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TRN-SR2:   Transportin-SR2 

TNPO3:   Transportin 3 

SP:    Seropositive 

rs number:   A conventional method in scientific literature to refer to SNPs 
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ABSTRACT 

 

Objective 

Humans differ substantially with respect to susceptibility to human immunodeficiency 

virus type 1 (HIV-1) infection and disease progression. This heterogeneity is attributed 

to the interplay between the environment, viral diversity, immune response and host 

genetics. This study focused on host genetics. We studied the association of single 

nucleotide polymorphisms (SNPs) in peptidyl prolyl isomerase A (PPIA), transportin 3 

(TNPO3) and PC4 or SFRS1 interacting protein 1 (PSIP1) genes with HIV-1 infection 

and disease progression.  These genes code for Cyclophilin A (CypA), Transportin-SR2 

(TRN-SR2) and Lens epithelium derived growth factor/p75 (LEDGF/p75) proteins 

respectively, which are all validated HIV replication cofactors in vitro. 

 

Methods 

One SNP A1650G in the PPIA gene was genotyped in 168 HIV-1 negative and 47 

acutely infected individuals using polymerase chain reaction-restriction fragment length 

polymorphism (PCR-RFLP). 6 intronic and 2 exonic haplotype tagging (ht) SNPs 

(rs13242262; rs2305325; rs11768572; rs1154330; rs35060568; rs8043; rs6957529; 

rs10229001) in the TNPO3 gene, 4 intronic ht SNPs (rs2277191, rs1033056, 

rs12339417 and rs10283923) and 1 exonic SNP (rs61744944, Q472L) in the PSIP1 

gene were genotyped in 195 HIV-1 negative and 52 acutely infected individuals using 
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TaqMan assays. The rs1154330, rs2277191, rs12339417 and rs61744944 were further 

genotyped in 403 chronically infected individuals. CypA and LEDGF/p75 messenger 

RNA (mRNA) expression levels in peripheral blood mononuclear cells (PBMCs) were 

quantified by real-time reverse transcriptase polymerase chain reaction (RT-PCR). The 

impact of the Q472L mutation on the interaction of LEDGF/p75 with HIV-1 integrase (IN) 

was measured by AlphaScreen. 

 

Results 

The minor allele (G) of SNP A1650G (1650G) in the promoter region of PPIA was 

significantly associated with higher viral load (p<0.01), lower CD4+ T cell counts 

(p<0.01) and showed a possible association with rapid CD4+ T cell decline (p=0.05). 

The 1650G was further associated with higher CypA expression post HIV-1 infection. 

The minor allele (G) of rs1154330 in the intron region of TNPO3 was associated with 

faster HIV-1 acquisition (p<0.01), lower CD4+ T cell counts, higher viral load during 

primary infection (p<0.05) and rapid CD4+ T cells decline (p<0.01). The minor allele (A) 

of rs2277191 (rs2277191A) in the intron region of PSIP1 was more frequent among 

seropositives (p=0.06). Among individuals followed longitudinally, rs2277191A was 

associated with higher likelihood of HIV-1 acquisition (p=0.08) and rapid CD4+T cell 

decline (p=0.04) in the recently infected (primary infection) cohort. In contrast, the minor 

allele (C) of rs12339417 (rs12339417C) also in the intron region of PSIP1 was 

associated with higher CD4+ T cell counts during primary infection. The rs12339417C 

was also associated with slower rate of CD4+ T cell decline (p=0.02) and lower mRNA 
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levels of LEDGF/p75 (p<0.01). Seroconverters had higher preinfection mRNA levels of 

LEDGF/p75 compared to nonseroconverters (p<0.01) and these levels decreased after 

HIV-1 infection (p=0.02). The Q472L mutation showed approximately 2-fold decrease in 

the association constant (Kd), suggesting stronger binding to HIV-1 integrase. Our 

findings demonstrate, for the first time, that genetic polymorphisms in the TNPO3 and 

PSIP1 genes may be associated with susceptibility to HIV-1 infection and the disease 

progression. These data provide in vivo evidence that TRN-SR2 and LEDGF/p75 are 

important host cofactors for HIV-1 replication. This is also the first study to show the 

association of genetic polymorphisms in the PPIA gene with disease outcome in a 

population (South African) with high burden of HIV-1 infection. 

 

Conclusions 

Genetic variation in HIV-1 replication cofactors may be associated with disease 

outcome in a South African population. These data strongly support the role of these 

HIV replication cofactors in disease pathogenesis in vivo and suggest that these factors 

are possible targets for therapeutic interventions.  However, these data will need to be 

replicated in larger cohorts to confirm the effect of these genetic variants.  Further 

studies on how to target these factors in antiviral strategies are needed. 
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1. INTRODUCTION 

In1981, the Centers for Disease Control and Prevention (CDC) reported that 3 hospitals in 

Los Angeles, California in the United States had been treating 5 active homosexual young 

men for Pneumocystis carinii pneumonia, for the period October 1980 – May 1981. These 

patients also had a laboratory confirmed cytomegalovirus (CMV) infection and Candida 

mucosal infection. These infections are known as opportunistic infections since they occur in 

immunocompromised patients. At about the same time, another CDC report mentioned 26 

cases of Kaposi‟s sarcoma among homosexual males, and that eight had died within 2 years 

of diagnosis [1]. The term “acquired immune deficiency syndrome” (AIDS) was used for the 

first time in 1982 to describe this disease, which was suspected to have been caused by an 

infectious agent transmitted sexually or through contaminated blood or blood products. A 

year later (1983), Luc Montagnier‟s group from the Institut Pasteur, Paris, France, discovered 

the human immunodeficiency virus type 1 (HIV-1) as the infectious agent that causes AIDS 

[2] and this was confirmed by two other independent research groups [3, 4]. 

 

More than 25 million people have died of AIDS since 1981 and there are still increasing 

numbers of people living with HIV. 33.4 million people were estimated to be living with HIV in 

2008, which was 20% higher than the number in 2000 and a prevalence of approximately 

threefold higher than in 1990 (http://www.unaids.org). This report estimated that 2.7 million 

new infections occurred in 2008. The increasing number of people living with HIV could be 

explained by a combined effect of continued high rates of new HIV infections in addition to 

the beneficial impact of antiretroviral therapy. 

http://www.unaids.org/
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Interestingly, UNAIDS 2010 epidemiological data reported that the number of new infections 

had fallen by 19% since 1999, the year in which it is thought that the epidemic peaked, 

globally (http://www.unaids.org). This report also states that of the estimated 15 million 

people living with HIV in low- and middle- income countries who need treatment today, over 

one third of them have access–translating into fewer AIDS deaths. Although the 

epidemiological estimates appear to suggest that the HIV epidemic has stabilized, sub-

Saharan Africa remains the region most heavily affected by HIV, accounting for most new 

HIV infections and world‟s AIDS-related deaths in 2010.  

 

Females continue to be affected disproportionately by HIV in sub-Saharan Africa, accounting 

for approximately 60% of estimated HIV infections in this region [5]. Social, legal and 

economic disadvantages contribute towards this high HIV infection rate observed in females. 

The world‟s response to HIV/AIDS has grown and improved considerably over the past three 

decades. However, universal access to antiretroviral treatment, prevention and continuous 

HIV-1 research is required to gain the upper hand against the AIDS epidemic 

(http://www.unaids.org). 

 

http://www.unaids.org/
http://www.unaids.org/
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1.1 An overview of HIV-1 infection 

HIV-1 is a retrovirus belonging to the lentiviral subfamily. Lentiviruses consist of non-

oncogenic retroviruses that are characterized by long incubation periods and persistent 

infection. Like all retroviruses, HIV-1 is an enveloped positive strand RNA virus that 

replicates through inserting its DNA intermediate into the host cell genome [6].  

 

HIV-1 envelope is composed of a lipid bilayer of the host-cell membrane origin, gained during 

the budding process, and viral envelope glycoprotein (Env). The glycoprotein is formed of 

heterodimers, each containing a gp120 subunit on the outside of the membrane and a 

transmembrane gp41 subunit. Together, the two Env subunits mediate viral entry with the 

gp120 subunit being responsible for binding to the receptor (CD4) and coreceptor (CCR5 or 

CXCR4) on the host cell, and gp41 is needed for subsequent fusion of the viral and cellular 

membranes. The inside of the HIV-1 envelope is lined by units of matrix (MA) protein, helping 

to anchor the gp41 and gp120. HIV-1 is composed of two copies of single-stranded RNA 

enclosed by a conical capsid protein (CA) comprising the viral protein p24 [7].  
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Figure 1.1. Cross-sectional diagram of the HIV-1 virion organization. 

 

These two RNA copies are associated with the nucleocapsid (NC) proteins (p7 and p6) that 

protect the RNA from digestion by nucleases. Viral enzymes reverse transcriptase (RT), 

protease (PR) and integrase (IN) are also found within the CA (fig. 1.1). In addition, HIV-1 

contains accessory proteins: viral protein R (Vpr); negative regulatory factor (Nef); and virion 

infectivity factor (Vif) (fig. 1.1.1) [8]. 
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Figure 1.1.1. HIV-1 genome organization. 

 

The largest three genes of HIV-1 transcribed are the gag, pol, and env. Gag is processed 

into proteins that make up the core of the viral particles, which are MA, CA, NC, and p6 

proteins. Envelope proteins, gp120 and gp41, are derived from the Env polyprotein, whereas 

the Pol polyprotein is processed into viral enzymes, PR, RT and IN that are encapsulated 

into the core of a virion particle. The other genes encode accessory proteins Vif, Vpr and Nef 

which are also found in the virion core (fig. 1.1.1). Several cellular proteins have also been 

detected in the virion [9].  

 

HIV-1 accessory proteins play important role to ensure efficient and productive HIV-1 

infection. The function of HIV-1 Vif is to suppress a potent antiviral host mechanism mediated 

by apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like 3G (APOBEC3G) [10]. 
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Molecular block or absence of Vif impairs replicative capacity of HIV-1 meaning that HIV-1 

requires Vif for effective viral spread in host cells, particularly in primary CD4+ T cells, the 

natural targets of HIV-1 infection [11]. Nef is expressed abundantly during the early stages of 

HIV-1 infection and is important for replication and progression to AIDS. Nef has three main 

functions: (1) Nef changes the signalling pathways of host cells by interacting with tyrosine 

and serine/threonine kinases, (2) Nef increases the infectivity of the virus after cell entry and, 

(3) Nef decreases the expression of CD4 and major histocompatibility complex class I (MHC 

I) antigens on the surface of infected cells by interacting with the components of endocytic 

machinery [8]. The molecular mechanism of Nef-mediated down regulation of CD4 may be 

important for optimal virus replication and may facilitate the release of virions.  

 

Viral protein R (Vpr) plays an important part in two unusual aspects of the interaction 

between HIV-1 and the host cell. Vpr prevents infected cells from proliferation, by interfering 

with normal cell-cycle control, and it collaborates with the MA to enable HIV-1 to enter the 

nucleus of nondividing cells [12, 13]. The induction of G2 cell cycle arrest by Vpr is thought to 

indirectly enhance viral replication by increasing transcription from the long terminal repeat 

(LTR).  

 

Tat is the transactivating protein of HIV-1 LTR for the retroviral replication. In the presence of 

Tat for transactivation, the efficiency of HIV-1 genome transcription is a hundred-fold higher 

than that of the non-Tat-activated ones [4]. The Tat protein has also been shown to play a 

crucial role in AIDS pathogenesis by inducing neurotoxicity in AIDS patients contributing to 
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the development of HIV-associated dementia [14]. HIV-1 Tat also deregulates cytokines 

expression in the immune cells, induces apoptosis in neuronal cells, and interacts with other 

cellular factors to favour its own survival [15]. These processes may inadvertently develop a 

favourable environment for opportunistic infections [16]. Rev stabilizes the viral unspliced and 

single spliced RNA and promotes its export from the nucleus by binding to the Rev 

responsive element (RRE), a specific RNA structure found in the env coding region [17]. Vpu, 

the smallest of the proteins encoded by HIV-1, is the transmembrane protein that interacts 

with the CD4 molecule in the rough-endoplasmic reticulum (RER), resulting in its degradation 

via the proteasome pathway [18]. 

 

1.2 HIV-1 Subtypes 

HIV-1 is classified into M, N, O and P groups. M group represents the major group of HIV-1 

strains and it accounts for more than 90 percent of HIV-1 infections worldwide [19]. Groups 

N, O and P are not spread worldwide but mainly confined to West and Central Africa [20-22]. 

A hallmark of lentiviruses is their extensive genetic variability due to the high error rate of the 

reverse transcriptase enzyme, the recombinogenic properties of the diploid viral genome, 

and the fast turnover of the virions in HIV-1 infected individuals. This characteristic of 

lentiviruses culminates in many strains and subtypes within the same type (reviewed in [23]). 

 

The subtypes of group M are classified into: A-D, F-H, J-K and circulating recombinant forms 

(CRFs). Subtype B of HIV-1 is most common in Europe, America, Japan, Australia and some 

Asian countries, while subtype A, C and D are more common in Africa. The other subtypes F, 
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G, H, J and K are rare but spread through Africa, South America, and some parts of Europe. 

When a naïve cell is coinfected with two viruses of different subtypes, the genetic material of 

both viruses may mix during the replication process resulting in a new viral strain called a 

circulating recombinant form (CRF) [21]. Virus mutation and replication are likely to result in 

new HIV genetic subtypes and CRFs. 

 

1.3 The overview of the HIV-1 Replication Cycle. 

HIV-1 infect and replicate in CD4+ T cells, dendritic cells and macrophages thereby 

functionally impairing immune cells resulting in immune deficiency [24]. The replication 

process of HIV-1 starts with the entry of the virus into the host cell through the attachment of 

the viral gp120 to the cellular CD4 receptor. This interaction induces conformational change 

of gp120, enabling it to bind to a co-receptor, CCR5 or CXCR4. This binding triggers another 

conformational change in the gp140/gp120/co-receptor complex, enabling the fusion 

between the virus and the host membrane resulting in the HIV-1 core being released into the 

cytoplasm (reviewed in [25]). This is followed by the synthesis of viral copy DNA (cDNA) from 

the viral RNA genome, through reverse transcription.  

 

Reverse transcription takes place within the reverse transcription complex (RTC), constituted 

by infecting virion core proteins, cellular proteins and the viral RNA genome [26, 27]. 

Following the completion of viral cDNA synthesis, the RTC matures into the pre-integration 

complex (PIC) [28]. The PIC then migrates towards the nucleus, probably by using cellular 

motors such as dynein to move along the cell cytoskeleton [26, 29].  
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At the nuclear membrane, the viral PIC has to transverse through the nuclear pores which 

allow the diffusion of ions and molecules smaller than 9 nm in diameter. However, the 

diameter of the PIC is 56 nm [30] which grossly exceeds the diffusion limit (reviewed in [31]). 

Surprisingly, HIV-1 PIC is actively transported during interphase, reflecting its ability to 

efficiently infect non-dividing cells [32, 33]. Although a number of HIV-1 proteins that 

constitute the PIC have been implicated in nuclear import because they carry sequences that 

may serve as nuclear localization signals (NLS) [34, 35], this field of HIV-1 biology remains 

relatively muddled. 

 

Figure 1.3. A schematic diagram showing HIV-1 replication cycle. 
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The PIC associates with the host chromosomes upon nuclear entry, at which point the viral 

cDNA is integrated. From this point on, the provirus remains part of the cellular genome as 

long as the cell survives. The provirus resides latently in the cell, forming a viral reservoir; 

alternatively, activation of transcription of viral genes can initiate the formation of the new 

virions. When transcription starts, multiple spliced mRNA encoding Tat, Rev, and Nef 

proteins necessary for enhanced and efficient HIV-1 replication get produced. Binding of Tat 

to the LTR boosts HIV transcription due to the assembly of processive transcription 

complexes of the LTR promoter. Rev allows nuclear export of full-length genomic RNA, as 

well as singly spliced mRNA, resulting in the production of Gag, Pol and Env.  

 

The viral proteins and genomic RNA assemble into newly formed particles at the cellular 

membrane which contains the expressed envelope proteins. Immature viral particles bud 

from the cellular membrane or in endosomes that release the viral particles upon fusion of 

the endosome with the cellular membrane. The viral particles maturate outside of the cell 

which involves proteolytic processing of the viral Gag, and Gag-pol polyproteins by the viral 

protease (reviewed in [36]). 

 

Lentiviral infections persist lifelong as a function both of their ability to integrate their genome 

into the host chromosome and their ability to evade host immunity [36]. Their ability to evade 

host immunity may be due both to high mutation rates, and to their ability to infect the 

immune system, such as macrophages and T lymphocyte cells.  
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1.4 Natural History of HIV Infection 

HIV-1 infection proceeds through different phases (fig. 1.4) starting with the acute phase of 

infection, which is characterized by rapid viral replication and spreading, which is usually 

accompanied by a symptomatic period of disease. Following the acute phase of infection is a 

latent period (viral set point), during which the virus is brought into equilibrium of replication 

and relative immune control and no disease occurs. The last phase of infection is the chronic 

phase. It is during this phase where high levels of viral replication resume at some later time, 

resulting in disease [37]. 

 

Figure 1.4. Dynamics of peripheral blood CD4+ T cell counts and plasma viral load during a 

typical course of HIV infection. The three major phases of infection are shown: acute, 

chronic, and AIDS [38]. 
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Damages caused by lentiviruses accumulate slowly over time and lead to the destruction of 

the immune system, making victims vulnerable to opportunistic infections. This is the AIDS 

stage of the disease that ultimately leads to death of the infected person. Once these people 

reach a CD4 counts below 200 cells/mm3 of blood they are then diagnosed as having AIDS 

and are at risk of developing serious opportunistic infections such as Pneumocystis carinii 

pneumonia (PCP), Mycobacterium avium complex (MAC), and cytomegalovirus (CMV) [3, 

37].  

 

1.5 Interindividual variability in susceptibility to HIV-1 infection and disease   

progression 

HIV-1 has been the most thoroughly studied virus since its discovery, but the accumulated 

knowledge has not afforded researchers the ability to design therapeutic or prophylactic 

interventions that will halt the AIDS pandemic. The intensive study of HIV-1/AIDS has found 

differences between individuals in susceptibility to HIV-1 infection and disease progression 

(reviewed in [39]). This variability is attributed to the complex interplay between the virus, 

host genetics, immune response and environment (fig. 1.5). 

 

HIV-1 has a small genome of only 9 genes (fig.1.1.1), which encode 15 proteins as a result of 

post-translational cleavage.  Due to this limited genome, the virus relies on human proteins 

referred to as HIV-1 replication cofactors for productive infection [40-42]. Previous research 

on HIV-1 and host genetics has revealed numerous human gene variants that modulate the 

host response to HIV-1 exposure [43-45]. Human genetic variation offers a partial 

explanation why some HIV-1 infected individuals maintain undetectable levels of viral load 
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(less than 50 copies viral RNA per ml) and experience a prolonged course of HIV-1 infection 

with slow progression to AIDS.  

 

 

 

Figure 1.5.Complex interplay between virus, host (genetics and immune response) and the 

environment. 

 

The availability of genome-wide approaches represents a change in paradigm for complex 

genetic traits; however, most of the information on host genetic factors that modulate HIV-1 

has been obtained from candidate gene studies. The candidate gene study approach has 

been used to analyze allelic variants in genes that are known or suspected to be involved in 

HIV-1 pathogenesis and immune response.  Therefore most genetic markers relevant to HIV-
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1 disease identified using this approach are related to genes that are classified into one of 

the two categories: (1) HIV-1 replication cofactors, host genes coding proteins that are 

implicated in HIV-1 replication cycle and (2) restriction factors, immune related genes coding 

for innate and adaptive immune response factors as well as proteins involved in immune 

regulation and in specific anti-retroviral defense mechanism (reviewed in [46]). 

 

1.5.1 HIV-1 cell entry:  chemokine receptors 

Protection against HIV-1 infection is provided by genetic variation in the CC chemokine 

receptor 5 (CCR5) gene, which encodes the coreceptor for macrophage-tropic (R5) strains of 

HIV-1 expressed on CD4+ T-cells. Deletion of 32 base pairs (Δ32) in the coding region of 

CCR5 gene confers protection against infection by R5 strains in homozygous and delayed 

disease progression in heterozygous individuals for this allele [47-50].  

 

Chemokines are natural ligands for the same receptors hijacked by HIV-1 for cell entry. 

Therefore chemokines can have an effect on HIV-1 entry into the target cell by either 

competing with the virus for coreceptor binding or reducing the expression of the coreceptor 

on the cell surface by inducing their internalization. A number of chemokines have been 

reported to contain genetic polymorphisms that play a role in differential susceptibility to HIV-

1 infection and disease progression. 
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Polymorphisms in the CCL5 gene that codes for RANTES, the CC chemokine, have been 

shown to inhibit HIV-1 replication in vitro, modulate the expression levels of RANTES and 

reduced expression was shown to accelerate disease progression [51, 52]. Other 

polymorphisms in the regulatory regions of CCL5 have been shown to affect susceptibility to 

HIV-1 infection and disease progression [53-57]. Polymorphisms in the CCL3 gene, 

macrophage inflammatory protein 1 α (MIP1α) were shown to be associated with 

susceptibility to HIV-1 infection and disease progression [55, 58]. Low copy numbers of 

CCL31 gene (MIP1αP) were shown to have detrimental effect on HIV-1 outcome [59, 60]. 

Stroma-derived factor 1 (SDF-1) on the other hand is the natural ligand for CXCR4, the 

coreceptor hijacked by CXCR4-using HIV-1 strains (X4) for entry into the target cells. 

Although polymorphisms in the 3‟-untranslated region of the SDF-1 gene have been reported 

to have various effects on HIV-1 disease outcome [61-65], however, these data could not be 

replicated [66]. 

 

1.5.2 Intracellular viral and host protein interaction 

Post cell entry, HIV-1 continues to interact with numerous host proteins with some proteins 

acting as antiviral (restriction) factors, restricting HIV-1 replication while HIV-1 replication 

cofactors enhance productive HIV-1 infection (fig. 1.5.2). HIV-1 exploits numerous human 

proteins in order to successfully complete its replication cycle and have a productive 

infection, as demonstrated by small interfering RNA screens [67-69]. Human genes that code 

for HIV-1 replication factors are ideal candidate genes for genetic variants that modulate HIV 

infection and many of these genes have been investigated in host genetic studies using 

candidate gene approaches.  
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Host genetic studies investigating the association between specific gene variants and HIV-1 

outcomes have been conducted predominantly in the populations from the developed 

countries (United States of America and Europe), mainly Caucasian populations. The focus 

of HIV-1 host genetic studies over the past 15 years, have revealed that genetic variants of 

specific genes modulate HIV-1 pathogenesis. Two of the genes whose variants have been 

confirmed to modulate HIV-1 pathogenesis include peptidyl propyl isomerise A gene (PPIA) 

which encodes the Cyclophilin A protein (CypA) and tumor susceptibility gene 101 (TSG101).  

Figure 1.5.2.The interplay between HIV-1 and cellular proteins during HIV-1 life cycle. 

Cellular proteins that promote HIV-1 replication in the host cell are indicated in green and 

cellular proteins that restrict HIV-1 replication is host cells are in red [70]. 
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TSG101 protein interacts with HIV-1 Gag, P6 protein specifically, and plays a pivotal role in 

the budding process of new viral particles from the plasma membrane of infected cells. Two 

polymorphisms (-T183C and +A181C) in the regulatory region of the TSG101 gene were 

shown to be associated with viral load and disease progression measured by CD4+ T cell 

decline [61, 71]. CypA interacts with HIV-1 capsid protein and as a result gets incorporated 

into the virion particle. Although the exact mode of action which CypA uses to promote HIV-1 

infection is not well elucidated, one theory postulated that CypA is involved in the uncoating 

process of the viral core [72]. Variants in the regulatory region of the PPIA gene have been 

shown to influence CD4+ T-cell depletion and possibly susceptibility to infection [71, 73, 74]. 

Genetic variants in restriction factors such as APOBEC3G and TRIM5α that potently inhibit 

HIV-1 replication have been shown to influence disease progression or susceptibility to HIV 

infection [75-82]. 

 

1.5.3 Immunity 

It is important to note that bulk of the information on the association between host genetics 

and HIV-1 disease outcome have been obtained from studies of immune response genes. 

The most consistent and prominent association identified in HIV-1 host genetic studies are 

those between human leukocyte antigen (HLA) genes and disease outcome. HLA molecules 

are expressed at the cell surface where they present antigenic epitopes, viral epitopes to 

CD8+ T cells, thereby initiating the cytotoxic T cell response. Three genes (HLA-A, HLA-B 

and HLA-C) encode HLA class I proteins.  

 



19 
 

The HLA genes are the most polymorphic genes in the human genome, with HLA class I 

genes presenting an extreme allelic diversity. The potency of elicited immune response in an 

individual infected by HIV-1 is determined by the viral epitopes that their HLA alleles are able 

to present to CD8+ T cells. Some HLA alleles such as HLA-B*57, and to a lesser extent HLA-

B*5801, have been reported to control HIV-1 and be associated with slower progression to 

AIDS in several studies [83-85]. In addition, genome-wide association study reported an 

association between HLA-B*57 and a lower viral set point [54]. Some HLA alleles are thought 

to be population specific, with B*5701 observed almost exclusively in the Caucasian and 

B*5703 being common in individuals of African ancestry.  

 

It is important to note that a SNP that is a surrogate for HLA-B*5701 showed the strongest 

association with HIV-1 viral control or long term non-progression [86-88]. HLA-B*27 has also 

been reported to restrict HIV-1 similar to HLA-B*57 [89, 90]. However, other HLA-B alleles 

such as HLA-B*35Px, are associated with rapid progression to AIDS [91, 92]. The 

associations observed between HIV-1 control and haplotypes in the major histocompatibility 

complex (MHC) and HLA supertypes [93-97] could be due to individual alleles that are 

included in these groups and to the linkage disequilibrium structure of the MHC region. 

Hence, HLA molecules can present different HIV-1 epitopes that result in immune response 

with differential restriction of HIV-1 by CD8+ T cells. 

 

Previous studies have shown that the homozygosity in HLA-A, HLA-B and/or HLA-C gene 

results in restricted (or fewer) epitopes recognized by cytotoxic T lymphocytes and 



20 
 

accelerated disease progression [91, 98]. Genetic variation in HLA-C gene has also been 

shown to be associated with viral control and gene expression [87, 99], suggesting that HLA 

class I molecules play a central role in efficacy of the immune response in certain individuals. 

 

1.5.3.1 Killer cell immunoglobulin-like receptors 

In addition to playing an important role in acquired immunity processes, HLA molecules are 

also ligands for killer cell immunoglobulin-like receptors (KIRs). KIRs are expressed on the 

surface of natural killer (NK) cells and regulate the activation of NK cells through inhibitory or 

activating signaling. NK cells constitute an integral part of the innate immune defense 

mechanism against viruses by directly killing virus infected cells and/or producing cytokines. 

 

Interaction between some HLA molecules and KIRs commonly referred to as HLA-KIR 

combination, influence HIV-1 clinical outcomes [100]. For examples KIR3DL1 and KIR3DS1 

expressed as allelic variants of the same locus on chromosome 19, both protect against 

disease progression when existing in combination with HLA-B molecules that have a Bw4 

serological specificity. Various combinations of inhibitory KIR3DL1 alleles and HLA Bw4 

molecules have been associated with lower HIV-1 viraemia and slow disease progression 

[101]. Likewise, the activating allele KIR2DS1 has been associated with lower viraemia and a 

delayed progression to AIDS when found alone [102], or in combination with HLA Bw4 

molecules that have an isoleucine at position 80 (Bw4-80I) [103, 104]. Functionally, KIR3DS1 

has been shown to correlate with strong inhibition of HIV-1 replication [105] and with higher 

NK cell effector functions in early HIV-1 infection phase [106]. 
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Association studies of the influence of human genetic variation on HIV-1 replication may 

reveal the essential in vivo host factors that interact with HIV-1 and their epidemiologic 

importance at the population level. However, this approach has been used mostly in studies 

conducted in populations from developed countries and of European origin and yet there are 

genetic differences between populations of different origin [107].  

 

1.6 Genes that influence HIV-1 clinical outcomes differ according to populations 

Modern humans originated from  Africa about 100,000-200,000 years ago, subsequently 

migrated out of Africa to the rest of the world about 50,000 years ago and this human 

dispersal shaped the human genome by evolutionary and historical forces [108-113]. 

Therefore, allele and haplotype diversity in the non-African populations is believed to have 

been caused by migration out of Africa, followed by rapid expansion of human populations 

[114-116]. In addition, periodic outbreaks of deadly infectious agents and regional 

environmental pressures have modified the genetic architecture of disease gene allelic 

variation in local human populations [117, 118]. Genes required for reproductive and 

housekeeping functions remained conserved, whereas genes required for immunity and 

homeostasis display different alleles among different ethnicities. Allele diversity in the genes 

involved in immunity may be caused by the fact that these genes encode factors required by 

pathogens for completion of their lifecycle. Therefore these genesunder selective pressures 

from microbial or ecological conditions that occur on different continents [119]. 
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The best evidence for the influence of human pathogens on natural selection comes from 

studies of host genetic resistance to Malaria. Malaria became endemic 6000–10 000 years 

ago while AIDS emerged within the last 30 years [117, 118, 120-123]. Malaria is responsible 

for most deaths among children and pregnant women. The selective pressure exerted by 

Malaria over 300–500 generations has resulted in adaptive shifts in the allele frequency of 

several genes with a role in Malaria resistance [117, 124-126]. These genes show 

geographical differences in allele frequencies correlated with the occurrence of Malaria. 

Given that HIV-1/AIDS is too recent, only three decades old, to have caused an adaptive shift 

in the allele frequency of genes involved in HIV-1 infection, Slatkin et al. modeled the effects 

of HIV-1-mediated selection for resistant CCR2 and CCR5 genotypes, predicting a modest 

2–4 year increase or decrease in survival for South Africa, a country of high HIV-1 

prevalence [127, 128]. Their model projected that within 100 years, resistance genotype 

frequencies will increase from 40 to 53% while the susceptible genotypes will decrease from 

20 to 10%, leading to a mean increase in AIDS-free survival from 7.8 to 8.8 years. 

 

HIV-1 replication cofactors are increasingly being targeted for antiretroviral therapy, yet there 

is very little information on genetic variation in these cofactors and their impact if any on HIV. 

Studies on human genetic factors that affect HIV/AIDS pathogenesis have focused mainly on 

host immune factors as discussed above (in section 1.5.3). Therefore there is a need to 

explore other biomedical interventions that may be pursued. This study examined the effect 

of genetic polymorphisms in select validated HIV-1 replication cofactors on susceptibility to 

HIV-1 infection and disease progression, shifting the focus from immune factors. An overview 

of HIV-1 replication cofactors Cyclophilin (CypA), Transportin-SR2 (TRN-SR2) and Lens 
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epithelium derived growth factor p75 (LEDGF/p75), which were the focus of this study, is 

given below. 

 

1.6.1 Cyclophilin A (CypA) modulate early post-entry HIV-1 replication outcomes 

CypA, also known as peptidyl prolyl isomerase A (PPIA) belongs to a large family of proteins 

known as the cyclophilins. By convention, we refer to the protein as CypA and the gene as 

PPIA. This family of proteins is defined by a conserved sequence of 150 amino acids that 

form an eight-stranded β-barrel with a hydrophobic pocket that serves as the binding site for 

cyclosporin and HIV-1 Gag [129-131]. Although the exact biochemical function in cells of the 

core cyclophilin domain is unknown, CypA is presumed to play a role in maintaining proper 

protein conformation. This function is inferred from the fact that cyclophilins catalyze the cis-

trans interconversion of peptide bonds N-terminal to proline. This activity has been shown to 

stimulate the rate of refolding of model proteins in vitro [132, 133].  

 

CypA is a cytosolic protein that binds HIV-1 CA and this interaction results in the 

incorporation of CypA into virion particles [134-137]. Previous studies have demonstrated the 

CypA promotes HIV-1 infectivity in target cells classifying this protein as HIV-1 replication 

cofactor [138, 139]. Given the role of cyclophilins in a cell, it is suspected that CypA regulates 

the conformation of HIV-1 Gag. Further studies were conducted to elucidate the functional 

role of CypA in HIV-1 infection [140-144]. These studies relied largely on the use of 

mutations in gag or competitive inhibitors such as cyclosporin to block the Gag-cyclophilin 

interaction. However, neither of these experimental conditions abrogates the interaction 

completely and both potentially can cause pleiotropic effects [145]. A third confounding issue 
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is the number and abundance of cyclophilins in mammalian cells; at present there are 15 

known human cyclophilins and nearly all have the capability to bind HIV-1 Gag [134, 135].  

 

Braaten and Luban produced cell lines depleted for PPIA (PPIA-/- Jurkat T-cell lines), which 

helped in demonstrating that CypA is required for wild-type replication kinetics of HIV-1 and, 

more specifically, for the infectivity of HIV-1 virions [145]. However, none of the 14 other 

known cyclophilins substituted functionally for CypA in PPIA-/- Jurkat cells [145]. These data 

demonstrated that CypA is important for HIV-1 replication kinetics in vitro. 

 

The PPIA-/- Jurkat cells did not produce virions that had significant biochemical abnormalities, 

which was in keeping with previous studies where the Gag-cyclophilin interaction was 

disrupted using Gag mutations or cyclosporin [134, 137, 141, 142]. Noticeably, virions 

produced by PPIA-/- cells were defective at an early stage of the virus life cycle. However, 

these data did not pinpoint the exact stage of HIV-1 replication at which CypA acts. Virions 

produced under conditions that blocked the Gag-CypA interaction exhibited normal 

endogenous reverse transcriptase activity in vitro [141]. This could suggest that virion-

associated CypA might be required during the process of virion uncoating [146], or virion 

binding or fusion to target cells [142]. However, these data do not rule out the possibility that 

the defect observed before the start of reverse transcription is a consequence of CypA 

deficiency during the preceding virion assembly process.  

 

Current data on the mode of action of CypA in the HIV-1 life cycle suggests two possible 

roles that CypA may play in HIV-1 infection. Some data points to CypA playing a crucial role 
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post cell entry, during the uncoating process while the other data suggests its involvement in 

cell attachment. These two theories are discussed in the following sections. 

 

1.6.1.1 The role of CypA in the HIV-1 replication cycle 

Cyclophilin A is incorporated into nascent virions by specifically binding to the CA domain of 

the Gag precursor during HIV-1 assembly [129, 134]. Preventing CypA-packaging, either by 

the addition of cyclosporin A (CsA) to producer cells or by the introduction of mutations in the 

binding region of CA, inhibits virus infectivity, demonstrating a strict requirement for CypA in 

HIV-1 replication [134, 137]. As aforementioned, these CypA-deficient viruses are identical to 

wild-type (WT) particles and the observed block of infectivity of CypA-deficient virus has been 

mapped prior to the initiation of the viral reverse transcription into target cells [141].  

 

CA dissociates from the viral nucleoprotein complex shortly after entry [147], suggesting that 

unfolding (or uncoating) of the CA is necessary for productive infection. Given the cellular 

function of CypA, researchers have proposed that CypA induces HIV-1 uncoating in a 

manner similar to that of the chaperone heat shock protein in the uncoating of clathrin from 

coated vesicles [146]. It is suggested that CypA facilitates the proper disassembly of the shell 

of CA molecules which protects the viral genome. However, anti-CypA antibodies block HIV-

1 entry suggesting that CypA does not exclusively serve to uncoat the viral genome, it also 

play a role during HIV-1 entry [143]. 

 

In order to delineate the role of CypA in HIV-1 entry, researchers used viruses that lack CypA 

to establish whether these viruses fail to enter target cells. Interestingly, a preponderance of 
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evidence directly implicated CypA in HIV-1 entry [142]. Viruses that lacked CypA were 

unable to attach to target cells [148]. The data that demonstrated that anti-CypA antibodies 

prevent HIV-1 replication by blocking the initial step of infection, viral adsorption, further 

confirmed the role of CypA during cell entry. 

 

The latter finding suggests that CypA incorporated into the virion localize at the viral surface. 

Corroborating this hypothesis, anti-CypA antibodies immobilized to a solid phase can capture 

WT viruses but fail to capture CypA deficient viruses [142]. Given that host CypA is 

specifically incorporated into virus particles via an interior viral protein (Gag), data from 

Saphire et al. suggests that it must subsequently relocate to the surface of the virus [142]. 

This exposure of CypA at the viral surface is consistent with its suspected role in mediating 

HIV-1 attachment to the cell surface. 

 

1.6.1.2 The mode of action of CypA in the HIV-1 life cycle during attachment 

Based on its peptidyl prolyl cis-trans isomerase activity, CypA was initially thought to act as 

an uncoating factor [146]. In this model, CypA is proposed to interfere with CA-CA 

interactions thereby mediating the disassembly of the viral core within the cytosol of target 

cells after cell entry. However, the involvement of CypA in the uncoating process could not 

be confirmed by other studies [9, 149].  

 

A subsequent study demonstrated that CypA rather, acts prior to the uncoating step by 

mediating the initial attachment of HIV-1 to target cells [150]. This group, therefore proposed 

that HIV-1 attaches to target cells via an interaction between CypA and cell surface heparins 
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(fig. 1.6.1.2), as the first step. In a second step, once the envelope glycoprotein (gp120/gp41) 

is in close proximity to the plasma membrane, it then interacts with CD4 and chemokine 

receptors that trigger the fusion process. It is advantageous for HIV-1 to use a host protein, 

such as CypA, for viral attachment because it is a self-antigen. This may help HIV-1 escape 

a strong host immune response.  

 

Figure 1.6.1.2. Proposed model for the role of CypA in HIV-1 attachment. Host CypA is 

incorporated into nascent viruses via HIV-1 Gag. Viral maturation triggers the release of 

CypA from Gag, permitting the redistribution of CypA at the viral surface. By interacting with 

cell-surface heparans, exposed CypA mediates HIV-1 attachment to target cells. The initial 

CypA-mediated attachment permits the subsequent binding between HIV-1 envelope 

glycoproteins (gp120/gp41) and CD4 and chemokine receptors. This 

envelope/CD4/chemokine receptor complex triggers the fusion between viral and cellular 

membranes, allowing the delivery of the viral genome into the cytosol of target cells [150]. 
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This theory suggests that CypA interacts with heparans which are ubiquitously expressed on 

human cells. This observation was consistent with other studies that had already 

demonstrated that a number of viruses employ heparans for their initial step of infection [151-

156]. 

 

1.6.1.3 The role of CypA in HIV-1 replication in vivo 

Although a consensus has not been reached in terms of at what step of HIV-1 replication 

does CypA act, it is very clear that CypA promotes HIV-1 replication in vitro. The in vitro data 

demonstrated that HIV-1 replication was inhibited in CypA-null human CD4+ T cells (PPIA-/- 

Jurkat cells) [145]. This data demonstrated that CypA is an important cellular cofactor that 

promotes HIV-1 replication. 

 

Host genetic studies demonstrated an association between a PPIA polymorphism and HIV-1 

disease outcome [61, 73, 74], thereby validating the in vitro data. Bleiber et al. demonstrated 

that the minor variant (G) of the SNP A1650G (1650G), in the PPIA promoter region, was 

associated with higher ex vivo virus replication and rapid disease progression in a Swiss 

Caucasian HIV-1 cohort [61]. In the subsequent study [73], the 1650G was suggested to be 

associated with increased susceptibility to HIV-1 infection since it was found to be more 

frequent among HIV-1 positive individuals (the seroconverters (SC)) compared to high-risk 

exposed uninfected (HREU) cohort. However, the group did not find significant association 

between the 1650G and disease progression both in the European Americans (EA) and 

African Americans (AA). Interestingly, they found the minor allele (G) of SNP C1604G 
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(1604G) which is also in the promoter region of the PPIA, to be significantly associated with 

rapid disease progression both in EA and AA. The latest study on the role of the A1650G and 

C1604G SNPs upon exposure to HIV-1 infection [74], demonstrated that the frequency of the 

1650G was significantly increased in HREU compared to seropositive (SP) group, suggesting 

that the 1650G may be associated with reduced susceptibility to HIV-1 infection in 

participants of the Amsterdam Cohort studies (ACS). Lastly, Rits et al. found that the 1604G 

was significantly associated with reduced levels of CypA mRNA expression suggesting that 

the 1604G may down regulate the expression levels of CypA mRNA [74]. The association of 

the genetic variation in the PPIA with susceptibility to HIV-1 infection remains inconclusive as 

previous studies found contradictory results [73, 74], which could possibly be attributed to the 

fact that these studies used populations of different origins. Secondly, the influence of the 

PPIA polymorphisms on HIV-1 clinical outcomes in populations that bear the heaviest burden 

of HIV infection has not been studied. Therefore, this study investigated the association of 

genetic variation in the PPIA with HIV-1 clinical outcomes in South African HIV-1 study 

cohorts. 

 

1.6.2 The role of Transportin SR-2 in HIV-1 replication 

Transportin-SR2 (TRN-SR2), also known as transportin 3 (TNO3) is a cellular protein that 

shuttles essential splicing factors–such as serine/arginine-rich proteins–into the nucleus [157, 

158]. By convention, the gene and its protein are referred to as TNPO3 and TRN-SR2, 

respectively [126]. TRN-SR2 has been shown to play a pivotal role in HIV-1 replication [32, 

67, 159].  
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TRN-SR2 was initially identified as a host factor required by HIV-1 for infection [67, 68]. 

Subsequently,TRN-SR2 was identified as an HIV-1 IN binding protein and shown to mediate 

HIV-1 nuclear import [160]. Knockdown of the TNPO3 yielded significant inhibition of HIV-1 

replication indicating that TRN-SR2 is an important HIV-1 replication co-factor [67, 68, 160]. 

Interestingly, the block to HIV-1 infection was pinpointed at HIV-1 nuclear import, which 

suggested the role of TRN-SR2 in nuclear import [160]. However, Krishman et al. could not 

confirm the role of TRN-SR2 in HIV-1 nuclear import [32]. This study showed that TRN-SR2 

interacts with CA, instead of IN but these results have not been replicated. The most recent 

study demonstrated that depletion of TRN-SR2 altered the selection of integration sites on 

the chromosome [161]. Although the exact mode of action for TRN-SR2 in HIV-1 replication 

cycle is misunderstood, taken together these studies clearly demonstrate that TRN-SR2 is an 

important HIV-1 replication co-factor. 

 

Studies on the role of TRN-SR2 on HIV-1 replication have been done in vitro, meaning that 

these findings need to be confirmed in vivo. At the time of this PhD project, there was no in 

vivo data published on the role that TRN-SR2 may play upon HIV-1 exposure or infection. 

This project undertook to identify genetic variants in the TNPO3 gene that may be associated 

with clinical outcomes upon HIV-1 exposure. 

 

1.6.3 Host factors enhancing HIV-1 integration 

Purified pre-integration complexes (PICs) from infected cells preferentially integrate viral 

DNA into a target cell DNA intermolecularly thereby avoiding suicidal intramolecular 

autointegration [162]. Secondly they insert both viral DNA ends into a target cell DNA 
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efficiently, in a concerted manner [162, 163]. Although purified recombinant IN is sufficient to 

perform 3‟ processing and strand transfer reactions in vitro, it can only insert a single viral 

DNA end in a single strand of the duplex target DNA [164, 165].  

 

HIV-1 PICs are constituted by viral cDNA, proteins and cellular proteins. Therefore, results 

obtained from in vitro reactions using purified PICs would closely resemble the in vivo 

situation. High salt treated PICs are defective for integration and their activity can be restored 

upon addition of host cell cytoplasmic extracts [166]. This suggests that the presence of 

cellular factors in the PIC aids retroviral DNA integration. Amongst the cellular proteins 

reported to play a role in the HIV-1 integration process are Barrier-to-autointegration factor 

(BAF), High mobility group chromosomal protein A1 (HMGA1), Integrase interactor 1 (INI1) 

and Lens epithelium derived growth factor p75 (LEDGF/p75).  

 

BAF forms part of the PIC and directs the integration of viral cDNA into the target DNA, 

thereby preventing suicidal autointegration [165, 167]. HMGA1 restores the PIC activity after 

salt-stripping [134, 136]. However, there is no evidence for the requirement of HMGA1 in 

retroviral integration in vivo [166, 168]. Integrase interaction protein 1 (INI1) interacts with 

HIV-1 IN to enhance its strand transfer reaction [169] and has been shown to be important 

for HIV-1 replication [170]. LEDGF/p75 is a recently identified binding partner of HIV-1 [171] 

and is discussed below since it is one of the replication cofactors that were studied in this 

project. 
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1.6.3.1 Lens epithelium derived growth factor p75 (LEDGF/p75) 

LEDGF/p75 is a member of the hepatoma-derived growth factor (HDGF) family. LEDGF/p75 

was first identified as a binding partner of the transcriptional co-activator C4, suggesting its 

role in transcriptional regulation [172]. This protein derived its name „lens epithelium derived 

growth factor‟ from its ability to stimulate and prolong cell survival of lens epithelium cells, 

cos7 cells, skin fibroblasts and keratinocytes when added to the culture medium [173]. 

 

LEDGF/p75 is a survival factor that is involved in promoting mammalian cell growth and 

protecting cells against stress-induced cell death [174]. LEDGF/p75 provides protection by 

transcriptionally activating stress-related or anti-apoptotic proteins [175] and is a DNA-

binding protein [176]. In addition to its cellular functions, LEDGF/p75 has been identified as 

the binding partner for HIV-1 IN [171]. This interaction was mapped to the C-terminal domain 

of LEDGF/p75 [177].  

 

LEDGF/p75 is 530 amino acids long (fig. 1.6.3.1.1). The N-terminal region of LEDGFp75 

contains a PWWP (for Pro-Trp-Trp-Pro) domain that is responsible for protein–protein 

interaction and DNA-binding [178, 179]. The C-terminal region of LEDGF/p75 contains an 

evolutionary conserved integrase binding domain (IBD) that interacts with HIV-1 IN [180]. 

LEDGF/p75 also contains a functional nuclear localization signal (NLS) [181, 182]. It is 

important to note that LEDGF/p75 has a splice variant, LEDGF/p52 (p52), which shares a 

region of 325 residues of the N-terminus but lacks the C-terminus of LEDGF/p75 [183]. 

However, p52 does not interact with HIV-1 IN due to lack of the IBD. 
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Figure 1.6.3.1.1. Domain structure of LEDGF/p75 [184]. The different domains of p75 and 

p52 splice variants are highlighted. 

 

The IBD is a compact right-handed bundle composed of 5 α helices as was resolved by 

nuclear magnetic resonance and the amino acids Ile365, Asp366 and Phe406 were shown to 

be important for the interaction with HIV-1 IN [185]. In addition, this group reported a crystal 

structure of the dimeric catalytic core domain of HIV-1 IN complexed to the IBD [186]. 

  

The precise stoichiometry of the HIV-1 IN–LEDGF/p75 complex in the infected cell has not 

been elucidated and it suggests a symmetrical complex containing a pair of integrase 

tetramers and two subunits of LEDGF/p75 [156] (fig. 1.6.3.1.2). The nuclear distribution of 

HIV-1 integrase perfectly matches that of LEDGF/p75 [171, 187].  
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Figure 1.6.3.1.2. Tethering function of LEDGF/p75 in analogy with yeast LTR 

retrotransposons [184]. (a) Ty3 integrates within one or two nucleotides of polymerase III (pol 

III) transcription initiation sites, probably by interaction with the transcription factors TFIIIB 

and TFIIIC. Ty5 integrates into heterochromatic DNA of telomeres and silent mating loci 

(HML and HMR) by interaction with the C-terminal portion of Sir4p. (b) Interaction of lentiviral 

integrase with LEDGF/p75 targets integration into transcriptionally active regions. 

 

Knock-down of endogenous LEDGF/p75 using small interfering RNA (siRNA) completely 

abolished the nuclear localization of HIV-1 IN and its association with chromosomes in cells 

[187], suggesting its involvement in HIV-1 nuclear import [188].  

 

1.6.3.2 Role of LEDGF/p75 during lentiviral integration 

It is clear from the data presented above that LEDGF/p75 is important for efficient HIV-1 

replication. Now the next step was to elucidate the exact function of LEDGF/p75 in the HIV-1 
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replication life cycle. In direct nuclear-import assays, recombinant HIV-1 IN was still actively 

imported into the nucleus in the absence of LEDGF/p75 [177]. Surprisingly, mutant HIV-1 IN 

(Q168A) defective for interaction with LEDGF/p75 failed to associate with the mitotic 

chromosomes. Moreover, these mutant viruses (Q168A) yielded normal levels of 2-LTR 

circles but failed to integrate. The results obtained from this study suggested that LEDGF/p75 

may not be a dominant factor for HIV-1 nuclear import but might be involved in the integration 

step of HIV-1 replication cycle.  

 

Subsequently, LEDGF/p75 was found to stimulate the binding of HIV-1 IN to the 

chromosomal DNA [189]. These results suggested that LEDGF/p75 could be functioning as a 

tethering factor of HIV-1 IN to the chromosomes. This plausible function explained the 

nuclear accumulation of HIV-1 IN and its association with mitotic chromosomes, both of 

which were abolished by knock-down of LEDGF/p75 [177, 188, 190, 191].  

 

HIV-1 is preferentially integrated into transcriptionally active regions, which allows efficient 

viral gene expression after integration [192]. Therefore, a plausible hypothesis at this time 

was that LEDGF/p75 played a role in the tethering of IN to the chromosomal DNA and 

targeting its integration to actively transcribed regions. LEDGF/p75-mediated site selection is 

reminiscent of target-site selection by yeast LTR transposons Ty3 and Ty5, which interact 

with transcription factor IIIB and Sir4p, respectively [193, 194]. 
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1.6.3.3 The role of LEDGF/p75 in lentiviral integration targeting 

Knockdowns of LEDGF/p75 showed a reduced integration frequency of HIV-1 within 

transcription units and an increase in the G/C content around sites of HIV-1 integration [195]. 

These data confirmed that LEDGF/p75 tethers HIV-1 to the chromatin and directs integration 

into active genes (fig. 1.6.3.3). In support of the tethering model, artificial fusion proteins in 

which the LEDGF/p75 IBD was fused to the sequence specific for DNA binding domain of 

phage lambda repressor favoured integration near repressor binding sites in vitro [196]. HIV-

1 binds to the IBD which is in the C-terminal then the PWWP domain which is in the N-

terminal region of LEDGF/p75 tethers HIV-1 to the host chromosome thereby promoting HIV-

1 replication [197]. This suggests that LEDGF/p75 needs both ends of LEDGF/p75 to 

promote HIV-1 replication. 

 

However, key questions still remain on the role of LEDGF/p75. In all the models studied, HIV 

continued to favor integration within active transcription units. This could either be because 

residual LEDGF/p75 remaining in the knockdown was sufficient for residual targeting activity, 

or because additional host cell factors also contributed independently to targeting HIV-1 

integration. 
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Figure 1.6.3.3. LEDGF/p75 and nuclear entry of PICs. LEDGF/p75 might regulate HIV-1 

replication through the tethering the IN to the chromatin and targeting integration into active 

genes [198]. NPC nuclear pore complex; PIC pre-integration complex. 

 

In an effort to address this issue, Shun et al. prepared a mouse strain that had part of the 

LEDGF/p75 locus flanked by Cre recombination sites [199], and the LEDGF/p75 exon 

regions deleted by exposure to Cre recombinase. Mouse embryonic fibroblasts were then 

studied for effects on infection with HIV-1 reporter viruses. These cells showed a 20-fold 

reduction in infectivity by HIV-1, and also a reduction in integration frequency in transcription 

units [195]. In addition, these mouse cells showed some new targeting features in the 

LEDGF/p75-depleted cells, including increased integration near CpG islands. 
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The role of LEDGF/p75 in tethering the IN to the host chromosome and targeting integration 

in transcription units was confirmed in human SupT1 T-cell line with intensified RNAi 

knockdown of LEDGF/p75 [197]. The mouse cells containing homozygous gene trap 

mutations at the LEDGF/p75 locus also confirmed the tethering effect of LEDGF/p75 [200]. 

Taken together these data demonstrated that LEDGF/p75 is a determinant of integration 

target site selection for HIV-1 and other lentiviruses in primary cells where LEDGF/p75 levels 

were not artificially reduced. 

 

1.6.3.4 Retargeting lentiviral integration into heterochromatin using LEDGF constructs 

Overexpression of the C-terminal fragment of LEDGF/p75 (amino acid 325–530; 

LEDGF325–530) or IBD alone did not only fail to mediate chromatin binding but also it 

relocated HIV-1-IN to the cytoplasm and blocked HIV-1 replication [201, 202]. The 

mechanism of chromatin association is believed to be facilitated by elements located in the 

N-terminal portion of LEDGF/p75. These include a PWWP domain, which contains a Pro-Trp-

Trp-Pro signature, a NLS and two AT hooks [197, 203] (fig. 1.6.3.4). It appeared that PWWP 

domain of LEDGF/p75 was responsible for chromatin binding and integration targeting and 

therefore Lin et al. constructed fusions of IBD and the λ repressor DNA–binding domain to 

test this. Interestingly, this fusion protein showed increased in vitro strand transfer activity 

near λ repressor–binding sites [166], implying that indeed PWWP is responsible for tethering 

and integration targeting effect of LEDGF/p75. 
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Figure 1.6.3.4. Domain structure of LEDGF/p75 and schematic representation of 

LEDGF325–530 fusions. In the lower panel the DNA binding domain fusions with 

LEDGF325–530 are depicted, H1-LEDGF325–530, and CBX1-LEDGF325–530, respectively. 

Numbers indicate amino acids of each domain [204]. 

 

Fusion of the IBD and alternative chromatin-binding proteins retargeted lentiviral integration 

to alternative regions of the genome, when it was expressed in LEDGF/p75-depleted cells 

[204]. These findings further confirmed that the PWWP domain of LEDGF/p75 is responsible 

for integration targeting. Gijsberset al. developed fusion proteins (hybrids) between the IBD 

and different chromatin-binding proteins, with particular focus on domains with binding 

specificities that might be useful during human gene therapy [204].  



40 
 

 

A fusion protein where the PWWP domain of LEDGF/p75 was replaced with CBX1 rescued 

the infection block in LEDGF/p75-depleted cells but the integration was retargeted to 

genomic sites bound by CBX1 [204]. Normally, these regions are disfavoured for lentiviral 

integration because their expression levels are very low. Interestingly, transgene expression 

from the vector was nevertheless efficient. These findings open possibilities of using gene 

therapy vectors to retarget IN integration to gene-poor regions thereby inhibiting HIV-1 

replication [204]. 

 

1.6.3.5 Small-molecule inhibitors (SMI) of the LEDGF/p75-integrase interaction and HIV 

replication 

The data presented above support the theory that LEDGF/p75 tethers the HIV-1 

preintegration complex (PIC) to cellular chromatin. Analysis of integration sites in human 

cells depleted for LEDGF/p75 by RNAi or in embryonic fibroblasts derived from LEDGF/p75 

knockout mice, corroborated the role of LEDGF/p75 as tethering and integration targeting 

factor of HIV-1 [195, 205]. 

 

Since LEDGF/p75-IN interaction has been shown to be important for efficient and productive 

HIV-1 infection, this interaction could be explored as a potential antiviral target. 

Overexpression of the C-terminal fragment (Δ325) of LEDGF/p75 in human cells resulted in 

the inhibition of HIV-1 replication [201]. In this study, the Δ325 containing no PWWP domain 

outcompeted the endogenous LEDGF/p75 for binding to the IN and this inhibited HIV-1 

replication to nearly undetectable levels (fig. 1.6.3.5). HIV-1 inhibition was due to the fact that 
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the Δ325 did not contain the PWWP domain and as a result was unable to tether HIV-1 to the 

host chromosome thereby inhibiting HIV-1 replication. 

 

 

Figure 1.6.3.5. Overexpression of the C-terminal domain of LEDGF/p75 (Δ325) outcompetes 

the endogenous LEDGF/p75 for binding to HIV-1 IN thereby inhibiting HIV-1 replication 

because it lacks (PWWP) chromatin binding domain [206]. 

 

Another study repeatedly passaged HIV-1 in cells overexpressing this Δ325, thereby causing 

HIV-1 to develop resistance against this phenotype [202]. Notably, two IN mutations (A128T 

and E170G) that are crucial for IBD-IN interaction, rendered IN resistant [207]. Subsequently, 

Christ et al. embarked on a rational drug design program to discover LEDGINs, small 
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molecule inhibitors that targeted the LEDGF/p75-IN interaction in order to inhibit HIV 

replication [208]. 

 

Protein-protein interactions (PPIs) between HIV-1 and host proteins (replication cofactors) 

constitute a pool of potential new antiviral targets against which small-molecule protein-

protein interaction inhibitors (SMPPIIs) can be designed. A new class of antiviral agents that 

effectively target the LEDGF/p75-IN interaction has been designed and synthesized, not only 

demonstrating the feasibility of exploiting PPIs as targets for drug discovery but also 

validating a new paradigm in anti-HIV research [208]. 

 

Christ et al. found 2-(quinolin-3-yl) acetic acid derivatives that blocked integration by 

inhibiting LEDGF/p75-IN interaction [209]. The 2-(quinolin-3-yl) acetic acid derivatives also 

moderately inhibited the enzymatic activity of HIV-1 IN. This did not come as a surprise since 

it is well known that LEDGF/p75 by itself act as an allosteric activator of IN activity. Although 

all compounds tested were more active on the cofactor binding than on the enzymatic 

activity, this allosteric function might add to the potent antiviral profile of this compound class. 

 

1.7 Conclusion 

AIDS has had a devastating effect on human health killing more 25 million people since its 

description in 1981 while there are about 33.4 million people living with HIV-1 worldwide 

(http://www.unaids.org).Despite the enormous efforts in developing new effective antiviral 

agents and the introduction of highly active antiretroviral therapy (HAART), the problem of 

HIV-1 infections persists. Although HAART is effective in chronically suppressing HIV-1 

http://www.unaids.org/
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replication, antiretroviral treatment has been accompanied by development of resistance and 

toxicity in some patients. Therefore, the quest for developing new and safe antiviral agents to 

complement existing treatment strategies remains one of the main goals in HIV-1 drug 

discovery. Current antiviral drugs target the viral enzymes RT, PR and IN. For example, 

raltegravir (MK-518) targets the strand-transfer reaction of viral IN and inhibits the integration 

process thereby reducing viral replication [210, 211]. However, raltegravir resistance evolves 

readily in the clinic [212], necessitating the efforts to develop second-generation integrase 

inhibitors with beneficial resistance profiles.  

 

HIV-1 relies on replication cofactors for completion of its replication cycle and productive 

infection. Therefore, the second generation of HIV-1 inhibitors should target the interaction 

between viral and cellular proteins. Disruption of the interaction between HIV-1 and cellular 

proteins could potentially reduce viral resistance and block HIV-1 replication. 

 

HIV-1 replication cofactors are increasingly being targeted for antiretroviral therapy yet there 

are three fundamental challenges facing this approach: (1) there is very little information on 

genetic variation in the replication cofactors in humans and its impact if any upon HIV-1 

exposure; (2) studies on human genetic factors that affect HIV/AIDS pathogenesis have 

focused mainly on host immune factors and the failure of vaccines and immunotherapies in 

HIV-1 and; (3) host genetic studies have been conducted using populations from developed 

countries and of European origin yet genetic milieu of populations differ according to 

geographic location.  

 



44 
 

These challenges necessitate the need to explore other biomedical interventions that may be 

pursued for therapeutic and prophylaxis intervention using populations from developing 

countries, heavily burdened by HIV-1 epidemic. The current study addresses the latter 

challenge by studying the influence of genetic variation in select HIV-1 replication cofactors–

CypA, TRN-SR2 and LEDGF/p75–on susceptibility to HIV-1 infection and disease 

progression using a South African population. This study seeks to shift the focus from 

immune factors and look at genetic variation among South Africans who bear the greatest 

burden of infection as opposed to previous studies on mainly Caucasians or African 

Americans who may have a relatively low HIV/AIDS burden and different genetic milieu for 

disease genes.  
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CHAPTER TWO 
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2.1 Molecular Methods 

Understanding the patterns of single nucleotide polymorphisms (SNPs) is essential for the 

studies of the disease [213-216], in preventive medicine [217, 218], personalized medicine 

[219], forensics [220] and evolution [221]. Therefore, many SNP genotyping methods have 

been developed [222-224]. However, in this thesis we are discussing only three genotyping 

methods: (1) DNA sequencing; (2) polymerase chain reaction-restriction fragment length 

polymorphism (PCR-RFLP) analysis and; (3) Taqman probe assay. In addition to genotyping 

methods, this thesis gives an overview of the AlphaScreen Assays since these techniques 

were used in this project to investigate genetic variation in relation to HIV pathogenesis and 

to measure protein-protein interactions. 

 

2.2 DNA Sequencing 

The introduction of polymerase chain reaction (PCR) advanced genetic research, leading to 

improved and faster DNA sequence analysis (DNA sequencing) and identification of different 

genes based on their DNA sequences. Two DNA sequencing techniques, Sanger (or 

dideoxy) method [225] and Maxam-Gilbert (chemical cleavage) method [226], had been 

developed in the late 1970‟s. The Sanger method is technically easier to apply, and, with the 

advent of PCR and automation of the technique, is easily applied to long strands of DNA 

including some entire genes. This technique is based on chain termination by dideoxy 

nucleotides during PCR elongation reactions.  

 

The Maxam-Gilbert method is based on nucleotide-specific cleavage by chemicals and is 

best used to sequence oligonucleotides, usually smaller than 50 base-pairs in length. Gel 
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electrophoresis technique with the ability to separate DNA fragments that differ in size by as 

little as one base pair forms an integral part of DNA sequencing. The Sanger (or 

dideoxynucleotide chain termination) method was therefore the method of choice in this 

study, given its simplicity and applicability. 

 

2.2.1 Sanger Method (Dideoxynucleotide chain termination) 

The sequencing reaction of the Sanger method consists of DNA template, single 

oligonucleotide primer, deoxynucleotides (dNTPs) and dideoxynucleotides (ddNTPs) [183]. 

The sequencing reaction proceeds in the following steps: (1) denaturation of the DNA 

template; (2) annealing of oligonucleotide primer to single stranded DNA template; (3) DNA 

polymerase then starts extending the primer by incorporating dNTPs until, if by any chance, a 

ddNTP is incorporated instead of dNTP. This is a "chain termination" event, because ddNTPs 

lack the 3‟ OH group to which the next dNTP of the growing DNA chain is added. Without the 

3‟ OH, no more nucleotides can be added, and DNA polymerase falls off [225] (fig. 2.2.1).  

 

Higher concentrations of the ddNTPs in the reaction generate shorter sequencing products 

that are closer to the oligonucleotide primer. Lower concentrations of ddNTPs, on the other 

hand, result in longer products that are further away from the oligonucleotide primer [227].  
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Figure 2.2.1. A schematic representation of sequencing reaction. DNA strand is synthesized 

by formation of phosphodiester bonds. In this example of the “C reaction”, the chain is 

terminated by the use of dideoxycytidine triphosphate (ddCTP) in place of deoxycytidine 

triphosphate (dCTP) (www.appliedbiosystems.com; 11 October 2010). 

 

However, newly synthesized products are a mixture of lengths, depending on how long the 

chain was when a ddNTP was randomly incorporated. Since the newly synthesized DNA 

products are labeled (classically with 35S-dATP) then these products can be detected and 

distinguished from the template because template DNA is not labeled. 

 

Before the invention of automated sequencing machines, these products were denatured into 

single stranded DNA molecules and run on a polyacrylamide/urea gel. Unlike the agarose 

gel, polyacrylamide gels allow resolution of DNA molecules that differ in size by only one 

http://www.appliedbiosystems.com/
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nucleotide [227]. The gel would be then dried onto chromatography and exposed to X-ray 

film. The template DNA is distinguished from synthesized products by the fact that the 

template strand is not radioactively labeled and therefore, does not generate a band on the 

X-ray film but newly synthesized products which are labeled strands do generate bands (fig. 

2.2.1.1 A).  

 

The chain termination events, as aforementioned, produce DNA or sequencing products of 

different lengths which results in individual bands on a gel as demonstrated using the "G" 

reaction, as an example (fig. 2.2.1.1B).  
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Figure 2.2.1.1. Sequencing products of different lengths. A, Mixture of products of different 

lengths synthesized for the "G" reaction. Each newly synthesized strand at some point had a 

ddGTP incorporated instead of dGTP resulting in chain termination. B, Polyacrylamide gel 

showing sequencing products of different lengths. Chain terminations closest to the primer 

generate the smallest DNA molecules that migrate the longest distance down the gel and 

chain terminations further from the primer generate larger DNA molecules that remain nearer 

to the top. C, Chain termination reactions for all four nucleotides are run next to each other to 

read the sequence of the DNA off of the "ladder" from bottom to top. D, Large polyacrylamide 

gel allows DNA molecules to migrate further and be better resolved 

(www.appliedbiosystem.com; 11 October 2010). 

 

 

http://www.appliedbiosystem.com/
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Different sizes of newly synthesized products (fragments) migrate different distances on a gel 

during gel electrophoresis which generate different banding patterns. The shortest (smallest 

DNA fragment) product migrates further down on the gel whereas the largest DNA molecule 

migrates slower on the gel during electrophoresis, remaining nearer to the top of the gel 

[228].  

 

The chain termination reactions could be performed for all four nucleotides (A, C, G and T) 

concurrently, and when these four reactions are run next to each other on a gel, then the 

sequence of the DNA could be read off of the "ladder" of bands, 5' to 3' sequence being read 

from bottom to top (fig. 2.2.1.1C) [229]. 

 

The resolution of the gel electrophoresis is very important in DNA sequencing. DNA 

molecules that are 50, 100, or 200 bases in length must be separable from the DNA 

molecules that are 51, 101, or 201 bases in length, respectively. Large polyacrylamide gels 

are therefore used to separate DNA molecules that differ in length by either one or a few 

nucleotides because these gels allow the molecules to migrate further and be better resolved 

(fig. 2.2.1.1D) [230]. Firstly, samples must be denatured before they are loaded onto the gel, 

and secondly these polyacrylamide gels should contain a high concentration of urea (7 to 8 

molar) to prevent folding of the molecules and formation of secondary structures by hydrogen 

(H) bonding that would alter the mobility of the molecule [231]. Formation of H bonds is 

further prevented by running these gels at higher temperature (about 50 ºC).  
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Increased ddNTP:dNTP ratio results in more sequences closer to the primer making it 

difficult to read sequences of 200 to 300 nucleotides further down, since most of the synthetic 

products would have terminated earlier.  

 

2.2.2 Automated DNA sequencing: Dye termination sequencing 

The Sanger method chain termination reactions are still used, but pouring, running, and 

reading polyacrylamide gels have been replaced by automated methods. Instead of labeling 

the products of all 4 sequencing (chain termination) reactions the same, each ddNTP is 

labeled with a different fluorescent marker (fig. 2.2.2A).  

 

Figure 2.2.2. Automated DNA sequencing: Dye termination sequencing. A, ddNTP labeled 

with a different fluorescent marker, B, gel on the left shows chain termination reactions run 

individually and gel on the right shows four chain termination reactions that were performed 

in the same tube, and run on a single lane. C, chromatogram showing fluorescence intensity 

translated into data peaks (www.appliedbiosytems.com; 11 October 2011) 

http://www.appliedbiosytems.com/
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The laser beam of the automated DNA sequencing machine, excite four different kinds of 

products which get detected and the fluorescence intensity of these products is translated 

into a data “peak” [232]. 

 

Thus all four chain termination reactions can be performed in the same tube, and run on a 

single lane on a gel (fig. 2.2.2B). The sequencing machine scans the lane with a laser and 

the wavelength of fluorescence from the label conjugated to the ddNTPs can be interpreted 

by the sequencing machine as an indication of which reaction–ddG, ddA, ddT, or ddC–a 

particular DNA band came from. The fluorescence output is stored in the form of a 

chromatogram (fig. 2.2.2C). Although different automated DNA sequencing approaches exist, 

in this study we used the Applied Biosystems (ABI) (www.appliedbiosystems.com) approach 

to sequence DNA obtained from the participants of this study. This approach uses the ABI 

ready reaction mix to sequence the DNA. 

 

2.2.3 ABI PRISM™ Dye Terminator Cycle Sequencing Kits 

The ABI ready reaction mix used for sequencing (chain termination) reaction contains 

AmpliTaq® DNA polymerase, fluorescent sequencing (FS), labeled dye ddNTPs/primers, 

dNTPs, rTth pyrophoshatase, magnesium chloride and buffer. 

 

AmpliTaq® DNA Polymerase, FS is a mutant form of Thermus aquaticus (Taq) DNA 

polymerase and contains a point mutation in the active site of Taq DNA polymerase, 

replacing phenylalanine with tyrosine at residue 667 (F667Y) [233]. This point mutation 

http://www.appliedbiosystems.com/
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(F667Y) reduces discrimination against dideoxynucleotides and leads to a much more even 

peak intensity pattern [234]. The N-terminal domain of AmpliTaq® DNA Polymerase, FS 

possess a point mutation that results in glycine to aspartate change at residue 46 (G46D), 

which removes almost all of the 5´3´ nuclease activity. This eliminates artifacts that arise 

from the exonuclease activity. The enzyme has been formulated with a thermally stable 

inorganic pyrophosphatase that cleaves the inorganic pyrophosphate (Ppi) byproduct of the 

extension reaction and prevents its accumulation in the sequencing reaction.  

 

In the presence of high concentrations of Ppi the polymerization reaction can be reversed 

[235], a reaction called pyrophosphorolysis. In this reaction, a nucleoside monophosphate is 

removed from the extension product with the addition of Ppi to form the nucleoside 

triphosphate. In a sequencing reaction, if a dideoxynucleotide is frequently removed at a 

particular position and replaced by a deoxynucleotide, eventually there is little or no chain 

termination at that location. This would result in a weak or missing peak in the sequence data 

[236]. With dye terminator labeling, each of the four dideoxy terminators (ddNTPs) is tagged 

with a different fluorescent dye. The growing chain is simultaneously terminated and labeled 

with the dye that corresponds to that base (fig. 2.2.3).  
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Figure 2.2.3. One cycle of dye terminator cycle sequencing. Features of Dye-labeled 

Terminator Reactions: An unlabeled primer can be used. Dye terminator reactions are 

performed in a single tube. They require fewer pipetting steps than dye primer reactions. 

Four-color dye labeled reactions is loaded in a single gel lane or capillary injection. False 

stops, i.e., fragments that are not terminated by a dideoxynucleotide, go undetected because 

no dye is attached (www.biosystems.com, May 2011). 

 

Dye-labeled primer reactions produce more even signal intensities than dye terminator 

chemistries. Labeled primers are available for common priming sites and customer designed 

primers can also be labeled. Four-color dye-labeled reactions are loaded onto a single lane 

or capillary injection. 

 

 

http://www.biosystems.com/
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Figure 2.2.3.1. One cycle of dye primer cycle sequencing. Features of Dye-labeled Primer 

Reactions: Dye primer chemistries generally produce more even signal intensities than dye 

terminator chemistries. Labeled primers are available for common priming sites. Custom 

primers can also be labeled. Four-color dye-labeled reactions are loaded onto a single lane 

or capillary injection (www.biosytems, May 2011). 

 

Although either approach could be used, depending on the objectives of the experiment, dye-

terminator reactions approach has advantages over dye primer approach. These include: (1) 

use of unlabeled primer and performing reactions in a single tube; (2) fewer pipetting steps; 

and (3) false stops, that is, fragments that are not terminated by a dideoxynucleotide go 

undetected because there is no dye attached. 

 

 

http://www.biosytems/
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2.2.4 Sequencing Chemistry 

During the development of a new sequencing chemistry, alternative dye/base relationships 

were investigated to see which produces the most uniform signal in the analyzed data. For 

this reason, different sequencing chemistries may have different dye/base relationships. 

Three different sequencing chemistries were developed [237]: (1) Rhodamine dye 

terminators, which utilizes terminator dye label (A - R6G, C – ROX, G - R110, T – TAMRA); 

(2) dichloroRhodamine (dRhodamine) terminators, also utilizes terminator dye label (A - 

dichloro[R6G], C - dichloro[TAMRA], G -dichloro[R110],  T - dichloro[ROX]); and (3) 

BigDye™ terminators, which uses the terminator acceptor dye (A - dichloro[R6G], C - 

dichloro[ROX], G - dichloro[R110], T - dichloro[TAMRA]).  

 

In this PhD project we used BigDyeTM terminator sequencing chemistry because of the 

following reasons: BigDyeTM terminator chemistry is: (1) 2–3 times brighter than the 

rhodamine dye terminators; (2) have a narrower emission spectra than the rhodamine dye 

terminators, giving less spectral overlap and therefore less noise; and (3) has the brighter 

signal and decreased noise which provide an overall 4–5X gain in signal-to-noise ratio [238]. 

In addition, the dNTP mix used in BigDyeTM terminator sequencing chemistry includes dITP 

in place of dGTP to minimise band compressions. The dNTP mix also uses dUTP in place of 

dTTP and the dUTP is known to improve the incorporation of the T terminator resulting in a 

better T pattern. Applied Biosystems BigDyeTM terminator cycle sequencing chemistry 

provides a comprehensive solution for today‟s wide range of sequencing applications. For 

applications at every throughput level, these robust chemistries give longer reads and the 
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highest data quality ever. They successfully read through challenging motifs and challenging 

templates. 

 

2.2.5 Genetic Analyzers 

Sequencing machines referred to as genetic analyzers are used to analyze fluorescently 

labeled DNA fragments generated by sequencing reactions. While there are different series 

of genetic analyzers, this section briefly discusses 3100 series of the genetic analyzers 

focusing particularly on the ABITM 3130XL genetic analyzer since it was used in this PhD 

project.  

 

ABI 3100 series use virtual filter sets to detect light intensity in four non-overlapping regions 

on a CCD camera [239]. Each region corresponds to a wavelength range that contains or is 

close to the emission maximum of an ABI PRISM dye used in the sequencing reaction. This 

process is similar to using a physical filter to separate light of different wavelengths, however, 

the instruments do not use physical filtering hardware hence they are called virtual filters. 

The intensity display from the four light-collection regions is color coded by data collection 

software to appear as the blue, green, black (yellow on gel images), and red peaks in the raw 

data. The software always displays analyzed data with A as green, C as blue, G as black, 

and T as red in the electropherogram view.  

 

The ABI 3130XL Genetic Analyzer is a 16-capillary, fluorescence-based capillary 

electrophoresis system [240]. In addition to being a DNA sequencer it can run a wide variety 

of sequencing and fragment analysis applications including microsatellite analysis, amplified 
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fragment length polymorphisms (AFLP), loss of heterozygosity (LOH), SNP validation, and 

SNP screening. ABI 3130XL Genetic Analyzer can perform de novo sequencing and 

resequencing (mutational profiling). This system incorporates an automated polymer delivery 

process. This eliminates the need for manual filling, priming and loading of polymer, reducing 

time and decreasing run to run variation. This versatile platform delivers performance with 

higher data quality, improved automation and ease-of-use, faster turnaround times and 

higher reliability across the complete range of sequencing, resequencing, and fragment 

analysis applications. The full range of applications can be run on a single polymer and 

capillary array meaning applications could be mixed on one plate (www.appliedbiosystems, 

August 2010). 

 

The ABI 3130XL Genetic Analyzer has DNA Sequencing Analysis Software v5.1 integrated 

into it. This software is designed to analyze, display, edit, save and print sample files 

generated from ABI 3130XL Genetic Analyzer. The software contains a novel basecaller 

algorithm that performs base calling for pure and mixed base calls, it generates quality 

values to provide basecall accuracy information for pure and mixed base calls. This software 

also gives the analysis report that helps to troubleshoot and provide easy assessment of data 

quality.  

 

 

 

http://www.appliedbiosystems/
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2.3. Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-

RFLP) 

Single nucleotide polymorphisms (SNPs) usually occur once every several hundred base 

pairs [241]. The ability to accurately determine the DNA sequence at specific sites throughout 

the individual‟s genome is important for a number of applications including disease detection, 

personalized medication, etc. (see section 2.1). The human genome project reported over 10 

million SNPs that occur in the human genome (www.ornl.gov). A number of rapid and reliable 

methods or techniques have been developed to analyze DNA for the purpose of detecting 

DNA variation or SNPs.  

 

2.3.1. Polymerase Chain Reaction (PCR) 

Polymerase chain reaction (PCR) is a technique that allows production of large quantities of 

a specific DNA sequence in a simple enzymatic reaction in vitro [242, 243]. PCR has 

transformed the way that almost all studies requiring the manipulation of DNA fragments may 

be performed as a result of its simplicity, usefulness and cost effectiveness [244]. PCR 

generates large quantities of a target sequence which are enough for downstream analysis. 

Unique oligonucleotide primers complimentary to the ends of the target sequence to be 

amplified need to be designed. These primers and the DNA template containing the target 

sequence are mixed with commercially available PCR reagents: PCR buffer; magnesium 

chloride (Mgcl2); dNTPs; enzyme (DNA polymerase); and appropriate buffer. This reaction 

mixture is then subjected to repeated cycles of denaturation of the original strands of DNA, 

http://www.ornl.gov/


61 
 

primer annealing to the opposite ends of the denatured target DNA, and extension of primers 

by DNA polymerase which adds dNTPs to extend primers. 

 

 

 

 

 

 

 

Figure 2.3.1. Target DNA (represented in red) amplification by PCR. The amount of target 

DNA produced by PCR doubles every cycle.  

 

The newly synthesized strand will overlap the binding site of the opposite oligonucleotide 

primer. Large quantities of target DNA get produced as repeated cycles of PCR continue (fig. 

2.3.1). The end result is an exponential increase in the total number of DNA copies of the 

targeted sequence, which are finally represented as a theoretical abundance of 2n where “n” 

is the number of cycles [244-246]. 
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2.3.2 Restriction Fragment Length Polymorphism (RFLP) 

Restriction fragment length polymorphism (RFLP) is a technique used for detection of 

polymorphisms that result in the loss or creation of a recognition site for a restriction 

enzymes to cleave the DNA [247]. Restriction enzymes recognize the restriction sites on the 

DNA molecule and cleave the DNA molecule at these sites to generate DNA molecules of 

varying length, which are called RFLP. DNA molecules are negatively charged at neutral pH 

due to their phosphate backbone and therefore migrate towards the cathode when subjected 

to an electric potential (fig. 2.3.2 A) [248]. In most cases somatic mutations in disease-related 

genes do not give rise to a functional change of the mutated cell which would allow its 

isolation or expansion in vitro. Therefore, selection of mutated cells on the basis of an altered 

phenotype has to be replaced by biochemical separation and detection of the altered 

sequence of the gene of interest.  

 

Evidently such 'genotypic' mutation analysis requires large numbers of cells at the outset 

since the expansion of mutated cells is avoided. To overcome this hurdle RFLP technique 

was combined with polymerase chain reaction (PCR) to develop a new technique called 

polymerase chain reaction-restriction fragment length polymorphisms (PCR-RFLP) [222]. 

PCR amplifies the target DNA sequence to large quantities and the PCR product is 

subsequently subjected to corresponding restriction enzyme to generate RFLP. 
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Figure 2.3.2. A, schematic diagram showing DNA migration when subjected to an electric 

field; B, separation of DNA fragments by agarose gel electrophoresis following restriction 

digestion. 

 

The generated fragments are separated to their respective sizes accordingly by gel 

electrophoresis. The restriction enzymes recognize specific short palindromic sequence of 

four to eight nucleotides and hydrolyze the phosphodiester backbone of both DNA strands at 

these specific recognition sites [247].  

 

Although a SNP in the restriction site or genetic code does not necessarily affect the function 

of the gene, these SNPs may alter the recognition site of enzymes used for PCR-RFLP 

analysis. Polymorphism occurring at the restriction site gives rise to banding patterns of DNA 

restriction fragments. Fragments of the digested DNA are separated by agarose gel 



64 
 

electrophoresis to resolve the banding patterns and measure the size of restriction fragments 

(fig. 2.3.2B). DNA molecules (or restriction fragments) sieve through the pores of agarose gel 

matrix at different rates, determined largely by their mass because the charge to mass ratio 

of all molecules is uniform [249]. The smaller DNA molecules migrate the furthest distance 

down the gel with the larger molecules remaining closest to the well after electrophoresis. 

 

If several samples have been loaded into adjacent wells of the gel, they run parallel in 

individual lanes. Depending on the number of different fragment sizes, each lane shows 

different bands on the gel which correspond to each fragment size. Incomplete separation of 

the fragments leads to overlapping bands, or to indistinguishable smears representing 

multiple unresolved DNA fragments [250]. 

 

2.4. TaqMan® SNP Genotyping Assays 

TaqMan® SNP Genotyping Assay is a single-tube PCR assay that exploits the 5‟ 

exonuclease activity of AmpliTaq Gold® DNA Polymerase [251, 252]. The assay includes two 

locus-specific PCR primers that flank the SNP of interest, and two allele-specific 

oligonucleotide TaqMan® probes. These probes have a fluorescent reporter dye at the 5‟ 

end, and a non-fluorescent quencher (NFQ) with a minor groove binder (MGB) at the 3‟ end 

[253]. 
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An intact probe emits minimal fluorescent signal when excited because 5‟ fluorophore is in 

close physical proximity with the 3‟ quencher and this causes the fluorescent resonance 

energy transfer (FRET) effect to quench the fluorescence emitted by the fluorophore [209]. A 

strong fluorescent signal is generated when the intact probe hybridized to the target allele, is 

cleaved by the 5‟ exonuclease activity of AmpliTaq Gold® DNA Polymerase. The PCR 

primers amplify a specific locus containing the SNP of interest and each fluorescent dye-

labeled hybridization probe reports the presence of its associated allele in the DNA sample 

(fig. 2.4) [254, 255].  

 
Figure 2.4. TaqMan reaction (www.appliedbiosystems.com, May 2011). 

 

In each PCR cycle, cleavage of one or both allele-specific probes produces an exponentially 

increasing fluorescent signal by freeing the 5‟ fluorophore from the 3‟ quencher. The use of 

http://www.appliedbiosystems.com/
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two probes, one specific to each allele of the SNP and labeled with two fluorophores, allows 

detection of both alleles in a single tube.  

 

Fluorogenic probes with an MGB produce enhanced allelic discrimination, because the MGB 

stabilizes the double stranded probe-template complex, thereby increasing the probe melting 

temperature without increasing probe length [256]. This provides enhanced mismatch 

discrimination between these shorter probes, resulting in improved allele specificity. These 

probes also increase the signal-to-noise ratio of an assay, because the reduced distance 

between the 5‟ fluorophore and the 3‟ quencher provides more efficient quenching of an 

intact probe [255]. 

 

2.4.1 TaqMan Assay Design 

ABI has predesigned TaqMan SNP assays for almost all the SNPs that were discovered from 

the human genome project; these assays are commercially available and are ready to use 

(www.appliedbiosystems.com). However, newly described SNPs and few other SNPs 

existing in the SNP database (www.ncbi.nlm.nih.gov/SNP) would not have predesigned 

TaqMan SNP assays. For these SNPs, ABI developed a proprietary algorithm that allows 

researchers to design TaqMan primers and probes for TaqMan SNP Genotyping Assays. 

This primer and probe design algorithm implements the thermodynamic and heuristic rules 

described in their TaqMan assay design guidelines [253], as well as additional empirically 

derived factors that facilitate manufacturing and improve assay performance [251]. 

 

http://www.appliedbiosystems.com/
http://www.ncbi.nlm.nih.gov/SNP
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To increase the probability of generating a successful assay design, it is important first to 

mask all known SNPs and other polymorphisms within the region of the target polymorphism 

(reviewed in [255]). The masking of known SNPs ensures that: (1) the design pipeline does 

not place an oligonucleotide primer or probe over a base that is masked; (2) primers and 

probes are designed to the most conserved regions between individuals; and (3) 

oligonucleotide primers hybridize efficiently to the target regions that flank the SNP of 

interest. 

 

2.4.2 Allele calling and visualization of results 

The TaqMan SNP Genotyping Assay is read at the endpoint of PCR rather than in real time. 

Genotyping is performed in 96- or 384-well plates that allow many DNA samples to be 

genotyped simultaneously.  
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Figure 2.4.2.1. A, Cluster plot of 88 Coriell DNA samples and eight no-template controls 

(NTCs) from a typical TaqMan assay. B, Polar plot of same data. TaqMan assay data are not 

usually displayed in a polar plot (not available in the current commercially available software), 

but they are shown in this view to facilitate interpreting and comparing the SNPlex 

Genotyping System data [255] shown in the next figure. 

 

Individual alleles of a SNP are presented as a dot of the normalized intensity of the reporter 

dyes in each sample well on a cartesian plot, also known as a scatter or cluster plot. A 

clustering algorithm in the data analysis software assigns individual sample data to a 

particular genotype cluster, represented as colored dots in the cluster plot (fig. 2.4.2.1).  
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Figure 2.4.2.2. An example of multi-cluster data produced by a target SNP, CYP2D6, a gene 

that has additional copies in some individuals [255]. 

 

SNP Genotyping Assays that produce more than the three clusters expected for bi allelic 

SNPs provide clues about biological differences in samples that behave anomalously. Extra 

clusters could be caused by the differences in DNA samples which include (1) unidentified or 

rare SNP that underlies a primer or probe, (2) the targeted SNP region having an additional 

copy (exon, gene, or genomic region) in the genome, and (3) the fact that a SNP of interest 

may contain more than two alleles [255]. These clues, exhibited as anomalous results in 

genotype cluster plots, are often masked in other technologies such as PCR-RFLP (fig 

2.4.2.2). 
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TaqMan SNP Genotyping Assays provide six significant technological advantages, which 

include the fact that these assays require only a single enzymatic step, use universal 

reactions and thermal cycling conditions. TaqMan SNP Genotyping Assays contain two 

specific primers targeting the region flanking the SNP site and two TaqMan fluorescent 

probes and can also genotype insertions/deletion polymorphisms in addition to SNPs [257]. 

The workflow is simple involving the adding of Universal Master Mix and the assay to the 

sample, followed by PCR and endpoint read [257]. The availability of a large number of 

validated, off the-shelf TaqMan SNP Genotyping Assays [257] makes it possible to 

implement a streamlined laboratory workflow. In addition, these assays require only simple, 

pre-PCR liquid-handling steps, which can be easily automated with a robotic liquid-handling 

process. 

 

2.5 Amplified Luminescent Proximity Homogeneous Assay Screen (AlphaScreen) 

The observation that, besides intrinsic enzymatic activities, proteins exert virtually all of their 

functions through interacting with other molecules such as nucleic acids, lipids, 

carbohydrates or small molecules and other proteins, has driven the development of 

technologies to examine these interactions [258]. The amplified luminescent proximity 

homogeneous assay screen (AlphaScreen) is an example of such technology developed to 

measure these interactions [259].  

 

This technology employs oxygen channeling chemistry developed from a diagnostic assay 

technology known as luminescent oxygen channeling immunoassay (LOCI) [260, 261]. LOCI 

cause the excitation of a cascading series of chemical reactions generating 
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chemiluminescent signal, a process referred to as chemical generation. This approach takes 

the advantage of the short diffusional distance of singlet oxygen to initiate a 

chemiluminescent reaction in the proximity of chemical generation. AlphaScreen is 

insensitive to interference by particles or other substances present in biological sample 

matrices [259].  

 

The assay format comprises two discrete ligand coated polystyrene beads, designated as 

“Donor” and “Acceptor” beads, which form pairs in the presence of analyte. The pairs must 

be within about 200 nm (approximately the diameter of a bead particle) in order for a 

chemiluminescent signal to be generated [259]. Donor beads contain a photosensitizing 

agent (phthalocyanine) that, when irradiated at 680 nm, excites ambient oxygen to a singlet 

state [260, 261]. Excitation of each Donor bead generates approximately 60,000 oxygen 

singlets per second [262], resulting in an amplified response when they come into contact 

with Acceptor beads. 

 

In an AlphaScreen assay, the Acceptor beads contain three chemical dyes namely, thioxene, 

anthracene and rubrene (hence the designation, „TAR‟ beads) [259]. Thioxene reacts initially 

with singlet oxygen to produce light energy, which is subsequently transferred to anthracene 

and thence to rubrene. The final compound in the cascade, rubrene, emits light at 

wavelengths of 520-620 nm [260]. This process occurs against a very dark background and 

the bead particles are often present in low concentrations in the assay, making the assay 

highly sensitive. 
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Consequently, non-specific close proximity interactions of Donor and Acceptor particles is 

rare and again the background is low (fig. 2.5), which increase the sensitivity and specificity 

of this assay [259].  

  

 

Figure 2.5. The AlphaScreen assay is based on an oxygen channeling technology. When the 

Donor (blue bead) containing phthalocyanine is laser excited (at 680 nm) ambient oxygen is 

converted to singlet oxygen. Singlet oxygen molecules travel at least 200 nm in aqueous 

solution before decay. If the Donor and Acceptor (gold beads) beads are within that 

proximity, energy transfer occurs. Singlet oxygen molecules react with chemicals in the 

Acceptor beads to produce a luminescent response. If the Acceptor bead contains Europium 

an intense luminescence is emitted at a wavelength of 615 nm [259]. 
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The lifetime of the singlet oxygen reactive species in aqueous solutions is very short (approx. 

4 ms) therefore donor and acceptor beads rely on an immunological complex to be bound to 

one another in order to generate a signal. Unbound beads experience insignificantly low 

concentrations of singlet oxygen, contributing minimally to the background signal [259]. The 

AlphaScreen technique has been shown to be remarkably acquiescent for the detection of 

protein–DNA, protein–RNA, or protein–small molecule interactions, as well as protein–protein 

interactions [258]. In the current study, AlphaScreen was used to measure protein-protein 

interaction.  

 

2.5.1 Protein-Protein Interaction Assay Using AlphaScreen 

AlphaScreen was one of the technologies developed to measure protein-protein interactions 

that can be used to identify either small molecule inhibitors or novel interacting partners. The 

interaction of cells occurs through complex protein-protein interactions, ranging from ligand 

binding, G protein coupling reaction, interaction of kinases with cognate substrates as well as 

the interaction of transcription factors with nuclear co-activators and co-repressors [258]. 

 

Growth factor proteins such as tumor necrosis factor alpha (TNFα) receptors are implicated 

in the etiology of many inflammatory and immunological disorders. Therefore an 

AlphaScreen assay was developed to measure ligand binding to a member of the TNF 

receptor super-family, OX40 (CD 134) [263]. This group developed a fusion protein where 

OX40 was coupled to a domain of human IgG, allowing OX40 to bind to Acceptor beads 

coated with protein A and OX40 ligand (OX40L-CD8) tagged with biotin which was 

coordinated by streptavidin coated Donor beads [263]. This led to the identification of several 
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peptides and small molecules that inhibited OX40L binding. Human papilloma virus (HPV) 

protein E6 interacts with ubiquitin ligase, E6AP to inhibit the activity of a tumor suppressor 

protein (p53) and block transformed cells from undergoing apoptosis [264]. Since HPV 

causes cervical cancer by inhibiting the interaction between E6 and E6AP [265] then 

AlphaScreen assay was developed to measure E6 binding to E6AP. This assay was 

subsequently used to detect inhibitors of this interaction [266].  

 

The interaction between HIV-1 IN–LEDGF/p75 represents an attractive target for antiviral 

therapy. AlphaScreen assay has also been used to identify small-molecule inhibitors that 

target HIV-1 IN–LEDGF/p75 interaction [267]. Subsequently, Christ et al. rationally designed 

a series of 2-(quinolin-3-yl) acetic acid derivatives–LEDGINs–that act as potent inhibitors of 

the HIV-1 IN–LEDGF/p75 interaction [208]. This study demonstrated that LEDGINs inhibit 

HIV-1 replication by blocking the integration. The 2-(quinolin-3-yl) acetic acid derivatives 

could be defined as the first genuine allosteric HIV-1 integrase inhibitors because of their 

potent inhibition of HIV-1 replication and lack of cross resistance [208]. The data presented 

above indicate that the AlphaScreen technology provides a simplistic assay platform to 

measure protein-protein interaction. 
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CHAPTER THREE 
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3. Materials and Methods 
 

3.1 Study Participants 

The Center for the AIDS Programme of Research in South Africa Acute Infection 002 

(CAPRISA AI 002) [268, 269] and the Sinikithemba [84, 270, 271] cohorts were used for this 

study.  The CAPRISA AI 002 cohort is an ongoing observational natural history study of HIV-

1 subtype C infection established in Durban, KwaZulu-Natal, South Africa in 2004. HIV 

negative females (n=245) at high risk for HIV infection were enrolled into Phase I of the 

study. Participants in this cohort were screened monthly for recent HIV-1 infection by two 

rapid HIV-1 antibody tests (Abbott Laboratories, Tokyo, Japan) and Capillus (Trinity Biotech, 

Jamestown, NY, USA). HIV-1 antibody negative samples were tested for HIV-1 RNA in 

batches of 10 plasma samples per pool using the Ampliscreen v1.5 assay (Roche 

Diagnostics, Rotkreuz, Switzerland), which has a detection limit of 10 copies/ml. Samples 

that tested positive in pooled plasma were individually tested by quantitative RNA (Amplicor 

v2.0, Roche Diagnostics) and HIV enzyme immunoassay (BEP 2000; Dade Behring, 

Marburg, Germany) to identify HIV-1 infection. CD4+ T cell counts were determined by a 4-

parameter FACSCalibur flow cytometer (Becton Dickinson).  

 

 Participants with acute HIV-1 infection were enrolled into Phase II of the study on the basis 

of a reactive HIV antibody test within 3 months of previously negative results or positive HIV 

RNA PCR in the absence of antibodies. Date of infection was estimated by taking the 

midpoint between the last HIV antibody-negative result and the first HIV antibody-positive 
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result or 14 days before the first positive HIV RNA PCR assay result for those identified as 

antibody negative but HIV RNA positive. An additional of 34 acutely infected participants 

(who met the criteria for acute infection, as aforementioned) were recruited from other 

ongoing CAPRISA cohorts. Participants in Phase II were monitored weekly for 3 weeks, 

fortnightly for 2 months then monthly for 9 months and quarterly thereafter. 195 out of 217 

DNA samples obtained from participants who remained HIV-1 negative and 52 of the 62 DNA 

samples obtained from participants with acute HIV-1 infection were available for genotyping 

by TaqMan (fig. 3.1.1).  

                                                                                                                                       
 Figure 3.1.1. Description of CAPRISA AI 002 study cohort indicating the number of 

participants genotyped in the HIV-1 positive and negative groups. 
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The Sinikithemba cohort comprises 450 antiretroviral naïve, HIV-1 subtype C chronically 

infected adults enrolled from McCord Hospital (Durban, South Africa) from August 2003 to 

2008 and followed longitudinally [84, 270, 271]. Sociodemographic characteristics, plasma 

viral load and CD4 cell count measurements were obtained at baseline. CD4 cell counts and 

viral loads were measured every 3 and 6 months respectively from enrollment. Viral loads 

were determined using the automated CobasAmplicor HIV-1 Monitor test (version 1.5; Roche 

Diagnostics). CD4+ T cells were enumerated using the Multitest kit (CD4/CD3/CD8/CD45) on 

a FACSCalibur flow cytometer (Becton Dickinson). 403 out of 450 DNA samples obtained 

from participants with chronic HIV-1 infection (Sinikithemba cohort) were available for 

genotyping by TaqMan assays (fig.3.1.2). 

 

Figure 3.1.2. Description of the Sinikithemba study cohort of chronically infected participants. 
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Ethical approval for this study was obtained from Biomedical Research Ethics Committee of 

the University of KwaZulu-Natal. All participants provided written informed consent. 

 

3.2 Molecular Analysis of DNA variation 

The DNA was extracted from the buffy coats obtained from the participants of this study 

using Qiagen DNA extraction kit according to the manufacturer‟s instruction 

(www.qiagen.com). The purity and quantity of DNA was measured by Nano Drop 2000/2000c 

spectrophotometer (Thermo Scientific). The DNA yield obtained using this kit was in the 

range of 100 ng/µl and the sample was considered pure if the A260/A280 reading was 1.8. 

 

3.2.1 Sequencing of the Integrase Binding Domain (IBD) of LEDGF/p75 

The IBD that interacts with HIV-1 IN is in the C-terminus region of LEDGF/p75. This study 

first screened part of the C-terminus region of PSIP1, which includes the IBD, for new 

polymorphisms by re-sequencing a DNA panel obtained from 83 HIV-1 seronegative 

participants (SN) and 43 HIV-1 seropositive participants (SP) from the CAPRISA AI 002 

cohort. A set of three sequencing primers (fig. 3.2.1) and ABI PRISMTM Dye terminator cycle 

sequencing core kit (Perkin Elmer, Brussels Belgium) was used in re-sequencing this panel 

of 126 DNA samples in a 3130 XL Genetic Analyzer (Applied Biosystems). 

 

Sequencing primers covered 1679bp long DNA fragment starting from 1190 bp up stream of 

exon 10 through to the end of exon 13 of the PSIP1 gene. Firstly, a 2664bp long fragment 

was amplified using two specific PCR primers: forward primer LEDGFDNA1 5‟-TGGGCTCAA 

http://www.qiagen.com/
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AGC ATTAATCC -3‟ and a reverse primer Seq5 5'- CTCTGAAGGATTCTACACTAGATAAC -

3‟. 

 

A 50µl PCR reaction containing 1X PCR buffer, 3.5 mmol/µl MgCl2, 0.25 mmol/µl dNTPs, 

0.25 U/µl Expand Taq (Roche), 0.4ρmol/µl of each primer (forward and reverse primer) and 

100ng DNA sample was prepared. This was amplified at 95 ºC for 10 minutes followed by 35 

cycles of 94 ºC for 30 seconds, 60 ºC for 30 seconds, 72 ºC for 45 seconds, and a final 10 

minute extension step at 72 ºC. The PCR products were purified using Qiagen PCR 

Purification Kit (Qiagen) according to manufacturer‟s instruction (www.qiagen.com). 

 

3.2.2 Genotyping for regulatory SNPs in the PPIA gene using PCR-RFLP  

DNA samples from 47 SPs and 168 SNs from the CAPRISA AI 002 cohort were available for 

genotyping by PCR-RFLP. For analysis of these polymorphisms in the promoter region of the 

PPIA, DNA samples were amplified by PCR using Taq DNA polymerase (Invitrogen) in the 

presence of 1.25 mmol/µl MgCl2, 0.4 mmol/µl dNTPs, and a primer pair CYPAex-1s (5‟-

AAGTCGCAGACCCGATTG-3‟) and CYPAex-1a (5‟-ACTTTCTGGGCCCCATTC-3‟) at 10 

ρmol/µl each. The following amplification cycles were used: 10 min 95 ºC; 35 cycles of 30 s 

94 ºC, 30 s 60 ºC, 45 s 72 ºC; 5 min 72 ºC.  

 

Subsequently, PCR products (250 bp in length) were subjected to a restriction digest with 

either RsaI or HAEIII (4 hours to overnight at 37oC; New England Biolabs) to detect 

http://www.qiagen.com/
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polymorphisms and analyzed by 4% agarose gel electrophoresis. RsaI restriction digestion 

was used to detect the SNP A1650G: a PCR product containing the wild type genotype (AA, 

referred to as 1650AA in this report) of the SNP A1650G resulted in 2 restriction fragments of 

130 bp and 120 bp. A PCR product containing the homozygous mutant genotype (GG, 

referred to as 1650GG in this report) of the SNP A1650G was undigested following restriction 

digest reaction resulting in a 250 bp undigested fragment. A PCR product containing the 

heterozygous mutant genotype (AG, referred to as 1650AG in this report) of the SNP 

A1650G resulted in 3 restriction fragments of 250 bp, 130 bp and 120 bp. HAEIII restriction 

digestion was used to detect the SNP C1604G: a PCR product containing the wild type 

genotype (CC) of the SNP C1604G would result in 5 restriction fragments of 110 bp, 40 bp, 

36 bp, 28 bp and 19 bp.  A PCR product containing the mutant homozygous genotype (GG) 

of the SNP C1604G would result resulting in 4 restriction fragments of 138 bp; 40 bp, 36 bp, 

and 19 bp.  A PCR product containing the heterozygous genotype (CG) of the SNP C1604G 

would result in 3 restriction fragments of 138 bp, 110 bp and 40 bp. 

 

3.2.3 Genotyping of SNPs in the TNPO3 and PSIP1 genes using TaqMan Assays 

A final volume of 15 µl of 20X homemade master mix which was 5 µl of 1X PCR Buffer 

containing 1.5 mmol/µl MgCl2 (Roche), 4 µl of 2.5 mmol/µl MgCl2 (ABI‟s), 0.31 µl of 80% 

Glycerol, 0.05 µl of 50% Tween 20, 3.4 µl of distilled sterile water, 0.27 µl 10 mmol/µl dNTPs, 

0.11 µl of 1µM SFHD, 0.05 U/µl DNA polymerase, and 0.068 U/µl of Taq Gold (Roche) and 

AOD/ABD/TaqMan probes was prepared. TaqMan Assays were performed in 384 well plates 

and each well contained 13 µl of the homemade master mix and 2 µl of 10 ng/µl DNA 



82 
 

sample. This was amplified at 95 ºC for 3 minutes, 40 cycles of 92 ºC for 15 seconds and 60 

ºC for 60 seconds. 

 

TaqMan assays were used to genotype intronic and exonic haplotype tagging (ht) SNPs in 

TNPO3 gene and only intronic ht SNPs in PSIP1 gene. SNP rs61744944 which is in the exon 

region of PSIP1 was also included in this analysis. The 6  intronic and 2 exonic ht SNPs in 

TNPO3 were rs13242262, rs2305325, rs11768572, rs1154330, rs35060568, rs8043, 

rs6957529 and rs10229001 all available from NCBI dbSNP 

(http://www.ncbi.nlm.nih.gov/SNP) and HapMap databases (http://www.hapmap.org) 

selected by considering location, spacing, and allele frequency of at least 10% (Table 3.2.3).  

 

Table 3.2.3. Showing the rs numbers of TNPO3 and PSIP1 SNPs and TaqMan Assays 

Gene SNP 
number 

exon or intron 
region 

rs number 
(amino acid 

change) 

TaqMan Assay ID Number or Assay 
sequences 

TNPO3 SNP1 regulatory rs13242262 C_2691237_10 
 SNP2 intron rs2305325 C_7877026_1 

 SNP3 intron rs11768572 C_31283360_10 

 SNP4 intron rs1154330 C_8338470_10 

 SNP5 exon rs35060568 C_22273560_10 

 SNP6 exon rs8043 C_8336193_1 

 SNP7 intron rs6975529 C_31283343_10 

 SNP8 intron rs10229001 C_2691246_10 
PSIP1 SNP1 intron rs2277191 C_15883595_10 

 SNP2 intron rs10283923 C_29529242_10 

 SNP3 intron rs12339417 C_31936110_10 

 SNP4 intron rs1033056 C_2757693_20 

 SNP5 exon rs61744944 
(Q472L) 

PSIP1_Q472L_s AAAACCAAA 
GATCAAGGGAAGAAA 

Psip1_q472l_a TGTGAAATTGT 
TGGCTTTTTACCA 

 

http://www.ncbi.nlm.nih.gov/SNP
http://www.hapmap.org/
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The 4 intronic ht SNPs in PSIP1 were rs2277191, rs1033056, rs12339417 and rs10283923, 

all available in the databases mentioned above and were selected as per aforementioned 

criteria (Table 3.2.3). The ht SNPs were chosen because they are all ht SNPs for TNPO3 

and PSIP1 genes in the Yoruba population from Nigeria (http://www.snp.cshl.org). The 

exonic SNP rs61744944 was selected based on its association with HIV-1 clinical outcomes 

in the preliminary analysis of the sequencing data (section 4.3.2.2). The SNPs in both 

TNPO3 and PSIP1 genes were genotyped in 247 patient samples (195 SNs and 52 SPs) 

from the CAPRISA AI 002 cohort and 403 patient samples from the Sinikithemba cohort. 

 

Genotyping was performed by TaqMan SNP assay as per manufacturer‟s protocol (Applied 

Biosystems). TaqMan assays were obtained from the Assay-by-Demand service of Applied 

Biosystems (http://www.appliedbiosystems.com). Eight negative controls which contained 

water instead of DNA were included in each plate to monitor the potential of PCR 

contamination. Samples were genotyped in duplicate and genotypes obtained were free of 

water contamination or of inconsistencies between duplicates. 

 

3.2.4 Peripheral blood mononuclear cell (PBMC) sample processing and RNA isolation 

A modified Trizol method [272] was used to extract RNA from peripheral blood mononuclear 

cells (PBMCs). In this modified method, PBMCs were homogenized in 1ml Trizol reagent, 

followed by incubation for 10 minutes at ambient temperature. The homogenate was 

centrifuged @ 12,000 revolutions per minute (rpm) for 10 minutes at 4 ºC and a 200µl 

volume of chloroform was added to the same tube. The combination of chloroform and 

http://www.snp.cshl.org/
http://www.appliedbiosystems.com/
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centrifuged homogenate was thoroughly mixed by shaking the tube vigorously for 30 

seconds followed by incubation at room temperature for 5 minutes and centrifugation @ 

12,000 rpm for 15 minutes at 4oC.  

 

The supernatant which contained the total RNA was transferred into a new 1.5ml eppendorf 

tube. 500µl isopropanol and 1.5µl glycogen was added into this new tube to precipitate out 

the total RNA and the tube was incubated at room temperature for 10 minutes. This was 

followed by centrifugation for 10 minutes at 4 ºC @ 12,000 rpm. The supernatant was 

discarded leaving the total RNA pelleted at the bottom of the tube. The RNA pellet was 

washed by resuspending it in 1ml of 75% ethanol and this RNA suspension was centrifuged 

@ 12,000 rpm for 5 minutes at 4 ºC. The supernatant was discarded and the RNA pellet was 

air dried then dissolved in 30µl nuclear free (DEPC) water. 

 

The RNA concentration was quantified using a NanoDrop spectrophotometer 2000 (Thermal 

Scientific) and the purity of RNA was determined by the ratio of absorbance at the 

wavelength of 260 (A260) and 280 (A280). The samples were used only if the A260/A280 ratio 

was 1.90 or greater. All RNA samples were DNAse treated using the fermentas DNASE kit 

(Fermentas cat. no. EN0521).  

 

3.2.4.1 Reverse Transcription 

An amount of 1 μg of the total RNA from each sample was reverse transcribed using the 

iScript cDNA synthesis kit (Biorad) as per the manufacturer‟s instructions. Briefly, the 
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reaction mixture was constituted of 4µl of 5x iScript reaction mix, 1µl of iScript reverse 

transcriptase, 1µg RNA and DEPC water to a final volume of 15µl. The above reaction 

mixture was prepared on ice in a sterile PCR tube. The reaction mixture was incubated for 5 

minutes at 25 ºC, 42 ºC for 30 minutes, and 85 ºC for 5 minutes and held at 4 ºC for 45 

minutes in the Gene Amp 9700 PCR System (Applied Biosystems, California, USA). 

 

3.2.4.2 Quantitation of RNA using real-time PCR. 

The PCR primers and cycling conditions used for glyceraldehyde 3-diphosphate 

dehydrogenase (GAPDH) and CypA real-time quantitative PCR are provided in section 

4.1.1.5 below. GAPDH is a house keeping gene and was determined to be the most suitable 

reference gene based on PCR efficiency. Each PCR reaction consisted of 3 mmol/μl MgCl2, 

0.5pmol/µl of the respective primers for GAPDH and CypA (Table 4.1.1.5), 1μl Fast Start 

SYBR Green I (Roche), 1 μg cDNA and water (10 μl total volume) was prepared. Reactions 

were run on a Roche LightCycler v1.5 (1 cycle at 95 ˚C for 10 min), then 45 cycles of 

denaturation, annealing and extension (see section 4.1.1.1 for details). Melting curve 

analysis was used to confirm the amplification specificity. Serial dilutions of cDNA from total 

RNA were performed for each target gene. These served as standard curves for quantitative 

analysis. 
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CHAPTER FOUR 
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4. RESULTS 

 

4.1 Genetic Variant A1650G of Cyclophilin A Gene (PPIA) Accelerate Progression to 

AIDS in Black South Africans 

HIV-1 is an obligate intracellular parasite and therefore it relies, on cellular cofactors for 

efficient and productive infection. CypA, also known as peptidyl prolyl isomerase A (PPIA), is 

a cytoplasmic factor that is essential for efficient infection of HIV-1 [134, 141, 146]. CypA is a 

member of the cyclophilin family, members of which all possess peptidyl-prolyl cis/trans 

isomerase activity. Peptidyl prolyl cis/trans isomerases catalyze the cis/trans isomerization of 

prolyl peptide bonds and are believed to be involved in protein folding [72]. This suggests 

that CypA has a possible role in uncoating of the viral core following entry into the cytoplasm. 

CypA is incorporated into the HIV-1 virion capsid through the direct binding between prolyl 

peptide bond located in a proline-rich loop of the fourth and fifth helices of the HIV-1 capsid 

and the active sites of CypA [129, 273].  

 

CypA has long been known to enhance HIV-1 replication in host cells [134, 135] (by 

convention, we refer to the protein as CypA and the gene as PPIA). Disruption of CypA 

incorporation, either by HIV-1 Gag mutations or by cyclosporine A, an immunosuppressive 

drug that prevents HIV-1 Gag binding to CypA, leads to an attenuation of HIV-1 infectivity 

[134, 274]. HIV-1 replication was significantly inhibited in CypA-null human CD4+ T cells, in 

which the PPIA was deleted through homologous recombination [145]. CypA is therefore an 

important host factor required for efficient and productive HIV-1 infection. It has also been 
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postulated that binding of CypA to capsid protects HIV-1 from an unknown restriction factor in 

humans [275]. 

 

Genetic polymorphisms in the regulatory region of PPIA gene (fig. 4.1) have been implicated 

in HIV-1 infection and pathogenesis [61, 73, 74]. Bleiber et al. reported an association 

between the minor allele (G) of SNP A1650G (1650G) and rapid disease progression in the 

Swiss Caucasian population [61]. Subsequently, An et al. reported that the same allele, 

1650G was more frequent among SPs suggesting that the 1650G might be associated with 

increased susceptibility to HIV-1 infection in the American [73]. However, the 1650G was 

neither significantly associated with susceptibility to HIV-1 infection nor disease progression 

in this study [73]. Instead, this group found a significant association of the minor allele (C) of 

SNP C1604G (1604G) with accelerated progression to AIDS in the American population. 

 

In another study, Rits et al. found the frequency of the 1650G to be significantly increased in 

high-risk seronegative (HRSN) group compared to SP group of the Amsterdam Cohort 

studies (ACS) and they also reported reduced levels of CypA mRNA expression in PBMCs 

from SN group [74]. According to this report, these findings suggested that the 1650G might 

be associated with reduced susceptibility to HIV-1 infection in participants of the ACS. It is 

important to note that the data reported by this this group [74] regarding the susceptibility to 

HIV-1 infection is in sharp contrast with the previous report [73]. Nevertheless, this group 

found an association between the 1604G and accelerated disease progression, measured by 

increasing viral load, confirming the effect of the 1604G on disease progression [73, 74].  
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Figure 4.1. Gene Map, SNPs, and Haplotypes in the Human PPIA on Chromosome 7p13. 

Coding exons are marked by green blocks, and 59 and 39 UTRs by light green blocks. 

Hatched black boxes represent Alu repeats. Haplotype structure and frequencies are shown 

in the middle panel. The corresponding nucleotides in the chimpanzee and allele frequencies 

of the SNPs are presented in the bottom panel. MAF: minor allele frequency of SNPs. AA: 

African Americans. EA: Europeans Americans [73]. 

 

The data obtained for the role of PPIA genetic variation in susceptibility to HIV-1 infection and 

disease progression were inconsistent [61, 73, 74]. The plausible reason for these 

discrepancies could be attributed to different cohort designs. Bleiber et al. studied the effect 

of PPIA genetic variation in a cohort of Swiss origin [61], An et al. studied the effect of PPIA 
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genetic variation in cohorts of American origin [73] while Rits et al. investigated the effect of 

PPIA genetic variation in cohorts of Amsterdam origin [74]. In the current study, we 

hypothesized that the differences observed in the effect of PPIA genetic variation on HIV-1 

disease outcome could be due to different population groups (or study cohorts). Therefore, in 

the present study we wanted to test the effect of PPIA genetic variation, SNPs A1650G and 

C1604G in particular, on susceptibility to HIV-1 infection and disease progression in Black 

South African women from the CAPRISA AI 002 study cohort. Using some patient samples 

from the same cohort, we also studied the impact of PPIA genetic variation on CypA mRNA 

expression levels. 

 

4.1.1 Materials and Methods 

Study participants. A cohort of black South African women (CAPRISA AI 002) [269] was 

used for this study (see section 3.1 for detailed description). Ethical approval for this study 

was obtained from Biomedical Research Ethics Committee of the University of KwaZulu-

Natal. All participants provided written informed consent. 

 

4.1.1.1 Genotyping for regulatory SNPs (A1650G and C1604G) in the PPIA gene in the 

CAPRISA AI 002 cohort 

DNA samples from 47 seropositive (SP) and 168 seronegative (SN) participants from the 

CAPRISA AI 002 cohort were available for genotyping. For the analysis of the C1604G and 

A1650G polymorphisms in the promoter region of the PPIA gene, DNA samples were 

amplified by PCR using Taq DNA polymerase (Invitrogen) in the presence of 1X AmpliTaq 
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Gold PCR buffer, 1.25 mmol/µl MgCl2, 0.4mmol/µl dNTPs, 10 ρmol/µl of each primer pair 

CYPAex-1s (5‟-AAGTCGCAGACCCGATTG-3‟) and CYPAex-1a (5‟-

ACTTTCTGGGCCCCATTC-3‟). The following amplification cycles were used: 10 min 95 ºC; 

35 cycles of 30 s 94 ºC, 30 s 60 ºC, 45 s 72 ºC; 5 min 72 ºC. Subsequently, PCR products 

were subjected to a restriction digest with either RsaI or HAEIII (overnight at 37oC; New 

England Biolabs) to detect polymorphisms and analyzed on a 4% agarose gel (see section 

3.2.2).  

 

4.1.1.2 CypA expression analysis and in vitro replication assay. 

Peripheral blood mononuclear cells (PBMCs) were isolated from 30 SNs and 28 SPs from 

the CAPRISA AI 002 cohort as previously described [276] and these participants were 

genotyped for SNP A1650G. There were at least two study time points available for each of 

the participants in the primary HIV-1 infection phase and a total of 75 separate samples were 

analyzed for this group. Samples were available before and after HIV-1 infection for 13 of SP 

participants. 

 

4.1.1.3 Sample processing, viral load quantification and CD4 cell enumeration. 

PBMCs were isolated by Ficoll-Histopaque (Sigma) density gradient centrifugation from 

blood within 6 hours of phlebotomy and frozen in liquid nitrogen until use.  Viral load was 

determined using the automated COBAS AMPLICOR HIV-1 Monitor Test v1.5 (Roche). CD4+ 

T cells were enumerated by using the Multitest kit (CD4/CD3/CD8/CD45) on a four-

parameter FACSCalibur flow cytometer (Becton Dickinson). 
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4.1.1.4 RNA isolation and analysis. 

For all samples, RNA was extracted immediately after thawing and counting of PBMCs 

without in vitro stimulation. RNA was extracted from 2 x 106 PBMCs using the TRIzol LS 

Reagent (Invitrogen). The total RNA concentration was quantified and samples were used 

only if the A260/A280 ratio was 1.90 or greater. All RNA samples were DNAse treated.  1 μg of 

total RNA from each sample was reverse transcribed using the iScript cDNA synthesis kit 

(Biorad). 

 

4.1.1.5 Real-time PCR RNA quantitation. 

Following RNA isolation and cDNA synthesis, real time quantitative (q) PCR was performed 

to measure the CypA mRNA expression levels. For this experiment GAPDH was used as the 

reference gene based on its PCR efficiency. PCR primers and cycling conditions used for 

GAPDH and CypA real-time qPCR are shown in Table 4.1.1.5.  Each PCR reaction consisted 

of 3 mmol/μl MgCl2, the respective primers 0.5 pmol/μl for GAPDH and CypA, 1μl Fast Start 

SYBR Green I (Roche), 1 μg cDNA and water (10 μl total volume). Reactions were run on a 

Roche LightCycler v1.5 (1 cycle at 95 ˚C (10 min), then 45 cycles of denaturation, annealing 

and extension. 
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Table 4.1.1.5. Primers and cycling conditions used in real time qPCR for CypA expression 

assay 

GAPDH: Housekeeping gene, glyceraldehyde 3-diphosphate dehydrogenase 

CypA: Cyclophilin A 

F: forward primer 

R: reverse primer 

 

To confirm amplification specificity, the PCR products were subjected to a melting curve 

analysis. Serial dilutions of cDNA synthesized from total RNA were made for each target 

gene.  These serial dilutions were then used to create standard curves for quantitative 

analysis.   

 

Gene Accession 
number 

Primer Sequence  5’-3’ Cycling 
conditions: 
denaturation, 
annealing and 
extension 

GAPDH NM_002046 F: 5‟-AAGGTCGGAGTCAACGGATT-3‟ 
 
 
R: 5‟-CTCCTGGAAGATGGTGATGG-3‟ 

(95 ºC, 6 s), (60 
ºC, 6 s) and (72 
ºC, 10s) 
 
 

CypA NM_021130 F: 5‟-GTCAACCCCACCGTGTTCTTC-3‟ 
 
 
R: 5‟-TTTCTGCTGTCTTTGGGACCTTG -3‟ 
 

(95 ºC, 6 s), (60 
ºC, 6 s) and (72 
ºC, 10s) 
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4.1.1.6 Viral infection. 

Replication capacity of HIV-1 in PBMCs (2x106) isolated from healthy 26 SNs that were 

genotyped for A1650G was investigated. 8 1650AA wild type genotypes and 18 AG/GG 

mutant genotypes were placed in a 12-well plate in R20 and incubated for 3 days at 37oC, 

5% CO2. Following stimulation with IL2, cells were washed with R10 and then infected with 

HIV IIIB (NIH AIDS Reagent Repository) by spinoculation (2h, 2500 RPMs, 37oC) at 2x105 

cells/well in a 96-well plate.  Virus was subsequently removed; cells were washed once, and 

then allowed to incubate for an additional 2-7 days before analysis of CypA expression real-

time PCR. Cell culture supernatants from day 2 and 7 samples were harvested and analyzed 

by p24 ELISA (Becton Dickinson). 

 

Statistical analysis. The difference in allele frequency distribution between the SN and SP 

group was determined by Fisher‟s exact test (FET) for the SNP A1650G to test the null 

hypothesis that allele frequencies were the same in the two groups.  

 

The effect of the SNP A1650G on HIV-1 viral load and CD4+ T cell count was determined 

using a Generalized Estimating Equation (GEE) model [277] taking into account longitudinal 

measures for each participant.  Viral loads were log-transformed and the square root of CD4+ 

T cell count was used to normalize their measurements.  
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Kaplan-Meier survival statistics and the Cox proportional hazards model (Cox model) were 

used to assess the effect of each SNP on time to HIV-1 infection after enrollment and on the 

rate of progression to AIDS defined as CD4+ T cell decline to less than 350 cells/μl 

(CD4<350). Decline in CD4 levels was determined and compared for the group with one or 

two copies of the minor allele to a reference group with two copies of the major allele 

(dominant genetic model).  The significance of genotypic associations and relative hazard 

(RH) was determined by unadjusted Cox regression analysis for the dominant genetic model.  

 

CypA mRNA expression levels were compared between SNs and SPs by performing dot plot 

graphical representation, nonparametric statistical analysis, and correlation (Pearson). 

Values were expressed as median values. Differences between the 2 groups were evaluated 

using Dunn‟s multiple comparison test, whereas the Mann-Whitney U test was used for any 

2-group comparisons. The software used for the analysis was SAS version 9.1.3 (SAS 

Institute Inc., Cary, NC). A result was considered significant if the P-value was < 0.05. 

 

4.1.2 Results 

4.1.2.1 Genotyping for regulatory SNPs (A1650G and C1604G) in the PPIA gene. 

Although there are many SNPs in the PPIA gene [41], in this study we focused only on two 

SNPs, A1650G and C1604G because they have been shown to have an association with 

disease outcome in the previous studies [61, 73, 74]. DNA was extracted from buffy coats 

obtained from 215 participants in the CAPRISA AI 002 cohort according to the 

manufacturer‟s instructions (fig. 4.1.2.1.1) (see section 3.2 for more information).  
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Figure 4.1.2.1.1. Analysis of DNA extraction by 0.8% agarose gel electrophoresis. MWM III, 

DNA ladder molecular weight marker III (Fermentas). Numbers 1-26, represents the lanes in 

which extracted DNA was loaded for analysis. Lane 6 and lane 26 contains negative controls 

that contained water instead of DNA. 

 

215 (47 SP and 168 SN) out of 279 buffy coats samples gave good quality DNA yields 

suitable for genotyping analysis. SNPs A1650G and C1604G which are in the promoter 

region of the PPIA gene were analyzed by PCR-RFLP method (section 3.2.2). Firstly the 

DNA samples were amplified by PCR (fig. 4.1.2.1.2) to large quantities required for RFLP 

analysis.  
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Figure 4.1.2.1.2. Polymerase chain reaction (PCR) amplification of DNA extracted from buffy 

coats obtained from study participants. 1kb DNA molecular weight marker (Fermentas) was 

used. <- PCR amplified DNA -> indicate the lanes containing DNA that was amplified by 

PCR. NC represents negative control. 

 

Following PCR amplification, the PCR products were then subject to restriction digest by 

restriction enzymes for RFLP analysis. For this analysis two restriction enzymes RsaI and 

HAEIII were used for analyzing SNPs A1650G and C1604G, respectively. Restriction of the 

PCR products using RsaI yielded distinct restriction fragments which are seen as DNA bands 

after 4% agarose gel electrophoresis analysis  (fig. 4.1.2.1.3A). After restriction digestion with 

RsaI, a PCR product containing homozygous wild type 1650AA genotype yielded two 

restriction fragments of 130 bp and 120 bp in size. Homozygous mutant 1650GG genotype 

did not get digested yielding undigested PCR product of 250 bp in size. Consequently, a 
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PCR product containing heterozygous 1650AG genotype yielded three restriction fragments 

of 250 bp; 130 bp and 120 bp in size. These results demonstrate that the homozygous 

mutant 1650GG completely removes RsaI restriction site at this position.  

 

 

 

 

 

 

 

 

Figure 4.1.2.1.3. Restriction fragment length polymorphism (RFLP) analysis of PCR 

amplified DNA. RFLP analysis was performed using two restriction enzymes: A, RFLP 

banding patterns following restriction with RsaI enzymes. B, RFLP banding patterns following 

restriction with HEAIII enzymes. 

 

In contrast, RFLP analysis after restriction with HEAIII shows uniform banding patterns (fig. 

4.1.2.1.3B) suggesting that participants in the CAPRISA AI 002 study cohort were not 

polymorphic at C1604G locus of the PPIA gene. Based on these findings, the SNP C1604G 

was excluded in the association analysis.  
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4.1.2.2 Influence of SNP A1650G on CD4+ T cell counts and viral load.  

Rits et al. did not find an association between the SNP A1650G and CD4+ T cell counts or 

plasma viral RNA loads in the Amsterdam Cohort of studies (ACS) [74]. In this study we 

therefore tested the influence of the SNP A1650G on CD4+ T cell counts and viral loads in 

the CAPRISA AI 002 cohort. The approximate time of HIV-1 infection was known for SPs in 

the CAPRISA AI 002 cohort [269]. Since viral loads and CD4+ T cell counts fluctuate 

significantly during acute HIV-1 infection, we analyzed the data in two intervals post infection, 

0-3 months (acute phase) and 3-12 months (early chronic phase) to detect possible 

differences between genotypes during these phases of infection. 
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Figure 4.1.2.2. The association between different genotypes of the SNP A1650G and CD4+ 

T cell counts and viral loads during the primary HIV-1 infection.  A and B show the 

association of different genotypes with square root CD4+ T cell counts and log viral loads 

during acute phase (0-3 months) of infection, respectively. C and D show the association of 

different genotypes with square root CD4+ T cell counts snd log viral loads during early 

chronic phase (3-12 months) of infection, respectively. AA wild type genotype and 

AG/GGmutant genotypes. 

 

A dominant model analysis using GEE showed that the 1650G was significantly associated 

with lower CD4+ T cell counts (p=0.02) (fig. 4.1.2.2A) and higher viral loads (p<0.01) (fig. 

4.1.2.2B) during the acute phase of infection. Interestingly, similar results were observed 
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during the early chronic phase of infection where the 1650G was significantly associated with 

lower CD4+ T cell counts (p<0.01) (fig. 4.1.2.2C) and higher viral loads (p<0.01) (fig. 

4.12.2D).  

 

Although An et al. did not find significant association of the1650G with clinical outcomes in 

either European American or African American [73], Bleiber et al. reported an association of 

the 1650G with rapid CD4 cell depletion in a Swiss Caucasian HIV-1 cohort and a trend 

toward higher in vitro HIV-1 replication [61]. Interestingly, the results obtained from the 

current study are consistent with the results obtained from a Swiss Caucasian HIV-1 cohort 

[61]. The current study reports the association of the 1650G with enhanced HIV-1 replication 

as reflected by significantly higher viral loads and lower CD4+ T cell counts during primary 

HIV-1 infection (fig. 4.1.2.2). 

 

4.1.2.3 Effects of SNP A1650G on disease progression 

Next, we tested the influence of the SNP A1650G on disease progression in the SP group. 

Kaplan Meier and Cox proportional hazard analysis were used to test for potential differences 

in CD4+ T cell decline between individuals who carried the 1650AA or 1650AG/GG genotype 

(dominant model). Our results show borderline significant association between the 

1650AG/GG and rapid CD4+ T cell decline (RH=3.18; p=0.05) (fig. 4.1.2.3). 
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Figure 4.1.2.3. Kaplan Meier survival curves showing differences in rates of progression to 

CD4+ T cells below 350 cells per ml between individuals who carried the 1650AA or 

1650AG/GG genotype (dominant model). 

 

 
This association supports the earlier observations (fig. 4.1.2.2) that the 1650G is associated 

with enhanced HIV-1 replication in the black South African HIV-1 (CAPRISA AI 002) cohort.   
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Table 4.1.2.3. Effect of the PPIA SNP A1650G on HIV-1 Acquisition Risk 

 

 

Although the 1650G frequency was higher in the SP group as compared to the SN group, 

this difference was not significant (p=0.31) (Table 4.1.2.3). Unlike the previous studies [73, 

74], our results suggest that the 1650G may not be associated with susceptibility to HIV-1 

infection in this setting  

 

4.1.2.4 Effect of 1650G on CypA expression levels in vivo. 

Next we analyzed whether the SNP A1650G of the PPIA gene influenced CypA mRNA 

expression levels in vivo. We performed quantitative RT-PCR to measure CypA mRNA levels 

in 30 SNs and 28 SPs. The data obtained from this experiment indicates that PBMCs 

obtained from SPs had elevated levels of CypA mRNA expression compared to PBMCs 

obtained from SNs, however, the difference was not significant (fig. 4.1.2.4A).  For 13 of SPs, 

samples pre- (baseline) and post-HIV-1 infection were available for analysis. Baseline 

PBMCs from seroconverters had higher CypA expression compared to PBMC from non-
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seroconverters but this was not significantly different (fig. 4.1.2.4B). These results provide no 

convincing evidence that CypA might be associated with susceptibility to HIV-1 infection. 

 

 

 

 

 

 

 

 

 

 

Figure 4.1.2.4. CypA mRNA Expression in peripheral blood mononuclear cells (PBMCs) 

represented as the normalized ratio of CypA to GAPDH. A, Expression of CypA mRNA in 

PBMCs obtained from SNs versus SPs. B, Expression of CypA mRNA in PBMCs obtained 

seroconverters versus nonseroconverters. C, Expression of CypA mRNA as modulated by 

different genotypes among SNs. D, Expression of CypA mRNA as modulated by different 

genotypes among SPs. AA wild type and AG/GG mutant genotypes for SNP A1650G. 
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CypA expression between the 1650AA and 1650AG/GG genotypes was not significantly 

different amongst the SN group (fig. 4.1.2.4C). Interestingly, the 1650G was significantly 

associated with elevated levels of CypA mRNA expression post HIV-1 infection (p<0.01) (fig. 

4.1.2.4D) suggesting that the 1650G drives higher expression of CypA mRNA levels which in 

turn promotes HIV-1 replication in vivo in the black South African cohort.  

 

4.1.2.5 Effect of 1650G on CypA expression levels and HIV-1 replication in vitro 

Next we analyzed whether the SNP A1650G was associated with altered CypA expression 

levels in vitro. Again, we performed quantitative RT-PCR on CypA mRNA levels in PBMCs of 

26 SN (or highly exposed but persistently seronegative (HEPS)) group, genotyped for 

A1650G SNP. Pre-HIV-1 infection expression levels of CypA were significantly higher in 

PBMC genotyped for the1650G compared to CypA expression levels in PBMC harboring the 

1650AA genotype (p<0.01) (fig. 4.1.2.5A). At day 2 post infection, we observed a significant 

drop in CypA mRNA levels in PBMC genotyped for the 1650G.  
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Figure 4.1.2.5. Expression of CypA mRNA in PBMCs represented as the normalized ratio of 

CypA to GAPDH. PBMCs were obtained from highly exposed but persistently seronegative 

(HEPS). A, expression levels of CypA mRNA pre-and post-HIV-1 infection of PBMCs. B, 

replication assays of HIV-1 in PBMCs harboring different genotypes of the SNP A1650G. 

 

Interestingly, at day 7 post infection, our results demonstrated that the expression levels of 

CypA in PBMCs genotyped for the 1650G were restored to significantly higher levels 

(p<0.01) (fig. 4.1.2.5A). These results demonstrated that CypA expression is altered by HIV-

1 infection. Elevated levels of CypA expression from day 7 onwards support the findings 

presented above that 1650G promotes HIV-1 replication and rapid disease progression.  

 

In order to determine when does the 1650G start to have an impact on HIV-1 replication, we 

analyzed the replicative capacity of HIV-1 in IL2 stimulated PBMC from 26 HEPS individuals 
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with known genotypes for the SNP A1650G. IL2-stimulated PBMC were inoculated with 5ng 

of NL4.3 per 2X106 cells. Subsequently, virus replication was assessed by measuring p24 

antigen levels in the culture supernatant every other day for 7 days. Similar to the previous 

study [74], our results did not show significant differences in p24 production at any time point 

during the culture period, irrespective of the genotype of the SNP A1650G (figure 4.1.2.5B). 

These results suggest that the effect of the SNP A1650G is not shown in short-term tissue 

culture and therefore its effect may be subtle rather than dramatic.  

 

4.1.3 Discussion and Conclusion 

The role of CypA in promoting HIV-1 replication was initially established through extensive in 

vitro experiments [134, 135, 145, 274]. Subsequent studies validated CypA as an important 

cellular cofactor of HIV-1 by identifying SNPs within the PPIA gene that are associated with 

HIV-1 disease outcome [61, 73, 74]. Although numerous SNPs within the PPIA gene have 

been implicated to HIV-1 clinical outcome [73], this study focused only on one SNP, A1650G, 

because it was polymorphic in a cohort of black South African women (CAPRISA AI 002). 

The minor allele (1650G) was associated with enhanced in vivo HIV-1 replication as evident 

from significantly higher viral loads and lower CD4+ T cell counts following HIV-1 infection in 

the CAPRISA AI 002 cohort. These results corroborate the data obtained from a Swiss 

Caucasian HIV-1 cohort and in vitro data which showed a trend towards higher HIV-1 

replication [61]. However, the 1650G was not associated with disease progression in either 

the European Americans or African Americans [73].  
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While there was no evidence of association between the 1650G and susceptibility to HIV-1 

infection in both the American and Swiss cohorts [61, 73], results obtained from the 

Amsterdam cohort suggest that 1650G may be associated with protection against HIV-1 

infection [74]. In this study, we report that the 1650G was similarly distributed between SN 

and SP groups of the CAPRISA AI 002 cohort. Thus, the role of the 1650G in susceptibility to 

HIV-1 infection remains inconclusive and warrants further investigation. The discrepancy in 

the observed phenotypes could be attributed to the fact that these studies used populations 

from different geographical areas. There are differences in allele frequencies among potential 

disease influencing gene variants between ethnic groups and geographically separated 

populations [107]. 

 

The entire PPIA gene was re-sequenced and no genetic variation was found in the coding 

sequence of the PPIA gene and the dbSNP database has no documented records of 

variation in the coding sequence of the PPIA gene [73]. This suggests that differential genetic 

impact of PPIA SNPs on HIV-1 replication and disease progression are likely due to the 

1650G affecting protein levels since the SNP A1650G is in the regulatory region of PPIA 

gene. Although CypA mRNA expression levels are altered by HIV-1 infection, our results 

demonstrated that PBMCs genotyped for the 1650G expresses higher levels of CypA mRNA 

than PBMCs genotyped for wild type genotype, 1650AA. Rapid depletion of CD4 cells to less 

350 cell/ml could be partially attributed to higher expression levels of CypA since participants 

genotyped for 1650G lost their CD4 cells more rapidly than wild type individuals. 
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The replicative capacity of HIV-1 (NL4.3) in IL2 stimulated PBMCs was higher in PBMCs 

genotyped for 1650G as was measured by p24 production. However, there was no significant 

difference in the amount of p24 produced between PBMCs genotyped for 1650AA and 

1650AG/GG. Lack of significant difference could be attributed to a shorter period (7 days) of 

incubation of PMBC with HIV-1.  

 

In summary, we demonstrate that SNP A1650G is associated with higher HIV-1 replication 

and rapid CD4+ T depletion in black South Africans. These findings corroborate the 

understanding that the genetic variation of the PPIA gene influences HIV-1 disease 

progression [61, 73] and further confirm that CypA is a critical host protein crucial for efficient 

HIV-1 replication. Small molecule inhibitors may be designed to block the interaction between 

HIV-1 and CypA thereby inhibiting HIV-1 replication.  
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4.2 The Influence of Genetic Variation in the TNPO3 Gene on Susceptibility to HIV-1 

Infection and Disease outcomes 

HIV-1 has the capacity to infect nondividing cells, including cells of monocyte/macrophage 

lineage. The early events of HIV-1 replication include reverse transcription to synthesize viral 

copy DNA (cDNA) from the RNA genome and subsequent integration of viral cDNA into the 

cellular chromosome. Reverse transcription and integration of HIV-1 cDNA occur within the 

context of higher-molecular-weight nuclear protein complexes derived from viral cDNA, 

proteins and host proteins. Cellular chromosome resides within the nucleus and therefore, 

HIV-1 must enter the nucleus to replicate successfully [32].  

 

However, the interior of the nucleus is separated from the cytoplasm by a double-layer 

nuclear membrane possessing nuclear pore complexes that allow the trafficking of molecules 

between the cytoplasm and the nucleus in interphase (nondividing) cells [278]. Nuclear pores 

allow the diffusion of ions and molecules smaller than 9 nm in diameter. Other studies have 

reported nuclear pores to facilitate passage of larger molecules up 39 nm in diameter under 

certain conditions (reviewed in [31]. At 56 nm [30], viral cDNA, packed in the preintegration 

complex (PIC) grossly exceeds the diffusion limit and yet HIV-1 PIC is actively transported 

during interphase [32, 33], reflecting its ability to efficiently infect nondividing cells.  

 

A number of HIV-1 proteins–matrix (MA), viral protein R (Vpr), integrase (IN), and the central 

DNA flap–constituting the PIC have been implicated in nuclear import. However, this aspect 

of HIV-1 biology remains highly controversial with reports both supporting and refuting the 
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role of these viral proteins in the nuclear import (reviewed in [75, 206, 279]). In addition to 

HIV-1 PIC proteins, host proteins, including the importin α/importin β heterodimer [35, 280, 

281], importin 7 [280, 282, 283], NUP153 [284], and transportin-SR2 (TRNSR2) [178, 285] 

have been implicated in HIV-1 nuclear transport. 

 

TRN-SR2 is a member of the karyopherin protein family that imports serine/arginine-rich 

splicing factors (SR proteins) into the nucleus [157]. TRN-SR2 has recently been identified as 

a cellular protein that interacts with HIV-1 integrase (IN) to import HIV-1 PIC into the nucleus 

[160, 285]. Recently, Engelman‟s group published results that discounted the important role 

for IN in determining the requirement for transportin 3 (TNPO3) during infection and 

highlighted a dominant role for CA in this aspect of HIV-1 biology [32]. The gene and its 

protein are referred to as TNPO3 and TRN-SR2, respectively (section 1.6.2). 

 

Previous research has shown that the disruption of this interaction inhibits HIV-1 replication 

in vitro. TRN-SR2 depletion significantly inhibited HIV-1 replication [67, 68, 160]. Christ et al. 

demonstrated that the inhibition was due to the blocking of PIC at nuclear import [160], 

indicating a potential role of TRN-SR2 in nuclear import of HIV-1 PIC. The role of TRN-SR2 

in HIV-1 infection, so far, has been studied in vitro. 

 

Identification of genetic variation and its association with disease outcome is a powerful way 

of validating the in vitro data. Previous studies have used this approach to identify genetic 
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variants that affect susceptibility to HIV-1 infection and disease progression. A 32 base pair 

deletion in the portion of the human CCR5 open reading frame encodes a truncated protein, 

designate Δ32. Individuals who are homozygous for CCR5Δ32 gene are protected against 

HIV-1 infection [286] and AIDS progression is delayed in heterozygous individuals [47, 49, 

286-288]. 

 

Association of genetic variation and disease outcome is a powerful tool for validating the 

importance of a gene or gene product in HIV-1 infection and pathogenesis. Since the 

association of genetic variation of the TRN-SR2 gene (TNPO3) and HIV-1 disease outcome 

had never been studied before, the current study investigated the association of genetic 

variation in the TNPO3 with susceptibility to HIV-1 infection and disease progression. 

 

4.2.1 Materials and Methods 

Study participants. Two South African cohorts CAPRISA AI 002 [269] and the Sinikithemba 

[271] were used for this study (see section 3.1).   

 

4.2.1.1 Genotyping of SNPs in TNP03 gene in the CAPRISA AI 002 Participants  

6 intronic and 2 exonic haplotype tagging (ht) SNPs rs13242262, rs2305325, rs11768572, 

rs1154330, rs35060568, rs8043, rs6957529 and rs10229001 in the TNPO3 gene selected as 

described in section 3.2.3 were genotyped in 247 patient samples (52 SPs and 195 SNs) 

from the CAPRISA AI 002 cohort. The ht SNPs were chosen because they are ht SNPs for 
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the TNPO3 gene in the Yoruba population from Nigeria (http://www.snp.cshl.org). 

Genotyping was performed using the TaqMan SNP assay according to the manufacturer‟s 

protocol (Applied Biosystems). TaqMan assays were obtained from the Assay-by-Demand 

service of Applied Biosystems (http://www.appliedbiosystems.com). Eight negative controls 

which contained water instead of DNA were included in each plate to rule out PCR 

contamination. Samples were genotyped in duplicate and genotypes were accepted after 

confirmation of no contamination or inconsistencies between duplicates. 

 

4.2.1.2 Genotyping of the SNP rs1154330 of the TNPO3 gene in the Sinikithemba 

Participants  

Analysis of the TNPO3 gene genotyping results from the CAPRISA AI 002 cohort showed an 

association between the SNPs in the TNPO3 gene and HIV-1 outcomes. However, the 

interpretation of the data from the CAPRISA AI 002 cohort was complicated by a small 

sample size, only 52 SPs. Since the minor allele (G) of the SNP rs1154330 (rs1154330G) 

gave consistent results in the CAPRISA AI 002 cohort, we decided to extend the analysis of 

this SNP to a larger cohort of 450 HIV-1 chronically infected individuals from Sinikithemba 

cohort, to either confirm or refute the results obtained from the CAPRISA AI 002 cohort. 

Genotyping assays were performed as described above for CAPRISA AI 002 cohort. 

 

4.2.1.3 Statistical Analysis 

The differences in allele frequency distributions between the SP and SN groups were 

determined by Fisher‟s exact test (FET) for each SNP to test the null hypothesis that allele 

http://www.snp.cshl.org/
http://www.appliedbiosystems.com/
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frequencies were equally distributed between the SN and SP groups. The effect of each SNP 

on HIV-1 viral loads and CD4+ T cell counts was determined using a GEE model [246] which 

takes into account the longitudinal measures for each participant. Viral loads were log 

transformed and the square root of CD4+ T cell counts was used to normalize both CD4+ T 

cell count and viral load measurements.  

 

Kaplan-Meier survival statistics and the Cox proportional hazards model (Cox model) were 

used to assess the effect of each SNP on time to HIV-1 infection after enrollment in the 

CAPRISA AI 002 cohort and on the rate of CD4+ T cell decline to less than 350 cells/μl 

(CD4<350). The rate of CD4+ T cells decline was compared between the reference group 

(SPs containing the wildtype genotype) and a group with containing the mutant genotype 

(dominant genetic model) for each SNP. P<0.05 and P<0.0015 were considered to denote 

statistical significance before and after correction for multiple comparisons, respectively. 

Statistical significance after a Bonferroni correction for multiple comparisons is indicated by 

an asterisk.  
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4.2.2 Results 

4.2.2.1 Description of TNPO3 variations 

The TNPO3 gene is approximately 100.25kb in length consisting of twenty two exons (fig. 

4.2.2.1). 6 intronic and 2 exonic ht SNPs available from dbSNP database 

(www.ncbi.nlm.nih.gov/SNP) were selected to genotype participants from the CAPRISA AI 

002 cohort (fig. 4.2.2.1 and Table 4.2.2.1).  

 

 

 

 

 

 

 

Figure 4.2.2.1. Locations of the TNPO3 single nucleotide polymorphisms (SNPs) on 

chromosome 7. Coding exons of a gene are marked with red lines. Minor allele frequencies 

(MAF) of the SNPs are shown at the bottom panel. 

 

SNP 

http://www.ncbi.nlm.nih.gov/SNP
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The SNP rs1154330 was further genotyped in the Sinikithemba cohort. The genotypic 

frequencies of all SNPs conformed to the frequencies expected under Hardy Weinberg (HW) 

equilibrium (Table 4.2.2.1).  

 

Table 4.2.2.1. Description of TNPO3 ht SNPs 

dbSNP 
rs number 

SNP 
number 

Location 
Nucleotide 
Change 

Hardy 
Weinberg 

MAF 

rs13242262 SNP1 regulatory TA 0.55 0.35 

rs2305325 SNP2 intron 4 TA 0.86 0.22 

rs11768572 SNP3 intron 4 AC 5.84 0.03 

rs1154330 SNP4 intron 12 AG 0.11 0.12 

rs35060568 SNP5 exon 17 CA 21.52 0.10 

rs8043 SNP6 exon 21 AG 0.26 0.38            

rs6957529 SNP7 Intron 21 TC 12.00 0.05 

rs10229001 SNP8 Intron 21 T C 0.92 0.25 

Hardy Weinberg was calculated using the CAPRISA AI 002 cohort MAF- minor allele 

frequency 

 

4.2.2.2 Effect of the TNPO3 SNPs on Susceptibility to HIV-1 Infection in the CAPRISA AI 

cohort 

The study design of the CAPRISA AI 002 cohort allowed us to study the influence of genetic 

variation of the TNPO3 gene on susceptibility to HIV-1 infection. Firstly, we compared the 
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TNPO3 SNP allele frequency distribution between the SP and SN groups and did not find 

distortions in allele distribution between the groups as shown for SNP rs1154330G (fig. 

4.2.2.2A).  

 

Figure 4.2.2.2. Association of the minor allele (G) of SNP rs1154330 (referred to as 

rs1154330G) with susceptibility to HIV-1 infection in the CAPRISA AI 002 cohort. A, 

frequency distribution of the rs1154330G between the SP and SN groups. B, The 

rs1154330G represented by a red curve on the graph showed significant association with 

fast acquisition of HIV-1 infection compared to the wild type allele (rs1154330A) at this locus 

(HR = 3.24, P < 0.01). 

 

Kaplan-Meier survival analysis of time to HIV-1 acquisition and showed that the minor allele 

(G) of SNP rs1154330 (referred to as rs1154330G) was associated with faster acquisition of 

HIV-1 infection (HR 7.13, 95% confidence interval [CI]: 3.06 - 16.50; p<0.01, Cox model) (fig. 

4.2.2.2B). Although the rs1154330G was more frequent amongst SPs, this was not 
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statistically significant. No association was observed between HIV infection and the rest of 

SNPs (Table 4.2.2.2). 

 

Table 4.2.2.2. Effect of TNPO3 SNPs on HIV-1 Infection Risk in CAPRISA cohort 

rs number 
Risk Group 

n Genotype 
Number (Frequency)                              

22 and 12 versus 11 (reference group)* 
HR (95% CI)             P - value 

rs13242262 
(SNP1) 

     TT     AT   AA   

SN 195 78 (0.4) 97 (0.5) 20 (0.10)   
SP 52 24 (0.46) 20 (0.38) 8 (0.15) 2.55 (1.12 – 5.81)           0.73 
rs2305325 
(SNP2) 

     TT     AT   AA   

SN 195 120 (0.59) 68 (0.36) 7 (0.038)   
SP 52 32 (0.62) 15 (0.29) 5 (0.09) 2.71 (1.15 – 6.31)            0.64 
rs11768572 
(SNP3) 

     AA     AC  CC   

SN          195 180 (0.92) 15 (0.08) 0 (0.00)   
SP 52 50  (0.96) 2 (0.04) 0 (0.00) 0.00 (0.00 – 0.00) 0.99 
rs1154330 
(SNP4) 

     AA     AG  GG   

SN 195 158 (0.81) 31 (0.16) 6 (0.03)   
SP 52 39 (0.75) 13 (0.25) 0 (0.00) 7.13 (3.06 – 16.50) <0.01 
rs35060568 
(SNP5) 

     CC     AC  AA   

SN 195 155 (0.79) 40 (0.20) 0 (0.00)   
SP 52 42 (0.81) 10 (0.19) 0 (0.00) 0.76 (0.18 – 3.21)  0.15 
rs8043 
(SNP6) 

     AA     AG  GG   

SN 195 102 (0.52) 69 (0.35) 24 (0.12)   
SP 52 23 (0.44) 20 (0.29) 9 (0.17) 2.09 (0.86 – 4.99)  0.91 
rs6957529 
(SNP7) 

     TT     CT  CC   

SN 195 172 (0.88) 23 (0.12) 0 (0.00)   
SP 52 47 (0.90) 5 (0.10) 0 (0.00) 3.41 (0.75 – 8.51)  0.81 
rs10229001 
(SNP8) 

     TT     CT  CC   

SN  195 108 (0.55) 74 (0.38) 13 (0.07)   
SP 52 30 (0.58) 19 (0.36)  3 (0.06) 3.28 (1.47 – 4.93)  0.33 
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4.2.2.3 Effect of the TNPO3 SNPs on CD4+ T cell counts and viral loads in the CAPRISA AI 

002 Cohort 

Since the approximate date of infection was known for CAPRISA AI 002 cohort, we analyzed 

the data in two specific intervals, 0-3 months post infection (acute phase of infection) and 3-

12 months post infection (early chronic phase of infection). The influence of genetic variation 

on CD4+ T cell counts and viral loads was performed in these specific intervals because viral 

loads and CD4+ T cell counts fluctuate significantly during primary infection. The rs numbers 

instead of SNP numbers will be used below, please refer to the table above (Table 4.2.2.1) to 

find the corresponding SNP numbers for rs numbers. Dominant model analysis, using GEE 

which takes into account repeated measurements, showed that the minor alleles (A) and (C) 

of rs2305325 and rs11768572, respectively were significantly associated with higher CD4+ T 

cell counts during the acute phase of infection (fig. 4.2.2.3A). The minor allele (A) of 

rs2305325 was associated with lower viral loads whereas the minor alleles (C) of SNPs 

rs11768572, (G) of rs1154330 (referred to as rs1154330G), (A) of rs35060568 and (C) of 

rs6957529 were significantly associated with higher viral loads during acute phase of 

infection (fig. 4.2.2.3B).  

 

The rs2305325A and rs10229001C were associated with higher CD4+ T cell counts while the 

rs1154330G, rs35060568A and rs6957529C were associated with lower CD4+ T cell counts 

during the early chronic phase of infection (fig. 4.2.2.3C). 
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The rs10229001C was associated with lower viral loads while the rs1154330G, rs35060568A 

and rs6957529C were associated with higher viral loads during the early chronic phase of 

infection (fig. 4.2.2.3D). Interestingly, the rs1154330G was significantly associated with lower 

CD4+ T cell counts and higher viral loads during both the acute phase and the early chronic 

phase of infection in the CAPRISA AI 002 cohort (fig. 4.2.2.3). This observation was 

consistent with the observation that the rs1154330G was significantly associated with 

increased susceptibility. However, rs8043 was neither association with CD4+ T cell counts 

nor with viral loads during primary HIV-1 infection (fig. 4.2.2.3). 
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Figure 4.2.2.3. Effect of TNP03 polymorphism on CD4+ T cells and viral load in primary HIV-

1 infected black South Africans (n =52). A and B, association of individual TNPO3 SNP with 

differential CD4+ T cell counts and viral loads, respectively, during the acute phase of 

infection. C and D, association of individual TNPO3 SNP with differential CD4+ T cell counts 

and viral loads, respectively, during the early chronic phase of infection (refer to Table 4.2.2.1 

for corresponding rs number for the SNP number). 

 

Next, we tested the effect of each SNP on the rate of CD4+ T cell decline in the CAPRISA 

cohort using Cox model. However, no association was observed between the SNPs and the 

rate of CD4+ T cell decline in the CAPRISA AI 002 cohort. Lack of association between 

TNPO3 genetic variation and the rate of CD4+ T cell decline could be attributed to a small 
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number of participants in the CAPRISA AI 002 cohort. For example, there were only 13 SPs 

who carried the rs1154330G.  

 

4.2.2.4 Effect of the SNP rs1154330 of TNPO3 on CD4+ T cell decline in the Sinikithemba 

Cohort 

The results obtained from the CAPRISA AI 002 cohort suggested that the rs1154330G may 

be associated with higher susceptibility to HIV-1 infection, lower CD4+ T cell counts post 

infection and higher viral loads. However, the effect of the rs1154330G on the CD4 decline 

was not pronounced probably due to fewer (n=13) SPs containing the rs1154330G in the 

CAPRISA AI 002 cohort. We therefore extended the rs1154330G analysis to the larger 

Sinikithemba cohort comprising 450 HIV-1 chronically infected participants–within the same 

geographical area–in order to elucidate the effect of the rs1154330G on the rate of CD4+ T 

cell decline. Since the Sinikithemba cohort is a seroprevalent cohort with unknown dates of 

infection, the effect of the rs1154330G was examined at baseline for CD4+ T cell levels and 

on the trajectory of CD4+ T cell decline over 5 years of follow-up. There was no association 

observed between the rs1154330G and CD4+ T cell counts at baseline (fig. 4.2.2.4 A), 

probably due to the fact that participants enrolled into this study cohort were at different 

stages of the disease or infection. Another possibility is that there truly was no effect in this 

population. 
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Figure 4.2.2.4. Rates of CD4+ T cell decline stratified by TNPO3 SNP rs1154330. A, 

influence of SNP rs1154330 on CD4+ T cell counts at baseline; B, CD4+ T decline in 

individuals carrying the wild type genotype (AA) for SNP rs1154330 are represented by a 

black curve whereas CD4+ T decline in participants carrying the mutant genotype (AG) are 

represented by a red curve.  

 

Interestingly, the rs1154330G was significantly associated with a faster rate of CD4+ T cell 

decline in the Sinikithemba cohort (p<0.01) (fig. 4.2.2.4B). These results confirmed that the 

rs1154330G may be associated with enhanced HIV-1 replication in vivo as evident from 

increased susceptibility to HIV-1 infection, higher levels of HIV-1 loads and lower levels of 

CD4+T cell count post infection in the CAPRISA AI 002 cohort (sections 4.2.2.2 and 4.2.2.3).  
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4.2.3 Discussion and Conclusions 

Interestingly, the SNP rs1154330G was associated with increased susceptibility to HIV-1 

infection as was reflected by faster acquisition of HIV-1 infection by individuals who harbored 

the rs1154330G. The rs1154330G was further associated with lower CD4+ T cell counts and 

higher viral loads during primary infection in the CAPRISA AI 002 cohort. Lastly, the 

rs1154330G correlated significantly with rapid disease progression, as was reflected by the 

faster rate of CD4+ T cell decline in in individuals carrying the rs1154330G in the 

Sinikithemba cohort. These results corroborate the role of TRN-SR2 as an important cellular 

cofactor for HIV-1 replication as previously established through in vitro studies [32, 67, 160].  

 

In this study, we have investigated the association of genetic variation in the TNPO3 gene 

with susceptibility to HIV-1 infection and disease progression in HIV-1 longitudinal South 

African cohorts. The rs1154330G, which is in intron 12 of TNPO3, was associated with 

increased susceptibility to HIV-1 infection and disease progression in the South African 

cohorts. These findings suggest that the rs1154330G gives HIV-1 selective advantage for 

infection and enhanced replication in vivo. In addition to the SNP rs1154330, 5 other SNPs 

also in the intron regions and 2 SNPs in the exon region were also studied in the CAPRISA 

AI cohort.  

 

The rs2305325A was associated with higher CD4+ T cell count and lower viral load during 

acute phase of infection. The rs2305325A was not associated with viral load during early 

chronic phase of infection. The rs35060568A was associated with higher viral load during 
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both the acute phase and the early chronic phase infection. However, the association 

between the rs35060568A and CD4+ T cell counts was only observed during the early 

chronic phase of infection. 

 

The rs6957529C showed inconsistent effect on CD4+ T cell count and viral load between the 

acute and early chronic phase of infection. The rs6957529C was associated with higher 

CD4+ T cell counts and lower viral loads during the acute phase of infection whereas the 

opposite effect was observed during early chronic phase of infection. The plausible 

explanation for this could be that the virus adapts differently to be able to replicate more 

effectively during the later stages of HIV-1 infection [202]. The rs10229001C was associated 

with higher CD4+ T cell counts and lower viral loads during the early chronic phase of 

infection only. 

 

The analysis of the SNP rs1154330 was extended to a larger Sinikithemba cohort of 450 

chronically infected individuals on the basis that this was the only SNP that showed 

consistent results in the CAPRISA AI 002 cohort. In the Sinikithemba cohort, the rs1154330G 

could only be examined at baseline for its effect on CD4+ T cell counts and viral loads since 

the date of infection was not known for participants in this cohort. The effect of the 

rs1154330G could also be assessed on the rate of CD4+ T cell decline in this cohort. 

Interestingly, the rs1154330G was significantly associated with rapid CD4+ T cell decline in 

the individuals harboring this allele. Since the rs1154330G is in the intron 12 region, 

therefore it probably exerted its effect by affecting the mRNA expression profile of the TRN-
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SR2. However, the rs1154330G was neither associated with CD4+ T cell count nor viral load 

at baseline. Lack of association could be explained by the fact that individuals in the 

Sinikithemba cohort were enrolled into the study while they were at different stages of HIV-1 

disease.  

 

This study had two major limitations: (1) the CAPRISA AI cohort, the only cohort with known 

dates of infection had few HIV-1 infected individuals and; (2) the date of infection was not 

known for HIV-1 chronically infected individuals, and therefore the clinical data of these 

individuals could not to be categorized and analyzed according to the different phases of 

HIV-1 infection.  

 

Results obtained in this study demonstrated that the rs1154330G was significantly 

associated with increased susceptibility to HIV-1 infection. This allele was also associated 

with higher levels of viral loads and lower levels of CD4+ T cell counts during primary 

infection and was further associated with rapid disease progression as was reflected by rapid 

CD4+ T cell decline. This study has to be replicated in a larger cohort of HIV-1 infected 

individuals whose date of infection is known in order to elucidate the role of the genetic 

variation inTNPO3 gene during the course of HIV-1 infection. 
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4.3 Association of Polymorphisms in the LEDGF/p75 Gene (PSIP1) with Susceptibility 

to HIV-1 Infection and Disease Progression 

HIV-1 requires host cell factors to successfully complete its replication cycle [289]. Lens 

epithelium derived growth factor p75 (LEDGF/p75) also known as proprotein convertase 4 

(PC4) or splicing factor, arginine/serine-rich 1 (SFRS1) interacting protein 1 (PSIP1), is a 

ubiquitous protein expressed in a wide range of tissues and cell types at all stages of 

development (by convention, the protein is referred to as LEDGF/p75 and the gene named 

PSIP1). LEDGF/p75 is known for its involvement in HIV integration and its important role in 

promoting HIV-1 replication in vitro [171, 179]. LEDGF/p75 is a member of the hepatoma-

derived growth factor (HDGF) family, members of which are involved in chromosomal 

replication, transcription and chromatin structure formation [174-176, 178-180, 183].  

 

LEDGF/p75 has been shown to interact with HIV-1 integrase (IN) through specific binding 

that occurs between the integrase binding domain (IBD) of LEDGF/p75 and the catalytic core 

domain of HIV-1 IN to mediate the nuclear accumulation of IN and to target HIV-1 integration 

into active transcription unit sites [187, 188, 201, 202, 290, 291]. Disruption of the interaction 

between LEDGF/p75 and HIV-1 IN, either by HIV-1 IN mutations or by LEDGF/p75 

knockdown, leads to an inhibition of HIV-1 replication [177, 189, 292]. The data presented 

above from intensive in vitro studies have convincingly demonstrated that LEDGF/p75 is an 

important host factor for HIV-1 replication. 
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Studies of the influence of human genetic variation on susceptibility to HIV-1 infection and 

disease progression may reveal the essential in vivo host factors that interact with HIV-1 and 

their epidemiologic importance at the population level [73]. Although this approach has 

previously been used to identify HIV/AIDS modifying variants in human genes, the majority of 

these studies have been conducted using populations mainly from developed countries [73, 

75, 286, 293]. However, it has been clearly demonstrated that there are considerable 

differences in allele frequencies among potential disease influencing genes between ethnic 

groups and geographically separated populations [107]. There is therefore a pressing need 

to extend host genetic studies of HIV-1 infection to developing world populations heavily 

burdened with HIV/AIDS and to factors that are possible targets for therapeutic or other 

plausible biomedical interventions. Although LEDGF/p75 has been demonstrated to be 

essential for HIV-1 integration in vitro, there was no data published on the influence of 

genetic variation in PSIP1 on HIV-1 disease outcome. In this study, we therefore investigated 

the influence of genetic variation in PSIP1 on HIV-1 infection and disease progression in 

South Africans cohorts.  

 

4.3.1 Materials and Methods 

Study participants. The Center for the AIDS Programme of Research in South Africa Acute 

Infection 002 (CAPRISA AI 002) [268, 269] and the Sinikithemba [270, 271] cohorts were 

used for this study (see section 3.1 for more details). Ethical approval for this study was 

obtained from the University of KwaZulu-Natal‟s Biomedical Research Ethics Committee. All 

participants provided written informed consent. 
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4.3.1.1 Identification of polymorphisms in the C terminal region of PSIP1 

Single nucleotide polymorphisms (SNPs) in the C terminal region of PSIP1 were screened in 

a panel of 83 seronegative (SN) and 43 seropositive (SP) black South African women from 

the CAPRISA AI 002 cohort by resequencing part of the C-terminal region of the PSIP1 

gene. PSIP1 encodes two proteins by alternative splicing, LEDGF/p75 and p52 that have a 

high degree of homology but p52 lacks the C-terminus region of LEDGF/p75. Sequence 

comparison and BLAST search were performed to select LEDGF/p75-specific PCR primers. 

A 50 µl PCR reaction mixture containing 1X PCR buffer, 3.5 mmol MgCl2, 0.25 mmol dNTP 

mix, 0.25 U/µl Expand Taq polymerase, 0.4 ρmol/µl of forward (LEDGFDNA1) and reverse 

(Seq 5) primer and 100 ng DNA was prepared (Table 4.3.1.1). 

 

This was amplified at 95 ºC for 10 minutes, 35 cycles of 94 ºC for 30 seconds, 60 ºC for 30 

seconds, 72 ºC for 45 seconds, and a final 10 minute extension step at 72 ºC. The PCR 

product was purified using Qiagen PCR Purification Kit (Qiagen) and sequenced using 

overlapping primers to cover a 1,679 bp long DNA fragment of the C-terminal region of 

PSIP1 (starting from 1,190 bp upstream of exon 10 to 105 bp downstream of exon 13), this 

region included the IBD  (Table 4.3.1.1). BigDye Terminator Kit (Applied Biosystems, Foster 

City, California, USA) was used for sequencing. 
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Table 4.3.1.1. PCR, sequencing and real time RT-PCR primers and cycling conditions used 

in this study 

 

 Gene 
Name, 
Accession, 
SNP and rs 
number 

Primer /probe 
name/nucleot
ide change 

PCR Primer Sequence  5’3’ 
 

 
TaqMan Assay ID# or Assay sequences 

PCR PSIP1 
AF_199339 

LEDGF1 
Seq5 

F: TGG GCT CAA AGC ATTA ATC C 
R: TCT GTG GCG TAT ACA CAG TG 

Sequencing  Seq1 
Seq6 
 
Seq2 
Seq5 
 
S9 
R1 

F: GCC AGA TATGAT TTA ATC TAG 
R: GTA GAC TTT TCC  ATG ATT CCT GAC 
 
F: GCC TGT ATA TAG AAA TAC TGG 
R: TCT GTG GCG TAT ACA CAG TG 
 
F: CTT CAA AGG ATA CAT GC 
R: GTA GAC TTT TCC  ATG ATT CCT GAC  

TaqMan 
Assay 

SNP1rs2
277191 
 
SNP2rs1
0283923 
 
SNP3rs1
2339417 
 
SNP4rs1
033056 
 
SNP5rs6
1744944 

G  A 
 
 
G  C 
 
 
T  C 
 
 
A  G 
 
 
A  T 

C_15883595_10 
 
 
C_29529242_10 
 
 
C_31936110_10 
 
 
C_2757693_20 
 
 
PSIP1_Q472L_s 
AAAACCAAAGATCAAGGGAAGAAA 
Psip1_q472l_a 
TGTGAAATTGTTGGCTTTTTACCA 

 
Real Time 
–RT PCR 
 

 PTZ1 
PTZ2 

F: GTC AAC CCC ACC GTG TTC TTC 
R: TTT CTG CTG TCT TTG GGA CCT TG 

GAPDH 
NM_002046 

GAPDH1 
GAPDH2 

F: AAG GTC GGA GTC AAC GGA TT 
R: CTC CTG GAA GAT GGT GAT GG 

http://www.sciencedirect.com/science?_ob=RedirectURL&_method=externObjLink&_locator=genbank&_cdi=5108&_issn=01452126&_origin=article&_zone=art_page&_plusSign=%2B&_targetURL=http%253A%252F%252Fwww.ncbi.nlm.nih.gov%252Fentrez%252Fquery.fcgi%253Fcmd%253Dsearch%2526db%253Dnucleotide%2526doptcmdl%253Dgenbank%2526term%253DAF199339%5baccn%5d
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4.3.1.2 Genotyping of SNPs in PSIP1 from the CAPRISA AI 002 Participants 

The rs numbers instead of the SNP numbers will be used below, please refer to the table 

above (Table 4.3.1.1) to find the corresponding SNP numbers for rs numbers. The four 

intronic ht SNPs rs2277191, rs1033056, rs10283923 and rs12339417 available from NCBI 

dbSNP (http://www.ncbi.nlm.nih.gov/SNP) and HapMap databases (http://www.hapmap.org) 

were selected by considering location, spacing, and allele frequency of at least 10%. The 

exonic SNP rs61744944 (Q472L) also available from the aforementioned databases (fig. 

4.3.1.2, and Table 4.3.1.1) was selected based on its association with clinical outcome in the  

preliminary analysis (see section 4.3.21). Therefore all 5 SNPs were genotyped in 247 

patient samples (195 SNs and 52 SPs) from the CAPRISA AI 002 cohort.  

 

The intronic ht SNPs were chosen because they are tag SNPs for the PSIP1 in the Yoruba 

from Nigeria (http://www.snp.cshl.org) and SNP rs61744944 based on the preliminary 

analysis of the sequencing data that suggested an association between the minor allele (T) 

of SNP rs61744944 (rs61744944T) with increased susceptibility to HIV-1 infection, lower 

CD4+ T cell counts post HIV-1 infection and higher viral loads. Genotyping was performed by 

TaqMan SNP assay as per manufacturer‟s protocol (Applied Biosystems). TaqMan assays 

were obtained from the Assay-by-Demand service of Applied Biosystems 

(http://www.appliedbiosystems.com). Eight negative water controls were included in each run 

to rule out PCR contamination. Samples were genotyped in duplicate and genotypes were 

accepted after confirmation of no contamination or inconsistencies between duplicates. 

 

http://www.ncbi.nlm.nih.gov/SNP
http://www.hapmap.org/
http://www.snp.cshl.org/
http://www.appliedbiosystems.com/
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4.3.1.3 Genotyping of SNPs in PSIP1 from the Sinikithemba Participants 

Analysis of the PSIP1 polymorphisms in the CAPRISA AI 002 cohort showed an association 

between some SNPs in PSIP1 and HIV-1 outcomes. We therefore extended the analyses to 

a larger cohort of 450 SPs from Sinikithemba cohort, to either confirm or refute the results 

obtained from the CAPRISA AI 002. Genotyping assays were performed as described above. 

 

4.3.1.4 LEDGF/p75 mRNA expression Analysis 

Peripheral blood mononuclear cells (PBMCs) from 57 HIV-1-negative participants and 38 

recently infected participants from the CAPRISA AI 002 cohort were isolated and LEDGF/p75 

expression levels were measured by quantitative RT-PCR. RNA was extracted from 2 x 106 

PBMCs immediately after thawing using Trizol LS reagent (Invitrogen, Carlsbad, California, 

USA) according to the manufacturer‟s protocol. RNA was reverse transcribed using the 

iScript complementary DNA (cDNA) synthesis kit (Bio-Rad). LEDGF/p75 mRNA expression 

was quantified by quantitative TR-PCR using SYBR Green Chemistry on a Roche 

LightCycler version 1.5 (Roche Diagnostics). LEDGF/p75 cDNA was amplified using primers 

(Table 4.3.1.1) designed to uniquely amplify the IBD of PSIP1 (GeneBank accession no. 

NM_021144). Each PCR reaction contained 3 mmol/µl MgCl2, 0.5 ρmol/ml of each primer, 1 

X LightCycler FastStart DNA Master SYBR Green I (Roche), 1 µg of cDNA, and water added 

to 10 µl final volume. Reactions were run in duplicate. The PCR conditions were: 1 cycle at 

95 ºC for 10 min, 45 cycles of 95 ºC for 6 s, at 60oC for 6s, and at 72 ºC for 6s.  

 

http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nuccore&val=16945969
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Standard curves were generated using 10-fold serial dilutions of cDNA of known 

concentration. Samples and standards were run in duplicates and average values were used 

to compute gene copy number. The housekeeping gene, glyceraldehyde 3-diphosphate 

dehydrogenase (GAPDH) (NM_002046), was used to normalize for variations in cell count or 

differences in nucleic acid extraction as previously described [250]. Relative mRNA levels of 

LEDGF/p75 to GAPDH were calculated for each sample by dividing the concentration of 

LEDGF/p75 by the concentration of GAPDH. 

 

4.3.1.5 Expression and purification of recombinant proteins 

His6-tagged HIV-1 integrase, 3X flag-tagged LEDGF/p75, MBP-JPO2 and MBP-pogZ were 

purified for AlphaScreen applications as described previously [258, 259].  

 

4.3.1.6 AlphaScreen 

The concentration units of the reagents used from this section onwards would be written as 

they appear in the article that was published from this work. 

  

The AlphaScreen assay is a technique used to measure protein-protein affinity interactions. 

To measure the influence of the SNP rs61744944 (Q472L) on the binding affinity of 

LEDGF/p75 we performed AlphaScreen assay according to the manufacturer's protocol 

(Perkin Elmer, Benelux). Reactions were performed in 25 μl volume in 384-well Optiwell™ 

microtiter plates (Perkin Elmer). The reaction buffer contained 25 mM Tris–HCl (pH 7.4), 

150 mM NaCl, 1 mM MgCl2, 0.01% (v/v) Tween-20 and 0.1% (w/v) bovine serum albumin. 
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300nM His6-tagged IN was incubated with 100 nM flag-LEDGF/p75 for an hour at 4°C. 

Subsequently 5 µl of Ni-chelate–coated acceptor beads and 5 µl anti-flag donor beads were 

added to a final concentration of 20 µg/ml of both beads. Proteins and beads were incubated 

for 1 hour at 30 ºC. Exposure of the reaction to direct light was avoided and the emission of 

light from the acceptor beads was measured in the EnVision plate reader (Perkin Elmer, 

Benelux) and analyzed using the EnVision manager software. Assays with JPO2 or pogZ, 

respectively, were essentially performed as described previously [294, 295].  

 

4.3.1.7 Complemented cell lines 

Complemented HeLaP4/CCR5 knockdown cells (A3 clone) were generated and grown as 

described earlier [173]. Briefly, the Q472L mutation was introduced in pLNC_LEDGF BC-

Ires-Bsd and MLV-based vectors were generated [204]. Following transduction, cells were 

selected with 3 µg/ml blasticidin (Invitrogen, Merelbeke, Belgium). Protein expression was 

verified by Western blot analysis and immunocytochemistry (data not shown). 

 

4.3.1.8 Virus strains 

The molecular clone pNL4.3 was obtained through the NIH AIDS Research and Reference 

Reagent Program. Virus stock (HIVNL4.3) was produced as described earlier [204].  

 

4.3.1.9 HIV-1 breakthrough assay 

Cells were seeded at 30,000 cells per well in a 6-well dish and infected as described earlier 

with minor modifications [296]. Briefly, cells were infected with 56,000 pg p24 HIVNL4.3 in a 
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total volume of 2 ml (MOI 0.01). 24 hrs later, cells were washed twice with 1X PBS prior to 

addition of 4 ml of fresh medium. HIV replication was monitored by sampling the culture 

medium for p24 ELISA (HIV-1 p24 ELISA kit, Perkin Elmer).  

 

4.3.1.10 Quantitative PCR 

Integrated proviral copies were quantified by real-time quantitative PCR (Q-PCR) on genomic 

DNA using the iQ5 Multicolor RT PCR detection system (BioRad, Nazareth, Belgium). In 

order to allow quantification of integrated proviral copies in HIV-1NL4.3 infected cells, cells 

were subcultured at day 6 and grown under azidothymidine/ritonavir treatment for 10 days, 

0.5µM and 1.5µM, respectively, i.e. 25-fold IC50 as determined in MT4/MTT assay [297] to 

eliminate all non-integrated viral DNA. Genomic DNA was extracted using the GenElute 

mammalian genomic DNA miniprep kit (Sigma, Bornem, Belgium); for each reaction 100 ng 

was used for Q-PCR. Integrated copies for HIV-1NL4.3 were quantified using a Gag-derived 

primer-probe set. Each 25 µl reaction contained 12.5 µl 2x iQ Supermix (Biorad), 40 nM 

primer and 40 nM probe. RNaseP was used as house-keeping gene control (TaqMan 

RNaseP control reagent, Applied Biosystems, the Netherlands). All samples were run in 

quadruplet and subjected to 3 min at 95°C, 50 cycles of 95°C for 10s and 55°C for 30 s. Data 

were analyzed with iQ5 Optical System software (BioRad, Nazareth, Belgium). 

 

4.3.1.11 Statistical Analysis 

The difference in allele frequency distribution between the HIV-1-positive and HIV-1-negative 

group was determined by Fisher‟s exact test (FET) for each SNP to test the null hypothesis 

that allele frequencies were the same in the two groups. The effect of each SNP on HIV-1 
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viral load and CD4+ T cell count was determined using a Generalized Estimating Equation 

(GEE) model [277] taking into account longitudinal measures for each participant. Viral loads 

were log-transformed and the square root of CD4+ T cell count was used to normalize their 

measurements.  

 

Kaplan-Meier survival statistics and the Cox proportional hazards model (Cox model) were 

used to assess the effect of each SNP on time to HIV-1 acquisition after enrollment and on 

the rate of progression to AIDS defined as CD4+ T cell decline to less than 350 cells/μl 

(CD4<350). Decline in CD4 levels was determined and compared for the group with one or 

two copies of the minor allele to a reference group with two copies of the major allele 

(dominant genetic model), for each SNP. The significance of genotypic associations and 

relative hazard (RH) was determined by unadjusted Cox regression analysis for the dominant 

genetic model.  

 

LEDGF/p75 mRNA expression levels were compared between SNs and SPs by performing 

dot plot graphical representation, nonparametric statistical analysis, and correlation 

(Pearson). Values were expressed as median values. Differences between the 2 groups 

were evaluated using Dunn‟s multiple comparison test, whereas the Mann-Whitney U test 

was used for any 2-group comparisons. The software used for the analysis was SAS version 

9.1.3 (SAS Institute Inc., Cary, NC).  
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4.3.2 Results 

4.3.2.1 Study design and selection of patient samples 

Two hundred and forty seven samples (52 SPs and 195 SNs) from the CAPRISA AI 002 

cohort and 403 samples from the Sinikithemba cohort were available for genotyping analysis. 

32 samples from the CAPRISA AI cohort (10 SPs and 22 SNs) and 37 SPs from the 

Sinikithemba cohort were excluded from all analysis due to sample unavailability or poor 

quality genotype data.  

 

4.3.2.2 Identification of Q472L as an exonic polymorphism in the C-terminus of LEDGF/p75  

The PSIP1 gene is approximately 47kb in length; consisting of fifteen exons (fig. 4.3.2.3.1). 

Therefore LEDGF/p75-specific primers were used to re-sequence a fragment (1.679kb long) 

of the C-terminus region of PSIP1 in 43 SPs and 83 SNPs individuals from the CAPRISA AI 

002 cohort (fig. 4.3.2.2). Resequencing of this fragment which included the IBD was 

conducted in order to screen for novel SNPs within this region that might be associated with 

disease outcome.  

 

 

 

 

 

 

 



138 
 

 

Figure 4.3.2.2. C-terminus fragment of the PSIP1 gene that was re-sequenced to identify 

novel polymorphism that might be associated with the attenuated HIV-1 infection. 

 

Fourteen previously described SNPs (dbSNP, www.ncbi.nlm.nih.gov) were discovered in the 

PSIP1 gene by resequencing part of the C-terminal region of the PSIP1 gene. Only one SNP 

rs61744944; a nonsynonymous SNP which result in amino acid change Glutamine to 

Leucine at position 472 (Q472L) of the LEDGF/p75 protein, was located in the exon region 

(exon 13) and the remaining SNPs were in the intron regions. Fisher‟s exact test was used to 

determine the effect of each SNP on susceptibility to HIV-1 infection (Table 4.3.2.2).  

 

 

 

http://www.ncbi.nlm.nih.gov/
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Table 4.3.2.2. Fourteen SNPs identified by resequencing and their association with 

susceptibility to HIV-1 infection 

Wild 
type 
allele 

Position 
(Region) 

 
SNP numbers 

Frequency 
of mutant 

allele 

Susceptibility to HIV-1 
acquisition (p-value) 

A 41148A/G 
(Intron) 

rs112104292 5/126 0.18 

A 41250A/C 
(Intron) 

rs4741508 60/126 0.25 

G 41582G/A 
(Intron) 

rs909323 1/126 1.00 

C 41841C/A 
(Intron) 

rs73421380 3/126 1.00 

C 41857G/A 
(intron) 

rs80047054 2/126 1.00 

G 41994C/A 
(Intron) 

rs12684386 7/126 1.00 

A 42433A/T 
(Intron) 

rs2795123 7/126 2.21 

A 42503A/G 
(Intron) 

rs4741507 
 

8/126 1.00 

AAG 42566_42568_Del 
(Intron) 

rs34331255 1/126 1.00 

T 42732A/T 
(Intron) 

rs34331255 1/126 0.33 

C 42819C/T 
(Intron) 

rs2795124 2/126 1.00 

C 44950C/T 
(Intron) 

rs1046388 3/126 0.55 

TTTGG 45201_45205_Del 
(Intron) 

rs4741507 1/126 1.00 

A 42350A/T (Q472L)  
(exon) 

rs61744944 23/126 0.04 

 

The rs61744944T was significantly associated with increased susceptibility to HIV-1 infection 

(Table 4.3.2.2). Kaplan-Meier survival analysis presented a clear separation of curves 

stratified for the major allele (A) of rs61744944 (represented by a blue curve) and the 

rs61744944T (represented by a black doted curve) on susceptibility to HIV-1 infection in 
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black South Africans (RH = 2.8, 95% CI = 1.6 – 7.3; uncorrected p = 0.04, Cox model) (fig. 

4.3.2.2.1).  

 

Figure 4.3.2.2.1. Kaplan-Meier survival curve analysis of A42350T (SNP5) on susceptibility 

to HIV-1 infection in black South Africans. 

 

Subsequently, all 14 SNPs were tested for association with CD4+ T cell counts and viral 

loads post HIV-1 infection. The rs61744944T was further found to be significantly associated 

with higher CD4+ T cell count (p < 0.01) and lower viral loads (p < 0.01) over a period of 24 

months (fig. 4.3.2.2.2). 
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Figure 4.3.2.2.2. The influence of exonic SNP (rs61744944) on HIV-1 clinical outcomes. A, 

the association between viral loads and the SNP rs61744944; B, the association between 

CD4+ T cell counts and the rs61744944 SNP. WT represent the wild type genotype (AA) and 

MUT represent mutant genotype (AT) of the exonic SNP.  

 

The exonic SNP rs61744944 showed consistent and significant association with disease 

outcome. However, there was an unusual phenomenon with the results obtained from the 

preliminary analysis where the rs61744944T was associated with increased susceptibility to 

HIV-1 infection and yet higher CD4+ T cell counts and lower viral loads post infection. This 

could also be attributed to the fact that pathophysiologic factors associated with foundational 

viral infection only partially overlap with those associated with downstream pathogenesis.  
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4.3.2.3 Effect of PSIP1 SNPs on Susceptibility to HIV-1 Infection in the CAPRISA AI cohort. 

The analysis of the preliminary data (section 4.3.2.2) suggested that genetic variation within 

the PSIP1 gene might be associated with clinical outcomes in black South Africans. The 

analysis of PSIP1 genetic variation was therefore extended to more participants (n=247) from 

the CAPRISA AI 002 cohort. 4 haplotype ht SNPs of the PSIP1 gene and the exonic SNP 

rs61744944 (Q472L) were selected (see section 4.3.2.2) to genotype 247 participants from 

CAPRISA AI 002 cohort (fig. 4.3.2.3.1). The intronic ht SNPs were selected because they are 

in linkage disequilibrium with other SNPs within the PSIP1 gene and therefore they would 

give the overall effect of genetic variation of the PSIP1 gene on HIV-1 disease outcome. 

 

CAPRISA AI 002 cohort comprises high risk individuals who were initially identified as HIV-1 

negative and then followed longitudinally. This study design allowed us to test whether 

genetic variation in PSIP1 was associated with susceptibility to HIV-1 infection. The minor 

allele frequencies (MAF) of SNPs and haplotype frequencies are shown at the bottom and 

right panel, respectively (fig. 4.3.2.3.1).  
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Figure 4.3.2.3.1. PSIP1 gene: coding exons are marked with solid blue boxes. Minor allele 

frequencies (MAF) of the SNPs are shown for the CAPRISA and Sinikithemba (SK) cohorts 

at the bottom of panel. Hap is the acronym used for haplotype. 

 

The minor allele (A) of rs2277191 (rs2277191A) was more frequent (25%) among the SPs in 

comparison to the SNs (p=0.06) (fig. 4.3.2.3.2A), suggesting that there could be an 

association between the rs2277191A and HIV status.  
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Figure 4.3.2.3.2. Association of the rs2277191A with susceptibility to HIV-1 infection. A, 

frequency distribution of the rs2277191A between HIV-1 negative and positive groups; B, 

Kaplan-Meier survival curve showing a clear separation of curves, GG wild type genotype 

(represented by black curve) and AG/GG mutant genotypes (represented by red curve) of the 

SNP rs2277191. 

 

Kaplan-Meier survival analysis of time to HIV-1 acquisition suggested a trend of association 

between the rs2277191A and HIV-1 acquisition (RH = 2.21, 95% CI = 0.92–5.28; 

uncorrected p = 0.08, Cox model) (fig. 4.3.2.3.2B). 
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Table 4.3.2.3. Association of PSIP1 SNPs with HIV-1 Acquisition in the CAPRISA AI 002 

cohort, dominant model 

 

SNP 
Risk group 

N Genotype 
Number (Frequency) 

22 and 12 versus11 (reference group)* 

        RH (95% CI)               P - value 

rs2277191  
(SNP1) 

    GG    AG  AA   

SN 195 164(0.84) 26(0.13) 5 (0.03)   
SP 52 39 (0.75) 12(0.23) 1 (0.01)    2.21 (0.92 – 5.28)           0.08 
rs10283923 
(SNP2) 

    GG    CG  CC   

SN 195 80 (0.41) 77(0.39) 38(0.20)   
SP 52 20 (0.38) 23(0.44) 9 (0.17)   0.99 (0.44 – 2.24)            0.98 
rs12339417 
(SNP3)  

    TT    CT  CC   

SN 195 99 (0.51) 70(0.36) 26(0.13)   
SP 52 29 (0.56) 19(0.36) 4 (0.08)   0.60 (0.26 – 1.37) 0.23 
rs1033056 
(SNP4) 

    AA    AG  GG   

SN 195 121(0.62) 60(0.31) 14(0.07)   
SP 52 35 (0.67) 16(0.31) 1 (0.02)   0.85 (0.36 – 2.01) 0.71 
rs61744944 
(SNP5) 

    AA     AT  TT   

SN 195 168(0.86) 24(0.12) 3(0.02)   
SP 52 41 (0.79) 10(0.19)  1 (0.02)   1.90 (0.71 – 5.09)  0.20 

Kaplan-Meier survival statistics and the Cox proportional hazards model (Cox model) were 

used to assess the effect of each SNP on time to HIV-1 acquisition. P-values uncorrected for 

multiple comparisons are shown. *11 represent the wildtype genotype, 12 represent 

heterozygous genotype and 22 represent homozygous genotype. 

 

Although the rs61744944T was associated with increased susceptibility to HIV-1 infection in 

the preliminary data analysis of 126 participants, it lost its association when 247 participants 



146 
 

were analyzed. In this larger group of 247 participants only the rs2277191A showed a trend 

towards association with higher likelihood of acquiring HIV-1 infection (Table 4.3.2.3). 

 

4.3.2.4 Effect of the PSIP1 SNPs on CD4+ T cell counts and viral loads in the CAPRISA AI 

002 Cohort 

The approximate time of infection was known for HIV-1 infected participants in the CAPRISA 

AI 002 cohort. Since CD4+ T cell counts and viral loads can fluctuate significantly during HIV-

1 primary infection, we analyzed the data in two specific intervals, 0-3 months post infection 

(acute phase of infection) and 3-12 months post infection (early chronic phase of infection) in 

order to detect possible differences between genotypes during these phases.  
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Figure 4.3.2.4. Association between the individual SNPs of the PSIP1 gene and clinical 

outcomes reflected by square root CD4+ T cells and log viral loads during acute phase of 

infection (A and B) and during early chronic phase of infection (C and D). SNP1, SNP2, 

SNP3, SNP4 and SNP5 refer to rs2277191, rs10283923, rs12339417, rs1033056 and 

rs61744944, respectively. 

 

After correction for multiple comparison, dominant model analysis using GEE showed that 

the minor allele (A) of rs1033056 and the rs61744944T were significantly associated with 

lower CD4+ T cells (p < 0.01) and viral load (p = 0.01), respectively, during the acute phase 

of infection (fig. 4.3.2.4A and B). The rs2277191A was associated with lower CD4+ T cell 

count (p < 0.01) while the minor allele (C) of rs12339417 (rs12339417C) was associated with 
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higher CD4+ T cell counts (p < 0.01) during early chronic phase of infection (fig. 4.3.2.4C). 

The minor alleles of all SNPs except rs61744944 were significantly associated with lower 

viral loads (p < 0.01) during the early chronic phase of infection (fig. 4.3.2.4D).  

 

4.3.2.5 Effect of PSIP1 SNPs and Haplotypes on CD4+ T cell decline in the CAPRISA AI 002 

Cohort 

Few studies have analyzed the association of genetic factors with the rate of CD4 decline 

particularly in an African HIV-1 cohort with known time of infection.  

 

Table 4.3.2.5. Effects of PSIP1 SNPs on disease progression in the CAPRISA AI 002 cohort, 

dominant model 

Endpoint 
 

SNP 
Number 

SNPs on AIDS 
Progression 

RH      95%  CI         P 

Haplotype 
Number 

Haplotypes on AIDS 
Progression 

RH        95%  CI        P 

CD4 < 350 SNP1 5.98 2.27 – 5.82 0.04 HAP1 1.84 0.55- 6.12 0.77 

CD4 < 350 SNP2 2.68 0.99 – 7.24 0.70 HAP2 0.84 0.19-3.77 0.21 

CD4 < 350       SNP3 1.25 0.44 - 3.56    0.29 HAP3 0.00 0.00-0.00 0.99 

CD4 < 350 SNP4 2.05 0.70 - 6.02 0.90 HAP4 5.41 1.92 -5.24 0.09 

CD5 < 350 SNP5 1.74 0.50 – 6.05                                                                                         0.71 HAP5 1.58 0.36 -7.49 0.66 

Cox proportional hazards model (Cox model) was used to calculate the rate of CD4 decline 

to less than 350 cells/ml. P-values uncorrected for multiple comparisons are shown. SNP1, 

SNP2, SNP3, SNP4 and SNP5 refer to rs2277191, rs10283923, rs12339417, rs1033056 and 

rs61744944, respectively. 
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We therefore tested the effect of the PSIP1 SNPs on the rate of CD4+ T cell decline. The 

rs2277191A showed a weak but significant association with rapid CD4+ T cell decline (p = 

0.04, Cox model) (Table 4.3.2.5). Haplotype 4 (HAP4), the only haplotype carrying the 

rs2277191A, showed a trend of association with rapid CD4+ T cell decline to CD4<350 (RH = 

5.41, 95% CI =1.92-15.24, p = 0.09) (Table 4.3.2.5). None of the other SNP genotypes 

showed differences in the rate of CD4+ T cell decline.  

 

4.3.2.6 Effect of PSIP1 SNPs in the Sinikithemba Cohort with Chronic HIV Infection 

The results from the CAPRISA AI 002 cohort suggested that genetic variation in PSIP1 gene 

may be associated with differential disease outcome. However, interpretation of these data 

was complicated by the small sample size (52 SPs) of the study cohort and the fluctuations in 

CD4+ T cell counts and viral loads experienced during primary infection. We therefore 

extended our analysis to a larger cohort (Sinikithemba cohort), from within the same 

geographical area, in order to elucidate the role of the PSIP1 genetic variants in HIV-1 

pathogenesis.  

 

Two SNPs, rs10283923 and rs1033056, were excluded from this analysis because they 

showed no association with CD4+ T cell counts during early chronic phase of infection in the 

CAPRISA AI 002 cohort. The rs61744944 was included in this analysis based on the 
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preliminary data where it showed consistent association with both CD4+ T cell counts and 

viral loads over 24 months post infection. The Sinikithemba cohort is a seroprevalent cohort 

with unknown dates of infection. Therefore, the effects of the SNPs rs2277191, rs12339417 

and rs61744944 were examined on the trajectory of CD4+ T cell decline over the 6 years of 

follow-up. 

 
 
Figure 4.3.2.6. Rates of CD4+ T cells declinestratified by genotypes for A- rs2277191, B- 

rs12339417, and C- 61744944 for the Sinikithemba seroprevalent cohort. 

 

The influence of each of the three SNPs on disease progression was assessed by comparing 

the slopes of CD4+ T cell levels for each of the three SNPs using the dominant model. The 

SNP rs2277191 did not show any association with disease progression in the Sinikithemba 

cohort. Interestingly, the rs12339417C was associated with delayed disease progression as 

was reflected by a slower rate of CD4+ T cells decline to CD4<350 (p = 0.02, Cox model) 
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(Figure 4.3.2.6B). The SNP rs61744944 was also not associated with HIV-1 disease 

outcome in the Sinikithemba cohort. 

 

4.3.2.7 LEDGF/p75mRNA expression levels 

Next we studied the association between the PSIP1 genetic variation and expression mRNA 

levels of LEDGF/p75. To this end, we performed quantitative RT-PCR on LEDGF/p75 mRNA 

levels in 57 HIV-1 negative and 38 recently infected participants from the CAPRISA AI 002 

cohort. For 13 of the recently infected participants, samples pre- (at study entry) and post-

HIV-1 infection were available for analysis. 

 

Figure 4.3.2.7. A, Expression of LEDGF/p75 mRNA in PBMCs obtained from HIV-1 positive 

versus negative participants. B, Expression of LEDGF/p75 mRNA in PBMCs obtained 

seroconverters versus nonseroconverters. C, Expression of LEDGF/p75 mRNA as 
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modulated by different genotypes of the SNP rs12339417. The TTwild type genotype of 

SNP rs12339417, CTheterozygous genotype of SNP rs12339417, the horizontal line in the 

middle of the points denotes the median value.  

 

LEDGF/p75 mRNA expression data indicate that HIV-1 negative group express higher 

LEDGF/p75 mRNA levels compared to the HIV-1 positive group (p = 0.02) (fig. 4.3.2.7A). In 

order to ascertain whether LEDGF/p75 expression levels are dysregulated by HIV-1, 13 

samples matched (pre- and post-HIV-1) samples were analyzed. There was higher 

LEDGF/p75 mRNA expression levels in PBMC at baseline (preinfection) from seroconverters 

as compared to PBMC obtained from non-seroconverters (p < 0.01) (fig. 4.3.2.7B). These 

results suggest that higher levels of LEDGF/p75 mRNA expression may be associated with a 

higher likelihood of acquiring HIV-1 infection and they also indicate that LEDGF/p75 mRNA 

expression levels are dysregulated by HIV-1 infection.  

 

Lastly, we studied the association between PSIP1 genetic variation and differential 

expression of LEDGF/p75 mRNA in the seronegative group. Results obtained from this 

analysis indicate that the differential expression of LEDGF/p75 mRNA was influenced by the 

SNP rs12339417. The rs12339417C was associated with reduced levels of LEDGF/p75 

mRNA expression (p < 0.01) (fig. 4.3.2.7C). Interestingly, the expression data is consistent 

with the SNP rs12339417 genotype data where the rs12339417C was associated with higher 

CD4+ T cell counts, lower viral loads and slower rate of CD4+ T cell decline (section 4.3.2.4 

and section 4.3.2.6). 
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4.3.2.8 Functional analysis of Q472L LEDGF/p75 

To determine the impact of the Q472L mutation on the interaction of LEDGF/p75 with IN we 

measured its affinity in an AlphaScreen assay (Table 4.3.2.8) and evaluated the effect of the 

Q472L mutation on the interaction with JPO2 and pogZ, two cellular binding partners of 

LEDGF/p75 [258, 259]. While the affinity for JPO2 and pogZ was identical for the wild-type 

and the mutant protein, an almost 2-fold decrease in the Kd value for the Q472L mutant was 

observed (Table 4.3.2.8), suggesting stronger binding of the latter to HIV-1 IN. 

 

Table 4.3.2.8. Interaction of WT and Q472L LEDGF/p75 with HIV-1 integrase 

 

 

 

 

1Kd for interaction of LEDGF/p75 WT or Q472L with indicated recombinant proteins as 

measured by AlphaScreen. Average values ± SD for two independent measurements in 

triplicate. 

 

Next, we evaluated the Q472L mutant in cell culture. Potent RNAi-mediated knockdown of 

LEDGF/p75 severely hampers HIV replication affecting the integration step of the provirus 

  
Protein-protein interaction (Kd, nM) 1 

Protein  
HIV-1 IN 

 
JPO2pogZ 

 
LEDGF/p75 WT 

 
47.7±4.1 

 
79.3±13.6122.2±16.0 

 
LEDGF/p75 Q472L 

 
28.4±5.2 

 
68.6±13.5 128.7±12.3 
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[188, 296], a phenotype that is readily rescued upon re-introduction of RNAi resistant 

LEDGF/p75 (LEDGF BC) [204].  

 
Figure 4.3.2.8. Rescue of spreading HIV NL4.3 infection. The Q472L LEDGF/p75 mutation 

was tested for its ability to rescue spreading HIVNL4.3 infection in LEDGF/p75 knockdown 

cells [173]. HeLaP4/CCR5 cells (WT) and knockdown cells complemented with WT 

LEDGF/p75 BC were used as controls. A, Cells were infected in quadruplet with HIVNL4.3 at 

an MOI of 0.01. HIV replication was monitored by sampling the supernatant for p24 at regular 

time-points post infection. A representative HIV-1 breakthrough experiment is shown; B, 

HIVNL4.3 integration was measured by real-time quantitative PCR in the same experiment as 

in A, except that cells were treated with azidothymidine /ritonavir at day 7 to block further HIV 

replication. 
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In a similar setting, we complemented potent knockdown cells (KD) with the Q472L variant 

(LEDGF BC Q472L). LEDGF BC and the LEDGF BC Q472L supported HIV-1 replication to 

the levels observed for wild-type cells (WT) (fig. 4.3.2.8A). In parallel, we quantified 

integrated proviral copies. The nine-fold decrease in integrated proviral copies observed in 

KD cells was rescued to near wild-type levels in cells complemented with either LEDGF BC 

or the Q472L mutant (fig. 4.3.2.8B).  

 

4.3.3 Discussion and Conclusions 

LEDGF/p75 has been shown to promote HIV-1 replication in vitro [160, 171, 186-188, 201, 

202, 290, 291]. In this study, we have investigated the association between genetic variation 

in the PSIP1 gene and susceptibility to HIV-1 infection and disease progression in two South 

African HIV-1 cohorts. We found that, the rs2277191A, was associated with higher likelihood 

of HIV-1 acquisition. The rs2277191A was also associated with lower levels of CD4+ T cell 

counts during the early chronic phase of infection and rapid CD4+ T cell depletion, reflecting 

an early stage of disease progression in CAPRISA AI 002 cohort. However, rs10283923 

deviated from the frequencies expected under the Hardy Weinberg equilibrium. Genotyping 

was repeated to eliminate genotyping error as a reason for rs10283923 not to conform to the 

Hardy Weinberg expectations and interestingly, genotypes obtained were consistent between 

duplicates and free of contamination as the negative controls did not amplify.  

 

The rs12339417C was associated with higher CD4+ T cell count and lower viral load during 

the early chronic phase of infection in the CAPRISA AI 002 cohort. We further found that the 
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SNP rs12339417 had an influence on LEDGF/p75 mRNA expression levels. The 

rs12339417C was associated with lower levels of LEDGF/p75 mRNA expression. These 

findings suggest that the variation at the SNP rs12339417 locus inhibits HIV-1 replication.  

 

The interpretation of the CAPRISA AI 002 data was complicated by the small sample size of 

the study cohort. We therefore extended our analysis to a larger cohort, the Sinikithemba 

cohort, within the same geographical area, in order to get a clearer sense of the role of 

PSIP1 genetic variants in HIV-1 pathogenesis. We excluded rs10283923 and rs1033056 

from the analysis in the Sinikithemba cohort because these two SNPs showed no association 

with CD4+ T cell count during primary infection and rs10283923 did not conform to the 

frequencies expected under HWE in the CAPRISA AI 002 cohort.  Three SNPs (rs2277191, 

rs12339417 and rs61744944) were therefore selected for analysis in the Sinikithemba cohort. 

Sinikithemba cohort is comprised of chronically HIV-1 infected individuals whose date of 

infection is unknown and this made it impossible to study the effect of PSIP1 genetic 

variation on susceptibility to HIV-1 infection.   

 

Polymorphisms in the PSIP1 gene were not associated with either CD4+ T cell count or viral 

loads at baseline, which could be explained by the fact that individuals in this cohort were at 

different stages of HIV-1 infection upon enrolment into the study and immune activation [298, 

299]. The rs12339417C was significantly associated with delayed disease progression as 

was reflected by a slower rate of CD4+ T cell decline in the Sinikithemba cohort. The 

protective effect of the rs12339417C was consistent between the CAPRISA AI 002 and the 
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Sinikithemba cohort suggesting that a nucleotide change at the SNP rs12339417 locus 

maybe associated with inhibition of HIV-1 replication.  

 

Lastly, we investigated the association between the PSIP1 genetic variation and mRNA 

expression levels of LEDGF/p75 and found that rs12339417 influenced the expression of 

LEDGF/p75 with the rs12339417C significantly associated with lower levels of LEDGF/p75 

mRNA.  Seroconverters had significantly higher LEDGF/p75 mRNA levels compared to 

nonseroconverters at baseline. However, HIV-1 infected individuals expressed significantly 

lower levels of LEDGF/p75 mRNA compared to uninfected individuals. These findings 

suggested that high levels of LEDGF/p75 mRNA might be associated with a higher likelihood 

of HIV-1 acquisition and this corroborates the role of LEDGF/p75 as a cellular cofactor of 

HIV-1 infection in patients.  

 

Previous studies on human genes APOBEC3G [268] and TRIM5α (TRIM5αhu) [276] showed 

that the mRNA of these two genes is down-regulated in HIV-1 infected PBMCs, compared 

with uninfected PBMCs. Both APOBEC3G and TRIM5αhu are intrinsic antiviral factors. Here 

we extend these studies to a cellular cofactor of HIV-1 replication. We investigated whether 

HIV-1 infection was associated with dysregulation of LEDGF/p75 expression. However, no 

significant difference was observed in the median level of LEDGF/p75 expression between 

matched preinfection and post-infection samples.  
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Although median levels of LEDGF/p75 mRNA did not reach statistical significance, they 

varied relatively throughout primary HIV-1 infection showing reduced levels of LEDGF/p75 

mRNA post infection. We therefore examined the kinetics of LEDGF/p75 mRNA expression 

in matched HIV-1 - negative and – positive samples obtained from 13 individuals who 

acquired HIV-1 infection during follow-up.  

 

PBMCs of these participants were available at baseline (before infection), within 3 months 

after infection (during the acute phase), and between 3 and 12 months after infection (during 

early chronic phase). The LEDGF/p75 mRNA expression levels were not significantly 

different among the different time points although there was an overall trend of decreased 

levels of LEDGF/p75 after infection. However, LEDGF/p75 mRNA expression levels 

fluctuated at the individual participant level, with 10 individuals showing a decrease and three 

showing an increase in LEDGF/p75 expression level after infection. 

 

Our findings demonstrate, for the first time, that genetic variation of PSIP1 may influence 

susceptibility to HIV-1 infection and the disease progression, which provide in vivo evidence 

that LEDGF/p75 is an important host cofactor for HIV-1 replication. Participants who 

expressed high levels of LEDGF/p75 mRNA at baseline were most likely to become HIV-1-

infected.  
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Differential expression of LEDGF/p75 was associated with the SNP rs12339417 where the 

rs12339417C was showing significantly reduced mRNA levels of LEDGF/p75. This 

rs12339417C showed a slower rate of CD4+ T decline in the Sinikithemba cohort suggesting 

that HIV-1 replication is inhibited by lower levels of LEDGF/p75 in a cell, which confirms the 

previous in vitro study [201]. These results suggest that repressing LEDGF/p75 mRNA levels 

could be used as a novel strategy to control HIV-1 replication. 
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5.1 Discussion 

The role of CypA, TRN-SR2 and LEDGF/p75 in promoting HIV-1 replication has been well 

established through extensive in vitro experiments [32, 134, 135, 160, 161, 171, 187, 201, 

202, 273]. In addition to in vitro studies, the role of CypA has been studied in vivo using 

populations from the developed world [61, 73, 74]. In this study, we investigated the 

association of genetic variation in the PPIA, TNPO3 and PSIP1 genes with susceptibility to 

HIV-1 infection and disease progression in South African cohorts.  

 

The minor allele (G) of SNP A1650G (1650G) in the promoter region of PPIA was 

significantly associated with lower CD4+ T cell count and higher viral loads during HIV-1 

primary infection. These findings suggest that the 1650G was associated with enhanced HIV-

1 replication as reflected by significantly higher viral loads and lower CD4+ T cell counts 

during primary infection in the CAPRISA AI 002 cohort. These findings are consistent with 

the data obtained from Swiss Caucasian HIV-1 cohort, where the 1650G was reported to be 

associated with a rapid CD4+ T cell depletion [61]. A trend towards association between 

1650G  and rapid CD4+ T cell depletion was reported among African American [73]. 

Therefore, in this study we tested the effect of the 1650G on clinical outcomes upon HIV-1 

exposure in black South Africans (CAPRISA AI 002 cohort) and our results showed a 

borderline association between rapid CD4+ T cell depletion and the 1650G. Lack of 

significant results in our study could be attributed to a small sample size with only 24 HIV-1 

positive participants who had the 1650G in the CAPRISA AI cohort.  

 

The 1650G in the promoter region of the PPIA gene was significantly associated with 

elevated levels of CypA mRNA expression post HIV-1 infection, suggesting that the 1650G 
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promotes HIV-1 replication in vivo and rapid disease progression by inducing higher 

expression of CypA mRNA levels. Pre-HIV-1 infection levels of CypA mRNA expression were 

significantly higher in PBMC genotyped for the 1650G compared to PBMC harboring wild 

type genotyped (AA) at the SNP locus. This could suggest that 1650G might be indirectly 

associated with susceptibility to HIV-1 infection. Results obtained from the ex vivo 

experiment in this study suggested that CypA mRNA expression might be dysregulated by 

HIV-1 infection. This was evident from the observation that there was a sudden drop in CypA 

mRNA expression levels upon HIV-1 infection and CypA mRNA levels were restored to 

significantly higher levels after a week post HIV-1 infection. The 1650G might be directly 

involved in promoting proper uncoating of HIV-1 capsid to make RNA genome available for 

reverse transcription to take place in order to synthesize viral copy DNA (cDNA).  

 

Following cDNA synthesis, viral cDNA has to be integrated into the host chromosome which 

resides within the nucleus which is separated from the cytoplasm by a double lipid bilayer. 

Therefore HIV-1 relies on import proteins such as TRN-SR2 for nuclear import [160]. 

Numerous in vitro studies have shown that TRN-SR2 is an important HIV-1 cofactor [32, 67, 

160, 161], however, this has not been shown in vivo. In this study, we undertook a systematic 

investigation of the association of SNPs in the TNPO3 gene with susceptibility to HIV-1 

infection and disease progression in two South African HIV-1 cohorts.  

 

The minor allele (G) of rs1154330 (rs1154330G) in intron 12 of the TNPO3 gene was 

associated with faster acquisition of HIV-1 infection, higher viral load and lower CD4+ T cell 

count in the CAPRISA AI 002 cohort. However, rs1154330G was not associated with disease 
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progression in the CAPRISA AI cohort probably due to a small number of HIV-1 positive 

participants (13 out of 52 participants) who carried rs1154330G. Therefore the analysis of the 

rs1154330G was extended to the Sinikithemba cohort comprising 450 HIV-1 chronically 

infected participants from the same geographical area. Since the Sinikithemba cohort is a 

seroprevalent cohort with unknown dates of infection, the influence of the rs1154330G could 

only be assessed on CD4+ T cell levels and viral loads at study enrollment (baseline) and on 

the trajectory of CD4+ T cell decline over the 5 years of follow-up  

 

Interestingly, the rs1154330G was significantly associated with a faster rate of CD4+ T cell 

decline in the Sinikithemba cohort. The results obtained from the Sinikithemba cohort were 

consistent with the data obtained from the CAPRISA AI 002 cohort suggesting that the 

rs1154330G gives HIV-1 selective advantage for efficient replication and productive infection 

in the South African population. The effect of the rs1154330G could not be assessed on the 

protein functionality of TNR-SR2 protein because this SNP is located in the intron region of 

the TNPO3 gene. It is therefore presumed that the rs1154330G is associated with TRN-SR2 

mRNA expression levels, regulation of possible splice variants or post-translational protein 

modifications. At baseline, in the Sinikithemba cohort, the rs1154330G was associated with 

neither CD4+ T cell count nor viral loads. This lack of association could be attributed to the 

fact that participants in the Sinikithemba cohort were recruited while they were at different 

stages of HIV-1 infection.  

 

In addition to the SNP rs1154330, there were other SNPs in the TNPO3 gene that were 

associated with clinical outcomes in the CAPRISA AI 002 cohort. However, these SNPs did 
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not show consistent association with clinical outcomes during primary infection. The minor 

allele (A) of rs2305325 (rs2305325A) was associated with higher CD4+ T cell counts but not 

with viral loads during HIV-1 primary infection. The association between the rs2305325A and 

higher CD4+ T cell counts may probably be due to alterations in the cytokine milieu such as 

variation in IL-7 effect since the levels of CD4+ T cell counts were similar between 

participants carrying the wild type genotype and mutant genotype prior to HIV-1 infection. On 

the other hand, the minor allele (A) of the SNP rs35060568 (rs35060568A) was associated 

with higher viral load during the primary infection. However, the rs35060568A was only 

associated with lower CD4+ T cell counts during the early chronic phase of infection.  

 

The minor allele (C) of rs6957529 (rs6957529C) showed inconsistent association with both 

viral loads during primary infection, where it was associated with lower viral load during acute 

phase of infection and higher viral load during the early chronic phase of infection. The 

plausible explanation for this could be that the virus developed the escape mutation in the 

later stages of infection in order to overcome the inhibiting effect of the rs6957529C. The 

minor allele (C) of rs10229001 was associated with higher CD4+ T cell counts and lower viral 

load during the early chronic phase of infection only. To the best of our knowledge this study 

demonstrated for the first time that the genetic variants in the TNPO3 gene are associated 

with disease outcome confirming that TRN-SR2 is indeed an important HIV-1 replication 

cofactor. 
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LEDGF/p75 has been shown to play a central role in promoting HIV-1 replication in vitro 

[171, 187, 189, 197, 201, 202, 291]. In this study, we investigated the association between 

genetic variation in the PSIP1 gene and clinical outcomes. As the preliminary study, we 

screened part of the C-terminal region of the PSIP1 gene which included the IBD in order to 

identify SNPs that could attenuate HIV-1 infection. The preliminary study was done only in 

fewer individuals (n = 126) from CAPRISA AI 002 cohort. Sequencing revealed 14 previously 

described SNPs, 13 of which were allocated in the intron regions of the PSIP1 gene and one 

SNP rs61744944 was located in exon 13 outside the IBD of the PSIP1 gene though. The 

SNP rs61744944 is a non-synonymous SNP resulting in an amino acid change (Glutamine to 

Leucine) at position 472 of LEDGF/p75 (Q472L).  

 

The preliminary analysis revealed an association between the minor allele (T) of the SNP 

rs61744944 (rs61744944T) and increased susceptibility to HIV-1 infection. Surprisingly, the 

rs61744944T was associated with consistently higher CD4+ T cell counts and lower viral 

loads post HIV-1 infection. Consequently, the analysis of the rs61744944T was therefore 

extended to a larger number (n = 247) of participants from the same cohort in order to 

elucidate its role in HIV-1 infection. In addition to this SNP four additional intronic haplotype 

tagging (ht) SNPs were analyzed in these 247 participants from CAPRISA AI 002 cohort. It is 

necessary to note that only 52 of the 247 participants analyzed were HIV-1 positive. 
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Interestingly, the minor allele (A) of the ht SNP rs2277191 (rs2277191A) was found to be 

associated with higher likelihood of HIV-1 acquisition, lower CD4+ T cell counts during the 

early chronic phase of infection and rapid CD4+ T cell depletion in CAPRISA AI002 cohort.  

 

Whereas the minor allele (C) of the other ht SNP rs12339417 (rs12339417C) was associated 

with higher CD4+ T cell count and lower viral load during the early chronic phase of infection 

in the CAPRISA AI 002 cohort. Although the rs61744944T was not associated with higher 

CD4+ T cell counts in these 52 HIV-1 positive participants, the rs61744944T was consistently 

associated with lower viral load during primary infection. Therefore SNPs rs2277191 and 

rs12339417 were further analyzed in a larger chronic infection Sinikithemba cohort based on 

their association with CD4+ T cell counts during the early chronic phase of infection. The 

rs61744944 was included in this analysis based on the preliminary findings that suggested 

an association with clinical outcomes and based on the fact that this was the only exonic 

SNP in the PSIP1 gene that was analyzed in this study. 

 

The Sinikithemba cohort comprises chronically HIV-1 infected individuals with unknown date 

of infection and therefore we assessed the effect of these three SNPs on trajectory of CD4+ T 

cell decline over 6 years of follow-up. The rs12339417C was associated with delayed 

disease progression as was reflected by significantly a slower rate of CD4+ T cell decline in 

the Sinikithemba cohort. The protective effect of the rs12339417C was consistent between 

the CAPRISA AI 002 and Sinikithemba cohorts suggesting that the rs12339417C may be 

associated with reduced HIV-1 replication.  
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In an attempt to elucidate the mechanism that the rs12339417C used to inhibit HIV-1 

replication, we investigated the association between the rs12339417C and LEDGF/p75 

mRNA expression levels. The other two SNPs rs2277191 and rs61744944 were also 

included in this analysis. Interestingly, the rs12339417C was associated with lower 

expression of LEDGF/p75 mRNA levels suggesting that the rs12339417C inhibited HIV-1 

replication through suppressing the mRNA levels of LEDGF/p75 in vivo. These findings are 

consistent with in vitro knockdown studies [67, 296]. The PBMCs obtained from 

seroconverters had higher mRNA expression levels of LEDGF/p75 compared to 

nonseroconverters suggested that high levels of LEDGF/p75 may increase the likelihood of 

HIV-1 acquisition and the rate of disease progression. This observation is consistent with 

findings that LEDGF/p75 is indeed an important HIV-1 replication cofactor [201]. The other 

two SNPs, rs2277191 and rs61744944 were neither associated with disease progression in 

the Sinikithemba cohort nor with mRNA expression levels of LEDGF/p75 in the CAPRISA AI 

002 cohort. 

 

Lastly, we analyzed the impact of the mutant LEDGF/p75 (Q472L) on LEDGF/p75-IN 

interaction and plausible effects on cellular binding factors of LEDGF/p75, JPO2 and pogZ. 

The mutation Q472L did not alter the binding affinity of LEDGF/p75 for IN, JPO2 and pogZ. 

The back complementation of LEDGF/p75-depleted cells with the Q472L rescued HIV-1 

replication to near wild-type levels suggesting that Q472L did not alter the functionality of 

LEDGF/p75. Lack of association between Q472L and binding affinity of LEDGF/p75 for IN, 
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JPO2 and pogZ could be explained by the fact that Q472L occurs outside the IBD of 

LEDGF/p75. However, it is not inconceivable that this mutation may affect other LEDGF/p75 

functions such as integration site targeting.  

 

As discussed above, this study extended genetic association studies in HIV-1 research from 

immunological factors or proteins involved in the immune response to HIV-1 replication 

cofactors. The novel aspect of this study was this study was conducted in a population from 

Sub-Saharan Africa, South Africa in particular which is heavily burdened by HIV-1 epidemic.  

 

It is interesting to note that these SNPs were not found to be important in HIV-1 pathogenesis 

in previous studies that used genomewide association study approach [300, 301]. The 

reasons for this could include ethnic differences in allele frequencies because they were 

studied in non-African populations. Other reasons could be cohort design and phenotype 

used, Pereyra et al. looked at elite controllers [301] and Petrovski et al. looked at viral set 

point in African Americans [302], respectively. The other plausible reason could be that the 

effect of genetic variation within HIV-1 replication cofactors on HIV pathogenesis is modest 

because these proteins are cellular house-keeping genes that tend to be evolutionarily 

conserved.  
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5.2 Conclusions 

This study provides in vivo evidence that CypA, TRN-SR2 and LEDGF/p75 are crucial 

replication cofactors for efficient HIV-1 replication, which has been well established through 

extensive in vitro experiments [32, 134, 135, 160, 161, 171, 187, 201, 202, 273]. 

 

This study had two significant limitations: (1) there were few individuals with HIV-1 primary 

infection whose date of infection was known and; (2) The date of infection was not known for 

HIV-1 chronically infected individuals, and therefore the clinical data of these individuals 

could not to be categorized and analyzed according to the different phases of HIV-1 infection. 

The acute phase of infection is characterized by spike in viral load whereas, at viral set point, 

the viral load drops and at the chronic phase of infection, high viral loads resume. HIV-1 

chronic infection cohort made it difficult to assess the influence of genetic variations at 

baseline (study entry) because participants in this study cohort were at different stages of the 

disease when they were recruited into this cohort. 

 

Despite the challenges mentioned above, the results of this study suggest genetic variation in 

these select HIV-1 replication cofactors may be associated with susceptibility to HIV-1 

infection and disease progression. Although the association between genetic variant A1650G 

of CypA and HIV-1 disease outcomes has been previously reported in populations from the 

developed countries [61, 73, 74], this is the first study to show this association in the 

population from developing world which is heavily burden by HIV-1 epidemic. Furthermore, 
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this is the first study to report the association of genetic polymorphisms in the TNPO3 and 

PSIP1 genes with susceptibility to HIV-1 infection and disease progression, confirming that 

TRN-SR2 and LEDGF/p75 are indeed important HIV-1 replication cofactors. This study 

suggests that targeting protein-protein interactions (PPIs) between HIV-1 and replication 

cofactors could be a new antiviral target against which small-molecule protein-protein 

interaction inhibitors (SMPPIIs) could be designed to inhibit HIV-1 infection. However, due to 

small sample size and heterogeneous nature of our cohorts, our findings should be 

interpreted with caution and will need to be replicated in additional studies. 

 

Future studies should investigate the association of genetic variation in other replication 

cofactors with HIV-1 clinical outcomes. Future studies should also include more studies to 

understand mechanisms of viral interaction with HIV replication cofactors and design of 

therapeutic interventions targeting replication cofactors and whether the effectiveness of 

these new therapeutics will be influenced by population genetic variation of replication 

cofactors. 
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