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ABSTRACT 

Litchi fruit are non-climacteric, and are able to endure relatively low storage temperatures 

compared to other sUbtropical fruits. Unfortunately however, the litchi rind is relatively thin 

and lacks a thick, durable cuticle. Consequently, post-harvest desiccation is a major factor, and 

rind colour changes rapidly from red to brown, unless counter measures are taken immediately 

after harvest. Presently, the South African industry uses sulphur fumigation to prevent 

browning, but sulphur treatment is undesirable in many respects, only partially successful, and 

some overseas markets have lowered the permissible level of sulphur to 10 mg.kg- I in the fruit 

flesh. Alternatives to sulphur fumigation were accordingly researched. 

The author tested the hypothesis that, in order to preserve the desirable red rind colour, it was 

necessary to break down rind cell membrane integrity, so that the vacuole-bound anthocyanin 

pigments can be exposed to zero pH solution, which effects rind colour preservation. 

Thereafter, rind desiccation must be reduced. 

A 2 s steam (95°C) treatment followed by 4 min immersion in zero pH solution resulted in 

fruit which retained excellent red rind colour, with normal pulp characteristics and tasted 

similar to control fruit after 28 days storage at l°C. Ultrastructural studies showed that 2 s 

steam (95°C) treatment resulted in rind cell membrane breakdown, and this was enhanced 

when used in conjunction with 4 min in zero pH solution. In addition, electrolyte leakage 

studies showed that rinds of untreated control fruit had lowest electrolyte leakage, while those 

of fruit subjected to 2 s steam (95°C) had highest electrolyte leakage, making the previously 

compartmentalized and vacuole-bound pigments available for preservation in the desirable red 

colour. Polyphenol oxidase in litchi rinds was strongly inhibited by 2 s steam (95°C), but even 

more so when fruit were subjected to 2 s steam (95°C) followed by 4 min in zero pH solution. 

Energy dispersive x-ray microanalysis studies found that chlorine concentrations were 

relatively high on both the inner and outer surfaces of fruit subjected to 2 s steam (95°C) 

followed by 4 min in zero pH solution. Similarly, sulphur concentrations were high in rinds 

of sulphur-fumigated fruit, but this element was also present at low concentrations in non­

sulphur-fumigated fruit. 
.. 

(i) 



Rind colour of untreated control fruit lightened when stored at 30°C and hue changed from 

red to reddish orange. Rinds of fruit subjected to 2 s steam (95°C) only, lost colour rapidly 

and were a pale yellow hue 24 hr after treatment. The hue of fruit rinds subjected to 2 s steam 

(95°C) followed by 4 min in zero pH solution changed from reddish orange to red within 4 

hr and then darkened up to 24 hr after treatment. Red colour was preserved in fruit held at 

30°C for 72 hr, but lightened after 24 hr. HPLC of anthocyanin pigments found that the 

presumed cyanidin-3-rutinoside, pelargonidin-3-glucoside and pelargonidin-3,5-diglucoside all 

decreased in untreated fruit over 5 days storage at 30°C. Concentrations of presumed cyanidin-

3-rutinoside in fruit subjected to 2 s steam (95°C) followed by 4 min in zero pH solution 

increased immediately after treatment, peaked 24 hr later, but then decreased to about double 

the concentration of fruit treated on the day of harvest after 4 days at 30°C. Furthermore, no 

copigmentation or self-associations of anthocyanins took place in rinds of fruit subjected to 2 

s steam (95°C) followed by 4 min immersion in zero pH solution. 

Semi-commercial trials showed that the steam: acid dip treatment is feasible, and has the 

potential to replace sulphuring as a fungicidal treatment. It also has the advantage of more 

permanently preserving the desirable rind colour, and in a more intense red colour. 

(ii) 
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1 

INTRODUCTION 

The litchi or lychee (Litchi chinensis Sonn.) is an evergreen tree of the Sapindaceae family, 

the latter deriving its name from the presence of saponine in the seeds of some of the non­

edible species. Sapindaceous genera number at least 125 and there are more than 1000 

species, all of which are widespread throughout most of the tropics and warm subtropics. 

Other commonly cultivated but more tropical fruit types in this family are rambutan 

(Nephelium Lappaceum L.) and longan (Dimocarpus Longan Lour.). The litchi is thought to 

have originated between latitudes 23 0 and 2r north in warm subtropical southern China, 

northern Vietnam and Malaysia (Tindall, 1996). Menzel (1992) maintained that there are 

three distinct subspecies of L. chinensis, viz. Litchi chinensis spp. chinensis, which now 

grows wild in China, Vietnam and Cambodia; Litchi chinensis spp. philippinensis, which is 

found only in the Philippines where it is widely distributed but rarely cultivated; and Litchi 

chinensis spp. javensis which is known to be cultivated only in West Java and Indochina. In 

South Africa the most widespread cultivar 'Mauritius' belongs to Litchi chinesis spp. 

chinensis subspecies. 

Chandler (1957) noted that despite being one of the most delicious of fruits and one of the 

least cloying, the litchi has spread rather slowly from its centre of origin. Contributing 

factors have been low yields, alternate bearing and a lack of dependable cultivars. However, 

post-harvest problems also loom large. In the past decade, the potential of this crop has been 

re-evaluated, and considerable research, especially in subtropical Australia, Israel, Taiwan, 

and South Africa, has rekindled interest in commercial plantings particularly for export. In 

South Africa, peak flowering usually occurs in September and depending on the area and 

cultivar, fruit are usually harvested between November and late January (Fivaz et al., 1996). 

Litchi fruit flesh is a true appendage of the seed coat and is enclosed by a rind derived from 

pericarp tissue consisting of exo- (or epi-) , meso- and endocarp tissues (Steyn and Robbertse, 

1992). At the time of harvest, rinds of most cultivars are an attractive light to dark red 

colour due to flavonoid anthocyanin pigments. However, rind colour (in the absence of 

corrective post-harvest treatments) quickly becomes less attractive as desiccatipn sets in. 

Within a few days rinds become dry and brittle, leading to cracking under pressure, leakage 
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of juices and consequent bacterial and fungal outbreaks. Also, rinds tum brown as a result 

of anthocyanin breakdown (Jurd, 1972; Underhill, 1989) and enzymatic browning caused by 

pol yphenol oxidase (Underhill and Critchley, 1995). 

The South African litchi industry currently produces in the region of about 5500 t annually, 

although this figure differs markedly from season to season, and further growth in the South 

African litchi industry is dependent on resolution of horticultural and post-harvest problems. 

Usually, more than half the fruit produced annually is exported mainly to lucrative European 

markets which are strongly influenced by cosmetic "eye-appeal". The remaining fruit are 

either channelled to the fresh market or processed, but the latter usually constitutes only 

about 10% of the total crop (Burelli, 1994). Post-harvest research has only enjoyed attention 

relatively recently and lags behind other domesticated trees. Where aesthetics of fruit are 

concerned, rind colour retention is of primary importance. Since the mid 1980's until now, 

gaseous sulphur treatments have been utilized by the South African industry to act firstly as 

a fungicide, and secondly to prevent browning reactions (Swarts, 1985). 

Sulphuring of litchi fruit however, results in undesirable residues (Kremer-Kohne, 1993; 

Milne and Ahrens, 1993), aftertastes (Lonsdale and Kremer-Kohne, 1991), constitutes a 

potential health problem for asthmatics (Koeing et al., 1983), and is ineffective against some 

fungi, where resistance has appeared (Botha et al., 1988). Consequently, it is not surprising 

that some European countries have lowered the acceptable levels of sulphur from 20 mg.kg·t 

to 10 mg.kg- t (fresh mass) in the fruit flesh. In addition, sulphur-fixed anthocyanins are 

colourless thus rendering treated litchi fruit rinds yellow or pale green. Effects of sulphur on 

anthocyanin colour have been known since as early as the seventeenth century, where Boyle 

(1664) wrote that "Roses held over the Fume of Sulphur, may quickly by it be depriv'd of 

their colour ... " (Wheldale, 1916). If left at room temperature, litchi fruit will at best turn a 

pale pink colour after several days of storage (Swarts, 1985). Zauberman et al. (1990; 1991) 

found that extraction of sulphur-fixed anthocyanins from litchi rinds in acidified methanol 

resulted in a red solution. Reversal of sulphur-induced anthocyanin decolourization using acid 

was first reported by Kastle (1905) and the first detailed account of anthocyanin reactions 

with sodium bisulphite was given by Wheldale (1916). 
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Nevertheless, the re-discovery that sulphur decolourization of anthocyanins could be reversed 

using acids led to substantial Israeli and Australian research on low pH treatments, much of 

which was concurrent with the present investigation. Zauberman et al. (1990; 1991), 

Underhill et al. (1992b, 1994) and Fuchs et al. (1993) all tried to acidify litchi rind 

anthocyanins in situ by dipping whole fruit in dilute acid solutions after sulphur fumigation. 

Where fruit were dipped only in low pH solutions, a red background was achieved but with 

unsightly brown patches. Since fruit are pliable after sulphur fumigation, Kaiser (1994b) 

hypothesized that sulphur treatments were solubilizing cell membranes and tonoplasts 

(vacuole membranes) thus enabling low pH solutions to act on vacuole-bound anthocyanins. 

Furthermore, he hypothesized that the elimination of post-harvest sulphur fumigation by 

using alternatives, which would achieve adequate membrane breakdown, could be followed 

by fixation of anthocyanins in situ using low pH dips. 

The present study was initiated following an in-depth literature review on anthocyanin 

physiology (Kaiser, 1994a), where the author realised that active research worldwide had 

overlooked principles and physiology of sulphur fumigation and was inadvertently 

perpetuating, rather than eliminating sulphur fumigation. Objectives of this study were firstly, 

to review morphological and physiological aspects of litchi rind colour, browning and its 

prevention, and to further develop the author's original hypothesis. Secondly, alternatives to 

sulphur fumigation, in particular boiling water or steam followed by a dip in low pH 

solution, were investigated. Effects of steam and low pH on rind ultrastructure, mineral ion 

distribution, enzyme activity, electrolytic leakage and anthocyanin pigmentation were 

compared to sulphur-fumigated fruit and untreated control fruit. The prime applied objective 

of these anatomical and physiological investigations was to develop post-harvest treatments 

to retain an acceptable rind appearance in the marketplace, thereby eliminating a major 

limiting factor to wider commercialization of the litchi industry. 



CHAPTER 1 

LITERATURE REVIEW 

1.1 FRUIT ANATOMY AND MORPHOLOGY 

4 

Botanically, the litchi (Litchi chinensis Sonn.) fruit has been described as a simple, 

unicarpellary, ovoid to heart-shaped drupe, following a sigmoidal type growth pattern 

(Joubert, 1986; Paull et aI. , 1984; Steyn and Robbertse, 1992). However, drupe by definition 

implies that the endocarp is stony (Smith, 1977) and this is not the case. When mature, the 

fruit consists of a single, central seed; a thick, fleshy, edible pulp (which is invariably called 

an aril in the scientific literature, although the work of Steyn and Robbertse (1992) would 

seem to contradict this interpretation - see below); a leathery, indehiscent 1-3 mm thick, 

bright red to purplish rind which is morphologically derived from the pericarp (Fig. 1). 

When mature, the rind may be smooth or scaly with conical, acute warty protuberances 

(Menzel , 1992) .. 

I--_______ pedicel 

-+-~~------ vascular bundle 

exocarp } . 
~ ___ mesocarp pericarp 

~r--endocarp 

----'m-'I'I-- ari I 

-H-------ttt~ testa 

~~----~~seed 

Figure 1. Longitudinal section of litchi fruit anatomy (x2) 
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The litchi fruit is considered non-climacteric with a declining rate of respiration during fruit 

growth. Some ethylene production occurs during initial stages of fruit growth, remains low 

during the stage of rapid fruit growth and increases slightly at harvest, although this was 

probably a wound response. Ethylene production increases however, during the final stages 

of fruit senescence (Akamine and Goo, 1973). 

Joubert and van Lelyveld (1975) followed the ontogeny of the litchi fruit rind from flowering 

to fruit maturity. They found that at pollination, the ovary wall consisted of epidermal, 

vascular and undifferentiated parenchyma cells. Within a fortnight however, a distinct rind, 

consisting of an epicarp (exocarp), mesocarp and endocarp had differentiated. They 

maintained that initially the epicarp consisted of parenchyma cells and was covered by a 

simple layer of epidermal cells. Some of the parenchyma cells then differentiated and became 

lignified to form two or three layers of stone cells. Meanwhile, mesocarp parenchyma cells 

either expanded rapidly, resulting in large thin-walled cells with relatively large intercellular 

spaces, or differentiated into vascular tissue. The endocarp was distinguishable as two or 

three layers of small closely packed cells. 

This study of the litchi rind was recently extended by Underhill and Critchley (1992; 1993) 

by ultrastructural studies at the electron microscope level. In both these studies they found 

that the differentiated epicarp consists of a continuous, waxy cuticle 1-3 JLm thick, a 

uniseriate epidermis and a single layer of heavily lignified subepidermal macrosclereids. The 

mesocarp consists of some inter-connecting vascular tissues, but mostly of large thin-walled 

parenchyma cells and relatively large intercellular spaces. These parenchyma cells contain 

most of the photosynthetic organelles and also anthocyanin pigments. The endocarp 

comprises only small, thin-walled, un suberized epidermal cells. 

In following the early stages of fruit ontogeny, Underhill and Critchley (1992) maintained 

that development of the embryo and cotyledons of the seed was subsequent to rind (peri carp) 

differentiation. In addition, fruit flesh development was only observed some 62 days after 

anthesis. Robbertse et al. (1993) however, found under warm subtropical conditions (28°C 

day and 15°C night temperatures) that once cotyledons had formed, fruit flesh development 

began some 42 days after fertilization. Fruit flesh developed from a meristematic ring that 
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initiated from the rim of the outer integument and extended to the raphal side of the sessile 

seed. An earlier study by Steyn and Robbertse (1992) provided further conclusive evidence 

that the funiculus plays no role in the development of litchi fruit flesh. They concluded from 

that study that litchi fruit flesh is a true appendage of the seed coat. Clearly, these recent 

anatomical studies suggest that litchi fruit flesh, which has been traditionally referred to as 

an aril, by definition a funicular outgrowth (Smith, 1977), is strictly speaking not arillate. 

Henceforth, in this thesis, to avoid complications the edible pulp will be referred to as fruit 

flesh. After the early stages of fruit growth the flesh, along with the seed, continues to 

expand with the flesh eventually enveloping the seed and inducing a tangential stretching of 

rind (pericarp) cells (Underhill and Critchley, 1992). At maturity, fruit flesh is white and 

translucent and may account for up to 80% of the fruit mass (Menzel, 1992). 

1.2 RIND COLOUR 

1.2.1 Chlorophyll 

Underhill and Critchley (1992) maintained that during the initial stages of fruit growth and 

development, green rinds were photosynthetic due to the presence of chloroplasts in the upper 

mesocarp, particularly in the inter-protuberance zones. Rind chlorophyll content increased 

up to 69 days after anthesis, but subsequently declined rapidly with only trace amounts being 

found in mature fruit. Concurrent with the decrease in chlorophyll content, anthocyanin 

concentrations increased from about 10 mg. 100 g-l rind (fresh mass) to about 60 mg. 100 g-l 

rind (fresh mass). Paull et al. (1984) also showed that chlorophyll content declined after a 

peak at about 30 days after anthesis. A significant increase in anthocyanin concentration was 

however, delayed in that study until about 50 days after anthesis. It is possible that 

differences in sampling position of fruit between the two studies may have been responsible 

for temporal differences in chlorophyll breakdown and anthocyanin biosynthesis, as fruit 

which are not exposed to direct sunlight remain green for longer, and when mature are not 

as red as fruit which are subjected to direct sunlight (Paull et al., 1984). 
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Table 1. Naturally occurring anthocyanidins and their substitution patterns (cf. Fig. 2) 

(adapted from Mazza and Miniati, 1993) 

Anthocyanidin 3 5 6 7 3' 4' 5' 

Common Structures 

Pelargonidin OH OH H OH H OH H 

Cyanidin OH OH H OH OH OH H 

Peonidin OH OH H OH OMe OH H 

Delphinidin OH OH H OH OH OH OH 

Petunidin OH OH H OH OMe OH OH 

Malvidin OH OH H OH OMe OH OMe 

Ilarer Structures 

Apigeninidin H OH H OH H OH H 

Aurantinidin OH OH OH OH H OH H 

Capensinidin OH OMe H OH OMe OH OMe 

Europinidin OH OMe H OH OMe OH OH 

Hirsutidin OH OH H OMe OMe OH OMe 

6-H ydroxycyanidin H OH OH OH OH H -

Luteolinidin H OH H OH OH OH H 

5-Methylcyanidin OH OMe H OH OH H -

Pulchellidin OH OMe H OH OH OH OH 

Rosinidin OH OH H OMe OMe OH H 

Tricetinidin H OH H OH OH OH OH 
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1.2.2 Anthocyanin Physiology 

Anthocyanins (Greek anthos, flower and kyanos, blue) are the most important group of 

water-soluble, vacuole-bound plant pigments, emitting light in the visible spectrum (Strack 

and Wray, 1989). They are a large group of secondary plant metabolites (Mazza and Miniati, 

1993) belonging to the most widespread class of phenolic compounds collectively known as 

flavonoids. They protect against ultra violet light (Schmelzer et al., 1988), act as antibiotics 

in plant defence responses (Lamb et al., 1989), and serve as attractants to pollinators in 

flowers, and seed dispersal agents in fruits (Harborne, 1967). Naturally occurring 

anthocyanins, numbering more than 240 (Hrazdina, 1982; Strack and Wray, 1989), are 

responsible for nearly all bright orange, pink, scarlet, red, mauve, violet and blue colours 

in flowers, fruits, leaves and stems of higher plants (Harborne, 1967). Notable exceptions 

are lipid-soluble lycopenes found in grapefruit (Citrus paradisi) , deep red carotenoids found 

in tomato (Lycopersicon esculentum) fruit (Davies, 1980), and water-soluble betalains found 

in beetroot (Beta vulgaris) roots (Reznik, 1980). 

Figure 2. 

Rl 

R" 
2' 

8 + I' 
B 

R4 7f/ 0 

~ R2 
2 6' A 

6 3 

~ R3 
4 

R4 

. Flavylium cation. Rl and R2 are H, OH or OCH3; R3 is a glycosyl or H; and 

~ is a glycosyl or OH (from Mazza and Miniati, 1993) 

Anthocyanins are all glycosides of polymethoxy and polyhydroxy derivatives of 2-

phenylbenzopyrylium or flavylium salt, consisting of two 6-carbon rings, viz. A-D-ng and B­

ring, connected by a 3-carbon bridge (Fig. 2). Individual anthocyanins differ in the number 
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Figure 3. Putative biosynthetic pathway of anthocyanins (adapted from Grisebach, 1980; 

Lancaster, 1992; Holton and Cornish, 1995) 
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and position of hydroxyl and methoxyl groups, as well as the nature and number of 

glycosides, and aliphatic or aromatic acids attached to the glycosides (Mazza and Miniati, 

1993). Glycosides are most important in stabilizing and solubilizing natural anthocyanins 

(Jurd, 1972). Should the glycoside be cleaved by hydrolysis from the anthocyanin structure, 

the resultant aglycone is known as an anthocyanidin. Several anthocyanidins have been 

identified in nature (Table 1), however pelargonidin, cyanidin, peonidin, delphinidin, 

petunidin and malvidin occur most frequently in plants (Mazza and Miniati, 1993). 

Lee and Wicker (1991a) identified only 3 polymeric anthocyanins in 'Brewster' litchi rind, 

viz. cyanidin-3-rutinoside (- 67 % ), malvidin-3-acetylglucoside (- 14 %) and cyanidin-3-

glucoside (-9%). However, Macheix et al. (1990) indicated that anthocyanin polymers of 

pelargonidin, viz. pelargonidin-3-rhamnoside, pelargonidin-3,5-diglucoside in addition to 

cyanidin-3-galactoside and cyanidin-3-glucoside were observed by Prasad and Jha (1978). 

1.2.2.1 Biosynthesis 

Biochemical and regulatory aspects of anthocyanin biosynthesis in apples and pears were 

recently reviewed by Viljoen and Huysamer (1995), while Lancaster (1992) also reviewed 

regulation of rind colour in apples. Other excellent reviews on genetic and biochemical 

aspects of anthocyanin and flavonoid biosynthesis include those by Hrazdina (1992), Martin 

and Gerats (1993), and Holton and Cornish (1995). Markham (1982) estimated that 2% of 

all carbon photosynthesized by plants was converted into flavonoids and related compounds. 

Flavonoids, of which anthocyanins are a constituent, are products of what Hrazdina (1992) 

coined as the "plant aromatic pathway" (Fig. 3). This pathway consists of three segments, 

viz. the shikimate, phenylpropanoid and flavonoid pathways. 

The two aromatic nngs, VIZ. A and B of the flavylium cation (Fig. 2) are derived 

independently of each other. A-ring polyketide synthesis occurs by head to tail condensation 

of three malonyl-SCoA molecules, which are formed by carboxylation of acetyl-SCoA, 

catalyzed by acetyl-SCoA carboxylase, in the presence of ATP (Ebel and Hahlbrock, 1982; 

Lancaster, 1992; Mazza and Miniati, 1993). In contrast, the B-ring and associa!ed carbon 

atoms of the bridge are formed by shikimate and phenylpropanoid pathways (Gross, 1987; 
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Hrazdina, 1992). The shikimate pathway which takes place in chloroplasts and the cytoplasm, 

produces aromatic amino acids, phenylalanine, tyrosine and tryptophan. For more 

information on this pathway, the reader is referred to a recent review by Hrazdina (1992). 

The active precursor of the B-ring is 4-coumaryl-SCoA and this is formed by the 

phenylpropanoid pathway. Initially, phenylalanine is transformed into trans-cinnamate 

through the elimination of ammonia. The reaction is catalyzed by phenylalanine ammonia­

lyase (PAL). Trans-cinnamate is then transformed by cinnamate-4-hydroxylase to form 4-

coumarate, which in turn is transformed into the active form 4-coumaryl-SCoA by 4-

coumarate-SCoA lyase (Ebel and Hahlbrock, 1982; Gross, 1987; Hrazdina, 1992; Kubasek 

et al., 1992; Lancaster, 1992) (Fig. 3). 

Chalcone synthase catalyzes the condensation of the three malonyl-SCoA molecules and 4-

coumaryl-SCoA to produce a yellow chalcone. The isomerization of chalcone into a 

colourless flavanone (naringenin or eriodictyol), precursor of all anthocyanins, flavones, 

flavonols and isoflavonols, proceeds spontaneously but is accelerated by chalcone flavanone 

isomerase (Dooner et al., 1991; Lancaster, 1992; Martin and Gerats, 1993). After the 

production of phenylalanine in chloroplasts, reactions up to and including the isomerization 

of chalcone into a flavanone are thought to take place in the cytoplasm. Flavanone is then 

thought to be translocated to the tonoplast (Grisebach, 1980; Hrazdina, 1992) where it is 

subsequently hydroxylated in the 3-position by flavanone-3-hydroxylase to form a 

dihydroflavonol (Martin and Gerats, 1993; Mazza and Miniati, 1993) thought to be 

dihydrokaempferol (Lancaster, 1992; Holton and Cornish, 1995) (Fig. 3). 

It is known that petal limbs of petunia flowers are acyanic (Martin and Gerats, 1993) while 

corolla tubes do not normally produce pelargonidin. In addition, snapdragons and maize are 

incapable of producing delphinidin. Consequently, these phenomena implicate different 

pathways for cyanidin, pelargonidin and delphinidin synthesis. Indeed, specific enzymes have 

been identified which catalyze these different reactions. Dihydrokaempferol may either be 

reduced by dihydroflavonol4-reductase to form leucopelargonidin, or hydroxylated by either 

flavonoid 3'-hydroxylase to produce dihydroquercetin, or by flavonoid 3' ,5 '-hydroxylase to 

form dihydromyricetin. Flavonoid 3' ,5 '-hydroxylase may however, also convert 

dihydroquercetin to dihydromyricetin. Dihydroquercetin and dihydromyricetin are then 
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reduced by dihydroflavonol 4-reductase to form leucocyanidin and leucodelphinidin 

respectively (Holton and Cornish, 1995). How leucoanthocyanidins are converted to form 

anthocyanidins, viz. pelargonidin, cyanidin and delphinidin is not clear (Martin and Gerats, 

1993). Heller and Forkman (1988) and Martin and Gerats (1993) proposed two steps 

involving firstly a dioxygenase and secondly a dehydratase. 

Anthocyanidins are then transported across the tonoplast into the vacuole (Grisebach, 1980) 

where they are glycosylated at the 3 position by UDP-glucose flavonol 3-0-glucosyl 

transferase to form anthocyanins, viz. pelargonidin-3-glucoside, cyanidin-3-glucoside and 

delphinidin-3-glucoside (Martin and Gerats, 1993; Holton and Cornish, 1995) (Fig. 3). 

Subsequently, anthocyanidin-3-glucosides may be modified by hydroxylation, methylation, 

glycosylation and acylation to yield other anthocyanins (Lancaster, 1992; Martin and Gerats, 

1993; Holton and Cornish, 1995). A free hydroxyl group is essential at position 7, 5 or 4' 

where blue colours are concerned (Brouillard, 1982), whereas the presence of methyl groups 

leads to a decrease in blue colour (Mazza and Brouillard, 1990). Common classes of 

glycosides are monosides, biosides, triosides and 3,5-diglucosides, and the most common 

sugar moeities are glucose, galactose, rhamnose, arabinose and xylose. Most acylated groups 

are based either on 3,5-diglucosides but some have also been identified on 3-glucosides 

(Timberlake and Bridle, 1975; Strack and Wray, 1989). Acyl groups which occur on the 

sides of the flavylium cation may be either aromatic (phenolic) or aliphatic acids. Aromatic 

acids associated with anthocyanins include hydroxycinnamic, p-coumaric, caffeic, ferulic and 

hydroxybenzoic acids (Strack and Wray, 1989). Aliphatic acids found as acyl moeities of 

anthocyanins include acetic, oxalic, malonic, succinic and malic acids (Harborne and Grayer, 

1988). 

1.2.2.2 Regulation 

Investigations on regulation of anthocyanin biosynthesis in litchi fruit are lacking and most 

studies have centred on flowers, particularly Petunia and Antirrhinum, and pome fruit colour. 

Lancaster (1992) maintained that regulation by endogenous and environmental factors differs 

between flowers and fruit. Consequently, only those factors affecting regulation of 

anthocyanin biosynthesis in fruit will be covered in this review. Environmental factors 
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include light and temperature, while endogenous factors are related to nutritional factors and 

phytohormones (Gross, 1987). Rootstocks and cultural practices such as pruning, thinning, 

and bagging also impact on anthocyanin biosynthesis, but their influence is almost definitely 

through affecting one or other of the environmental and/or endogenous factors (Saure, 1990). 

Recent reviews on the topic to which the reader is referred include those by Saure (1990), 

Lancaster (1992) and Viljoen and Huysamer (1995). 

1.2.2.2.1 Light 

Anthocyanin biosynthesis in rinds of apple fruit is fully dependent on light (Saure, 1990; 

Lancaster, 1992) where expression of photomorphogenic effects is the consequence of a 

sequence of events, initiated upon irradiation with light by photoreceptors, and completed 

once the response is expressed. However, there is some controversy surrounding the exact 

photoreceptors. Different studies have identified three distinct photoreceptors which may act 

singly or in combination :- (1) phytochrome (Fig. 4), which in photoresponses exists in two 

forms, viz. inactive phytochrome 660 and active phytochrome 730 (Mancinelli, 1985). 

Figure 4. 

red light 

Phytochrome 660 

""" 
Phytochrome 730 

far red light 

Inactive phytochrome 660 and active phytochrome 730 induced by far red 

light and red light respectively (adapted from Mancinelli, 1985) 

Beggs et al. (1987) showed that anthocyanin was strongly induced by continuous far-red light 

and by both red light and red light pulses; (2) cryptochrome, which is activated by a 

combination of blue light (400-480 nm) and ultraviolet A light (320-400 nm) (Beggs et ciI., 
1981), and (3) ultraviolet Blight (290-320 nm) (Arakawa et al., 1985; Heller and Forkman, 

1988). Induction of anthocyanin biosynthesis involves two known responses. Firstly, small 

amounts of anthocyanin are formed in response to short light exposures. This response is 

phytochrome-mediated displaying red light/far red light reversibility and -reciprocity 
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(Siegelman and Hendriks, 1957). Secondly, there is the high irradiance response (HIR) where 

large amounts of anthocyanin are formed in response to prolonged irradiation of near visible 

and visible light (290-750 nm) at high fluence rates, where reversibility or reciprocity are not 

followed (Mancinelli, 1983; Schmidt, 1988). 

Two radiation dependent phases can be distinguished for high irradiance responses in apple 

rinds. Firstly, there is an induction phase of approximately 20 hr where no anthocyanin 

production takes place and secondly, subsequent anthocyanin formation occurs at a rate 

directly proportional to time of constant irradiation (Siegelman and Hendricks, 1958a; 

Hahlbrock and Grisebach, 1979). Levels of irradiation are also critical and Proctor and 

Creasy (1971) found that no anthocyanins formed when energy levels were less than 0.5 

mW.cm-2 for 48 hr. They suggested a minimum energy requirement of 100 J.cm-2 for 

initiation of anthocyanin biosynthesis. It should however, be noted that spectral sensitivity 

of anthocyanin production is different in different biological systems and can be markedly 

affected by fluence rates, duration and mode of application, i.e. continuous versus 

intermittent light, and physiological status of the biological system (Mancinelli, 1983; Saure, 

1990). Consequently, differences in light regulation of anthocyanins between apple and litchi 

rinds are to be expected. 

1.2.2.2.2 Temperature 

Anthocyanin biosynthesis in apples is favoured by low temperatures (Harborne, 1980b; 

Gross, 1987; Saure, 1990; Shichijo et al., 1993). At average daily temperatures of greater 

than 21°C very little anthocyanin was synthesized (Uota, 1952), and red colouring was 

greater in fruit held at average night temperatures of 11°C compared to 22°C (Blankenship, 

1987). Intense colouring of young apple fruitlets was thought to be associated with cool 

winter nights, and loss of colour during summer with increasing temperatures. Indeed, a 

combination of low day (1rC) and night (2°C) temperatures resulted in highest anthocyanin 

accumulation both on and off the tree (Gross, 1987; Macheix et al., 1990; Mazza and 

Miniati, 1993). Fruit maturity and cultivar also playa major role in determining response 

temperatures. Independent of picking date, 'Jonathan' apples needed night temperatures of 

lOoC and high day temperatures for maximum coloration. Conversely, early-pickect 'Ontario' 
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apples needed night temperatures of 4°C while those picked later needed 8° to lOoC for 

maximum coloration (Saure, 1990). In contrast, litchi fruit mature and colour up during mid­

summer, under high temperature conditions. Consequently, it is unlikely that low 

temperatures are implicated in litchi pericarp anthocyanin accumulation, although no evidence 

was found to this effect and further studies are warranted. 

Several effects of temperature have been suggested. Siegelman and Hendricks (1958b) 

maintained that temperatures affected both the induction period and the subsequent rate of 

anthocyanin formation. Tan (1989) investigated PAL activity in relation to temperature and 

found more activity when temperatures were low. In support of this, Faragher (1983) 

maintained that high temperatures inactivated PAL as opposed to low temperatures 

stimulating enzyme activity. Lancaster (1992) suggested that low temperatures reduced 

respiration thus reducing photosynthate decline in apple rinds, resulting in increased substrate 

for anthocyanin biosynthesis. 

1.2.2.2.3 Nutritional effects 

Photosynthates, initial substrates for anthocyanin biosynthesis, have been shown to trigger 

anthocyanin accumulation (pirrie and Mullins, 1976). In grape rinds, a close correlation 

between sucrose and anthocyanin concentrations was found. Here, an increase in anthocyanin 

concentrations followed an initial increase in sugar content (pirrie and Mullins, 1977). In 

litchi rinds, Prasad and Jha (1978) detected high levels of rhamnose during ripening but none 

once fruit were fully coloured. From these results, Gross (1987) suggested that rhamnose was 

used during biosynthesis of anthocyanin glycosides. 

Mineral nutrients nitrogen (N) and potassium (K) have a direct effect on anthocyanin 

biosynthesis (Gross, 1987; Saure, 1990). Excess N leads to poor apple fruit colour at 

maturity both directly and indirectly. Firstly, excess N leads to increased vegetative vigour, 

denser foliage and thus shading which results in less anthocyanin formation (Magness et al., 

1940). Secondly, in vitro studies have shown that discs of apple rind fed with urea 

synthesized far less anthocyanin than untreated control discs (Faust, 1965). Furthermore, 

high N doses diverted photosynthates from carbohydrate accumulation to amin"o acid and 
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protein synthesis, thus limiting anthocyanin substrates. After reviewing the literature, Saure 

(1990) concluded that K effects on anthocyanin biosynthesis were negligible, but that a high 

K supply supplemented the positive effect of low N on anthocyanin biosynthesis. He also 

maintained that effects of other nutrients on anthocyanin biosynthesis were inconsistent as no 

clear correlations had been established. 

1.2.2.2.4 Phytohormones 

A pre-harvest ethylene (ethephon) spray has been shown to increase rate of anthocyanin 

biosynthesis in apples (Chalmers and Faragher, 1977) and grapes, although in the latter the 

response varied with time of application and cultivar (Weaver and Pool, 1971). Other fruits 

which responded to ethephon treatments include black currants, cherries, raspberries and 

olives but again responses varied with date of treatment, environmental conditions and 

cultivar (Gross, 1987). Ethylene was shown to stimulate activity of enzymes involved in 

anthocyanin biosynthesis, but this was only true when PAL was light-induced (Gross, 1987). 

If ethylene is applied to climacteric fruit close to maturity it may accelerate ripening 

(Lancaster, 1992). However, litchi fruit are non-climacteric and accelerated ripening is thus 

not a factor. Indeed, Sadhu and Chattopadhyay (1989) showed that a 2 500 mg.t i post­

harvest dip of ethephon for 5 min on litchi fruit resulted in uniformly red fruit but with some 

loss of eating quality. Consequently, pre-harvest ethephon sprays may well improve fruit 

colour of litchi fruit and further investigations are warranted. 

Other plant growth regulators shown to increase anthocyanin concentrations include 

gibberellins in sweet cherries (Drake et al . , 1978), cytokinins in olives (Shulman and Lavee, 

1973), and daminozide (Schumacher et al. , 1986) and paclobutrazol in apples. Saure (1990) 

however, maintained that effects of daminozide and paclobutrazol on anthocyanin 

biosynthesis are inconsistent, and were probably related to increased light interception as a 

result of decreased vegetative vigour. Likewise, abscisic acid has been shown to limit 

anthocyanin biosynthesis but again the effect was not consistent (Ebel and Hahlbrock, 1982). 
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1.2.2.3 Structural Changes 

The chemical structure of anthocyanins has been shown to change in vitro with varying pH 

(Fig. 5). In neutral or acidic solution, four anthocyanin structures exist in equilibrium, viz. 

flavylium cation, quinoidal bases, carbinol bases and chalcone. At pH 1.0 anthocyanins are 

in the red flavylium cation form. At pH 2.0 to 4.0 the flavylium cation loses protons rapidly 

and yields blue quinoidal bases (Strack and 'Wray, 1989; Mazza and Miniati, 1993) which are 

unstable (Jurd, 1963). If pH increases to about 5.0 then more protons are lost from the 

flavylium cation. Subsequently, hydration of the flavylium cation will result in a colourless 

carbinol or pseudobase. With a subsequent increase in pH up to 6.0 the colourless carbinol 

will in tum equilibrate to form an open chalcone, which is also colourless (Strack and Wray , 

1989; Mazza and Miniati, 1993). Chromenols are fairly stable at room temperature, but 

degenerate slowly with time to yield brown, phenolic acids (Strack and Wray, 1989). In 

addition, anthocyanin chromenols instantly regenerate the flavylium cation upon acidification 

(Jurd, 1963). 
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Figure 5. Anthocyanin (pelargonidin 3-glucoside) structural transformations :in aqueous 

solution between pH 1.0 and pH 6.0 (adapted from Strack and Wray, 1989) 
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Macheix et al. (1990) however, showed that in an aqueous solution, glycosides of 

anthocyanins will be hydrolyzed rapidly to yield anthocyanidins and free sugar moeities. 

Electron deficient anthocyanidins are highly reactive, and rapidly undergo ring fission to 

yield an unstable ex-diketone which is further decomposed to yield phenolic acids (Fig. 6) 

(Jurd, 1972). During litchi rind post-harvest senescence, membrane integrity is lost as a 

result of micro-cracking (Underhill and Critchley, 1993), resulting in mixing of vacuolar and 

cytoplasmic sap. The author suggests that this subsequent increase in pH in a free-standing 

aqueous solution results in hydrolysis of anthocyanins to yield anthocyanidins and free sugar 

moieties. Anthocyanidin molecules will then be broken down rapidly, which in turn explains 

visible browning observed during post-harvest storage of untreated litchi fruit. Anthocyanidin 

flavylium nuclei have been shown to break down on contact with air, and in the presence of 

ascorbic acid, sugars and amino acids (Pratt et al., 1954; Daravingas and Cain, 1968; Starr 

and Francis, 1968). The rate of anthocyanidin destruction is pH and temperature dependent, 

being faster at high pH and high temperatures (Markakis et al . , 1957; Tinsley and Bockian, 

1960). 

Figure 6. 
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Decomposition of ex-diketone (left) to yield benzoic acids (right) (from Jurd, 

1972) 

Studies of enzymatic reactions involving polyphenol oxidase and peroxidase enzymes in the 

presence of oxygen, have also shown that anthocyanidins may be irreversibly broken down 

into phenolic acids or melanin by-products (pifferi and Cultrera, 1974; Joubert and van 
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Lelyveld, 1975; Huang et al., 1990). Polyphenol oxidase and peroxidase activity have 

however, been shown to be optimal at a pH of between 5.0 and 7.0, and at low pH, 

polyphenol oxidase activity is reduced (Underhill et al., 1992a; b). Clearly, it is the author's 

opinion that if the cytosol of senescent litchi rind cells is maintained at or below pH 1.0 

anthocyanin and anthocyanidin molecules will remain in stable flavylium cationic forms, and 

degradation by enzymes such as polyphenol oxidase and peroxidase will be limited. This 

hyphothesis, inter alia, was tested in the research reported in this thesis. 

1.2.2.4 Stabilization 

Apart from pH effects, temperature and ionic strength of the medium, and structure and 

concentration of anthocyanin and anthocyanidin pigments, there are four possible stabilization 

mechanisms, which lead to tertiary structures of great intensity and stability i.e. are not 

easily decomposed or modified chemically. These are self-associations, intermolecular co­

pigmentation, intramolecular co-pigmentation and, metal-complexing or chelation (Strack and 

Wray, 1989; Mazza and Brouillard, 1990; Mazza and Miniati, 1993; Viljoen and Huysamer, 

1995). Interestingly however, Lancaster et al. (1994) found that an increase in rind darkness 

of apple fruit could be accounted for by increased anthocyanin concentration in more 

abundant, larger vacuoles, and not from co-pigmentation effects. 

1.2.2.4.1 Self-associations 

Self-association occurs when colour intensity of anthocyanins increases more than linearly 

with a linear increase in pigment concentration. Asen et al. (1972) showed that at pH 3.16 

absorbance of cyanidin 3,5-diglucoside increased by more than 300 times when 

concentrations increased from 10""' to 10-2 M. Brouillard (1988) suggested that anthocyanin 

solubility may be related to self-association but that a relationship between solubility, pH and 

self-association had not yet been investigated. At pH 7.0 using circular dichroism and IH_ 

nuclear magnetic resonance techniques vertical stacking of chiral anthocyanin quinoidal bases 

was shown to occur due to hydrophobic interactions between aromatic nuclei (Goto and 

Kondo, 1991). However, at pH 4.0 or less the exact nature of the self-associati~n complex 

formed remains unknown (Mazza and Miniati, 1993). 
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1.2.2.4.2 Intennolecular co-pigmentation 

Intermolecular complexing may take place between anthocyanidins or anthocyanins and other 

non-covalently bound substances (Strack and Wray, 1989). Molecules which may act as co­

pigments include amongst others, flavonoids , polyphenols, alkaloids, amino acids, organic 

acids, anthocyanins and their precursors (lurd, 1967; 1969; Asen et al., 1972; Singleton, 

1972; Scheffeldt and Hrazdina, 1978; Osawa, 1982; Mazza and Brouillard, 1990; Goto and 

Kondo, 1991; Davies and Mazza, 1993). Anthocyanins which contain an aromatic acyl group 

form much more stable co-pigment complexes with flavones (Asen et al., 1977b; Hoshino 

et al., 1980). Chen and Hrazdina (1981) suggested that hydrogen bonding between hydroxyl 

and carbonyl groups on the aromatic nuclei and sugar moeities was responsible for pigment­

co-pigment associations. However, this can be ruled out as formation of an end to end 

complex does not prevent hydrolysis of the pyrylium ring (Brouillard, 1982). Recently, Goto 

and Kondo (1991), using circular dichroism and IH-nuclear magnetic resonance, showed that 

intermolecular co-pigmentation in aqueous solution is the result of vertical, hydrophobic 

stacking of aromatic nuclei in flavonoids and aromatic acids. Furthermore, stacking may be 

assisted by hydrogen bonding in hydrophillic sugar moeities superimposed on the stacks. 

Intermolecular complexing results in firstly, a hyperchromic effect where colour intensity 

increases and secondly, a bathochromic shift where the wavelength of maximum absorbance 

shifts towards higher wavelengths and thus results in purple and blue colours (Asen et al., 

1972; 1977a; Liao et al., 1992). Since hydration affects only flavylium cations, and co­

pigmentation only results in increased absorbance in the visible range, Brouillard (1988) 

maintained that the co-pigment molecule partly prevents hydration of flavylium cations. 

Consequently, formation of the co-pigment complex competes with formation of colourless 

pseudobases. Furthermore, for pure anthocyanins obtained from Carl Roth (Karlsrubhe), 

intensity of intermolecular complexing depends on type of anthocyanin, degree of 

methoxylation and glycosylation, co-pigment concentration, and temperature of the medium 

(Asen et al., 1972; Osawa, 1982; Davies and Mazza, 1993). In addition, Chen and Hrazdina 

(1981) maintained that pH 3.5 was necessary for maximum co-pigment effect but that this 

varied slightly depending on the pigment/co-pigment system. 
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1.2.2.4.3 Intramolecular co-pigmentation 

Several anthocyanins with planar acyl residues have been identified (Brouillard, 1988; 

Dangles et al., 1993; Figueiredo et al., 1996). These anthocyanins are stable in mildly acidic 

aqueous solution, whereas well known acylated mono- and diglucosylated anthocyanins are 

colourless under similar conditions (Figueiredo et al., 1996). Brouillard (1982) suggested for 

Zebrina pendula that two acyl moeities stacked above and below the pyrylium ring of the 

flavylium cation were preventing hydration. Similarly, Dangles et al. (1993) suggested that 

anthocyanins extracted from Pharbitis nil had undergone intramolecular co-pigmentation with 

caffeyl and sophorosyl and that the glycosyl unit was acting as a spacer. This sandwich-type 

stacking of acylated anthocyanins confers stability even when pH changes (Brouillard, 1982), 

but stability increases with increasing organic acid content and aglycone substitution (Mazza 

and Miniati, 1993). In support of intramolecular co-pigmentation, Figueiredo et al. (1996) 

maintained that nuclear magnetic resonance and mass spectroscopy data have clearly 

demonstrated the existence of linkage between folded aromatic acyl and chromophore 

protons. 

1.2.2.4.4 Metal complexing 

Anthocyanin anhydrobases, which are normally colourless at pH 4 to 6, have been shown, 

at these pH values to form remarkably stable coloured complexes, which had metal ions such 

as tin (Chandler and Clegg, 1970; Sistrunk and Cash, 1970), aluminium (Jurd and Asen, 

1966; Asen et al., 1969) and iron (Asen et al., 1969; Chandler and Clegg, 1970) chelated 

with the B-ring. Brouillard (1988) maintained however, that only iron and aluminium are 

found in appreciable amounts in plants and that more abundant calcium, magnesium (Mg) 

and K do not form chelates with anthocyanins. Furthermore, he speculated that it was 

doubtful that metal complexing alone could account for colour in situ. In support of this, 

Goto and Kondo (1991) maintained that metal ions could be excluded from the 

metalloanthocyanin structure without colour loss, and that metal ions were simply co­

ordinating copolymerization of several anthocyanin molecules. Mazza and Miniati (1993) 

maintained however, that quinoidal forms and flavylium cations were strongly stabilized and 

did not form colourless anhydrobases when dissolved in concentrated solutions of sodium 
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chloride and magnesium chloride. They suggested that colour stabilization in sodium chloride 

solution may be due to promotion of self-association of anthocyanins, while stabilization by 

magnesium chloride may have been due a reduction in . concentration of free water by 

hydration of Mg ions. 

1.3 RIND BROWNING 

Once fruits are mature, litchi rinds will turn brown either in the field or after harvest, as a 

result of senescence or ageing (Menzel, 1984; Bagshaw et al., 1991; Underhill et al., 1992a; 

Underhill, 1994; Underhill et al., 1994). Although this natural senescence or browning of 

litchi rind tissues does not affect fruit flesh, it renders the fruit unsightly. This has serious 

economic implications as the litchi is a little-known fruit in export markets and an 

unblemished, well coloured fruit is needed to attract new consumers. Browning may either 

be a pre-harvest (Joubert and van Lelyveld, 1975; Joubert, 1986) or a post-harvest 

phenomenon (Nip, 1988; Zauberman et al., 1991; Underhill, 1992; Underhill et al., 1992b; 

Underhill and Simons, 1993). Several other factors which have been shown to cause pre­

harvest rind browning include sunburn, wind scarring, insect attack, spray burn, high air 

temperatures, low humidity and low soil moisture (Menzel, 1984). 

1.3.1 Pre-harvest 

Pre-harvest browning of rinds was observed by Joubert and van Lelyveld (1975) 

approximately 4 weeks before fruit maturity and harvesting. Initially, rind mesocarp cells 

became necrotic but later the epi- and endocarp cells also degenerated. Plasmolysis and 

eventual collapse of the radial cell walls was observed while polyphenol oxidase activity, 

peroxidase activity and enzymatic oxidation of ascorbic acid were all higher in fruit with 

necrotic tissue than in healthy fruit. They suggested that pre-harvest browning may be the 

result of firstly, increased pressure on the rind as the result of continued fruit flesh growth; 

secondly, excessive temperature fluctuations during fruit ripening; and thirdly, excessive 

accumulation of moisture in the fruit flesh as a result of heavy rains during the final stages 

of fruit growth, thus causing tension swelling of fruit flesh and subsequent tension and 

damage to the rind cells. Menzel (1984) also maintained that inadequate soil moisture during 

initial stages of fruit growth result in rinds becoming hard and inelastic. Consequently, the 
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rind will crack when fruit flesh expands rapidly following irrigation. Later, Joubert (1986) 

implicated high temperatures and low relative humidity as causal factors most likely to induce 

pre-harvest browning, and suggested a minimum relative humidity:temperature ratio of 2: 1 

to prevent necrosis of the rind. A common thread in this type of browning appears to be 

inadequate cell division, due to high evaporative demand, to accommodate the subsequent 

"ballooning out" of flesh growth. 

1.3.2 Post-harvest 

Unless treated promptly, once fruit have been detached from the tree, post-harvest browning 

sets in. Underhill and Critchley (1995) examined anatomical litchi rind browning and found 

that it occurred first on the protuberance apices. Initially, surface browning was masked by 

anthocyanin pigmentation and could only be detected once anthocyanins were decolorized 

using sulphites. Subsequently, browning extended uniformly over the entire rind surface after 

being initially restricted to the upper epidermis. With further desiccation, browning extended 

into columns of collenchyma cells found between the epidermal sclerenchyma tissue as well 

as several layers of underlying mesocarp parenchyma tissue. Browning may be induced by 

several factors ranging from pigment breakdown through physical damage to the rind, to 

stress induced by harvesting and handling. Bagshaw et al. (1991) cited moisture loss and 

temperature as the two most common causes of post-harvest browning. 

1.3.2.1 Moisture loss 

Once harvested, litchi fruit lose moisture rapidly with most of the initial loss from the rind 

(Kuhn, 1962). Fruit flesh desiccation is somewhat delayed (Bagshaw, 1991), although it was 

later shown that micro-cracking occurs in the rind at harvest (Underhill and Critchley, 1993). 

Joubert (1986) maintained that up until that time the relatively thick epicarp and cuticle 

inhibited moisture loss. Underhill and Critchley (1993) subsequently showed that after fruit 

were harvested several cracks from 20 to 100 JLm wide appeared rapidly on the surface of 

the rind. The micro-cracks extended through the sclerenchyma into the mesocarp parenchyma 

tissue, and proved to be primarily associated with dehydration and desiccation Qf the rind, 

but also served as sites of entry for fungal hyphae. 
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In a detailed study of mature red 'Kwai May Pink' fruit stored at 25°C and 60% relative 

humidity (RH) for 6 days, Underhill and Simons (1993) found immediately after harvest that 

rind micro-cracking first occurred radial to the rind protuberance apices. Subsequent inter­

protuberance cracking was later observed. Initially, micro-cracks were up to 100 J..'m wide 

but increased with progressive dehydration of the rind. Eventually the micro-cracks formed 

a semi-continuous network which extended through the rind into the mesocarp parenchyma. 

Up to 12 hr after harvest, micro-cracking had not extended to the endocarp. Only after the 

entire rind had become desiccated (ca 48 hr) did the flesh and seed begin to desiccate. It was 

thus concluded that this selective dehydration resulted in limited movement of water between 

fruit flesh and the rind. 

In identifying the causes of micro-cracking, Underhill and Simons (1993) found that micro­

cracks formed as a result of desiccation rather than being the initiating factor. Although 

cuticle integrity was not maintained as a result of micro-cracking, cuticle thickness was 

unchanged during storage. Deterioration of the cuticle in the rind protuberances was observed 

but it was thought that this might be the result of mechanical abrasion associated with 

harvesting. However, small, squamous collenchyma cells which at harvest appeared as fine, 

white radial markings on the rinds were found disrupting sclerenchyma continuity and 

separated easily with initial rind dehydration resulting in micro-cracks. Underhill and Simons 

(1993) thus maintained that micro-cracking in the litchi rind is inevitable and is the major 

cause of moisture loss from the litchi rind. Bagshaw et al. (1991) maintained that post­

harvest litchi rind browning began after the rind had lost about 20% of its moisture. In 

addition, the rate of browning was directly proportional to the amount of moisture lost, and 

browning was complete when the rind had lost between 60 an 70% of its moisture. Obviously 

ambient conditions will determine the rate and extent to which moisture is lost and thus the 

rate and extent of rind browning. 

1.3.2.2 Temperature stress 

Bagshaw et al. (1991) maintained that browning induced by temperature stress could be 

distinguished from that caused by moisture loss, as the former resulted in darker fruit with 

a more watery appearance. They also maintained that temperature stress induced by either 
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chilling or heat injury is least responsible for post-harvest browning. Where chilling injury 

is involved, temperatures ofless than 5°C are known to cause necrosis and browning of rind 

tissues. Consequently, the Australian recommendation for litchi fruit storage is 5 to rc for 

up to 4 weeks. Where heat injury is concerned, Bagshaw et al. (1991) maintained that if a 

temperature of 50°C is exceeded or is maintained for more than 2 min (safe treatment time 

for hot benomyl dips) then fruit browning will occur. 

Underhill and Critchley (1993) showed that immersion of fruit in hot water for 10 min at 

60°C resulted in brown pigmentation throughout the rind. However, under ambient 

conditions, tissue browning was localized with brown pigmentation restricted to the exocarp. 

It was found that further desiccation of fruit at ambient temperatures did not affect brown 

pigmentation distribution. 

1.3.2.3 Physiological changes 

Underhill (1989) found that the loss of moisture from the litchi rind of fruit held under 

ambient conditions resulted in cell plasmolysis and eventually mesocarp cell death. Initially, 

desiccation led to an increase in pH of the cytosol as well as changes in membrane integrity 

and the subsequent release of polyphenol oxidases, peroxidase and other enzymes in their 

active forms. Bagshaw et al. (1991) noted that temperature stress also leads to increased 

enzyme activity. 

1.3.2.3.1 Polyphenol oxidases 

The relationship between physiological browning of fruit tissues and polyphenol oxidases was 

shown as early as 1951 by Joslyn and Ponting. A multitude of articles have since been 

publish~ on the subject, with those by Mathew and Parpia (1971) and Mayer and Harel 

(1981) being two of the most comprehensive reviews to date. The discolouration that follows 

mechanical injury is rapid and intense and known as adventitious browning, while that which 

occurs during the normal life cycle of a plant or fruit is slow and known as functional 

browning. In both cases however, the browning reaction is the result of oxidation 9fphenolic 

compounds into onho-quinones. The enzymes responsible for this oxidation are a large group 
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of enzymes known as the polyphenol oxidases, which may be divided into two main groups, 

viz. the laccases and the catechol oxidases. These two enzyme groups catalyze different 

reactions (Fig. 7), but catechol oxidases have been identified most frequently in fruit products 

(Mayer and Harel, 1981). 

Phenolic compounds are known to occur throughout the plant kingdom. Those found in food 

products are mainly of the flavonoid type (Mathew and Parpia, 1971) of which 

anthocyanidins, the major rind pigment in mature litchi fruit, are a constituent. Pifferi and 

Cultrera (1974) working on sweet cherries, and Huang et al. (1990) on litchis, showed that 

polyphenol oxidase is the main enzyme involved in anthocyanidin breakdown during storage. 

Studies on subcellular localization of polyphenol oxidase in healthy cells of plant tissue have 

shown conclusively that polyphenol oxidase is a plastid enzyme (Vaughn and Duke, 1981; 

1988; Bar-Nun and Mayer, 1983). Underhill and Critchley (1995) also provided 

circumstantial evidence to support this theory, claiming that polyphenol oxidase localization 

reflects chloroplast distribution. During the initial stages of fruit growth, polyphenol oxidase 

activity was found to be highest in the epicarp and upper mesocarp, the regions of greatest 

chloroplast density. Furthermore, polyphenol oxidase activity decreased with ontogeny and 

this was also accompanied by a decrease in chlorophyll content. 

Flurkey and Jen (1978) identified polyphenol oxidase in the cytoplasm of degenerating or 

senescent tissues of ripening fruit. This is however, not a contradiction since breakdown of 

plastid membranes is associated with fruit ripening. Consequently, mixing of the cytoplasm 

and plastid contents would be expected. Indeed, polyphenol oxidase is apparently not 

activated until it crosses the plastid envelope (Vaughn and Duke, 1984a). Cytochemical and 

immunocytochemical studies by Vaughn and Duke (1981; 1984b) showed that polyphenol 

oxidase was synthesized on 80S cytoplasmic ribosomes, and then transported across the 

plastid membranes. They also showed that after incubation of mung bean (Vida/aba) plants, 

the radiolabelled anti-polyphenol oxidase only accumulated around the periphery of plastids, 

indicating that neither anti-polyphenol oxidase nor an inactive form of polyphenol oxidase 

is absorbed non-specifically to the plastid membranes. 
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Most studies of polyphenol oxidases have been on ripe fruit, but some have monitored 

polyphenol oxidase activity during the course of fruit development. Hobson's (1967) 

investigation of mango fruit showed that there was a rise in activity during fruit development, 

followed by a drop in activity in ripe fruit. Underhill and Critchley (1992) had similar results 

when they monitored polyphenol oxidase activity in the litchi rind during fruit ontogeny and 

development. Polyphenol oxidase activity increased during the first 48 days after anthesis, 

but declined to very low levels with subsequent seed maturation and fruit flesh expansion 

only to undergo a slight increase again with fruit maturity. 

Figure 7. 
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Reactions catalyzed by polyphenol oxidase enzymes, laccase and catechol 

oxidase (adapted from Mayer and Harel, 1981) 

Litchi rind polyphenol oxidase activity was relatively low at maturity and Underhill and 

Critchley (1992) maintained that this suggested a reduced capacity to induce tissue browning. 

This result was however, not unusual as Mayer and Harel (1981) noted that previous studies 

on many different fruit types have shown that levels of polyphenol oxidase are highest during 

the early stages of development, but drop quite significantly after fruit maturity "and during 
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ripening. They suggested that the decrease in activity during development of the fruit implied 

not only the cessation of enzyme synthesis but also · the inactivation, inhibition or 

decomposition of the enzyme. 

Akamine (1960) suggested that polyphenol oxidase was involved in post-harvest browning 

of the litchi rind and was associated with fruit desiccation. Subsequently, Tan (1989) also 

maintained that browning of the litchi rind was due to enzymatic browning caused by 

polyphenol oxidase. Lin et al. (1988) showed that polyphenol oxidase activity in the litchi 

rind increased rapidly after harvest and then peaked after 48 hr. In contrast, Zaubermann et 

al. (1990) observed little change in polyphenol oxidase activity during ambient storage of 

litchi fruit. Later, Underhill and Critchley (1993) found that polyphenol oxidase activity in 

the litchi rind decreased rapidly after harvest, observing a 3-fold reduction in activity within 

the first 24 hr after harvest. Subsequently, activity remained fairly constant but decreased 

slightly over time. Coupled with these results, Underhill (1992) and Underhill et al. (1992a) 

maintained that anthocyanin concentrations only decreased slowly after harvest, and that this 

implied that it is unlikely that degradation of anthocyanins by polyphenol oxidase plays a 

major role in litchi post-harvest browning under ambient conditions. 

Based on the rate of anthocyanin degradation, distribution of brown pigmentation within the 

litchi rind, and polyphenol oxidase activity during storage, Underhill and Critchley (1993) 

suggested that it is unlikely that polyphenol oxidase plays a major role in rind browning 

under ambient conditions. In that study, initial red pigmentation loss was associated with 

mesocarp parenchyma cells becoming colourless while the epicarp (exocarp), which is not 

associated with anthocyanins, turned brown. Unfortunately, Underhill and Critchley's (1993) 

investigation made no mention of brown pigmentation distribution during later stages of fruit 

storage. The initial loss of colour in the mesocarp can be explained by the breakdown in cell 

organelles associated with natural post-harvest degradation of cells. The vacuolar sap, in 

which anthocyanin pigments are localized, is normally at very low pH (Smith and Raven, 

1979). When the tonoplast degenerates, the vacuolar sap will mix with the cytoplasm, which 

fluctuates between pH 7.0 and 7.5 (Salisbury and Ross, 1992). Consequently, anthocyanin 

pigments will lose protons from their structure resulting in colourless chromenols, which 

although fairly stable will break down with time (Jurd, 1963). This last reaction {s catalyzed 
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by polyphenol oxidase but previous work has shown that polyphenol oxidase is not active as 

a phenol oxidase in chloroplasts, where it is exclusively located in healthy tissue, but rather 

is limited as a phenol oxidase by latency or lack of substrate (Golbeck and Cammarata, 

1981). 

Latency in polyphenol oxidase activity can be overcome using one of several treatments, 

although most of these treatments mimic one or other aspect of senescence. Consequently, 

it is not surprising that polyphenol oxidase activity rises slightly after harvest, since later 

stages of fruit ripening would be associated with senescence. Treatments which are known 

to overcome latency of polyphenol oxidase activity include amongst others, detergents (Sato 

and Hasegawa, 1976), ethylene (Elstner et al., 1976; Sharon and Kahn, 1979) and heat 

(Underhill and Critchley, 1993). Detergents are known to break down cell and organelle 

membranes thus resulting in mixing of polyphenol oxidase and the cytoplasm and causing 

enzyme activation. Ethylene production is extremely low in litchi fruit in comparison to other 

fruit (Tongdee et al., 1982). Underhill and Critchley (1993) found that for mature 'Bengal' 

litchi fruit held at 25°C and 60% RH, ethylene production decreased significantly from the 

time of harvest, undergoing slightly more than a 3-fold reduction in concentration within the 

first 12 hr after harvest. They maintained that initial relatively high levels of 0.96 J,tl.kg-I.hr-I 

when compared to fruit just prior to harvest, probably represented a wounding response. 

Nevertheless, browning of litchi fruit rinds was not associated with ethylene production but 

rather sensitivity of the tissue to desiccation caused by dehydration. 

When fruit were immersed in hot water at 60°C for 10 min and then stored at 25°C for 

progressive assessment, polyphenol oxidase activity increased immediately after heat 

treatment, which corresponded with rapid browning of the rinds. Browning was seen 

throughout the rind, indicating that polyphenol oxidase was not restricted to specific areas 

within the rind. In contrast, they showed that browning which resulted in untreated control 

fruit held at 25°C and 60% RH was restricted to the epicarp. They postulated that the 

differences in browning localization observed between heat-treated and untreated control fruit 

may have been due to either a difference in localization of polyphenol oxidase activity or the 

presence of other browning enzymes such as peroxidase (Underhill and Critchley, 1993). 
--
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1.3.2.3.2 Peroxidase 

Very few studies have been conducted on the role of peroxidase in litchi rind browning but, 

Zaubermann et al. (1991) concluded that peroxidase does not playa major role in rind 

browning in litchi fruit held at ambient temperatures. Subsequently, Underhill and Critchley 

(1995) maintained that rind browning which occurs during ambient post-harvest storage of 

mature red fruit is due to highly localized oxidative activity which is restricted to the epicarp 

and upper mesocarp. Using a nitrocellulose blotting technique adapted from Spruce et al. 

(1987), they maintained that both polyphenol oxidase and peroxidase were implicated in litchi 

rind browning, although the latter was only identified in the vascular traces of epicarp and 

mesocarp. Nonetheless, they suggested that peroxidase activity is of more importance than 

previously thought. Consequently, it is most likely that heat treatments resulted in disruption 

of cell and organelle membranes thus activating polyphenol oxidase and causing ubiquitous 

browning. 

Despite the levels of polyphenol oxidase being lower during litchi fruit ripening than during 

fruit growth, the presence of the enzyme implies that provided the substrate is not lacking, 

it will still cause browning of the litchi rind albeit at a reduced rate. It is known that 

polyphenol oxidase which is localized in chloroplasts of healthy tissue, is only activated after 

degradation ,of these organelles (Vaughn and Duke, 1984a). During the latter stages of 

ripening and senescence, single unit membrane bound vacuoles, in which anthocyanins are 

localized, would presumably degrade before double unit membrane bound chloroplasts (Esau, 

1977). Consequently, following degradation of vacuoles, oxidation of anthocyanins or 

colourless chromenols would be retarded. This may explain loss of red colour from the litchi 

rind during the initial stages of fruit storage at ambient temperatures, followed by subsequent 

browning of the epicarp and mesocarp tissues. Furthermore, because peroxidase activity is 

localized solely in the vascular traces of the epicarp and mesocarp tissues of the mature litchi 

rind, its role in physiological browning is dubious. 
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1.3.2.4 Control 

Prevention or at least a reduction in post-harvest browning of the mature litchi rind may be 

achieved in one of two ways, viz. firstly, reduce or remove stress factors, and secondly, by 

interfering with the biochemical processes which result in browning. Initial stress on freshly 

harvested fruit may be reduced substantially with careful handling of fruit. Many different 

techniques have been examined in an attempt to achieve this. These include the adoption of 

forced air cooling to remove field heat rapidly (Bagshaw et al., 1991); hydro-cooling (Ketsa 

and Leelawatana, 1992); and heating of fruit to temperatures of between 30° and 70°C (Song 

and Kumar, 1996). Regular atmosphere refrigerated storage of fruit at temperatures ranging 

from O°C (Huang and Wang, 1990), 1°C (Swarts, 1983), 2°C (paull and Chen, 1987) and 

5° to 7°C (Bagshaw et al., 1991; Jacobi et al., 1993) to reduce stress and prolong post­

harvest life are recommended for different countries. In addition, surface coatings limiting 

moisture loss from individual fruit include polysaccharides and similar sucrose ester based 

coatings such as Semperfresh·, an antitranspirant (Duvenhage, 1993). These are preferred 

to polyethylene based waxes (PH greater than 7), which usually result in discolouration due 

to pH effect (Underhill, 1994). 

Other methods which limit moisture loss from fruit include enclosing fruit in paper bags, 

polyethylene bags (Paull and Chen, 1987; Kremer-Kohne and Lonsdale, 1991) or plastic 

films (Campbell, 1959; Scott et al., 1982; Ahrens and Milne, 1993a); plastic liners in 

fibreboard cartons; punnets over-wrapped with plastic film (Bagshaw et al., 1991); and gas 

packaging (Lonsdale, 1993). Unfortunately, resulting condensation promotes unsightly fungal 

and bacterial growth, thus necessitating some form of chemical control. Furthermore, 

enzymes derived from fungi are thought to lead to pigment degradation (Nip, 1988; Lee and 

Wicker, 1991 b) and it is thus imperative that fungal infection be controlled. 

Chemical control using benomyl (l-(butyl carbamyl)-2-benzimidazole carbamic acid, methyl 

ester) has been shown to be very effective but a maximum residue of 10 mg.kg-' has been 

set for Australian conditions (Hargreaves, 1983). Scott et al. (1982) and Huang and Scott 

(1985) suggested a 0.05% benomyl dip at 52°C for 2 min. This recommendatio!l was fine­

tuned by Wong et al. (1991) who maintained that 52°C was too high for fruit of cultivars 
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'Tai So', 'Kwai May Pink' and 'Wai Chee' . Consequently, they recommended that the 

temperature be lowered to between 48° and 50°C. Furthermore they found that 'Tai So' 

('Mauritius') was the least affected by the heat treatments. Bavistan
e 

(methyl-2-benzimidazole 

carbamate) at 125 mg. t -I was also shown to give excellent protection of litchi fruit against 

fungal attack (Sandhu and Randhawa, 1992). In South Africa, Schutte et al. (1991) found that 

a room temperature dip treatment of benomyl (600 g.t- I
) or Prochloraz

e 
(250 g.t- I

) proved 

effective for 4 weeks in preventing fungal attack of litchi fruit. 

Many other selective and non-selective fungicides and bactericides have been investigated 

without success (Nip, 1988) , but sulphur is a notable exception. Post-harvest sulphur dioxide 

(S02) fumigation of litchi fruit is used commercially in South Africa (Swarts, 1985; 1989), 

Israel (Zaubermann et al., 1990), Mauritius and Reunion (Menzel, 1990). Swarts (1985) 

found that sulphur dioxide fumigation in a closed container, achieved by burning 1 kg of 

chemically pure sulphur per 1600 kg of litchi fruit, provided adequate protection against 

fungal attack during storage of fruit. When dissolved in water, sulphur dioxide exists mainly 

as a mixture of the ionic species sulphite (Sot ) and bisulphite (HS03-) but the relative 

quantities of the ions depend on the pH of the solution. At pH 4.0 bisulphite is at its highest 

concentration (Green, 1976). 

Duvenhage (1993) investigated the effects of a dip in sodium metabisulphite on its own, and 

in conjunction with a 5 min dip in 4% hydrochloric acid, followed by packaging with 

Semperfresh
e

, Vitafilm
e 

and Freshpak
e 

(Vitafilm
e 

is a plastic product 13~m thick, while 

Freshpalt is a registered gas mix from Air Products South Africa). Although all treatments 

except sodium metabisulphite followed by Semperfresh
e 

and the controlled to less browning, 

levels of sulphur in the fruit as a result of sodium metabisulphite treatment were apparently 

not measured. 

In addition to having fungicidal activity, sulphur reacts chemically with anthocyanin pigments 

(Jurd, 1972) and results in bleaching of litchi fruit rinds (Swarts, 1985; Zaubermann et al., 

1991; Underhill et al., 1992b). Jurd (1964) showed beyond doubt, using spectrophotometry, 

that the flavylium cation of grape skins was the reactive species resulting in sulphite 

bleaching. Timberlake and Bridle (1967; 1968) furthered these studies and showed that 
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sulphite bleaching is an ionic reaction involving a nucleophilic attack by a negative ion of 

sulphurous acid on the flavylium cation to form what is probably chromen-4 (or -2) sulphonic 

acid (Fig. 8). 

o o o o HSO). 

OR 
+ H 

Figure 8. Ionic reaction resulting after sulphite bleaching (from Jurd, 1972) 

Sulphured litchi rinds tum pale green or if fumigation was excessive, yellow. After 

treatment, rinds are pliable and do not split during handling. Rind colour is fixed and unlike ' 

untreated fruit, rinds do not tum brown during subsequent storage. Instead, rinds of pale 

green fruit subsequently turned a uniform pink colour after 3 to 5 days at room temperature 

of 22 0 C. Those fruit which were excessively fumigated remained yellow, although 

concentrations have been determined at which yellowing will not occur (Swarts, 1985). 

[PPO] + HS03- ----- > [pPO]i-S03 < ---- > [pPO]i + HS03-

Figure 9. Proposed equilibrium reaction for inactivation of polyphenol oxidase by 

bisulphite. [PPO] stands for the initial concentration of the polyphenol 

oxidase, [PPO]i-S03- for the possible complex formed between the inactivated 

polyphenol oxidase and HS03-, and [PPO]i for the inactivated polyphenol 

oxidase. (adapted from Sayavedra-Soto and Montgomery, 1986) 

In addition to fungicidal properties, Zauberman et al. (1991) showed that sulphur fumigation 

resulted in complete inhibition of litchi fruit polyphenol oxidase when compru:ed to non­

fumigated fruit. Mathew and Parpia (1971) stated that the exact mechanism of inhibition was 
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not fully understood. Sulphur dioxide could either be reducing oxygen and thus making it 

unavailable for oxidizing polyphenols, or reacting with quinones or other intermediates. 

Sayavedra-Soto and Montgomery (1986) however, found for polyphenol oxidase extracted 

from bananas, mushrooms and pears that at pH 5.0, levels of inactivation were correlated 

with concentrations of bisulphite, and that inhibition increased with time but had plateaued 

by 100 min. Where a solution of pH 6.0 was used, inhibition plateaued only after 24 hr. 

Consequently, they maintained that formation of a plateau and slow inactivation of the 

enzyme, coupled with electrophoretic investigations suggested an equilibrium (Fig. 9). 

Furthermore, inhibition of polyphenol oxidase activity by sulphite was complete and all 

attempts at regenerating activity were not successful. 

Sulphur fumigation although partially successful and currently widely used commercially, 

does have drawbacks. Increased reliance on sulphur has led to ineffective control of post­

harvest fungal decay (Swarts, 1989), and Botha et al. (1988) found that this was especially 

true for Penicillium spp.; fruit lose a considerable amount of moisture and thus mass 

(Kremer-Kohne and Lonsdale, 1991); overdosing results in unacceptable residues (Kremer­

Kohne, 1993; Milne and Ahrens, 1993); there is a unpalatable aftertaste (Botha et al., 1988; 

Lonsdale and Kremer-Kohne, 1991); and residues constitute a health hazard in asthmatics 

(Koeing et al., 1983). Indeed, France has lowered the acceptable level of sulphur from 20 

mg.kg·1 to 10 mg.kg·1 in litchi fruit flesh, and it can be expected that with greater 

environmental and health awareness in European markets, sulphur will be prohibited in the 

near future (Milne, 1996)1. 

Other treatments which interfere with the biochemical processes involved in litchi rind 

browning include the use of chemicals that are either oxidised in preference to polyphenol 

oxidase or complex with the enzyme; inhibition of polyphenol oxidase activity other than 

with sulphur dioxide; and manipulation of pH. Examples of these reactions were provided 

by Walker and Hulme (1965) who noted that polyvinylpyrrolidine competed with polyphenol 

oxidase, while Pifferi and Cultrera (1974) found that ascorbic acid was degraded in vitro in 

preference to anthocyanins. Early work by Akamine (1960) showed that dipping fresh litchi 

lOr. D.L. Milne. Merensky Technological Services, Box 14, Duiwelskloof, 0835. 



35 

fruit into ascorbic acid (0.6 to 2.4 g.t- I
) had no effect on retaining red colour of the litchi 

rind. Bedrosian et al. (1959) showed that borates complexed with the oxidation site of 

polyphenol oxidase thus preventing apple browning. A temperature of ca 80°C for 10 min 

inhibited polyphenol oxidase of different fruit types. When subjected to boiling water 

(presumably 100°C) however, inhibition was complete by 3 min (Mathew and Parpia, 1971). 

Manipulation of pH concerns both polyphenol oxidase, where low pH solutions have been 

shown to inhibit polyphenol oxidase activity (Mathew and Parpia, 1971; Zaubermann, 1991; 

Underhill et al., 1994), and anthocyanins and their corresponding anthocyanidins. Zauberman 

et al. (1990; 1991) found that extraction of sulphur-fixed anthocyanins from litchi rinds in 

acidified methanol resulted in a red solution. As a result of this finding, Zauberman et al. 

(1990; 1991), Underhill et al. (1992b, 199.4) and Fuchs et al. (1993) all tried to acidify 

anthocyanins in situ on the day of harvest, by dipping whole fruit in dilute acid solutions 

between pH 0.0 and 0.5. Where fruit were dipped only in low pH solutions, rinds turned red 

but unsightly brown patches appeared several hours after treatment. Under similar conditions 

however, Underhill et al. (1992b) maintained that redder fruit were obtained when they were 

dipped in IN HCI only, but a progressive colour loss was observed during storage. This was 

most likely due to an increase in the pH of the cell sap which accompanies moisture loss 

(Lukton et aI., 1956). Under South African conditions, Ahrens and Milne (1993b) showed 

that after S02 fumigation at 600 g. rl, dipping of litchis in 4 % HCl for periods of up to 5 min 

was very effective in regaining red rind colour. Phytotoxicity was observed when fruit were 

dipped for periods of 10 and 15 min. Consequently, a 2 min dip in 4% HCI was 

recommended after S02 fumigation at 600 g. rl. 

1.4 DISCUSSION AND CONCLUSIONS 

Anthocyanin pigments are responsible for rind colour of mature, red litchi fruit. These water­

soluble, vacuole-bound plant pigments protect against ultra-violet light, act as antibiotics in 

plant defence responses, and serve as attractants to seed dispersal agents. Knowledge of the 

chemical structure and transformations of anthocyanins is imperative in understanding colour 

expression at harvest and subsequent post-harvest pigment breakdown. Attac!1ed to the 

flavylium salt, anthocyanins have a glycoside, which stabilizes natural anthocyanins. Should 
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the glycoside be hydrolysed, the resulting anthocyanidin will undergo a series of rapid 

chemical reactions resulting in either colourless compounds or brown phenolic pigments. 

Physiological browning of anthocyanins may also be affected by the enzyme polyphenol 

oxidase, which, in the presence of oxygen, causes the oxidation of anthocyanins into onho­

quinones. 

Several mechanisms which stabilize anthocyanins have been identified in the pure chemical 

sciences. These include self-associations, inter- and intramolecular, and metal complexing. 

One such stabilizing mechanism is sulphur fumigation but sulphur is undesirable because of 

unpalatable aftertastes, unacceptable residues and health aspects. Furthermore, sulphur 

fumigation results in fruit with unsightly yellow rinds. Subsequent colouration of fruit rinds 

at room temperature, following sulphite bleaching, is probably the result of an equilibrium 

being attained between the flavylium cation and the chromen-n-sulphonic acid, a process in 

compliance with the disassociation of S03 from the pigment complex, proposed by Underhill 

et al. (1992a). Indeed, the fact that sulphite bleached litchis only attain a pinkish hue after 

an extended period of time, and that fruit dipped in low pH after sulphur fumigation, revert 

back to their original red colour (Zaubermann et al., 1990; 1991) is strong evidence for this. 

Sulphur fumigation of litchi fruit is currently the only commercial post-harvest treatment, but 

the South African Litchi Growers' Association regards the elimination of sulphur fumigation 

as their number one research priority (Milne, 19962
). Consequently, alternatives to sulphur 

fumigation must be sought and the author hypothesizes that litchi rind anthocyanins can be 

fixed in situ using a low pH solution, while simultaneously avoiding the use of sulphur 

fumigation. 

2 Dr D.L. Milne, pers. comm., Chairman of South African Litchi Growers' Association 
Research Co-ordination Committee, Merensky Technological Services, -Box 14 
Duiwelskloof, Northern Province, South Africa 
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In South Africa, post-harvest treatment of litchi fruit has been restricted to sulphur­

fumigation of the fruit at 600 g sulphur.rl for 30 min (Ahrens and Milne, 1993). 

Unfortunately, this results in bleached rinds as sulphur complexes with anthocyanin pigments. 

Sulphur does however, dissociate from pigments with time (Jurd, 1972) but the original red 

rind colour is never regained. Furthermore, sulphur results in an undesirable aftertaste, 

constitutes a health problem and is ineffective against some fungi. It is thus not surprising 

that some overseas markets such as France have imposed a residue limit of sulphur to 10 

mg. kg-l in the fruit flesh. Clearly, with greater consumer awareness sulphur-treated fruit will 

soon be unacceptable. 

A promising alternative treatment reported on before initiation of this study was that of low 

pH dips following sulphur fumigation (Zaubermann et al. , 1990, 1991; Underhill et al. , 

1992), where anthocyanin structure was manipulated to preserve red rind colour. These 

studies showed that immersion of litchi fruit in low pH solutions only, was ineffective in 

fixing rind colour. However, if fruit were immersed subsequent to sulphur fumigation, rind 

colour was a fixed red hue. Unfortunately, using this technology, sulphur fumigation was not 

avoided and sulphur residues remained a problem in the fruit flesh. 

Prompted by these investigations, Kaiser (1994a) reviewed anthocyanin physiology and this 

led to the present hypothesis that sulphur fumigation can be avoided and rind anthocyanins 

fixed in situ without adversely affecting fruit flesh palatability. The author hypothesizes that 

sulphur fumigation effects solubilization of cell membranes and tonoplasts, thus allowing 

subsequent access to anthocyanins in situ using low pH solutions. Consequently, the aims of 

the investigations in this chapter were: firstly, to determine whether pH 0.0 is the optimal 

pH at which litchi rind anthocyanins are fixed; secondly, to identify alternative treatments 

which will achieve adequate membrane breakdown without affecting fruit flesh p~atability; 
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thirdly, to quantify colour changes accurately, and fourthly to determine whether there were 

any differences in electrolyte leakage between control fruit and those subjected to heat. 

2.2 pH DETERMINATION 

2.2.1 Materials and Methods 

Mature, red 'Three Months Red' fruit from the Northern Province were picked in the early 

morning in August 1993, placed in a coolbox and taken directly to the laboratory in 

Nelspruit, Mpumalanga Province. Since availability of these early season fruit was limiting, 

only four fruit were used per treatment. Fruit were immersed in distilled water, adjusted to 

a range of pH values from pH -1.0 and, pH 0.0 to 5.0 with intervals of 0.5 using 32% 

hydrochloric acid (HCI), for 2,3,4,5 and 10 min. Subsequently, fruit were left at room 

temperature together with untreated control fruit for 14 days, following which, differences 

in rind colour and texture were noted. 

2.2.2 Results arid Discussion 

After 14 days at room temperature rinds of all fruit became thin and brittle. Rinds of 

untreated control fruit were brown, while fruit immersed for 2,3,4,5 and 10 min in distilled 

water, adjusted to pH 0.5 or more, were also brown after 14 days at room temperature. 

Likewise, fruit immersed for 2 min in zero pH solution, were also brown. Rinds of those 

fruit that were immersed for 3,4,5 and 10 min in zero pH solution, remained red for 14 days 

at room temperature, but had some unsightly brown marks and developed corky patches. 

Rinds of those fruit immersed for 2,3,4,5 and 10 min in distilled water, adjusted to pH -1.0, 

changed to mauve after 24 hr and retained this colour for 14 days. Furthermore, these fruit 

shrivelled after 14 days at room temperature. These results confirm that immersion of fruit 

in pH 0.0 for at least 2 min is necessary for fixation of litchi rind colour. Consequently, 

immersion of fruit for 4 min in pH 0.0 solution was considered optimal for fixation of litchi 

rind colour for all future trials. 
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Mature, red 'Three Months Red' fruit from the Northern Province were picked in the early 

morning in September 1993, placed in a coolbox and taken directly to the laboratory in 

Nelspruit, Mpumalanga Province. Four fruit were immersed in each of 3.5% NaDCI, 40% 

H
2
0

2
, 0.5 % Triton X· 100 (a non-ionic detergent), 0.5 % sodium dodecyl sulphate (SDS) (an 

anionic detergent) or 0.5 % cetyldimethyl ammonium bromide (CT AB) (a cationic detergent) 

for periods of 5, 10, 15, 20 and 25 min. All fruit were then immersed for 5 min in 1 % 

Safranine Fast Green, and subsequently rinsed in distilled water. Safranine Fast Green stains 

cytoplasmic contents, thus 100% staining of the fruit surface implies that all rind cell 

membranes are solubilized. Relative amounts of stain, expressed as a percentage of the total 

fruit rind surface area which took up stain were recorded for all the fruit and graphed over 

time (Fig. 10). 

2.3.2 Results and Discussion 

When fruit were immersed in 3.5% NaOCI or 40% H20 2 for up to 5 min, followed by 

immersion in 1 % Safranine Fast Green for 5 min, rinds remained unstained. Some Safranine 

Fast Green was however, taken up by these fruit when immersed for up to 25 min in the 

same solutions, but no more than 12 % of the total surface area of all fruit rinds was stained 

by Safranine Fast Green after 25 min immersion and a plateau seemed to have been reached 

after 15 min immersion in 3.5% NaOC1 or 40% H20 2 • When fruit were immersed in 0.5% 

Triton X· 100, 0.5% SDS and 0.5% CTAB for periods of 5, 10, 15, 20 and 25 min, 

followed by immersion in 1 % Safranine Fast Green for 5 min, rinds in all three cases did 

not stain better when immersed for longer than 20 min. Fruit immersed in 0.5 % Triton X· 

100 for 20 min however, was most heavily stained, with slightly less than 50% of the entire 

surface area of all fruit rinds taking up Safranine Fast Green, when compared to ca 37 % for 

SDS and ca 24% for CTAB respectively (Fig. 10). 
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Of all the potential membrane solubilizers investigated here, only the non-ionic detergent, 

Triton X· 100 showed any promise, as immersion for 20 min resulted in ca 50 % area 

staining by Safranine Fast Green. When compared to the optimal 100% area staining, this 

coupled with the lengthy immersion time of 20 min deemed the treatment unsuitable. 

Consequently, the use of heat as a means of solubilizing rind cell membranes was 

investigated . 

2.4 HEAT TREATMENTS 

2.4.1 Materials and Methods 

Mature, red 'Three Months Red' fruit from the Northern Province were picked in the early 

morning in October 1993, placed in a coolbox and taken directly to the laboratory in 
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Nelspruit, Mpumalanga Province. Four fruit were immersed in distilled water at 56°C or 

65°C for 2, 5 or 10 min, and then for 5 min in 1 % Safranine Fast Green or distilled water, 

adjusted to pH 0.0, hereqfter referred to as zero pH solution. Other fruit were immersed in 

boiling water (98°C) for 30 or 60 sec, and then for 5 min in 1 % Safranine Fast Green or 

zero pH solution. Relative amounts of stain, again expressed as area percentage, taken up 

by those fruit dipped in 1 % Safranine Fast Green were recorded and graphed over time (Figs 

11 and 12), while the remaining fruit were halved, and together with untreated control fruit 

were either left at room temperature for 14 days or placed in regular atmosphere storage at 

1°C, following which, differences in rind colour and texture were noted. 

2.4.2 Results and Discussion 

Rinds of control fruit were brown by 14 days at room temperature. Rinds of all fruit which 

were immersed in water at 56°C or 65°C, followed by immersion in 1 % Safranine Fast 

Green for 5 min, took up little stain, as less than 25 % of the rind surface area was stained 

by Safranine Fast Green (Fig. 11). When other fruit were immersed in distilled water at 

56°C or 65°C followed by 4 min in zero pH solution, fruit rinds changed to a pinkish 

colour, but were brown after 14 days at room temperature. An explanation for this was 

provided by Underhill and Critchley (1993) who published an article shortly after completion 

of this experiment, and showed that temperatures of 60°C result in rind browning because 

of heat injury. Rinds of those fruit which were immersed in boiling water (98°C) for 30 or 

60 s, became colourless and pliable. When this treatment was followed by 5 min in 1 % 

Safranine Fast Green, entire fruit rinds were stained by Safranine Fast Green ie. 100% 

staining (Fig. 12). Subsequently, when fruit were immersed in boiling water (98°C) for 30 

or 60 s, followed by 4 min in zero pH solution, rinds of both treatments became pliable and 

changed from colourless to an even red colour within 60 min. Rinds of fruit immersed for 

60 s in boiling water (98°C) were however, redder. When these fruit were left at room 

temperature for 14 days, rinds remained red and pliable, but rinds of fruit immersed for 30 

s in boiling water (98°C) developed corky patches. Rinds of fruit immersed for both 30 and 

60 s in boiling water (98°C) followed by immersion in zero pH solution for 4 min, remained 

an attractive bright red colour after 28 days in regular atmosphere storage at 1°C. J'he results 

showed clearly that litchi rinds may thus be preserved an attractive red colour for 28 days 
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of regular atmosphere storage at 1°C however, the effects on palatability had not been 

investigated. Consequently, the effects of immersing fruit in boiling water for different 

lengths of time on internal taste and appearance were investigated. 

2.5 INTERNAL QUALITY 

2.5.1 Materials and Methods 

Seven 2 kg boxes of untreated, mature, red 'Mauritius' fruit obtained from Malelane in 

December 1993 were placed in a coolbox and taken directly to the laboratory in Nelspruit, 

Mpumalanga Province. One 2 kg box each of fruit was immersed for 60, 30, 20 and 10 s 

in boiling water (98°C), followed by immersion in zero pH solution for 4 min. Another 2 

kg box of fruit was immersed in boiling water (98°C) for 30 s only. These fruit together with 

untreated control fruit and sulphur-fumigated (600 g sulphur.rl) fruit were stored under 

regular atmosphere storage at 1°C and their taste and appearance, both internal and external, 

compared to those of untreated control fruit after after 28 days of storage. 

2.5.1 Results and Discussion 

Rinds of sulphur-fumigated fruit varied from light green, yellow to salmon after 28 days of 

storage at 1 °C (Fig. 13), while those of untreated control fruit were brown and infected with 

fungi (Fig. 14). Rinds of all fruit immersed for 60, 30, 20 and 10 s in boiling water (98°C), 

and then for 4 min in zero pH solution were pliable and changed to an attractive red colour 

within 24 hr and there were no obvious differences in rind redness. Rinds of those fruit 

treated for 60 or 30 s remained red for 28 days in regular atmosphere storage at 1°C (cf. 

Fig. 15), whereas those immersed for 10 or 20 s in boiling water had faded by 28 days in 

regular atmosphere storage at 1°C. Furthermore, none of the fruit immersed in boiling water 

(98°C) were infected with fungi , which implies that boiling water (98°C) sterilizes the fruit 

surface. Consequently, an immersion time of 30 s in boiling water (98°C) prior to immersion 

of fruit in zero pH was regarded as optimal for rind colour preservation. 
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Fruit flesh of some of the fruit immersed for 60 s in boiling water (98°C) was stained pink 

after 28 days storage at 1°C, implying that this treatment was probably too severe in terms 

of membrane breakdown, probably allowing pigment leakage from the rind into the fruit 

flesh. Fruit flesh at the distal and proximal ends of those fruit which were immersed for 30 

s in boiling water (98°C) irrespective of whether subsequently immersed in zero pH or not, 

remained white, although in the region of the pedicel the top few millimetres of fruit flesh 

was brown after 28 days in storage (Fig. 16). Browning of fruit flesh in the pedicel region 

may have been due to one of several reasons, viz. excessive heat transfer from the boiling 

water (98°C) causing instant death of the cells; excessive loss of moisture through the rind, 

resulting in cell desiccation; penetration of zero pH solution, causing cell desiccation; and 

polyphenol oxidase activity being stimulated in the fruit flesh. However, since immersion of 

fruit for 30 s boiling water (98°C) only resulted in browning of fruit flesh, this confirms that 

zero pH solution did not cause fruit flesh discolouration. 

2.6 STEAM TREATMENfS 

In view of the undesirable side-effects on fruit flesh resulting from boiling water (98 ° C) 

treatments, an alternative method of breaking down cell membranes had to be sought. The 

author hypothesized that steam would be an effective substitute for boiling water (98°C), 

based on the fact that the latent heat of steam is some three times that of boiling water 

(98°C) (Kane and Sternheim, 1988). Consequently, since steam is a vapour, intense energy 

will be localized only on the fruit surface provided treatment time is relatively short. The 

main objectives of this investigation was to preserve the red colour of fruit rinds without 

causing fruit flesh discolouration after 28 days storage at 1°C. 

2.6.1 Materials and Methods 

Mature, red 'Mauritius' litchi fruit were picked in the early morning In Malelane or 

Hazyview, Mpumalanga Province in December 1995, boxed and couriered to 

Pietermaritzburg, KwaZulu-Natal Province. Individual fruit from five boxes were held in a 

jet of steam (95°C), generated by a 1 kW element for 5,4,3,2 or 0 s followed by:immersion 

for 4 min in the zero pH solution. In addition, individual fruit from another box were 
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Figure 13 

Figure 14 

Figure 15 

Figure 16 

Figure 17 

Figure 18 

Plate 1 

Sulphur-treated (600 g.r1
) 'Mauritius' litchi fruit after 28 days of regular 

atmosphere storage at 1 ° C 

Untreated 'Mauritius' control fruit , after 28 days in regular atmosphere 

storage at 1 ° C 

'Mauritius' fruit immersed in boiling water at (98°C) for 30 s followed by 

immersion in zero pH solution for 4 min, after 28 days in regular atmosphere 

storage at 1 ° C 

Internal quality of 'Mauritius' fruit immersed in boiling water (98°C) for 30 

s followed by immersion in zero pH solution for 4 min, after 28 days in 

regular atmosphere storage at 1 ° C 

External appearance of 'Mauritius' litchi fruit treated with steam (95°C) for 

2 s followed by 4 min immersion in zero pH solution, and subsequently 

dipped in 1 % Vaporgard
e 

solution, after 28 days of regular atmosphere storage 

at 1°C 

Internal flesh of 'Mauritius' litchi fruit treated with steam (95°C) for 2 s 

followed by 4 min immersion in zero pH solution, after 28 days of regular 

atmosphere storage at 1°C 
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subjected to 2 s steam (95°C), followed by immersion in zero pH for 4 min and then dipped 

in 1 % Vaporgard- solution, a pinolene derivative, which acts as an antitranspirant, thus 

preventing potential moisture loss from the fruit. All these fruit together with a box each of 

sulphur-fumigated (600 g.r1
) and untreated control fruit were stored at 1°C in regular 

atmospheric storage for 28 days, and the incidence of fungal infection was recorded. In 

addition, 20 fruits from each treatment were assessed by an independent panel of 10 people 

on a scale of 1 to 5 for taste, where 5 = good and 1 = poor; texture, where 5 = good and 

1 = poor; juiciness, where 5 = juicy and 1 = juiceless; internal appearance, where 5 = 

clean white pulp and 1 = discoloured pulp; browning, where 5 = brown rinds and 1 = no 

browning of the rind; colour, where 5 = red rinds and 1 = brown or unsightly rinds; 

firmness, where 5 = firm fruit and 1 = spongy fruit. Frequency tables are calculated (Table 

2) and data were analyzed using McCullagh's regression model for ordinal data (McCullagh 

& NeIder, 1989). After 28 days of storage, percentage total soluble solid (TSS) was 

measured for 20 fruits from each treatment using an OTAGO- hand-held refractometer and 

data were analyzed using a conventional General Linear Model. 

2.6.2 Results and Discussion 

Rind colour showed large differences between treatments, with steam treatments having high 

ratings and control and sulphur treatments low ratings (Table 2). In particular, McCullagh's 

model showed very strong effects of zero pH solution (P<O.OOOI) and when used in 

conjunction with steam, increased ratings markedly (p < 0.00(1). Vaporgard- however, when 

used in conjunction with 2 s steam (95°C), followed by 4 min in zero pH solution (Fig. 17) 

resulted in reddest fruit (P<O.OOOI). Where rind browning was concerned, there was an 

overwhelming difference between control fruit (with a 100% rating of 5) and other treatments 

(with a 98% rating of 1). Fruit firmness differed markedly, with controls and zero pH 

solution alone (P < 0.01) scoring high ratings and in particular 4 and 5 s steam treatments 

scoring lower ratings (p < 0.00(1). Longer times in steam resulted in lower ratings 

(P<0.OOO2) (Table 2). Indeed, all fruit subjected to steam (95°C), with the exception of 

those subsequently dipped in 1 % Vaporgard- solution were slightly shrivelled. Consequently, 

some form of protection is necessary for preventing shrivelling or desiccatio!l of fruit 

following steam (95°C) treatments. 
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TABLE 2. Frequency tables for taste, texture, juiciness, internal appearance, incidence of 
browning, colour and fruit firmness of 'Mauritius' fruit after 28 days of regular atmosphere 
storage at 1°C. Os 4m = 0 s steam (95°C) treatment followed by 4 min in zero pH solution; 
5s 4m = 5 s steam (95°C) treatment followed by 4 min in zero pH solution; 4s 4m = 4 s 
steam (95°C) treatment followed by 4 min in zero pH solution; 3s 4m = 3 s steam (95°C) 
treatment followed by 4 min in zero pH solution; 2s 4m = 2 s steam (95°C) treatment 
followed by 4 min in zero pH solution; 2s 4m VG = 2 s steam (95°C) treatment followed 
by 4 min in zero pH solution and then dipped in 1% Vaporgard

e
• The ratings are on an 

ordinal scale, so strictly speaking one should not calculate a mean. Consequently the average 
is for summary purposes. The interpretation of the median is ego Taste for Os 4m "50% of 
the people rated the taste as 4 or better. 

Taste 
Score 1 2 3 4 5 Median Average 
Control 0 3 2 4 0 3 3.11 
Sulphur 2 3 4 0 0 2 2.22 
Os 4m 0 0 1 8 0 4 3.89 
5s 4m 3 3 3 0 0 2 2.00 
4s 4m 2 6 0 1 0 2 2.00 
3s 4m 0 0 5 4 0 3 3.44 
2s 4m 0 1 4 4 0 3 3.33 

2s 4m VG 0 3 2 3 1 3 3.22 

Texture 
Score 1 2 3 4 5 Median Average 
Control 0 0 4 5 0 4 3.56 
Sulphur 0 2 3 4 0 3 3.22 
Os 4m 0 0 5 4 0 3 3.44 
5s 4m 7 2 0 0 0 1 1.22 
4s 4m 4 4 1 0 0 2 1.67 
3s 4m 1 4 2 1 0 2 2.11 
2s 4m 1 2 6 0 0 3 2.56 

2s 4m VG 0 0 4 4 1 4 3.67 

Juice 
Score 1 2 3 4 5 Median Average 
Control 0 0 4 5 0 4 3.56 
Sulphur 0 0 6 3 0 3 3.33 
Os 4m 0 0 2 7 0 4 3.78 
5s 4m 4 4 1 0 0 2 1.67 
4s 4m 4 3 1 1 0 2 1.89 
3s 4m 1 2 1 5 0 4 3.11 
2s 4m 1 2 3 3 0 3 2.89 

2s 4m VG 0 0 3 3 3 4 4.00 
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Internal Appearance 
Score 1 2 3 4 5 Median Average 
Control 0 0 0 9 0 4 4.00 
Sulphur 0 0 3 5 1 4 3.78 
Os 4m 0 0 0 9 0 4 4.00 
5s 4m 6 2 1 0 0 1 1.44 
4s 4m 3 2 2 2 0 2 2.33 
3s 4m 2 1 3 2 1 3 2.89 
2s 4m 2 2 1 3 1 3 2.89 

2s 4m VG 0 1 4 4 0 3 3.33 

Browning 
Score 1 2 3 4 5 Median Average 
Control 0 0 0 0 20 5 5.00 
Sulphur 20 0 0 0 0 1 1.00 
Os 4m 19 1 0 0 0 1 1.05 
5s 4m 20 0 0 0 0 1 1.00 
4s 4m 20 0 0 0 0 1 1.00 
3s 4m 20 0 0 0 0 1 1.00 
2s 4m 18 2 0 0 0 1 1.10 

2s 4m VG 20 0 0 0 0 1 1.00 

Colour 
Score 1 2 3 4 5 Median Average 
Control 20 0 0 0 0 1 1.00 
Sulphur 19 1 0 0 0 1 1.05 
Os 4m 5 15 0 0 0 2 1.75 
5s 4m 0 0 6 14 0 4 3.70 
4s 4m 0 0 3 17 0 4 3.85 
3s 4m 0 0 3 17 0 4 3.85 
2s 4m 0 2 8 10 0 4 3.40 

2s 4m VG 0 0 0 20 0 4 4.00 

Firmness 
Score 1 2 3 4 5 Median Average 
Control 0 0 0 0 20 5 5.00 
Sulphur 0 0 6 13 1 4 3.75 
Os 4m 0 0 0 16 4 4 4.20 
5s 4m 0 6 14 0 0 3 2.70 
4s 4m 0 0 20 0 0 3 3.00 
3s 4m 0 0 19 1 0 3 3.05 
2s 4m 0 1 13 6 0 3 3.25 

2s 4m VG 0 0 7 13 0 4 3.65 
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After 28 days of storage, flesh of 4 and 5 s steam-treated fruit were brown internally, and 

McCullagh's model showed overwhelming evidence of a steam effect (p < 0.000 1). 

Meanwhile flesh of control and sulphur-treated fruit and those treated for 3 or 2 s with steam 

(Fig. 18), were unblemished after 28 days of storage. There was overwhelming evidence of 

effects of taste ratings of zero pH solution (P<O.OI) and steam (P<O.OOOI) and some 

evidence of a sulphur effect which caused a low rating (P < 0.06). Using zero pH solution 

led to an improved rating, while increased time in steam led to a lower rating. Furthermore, 

addition of Vaporgarde to steam-treated fruit improved taste ratings over sulphured fruit 

(p < 0.0001). Texture was also affected by steam, with longer steam treatments resulting in 

lower ratings (P < 0.00(1). Addition of Vaporgard
e 

however, significantly improved texture 

over those of steam-treated fruit alone (p<O.OOI). There was no evidence of any effect on 

flesh texture of fruit treated with sulphur or zero pH solution only. Juiciness was affected by 

4 and 5 s steam treatments, which had lowest ratings (p < 0.004) and addition of Vaporgard
e 

significantly improved juiciness over steam and zero pH solution only (P<O.OOI) (Table 2). 

TABLE 3. Average TSS percentages for 20 'Mauritius' fruit from each of 9 treatments 

after 28 days of storage at 1°C 

TREATMENT TSS SED 

Control 19.49 1.02 

Sulphur 19.75 1.09 

5 s steam + Zero pH solution 27.42 4.26 

4 s steam + Zero pH solution 28.18 3.31 

3 s steam + Zero pH solution 26.46 2.87 

2 s steam + Zero pH solution 22.45 1.57 

2 s steam + Zero pH solution + Vaporgarde 
18.27 0.79 

Very large treatment differences (P < 0.00(1) in % TSS in the fruit flesh could be broken 

down into a zero pH solution effect (p<0.0001) and a linear steam trend (P<O.OOOI). TSS 

levels increased from ca 22 % to 28 % with increased time in steam, while there was no 

evidence of any difference between control and sulphur treated fruit, which had low TSS 
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percentages of about 19% (fable 3) . It is possible that longer times in steam resulted in 

increased rind membrane breakdown resulting in increased water loss, thus concentrating TSS 

levels. Circumstantial evidence for this can be seen as TSS percentages of fruit treated with 

Vaporgard- were not significantly different from control or sulphur-treated fruit but were 

significantly different from other steam-treated fruit (fable 3). 

After 28 days of storage neither sulphur-fumigated (600 g. rl) fruit nor fruit subjected to 

steam (95°C) for any length of time were infected with fungi. However, untreated control 

fruit and those immersed in zero pH for 4 min only were completely infected by fungi (Fig. 

19). This implies that steam (95°C) sterilized the fruit and that no reinfection occurred under 

the storage conditions of the trial, thus eliminating the need for using sulphur fumigation as 

a means of disease control. 
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S.E.D. = 0.0 

Ctl Sui Os4m 2s4 m 3s4m 4s4m 5s4m 2s4mVG 
Treatment 

Percentage fungal infection of untreated control fruit (Ctl) , sulphur treated 

fruit (SuI) , fruit subjected to 0, 2, 3, 4 and 5 s steam (95°C) followed by 4 

min in zero pH solution (Os4m, 2s4m, 3s4m, 4s4m and 5s4m respectively) 

and 2 s steam (95°C) followed by 4 min in zero pH solution and then dipped 

in 1 % Vaporgard- solution 
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The results of this study showed clearly that rinds of fruit subjected to 2 s steam (95°) 

followed by immersion in zero pH solution and a subsequent dip in 1 % Vaporgard
e 

solution, 

resulted in excellent quality fruit after 28 days of regular atmosphere storage at 1°C. These 

fruit were firm, had red rinds, no external browning, were juicy, with good texture and taste 

and showed no signs of flesh discolouration when compared to sulphur-treated and control 

fruit. Furthermore, 2 s steam (95°C) sterilized the fruit of pathogens and no reinfection 

occurred under the storage conditions of the trial. 

Questions that arise as a result of this study are firstly, how was colour affected by 

temperature and low pH; secondly, can memb,rane breakdown be quantified and thirdly, did 

steam cause inactivation of polyphenol oxidase enzyme. The aims of the succeeding 

investigations were to quantify rind colour and membrane breakdown, and to determine the 

effects of temperature and low pH on polyphenol oxidase activity. 

2.7 COLOUR QUANTIFICATION 

2.7.1 Introduction 

Colour perception is extremely important in terms of consumer preference. Preconceived 

ideas of colour strongly influence product choice but in most cases this is subjective. Easily 

computable, quantitative measures may be obtained using a colorimeter. For each sample, 

these instruments generate a set of Cartesian co-ordinates, which pinpoint measured colour 

in a three-dimensional colour space. The Minolta
e 

Chromameter CR-200 generates 

Commission Intemationale de l'Eclairage (L·, a·, b·) values, abbreviated to CIELAB, where 

the lightness coefficient, C, ranges from black = 0 to white = 100 (van Eck and Franken, 

1994). Co-ordinates a· and b· locate colour on a rectangular co-ordinate grid, perpendicular 

to the L· axis. At the origin (a· = 0 and b· = 0) colour is achromatic (grey). On the vertical 

axis, positive b· measures yellow, and negative b·, blue. On the horizontal axis, positive a· 

measures red-purple, and negative a· bluish-green (Fig. 20) (McGuire, 1992). 

Lightness, L·, of a colour is correctly reported without further manipulation. In contrast, a· 

and b· are merely co-ordinates and an indirect measure of chroma (degree of d!!parture of 

a colour from grey towards pure chromatic colour) and hue (spectral colours) (McGuire, 
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CIELAB colour space diagram. L· indicates lightness of a colour, a· indicates 

red:green colour ratio, and b· indicates yellow:blue ratio (adapted from 

McGuire, 1992, and van Eck and Franken, 1994) 

1992). Furthermore, a· and b· are not independent variables (Francis, 1980), and McGuire 

(1992) gave a case study proving that independent statistical analysis of these coordinates 

failed to detect a real change in postharvest colour of grapefruit. Consequently, hue angle 

and Chroma are better colour indicators. Hue angle (H0), defined as the angle between the 

hypotenuse and 0° on the a· axis, is calculated from ARCTANGENT (b·'aJ and represents 

spectral colours (Fig. 21). Chroma (C), representing the hypotenuse of a right angled 

triangle created by joining points (0,0), (a·,b·) and (a·,O), is calculated as «a·)2 + (b)2)'h. 

Figure 21 
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The aim of this investigation was to quantify rind colour of 'Mauritius' litchi fruit on the day 

of harvest and again after storage at 30°C for specific times, and to compare this to fruit 

immersed for 4 min in zero pH solution only, fruit subjected to 2 s steam (95°C) only, and 

fruit subjected to 2 s steam (95°C) followed by 4 min immersion in zero pH. 

2.7.2 Materials and Methods 

Mature red 'Mauritius' litchi fruit were obtained from Tzaneen, Northern Province in , 
January 1996. On the day of harvest, chromameter readings were taken using a Minolta

e 

Chromameter CR-200, for twenty untreated fruit from a box of control fruit, and again after 

storage at 30°C for 24 and for 48 hr. All other fruit were treated on the day of harvest. 

Firstly, 20 fruit were dipped in zero pH solution only for 4 min and then stored at 30°C for 

24 hr after which chromameter readings were taken. Another 20 fruit were subjected to 2 

s steam (95°C) only and chromameter readings were taken of these fruit immediately, and 

then again after storage at 30°C for 24 hr. A further 20 fruit were subjected to 2 s steam 

(95°C) followed by immersion in zero pH solution for 4 min. Chromameter readings were 

taken for these fruit after 0, 4, 8, 24, 48 and 72 hr. Chromameter readings a* and b* were 

transformed and an analysis of variance for lightness (L), hue (H0) and chroma (C*) was 

performed. Averages and s.e.d. 's for all treatments are presented in Table 4. 

2.7.3 Results and Discussion 

All fruit were stored at 30°C since rind colour of red control fruit is known to degrade 

rapidly, changing to brown within 24 hr at this temperature (Underhill and Critchley, 1994). 

Analysis of variance showed highly significant treatment differences for lightness (L") 

(F < 0.001). As expected, rinds of untreated control fruit lightened with time (cf. Treatments 

1 and 3), although rinds of control fruit were not significantly lighter after 24 hr (Treatment 

2). Furthermore, after 24 hr, rinds of fruit immersed for 4 min in zero pH solution only 

(Treatment 4) were not significantly darker than those of control fruit (Treatment 2). Rinds 

of fruit subjected to 2 s steam (95°C) only, also lightened with time (cf. Treatments 5 and 

6). Rinds of fruit subjected to 2 s steam (95°C) followed by 4 min in zero p'H solution 

(Treatments 7 to 12) were lighter after 24 hr (Treatment 10), but subsequently darkened with 
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time until there were no significant differences in lightness between fruit treated on the day 

of harvest (Treatment 7) and those stored at 30°C for 72 hr (Treatment 12). 

TABLE 4 Lightness (LO) , Hue (H0) and Chroma (CO) for untreated 'Mauritius' litchi 

fruit and others subjected to zero pH solution, steam (95°C), and steam 

(95°C) followed by zero pH solution, and held at 30°C for different lengths 

of time (eg. treatment B = 2 s 4 min 4 hr represents chromameter readings 

taken after 4 hr at 30°C for fruit subjected to 2 s steam (95°C) followed by 

4 min in zero pH solution). Letters "a" to "h" represent statistical significance 

at the 5 % confidence interval 

Number Treatment Lightness (L") Hue (HO) Chroma (CO) 

1 Os 0 min 0 hr 36.09 e 30.43 d 35.72 e 

2 Os 0 min 24 hr 34.29 f 48.55 b 22.26 h 

3 Os 0 min 48 hr 42.87 a 60.59 a 27.74 g 

4 Os 4 min 24 hr 35.70 e 27.09 f 44.69 b 

5 2s0minOhr 35.49 e 31.91 c 33.19 f 

6 2 sO min 24 hr 42.48 a 61.73 a 23.05 h 

7 2 s 4 min 0 hr 37.69 d 30.34 d 48.01 a 

8 2 s 4 min 4 hr 40.00 bc 27.48 ef 41.43 d 

9 2s4min8hr 39.36 c 26.30 f 47.38 a 

10 2 s 4 min 24 hr 41.07 b 28.74 e 43.15 c 

11 2 s 4 min 48 hr 39.60 c 27.48 ef 41.43 d 

12 2 s 4 min 72 hr 38.05 d 28.03 e 45.35 b 

S.E.D. 1.08 1.47 1.12 

There were also great treatment differences in hue angles (H0) of all fruit rinds (F < 0.001). 

According to the CIELAB diagram for hue sequence and hue-angle orientation (Fig. 21), 

rinds of control fruit changed from reddish orange (Treatment 1) to orange yellow (Treatment 

2) after 24 hr and then to yellow (Treatment 3) after a further 24 hr. Rinds of fruit immersed 

for 4 min in zero pH solution only (Treatment 4) were red to reddish orange after 24 hr. 

Rinds of fruit subjected to 2 s steam (95°C) only, were reddish orange immediately after 
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treatment (Treatment 5) but changed to yellow within 24 hr (Treatment 6). In contrast, rinds 

of fruit treated with 2 s steam (95°C) followed by 4 min in zero pH solution were reddish 

orange immediately after treatment (Treatment 7), but this colour changed to a deep red 

within 4 hr (Treatment 8) and remained unchanged for up to 72 hr after treatment 

(Treatments 9 to 12). Interestingly, only fruit subjected to 2 s steam (95°) followed by 4 min 

in zero pH solution, after 4 hr (Treatments 8 to 12) were red, as opposed to the reddish 

orange rinds of control fruit on the day of harvest proving that 2 s steam (95°C) followed by 

4 min immersion in zero pH solution actually enhan~es red colour of litchi fruit (cf 

Treatments 7 to 12). 

Chroma (C*) of all fruit rinds also showed great treatment differences (F<O.OOI). Colour 

intensity or chroma of control fruit rinds faded after 24 hr (cf. Treatments 1 and 2) and still 

further after 48 hr (cf. Treatments 2 and 3). Rinds of fruit immersed in zero pH solution for 

4 min only were darker than control fruit after 24 hr (cf. Treatment 2 and 4), while chroma 

of fruit rinds subjected to 2 s steam (95°C) only, decreased substantially immediately after 

treatment to 24 hr later (cf Treatments 5 and 6). Chroma of all fruit rinds treated with 2 s 

steam (95°C) followed by 4 min in zero pH solution (Treatments 7 to 12) were relatively 

pure, when compared to those of control fruit rinds on the day of harvest (Treatment 1). 

The results of this investigation showed clearly that rinds of fruit SUbjected to 2 s steam 

(95°C) followed by 4 min in zero pH solution were preserved a red colour and that this 

colour intensified with time after harvest. In contrast, rinds of control fruit, fruit subjected 

to 2 s steam (95°C) only, or fruit immersed for 4 min in zero pH solution all darkened, were 

less intense and changed to brown after 24 hr storage at 30°C. 

2.8 ELECTROLYTE LEAKAGE 

2.8.1 Introduction 

Electrolyte leakage of cells may be empirically determined by immersing whole fruits in 

distilled water and recording the electrical conductivity after a set time. Fruit rinds are then 

autoclaved and electrical conductivity of the final autoclaved solution is agai": recorded. 

Electrolyte leakage after the set time is expressed as a percentage of the total electrical 
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conductivity (Tongdee, 19953). The objectives of this study were to determine whether there 

were any differences in electrolyte leakage between control fruit and fruit treated with water 

at 56°C or 65°C, boiling water (98°C) or steam (95°C), thus providing accurate 

quantification of membrane breakdown. 

2.8.2 Materials and Methods 

Five 2 kg boxes of mature, red 'Mauritius' litchi fruit were obtained from Tzaneen, Northern 

Province in January 1996. On the day of harvest, fruit from four of the boxes were treated 

as follows: (1) immersed for 30 s in distilled water (56°C) followed by 4 min immersion in 

zero pH solution; (2) immersed for 30 s in distilled water (65°C) followed by 4 min 

immersion in zero pH solution; (3) immersed for 30 s in boiling water (98°C) followed by 

4 min immersion in zero pH solution; (4) subjected to 2 s steam (98°C) followed by 4 min 

immersion in zero pH solution. Immediately after treatment, batches of 10 fruit from each 

box, together with untreated control fruit, were immersed in separate beakers of distilled 

water. Electrical conductivity of the different solutions was recorded after 5 min and again 

after 65 min immersion using a HANNA Ht 8733 portable conductivity meter. Fruit were 

then removed from the beakers and peeled. Rinds were returned to respective beakers and 

autoclaved using a HIRA YAMA
e 

HA 3D autoclaver. Electrical conductivity was again 

recorded and electrolyte leakage was calculated by expressing electrical conductivity at 5 min 

and 65 min as a percentage of the total electrical conductivity after autoclaving. 

2.8.3 Results and Discussion 

Rinds of untreated control fruit had the lowest electrolyte leakage (ca 12 %) and this remained 

unchanged after 1 hr immersion in distilled water. Electrolyte leakage of fruit rinds immersed 

in distilled water at 56° or 65°C, boiling water (98°C) and steam (95°C) were all 

significantl y greater than those of control fruit 5 min after treatment (ca 16 to 18 % ), and 

increased to between 17 and 19 % by 65 min immersion in distilled water. Both 5 min and 

3 Mrs Sing Ching Tongdee, pers. comm., Director Post-Harvest Operations, Thailand 
Institute for Scientific and Technological Research, Bangkok, Thailand. 
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65 min after treatment, electrolyte leakage of boiling water (98°C) and steam (95°C), 

although greater on average than the distilled water treatment (56° and 65°C) (between 17 

and 19% compared to 16 to 18% respectively) was not significantly different (Fig. 22). 

Clearly, all the heat treatments investigated here, viz. immersion for 30 s in distilled water 

at 56°C, 65°C and boiling water (98°C), and 2 s of steam (95°C) were equally effective in 

causing membrane breakdown in litchi rinds , as electrolyte leakage was significantly higher 

in these fruit than control fruit, both 5 min and 65 min after treatment. However, immersion 

for 30 s in distilled water at 56° and 65°C was ineffective when coupled with 4 min 

immersion in zero pH solution. Here, the work of Underhill and Critchley (1993) provides 

and explanation for this observation as they showed that temperatures of 60°C resulted in 

rind browning because of heat injury. 

Figure 22 

56C 65C 98C Steam (95 C) 
Heat Treatments 

Im s min ~ 6S min I 

Electrolyte leakage (%) of 'Mauritius' litchi fruit rinds 5 min and 65 min after 

30 s immersion in distilled water at 56° or 65°C, boiling water (98°C), or 

after 2 s steam (95°C) compared to untreated control fruit 



2.9 POLVPHENOL OXIDASE ACTIVITY 

2.9.1 Introduction 
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According to Underhill (1989), moisture loss from the litchi pericarp under ambient conditions 

results in cell plasmolysis and eventually cell death. Initially, desiccation led to an increase in vacuole 

pH, as well as changes in membrane integrity and subsequent release of polyphenol oxidases 

(specifically catechol-oxidase in the case of fruit according to Mayer and Harel (1981», peroxidase 

and other enzymes in their active forms. Polyphenol oxidase has long been known to cause 

physiological browning (Joslyn and Ponting, 1951), and Huang et aI. (1990) showed that polyphenol 

oxidase is the main enzyme involved in anthocyanidin breakdown in litchi rinds during storage. In 

healthy cells of plant tissue, polyphenoloxidase is a plastid bound enzyme (Vaughn and Duke, 1981; 

1988; Bar-Nun and Mayer, 1983), and is only activated once it crosses the plastid envelope (Vaughn 

and Duke, 1984). 

Underhill and Critchley (1992) found that rind polyphenol oxidase activity increased during the ftrst 

48 days after anthesis but declined to very low levels with subsequent seed maturation' and fruit flesh 

expansion only to undergo a slight increase again with fruit maturity. They maintaired that these low 

levels suggested a reduced capacity to induce tissue browning. However, Mayer and Harel (1981) 

maintained that previous srudies on many different fruit types have shown that levels of polyphenol 

oxidase are highest during the early stages of development, but drop quite significantly after fruit 

maturity and during ripening. They suggested that the decrease in activity during fruit development, 

implied not only the cessation of enzyme synthesis but also the inactivation, inhibition or 

decomposition of the enzyme. The primary role of polyphenol oxidase is obviously during the initial 

stages of fruit growth, and is largely residual in ripe fruit where it causes unsightly browning. 

Akamine (1960) suggested that polyphenol oxidase was involved in post-harvest browning 

of the litchi rind and was associated with fruit desiccation. Subsequently, Tan (1989) also 

maintained that browning of the litchi rind was due to enzymatic browning caused by 

polyphenol oxidase. Lin et al. (1988) showed that polyphenol oxidase activity in the litchi 

rind increased rapidly after harvest and peaked after 48 hr. In contrast, Zauben:nann et al. 

(1990) observed little change in polyphenol oxidase activity during ambient storage of litchi 
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fruit. Later, Underhill and Critchley (1993) found that polyphenol oxidase activity in the 

litchi rind decreased rapidly after harvest, with a 3-fold reduction in activity within the first 

24 hr after harvest. Subsequently, activity remained fairly constant but decreased slightly 

over time. Coupled with these results, Underhill (1992) and Underhill et al. (1992a) 

maintained that anthocyanin concentrations decreased slowly after harvest, and that it was 

unlikely that degradation of anthocyanins by polyphenol oxidase plays a major role in litchi 

post-harvest browning under ambient conditions. However, polyphenol oxidase is known to 

be limited by latency and substrate availability (Golbeck and Cammarata, 1981). 

Consequently, it seems most likely that polyphenol oxidase is important during the latter 

stages of post-harvest life. Furthermore, even at low concentrations, its presence indicates 

that it is still capable of causing browning reactions provided substrate is not lacking. 

Bagshaw et al. (1991) suggested that browning could be prevented by either reducing stress 

or interfering with the biochemical processes involved. Both high (Song and Kumar, 1996) 

and low temperatures (paull and Chen, 1987; Huang and Wang, 1990) have been shown to 

decrease browning, but Underhill and Critchley (1993) found that polyphenol oxidase activity 

was relatively high in fruit treated for 10 min at 60°C. In view of the above inconsistencies, 

the aim of this investigation was to determine the effects of post-harvest heat and low pH 

treatments on polyphenol oxidase activity in litchi rinds. 

2.9.2 Materials and Methods 

Four 2 kg boxes of mature, red 'Mauritius' litchi fruit were obtained from Malelane, 

Mpumalanga Province in January 1996. On the day of harvest, fruit from three of the boxes 

were treated as follows: (1) sulphur-fumigated (600 g.ton- I fruit); (2) subjected to 2 s steam 

(98°C) only and (3) subjected to 2 s steam (98°C) followed by 4 min immersion in zero pH 

solution. Entire rinds of eight fruit each of untreated, red 'Mauritius' litchi fruit, and fruit 

subjected to 2 s steam (95°C) followed by 4 min in zero pH solution and stored at 30°C, 

were sampled daily up to 5 days after harvest. Similarly, rinds of eight fruit each of sulphur­

fumigated and fruit subjected to 2 s steam (95°C) only were sampled on the day of harvest 

and 24 hr after harvest. The technique was adapted from Golan et al. (1977) and Underhill 

and Critchley (1995), and conditions optimised for litchi rind polyphenol oxidase activity as 
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follows:- individual rinds were cryo-frozen using liquid nitrogen, and 1 g samples 

homogenized in 0.02M sodium phosphate buffer (PH 6.S) for 1 min using an ULTRA 

TURRAX·. The homogenate was extracted on ice for 1 hr and then centrifuged at 3000 

r.p.m. for IS min in a BHG HERMLE ZSlO· centrifuge. A 100 ILl aliquot of supernatant 

was added to 2 ml of 0.02M methyl catechol (PH 6.S) and absorbance read at 410 11m over 

30 s using a BECKMAN DU-6S· spectrophotometer. Polyphenol oxidase activity (units.g-) 

fresh mass) of the different treatments was determined based on the initial linear phase of 

colour change or reaction velocity, compared against a methyl catechol oxidase (Sigma· 

tyrosinase T-77SS) standard curve, and plotted over time (Fig. 23). 

2.9.3 Results and Discussion 

Contrary to expectations, polyphenol oxidase activity was significantly highest in sulphur­

fumigated fruit (ca 600 units.g-) fresh mass) on the day of harvest and was still high (ca 580 

units.g-) fresh mass) at 30°C 24 hr after fumigation. Control fruit polyphenol oxidase activity 

at 30°C was also relatively high on the day of harvest (ca 390 units.g-) fresh mass), increased 

significantly three days after harvest (ca 520 units.g-) fresh mass) and reached ca 700 units.g-) 

fresh mass 5 days after harvest at 30°C. 

In contrast, rinds of fruit subjected to 2 s steam (95°C) only on the day of harvest, had 

significantly lower polyphenol oxidase activity (ca 200 units.g-) fresh mass) than control fruit 

(ca 390 units.g-) fresh mass). However, rinds of fruit subjected to 2 s steam (95°C) followed 

by 4 min in zero pH solution had significantly lowest polyphenol oxidase activity (ca 50 

units.g-) fresh mass). This implies that 2 s steam (95°C) resulted in decreased polyphenol 

oxidase activity but that in conjunction with 4 min of zero pH solution, activity was further 

reduced. Polyphenol oxidase activity in rinds of fruit subjected to 2 s steam (95°C) only, 

increased more than control fruit 24 hr after treatment (ca 510 compared to 320 units.g-) 

fresh mass respectively), whereas polyphenol oxidase activity remained below 80 units.g-) 

fresh mass up to S days after treatment at 30°C. 
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Polyphenol oxidase activity (units.g-! fresh mass) in rinds of control fruit , 

sulphur-fumigated fruit, fruit subjected to 2 s steam (95°C) only, and fruit 

subjected to 2 s steam (95°C) followed by 4 min in zero pH solution 5 days 

after harvest 

Finally, even though 2 s steam (95°C) followed by 4 min in zero pH solution significantly 

reduced polyphenol oxidase activity in litchi fruit rinds when compared to control fruit, and 

fruit subjected to 2 s steam (95°C) only, activity was still detectable at about 80 units.g-! 

fresh mass. Consequently, it appears that physiological browning caused by polyphenol 

oxidase may be significantly inhibited by a 2 s steam (95°C) treatment followed by 4 min 

in zero pH solution, where low pH is known to inhibit enzyme activity (Underhill et al. , 

1992a; b). 



CHAPTER 3 

ELECTRON MICROSCOPY 

3.1 RIND ULTRASTRUCTURE 

3.1.1 Introduction 
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Kaiser (1994b) found on the day of harvest, that retention of pericarp (rind) colour of 

otherwise untreated 'Mauritius' litchi fruit was facilitated by dipping in a pH solution of 0.0 

or less, and then only after immersion for a minimum of 2 min. He hypothesized that zero 

pH solution, being a relatively strong acid, was probably solubilizing pericarp cell 

membranes thus allowing anthocyanins to come into direct contact with zero pH solution 

(made by adjusting pH of distilled water to 0.0 using 32% hydrochloric acid). Subsequently, 

in an effort to achieve adequate membrane breakdown of pericarp cells, he tried diverse 

treatments including 3.5% NaOCI, 40% H20 2, hot water at 56°C and 65°C, and cationic 

(0.5% CTAB) , anionic (0.5% SDS) and non-ionic (0.5% Triton X· 100) detergents. He 

found that immersion of fruit for 30 s in boiling water (98°C) resulted in excellent 

cytoplasmic staining of pericarp cells after 5 min immersion in 1 % Safranine Fast Green. To 

reduce the unsightly flesh browning resulting from this treatment, boiling water was replaced 

by a 2 s exposure to steam (95°C), and this also resulted in excellent cytoplasmic staining 

following 5 min immersion of fruit in 1 % Safranine Fast Green. However, staining of rinds 

by 1 % Safranin Fast Green only provides circumstantial evidence of membrane 

solubilization. Consequently, the aim of this investigation was to determine the effects of the 

most promising treatments, viz. 30 s boiling water (98°C), 2 s steam (95°C), and 2 s steam 

(95°C) followed by 4 min immersion in zero pH solution, on cell membrane integrity and 

to compare this to sulphur-fumigated (600 g.rl) fruit and untreated control fruit. 

3.1.2 Materials and Methods 

Two 2 kg boxes of mature, red 'Mauritius' litchi fruit were obtained from Malelane, 

Mpumalanga Province in January 1996. On the day of harvest eight 'Mauritius' fruit were 

sampled per treatment. Pericarp (rind) samples 3 mm3 in size were excised from untreated 

control fruit, as well as from fruit immersed in boiling water (98°C) for 3d sec, fruit 
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subjected to 2 s steam (9S0C) only, fruit subjected to 2 s steam (9S0C) followed by 4 min 

immersion in zero pH solution, and sulphur-fumigated (600 g.rl) fruit. Samples were fixed 

for 8 hr in 3% glutaraldehyde in a O.OS M sodium cacodylate buffer (PH 7.1), and washed 

twice for 30 min in fresh sodium cacodylate buffer. Samples were then postfixed for 4 hr in 

2 % osmium tetroxide, washed in fresh sodium cacodylate buffer and dehydrated in a graded 

ethanol series (from 10% to 100%). Following postfixation, specimens were resin infiltrated 

using a graded series of ethanol and Spurr's resin (Spurr, 1969). Infiltrated specimens were 

immersed in fresh Spurr's resin, in small labelled aluminium dishes, and placed in an oven 

at 70°C for 16 hr to polymerize the resin. Once cool, specimens were cut out of resin blocks 

and stuck onto perspex stubs with Genchem· Superglue. Blocks were trimmed with glass 

knives on an LKB Ultratome III ultramicrotome, and then ultrathin gold sections (between 

60 and 70 nm thick) were cut using either a diamond or a tungsten-coated glass knife. 

Sections were expanded, using chloroform and picked up on 200 mesh copper grids. Double 

staining, with lead citrate and uranyl acetate (Reynolds, 1963), was followed by examination 

in a Jeol looCX· TEM at an accelerating voltage of 80 kV. Specimens were photographed 

and noteworthy results are presented in Plates 2 and 3 as Figs 24 to 33. 

3.1.3 Results and Discussion 

Cuticles, cell membranes and cell organelles in the cytoplasm of epidermal (Figs 24 and 2S) 

and rind mesocarp parenchyma cells of untreated control fruit were all intact on the day of 

harvest. In contrast, cuticles of fruit immersed in boiling water (98°C) for 30 s (Fig. 26) 

were severely disrupted. Epidermal (Fig. 26) and rind mesocarp parenchyma (Fig. 27) cell 

membranes were also disrupted and protein coagulates were clearly evident in all cells. In 

fruit treated with 2 s steam (9S0C) followed by 4 min in zero pH solution, cell membranes 

of mesocarp parenchyma cells (Fig. 29) were similar in appearance to those subjected to 30 

s boiling water (98°C). Similarly, cuticles were also disrupted (Fig. 28), although this was 

not as severe as with 30 s boiling water (98°C) (cf. Fig. 26). Rind cuticles of fruit treated 

with 2 s steam (9S0C) only (Fig. 30), were disrupted when compared to untreated control 

fruit (Fig. 24). Disruption was intermediate when compared to those treated with 2 s steam 

(9S0C) followed by 4 min immersion in zero pH solution (Fig. 28), implying th:at zero pH 

solution was complementing steam effects in cuticle breakdown. A 2 s steam (9S0C) 
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Plate 2 

Figure 24. Epidermal and cuticular layers of untreated 'Mauritius' litchi fruit rind on the 

day of harvest. C - cuticle, E - epidermal cell 

Figure 25. Intact cytoplasm of epidermal cell of untreated 'Mauritius' litchi fruit rind on 

the day of harvest. CY - cytoplasm 

Figure 26. Epidermal cell of 'Mauritius' litchi fruit rind immersed in boiling water 

(98°C) for 30 s on the day of harvest. C - cuticle, E - epidermal cell 

Figure 27. Mesocarp parenchyma cells of 'Mauritius' litchi fruit rind immersed in boiling 

water (98°C) for 30 s on the day of harvest. M - cell membrane, P -

mesocarp parenchyma cell 

Figure 28. Epidermal cell of 'Mauritius' litchi fruit rind subjected to 2 s steam (95°C) 

followed by 4 min in zero pH solution on the day of harvest. C - cuticle, M -

cell membrane 

Figure 29. Mesocarp parenchyma cells of 'Mauritius' litchi fruit rind subjected to 2 s 

steam (95°C) followed by 4 min in zero pH solution on the day of harvest. 

M - cell membrane, P - mesocarp parenchyma cell 
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Plate 3 

Figure 30. Epidermal cells of 'Mauritius' litchi fruit rind subjected to 2 s steam (95°C) 

only on the day of harvest. C - cuticle, E - epidermal cell, M - cell membrane 

Figure 31. Mesocarp parenchyma cell of 'Mauritius' litchi fruit rind subjected to 2 s 

steam (95°C) only on the day of harvest. M - cell membrane, P - mesocarp 

parenchyma cell 

Figure 32. Epidermal cell of sulphur-fumigated 'Mauritius' litchi fruit rind on the day of 

harvest. C - cuticle, E - epidermal cell 

Figure 33. Mesocarp parenchyma cells of sulphur-fumigated 'Mauritius' litchi fruit rind 

on the day of harvest. M - cell membrane, P - mesocarp parenchyma cell 
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treatment only was however, effective in causing membrane breakdown and protein 

coagulation in mesocarp parenchyma cells (Fig. 31). 

Fuchs et al. (1993) found that after 20 min of sulphur fumigation electrolytic leakage in litchi 

rinds was slightly more than three times that of non-fumigated control fruit. Consequently, 

they suggested that sulphur fumigation significantly increased permeability of plasma 

membranes, thus enabling acid penetration of sulphur-fumigated fruit. The present 

investigation revealed that rind cuticles of sulphur-fumigated fruit (Fig. 32) were indeed 

disrupted. Here, cuticle disruption differed from that in fruit which were subjected to 30 s 

boiling water (98°C) (Fig. 26), 2 s steam (95°C) (Fig. 30), or 2 s steam (95°C) followed 

by zero pH solution (Fig. 28). Rind cuticles of sulphur-fumigated fruit separated from 

epidermal cells in waxy platelets of different thicknesses. Furthermore, although membrane 

breakdown of rind mesocarp parenchyma cells of sulphur-fumigated fruit was clearly evident 

(Fig. 33), cell disruption was not as severe as in those fruit subjected to 30 s boiling water 

(98°C) (Fig. 27), 2 s steam (95°C) (Fig. 31), or 2 s steam (95°C) followed by zero pH 

solution (Fig. 29). 

Clearly, 30 s boiling water (98°C) (Fig. 26), 2 s steam (95°C) (Fig. 30) and sulphur 

fumigation (Fig. 32) all caused rind cuticle disruption when compared to untreated control 

fruit (Fig. 24), but boiling water (98°C) for 30 s was most severe (Fig. 26). A 2 s steam 

(95°C) treatment caused moderate cuticle disruption (Fig. 30), but the effects were enhanced 

when in conjunction with zero pH solution (Fig. 28). Cuticles of sulphur-fumigated fruit 

were also disrupted, as waxy platelets of varying thicknesses separated from the epidermis 

(Fig. 32). Cell membranes of mesocarp parenchyma cells were broken down and protein 

coagulates were evident in fruit subjected to 30 s boiling water (98°C) (Fig. 27), 2 s steam 

(95°C) only (Fig. 31), and 2 s steam (95°C) followed by immersion for 4 min in 'zero pH 

solution (Fig. 29). Cell membranes of sulphur-fumigated mesocarp parenchyma cells were 

also disrupted (Fig. 33) but some organelles were still intact indicating that sulphur 

fumigation was not as effective as either 30 s boiling water (98°C) or 2 s steam (95°C) in 

this regard. In addition, 2 s steam (95°C), and 2 s steam (95°C) followed by 4 min zero pH 

solution had a similar effect. Sulphur fumigation also resulted in cuticle and membrane 
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breakdown as suggested by Fuchs et al. (1993), but this was not as severe as 30 s boiling 

water (98°C) or 2 s steam (95°C). 

3.2 ENERGY DISPERSIVE X-RAY MICROANALYSIS 

3.2.1 Introduction 

Scanning electron microscopy makes use of a focused beam of high energy electrons that 

systematically scans across the specimen surface (Postek et al., 1980). Electron beam­

specimen interactions yield many different electron signals and electromagnetic waves at or 

near the specimen surface, as a result of elastic or inelastic scattering events (Fig. 34) 

(Morgan, 1985). Of these signals, secondary electrons of less than 50 eV are easily drawn 

to a positively biased detector system because of their low energy. Collected electron signals 

are eventually converted to an electronic signal and displayed on a cathode ray tube. The 

display, if photographed, produces a typical scanning electron micrograph of an enlarged 

specimen image (postek et al., 1980). 

Incident electrons 

Cathodoluminescence ~~iec(>ndary electrons 

Elastically scattered electrons Inelastically scattered electrons 

Figure 34 

Unscattered electrons 

Schematic diagram of major interactions of high energy electron beams within 

a solid specimen (Redrawn from Morgan, 1985) 
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X-ray emissions, another of the signals, permit stabilization of atoms following ionization by 

the electron beam. An atom consists of a discrete nucleus surrounded by shells of orbiting 

electrons. These electrons have higher potential energy with increasing distance from the 

nucleus, but potential energy of electrons within a given shell varies discretely with 

individual atomic numbers. Consequently, energy differences between various shells change 

characteristically (Morgan, 1985). When an electron from an inner atomic shell is dislodged 

by the electron beam, an electron from an outer shell will fill the vacancy. Differences in 

energies between final states of transitional electrons may be emitted as X-radiation (Postek 

et al., 1980). X-ray emissions from ionized specimens may thus be detected by spectrometry 

allowing identification of individual elements (Morgan, 1985). 

Figure 35 
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Typical X-ray spectrum of an exocarp peak of 'Mauritius' litchi fruit rind 

subjected to 2 s steam (95°C) followed by 4 min in zero pH solution 
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X-ray detection may either be by wavelength-dispersive spectrometry (WDS) or by energy­

dispersive spectrometry (EDS). As implied by the name, only one band of X-rays can be 

analyzed by the former. Consequently, it is limited in that only one element can be analyzed 

per run. Energy dispersive spectrometry however, enables simultaneous display of all mid­

energy (ca 1-20 eV) X-rays collected during a single analysis period, thus allowing 

identification of almost all elements present in the specimen. Notable exceptions are carbon 

and boron, however the latter may be detected if the beryllium window isolating the crystal 

from the microscope vacuum is withdrawn. The beryllium window stops crystal 

contamination by preventing deposition of microscope-derived products, and absorbs 

backscattered electrons (Morgan, 1985). 

In addition to being pure, semiconductor detectors must be poor electrical conductors and bad 

insulators, although electrons must be able to pass through with some difficulty. Only man­

made crystals of silicon and germanium have proven suitable as detectors, and inherent 

impurities in man-made crystals are counteracted using "lithium drifting". Here, lithium is 

evaporated onto the crystal at 400°C and at that temperature, some lithium diffuses into the 

crystal occupying crystalline interstitial sites resulting in a semiconductor crystal with 

effectively no impurities at all (postek et al., 1980). Crystals, which are coated on both ends 

with a thin layer of gold, are cryogenically cooled with liquid nitrogen and held under 

vacuum to reduce lithium mobility and to limit electronic noise. When an X-ray strikes the 

active region of the crystal, energy imparted results in a series of internal collisions which, 

via electron excitation, ultimately results in a high voltage being maintained between the two 

gold contact layers. Voltage is amplified and digitized by a pulse-processor. Pulse numbers 

in each channel are entered and stored by a multichannel analyzer until a complete X-ray 

spectrum is accumulated, with energy on the horizontal axis and number of photons counted 

per energy interval on the vertical axis (cf. Fig. 35) (Morgan, 1985). 

Energy dispersive X-ray microanalysis thus enables both semi-quantitative and qualitative 

analyses. Sulphur residues are known to occur in sulphur-fumigated fruit even after 28 days 

of storage at 1°C (Kremer-Kohne, 1993) however, the distribution of sulphur on the fruit 

surface and endocarp has not been determined. Likewise, it was thought that chlorine 

residues might be found on the rind surface of fruit immersed for 2 s in zero pH solution, 
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since zero pH solution is made using 32 % hydrochloric acid. Consequently, the aim of this 

investigation was to examine the mineral ion concentrations on rind peaks and troughs , and 

the endocarps of sulphur-fumigated (600g.rl) fruit, fruit subjected to 2 s steam (95°C) 

followed by 4 min immersion in zero pH solution, and to compare these to untreated control 

fruit. 

3.2.2 Materials and Methods 

One 2 kg box of mature, red ' Mauritius' litchi fruit was obtained from Malelane, Mpumalanga 

Province in January 1996. Eight fruit were subjected to 2 s steam (95°C) followed by 4 min 

in zero pH solution (hereafter referred to as "zero pH treated fruit") while a further eight fruit 

were fumigated with sulphur (600 g.r1 fruit) . Rinds of all these fruit as well as those of 

untreated control fruit were air dried and mounted, with double sided sticky tape, on numbered 

brass stubs and coated with carbon using an Edwards E306A ~ high vacuum coater. Specimens 

were elevated to 15 mm, tilted at 15° and viewed using an Hitachi S570~ SEM at an 

accelerating voltage of 20 kV, and characterized with an OXFORD LINK eXLII~ energy 

dispersive X-ray microanalyzer (EDX) fitted with a PENTAFET~ semiconductor detector 

containing lithium drifted silicon crystals isolated from the microscope vacuum by a beryllium 

window. Eight readings of different exocarp peaks (protuberances) and troughs, and the 

endocarp (or inner surface of fruit rind) of individual fruit were recorded for both cultivars. 

This enabled an analysis of variance (Appendix 1) examining treatment differences and results 

are presented in Figs 36 to 44 . 

3.2.3 Results and Discussion 

As expected, chlorine concentrations (Fig. 36) were higher in exocarp peaks and troughs of 

zero pH treated fruit (p < 0.001). Surprisingly however, chlorine concentrations were also high 

in endocarps of these fruit too (p < 0.00 1). This implies that zero pH penetrated the entire fruit 

rind, confmning that efficient membrane breakdown (section 2.8.3) took place throughout the 

rind, thus facilitating colour preservation (section 2.7.3) . Furthermore, aftertastes In the fruit 

pulp were not an issue (cf. section 2.6.2) . 
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Endocarp 

Chlorine concentration (% total mineral elements) of rind endocarp and of 

exocarp peaks and troughs of 'Mauritius' litchi fruit treated with 2 s steam 

(95°C) followed by zero pH solution, or sulphur (600 g.r1
) compared to 

untreated control fruit 
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Aluminium concentration (% total mineral elements) of rind endocarp and of 

exocarp peaks and troughs of 'Mauritius' litchi fruit treated with 2 s steam 

(95°C) followed by zero pH solution, or sulphur (600 g.rl) compared to 

untreated control fruit 
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Chromium concentration (% total mineral elements) of rind endocarp and of 

exocarp peaks and troughs of 'Mauritius' litchi fruit treated with 2 s steam 

(95°C) followed by zero pH solution, or sulphur (600 g.rl) compared to 

untreated control fruit 
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Potassium concentration (% total mineral elements) of rind endocarp and of 

exocarp peaks and troughs of 'Mauritius' litchi fruit treated with 2 s steam 

(95°C) followed by zero pH solution, or sulphur (600 g.r1
) compared to 

untreated control fruit 
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Iron concentration (% total mineral elements) of rind endocarp and of exocarp 

peaks and troughs of 'Mauritius' litchi fruit treated with 2 s steam (95°C) 

followed by zero pH solution, or sulphur (600 g. rl) compared to untreated 

control fruit 

Sulphur concentrations (Fig. 37), although present in non-fumigated fruit, were consistently 

highest in endocarps and exocarp peaks and troughs of sulphur-fumigated fruit, implying that 

sulphur penetration occurred throughout the entire rind. Concentrations were however, only 

slightly more than double those found in untreated control fruit, and zero pH treated fruit 

(p<O.OOI), but it is possible that air drying of litchi pericarps allowed a greater 

concentration of sulphur to escape from pericarps by atmospheric diffusion. 

Aluminium concentrations (Fig. 38) in all pericarp regions examined were less than 4 % of 

total mineral elements while concentrations of exocarp peaks were highest and endocarps 

lowest. Sulphur-fumigated fruit had slightly higher average aluminium concentrations but 

treatment differences were not significant (P=0.759). When taking endocarps and the 

exocarp peaks and troughs into account, calcium concentrations (Fig. 39) were highest in 

untreated control fruit and lowest in sulphur-fumigated fruit (P < (01). Calcium 

concentrations were however, highest (ca 70%) in troughs of zero pH treated fruit. 
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Potassium concentrations (Fig. 42) however, varied greatly from as little as 5 % in troughs 

of zero pH treated fruit to as much as ca 75 % in endocarps of sulphur-fumigated fruit. This 

is possibly because K+ ions do not form part of the structural component of plant cells , and 

are mostly vacuolar bound thus being subject to leakage when membranes are disrupted 

(Salisbury and Ross, 1992). 

Similarly, chromium (Fig. 40), magnesium (Fig. 41) and silicon (Fig. 43) concentrations 

were slightly higher in sulphur-fumigated fruit (P < 0.001). Concentrations of all three 

pericarp regions examined were relatively low in the case of chromium (ca 1.5%), 

magnesium « 10%) and silicon (ca 18%) thus overshadowing these differences. In contrast, 

potassium concentrations (Fig. 42) varied from as little as 5 % in troughs of zero pH treated 

fruit to as much as ca 75 % in endocarps of sulphur-fumigated fruit. Slight differences 

observed in iron (Fig. 44) concentrations between treatments were not significant (P=0.095) . 

Consistent differences in element concentrations between endocarps and exocarp peaks and 

troughs were not observed. In some cases endocarp element concentrations were highest ego 

chromium (Fig. 40) and potassium (Fig. 42) , but in others they were lowest, ego aluminium 

(Fig. 38), silicon (Fig. 43) and iron (Fig. 44) , and still others they were intermediate ego 

magnesium (Fig. 41) and calcium (Fig. 39). Variability observed may simply be accounted 

for by the fact that one is dealing with a semi-quantitative technique which penetrates only 

a few cell layers into the specimen surface. Furthermore, concentrations are calculated as a 

percentage of the total quantity of mineral elements identified. Consequently, only large 

differences will show up clearly as was the case with chlorine (Fig. 36) and sulphur (Fig. 

37). 
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RIND ANTHOCYANIN BIOCHEMISTRY 

4.1 INTRODUCTION 
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'Mauritius' litchi rind colour may be preserved for 28 days in storage at 1°C, following 

immersion of fruit in zero pH for 4 min (section 2.7). Anthocyanins, which impart red 

colour in litchi rinds, are normally very unstable in aqueous solution (Macheix et al., 1990) 

and fruit products (Markakis, 1982), and may undergo structural transformations or 

complexations (Mazza and Miniati, 1993) or decompose rapidly unless stabilized (Jurd, 

1972). Consequently, since zero pH solution preserved the red colour of litchis, it was 

thought that rind anthocyanins may have undergone some form of molecular complexing. The 

aim of this investigation was to use high performance liquid chromatography, to separate 

anthocyanin pigments in litchi rinds of fruit subjected to 2 s of steam (95°C) followed by 4 

min immersion in zero pH and to compare these pigment separation of untreated control fruit 

and fruit treated with sulphur, 2 s steam (95°C) only, 30 s in boiling water (98°C) and 4 min 

in zero pH only. 

Qualitative extraction of anthocyanins is difficult and most investigations have extracted 

anthocyanins by repeated maceration of plant material with a small amount of hydrochloric 

acid (0.1 - 1.0%), which acts as a stabilizer in methanol or ethanol (Harborne, 1980b; 

Francis, 1982; Strack and Wray, 1989; Macheix et al., 1990; Forni et al., 1993; Mazza and 

Miniati, 1993). Withy et al. (1993) stabilized raspberry anthocyanins with 50 mg.kg- I S02 

by adding 1 % potassium metabisulfite solution to raspberry extract. Lee and Wicker (1991a; 

b) extracted litchi anthocyanins by homogenizing litchi rinds with 50 mi acidified ethanol 

(1.5 N hydrochloric acid- 95% ethanol (15:85 v/v))_ In the author's opinion, these extraction 

techniques may well give an indication as to which anthocyanins are present, however 

sulphur dioxide, hydrochloric acid, methanol and ethanol are all known to react with 

anthocyanins (Jurd, 1972), complicating qualitative analyses. Thus the use of other extraction 
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solvents, including butanol, ethanoic acid, water, formic acid and acetone in different 

combinations was suggested (Cowan, 199@). 

Quantitative extraction of anthocyanins from plant tissue has always been difficult, and it 

seems that there is no single completely satisfactory method. Grape skins extracted with 1 % 

aqueous hydrochloric acid had 8 % of the total anthocyanins in the fourth fraction. Qualitative 

analysis of each fraction showed that relative amounts of different pigments in each fraction 

were reasonably constant (Harborne, 1980b). Information about relative amounts may thus 

be obtained even though they have not been completely extracted from plant tissue. Thus, 

for the purposes of this investigation, litchi rinds were extracted four times and a 100 J.'l 

aliquot of the combined extracts withdrawn for use in high performance liquid 

chromatography (HPLC) . 

4.2 MATERIALS AND METHODS 

Eight 2 kg boxes of mature, red 'Mauritius' fruit were obtained from Nelspruit, Mpumalanga 

province in January 1996. Rind tissue from eight untreated, red 'Mauritius' litchi fruit, and 

eight fruit subjected to 2 s steam (95°C) followed by 4 min in zero pH solution were each 

extracted, using an ULTRA TURRAX·, with methanoic acid containing 1 % conc HCl. 

Extracts were centrifuged for 10 min at 15000 r.p.m. in an HITACHI HIMAe- centrifuge 

and then chromatographed on Whatman· cellulose TLC plate using butanoic acid- acetic acid­

water (4:1:5, v/v). Individual bands were excised from the TLC plate, resuspended in 

methanoic acid containing 1 % conc HCI, and scanned between 510 and 540 nm using a 

Beckman· DU -65 spectrophotometer. 

Initially, for HPLC extraction, 5 g of sulphur-fumigated litchi rind material was extracted 

on the day of harvest with methanol- 32% hydrochloric acid (99:1, v/v) (Strack and Wray, 

1989; Macheix et al., 1990; Forni et ai. , 1993; Mazza and Miniati, 1993) or 1.5 N 

hydrochloric acid- 95% ethanol (15:85, v/v) after Lee and Wicker (l991a; b), but the colour 

3Dr A.K.Cowan, pers. comm., Department of Horticultural Science, University 
of Natal, Pietermaritzburg. 
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of both extracts became deep red within a few minutes indicating that a pH sensitive reaction 

was taking place. Furthermore, extraction with hydrochloric acid is not desirable since 

differences if any, would not be distinguishable between untreated control fruit, sulphur­

fumigated fruit and those treated with zero pH solution. Consequently, butanol- ethanoic 

acid- water (4: 1:5, v/v) was used, but again extract colour changed within a few minutes. 

Finally, water- acetone- formic acid (49:50:1, v/v) was used and the colour of the extract 

was unchanged after 1 hr at 21 ° C. 

Untreated, mature, red 'Mauritius' litchi fruit, and fruit which had been subjected to 2 s 

steam (95°C) followed by 4 min in zero pH solution on the day of harvest were stored at 

30°C for 5 and 4 days respectively. Each day 2 replicates of 5 g of rind material taken from 

eight fruit were homogenized in 20 mi water- acetone- formic acid (49:50:1, v/v) with an 

ULTRA TURRAX· and centrifuged for 10 min at 15 000 r.p.m. in an HITACHI HIMAe­

centrifuge. This extraction was repeated four times and the resulting supernatant liquid 

combined for each replicate and a 2 mi aliquot passed through five WATERS SEP-PA~ 

cartridges in series. On the day of harvest a further 40 g of untreated rind material was 

frozen in liquid nitrogen and crushed to a powder, which was then stored at 30°C. Every 1.5 

hr, 5 g of powder was extracted using the procedure described above for rinds of sulphur­

fumigated fruit, fruit treated with zero pH solution only, fruit immersed in boiling water 

(98°C) for 30 s followed by 4 min in zero pH solution, fruit subjected to 2 s steam (95°C) 

only, and fruit subjected to 2 s steam (95°C) followed by 4 min in zero pH solution were 

extracted after 28 days of storage at 1°C. 

In each instance, immediately after extraction, a 100 p.i aliquot of pure extract was injected 

into a WATERS· HPLC supported by MILLENUIUM 2010· chromatography manager. 

Because of the unstable nature of anthocyanins, injections were not replicated as differences 

observed between samples after the run time of 80 min would have been the result of changes 

in chemical structure rather than differences in the biological system. Conditions were: a 

WATERS Nova Pak
e 

C18 reverse phase column (3.9 x 150 mm) packed with 

dimethyloctadecylsilyl bonded amorphous silica (particle size 4 p.m); a WATERS· guard 

column; gradient elution with 5 % ethanoic acid/water (A) and 100% acetonitrile (B); flow 

rate 1.0 mi.min-J
, and detection at 520 nm using a WATERS® Programmable 
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Spectrophotometric scan of red pigment separated by TLC using butanoic 
acid- acetone-water (4:1:5 V/V) . 
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Multiwavelength Detector. Initial solvent was 100% A and 0% B but this was changed 

linearly to 0% A and 100% B within 60 min and then returned to the initial condition. Due 

to the very unstable nature of anthocyanins, replication was not performed and results are 

thus purely indicative. Furthermore, it was not the intention of this investigation to determine 

the exact concentration of individual anthocyanins. Consequently, internal standards were not 

used to calculate percentage recovery and it was assumed that the peak area for each 

compound is an indication of comparative concentration in the rind (cf. Harborne, 1980b). 

Area under individual peaks separated by HPLC were however, integrated and presented as 

units in tables 5 to 8. 

4.3 RESULTS AND DISCUSSION 

Only two pigments were separated out by TLC using butanoic acid- acetic acid- water (4: 1 :5, 

v/v). Spectrophotometric scanning of these pigments in methanoic acid in 1 % conc. HCI, 

revealed that they had wavelength maxima of 535 nm (Fig. 45) and 520 nm (Fig. 46), and 

when compared to visible wavelength maxima of (Harborne, 1980a) it was confirmed that 

they were cyanidin and pelargonidin. Lee and Wicker (1991a; b) identified cyanidin-3-

rutinoside (rutinose is a disaccharide viz. 3-0-a-L-rhamnosyl-D-glucose according to 

Budavari et al. (1989)) and cyanidin-3-glucoside. In addition to these, Prasad and Jha (1978) 

identified pelargonidin-3-glucoside and pelargonidin-3 ,5-diglucoside. Based on these findings, 

the four peaks separated out by HPLC for 'Mauritius' litchi rinds in this investigation were 

tentatively assumed to be these four anthocyanins. The author is however, fully aware that 

the identification of the various sugar moeities was not carried out in a rigorous chemical 

manner, and is based on the earlier published findings as cited. 

Cyanidin-3-rutinoside was by far the most abundant pigment in rinds of untreated, mature, 

red 'Mauritius' litchi fruit stored at 30°C for 5 days, but a 66% decrease was observed from 

the day of harvest to five days after harvest (Table 5). Pelargonidin-3-glucoside and 

pelargonidin-3,5-diglucoside concentrations had also decreased after 4 days but only by ca 

18 % and 2 % respectively (Table 5). Cyanidin-3-rutinoside in fruit rinds which were crushed 

to a powder in liquid nitrogen on the day of harvest, and sampled every 1.5 hr als~ decreased 

with time and by 9 hr after crushing, decreased by ca 99% (Table 6). However, 
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TABLE 5 Area (units) of total anthocyanins from the day of harvest in rinds of 

untreated, mature, red 'Mauritius' litchi fruit stored at 30°C for 5 days. 

Days Cyanidin-3- Pelargonidin-3- Pelargonidin-3,5-
rutinoside glucoside diglucoside 

0 6689766 143499 27783 

1 6523872 123666 29422 

2 4952117 92232 86706 

3 2133486 102368 55408 

4 2471923 138579 24825 

5 2258596 116612 27352 

TABLE 6 Area (units) of total anthocyanins in rinds of untreated, mature, red 

'Mauritius' litchi fruit crushed on the day of harvest and sampled every one 

and a half hours. 

Time Cyanidin-3- Pelargonidin-3- Pelargonidin-3,5-
rutinoside glucoside diglucoside 

1.5 8192810 119291 62338 

3 6750351 338421 97178 

4.5 2310164 241929 50152 

6 1032880 241434 38638 

7.5 365496 148548 59221 

9 44341 111805 65235 
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concentrations of pelargonidin-3-glucoside and pelargonidin-3,5-diglucoside in the same 

extract remained fairly constant during this time (Table 6). It appears thus that cyanidin is 

less stable than pelargonidin in untreated control fruit, as the rate of breakdown was faster 

in all fruit stored at 30°C. 

Rinds of fruit subjected to 2 s steam (95°C) followed by 4 min in zero pH solution and 

stored at 30°C for 4 days had consistently high concentrations of cyanidin-3-rutinoside, but 

no cyanidin-3-glucoside (Table 7). Cyanidin-3-rutinoside concentrations had almost doubled 

by 12 hr after treatment and then increased further to almost 3 times the inital concentration 

24 hr after treatment. Concentrations then remained fairly constant up to 48 hr after 

treatment but then decreased after a further 24 hr to almost double that initially and this 

concentration remained constant up to 4 days after harvest. Pelargonidin-3-glucoside 

concentrations declined steadily during this time and had declined by 50% after 4 days 

storage at 30°C. Concentrations of pelargonidin-3,5-diglucoside however, remained fairly 

constant and had only declined by 20% after 4 days storage at 30°C (fable 7). 

Only cyanidin-3-rutinoside, pelargonidin-3-glucoside and pelargonidin-3,5-diglucoside were 

found in untreated control fruit, and fruit subjected to 2 s steam (95°C) followed by 4 min 

in zero pH solution, stored at 30°C for 5 and 4 days respectively. Self associations, co­

pigmentation or chelation of anthocyanins result in additional compounds being formed (Jurd, 

1963; 1972). Consequently, if any of these stabilizations had taken place in the present study, 

additional compounds would have been separated by HPLC. However, in the case of zero 

pH treated fruit no additional compounds were separated out when compared to control fruit. 

Consequently, it seems that stability conferred on anth~yanins at zero pH must be a pH 

effect as described by Strack and Wray (1989) , and explains why rind colour of zero pH 

treated fruit is preserved after several days at room temperature (section 2.7). Furthermore, 

after fruit were subjected to 2 s steam (95°C) followed by 4 min in zero pH solution, 

concentrations of cyanidin-3-rutinoside almost trebled by 24 hr after treatment and then 

declined by 4 days after treatment but was still about double that found in fruit rinds treated 

on the day of harvest, confirming that zero pH solution actually enhances rind colour (section 

2.7.3). This increase may be as a result of either colourless precursors or chromenols being 

converted to cyanidin-3-rutinoside at zero pH. 
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TABLE 7 Area (units) of total anthocyanins in rinds of mature 'Mauritius' litchi fruit 

subjected to 2 s steam (95°C) followed by 4 min in zero pH solution, and 

stored at 30°C from the day of harvest to 4 days after harvest. 

Days Cyanidin-3- Pelargonidin-3- Pelargonidin-3,5-

rutinoside glucoside diglucoside 

0 4259781 123069 53520 

0.5 8206006 122058 29469 

1 11548974 117890 30733 

2 11486455 65347 36887 

3 8249381 60955 39127 

4 7873592 68781 42811 

TABLE 8 Area (units) of total anthocyanins in rinds of mature 'Mauritius' litchi fruit 

fumigated with sulphur, immersed in zero pH solution only, immersed in 30 

s boiling water followed by 4 min in zero pH solution, or subjected to 2 s 

steam (95°C) only, after 28 days storage at 1°C 

Treatment Cyanidin- Cyanidin- Pelargonidin- Pelargonidin-
3- 3- 3-glucoside 3,5-

glucoside rutinoside diglucoside 

sulphur 593014 2686197 23168 24152 

zero pH only 3616281 2548341 51655 13401 

30 s (98°C) 5844192 6770770 41042 42109 
+ 4 min 

2 s steam 411799 812006 77860 65276 
(95°C) only 

2 s steam 0 4336826 108131 61604 
(95°C) + 4 min 
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Interestingly, after 28 days of storage at 1°C, cyanidin-3-glucoside was identified in rinds 

of sulphur-fumigated (600g.rl) fruit, fruit immersed in zero pH solution only, fruit immersed 

for 30 s in boiling water (98°C) followed by 4 min immersion in zero pH solution, and fruit 

subjected to 2 s steam (95°C) only, but not in fruit subjected to 2 s steam (95°C) followed 

by 4 min immersion in zero pH solution (Table 8). It is possible that 2 s steam (95°C) 

followed by 4 min immersion in zero pH may have stabilized cyanidin-3-rutinoside, ie. 

prevented or resisted chemical transformation of the pigment. For all other treatments, 

cyanidin-3-rutinoside may have been partially hydrolyzed to cyanidin-3-glucoside and 

rhamnose (Budavari et al., 1989), explaining the presence of cyanidin-3-glucoside. 

After 28 days of storage, concentrations of cyanidin-3-glucoside and cyanidin-3 ,5-diglucoside 

in rinds of sulphur-fumigated fruit were relatively low when compared to the those in rinds 

of fruit immersed for in zero pH solution only, or fruit immersed for 30 s in boiling water 

(98°C) followed by 4 min immersion in zero pH. Concentrations of cyanidin-3-glucoside and 

cyanidin-3,5-diglucoside were however, lowest in fruit subjected to 2 s steam (95°C) only, 

confirming that steam caused breakdown of anthocyanin pigments. Concentrations of 

pelargonidin-3-glucoside and pelargonidin-3,5-diglucoside were relatively low in rinds of all 

these fruit when compared to fruit subjected to 2 s steam (95°C) followed by 4 min 

immersion in zero pH (Table 8). 
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GENERAL DISCUSSION AND CONCLUSIONS 

The South African litchi industry has relied heavily on post-harvest sulphur fumigation of 

litchi fruit for several years. Initially, sulphur fumigation was intended as a fungicidal 

treatment but also prevented rind browning. Unfortunately however, rinds of sulphur­

fumigated litchi fruit are yellow to pale green but change to a pink colour after 28 days in 

storage at 1°C. Resultant fruit have a low consumer appeal and this coupled with the facts 

that sulphur is ineffective against some fungi, which are now resistant; causes an aftertaste 

in the pulp, and constitutes a health hazard for asthmatics, has led to a limit of 10 mg. kg-l 

(fresh pulp mass) being set for some European markets. The South African litchi industry 

thus regards alternative post-harvest treatments to sulphur-fumigation as their number one 

research priority. Consequently, the main thrust of the research reported in this thesis aimed 

at finding a viable alternative to sulphur fumigation which would not only result in fruit with 

attractive, disease-free, red rinds but would also be palatable. 

Litchi rind colour is initially a function of chlorophyll, which is a constituent of young 

actively growing fruit, and later anthocyanins, which confer the attractive red colour in 

mature fruit. Anthocyanins are synthesized during the latter stages of fruit development, and 

pre-harvest anthocyanin biosynthesis may be influenced by several factors including light, 

temperature, nutritional effects and phytohormones. It was not possible in the present study 

to manipulate or investigate pre-harvest factors affecting rind colour, as the author was 

entirely dependent on fruit donated by growers. It is however, important that pre-harvest 

factors are investigated, since pre-harvest anthocyanin accumulation influences the amount 

of colour in mature fruit, which in turn determines fruit cosmetic appeal. The latter is 

particularly important on export markets, where the fruit is still relatively unknown. It is well 

known, for example, that rind colour in more tropical and especially humid countries such 

as Madagascar, Mauritius, Reunion and Thailand is far more intensive and attractive than in 

the South African litchi growing areas. The author, supported by the South African Litchi 

Growers' Association, made several attempts to air freight fruit from Madagascar and 

Thailand to compare with local fruit, but these attempts were unsuccessful. 
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Red rind colour of litchi fruit is transient when compared to most fleshy fruits ego red apple 

skins. The most likely reasons for this are the lack of a substantial protective rind cuticle to 

reduce desiccation and the presence of a relatively thin pericarp in litchis (Underhill and 

Simons, 1993). In apples, the juicy hypanthium tissue is continuous with the skin (Smith, 

1977) and probably acts as a cushion against water loss, reducing desiccation and thus rind 

browning. Rind desiccation in litchi fruit leads to a rise in cell sap pH, which is strongly 

associated with the loss of red rind colour. 

Underhill and co-workers in Australia, undertook several detailed investigations concerning 

litchi rind browning, during the late 1980's and 1990's, some of the work being concurrent 

with the author's study. Many of these studies were of an exploratory nature (Underhill, 

1989; 1992; Underhill and Critchley, 1992; 1993; Underhill and Simmons, 1993; Underhill 

and Critchley, 1995) and shed new light on anatomical, biochemical and physiological 

aspects of litchi rind browning. Indeed, information drawn from some of these investigations 

provided the basis for the initial hypotheses investigated in this thesis, viz. localization of 

anthocyanins; browning reactions, including enzyme degradation and anthocyanin breakdown, 

and the importance of post-harvest micro-cracking. 

Later investigations examined methods of preventing litchi rind browning (Underhill et al., 

1992b; Underhill, 1994; Underhill et al., 1994), but these investigations were aimed at 

reversing the effects of post-harvest sulphur fumigation. Similarly, concurrent investigations 

by Zaubermann et al. (1990; 1991) in Israel, attempted to re-introduce red colour in litchi 

rinds using low pH dips following post-harvest sulphur fumigation. After an extensive 

literature survey of anthocyanin biochemistry, the author hypothesized that sulphur 

fumigation could be circumvented and the desirable anthocyanins fixed in situ, provided that 

anthocyanins could be accessed by solubilizing membranes by means other than the standard 

sulphur treatment. 

Several attempts were made at solubilizing rind cell membranes (section 2.3), and 30 s 

immersion in boiling water (98°C) (section 2.4) resulted in good membrane breakdown 

(section 2.8). Unfortunately, fruit pulp browning resulted, and in retrospect a study 

examining the nature of pulp discolouration may have provided indications of alternative 
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methods of rind membrane disruption without discolouration. In any event, anthocyanin 

pigments were preserved in the desirable red form (section 2.7) using a 2 s steam treatment 

(95°C) followed by 4 min immersion in zero pH (section 2.6). Furthermore, this treatment 

proved to be a viable alternative to sulphur fumigation of 'Mauritius' litchi fruit in terms of 

fungal infection, as neither sulphur-fumigated (600 g.r1
) fruit nor fruit sUbjected to steam 

(95°C) for any length of time were infected with fungi after 28 days of storage at 1°C. 

Untreated control fruit and those immersed in zero pH solution for 4 min only were however, 

completely infected by fungi, which implies that steam (95°C) sterilized the fruit, and that 

no reinfection occured under the storage conditions of the trial. This combination of one 

novel (a 2 s steam (95°C) and one established treatment (immersion of fruit in zero pH 

solution) represents the author's original contribution, and resulted in 'Mauritius' litchi fruit 

with red rinds and good internal quality after 28 days storage at 1°C. In this sense the 

author's contribution was facilitated by concurrent pioneering work in both Israel and 

Australia, and the three independent studies complementing each other. 

In terms of anthocyanin biochemistry, spectrophotometry provided evidence that the pigments 

identified in the 'Mauritius' litchi rind were cyanidin and pelargonidin (section 4). The author 

accepts however, that the sugars attached to the anthocyanidins may not be what they are 

labelled and short of rigorous and time consuming chemical isolation of these compounds, 

in effect a Ph.D. in chemistry, there can be no certainty that assumptions drawn are absolute. 

After consultation with Drewes (19964
) however, it was decided that such an intensive study 

would not be justified. 

Colour preservation of litchi rinds achieved in the present study as a result of fruit being 

subjected to 2 s steam (95°C) followed by 4 min immersion in zero pH solution was not the 

result of co-pigmentation nor self-associations. Should any of these stabilizations have taken 

place then new compounds would have produced distinct HPLC peaks, and this was not the 

case. Consequently, it appears that colour preservation in litchi rinds achieved in this study 

was solely a pH effect. A future, more basic study of the litchi rind anthocyanin chemical 

4 Prof.S.E. Drewes, pers. comm., Department of Chemistry, University of Natal, 
Pietermaritzburg, South Africa. 
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composition would however, be very interesting, although it would be unlikely to add to the 

purely applied aspects of post-harvest fruit treatments. 

Polyphenol oxidase has been implicated in enzymatic browning of litchi rinds by several 

workers, but Underhill and Critchley (1993) suggested that it is unlikely that polyphenol 

oxidase plays a major role in rind browning under ambient conditions, since concentrations 

in harvested fruit are relatively low. The author believes that provided the substrate is not 

lacking, these lower levels of polyphenol oxidase will still cause browning of litchi rinds 

albeit at a reduced rate. Indeed the results of this investigation indicated that a steam 

treatment (95°C) significantly reduced polyphenol oxidase activity, and this was 

complemented when used in conjunction with zero pH solution. Underhill and Critchley 

(1995) maintained that peroxidase activity is more important in litchi rind browning than 

previously thought. Peroxidase activity has only been identified in the vascular traces of the 

exocarp and mesocarp of the rind, and it seems unlikely that peroxidase plays a major role 

in post-harvest rind browning. This hypothesis was not confirmed in the present study and 

future investigations could examine this aspect of litchi rind browning. In hindsight, the 

present study may have been improved if the author had better access to a larger number of 

fruit, over a longer harvest period. Unfortunately, all these constraints were beyond the 

author's control and despite co-operative research trips to Tzaneen in January, and Thailand 

in May of 1995 and 1996, the problems were not solved as adequate research facilities to 

perform detailed scientific investigations were not available at either of these centres. 

Semi-commercial trials using 2 s steam followed by 4 min in zero pH solution as a post­

harvest treatment for litchis were undertaken in 1995 and 1996 in Mpumalanga province, 

South Africa and in conjunction with the Thailand Institute for Scientific and Technological 

Research in Bangkok, Thailand, and proved most successful for 'Mauritius' and 'Hong 

Huay'. Some criticism has been levelled at steam treatment, as the general grower perception 

is that steam generators are costly, and are not justifiable for a crop that has a harvest season 

of at most one month for a given area in South Africa. Consequently, there is scope for 

future research aimed at solubilizing cell and organelle membranes by means other than 

steam. Techniques which should be investigated include ozonation, fluorine and chlorine gas, 

all of which are free radical scavengers and should effect rind cell membrane b~eak down. 
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These chemicals are however, dangerous and precise application is imperative. Finally, with 

slight modifications the findings of this study may well be applicable to other litchi cultivars, 

and promising results were obtained for 'Three Months Red' and 'Hong Huay' but not 

'Maclean Red', and indeed other subtropical and tropical fruits where red rind colour is 

imparted by anthocyanins and is short lived, ego rambutans. Further investigations are 

recommended. 
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SUMMARY 

Anthocyanins and their corresponding anthocyanidins are extremely unstable in litchi rinds, 

and if they are not treated after harvest, will undergo structural changes forming colourless 

compounds. Under extreme conditions they may even break down resulting in brown 

phenolic compounds. In South Africa, litchi fruit are fumigated with sulphur immediately 

after harvest to prevent rinds from turning brown. Sulphur is undesirable because of health 

reasons, residues, aftertaste, non-efficacy against some fungi, and it renders the fruit an 

unsightly yellowish green colour. Consequently, it was imperative that research aimed at 

eliminating sulphur fumigation be undertaken. Indeed this topic has been the South African 

Litchi Growers' Association number one research priority for the last 5 years (Milne, 

19965). 

A detailed review of the literature led the author to the conclusion that anthocyanins could 

be fixed in situ thereby eliminating the necessity for sulphur fumigation. Several attempts 

were made at solubilizing or breaking down the functional integrity of rind cell membranes 

to expose anthocyanins to low pH solutions, which were shown by Zaubermann et al. (1990; 

1991) to stabilize the desirable red rind colour. Initially, hydrogen peroxide, sodium 

hypochlorite and cationic, anionic and non-ionic detergents were used but were only partially 

successful. The use of heat distilled water at 56° and 65°C was also investigated, but these 

temperatures proved unsuccessful. Concurrent active research in Australia (Underhill, 1992; 

Underhill and Critchley 1993) showed that temperatures of up to 60°C for 10 min induced 

rind browning, probably by stimulating polyphenol oxidase activity. Consequently, the use 

of boiling water was investigated as it was hoped that this extreme temperature would 

inactivate browning enzymes. A 30 s dip in boiling water (98°C) resulted in excellent uptake 

of 1 % Safranin Fast Green, which stains cytoplasmic contents, after 4 min, providing 

circumstantial evidence of membrane break down. Later, transmission electron microscopy 

confirmed that this treatment resulted in excellent membrane breakdown. When fruit were 

immersed for 4 min in zero pH solution, made by adjusting the pH of distilled water to 0.0 

2Dr D.L.Milne, pers. comm., Merensky Technological Services, Box 14, 
Duiwelskloof, Northern Province, South Africa. 
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with 32% hydrochloric acid, immediately after a 30 s dip in boiling water (98°C), red rind 

colour was still fixed after 28 days storage at 1°C. Unfortunately, some of the heat of boiling 

water was transferred to the top few layers of cells in the fruit pulp and resulted in death and 

subsequent unsightly browning of these cells. 

The author then substituted steam (95°C) for boiling water (98°C) as it was hypothesized that 

the effects of steam, being a vapour, would be localized on the surface of fruit. Furthermore, 

the latent heat of steam imparted by condensation is some three times that of boiling water. 

Consequently, application of steam is an intense burst of energy on the fruit surface, 

provided treatment time is sufficiently short. This hypothesis proved correct and fruit 

subjected to 2 s steam (95°C) followed by 4 min in zero pH solution had excellent red 

colour, normal pulp colour, and tasted similar to control fruit after 28 days storage at 1°C. 

Ultrastructural studies showed that 2 s steam (95 ° C) resulted in membrane breakdown of rind 

mesocarp cells, but this was enhanced when used in conjunction with 4 min in zero pH 

solution. Further evidence of membrane breakdown was provided by electrolytic leakage 

studies which showed that rinds of untreated control fruit had lowest electrolytic leakage, 

while those of fruit immersed for 30 s in boiling water (98°C), and SUbjected to 2 s steam 

(95°C) had highest electrolytic leakage. 

A treatment of 2 s steam (95°C) was required to break down rind cell membranes to allow 

access to anthocyanins. However, by shattering the cuticle and solubilizing cell and organelle 

membranes, the barrier between fruit and the atmosphere is removed. This allows moisture 

to escape from fruit rinds and flesh, which then shrivel. In addition, total soluble solids 

levels (TSS) of the fruit flesh increase in these fruit as a direct consequence of water loss. 

Consequently, some form of artificial rind covering was necessary to maintain moisture 

levels after treatment. Fruit which were dipped in 1 % Vaporgarde after 2 s steam (95°C) 

followed by 4 min in zero pH solution were firm, and had similar flesh TSS levels to control 

fruit after 28 days storage at 1°C. 

It was thought that 2 s steam followed by 4 min in zero pH solution might result in chemical 

residues on the fruit rind surface since zero pH solution is made using hydrochloric acid. 

Consequently, energy dispersive x-ray microanalysis was undertaken to compare chemical 
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element concentrations on the outer and inner surfaces of rinds of control fruit, sulphur­

fumigated (600 g.r l fruit) fruit and fruit subjected to 2 s steam (95°C) followed by 4 min in 

zero pH solution. Chlorine concentrations were relatively high in fruit subjected to 2 s steam 

(95°C) followed by 4 min in zero pH solution, but aftertastes were not an issue in the fruit 

pulp. Sulphur concentrations were high in rinds of sulphur-fumigated fruit, but were also 

present at low concentrations in non-sulphur-fumigated fruit. 

Colour quantification of rind colour confirmed visual assessments as control fruit lightened 

when stored at 30°C and hue changed from red to reddish orange. Rinds of fruit subjected 

to 2 s steam (95°C) only, lost colour rapidly and were a pale yellow hue 24 hr after 

treatment. Hue of rinds of fruit subjected to 2 s steam (95°C) followed by 4 min in zero pH 

solution changed from reddish orange to red within 4 hr and then became darker up to 24 

hr after treatment, indicating that 2 s steam (95°C) followed by 4 min in zero pH solution 

actually enhances red fruit colour. Red colour was maintained in fruit held at 30°C for 72 

hr but became lighter after 24 hr. Monitoring of individual anthocyanin concentrations 

confirmed these findings as the presumed cyanidin-3-rutinoside, pelargonidin-3-glucoside and 

pelargonidin-3,5-diglucoside all decreased proportionally in control fruit over 5 days storage 

at 30°C. Concentrations of cyanidin-3-rutinoside in fruit subjected to 2 s steam (95°C) 

followed by 4 min in zero pH solution increased immediately after treatment but then 

decreased by 4 days after treatment at 30°C. 
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APPENDIX 1 

cf. accompanying computer disk 

'. 



117 

APPENDIX 2 

Programme written by the author for measuring poIyphenoI oxidase activity using a 
Beckman· D U 65 Spectrophotometer where change in absorbance is read over 30 sec at 410 
17m. 

001: Strt 
002: 410 
003: LMDA 
004: ABS 
005: CALB 
006: clrE 
007: MSG cINS 
008: MSG cERT 
010: MSG cSAMP 
011: MSG cLE 
012: RlS 
013: 0.000 
014: STO 000 
015: 36.000 
016: CALL ONT 
017: READ 
018: RCL 000 
019: E+ 
020: CALL POUT 
021: XCHG 
022: prt 
023: XCHG 
024: 5.000 
025: + 
026: STO 000 
027: IbI B 
028: CALL GETT 
029: 5.000 
030: x< =y 
031: GOTO B 
032: dec 001 
033: GOTO A 
034: Ir 
035: CALL CRLF 
036: rtn 
037: MSG c 
038: rtn 



Figure 47 

Figure 48 

Figure 49 

Figure 50 

Figure 51 

Figure 52 

APPENDIX 3 

Plate 4 
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Chromatograph of rind anthocyanins of untreated, mature, red 'Mauritius' 

litchi fruit on the day of harvest. AU = absorbance units, tentatively cy-r = 

cyanidin-3-rutinoside, p-g = pelargonidin-3-glucoside, p-d = pelargonidin-

3,5-diglucoside 

Chromatograph of rind anthocyanins of untreated, mature, red 'Mauritius' 

litchi fruit one day after harvest. AU = absorbance units, tentatively cy-r = 
cyanidin-3-rutinoside, p-g = pelargonidin-3-glucoside, p-d = pelargonidin-

3,5-diglucoside 

Chromatograph of rind anthocyanins of untreated, mature, red 'Mauritius' 

litchi fruit two days after harvest. AU = absorbance units, tentatively cy-r = 

cyanidin-3-rutinoside, p-g = pelargonidin-3-glucoside, p-d = pelargonidin-

3,5 -diglucoside 

Chromatograph of rind anthocyanins of untreated, mature, red 'Mauritius' 

litchi fruit three days after harvest. AU = absorbance units, tentatively cy-r 

= cyanidin-3-rutinoside, p-g = pelargonidin-3-glucoside, p-d = pelargonidin-

3,5-diglucoside 

Chromatograph of rind anthocyanins of untreated, mature, red 'Mauritius' 

litchi fruit four days after harvest. AU = absorbance units, tentatively cy-r = 
cyanidin-3-rutinoside, p-g = pelargonidin-3-glucoside, p-d = pelargonidin-

3,5-diglucoside 

Chromatograph of rind anthocyanins of untreated, mature, red 'Mauritius' 

litchi fruit five days after harvest. AU = absorbance units, tentatively cy-r = 
cyanidin-3-rutinoside, p-g = pelargonidin-3-g1ucoside, p-d = pe}argonidin-

3,5-diglucoside 
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Figure 53 

Figure 54 

Figure 55 

Figure 56 

Figure 57 

Figure 58 

Plate 5 

Chromatograph of rind anthocyanins of untreated, mature, red 'Mauritius' 

litchi fruit crushed on the day of harvest and sampled after 1.5 hr. AU = 

absorbance units, tentatively cy-r = cyanidin-3-rutinoside, p-g = 

pelargonidin-3-glucoside, p-d = pelargonidin-3,5-diglucoside 

Chromatograph of rind anthocyanins of untreated, mature, red 'Mauritius' 

litchi fruit crushed on the day of harvest and sampled after 3 hr. AU = 

absorbance units, tentatively cy-r = cyanidin-3-rutinoside, p-g = 
pelargonidin-3-glucoside, p-d = pelargonidin-3,5-diglucoside 

Chromatograph of rind anthocyanins of untreated, mature, red 'Mauritius' 

litchi fruit crushed on the day of harvest and sampled after 4.5 hr. AU = 

absorbance units, tentatively cy-r = cyanidin-3-rutinoside, p-g = 

pelargonidin-3-glucoside, p-d = pelargonidin-3 ,5-diglucoside 

Chromatograph of rind anthocyanins of untreated, mature, red 'Mauritius' 

litchi fruit crushed on the day of harvest and sampled after 6 hr. AU = 

absorbance units, tentatively cy-r = cyanidin-3-rutinoside, p-g = 
pelargonidin-3-glucoside, p-d = pelargonidin-3 ,5-diglucoside 

Chromatograph of rind anthocyanins of untreated, mature, red 'Mauritius' 

litchi fruit crushed on the day of harvest and sampled after 7.5 hr. AU = 

absorbance units, tentatively cy-r = cyanidin-3-rutinoside, p-g = 

pelargonidin-3-glucoside, p-d = pelargonidin-3,5-diglucoside 

Chromatograph of rind anthocyanins of untreated, mature, red 'Mauritius' 

litchi fruit crushed on the day of harvest and sampled after 9 hr. AU = 

absorbance units, tentatively cy-r = cyanidin-3-rutinoside, p-g = 
pelargonidin-3-glucoside, p-d = pelargonidin-3,5-diglucoside 
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Figure 59 

Figure 60 

Figure 61 

Figure 62 

Figure 63 

Figure 64 

Plate 6 

Chromatograph of rind anthocyanins of 'Mauritius' litchi fruit subjected to 2 

s steam (95°C) followed by 4 min in zero pH solution on the day of harvest, 

immediately after treatment. AU = absorbance units, tentatively cy-r = 
cyanidin-3-rutinoside, p-g = pelargonidin-3-glucoside, p-d = pelargonidin-

3,5-diglucoside 

Chromatograph of rind anthocyanins of 'Mauritius' litchi fruit subjected to 2 

s steam (95°C) followed by 4 min in zero pH solution on the day of harvest, 

12 hr after treatment. AU = absorbance units, tentatively cy-r = cyanidin-3-

rutinoside, p-g = pelargonidin-3-glucoside 

Chromatograph of rind anthocyanins of 'Mauritius' litchi fruit subjected to 2 

s steam (95°C) followed by 4 min in zero pH solution on the day of harvest, 

24 hr after treatment. AU = absorbance units, tentatively cy-r = cyanidin-3-

rutinoside, p-glu = pelargonidin-3-glucoside, p-d = pelargonidin-3,5-

diglucoside 

Chromatograph of rind anthocyanins of 'Mauritius' litchi fruit subjected to 2 

s steam (95°C) followed by 4 min in zero pH solution on the day of harvest, 

2 days after treatment. AU = absorbance units, tentatively cy-r = cyanidin-3-

rutinoside, p-g = pelargonidin-3-glucoside, p-d = pelargonidin-3,5-

diglucoside 

Chromatograph of rind anthocyanins of 'Mauritius' litchi fruit subjected to 2 

s steam (95°C) followed by 4 min in zero pH solution on the day of harvest, 

3 days after treatment. AU = absorbance units, tentatively cy-r = cyanidin-3-

rutinoside, p-g = pelargonidin-3-glucoside, p-d = pelargonidin-3,5-

diglucoside 

Chromatograph of rind anthocyanins of 'Mauritius' litchi fruit subjected to 2 

s steam (95°C) followed by 4 min in zero pH solution on the day of harvest, 

4 days after treatment. AU = absorbance units, tentatively cy-r = cyanidin-3-

rutinoside, p-g = pelargonidin-3-glucoside, p-d = pelargsmidin-3,5-

diglucoside 
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Figure 65 

Figure 66 

Figure 67 

Figure 68 

Figure 69 

Plate 7 

Chromatograph of rind anthocyanins of sulphur-fumigated (600g.rl) 

'Mauritius' litchi fruit treated on the day of harvest, after 28 days of storage 

at 1°C. AU = absorbance units, tentatively cy-g = cyanidin-3-glucoside, cy-r 

= cyanidin-3-rutinoside, p-g = pelargonidin-3-glucoside 

Chromatograph of rind anthocyanins of 'Mauritius' litchi fruit subjected to 4 

min in zero pH solution only on the day of harvest, after 28 days of storage 

at 1°C. AU = absorbance units, tentatively cy-g = cyanidin-3-glucoside, cy-r 

= cyanidin-3-rutinoside, p-g = pelargonidin-3-glucoside 

Chromatograph of rind anthocyanins of 'Mauritius' litchi fruit immersed in 

boiling water (98°C) followed by 4 min in zero pH solution on the day of 

harvest, after 28 days of storage at 1°C. AU = absorbance units, tentatively 

cy-g = cyanidin-3-glucoside, cy-r = cyanidin-3-rutinoside, p-g = 
pelargonidin-3-glucoside 

Chromatograph of rind anthocyanins of 'Mauritius' litchi fruit subjected to 2 

s steam (95°C) only on the day of harvest, after 28 days of storage at 1°C. 

AU = absorbance units, tentatively cy-g = cyanidin-3-glucoside, cy-r = 
cyanidin-3-rutinoside, p-g = pelargonidin-3-glucoside, p-d = pelargonidin-

3,5-diglucoside 

Chromatograph of rind anthocyanins of 'Mauritius' litchi fruit subjected to 2 

s steam (95°C) followed by 4 min in zero pH solution, after 28 days of 

storage at 1°C. AU = absorbance units, tentatively cy-r = cyanidin-3-

rutinoside, p-g = pelargonidin-3-glucoside, p-d = pelargonidin-3,5-

diglucoside 
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