulium 

(Metomphalus) hargreavesi and Simulium nigritarse). 

 

Palmer et al. (1991) identified Baetis harrisoni and Cheumatopsyche afra to be prolific in 

the riffle biotope on a 4th order stream on the Buffalo River, Eastern Cape. These findings 

are very similar to those in this research, where Baetis harrisoni and Cheumatopsyche 

afra abundances were greatest in the stones-in-current biotope (riffle) in the mid-reaches 

of both rivers, particularly the Keurbooms. From the research in this thesis, these two 

taxa specialise in their habitat (fast flowing waters) but not in their surroundings 

(differences in water temperature, pH and conductivity over seasons). This was 

demonstrated in this research, where Baetis harrisoni and Cheumatopsyche afra were 

found throughout all seasons on both streams, suggesting that water temperature does not 

effect their distribution, classifying these taxa as generalists. This is further supported by 

these findings, where these taxa were most abundant at the K3 site (Table 4.7 and the 

relationship between Figure 4.16 and Appendix F in the K3 site direction) which had the 

greatest water temperature and flow variability across the seasons (Figure 4.18). This, 

however, did not seem to correlate with water temperature predictability values. 
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Water quality data from this research exhibit a similar trend to those found by Palmer and 

O’ Keeffe (1991), where water temperature, pH and conductivity increase from upper to 

lower reaches. Combined with the physical parameters in upper reaches (turbulent flow, 

velocity high, dissolved oxygen high, discharge and water temperatures low) compared to 

lower reaches (flow laminar, velocity low, dissolved oxygen low due to light absence, 

discharge and water temperatures high – Harrison, 1965) and the chemical parameters 

mentioned above, specific taxa were only found in particular biotopes along the 

longitudinal profile, namely stones-in-current. Similarly to the fauna described by 

Harrison (1965) found in the cool, upper reaches of a river, Elmidae (Coleoptera), 

Corydalidae (Megaloptera) and Notonemouridae (Plecoptera) thrived in cool, upper 

regions on both systems, particularly the Keurbooms. Interestingly, the abovementioned 

taxa abundances were greater in the cool seasons than the warm seasons (Appendix D), 

suggesting these taxa prefer cool water temperatures. 

 

Buschke et al. (2010) identified several taxa that did not exhibit distinct habitat 

specialization patterns; all these taxa are common to the results in this research (identified 

to genus level for most taxa by Buschke et al. (2010), but same families in this research 

were considered the equivalent taxa). These include: Ceratopogonidae, Chironomidae, 

Simullidae, Cloeon sp., Caenis sp., Corixidae, Notonectidae, Coenagrionidae and 

Cheumatopsyche afra. These taxa were found on both rivers at some time during the 

year’s sampling, ranging in presence and abundance. For example, Chironomidae were 

present at all sites on both rivers for all seasons. Thus, with regards to water temperature, 

Chironomidae are considered generalists in this research due to their presence not being 

affected by water temperature. However, certain species of the Chironomidae family may 

well be affected by water temperatures. 

 

Although the difference in results between specialist and generalist was slight (Table 4.10 

and Table 4.11), these trends indicate that there is greater taxa resilience to change on the 

Kowie/Bloukrans than the Keurbooms. This is possibly as a result of the flow variability 

of the two systems, where taxa on the Kowie/Bloukrans River system may be termed 

opportunistic, as when water is present (either flowing or pools), taxa seize the 
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opportunity to inhabit the water. Compared to the taxa on the Keurbooms River where 

taxa may be termed specialists, as being a perennial system, this stream is predominantly 

in the flowing form. 

 

With regards to historical data, there are several similarities in taxa found on the 

Keurbooms River (unfortunately no records were found for the Kowie/Bloukrans). Out of 

nine taxa found on the Keurbooms in 1962 by Harrison and Agnew (1962; cited in 

Duvenage and Morant, 1984), eight taxa were common to the findings in this study. 

These taxa are Baetis harrisoni, Pseudocloeon sp., Adenophlebia sp., Cheumatopsyche 

afra, Hydroptila sp., Simulium larvae, Chironomidae and Elmidae. Of these taxa common 

to both years, Hydroptila sp. is considered the only specialist as this taxon was only 

found at the K4 site (3 seasons, 1 site category in Table 4.10), the remaining taxa 

categorised as generalists. This may suggest that in a 48 year period, the conditions of 

this river have not been significantly altered. 

 

A particular macroinvertebrate taxon exhibited typical temperature specialist behaviour in 

this research, as it was only present in the warm seasons. The ephemeropteran (family: 

Baetidae) Centroptiloides bifasciata was present in summer and autumn at the K3 site 

and at the K4 site only in summer (Appendix D). C. bifasciata nymphs are not found at 

high altitudes or cold streams, and is sensitive to silt and mild pollutants in water and 

upstream agricultural activity (Agnew, 1962), suggesting this species prefers clear, warm 

waters. This temperature and habitat specialist (stones-in-current) is particularly different 

to the generalist Baetis harrisoni (Baetidae: Ephemeroptera) found at many sites on both 

streams, predominantly stones-in-current biotopes, throughout all seasons. C. bifasciata 

was only present on the flow and temperature predictable Keurbooms for warm seasons, 

further suggesting its specialist status, whereas B. harrisoni was present on both streams 

with predictable and unpredictable flows and predictable temperatures, further suggesting 

its generalist status. Therefore, this species could provide a good indicator for increasing 

water temperatures associated with climate change by monitoring its range expansion, 

assuming the Keurbooms River remains predictable and the water quality remains good. 
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Agnew (1962) reported that the South African southern-most limit of C. bifasciata was 

the Krom River at Assegaaibosch (Eastern Cape) at an altitude of 300 m.a.s.l. No 

mention was made of the presence of this species on the Keurbooms River in 1962, as 

“the species is probably also limited by the low pH of the acid streams in the Southern 

and Western Cape” (Agnew, 1962, pp. 369). Observations during recent decades have 

shown increasing water temperatures in rivers, resulting in transformations of species 

composition, phenological shifts, organism productivity and abundance (Bates et al., 

2008). Therefore, seeing as C. bifasciata was only found in summer and autumn, 

suggesting that this species prefers warmer water temperatures, particularly as this 

species is found in many rivers north of the Keurbooms in the KwaZulu-Natal, Free State 

and Mpumalanga provinces (Agnew, 1962), Limpopo and Mpumalanga provinces (Roux 

et al., 2008) and the Northern Cape (Palmer 1997). One specimen was found at the K4 

site in summer (altitude 30 m.a.s.l) and three specimens at the K3 site in both summer 

and autumn (altitude 275 m.a.s.l), compared to a cooler 300 m.a.s.l on the Krom River at 

Assegaaibosch in 1962 (Agnew, 1962). Therefore, within 48 years, this species may be 

migrating towards the Western Cape province. Although these two sites share the same 

line of latitude, movements in a westerly direction towards a mediterranean, temperate 

climate may suggest increasing temperatures over this 48 year period. Recent research by 

Dallas (2010) indicates this species is not present in summer in the Western Cape, where 

ten sites were sampled at the beginning and end of summer. No specimen of C. bifasciata 

has yet been recorded in the Western Cape prior to this research (an enquiry was made 

via email in the database at the department of Freshwater Invertebrates at the Albany 

Museum). Thus, this further suggests that C. bifasciata may be a good indicator species 

for climate change. 

 

5.2 Relationship between observed and simulated streamflow predictability 

values and macroinvertebrate data 

The flow predictability values increased with downstream distance for both rivers (Table 

4.2). This is unlike the results of Rivers-Moore and Jewitt (2006, unpublished data), who 

found that predictability values decreased with downstream distance for the Sabie River. 

It was interesting to note that although the flow predictability values were greater on the 
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Keurbooms River versus the Kowie/Bloukrans River for all quinaries, this was not the 

case for the temperature predictability values. The three high altitude sites on the 

Kowie/Bloukrans system had greater temperature predictability values than the two low 

altitude sites, whereas the two lowest sites on the Keurbooms system had greater values 

than the three high altitude sites (Table 4.4). This is evident in the PCA (Figure 4.6), 

where ITA predictability has separated four of the five paired sites on axis two (Table 

4.5). 

 

From the taxa collected across all seasons for both rivers, several taxa were only found on 

one stream system; 33 and 21 unique taxa on the Keurbooms and Kowie/Bloukrans 

systems respectively. An interesting trend is that the majority of the unique taxa on the 

Keurbooms (mostly Simullidae, Ephemeroptera and Trichoptera) were found in the 

stones-in-current biotope, suggesting they have adapted to conditions of constant flow. 

King et al. (2008) mention that certain Trichoptera, Simullidae and Odonata (damselflies) 

taxa are not capable of surviving current speeds of zero, even if oxygen levels are very 

high. Similarly, the taxa unique to the Kowie/Bloukrans (Mollusca, Diptera, and some 

Trichoptera) were predominantly found in biotopes with calm or stagnant waters, further 

suggesting that these taxa have adapted to conditions consisting of pools and sluggish 

waters due to inconsistent flow. These two trends distinguish the types of river systems 

from one another, i.e. perennial versus non-perennial. 

 

The flow pattern on the Kowie/Bloukrans is typical of a non-perennial river, flowing as a 

result of rainfall only, causing this stream to be erratic and event driven. One of the 

reasons why the Keurbooms River is perennial is that the middle site (K3) lies several 

hundred meters downstream of the Kwaai River confluence, a perennial tributary fed by a 

spring at its source. 

 

A reason for the diversity being low on the Kowie/Bloukrans River at the middle B3 site 

has to do with flow. It has already been stated that only winter and spring sampling was 

carried out at this site due to the complete absence of water for the summer and autumn 

seasons. However, the most plausible reason why this site had a low biodiversity in 
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comparison to the middle site on the Keurbooms River is due to the flow history. The 

water temperature logger was secured at this site in a run biotope when water was 

flowing (14th October 2008). There was constant flow up to the 10th January 2009, and 

then from this date until the 23 February 2009 there was a period of very low or no flow 

(DWA, 2010), thus no stones-in-current biotope existed. In-between this date and the first 

sampling season (winter), the river began flowing again, offering the stones-in-current 

biotope four months to recover until sampling took place in June 2009. This short period 

for the biodiversity to recover by the first macroinvertebrate sampling may be the reason 

for such a low taxon richness being present at this site (Figure 4.9) compared to the 

middle site on the Keurbooms (Figure 4.8). Therefore, on this non-perennial stream 

yielding unpredictable flows, both observed and simulated (Table 4.1 and Table 4.2), it 

becomes a difficult task for macroinvertebrate communities to prosper due to the 

variation between the presence and absence of water. Thus, macroinvertebrate response 

to changing environmental conditions becomes predictable, where reduced or no flows 

causes sensitive taxa to perish and the resumption of flows after drought results in 

macroinvertebrate communities to slowly re-establish in the various aquatic biotopes. 

 

5.3 Temporal and spatial partitioning of diversity indices and functional feeding 

groups 

Temporal macroinvertebrate turnover was more prominent at some sites than others. B2 

yielded the lowest temporal turnover (Figure 4.18), indicated by the least distance 

between points. This was due to riparian shading promoting less diel temperature range 

and the taxa present being more tolerant of polluted waters. Sites exhibiting greatest 

temporal turnover were B1, K1, K2, K3 and K4 (Figure 4.18), where high variation in 

temperature and flow (Tcv/Fcv) contributed to seasonal changes. This allows different 

macroinvertebrate taxa to become better suited to a range of ecological niches. These 

sites had some of the highest taxa richness of all sites, with values of 31, 31, 44, 31 and 

37 at K1, K2, K3, K4 and B1 respectively, over the research period. Therefore, where 

seasonal variation in temperature and flow are more prominent, higher macroinvertebrate 

turnover is likely to occur. 
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A clear distinction in species distribution between the two streams is apparent (Figure 

4.16). This could indicate the preference of river system, such that taxa found in the 

Keurbooms River prefer constant, perennial and predictable flow, whereas those in the 

Kowie/Bloukrans prefer erratic, non-perennial and unpredictable flow. However, certain 

taxa were common to both rivers, indicated by Sørensen’s similarity index (Table 4.8). 

Sørensen’s similarity index reveal that the lower-most sites from both streams had the 

most similar taxa, with an average of 56 % over all seasons. This may be as a 

consequence of high conductivity levels, still, deep waters, high water temperatures and 

high flows (Figure 4.17). The sites having the least similarity were K4 and B4 (an 

average of 12.5 %), largely owing to different flow regimes, with K4 flowing throughout 

the research duration and B4 consisting of the stones-out-of-current biotope for most of 

the seasons. The reason why B1 and K2 sites are situated close together in Figure 4.16 is 

that over the duration of this study, 18 taxa were common to these sites. This is attributed 

to these sites containing biotopes in both flowing waters and pools in winter and spring, 

but only pools in summer and autumn due to reduced flows. 

 

FFGs variations were not as temporally pronounced as spatially. The temporal 

partitioning of macroinvertebrates was seen to be primarily driven by alterations in flow 

and water temperatures. Perhaps Lake et al., (1985; cited in Palmer et al., 1993) and King 

et al. (1988) were correct in stating that aquatic invertebrates are polyphagous, or 

opportunistic generalists, where the only limitation would depend on the speciality of 

their mouthparts. 

 

5.4 External factors influencing trends 
During this research, certain sites were transformed from flowing streams into pools. This 

transformation exhibited changes in the dominant taxa present at the sites, where taxa 

preferring stones-in-current disappeared and where pools developed, taxa preferring still 

waters dominated. It appeared the period 2009/2010 was a dry cycle as a result of low 

flows at some sites and completely dry at others, which may have masked some species. 

Palmer (1997) found that species abundance and composition differed between long-term 

dry and wet cycles, where some species are better adapted to high flows and others to low 
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flows. Wood et al. (2000) discovered distinct differences in macroinvertebrate 

composition between drought and non-drought periods. As a result, from sampling at a 

site only once in one season, approximately 60 % of possible present taxa may not be 

sampled as a result of flow variations, where some taxa are better adapted to certain flow 

conditions than others (Palmer, 1997). For example, Afronurus sp. (Heptageniidae, 

Ephemeroptera) requires strong flows to survive (King et al., 2008). Therefore, within 

this research, high flow tolerant species may have been masked due to the dry cycles 

experienced on both rivers. This is a demonstration of how macroinvertebrate taxa may 

react in a predictable manner to variation in their surroundings due to taxa preferring 

specific flow conditions. 

 

Over the duration of this research, drought conditions (as difficult as it is to detect when 

droughts actually begin, Lake, 2000) were experienced on both rivers, affecting certain 

sites on each river, particularly for summer and autumn. This lack of water reduces the 

movement of biomass within the stream (similarly to the study undertaken by Clarke et 

al., 2010 due to drought), as droughts have a negative effect on stream biomass. Reduced 

habitat space transpires, creating pools, further increasing competition amongst the biota; 

water temperature increases, water quality deteriorates and oxygen deficiency (hypoxia) 

occurs, ultimately resulting in a loss of species diversity (Lake, 2000). Due to certain sites 

having transformed from flowing streams to pools over the duration of this study, taxa 

tolerant to the abovementioned effects associated with droughts may have been present. 

Nonetheless, these taxa may be indicative of higher water temperatures than others, since 

the pools were only present for the warm seasons of summer and autumn. However, 

certain taxa are adapted to flowing conditions, such as Simullidae and Corydalidae, 

which were only found during winter and spring at K2 when the stream was flowing, and 

not found in summer and autumn when pools were present.  

 

The flow conditions at the B2 site did not alter significantly between seasons (personal 

observation), such that the stones-in-current biotope remained the only habitat that was 

sampled across seasons. It must be noted that this site lies approximately six kilometres 

downstream of the sewerage works for the town of Grahamstown, from where effluent is 
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discharged into the stream. Although nutrient analysis was not carried out, an assumption 

was made (based upon observations - foam and algal growths, and smell at this site over 

seasons) that the macroinvertebrate assemblages at this site have a high tolerance for 

polluted waters. According to Dickens and Graham (2002), the sensitivity scale for the 

six taxa present at this site for all seasons (Chironomidae, Simulium nigritarse, 

Afroptilum sudafricanum, Baetis harrisoni, Ancylidae (Mollusca) and Rhabdocoela 

(Platyhelminthes)) range between two and six, describing these taxa to be highly tolerant 

to pollution. All of these taxa are considered generalists on this stream, found at several 

sites and over many seasons (Figure 4.13). The greatest richness of Chironomidae and 

Rhabdocoela over all sites and seasons was found here, indicating that the water quality is 

poor. Therefore, this would reduce the likelihood of more sensitive species, i.e. 

specialists, to be found at this site, being the primary reason for the low 

macroinvertebrate biodiversity. 

 

One of the macroinvertebrate taxa present for every season at B2 was B. harrisoni. 

Williams et al. (2003) found that Baetis harrisoni is capable of building up resistance to 

polluted waters, which could well be the case here having a presence in these sewage 

waters. Certain Chironomidae genera (Chironomus sp.) have adapted to endure 

conditions with low dissolved oxygen, typically found in sewage waters where organic 

load is high and organic matter is decomposed rapidly by fungi, bacteria, protozoans and 

algae, leading to oxygen depletion (Palmer and Williams, 2000). Decomposition of 

organic matter is exacerbated by higher water temperatures (Bates et al., 2008). 

 

There was an increasing trend in the different taxon richness amounts from winter to 

autumn (Table 4.9). This correlates to a trend in moving from colder temperatures in 

winter to warmer in summer and autumn, suggesting that more taxa in these rivers prefer 

warm waters rather than cool waters. However, in stating this, the hydrological conditions 

of both rivers did alter over the duration of the study, more so the Kowie/Bloukrans than 

the Keurbooms, suggesting that certain taxa at some sites prefer pools, rather than 

flowing conditions.  
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5.5 Conclusions 

Variability in water temperatures and flow were the driving environmental variables that 

resulted in the dissimilarity of macroinvertebrate community structures across sites and 

seasons. This relationship was, however, more pronounced at some sites than others as 

discussed above, with variation occurring spatially and temporally. This was evident on 

both the perennial and non-perennial streams. Final conclusions to this research follow in 

the succeeding chapter. 
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CHAPTER 6 
CONCLUSIONS 

 
The aim of this research was to determine whether water temperature predictability could 

provide an indication of structure and functional predictability in macroinvertebrate 

communities. This hypothesis proved to hold true, where macroinvertebrate species 

turnover through the seasons was greater for sites having lower water temperature 

predictability values (i.e. more variable) than sites with high predictability values. 

 

Aquatic macroinvertebrates do respond in a predictable manner to modifications in their 

environment. This was particularly evident in relation to variability in flow and water 

temperature, depending on the sensitivity of the taxa to changes in their habitat, although 

this was more evident amongst certain taxa than others. More taxa were only present 

when water temperatures were warm rather than cool, with overall taxon richness being 

higher in warmer water temperatures. Reduced flows resulted in the loss of flow-

dependant taxa, primarily functional feeding groups relying on flowing streams for their 

food supply. 

 

Temporal partitioning was greater at more variable sites (lower temperature predictability 

values and high temperature range and coefficient of variation), whereas temporal 

macroinvertebrate turnover was less obvious at sites with high temperature predictability 

values. Functional feeding groups did not vary temporally, however did appear to differ 

spatially, similar to the River Continuum Concept (Vannote et al., 1980). 

 

Studies of the life history of the macroinvertebrate taxa may explain why some species 

occurred at sites in different seasons, as certain species are triggered to emerge when the 

water temperatures reach a certain threshold. The scope of this research did not cover life 

history patterns of species, however further studies on this may reveal explanations for 

some of the results obtained in this study. 
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Meteorological events control aquatic ecosystems significantly, with climate change 

predicted to amplify variability in ecosystems (Dallas and Rivers-Moore, 2009). 

Freshwater reserves are becoming increasingly vulnerable, where impacts due to climate 

change are likely and could have considerable impacts upon ecosystems and human 

societies, where climate change is proposed to threaten freshwater aquatic ecosystems the 

most, as a high proportion of taxa are threatened by extinction (Bates et al., 2008). 

 

Changing precipitation patterns and increased air temperature are the primary climatic 

variations that are predicted to occur in South Africa with climate change (Dallas and 

Rivers-Moore, 2009). In Africa, climate change threatens freshwater systems due to 

alterations in temperature and precipitation, which would have unfavourable impacts on 

water quantity, water quality and water temperature (Lehner, 2005). It becomes an 

important task to discover to what extent climate change may have on amplifying existing 

variability in aquatic ecosystems and how this may affect the predictability of these 

ecosystems. 

 

In a semi-arid country such as South Africa, macroinvertebrates are at a risk, particularly 

in non-perennial rivers where flow predictability is low. Anthropogenic impacts could 

threaten macroinvertebrate communities on perennial rivers, where the construction of 

dams and water abstractions for irrigation may alter the usually predictable flow regime. 

The results from this research could aid decision makers in making correct choices in the 

future, especially on streams with unpredictable flows, for example, the management of 

water releases from dams to uphold the ecological reserve. With these findings, we are 

potentially able to predict what the aquatic macroinvertebrate communities may consist 

of at various stages on streams, depending on the degree of water temperature and flow 

predictability. 
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APPENDIX A: Detailed overview of macroinvertebrate identification 

and counting procedure. 

• The sequence that was used for identification was to start with the samples from the 

first field trip, sorting out all of the biotopes separately per site (starting at the 

upper-most site on the river system, progressing downstream), thereafter moving 

onto the next site. 

• The bottle containing the raw sample from the river was emptied into a white tray, 

where the white background enabled the specimens to stand out clearly. All the 

major debris (including leaves, sticks, stones and pebbles) was removed from the 

tray to enable easier finding of specimens. 

• Using forceps, macroinvertebrate specimens were removed from the tray and 

placed into labelled glass vials containing 80 % alcohol for preservation. A single 

vial was used for a particular class/order of macroinvertebrate, for example, all the 

Ephemeroptera were stored in one vial, all the Trichoptera in another, and so on. In 

this way, detailed identification at a later stage would become easier and quicker, 

where a particular guide would be used focussing on a specific order and subtle 

differences in specimens would be easier to recognise (for example, the mouthparts 

of the Baetidae family, order Ephemeroptera). 

• Once all the specimens were removed, the remaining debris was discarded and the 

next bottle was emptied into the tray. This procedure was carried out until all the 

samples from a single seasonal trip had been sorted. 

• The next step once macroinvertebrates had been sorted to class/order level from a 

seasonal field trip was to go back and identify to a further level and count the 

specimens per species. Magnification was performed using a 20x and 40x 

dissecting microscope. Only certain orders were identified to genus and species 

levels, including Ephemeroptera, Trichoptera, Plecoptera, and the Simuliidae 

family of the Diptera order, as several environmental conditions are indicated by 

species from these orders (de Moor, 2002). For species identification of the 

abovementioned orders and Simuliidae, assistance from persons at the Albany 

Museum was required.  
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APPENDIX B: Dendrograms 

 
Figure B.1: Dendrogram for cluster analysis of 12 IHA flow parameters (same parameters as the eigenvectors in Table 4.3) 

 

 
Figure B.2: Dendrogram for cluster analysis of 17 ITA temperature parameters (same parameters as the eigenvectors in Table 4.5). 
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APPENDIX C: Water quality variables for each site per season  
(no data exists for K4 in winter and B3 for summer and autumn)5. 

  
pH Conductivity 

(µS/cm) 
TDS 

(ppm) 
ref temp 

(°C) 
Depth 
(m) 

Secchi 
depth (m) 

Width 
(m) 

Summer        
K1 4.3 64.5 32.6 26.1 0.19 >0.19 2.3 
K2 4.91 275 135 19.5 0.13 >0.13 3.0 
K3 5.2 56.4 27.9 21.6 0.24 >0.24 6.5 
K4 4.63 74.1 37 24 0.37 >0.37 6.0 
K5 5.57 8950 4460 25 >2.1 2.1 35.0 
B1 4.75 131.9 67 18.9 0.45 >0.45 1.5 
B2 6.7 814 408 20.2 0.25 >0.25 5.5 
B4 7.53 2400 1180 24 0.4 1.0 5.5 
B5 (estuary) 6.67 28300 14146 24.1 0.64 1.1 16.5 
B5 (fresh) 7.87 2390 N/A 24.3 > 1.0 1.1 14.5 
Autumn        
K1 6.69 101.7 50.6 16 0.19 >0.19 2.3 
K2 6.82 440 222 18.7 0.13 >0.13 3.0 
K3 6.45 37.4 73.4 19.2 0.24 >0.24 6.5 
K4 6.41 97.1 47.1 18.6 0.33 >0.33 6.0 
K5 6.89 6400 3320 20.4 >2.0 2.0 35.0 
B1 6.33 185 87.9 14.3 0.37 >0.37 1.5 
B2 8.04 1607 811 15.8 0.23 >0.23 5.0 
B4 9.97 2600 1270 22.5 0.25 0.7 5.0 
B5 (estuary) 8.19 44700 22800 23.5 0.64 1.0 16.5 
B5 (fresh) 7.1 3380 1720 19.4 > 1.0 1.0 14.0 
Winter        
K1 5.59 93.5 47.6 12.9 0.2 >0.20 2.3 
K2 6.1 247 124 10.5 0.5 >0.5 12.0 
K3 5.79 146.9 74 12.5 0.35 >0.35 7.0 
K5 5.92 8140 4170 11.7 >1.1 1.1 35.0 
B1 5.99 158.9 78.3 14.1 0.59 >0.59 2.0 
B2 7.41 1470 735 13.3 0.14 >0.14 6.5 
B3 7.65 2120 1060 12.8 0.27 >0.27 4.5 
B4 7.42 3560 1790 13 1.04 0.85 6.0 
B5 (estuary) 7.54 42200 21000 16.7 > 1.0 1.1 16.5 
Spring        
K1 5.74 85.1 42.5 10.7 0.25 >0.25 2.3 
K2 6.53 234 114 16.7 0.16 >0.16 10.0 
K3 6.11 111 56.3 18.6 0.29 >0.29 7.0 
K4 5.59 100.4 50.7 16.6 0.42 >0.42 7.0 
K5 6.19 1467 7230 18 >2.7 2.7 35.0 

                                                
5 The B5 conductivity values used in the PCA (Figure 4.7) were from the estuary site to ensure consistency, 
as measurements were not taken at the freshwater site for winter. 
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B1 3.45 152 75.8 13.6 0.52 >0.52 1.75 
B2 7.52 1332 668 13.8 0.25 >0.25 6.5 
B3 8.42 1378 687 16 0.16 >0.16 4.0 
B4 7.16 2810 1400 15.5 0.45 >0.45 6.0 
B5 (estuary) 6.93 33000 16200 18 0.64 >0.64 16.5 
B5 (fresh) N/A N/A N/A N/A > 1.0 1.1 15.0 
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APPENDIX D: Total macroinvertebrate taxa per season 
Table D.1: June 2009 winter data 

GROUP/ORDER FAMILY TAXON K1 K2 K3 K5 B1 B2 B3 B4 B5 
Amphipoda Paramelitidae sp.1      6     54 
  Paramelitidae sp.2      92     141 
  Sternophysingidae           20 
Mollusca (Basommatophora) Lymnaiedae            
Mollusca (Caenogastropoda)  Littorinidae            
Coleoptera Dytiscidae    2   6     
  Elmidae   97    1  3   
  Gyrinidae    5   4     
  Hydraenidae   3 4        
  Hydrophilinae            
  Ptilodactylidae            
  Scirtidae       1     
Decapoda Atyidae           12 
  Palaemonidae            
  Potamonautidae      3 2 2   3 
Diptera Ceratopogonidae    3 2       
  Chironomidae   46 154 84  17 750 12 7  
  Culicidae       2   15  
  Dixidae            
  Forcipomyiinae            
  Muscidae            
  Simullidae S (Meilloniellum) sp.  5        
    S (M) hargreavesi  5 1970       
    S (P) alcocki          
    S (P) bequaerti 60  150       
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    S (P) harrisoni 90         
    S (P) merops          
    S. (Nevermania) sp.          
    Simulium nigritarse  30 635   350 175   
  Stratiomyidae            
  Tabanidae            
  Tipulidae     4       
Ephemeroptera Beatidae Afroptilum sudafricanum   64  9 280 600   
    Baetis harrisoni 37 9 92   20    

    
Centroptiloides 
bifasciata 

         

    Cloeon sp. 31       340  
    Demoreptus rapensis 23 24        
    Demoulinia crassi  7 2     2  
    Pseudocloen vinosum 15 17 68       
    Pseudopannota sp.   5       
  Caenidae Caenis sp. 9  4  8 5  39  
  Heptageniidae Afronurus sp.   26       
  Leptophlebiidae Adenophlebia sp. 8    18  28   
    Choroterpes nigrescens        12  
    Euthraulus elegans   27       
  Teloganodidae Lestagella penicillata 1         

   

Nadinetella 
sp.(unidentifiable 
species) 

         

Hemiptera Belostomatidae            
  Corixidae       6     
  Gerridae       1     
  Mesoveliidae            
  Naucoridae       2     
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  Notonectidae       1     
  Pleidae          50  
  Veliidae            
Isopoda  Anthuridae            
  Sphaeromatidae      21     79 
Lepidoptera Nymphulinae            
Megaloptera Corydalidae   3 5        
Mollusca (Mytiloida) Mytilidae      204      
Odonata (Anisoptera) Aeshnidae     1  3     
  Corduliidae     1       
  Gomphidae    7 22       
  Libellulidae    1        
Odonata (Zygoptera) Chlorosyphidae            
  Coenagrionidae            
  Lestidae       5 2    
  Platycnemididae        1    
  Protoneuridae            
Oligochaeta        12     47 
Plecoptera Notonemouridae Aphanicercella sp 1 10         
    Aphanicercella sp 2   1       
    Desmonemoura sp.          
  Perlidae Neoperla sp.          
Mollusca (Pulmonata) Ancylidae        28 2 270  
 Physidae           
  Planorbidae            
Trichoptera Ecnomidae Ecnomus thomasseti     1   2  
  Glossosomatidae Agapetus agilis          
  Hydropsychidae Cheumatopsyche afra   104  1  51   
    Cheumatopsyche type 2   15       
    Cheumatopsyche type 7 31  7       
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    Hydropsyche longifura          
    Macrostemum capense   1       
  Hydroptilidae Hydroptila cruciata          
  Leptoceridae Athripsodes sp.          
    Athripsodes bagensis 8         
    Leptocerus sp.          
    Oecetis sp.     1     
  Philopotamidae Chimarra sp. 4         
  Pisuliidae Pisulia sp.          

  Sericostomatidae 
Cheimacheramus 
caudalis 

    3     

Turbellaria Rhabdocoela        7    
Mollusca 
(Veneroida:Sphaeriacea) Sphaeriidae   

         

TOTAL TAXA     17 15 22 6 20 10 7 9 7 

 

Table D.2: September 2009 spring data 

GROUP/ORDER FAMILY TAXON K1 K2 K3 K4 K5 B1 B2 B3 B4 B5 
Amphipoda Paramelitidae sp.1       16     17 
  Paramelitidae sp.2       490     19 
  Sternophysingidae            2 
Mollusca (Basommatophora) Lymnaiedae             
Mollusca (Caenogastropoda)  Littorinidae            9 
Coleoptera Dytiscidae        3     
  Elmidae   49 4 5 2  2  1  1 
  Gyrinidae    16    7     
  Hydraenidae   1 8       1  
  Hydrophilinae           3  
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  Ptilodactylidae             
  Scirtidae   1          
Decapoda Atyidae             
  Palaemonidae             
  Potamonautidae            8 
Diptera Ceratopogonidae   3  1        
  Chironomidae   82 22 340 73 6 79 550 68 48  
  Culicidae        5     
  Dixidae             
  Forcipomyiinae             
  Muscidae     1        
  Simullidae S (Meilloniellum)           
    S (M) hargreavesi   2000 400       
    S (P) alcocki           
    S (P) bequaerti 300  50 800       
    S (P) harrisoni 170          
    S (P) merops    30       
    S. (Nevermania) sp.    170       
    Simulium nigritarse  14 330    330 1300 23  
  Stratiomyidae             
  Tabanidae             
  Tipulidae     148        
Ephemeroptera Baetidae Afroptilum sudafricanum   21   4 144 420 155  
    Baetis harrisoni 45  313 11   16    

    
Centroptiloides 
bifasciata 

          

    Cloeon sp.         150 17 
    Demoreptus rapensis 81 62         
    Demoulinia crassi         2  
    Pseudocloen vinosum 44 6 213 48       
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    Pseudopannota sp.   99 2       
  Caenidae Caenis sp. 3  4   1   38  
  Heptageniidae Afronurus sp.   8 1       
  Leptophlebiidae Adenophlebia sp. 1     31  30 1  
    Choroterpes nigrescens         10  
    Euthraulus elegans  1 2 5       
  Teloganodidae  Lestagella penicillata 2          

   

Nadinetella 
sp.(unidentifiable 
species) 

          

Hemiptera Belostomatidae     1 1       
  Corixidae             
  Gerridae        2    26 
  Mesoveliidae        1     
  Naucoridae        4     
  Notonectidae        1    4 
  Pleidae           1  
  Veliidae            8 
Isopoda  Anthuridae             
  Sphaeromatidae       2     130 
Lepidoptera Nymphulinae             
Megaloptera Corydalidae   3  7        
Mollusca (Mytiloida) Mytilidae       718     2 
Odonata (Anisoptera) Aeshnidae        1    7 
  Corduliidae      1       
  Gomphidae    12 15        
  Libellulidae     1        
Odonata (Zygoptera) Chlorosyphidae             
  Coenagrionidae        7    17 
  Lestidae        2     
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  Platycnemididae        1     
  Protoneuridae             
Oligochaeta         53     7 
Plecoptera Notonemouridae Aphanicercella sp 1 1          
    Aphanicercella sp 2           
    Desmonemoura sp.           
  Perlidae Neoperla sp.           
Mollusca (Pulmonata) Ancylidae         22 8   
 Physidae            
  Planorbidae            7 
Trichoptera Ecnomidae Ecnomus thomasseti         8  
  Glossosomatidae Agapetus agilis           
  Hydropsychidae Cheumatopsyche afra   181     17   
    Cheumatopsyche type 2   1        
    Cheumatopsyche type 7 26 2         
    Hydropsyche longifura   16 2       
    Macrostemum capense           
  Hydroptilidae Hydroptila cruciata    2       
  Leptoceridae Athripsodes sp.   5        
    Athripsodes bagensis    4       
    Leptocerus sp.          6 
    Oecetis sp.    3  2     
  Philopotamidae Chimarra sp. 2  1 11       
  Pisuliidae Pisulia sp.      1     

  Sericostomatidae 
Cheimacheramus 
caudalis 

     2     

Turbellaria Rhabdocoela         60 13 3  
Mollusca 
(Veneroida:Sphaeriacea) Sphaeriidae   

         3 

TOTAL TAXA     17 10 24 18 6 19 6 8 13 18 
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Table D.3: January 2010 summer data. 

GROUP/ORDER FAMILY TAXON K1 K2 K3 K4 K5 B1 B2 B4 B5 
Amphipoda Paramelitidae sp.1       51    15 
  Paramelitidae sp.2       310    108 

  
Sternophysingida
e   

         

Mollusca (Basommatophora) Lymnaeidae    1        
Mollusca (Caenogastropoda)  Littorinidae            
Coleoptera Dytiscidae    1    4   1 
  Elmidae   23  1 9  1    
  Gyrinidae   11 4 4   2    
  Hydraenidae            
  Hydrophilinae           25 
  Ptilodactylidae      1      
  Scirtidae        2    
Decapoda Atyidae            
  Palaemonidae            
  Potamonautidae       1 1 1  2 
Diptera Ceratopogonidae     4 1 1 1  14 32 
  Chironomidae   22 16 82 82 27 102 274 131 67 
  Culicidae    3       10 
  Dixidae            
  Forcipomyiinae            
  Muscidae            
  Simullidae S (Meilloniellum)          
    S (M) hargreavesi   287 115      
    S (P) alcocki    5      
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    S (P) bequaerti          
    S (P) harrisoni 28         
    S (P) merops          
    S. (Nevermania) sp.      32    
    Simulium nigritarse 8      400   
  Stratiomyidae           2 
  Tabanidae            
  Tipulidae     126   1    

Ephemeroptera Baetidae 
Afroptilum 
sudafricanum 

15  10   42 164   

    Baetis harrisoni 25  102 10   11   

    
Centroptiloides 
bifasciata 

  3 1      

    Cloeon sp.  17    2  30 215 
    Demoreptus rapensis          
    Demoulinia crassi  5      7  
    Pseudocloen vinosum 24 11 48 11  11 4   
    Pseudopannota sp.   31 21      
  Caenidae Caenis sp.  9 3   4 1 61  
  Heptageniidae Afronurus sp.   28 12      
  Leptophlebiidae Adenophlebia sp. 13     17    
    Choroterpes nigrescens          
    Euthraulus elegans  7 9 5      
  Teloganodidae Lestagella penicillata          

   

Nadinetella 
sp.(unidentifiable 
species) 

1         

Hemiptera Belostomatidae           1 
  Corixidae           2 
  Gerridae    3    4   2 
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  Mesoveliidae           2 
  Naucoridae    2 3   1    
  Notonectidae    20 4   5   1 
  Pleidae            
  Veliidae     12      7 
Isopoda  Anthuridae           2 
  Sphaeromatidae       11    27 
Lepidoptera Nymphulinae     1       
Megaloptera Corydalidae   2   1      
Mollusca (Mytiloida) Mytilidae       802    12 
Odonata (Anisoptera) Aeshnidae     1   2   8 
  Corduliidae    3 3       
  Gomphidae    1 46       
  Libellulidae      1  1  2 19 
Odonata (Zygoptera) Chlorosyphidae            
  Coenagrionidae     4     1 38 
  Lestidae        1    
  Platycnemididae            
  Protoneuridae        1    
Oligochaeta         50    18 
Plecoptera Notonemouridae Aphanicercella sp 1 1         
    Aphanicercella sp 2          
    Desmonemoura sp.          
  Perlidae Neoperla sp.    1      
Mollusca (Pulmonata) Ancylidae         4 12 7 
 Physidae          1 24 
  Planorbidae            
Trichoptera Ecnomidae Ecnomus thomasseti        1  
  Glossosomatidae Agapetus agilis 4         
  Hydropsychidae Cheumatopsyche afra   175    14   
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    Cheumatopsyche type 2   13 16      
    Cheumatopsyche type 7 6         
    Hydropsyche longifura   5 32      
    Macrostemum capense          
  Hydroptilidae Hydroptila cruciata    14      
  Leptoceridae Athripsodes sp.   2       
    Athripsodes bagensis 11   2      
    Leptocerus sp.         61 
    Oecetis sp. 4   8  1    
  Philopotamidae Chimarra sp.    22      
  Pisuliidae Pisulia sp.      2    

  Sericostomatidae 
Cheimacheramus 
caudalis 

         

Turbellaria Rhabdocoela         51   
Mollusca 
(Veneroida:Sphaeriacea) Sphaeriidae  

         

TOTAL TAXA     16 15 26 21 8 23 10 10 26 
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Table D.4: April 2010 autumn data 

GROUP/ORDER FAMILY TAXON K1 K2 K3 K4 K5 B1 B2 B4 B5 
Amphipoda Paramelitidae sp.1       15    30 
  Paramelitidae sp.2       266    122 
  Sternophysingidae            
Mollusca (Basommatophora) Lymnaeidae    3 1       
  Littorinidae            
Coleoptera Dytiscidae    1 1       
  Elmidae   17   7      
  Gyrinidae   4 3 3 1  3    
  Hydraenidae            
  Hydrophilinae        1  2 46 
  Ptilodactylidae            
  Scirtidae        1    
Decapoda Atyidae           7 
  Palaemonidae      1 2    1 
  Potamonautidae       4 1 2 3 1 
Diptera Ceratopogonidae    5  3    1 2 
  Chironomidae   53 147 69 103 1 101 350 500 49 
  Culicidae    29 5     12 28 
  Dixidae        1    
  Forcipomyiinae        1    
  Muscidae            
  Simullidae S (Meilloniellum)          
    S (M) hargreavesi 23  1200 365      
    S (P) alcocki          
    S (P) bequaerti    185      
    S (P) harrisoni 10         
    S (P) merops          
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    S. (Nevermania) sp.          
    Simulium nigritarse 28      750   
  Stratiomyidae            
  Tabanidae     2       
  Tipulidae     1       

Ephemeroptera Baetidae 
Afroptilum 
sudafricanum 

23  2   4 51   

    Baetis harrisoni 40  144 16   157   

    
Centroptiloides 
bifasciata 

  3       

    Cloeon sp. 8 8 2     240 60 
    Demoreptus rapensis 5         
    Demoulinia crassi 2 2 4   1  1  
    Pseudocloen vinosum 56  54 93  1 2   
    Pseudopannota sp.   62 12      
  Caenidae Caenis sp. 6 2 3   6 4 310  
  Heptageniidae Afronurus sp.   27 2      
  Leptophlebiidae Adenophlebia sp. 9     37    
    Choroterpes nigrescens          
    Euthraulus elegans   2 16      
  Teloganodidae Lestagella penicillata 2         

   

Nadinetella 
sp.(unidentifiable 
species) 

3         

Hemiptera Belostomatidae           1 
  Corixidae   8        1 
  Gerridae   1 6 2   1 4   
  Mesoveliidae            
  Naucoridae    1 3       
  Notonectidae    12 2   1    
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  Pleidae          1  
  Veliidae    5 22  1   6 4 
Isopoda  Anthuridae           4 
  Sphaeromatidae       42    13 
Lepidoptera Nymphulinae    1        
Megaloptera Corydalidae   1  5 1      
Mollusca (Mytiloida) Mytilidae       1000    2 
Odonata (Anisoptera) Aeshnidae    3 3 1  1    
  Corduliidae            
  Gomphidae    6 7       
  Libellulidae   4 12 22   2   18 
Odonata (Zygoptera) Chlorosyphidae      1      
  Coenagrionidae    3 18   4   11 
  Lestidae    2    1    
  Platycnemididae            
  Protoneuridae        2    
Oligochaeta         42    29 
Plecoptera Notonemouridae Aphanicercella sp 1 11     3    
    Aphanicercella sp 2          
    Desmonemoura sp. 6         
  Perlidae Neoperla sp.          
Mollusca (Pulmonata) Ancylidae         3 34 1 
 Physidae           2 
  Planorbidae            
Trichoptera Ecnomidae Ecnomus thomasseti        2  
  Glossosomatidae Agapetus agilis          
  Hydropsychidae Cheumatopsyche afra   228 3  1 102   
    Cheumatopsyche type 2   2 50      
    Cheumatopsyche type 7 3     1    
    Hydropsyche longifura   51 15      
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    Macrostemum capense          
  Hydroptilidae Hydroptila cruciata    6      
  Leptoceridae Athripsodes sp.   3       
    Athripsodes bagensis 2   8      
    Leptocerus sp.         11 
    Oecetis sp.    19      
  Philopotamidae Chimarra sp.   3 27      
  Pisuliidae Pisulia sp.      3    

  Sericostomatidae 
Cheimacheramus 
caudalis 

         

Turbellaria Rhabdocoela     5    7   
Mollusca 
(Veneroida:Sphaeriacea) Sphaeriidae  

         

TOTAL TAXA     24 19 33 22 9 23 11 12 22 
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APPENDIX E: Functional feeding groups for most of the sampled 

macroinvertebrate taxa. 

CLASS/ORDER FAMILY/GENUS/SPECIES FUNCTIONAL FEEDING GROUP 
Ephemeroptera Mostly Collectors-gatherers(scrapers) 
  Some Filter feeders 
  Few Predatory 
Diptera Simullidae Collectors-filterers 

  Chironomidae (most) 
Scrapers (algae and detritus)/ 
collector-gatherers 

  Culicidae Filter feeders 
Trichoptera  Hydropsychidae Predators/Collector 
  Ecnomidae Predators/Collector 
  Pisulidae Shredders/Collector 
  Leptoceridae Shredder/Collector/Grazer/Predator 
Megaloptera Corydalidae Predators 
Hemiptera Gerridae Predators 
  Notonectidae Predators 
  Naucoridae Predators 
  Belostomatidae Predators 
Plecoptera Perlidae Predators 
  Notonemouridae Shredders/Scrapers/grazers 
Odonata Mostly Opportunistic predators (generalists) 
Coleoptera Elmidae Shredders (organic matter) 
  Gyrinidae Predators 
Mollusca Snails Scrapers/grazers (generalists) 
  Bivalves Collectors-filterers 



 119

APPENDIX F: Trend of species abundance across the NMS 
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All species present across all sites and seasons, where site positions are the same as those 

in Figure 4.16. The numbers are keyed to the following taxa: 1=Paramelitidae sp.1; 

2=Paramelitidae sp.2; 3=Sternophysingidae; 4=Lymnaedae; 5=Physidae; 6=Littorinidae; 

7=Dytiscidae ; 8=Elmidae; 9=Gyrinidae; 10=Hydraenidae; 11=Hydrophilinae; 

12=Ptilodactylidae; 13=Scirtidae; 14=Atyidae; 15=Palaemonidae ; 16=Potamonautidae; 

17=Ceratopogonidae; 18=Chironomidae; 19=Culicidae; 20=Dixidae; 21=Forcipomyiinae; 

22=Muscidae ; 23=S (Meilloniellum) sp.; 24=S (M) hargreavesi; 25=S (P) alcocki; 26=S 

(P) bequaerti; 27=S (P) harrisoni; 28=S (P) merops; 29=S. (Nevermania) sp.; 30=Simulium 

nigritarse; 31=Stratiomyidae; 32=Tabanidae; 33=Tipulidae; 34=Afroptilum sudafricanum; 

35=Baetis harrisoni; 36=Centroptiloides bifasciata; 37=Cloeon sp.; 38=Demoreptus 

rapensis; 39=Demoulinia crassi; 40=Pseudocloen vinosum; 41=Pseudopannota sp.; 
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42=Caenis sp.; 43=Adenophlebia sp.; 44=Afronurus sp.; 45=Choroterpes nigrescens; 

46=Euthraulus elegans; 47=Lestagella penicillata; 48=Nadinetella sp.(unidentifiable 

species); 49=Belostomatidae; 50=Corixidae; 51=Gerridae; 52=Mesoveliidae; 

53=Naucoridae; 54=Notonectidae; 55=Pleidae; 56=Veliidae; 57=Anthuridae; 

58=Sphaeromatidae; 59=Nymphulinae; 60=Corydalidae; 61=Mytilidae; 62=Aeshnidae; 

63=Corduliidae; 64=Gomphidae; 65=Libellulidae; 66=Chlorosyphidae; 

67=Coenagrionidae; 68=Lestidae; 69=Platycnemididae; 70=Protoneuridae; 

71=Oligocheata; 72=Aphanicercella sp 1; 73=Aphanicercella sp 2; 74=Desmonemoura sp.; 

75=Neoperla sp.; 76=Ancylidae; 77=Planorbidae; 78=Ecnomus thomasseti; 79=Agapetus 

agilis; 80=Cheumatopsyche afra; 81=Cheumatopsyche type 2; 82=Cheumatopsyche type 7; 

83=Hydropsyche longifura; 84=Macrostemum capense; 85=Hydroptila cruciata; 

86=Athripsodes sp.; 87=Athripsodes bagensis; 88=Leptocerus sp.; 89=Oecetis sp.; 

90=Chimarra sp.; 91=Pisulia sp.; 92=Cheimacheramus caudalis; 93=Rhabdocoela; 

94=Sphaeriidae. 

 


