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ABSTRACT 

The prospect of integrating transgenic eucalypts with conventional breeding 

programmes is of value to the Plantation Forestry and Forest Products Industries. 

However, significant progress in this regard has still to be reported, one constraint is 

the lack of appropriate high yielding regeneration culture methods for clonal material. 

Such was the main aim of the present study. The strategy was to develop a suitable 

protocol using in vitro shoots of an E. grandis x E. urophy/la clone (GU185) and 

thereafter to test its applicability to other clones. Explants from greenhouse

established cuttings provided the in vitro shoots, which were multiplied via axillary 

bud proliferation either on semi-solid medium or using a RIT A system. To determine 

the best conditions for callus and shoot regeneration, parameters such as vessels (petri 

dishes and tubes) and types and levels of plant growth regulators were tested. The best 

callus production (100%) and shoot regeneration (78.9 - 100% callus with shoots) for 

GU185 occurred on MS, 30 g rl sucrose, 4 g rl Gelrite, 5 mg rl IAA and 0.25 mg rl 
BAP. Parameters tested to identify the most suitable explants for indirect 

organogenesis were the age of parent plants, different systems to generate in vitro 

shoots, elongation status of explants, 1 sI and 2nd generation in vitro shoots and the use 

of hyperhydric shoots. Of these, the most suitable explants for indirect organogenesis 

were shoots from axillary bud multiplication of 3-month-old parent plants using the 

semi-solid system (33 shoots/dish). Up to 90% rooting was achieved on 1f4 MS 

(Murashige and Skoog, 1962), 15 g rl sucrose, 0.1 mg rl biotin, 0.1 mg rl calcium 

pantothenate, 4 g rl Gelrite and mA. The highest rooting was obtained when 

regenerated shoots were first multiplied and then placed on medium without plant 

growth regulators for one week, before transfer to root induction medium containing 

0.1 - 0.5 mg rl mA. Acclimatization success was 95% when rooted shoots were 

placed in pots with a rooting mix (2 perlite: 1 coir) enclosed in plastic bags and the 

humidity was gradually reduced over four weeks. The developed indirect 

organogenesis protocol appeared to have a broad general application, although the 

tested clones exhibited a genotype-dependent response, with GU180, GUI77 and 

TAG31 producing fewer shoots (9, 6 and 7 shoots/dish) than ZG14 and GU185 (24 

and 18 shoots/dish). Similarly high levels of rooting were obtained for TAG3l 

(93.8%) and ZG14 (90%) and for hardening-off (90.7% for TAG31 and 91.4% for 

ZG14). 
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1. INTRODUCTION AND LITERATURE REVIEW 

1.1 Brief history of eucalypt forestry in South Africa 

The genus Eucalyptus belongs to the family Myrtaceae. Eucalypts can occur in one of 

three sub-genera viz. Symphomyrtus, Monocalyptus or Corymbia (Muralidharan and 

Mascarenhas, 1995). It is estimated that there are between 450 - 700 Eucalyptus species 

(Turnbull, 1991). According to the latter, Eucalyptus trees were first discovered by the 

French botanist Charles Louis L'Heritier de Brutelle over 200 years ago in Australia, they 

were initially regarded as botanical curiosities and were popular as attractions in 

botanical gardens and private arboreta in Europe. During the nineteenth century, seeds 

were dispersed to all parts of the world by travellers, traders, goldminers, soldiers, priests 

and botanists (Tumbull, 1991). At the time of their discovery, the potential of eucalypts 

as a major source of forest products was not recognised, as the wood was deemed to be 

problematic to saw and season and many believed that the only value of this species was 

as a source of firewood (Turnbull, 1991). Since then, eucalypts have emerged as one of 

the most widely planted hardwood species in the world (Turnbull, 1991; Campinhos, 

1999). 

Eucalyptus trees are indigenous to Australia. They are widely planted in other parts of the 

world as exotics. It has been estimated that there are approximately 120 000 km2 of 

eucalypt plantations established worldwide, and large plantations exist in Brazil, India, 

China, Chile, South Africa, Morocco, Portugal and Spain (Turnbull, 1999). Eucalyptus _____ 

trees are versatile and can be used to produce sawn timber, mine props, railroad sleepers, 

paper pulp, fibreboard, furniture, firewood, charcoal, essential oils, honey, tannin, shade 

and shelter (Zacharin, 1978; Campinhos, 1999; Turnbull, 1999; Smit and Pitcher, 2003). 

Eucalypts were introduced into South Africa as early as 1803 and by 1820, a number of 

these trees were growing in the Cape region (Zacharin, 1978). During World War I, 

South Africa experienced timber shortages when overseas supplies were suspended, and 

existing plantations and indigenous forests were unable to meet the demand. Temporary 



relief at the time was provided by a stand of 734 000 cubic feet of Pinus radiata trees 

grown at Tokai near Cape Town. However, the situation was still critical; timber prices 

soared, building operations were suspended and great difficulties were experienced in the 

marketing of agricultural and other products (King, 1951). This critical timber shortage 

prompted government as well as the private sector to make greater efforts to promote the 

development of the forestry sector. Consequently, during World War 11, the timber 

shortage was not as dire since substantial amounts of timber were available from 

government and privately owned plantations (King, 1951). 

The discovery of gold in the Witwatersrand severely depleted indigenous forests, as 

timber was required for mining purposes (King, 1951). In order to meet this demand, the 

South African government experimented with developing plantations of exotic trees such . 

as pines and eucalypts. Initial work was done using indigenous trees, but these trees grew 

too slowly to accommodate the increasing demand for timber (King, 1951). Therefore, 

exotic trees were planted to provide a source of fast-growing trees to meet timber 

demands (Smith, 1996; Anon, 2003a). Forestry began in the Sabie and Pilgrims Rest 

districts. In 1904, the Transvaal Gold Mining Estates planted the first Eucalyptus trees on 

Driekop farm. 

Eucalypts exhibit a number of features that make them desirable exotic plantation species 

including fast growth rates, good growth under a range of soil types and various climatic 

conditions. Since they are exotic species disease and pest problems are manageable, they 

coppice readily, seeds are orthodox and can be stored and transported easily, are 

relatively easy to clone, species can be crossed readily to produce hybrids and they 

provide a range of valuable wood and non-wood products (Zacharin, 1978; Gupta and 

Mascarenhas, 1987; Campinhos, 1999; Turnbull, 1999; Bouillet et al., 2004; Whitehead 

and Beadle, 2004). 

Despite the advantages offered by the use of Eucalyptus trees, there exists strong 

opposition to the establishment of Eucalyptus plantations (King, 1951; Zacharin, 1978; 

Zobel, 1993; Chaste, 2004). Major criticisms relate to the ecological impacts of 
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Eucalyptus plantations (Pereira, 2004). The most prominent argument is that Eucalyptus 

plantations utilise too much water (Campinhos, 1999; Pereira, 2004). It has also been 

suggested that eucalypt plantations have negative impacts on soil nutrients and 

biodiversity, and that plantations are not aesthetically pleasing (Turnbull, 1991; 

Campinhos, 1999). A number of workers have suggested that it is the indiscriminate 

planting of eucalypts on sites that have not been adequately assessed that has prompted 

much of the criticism levelled against this species (Adlard, 1987; Turnbull, 1991). Adlard 

(1987) suggests that Eucalyptus trees should be planted on suitable land that can sustain 

the fast growth rate of these trees and that this can only be done if sound land-use 

planning is enforced. 

1.2 Importance of hybrid intensive forestry in South Africa 

Initially Eucalyptus plantations were established in South Africa predominantly for the 

production of mining timber however, emphasis has now shifted to pulp production (Smit 

and Pitcher, 2003). A range of Eucalyptus species are currently utilised in this country 

(Table 1.1). The most widely planted species in the warmer regions is E. grandis 

(Denison and Quaile, 1987; van Wyk, 1990), which also occurs in hybrid combinations, 

e.g. with E. camaldulensis, E. tereticornis, E. urophylla and E. nitens (Anon, 1999a). 

Hybridisation (the crossing of diverse species) manipulates the existing genetic variation 

within populations thereby allowing greater flexibility of species. It has been shown that 

hybrid vigour (heterosis) can greatly benefit the productivity of Eucalyptus and other 

plantation species (Denison and Kietzka, 1993; Anon, 1999b; Malan, 2000). More 

importantly, hybrid eucalypts can expand afforested areas by allowing plantations to be 

established on marginal sites. This implies that growing areas can be extended to include 

hotter, drier areas and also colder, more frost susceptible areas (Denison and Quaile, 

1987; Denison and Kietzka, 1993; Anon, 1999b). Further, greater disease resistance can 

be obtained and wood properties can be targeted to produce specific end products 

(Denison and Quaile, 1987; Anon, 1999b). 

3 



The use of hybrids in plantation forestry is therefore of great potential value to South 

Africa as suitable land for forestry (in areas of good rainfall, climate and soil) is scarce 

(Dye, 2000). Hence, in order for greater areas to be afforested, the less suitable marginal 

lands must be used (Dye, 2000; Bouillet et al., 2004) and hybrid species can facilitate this 

(Denison and Kietzka, 1993). The hybrids that have been identified for use in sub-tropical 

areas are E. grandis x E. urophylla, E. grandis x E. camaldulensis and E. grandis x E. 

tereticornis. In temperate locations use can be made of E. grandis x E. nitens and E. 

grandis x E. macarthurii hybrids (Denison and Kietzka, 1993). 

Table 1.1: Record of Eucalyptus species used in South Africa by Mondi Forests (Anon, 

1999b). 

Eucalyptus grandis 

Eucalyptus urophylla 

Eucalyptus saligna 

Eucalyptus nitens 

Eucalyptus macarthurii 

Eucalyptus elata 

Eucalyptus fastigata 

Eucalyptus smithii 

Species 

Eucalyptus dunnii 

Eucalyptus camaldulensis 

Eucalyptus tereticornis 

Eucalyptus benthamii 

Eucalyptus nobilis 

Eucalyptus dorrigoensis 

Eucalyptus bicostata 

Eucalyptus cypel/ocarpa 

1.3 Impact of the forestry industry on the economy of South Africa 

The forestry industry in South Africa makes a significant contribution to the economy of 

the country. The industry is a strong net exporter of products and this contributes towards 

earning valuable foreign exchange (Cellier, 1993; Edwards, 2000; Smit and Pitcher, 

2003). In 2001, the industry was valued at approximately R 12 billion (Harvett, 2001). In 

addition, the forestry and forest products industries provide employment opportunities for 

a large sector of the labour market (Anon, 1997). In 2003, the industry employed 

approximately 46 000 forestry workers, 106 000 workers in the forests products sector 

and more than 15 000 workers were employed by contractors (Smit and Pitcher, 2003). 
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From the mid 1980's the pulp and paper sector of the industry emerged as the most 

prominent and profitable sector (Anon, 2004; Louw, 2004). This trend has persisted as 

can be seen in Table 1.2, which illustrates the major uses and sales of roundwood 

harvested from South African plantations in 200112002. 

Table 1.2: Sales of roundwood harvested from South African plantations for the year 

200112002 by volume and value (Anon, 2003b). 

Product Sales by volume Sales by value 
('000m3/Tons) (Rand million) 

Sawn timber 1.689628 1 867.7 

Pulp 1. 876 818 8641. 7 

Mining timber 364990 108. 5 

Panel products 685985 594. 7 

Poles 275759 164.4 

Charcoal 40307 101. 0 

ChipslMill residues 3. 360538 1 508. 1 

Other 11. 213 820. 7 

Total 8.305238 13 806.8 

In 2002, the tree species planted in South Africa were comprised of pine 52.2%, 

Eucalyptus 38.9%, wattle 8.3% and other species 0.6% (Godsmark, 2003). Eucalyptus 

trees are grown in the low-lying areas of KwaZulu-Natal Midlands and Mpumalanga, 

coastal regions of KwaZulu-Natal, Eastern and Western Cape and in Tzaneen (Figure 

1.1) (Godsmark, 2003; Smit and Pitcher, 2003; Anon, 2004). Most of the plantation 

forests are owned by private companies (62.3%). The remaining areas are owned by the 

State including SAFCOL (23 .6%), municipalities (0.3%) and individuals (13 .8%) (Anon, 

2004). It has been reported that South African plantations are among the best managed 

plantations in the world. The South African forestry industry has the largest plantation 

area in the world (80.5%) and it has been certified by the Forestry Stewardship Council 

or ISO 14001 as being sustainably managed (Barnes, 2001; Kasrils, 2001 ; Edwards, 

2002). 
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Figure 1.1: Geographic location of plantations in South Africa. (Source: Godsmark, 

2003). 

1.4 Breeding and propagation strategies for Eucalyptus species and hybrids 

1.4.1 Sexual propagation 

Traditional methods of regeneration relied upon growth of seedlings from bulked seed 

collected in nature. More recent methods involved the use of seeds collected from 

randomly pollinated plus-trees (Ahuja, 1993). In natural forests, trees are removed by 

selective felling and natural regeneration from seed occurs. In areas where trees are 

felled, stands of good quality trees may be left behind to re-seed the cleared area or the 

area may be aerially sown or established with seedlings obtained from nurseries 

(Mc Comb and Bennett, 1986). However, these methods often resulted in large variation 

in growth, form and vigour of planted trees (Ahuja, 1993) due to the reported 

heterozygosity of seeds (Tibok et al., 1995). This is not ideal in plantation forestry, where 

uniform trees with predictable growth characteristics are required for specific end-uses 
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(Schuch, 1991; Bell et al., 1993; MacRae and Cotterill, 1997). It must be emphasised 

however, that sexual propagation will always be of importance in breeding programmes 

as it provides a source of much needed genetic variation that forms the basis of any tree 

improvement programme (Harvett, 2001). 

1.4.2 Vegetative propagation 

An alternative propagation method is vegetative propagation. This method results in the 

production of genetically similar individuals thereby overcoming the problems associated 

with variation in the growth of progeny produced by sexual propagation. A number of 

vegetative propagation methods have been developed. One such method involves the 

grafting of scions from selected plus-trees onto seedling stocks of the same species 

(Konar and Nagmani, 1973; Biondi and Thorpe, 1981; Gardner, 1997). Care must be 

exercised when using this method to ensure that graft incompatibility does not arise 

between the scion and stock (McComb and Bennett, 1986). Another propagation method 

is air layering (Mantell et al. , 1985) but as with grafting, this method is labour-intensive 

and it has been reported that eucalypts are slow to root when they have been air layered 

(Cresswell and de Fossard, 1974; McComb and Bennett, 1986). Cuttings are the preferred 

method of vegetative propagation for most eucalypts (McComb and Bennett, 1986). A 

disadvantage in the use of this method, however, is that cuttings from most mature 

eucalypts generally do not root well (McComb and Bennett, 1986), although intensive 

research worldwide has been addressing this problem successfully (Araujo et al., 2004; 

Canas et al., 2004). 

A proven advantage of vegetative propagation is that the genetic potential of superior 

trees can be transferred to its asexually reproduced progeny (this is the basis of clonal 

forestry), thereby ensuring that desirable features are perpetuated in the species 

concerned (Cresswell and de Fossard, 1974). 
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1.4.3 Biotechnological approaches 

In a traditional tree breeding programme, germplasm (provenances and families) is 

collected and subsequently tested, selected and crossed to produce new genotypes. The 

production of hybrid crosses and the use of rooted cuttings to produce desired genotypes 

fall within the scope of traditional tree breeding. Aspects of silviculture and tree nutrition 

are also closely associated with traditional breeding (Dvorak, 2001). The global demand 

for forest products is increasing rapidly (Durzan, 1988; Hammatt, 1992; Watt et aI., 

1997). Traditional breeding programmes offer only limited opportunities to meet this 

growing demand due to the long life cycle of trees (Cresswell and de Fossard, 1974; 

Gunn and Day, 1986) and difficulties experienced by breeders in distinguishing between 

genotypic and environmental effects (Riemenschneider et al., 1990; Hammatt, 1992; 

Watt et al., 1997). Further, there is limited suitable land available for afforestation. 

Hence, there is an urgent need to increase the productivity of planted forests with regard 

to the production of short rotation trees with a high production index, and to improve the 

quality of trees (superior wood, optimal stem form and uniformity and increased 

resistance to environmental stresses) (Bajaj, 1986; Hammatt, 1992; Watt et al., 1997). 

Biotechnolo gy offers opportunities to address these issues (Riemenschneider et al., 1990; 

Ahuja, 1993; Watt et al., 1997; Campbell et aI., 2003). Biotechnology has been defined 

as the management of biological systems for the benefit of humanity (Nel, 1985), and 

encompasses a collection of techniques that can be used to enhance the impact of existing 

biological programmes (Cheliak and Rogers, 1990; Riemenschneider et aI., 1990). 

Associated techniques include tissue culture, genome analysis, molecular markers, gene 

cloning and the genetic modification of organisms (e.g. Glick et al. , 1991; Schuch, 1991). 

It is important to emphasise that biotechnology cannot replace existing conventional 

breeding and vegetative (clonal) programmes. The full benefits of biotechnological 

approaches can only be realised if it is used in conjunction with such established 

programmes (Timmis et al., 1987; Cheliak and Rogers, 1990; Ahuja, 1993). 
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1.4.3.1 Proven biotechnological approach: in vitro micropropagation via axillary bud 

multiplication 

Plant tissue culture is a biotechnological approach that has been successfully applied to 

clonal programmes (McComb and Bennett, 1982; Mascarenhas et ai. , 1989; Watt et al. , 

1997; Anon, 1999b; Chen et al. , 2001; Araujo et al., 2004). Plants can be produced in 

vitro through one of two developmental pathways, i.e. embryogenesis or organogenesis 

(Vasil, 1987; Ramage and Williams, 2002). Somatic (asexual) embryogenesis is the 

production of embryo-like structures from somatic cells (Haissig, 1989; Emons, 1994; 

Watt et al., 1995; Hansen and Wright, 1999), and is similar to the process of zygotic 

embryogenesis. Embryogenesis can either be direct (embryos originate directly from the 

cells of an explant in vitro without a callus phase) or indirect (embryos originate after a 

callus phase) (Cheliak and Rogers, 1990; Watt et al., 1995). Somatic embryogenesis will 

be discussed later in this chapter. 

Organogenesis is a developmental process where organ primordia are initiated on 

explants in response to the application of plant growth regulators. Like embryogenesis, 

organogenesis can proceed either directly from explants or indirectly via a callus stage 

(Cheliak and Rogers, 1990; George, 1993). Axillary bud proliferation (direct 

organogenesis) is a micropropagation technique that has proven to be of value to clonal 

forestry programmes (Watt et ai. , 1997). At Mondi Forests, micropropagation is used to 

multiply selected (superior) genotypes of Eucalyptus species and hybrids. Explants from 

seed (provenance trials), hedges or potted adult plants are induced to multiply in vitro via 

axillary bud proliferation. Production of roots occurs either in vitro or ex vitro and 

acclimatization occurs in the greenhouse (Watt et al., 1997). Those authors reported that 

in 1997,30 - 50 selected Eucalyptus clones of superior genotype were included annually 

in the in vitro programme at Mondi Forests. From these, approximately 4200 Eucalyptus 

plants were produced monthly that were used to establish clonal hedges (Watt et ai., 

1997). Currently Mondi deploys approximately 15 million vegetatively propagated 

Eucalyptus trees annually from their clonal programme, including plants produced from 

cuttings, hydroponics (Alpoim et al. , 2004) and in vitro sources (Blakeway et ai., 2004). 
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The use of vegetative propagation to multiply genotypes for clonal testing increases the 

genetic gain in a tree improvement programme as it provides a mechanism for the 

characterisation and exploitation of additive and non-additive genetic variation (Snedden 

and Verryn, 2004). Although this can be done via cuttings, the main advantage of axillary 

bud multiplication over traditional methods is the large number of plants that can be 

produced quickly (Hu and Wang, 1983; Hartney and Kabay, 1984; Nashar, 1989). 

Further, this method produces genetically uniform individuals as they arise from pre

existing or newly formed meristems without any intervening callus stage (Vasil and 

Vasil, 1980; Thorpe et al., 1991). Therefore, this approach is of importance to the forestry 

industry for the rapid production of selected uniform, superior genotypes (Nel, 1985; 

Cocking, 1986; Mavituna, 1988; Burley, 1989; Thorpe et al., 1991; Haines and Martin, 

1997). In this manner, axillary bud multiplication can accelerate breeding programmes 

as, it has been reported that it would take twice as long to produce a sufficient number of 

ramets for use as cuttings for commercial production if traditional propagation methods 

were used (Denison and Kietzka, 1993). 

Micropropagated Eucalyptus plants are comparable or superior to plants produced by 

conventional methods in terms of their growth rates, uniformity and quality (Watt et al., 

1995). It has been suggested that if the observed growth rate of tissue cultured plants 

could be maintained, then it may be possible to harvest Eucalyptus trees before seven 

years which is the standard full rotation period for Eucalyptus trees in South Africa (Watt 

et al., 1995; 1997). This would accelerate breeding programmes and facilitate significant 

financial gains for breeders. 

In vitro axillary bud proliferation can also be used to enhance macropropagation 

programmes. For example, such techniques can be used to produce a source of material 

for stock and hedge plants from which cuttings may be harvested (Watt et al., 1997). In 

this regard, it has been reported that Eucalyptus cuttings from micropropagated shoots 

were easier to root and in some instances produced more shoots than conventional adult 

sources (Denison and Kietzka, 1993; Watt et al., 1997). Denison and Kietzka (1993) 

suggested that this application holds great promise for difficult-to-root clones. This 
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highlights that it is through the integrated use of new methods with established 

conventional methods that the full benefits of new technologies can be realised (Jauhar, 

2001). 

Over the years most of the research relating to in vitro culture of Eucalyptus species and 

hybrids have focused on direct methods of regeneration (Table 1.3). The multiplication of 

genotypes of interest by axillary bud proliferation (direct organogenesis) represents a 

proven biotechnological approach that has been successfully applied to clonal 

programmes. McComb and Bennett (1986), Le Rouxand van Staden (1991a) and Watt et 

al. (2003b) provide extensive reviews of literature relating to organogenesis in 

Eucalyptus. There exist additional biotechnological approaches that have immense 

potential benefits when applied to clonal forestry programmes. These approaches will be 

discussed in subsequent sections. 

Table 1.3: List of reported successful studies of micropropagation carried out on Eucalyptus 

species and hybrids via direct organogenesis. 

Species 

E. grandis 
E. gunnii, E. coccifera, E. 
pauciflora, E. darympleana, E. 
delegatensis 
E. radiata 
E. grandis, E. nitens 

E. grandis 

E. tereticornis 
E. nitens 
E. grandis hybrids 
E. grandis 

E. grandis 
E. grandis x E. urophylla 

E.dunnii 

E. grandis, E. grandis x E. 
camaldulensis, E. grandis x E. 
urophylla 
E. camaldulensis 
E. macarthurii, E. smithii, E. 
macarthurii x E. grandis 

Explant 

Epicormic shoots and shoots 

Rejuvenated nodes 
Nodal explants 
Nodal explants 
Nodal explants 

Nodal explants 
Nodal explants 
Nodal explants 
Nodal explants 
Seeds 
Nodal explants 
Nodal explants 

Nodal explants 
Nodal explants 

Nodal explants 

Reference 

Ikemori, 1987 

Boulay, 1983 
Chang et al., 1992 
Furze and Cresswell, 1985 
Sankara Rao and Venkateswara, 
1985 

Patil and Kuruvinashetti, 1998 
Gomes and Canhoto, 2003 
Warrag et al., 1990 
Wachira, 1997 
Lubrano, 1991 
Jones and van Staden, 1994 
Fantini and Cortezzi-Graca, 
1989 

Watt et aI., 2003a 
Sreedhar et al., 1998 

Le Roux and van Staden, 1991 b 
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Table 1.3 (continued) 

E. tereticornis, E. 
camaldulensis 
E. marginata 
E. globulus 
E. grandis 

E. citriodora 
E. tereticornis x E. grandis 
E. torelliana, E. camaldulensis 
E. nova-anglica, E. viminalis 
E. gunnii, E. darympleana, E. 
pauciflora, E. delegatensis 
E. sideroxylon 
E. tereticornis 
E. dunnii 

E. tereticornis 
E. resinijera, E. maculata 
E. ficifolia 
E. globulus 
E. citriodora 
E. radiata 
E. regnans 
E. viminalis 
E. citriodora 
E. grandis 

E. camaldulensis, E. globulus, 
E. tereticornis, E. torelliana, E. 
citriodora 
E. microcorys 
E. grandis x E. urophylla 
E. globulus, E. sargentii, E. 
occidentalis, E. marginata 
E. tereticornis 
E. citriodora, E. torelliana, E. 
grandis, E. camaldulensis, E. 
urophylla, E. alba 
E. grandis 
E. camaldulensis 

E. globulus 

Nodal explants 

Nodal explants 
Nodal explants 
Nodal explants 

Nodal explants 
Nodal explants 
Nodal explants 
Shoot tips 

Nodal explants 
Nodal explants 
Nodal explants 
Nodal explants 

Nodal explants 
Nodal explants 
Nodal explants 
Nodal explants 
Nodal explants 
Nodal explants 
In vitro nodal explants 
Nodal explants 
Terminal and axillary buds 
Nodal explants 

Nodal explants 
Seeds 
Nodal explants and shoot tips 

Nodal explants 
Nodal explants 

Nodal explants 
Epicormic shoots 
Shoot tips and epicormic 
shoots 
Nodal explants 

Yasodha et al., 1997 

McComb and Bennett, 1982 
Trindade et al., 1990 
Watt et al., 1995 
Koriesh et al., 2004 
Joshi et al., 2003 
Gupta et al., 1983 
Mehra-Palta, 1982 

Franclet and Boulay, 1982 
Burger, 1987 
Das and Mitra, 1990 
Cortezzi-Graca and Mendes, 
1989 
Sharma and Ramamurthy, 2000 
McComb and Wroth, 1986 
de Fossard et al., 1978 
Bennett et al., 1994 
Mascarenhas et al., 1981 
Donald and Newton, 1991 
Blomstedt et al., 1991 
Wiecheteck et al., 1989 
Gupta et al., 1981 
Lakshmi Sita and Shobha Rani, 
1985 

Gupta and Mascarenhas, 1987 
Niccol et al., 1994 
Yang et al., 1995 

Bennett et al., 1992 
Gill and Gosal, 1996 

Grattapaglia et al., 1990 
Teixeira and da Silva, 1990 
Yang et al., 2002 

Oller et al., 2004 

As with most techniques, there are disadvantages associated with the use of 

micropropagation in clonal forestry programmes. One such disadvantage is the high cost 
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of micropropagated plantlets (Constantine, 1986; Thorpe et al. , 1991). The major 

component contributing to the high operational costs of micropropagated plants is labour 

(Hartney and Kabay, 1984; Constantine, 1986; Standaert-de Metsenaere, 1991). Such 

costs can be reduced by the automation of certain steps in the tissue culture process (Hu 

and Wang, 1983; Hartney and Kabay, 1984; Constantine, 1986; Thorpe et al., 1991; 

Hvoslef-Eide et al., 2003). Gorst and Teasdale (1999), Watad et al. (1999) and Gross and 

Levin (1999) describe innovative methods for reducing the cost of micropropagation by 

the use of automated devices. Further, the use of bioreactors with liquid media for 

scaling-up micropropagation (Hvoslef-Eide et al. , 2003; Ziv et al., 2003) and the use of 

photoautotrophic cultures (e.g. Kozai et al., 1987; Kozai, 1991a; 1991b; Zobayed et al. , 

2000) can contribute to reductions in the cost of micropropagated plants by producing 

more micropropagated plants per unit time and by reducing or eliminating the use of 

certain expensive media components. 

At Mondi Forests, investigations are being performed to increase the productivity of 

Eucalyptus clones by using a temporary immersion bioreactor system (RIT A) to mass 

produce selected genotypes for use in trials and clonal hedges for commercial production 

(McAlister et al., 2002). McAlister et al. (2000; 2002) reported that Eucalyptus plants 

produced in RITA bioreactors were of a higher quality than those produced in the semi

solid system. Admittedly, the initial outlay of money for the acquisition of RIT A 

bioreactors is high, but this expense is offset by reduced labour and media costs together 

with high rooting and survival percentages (McAlister et al., 2002). Further, the high 

multiplication rates and the shorter time required to bulk up Eucalyptus plants in RIT A 

bioreactors make them a cost effective option for use in clonal programmes. A number of 

workers have investigated the use of RIT A bioreactors for the rapid multiplication of 

useful genotypes of other species e.g. St. John's Wort (Zobayed and Saxenam, 2003), 

apple (Chakrabarty et al. , 2003), calabash tree (Murch et al., 2004) and banana (Alvard et 

al., 1993). 
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1.4.3.2 Potential applications of other biotechnological approaches: production of 

'new ' genotypes of interest 

Tree improvement involves the management of genetic resources (Cheliak and Rogers, 

1990); and in any such programme, it is essential to ensure that genetic gain is conserved 

and that genetic erosion is minimised (Burley, 1989). Through the process of tree 

breeding, the amount and organisation of genetic variation is managed by recurrent cycles 

of selection and breeding in order to produce superior trees with desired properties 

(Cheliak and Rogers, 1990; Haines, 1994; Harvett, 2001). 

Intrinsic to any tree improvement programme is a reliable source of genetic variation 

(Bajaj , 1986) and for Eucalyptus species, a large untapped gene pool is available in the 

form of wild populations (Gunn and Day, 1986; Ahuja, 1993; Eldridge, 1995; Hansen 

and Kjaer, 1999; Wilson, 1999). A broad genetic base is essential to ensure that new 

genotypes can be selected to deal with possible future threats in the form of pests or 

diseases and changing market objectives (Harvett, 2001). Further, a large source of 

genetic variation would allow for the identification of genotypes that possess desirable 

physical attributes such as fast growth rates, specific wood and fibre qualities, drought 

resistance and the ability to grow on marginalised sites with less than ideal climatic and 

soil conditions (Denison and Kietzka, 1993; Anon, 1999b). These authors have argued 

that this approach is essential in order to meet the growing demand for wood products. 

However, a significant drawback in tree breeding is the long time period required to 

identify and select desirable genotypes (Bajaj , 1986) since selected genotypes would have 

to be identified and then grown to half or full rotation age (Grattapaglia et al., 1996) to 

determine whether they can tolerate the negative environmental conditions. Marker

assisted selection and breeding using diagnostic tools offer a mechanism to identify 

useful genotypes earlier (Grattapaglia et al. , 1995; 1996) but much work remains to be 

done in this area before it can be routinely applied to forestry programmes. Further, 

traditional tree breeding relies on genes available in the gene pool. An alternative method 
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to produce 'new' genotypes of interest is through the use of certain biotechnological 

approaches. 

In vitro culture systems offer opportunities to produce 'new' genotypes of interest for the 

forestry industry through the processes of mutagenesis (AI-Safadi and Simon, 1996; 

Charbaji and Nabulsi, 1999; Predieri and Zimmerman, 2001), somaclonal variation 

(Bright et al., 1986; Reisch, 1988; Ezhova et al., 1995; Karp, 1995; Bamum, 1998; Jain 

and de Klerk, 1998; Jayasankar, 2000) and genetic engineering (Nel, 1985; Hammatt, 

1992). 

A) Mutagenesis 

Mutations can be induced in vitro through the application of chemicals or radiation (AI

Safadi and Simon, 1996; Charbaji and Nabulsi, 1999; Predieri and Zimmerman, 2001) in 

order to create new genotypes that can be used in breeding programmes. Mutagenesis 

used in conjunction with other breeding techniques, can directly improve genotypes for 

specific traits and can provide material for further hybridisation work (Predieri and 

Zimmerman, 2001). However, care must be exercised with the use of mutagenesis to 

generate novel genotypes, as it has been reported that promising mutant genotypes often 

disappear with the passage of time (Predieri and Zimmerman, 2001) . . 

B) Somaclonal variation 

Somaclonal variation is the term used to describe the variation that occurs during the 

tissue culture process (Ammirato, 1986) in particular with the indirect routes of 

regeneration (i.e. via a callus stage). Somaclonal variation has been described as being an 

advantage in plant tissue culture as it can be used to generate genetic variation (Karp, 

1995), and a disadvantage when it is undesirable such as in clonal multiplication systems 

where genetically uniform propagules are required (Ammirato, 1986; Yeoman, 1986; Jain 

and de Klerk, 1998). The major factors that affect the nature and frequency of variation 
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are genotype, ploidy, tissue source, tissue culture procedure, culture environment and 

media composition (Karp, 1989; 1995). 

It is generally accepted that the greater the departure from organised growth (such as 

callus formation), the greater the chances of generating somaclonal variants (Bayliss, 

1980; Karp, 1995). The exact mechanism of somaclonal variation is not clearly 

understood however, the genetic changes associated with somaclonal variants have been 

identified as point mutations, karyotype changes (chromosome number and structure), 

chromosome rearrangements, altered sequence copy number, transposable elements, 

somatic crossing over, sister chromatid exchange, gene amplification and deletion 

(Cocking, 1986; Scowcroft et al., 1987; Phillips et al., 1994; Karp, 1995; Jain and de 

Klerk, 1998; Kaeppler et al. , 2000). 

The advantage of using somaclonal variation as a means to generate a rapid, novel source 

of variation is that it represents a cheap form of biotechnology that is perceived to be less 

risky by the public compared with genetic engineering. Further, no gene cloning methods 

or containment procedures are required (Karp, 1995). The disadvantage is that 

somaclonal variation is not a precise tool since it is not possible to predict the outcome of 

a somaclonal programme. There is no guarantee that a particular trait will be altered in a 

positive manner and that the trait will be stably heritable (Reisch, 1988; Karp, 1995). 

Further, a large number of inferior lines may be created in the process. Karp (1995) 

suggested that somaclonal variation is most likely to be used as a source of variation in 

crops with limited genetic systems or a narrow genetic base. For these reasons, 

somaclonal variation may not represent the ideal system to generate new genotypes of 

interest for Eucalyptus species. 

C) Genetic engineering 

Genetic engineering involves the insertion of specific DNA sequences (transgenes) via 

nonsexual processes to an unrelated organism. The modified host (transgenic organism) 

typically expresses the new transgene and thereby possesses a new trait or, the introduced 
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transgene may function to regulate the levels of expression of existing genes. The entire 

process of gene isolation, modification and transfer to a host organism is known as 

genetic engineering (Brunner et al., 1998; Burdon, 2003). An advantage ofthis technique 

is that it allows for rapid genetic gain. Hence, genetic engineering represents a method for 

introducing a source of genetic variation within breeding programmes (yeoman, 1986). 

Genetic engineering can be applied to Eucalyptus clonal forestry programmes to produce 

genotypes that can tolerate environmental stresses in order to allow for the afforestation 

of marginal land in South Africa. Eucalypts are vulnerable to sudden frosts, therefore 

using a genetic engineering approach, extra frost tolerance could be conferred to specific 

genotypes (Haines, 1994; Edwards et al. , 1995; Altman, 2003; Burdon, 2003). These 

cold-tolerant genotypes can be planted in areas that would traditionally not be ideal for 

commercial forestry. In addition, genetic engineering technology holds promise to confer 

resistance to plants against drought, salinity and heavy metal toxicity (Altman, 2003; 

Burdon, 2003). Tolerance to these abiotic stresses is of perceived value to the forestry 

industry, as this would allow for the establishment of plantations on marginal lands. 

Burdon (2003) suggests that it is through abiotic stress tolerance that genetic engineering 

could potentially make its greatest contribution to commercial forestry productivity. 

Genetic engineering also has the potential to improve the efficiency of management 

practices through the production of insect and herbicide-tolerant genotypes (Owusu, 

1999; Williamson, 2002; Watt et al., 2003b). The use of insect-resistant genotypes would 

reduce the costs associated with repeated application of expensive insecticides and avoid 

the environmental implications involved in the use of such toxic chemicals (Harcourt et 

ai., 1995; Altman, 2003; Burdon, 2003). In addition, the concept of herbicide resistance is 

of relevance to commercial eucalypt forestry as these plants are particularly sensitive to 

weed competition and herbicide damage during establishment (Griffin, 1995; Waiter et 

al. , 1995; Burdon, 2003). Therefore herbicide resistance offers greatly reduced 

establishment costs and gains in productivity for commercial eucalypt breeding (Burdon, 

2003). 
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Another avenue where genetic engineering may be of use to the forestry industry is with 

regard to product improvement (Watt et al., 2003b). For example, lignin is a component 

of plant cell walls that is removed during chemical pulping. There are substantial costs 

associated with the removal of lignin during the pulping process, therefore significant 

cost reductions could be achieved if Eucalyptus trees could be engineered to have 

reduced levels of lignin or could synthesise lignin that is easier and cheaper to dissolve 

(Whetten and Sederoff, 1991; Haines, 1994; Edwards et al., 1995; Owusu, 1999; Burdon, 

2003). A number of key enzymes have been identified and targeted towards this end 

(Boudet and Grima-Pettenati, 1996; Altman, 2003; Poke et al. , 2004). Indeed, Pilate et al. 

(2002) have reported on the production of transgenic poplar trees with altered 

lignification that has yielded wood that could be more easily processed by chemical 

pulping, incurred reduced energy and pollutant chemical costs and produced pulp with 

improved properties. In 2001, it was reported that there were approximately 12 field trials 

in progress with transgenic Eucalyptus species using E. camaldulensis, E. globulus and E. 

grandis . The traits being tested were herbicide resistance (four trials), virus resistance 

(one trial), lignin alteration (two trials), marker genes (three trials) and other traits (two 

trials) (Anon, 2001). 

No technology is completely risk-free. The risks associated with the use of genetically 

engineered plants include horizontal gene transfer (transfer of genes from one organism 

to another by means other than classical sexual reproduction) thereby promoting the 

contamination of non-genetically engineered species, the creation of 'super weeds ' that 

could be potentially difficult to control by the use of available herbicides, adverse effects 

on non-target species, negative impacts on biodiversity, creation of pests resistant to 

pesticides and ethical concerns (Pimentel et al., 1989; Anon, 1999c; Robinson, 1999; 

Wolfenbarger, 2000; Altieri, 2001; Burdon and WaIter, 2001; Jauhar, 2001; Burdon, 

2003). The risks associated with the use of this technology cannot be totally avoided, but 

efforts can be made to minimise them (Altman, 2003). Strategies such as the engineering 

of sexual sterility in trees (Haines, 1994; Brunner et al. , 1998), creation of refuges 

(Altieri, 2001) and containment procedures have been investigated to minimise some of 

the abovementioned risks. 
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In order for genetic engineering technology to be applied to plant systems, a protocol for 

the regeneration of plants from individual transformed cells is essential (Evans et al., 

1981; Heberle-Bors, 1991; Hammatt, 1992; Cid et al., 1999; Sharma et al., 2002). 

Although it should be possible to transform cells of an explant and regenerate them 

directly into a plant, and this has been reported in a number of crops e.g. sugarcane 

(Snyman et al., 2000), an indirect method of regeneration of plants (i.e. via a callus stage) 

is usually needed, either indirect somatic embryogenesis or indirect organogenesis. 

a) Indirect somatic embryogenesis 

As previously mentioned, somatic embryogenesis can be direct or indirect. In all cases, 

the characteristic embryo development stages are the globular, heart and torpedo stages 

(Emons, 1994). As with zygotic development, somatic embryos develop in a bipolar 

manner (Ahuja, 1993), and produce propagules with both a shoot and root meristem. This 

is desirable since plantlets regenerated from somatic embryos generally produce a tap 

root system, which is of value to the commercial forestry industry (Watt et al., 1995). The 

presence of root and shoot meristems also means that a separate root induction stage 

during propagation is not necessary (White, 2001). Other advantages in the use of 

somatic embryogenesis to regenerate plants is that rapid and easy scale-up of embryos 

can be achieved by the use of liquid media in bioreactors (Ahuja, 1993; Merkle, 1995), 

somatic embryos are suitable targets for genetic transformation work (Hansen and 

Wright, 1999) and there exists the possibility of encapsulation of embryos and the 

potential for the induction of dormancy and long-term storage via cryopreservation (Ford

Lloyd and Jackson, 1991; Blakesley et al. , 1996; Withers and Engelmann, 1998). 

There are major limitations to the application of somatic embryogenesis to forest tree 

programmes. With very few exceptions, success has only been achieved with germinated 

seedlings or hypocotyls (Table 1.4). This is not ideal for eucalypt clonal forestry since 

Eucalyptus trees can only be identified as superior when they reach maturity. Therefore 

for somatic embryogenesis to be carried out, explants from these selected identified 

mature trees must be used. In vitro shoots can be obtained from mature trees to be used as 
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explants for somatic embryogenesis but seedlings represent an 'unknown' explant source. 

Further, it can be seen from Table 1.4 that only four studies reported regenerated plantlets 

from somatic embryos. Another limitation is with regard to low yields that have been 

obtained from most somatic embryogenesis systems (Watt et al. , 1991; Merkle, 1995; 

White, 2001). Further, some species may prove to be recalcitrant to somatic embryo 

induction (Ahuja, 1993). Other limitations include the inability to induce embryos from 

mature, elite trees (Merkle, 1995), problems related to maturation and conversion 

(germination) of somatic embryos and subsequent development of viable somatic 

seedlings in some forest trees (Cheliak and Rogers, 1990; Watt et al. , 1991; Ahuja, 1993; 

Muralidharan and Mascarenhas, 1995) and questions regarding the genetic stability of 

plants regenerated from somatic embryos (Cheliak and Rogers, 1990; Ahuja, 1993). 

Therefore, while somatic embryogenesis holds great potential for mass propagation and 

genetic improvement of Eucalyptus trees, much work needs to be done in order to 

overcome the limitations imposed by this system before it can be applied for operational 

use (Cheliak and Rogers, 1990; Merkle, 1995). 

Table 1.4: Examples of reported studies of work conducted on somatic embryogenesis in 

Eucalyptus species and hybrids. 

Species Explant Success Reference 

E. dunnii Hypocotyls Plantlets Tennignoni et al., 1996 
E. grandis Seedling-derived leaves Plantlets Watt et al. , 1991 
E. grandis Zygotic embryos and Bipolar ' embryo-

hypocotyls like' structures Major et al., 1997 
E. nitens Hypocotyls, leaves, Somatic embryos 

cotyledons and epicotyls Ruaud et al., 1997 
E. citriodora Cotyledons Plantlets Muralidharan et al., 

1989 
E. grandis Internodal segments Embryoids Lakshmi Sita, 1986 
E. citriodora Shoots Embryoids Lakshmi Sita, 1986 
E. globulus Cotyledons and 

hypocotyls Shoots Nugent et al., 2001 
E. globulus In vitro leaves Embryogenic callus Oller et al., 2004 
E. nitens Cotyledons Somatic embryos Bandyopadhyay and 

Hamill, 2000 
E. urophylla Cotyledons Somatic embryos Arruda et al., 2000 
E. globulus Cotyledons, hypocotyls, 

leaves and seedling-
derived stems Plantlets Pinto et aI. , 2004 
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b) Indirect organogenesis 

The process of indirect organogenesis begins with the de-differentiation of the primary 

explant to a less committed, more plastic developmental state (callus). This is followed 

by the induction phase where cells become committed to the production of either shoots 

or roots. The final stage is differentiation, where the actual process of morphological 

differentiation results in the production of organs (Schwarz and Beaty, 2000). These 

phases are controlled in vitro by manipulating the ratio of exogenously applied plant 

growth regulators. When the ratio of auxin to cytokinin is relatively high, then roots are 

initiated, and when the ratio of cytokinin to auxin is high, then shoots are initiated. 

Auxins are generally required for callus induction and are used in conjunction with 

cytokinins to maintain callus cultures (Butcher and Ingram, 1976; Minocha, 1987). 

Therefore, it is possible to regenerate shoots by indirect organogenesis for a number of 

plant species. 

As previously mentioned, a protocol for the regeneration of transformed cells is of 

paramount importance in order for genetic engineering technology to be applied to 

commercial Eucalyptus forestry species. It is in fact the unavailability of high-yielding 

regeneration protocols via the indirect route of morphogenesis that represents one of the 

factors that limits the application of genetic engineering technology to commercial 

eucalypt forestry species (Watt et al. , 2003b). Research in this respect has not proceeded 

as rapidly as for direct methods of axillary bud proliferation (Table 1.3 vs. Table 1.5). 

Therefore, there is an urgent need for research towards the development of indirect 

organogenesis protocols for Eucalyptus species and hybrids. The small amount of 

literature that is available reports on protocols that have been developed predominantly 

using seedling-derived explants for example, Tibok et al. (1995), Bandyopadhyay et al. 

(1999), Cid et al. (1999), Kitahara and Caldas (1975), Warrag et al. (1991), Azmi et al. 

(1997), McComb and Bennett (1982) and de Fossard et al. (1974). Hence, there exists the 

need to develop an indirect organogenesis protocol for eucalypts using clonal material 

since these genotypes are uniform and have been selected for their desirable traits in 
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contrast to explants obtained from seedlings whose genotypes cannot be predicted (Gupta 

and Mascarenhas, 1987). 

A reView of the published literature on the development of indirect organogenesis 

protocols for eucalypts indicated that most are not high-yielding protocols. For example, 

Bandyopadhyay et al. (1999) reported percentage callus with regenerated shoots of i 8 -

32% for E. nitens and 12 - 37% for E. globulus. Similarly, Tibok et al. (1995) reported 

percentage callus with regenerated shoots of 0 - 37.5% for E. urophylla. Further, 

Bandyopadhyay et al. (1999) reported a low average number of shoots per explant viz. 2 

- 6 for E. nitens and 2 - 5 for E. globulus, whereas Tibok et al. (1995) reported a 

relatively high average number of shoots per explant for E. urophylla of 15 - 27.6. Cid et 

al. (1999) obtained high percentages of callus induction in E. grandis x E. urophylla (95 

- 100%), and callus with shoots (11 - 98%) but did not report the average number of 

shoots regenerated per explant. Similarly, the protocol of Laine and David (1994) 

resulted in up to 64% of callus of clonal E. grandis that produced buds but the authors did 

not present the average number of shoots regenerated per explant. 

Table 1.5: Examples of reported studies of work conducted on indirect organogenesis in 

Eucalyptus species and hybrids. 

Species Explant Success Reference 

E. grandis Hypocotyls Plantlets Warrag et al., 1991 
E. urophylla Hypocotyls Plantlets Tibok et al., 1995 
E. nitens, E. Cotyledons and Plantlets Bandyopadhyay et al., 1999 
globulus hypocotyls 
E. grandis Leaves Plantlets Laine and David, 1994 
E. globulus Cotyledons, 

hypocotyls and in 
vitro shoots Plantlets Azmi et al., 1997 

E. camaldulensis In vitro leaves Shoots Mullins et al., 1997 
E. grandis x E. Cotyledons and 
urophylla hypocotyls Plantlets Cid et al., 1999 
E. bancroftii Stem and lignotubers Nodular callus de Fossard et al., 1974 
E. marginata Stamens Plantlets McComb and Bennett, 1982 
E. camaldulensis In vitro leaves Plantlets Muralidharan and 

Mascarenhas, 1987 
E. grandis x E. 
urophylla In vitro shoots Plantlets Chen et al., 2002 
E. alba Hypocotyls Shoots Kitahara and Caldas, 1975 
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There are a number of disadvantages with the use of callus cultures, the most notable 

being the problem of somaclonal variation (see earlier; Butcher and Ingram, 1976; Bajaj, 

1986; Burley, 1989; Ahuja, 1993). In addition, it has been reported that cultures tend to 

lose the ability to differentiate and regenerate plants with successive subcultures 

(Yeoman and Forche, 1980; Thorpe et al., 1991). However, the advantages associated 

with the use of callus cultures including the enormous number of plants that can 

potentially be produced (Bajaj, 1986; Sha Valli Khan et al., 2002) and applications of 

genetic engineering technology imply that indirect methods of regeneration are of 

significant importance to the forestry industry. 

1.5 Aims 

Eucalyptus trees are plantation species of immense importance to the South African 

forestry industry. Shortages of wood and wood-based products are predicted in the near 

future unless increasing demands can be met. Biotechnological approaches in conjunction 

with traditional tree improvement programmes have great potential to meet projected 

demands. Some are already applied very successfully. Others such as genetic 

modification of trees are not. This is because in order for genetic engineering technology 

to be applied to Eucalyptus species, it is vital to have a reliable protocol for the 

regeneration of plants from transformed cells. Hence, the aim of this study was to 

develop an indirect organogenesis protocol for Eucalyptus species and hybrids. To ensure 

a constant supply of in vitro shoots for the development of the indirect organogenesis 

protocol, it was necessary to first generate a supply of decontaminated in vitro shoots 

using greenhouse-established inserts as the starting material. The indirect organogenesis 

protocol was developed using in vitro shoots of an E. grandis x E. urophylla hybrid 

(GUI85) and was subsequently tested on other E. grandis x E. urophylla hybrids (GU177 

and GU180) and pureE. grandis clones (TAG31 andZGI4). 
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2. MATERIALS AND METHODS 

2.1 Plant material and maintenance of parent plants 

Cutting-derived inserts in seedling trays (Figure 2.1) were obtained from Mountain Home 

Laboratory, Mondi Forests, Hilton (KwaZulu-Natal, South Africa). The Eucalyptus 

grandis x Eucalyptus urophyUa hybrid inserts (GUI77, GU178 and GU185) were 

maintained in a mist tent (85 - 94% humidity) in the greenhouse at the University of 

KwaZulu-Natal, Durban, (29°52'S, 300 59'E; 25°C dayl18 °C night). Plants were sprayed 

with fungicides and fertilizers on a weekly basis. The fungicides used were mixtures of 

2 g r' mancozeb (Dithane; Efekto, South Africa) and 1 ml r' chlorothalonil (Bravo; 

Shell, South Africa) applied as a foliar spray and a mixture of 1 g r' prochloraz 

manganese chloride (Sporgon; Hoechst Schering AgrErvo, South Africa) and 1.25 ml r' 
tebuconazole (Folicur; Bayer, South Africa) applied to the soil. The fertilizers used were 

2.5 ml r' trace element solution (18 g r' Fe, 4 g r' Cu, 2 g r' Zn, 1 g r' B and 0.4 g r' 
Mo) (Trelmix; Hubers, South Africa) applied as a foliar spray and 1 g r' Mondi Orange 

IN-2P-IK (Harvest Chemicals, South Africa) applied as a soil spray, alternately once a 

week. 

Figure 2.1: Cutting-derived inserts of an E. grandis x E. urophylla clone (GU185) 

maintained in the greenhouse, bar = 6.3 cm. 
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2.2 Establishment of in vitro shoot cultures 

The initial decontamination protocol employed for the decontamination of GU177, 

GU178 and GU185 inserts consisted of two-minute dips in 0.2 g rl HgCh followed by 

109 rl Ca(OCI)2 with sterile water rinses between sterilants. No further GU177 and 

GU178 material was available; therefore the strategy for these clones was to bulk up all 

the in vitro uncontaminated shoots from the initial culture. A supply of GU185 material 

was readily available therefore this material was used for further decontamination studies. 

A summary of the various protocols tested for the decontamination of GU185 inserts are 

presented in Table 2.1 . The Eucalyptus grandis x E. urophylla hybrid clone (GUI80) and 

pure Eucalyptus grandis clones (TAG31 and ZGI4) were also used for subsequent 

indirect organogenesis work but this material was already available in the laboratory as in 

vitro shoot cultures. 

Table 2.1: Decontamination protocols employed for E. grandis x E. urophylla (GUI85) explants. The 

fimgicide cocktail contained 1 g rl Benlate, 1 g rl boric acid, 0.5 mJ rl Bravo and two drops of Tween 20. 

Plants treated with 70% (v/v) ethanol were sprayed before harvesting. The antibiotics used were applied 

sequentially with a two-day recovery period for plants by incubation on antibiotic-free medium. 

Protocol Fungicide HgCIz Ca(OCI)2 Ethanol Antibiotics (kan I 00 ~g mrl 
cocktail (0.2 g r') (lOgrl) (70% v/v) and rif20 ~g mr') 
~minutes2 

A 

B 10 + + 

C 20 + + 

D 30 + + 

E + + + 

F + + + 

G 10 + + + 

H 10 + + + 

+ + + + 

Following decontamination, explants (from 3- and 5-month-old parent plants) were 

trimmed into two node shoots and placed on microbial M 523 screening medium (Viss et 

al., 1991) containing 10 g rl sucrose, 8 g rl casein hydrolysate, 4 g rl yeast extract, 2 g rl 
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KH2P04 (potassium dihydrogen orthophosphate), 0.15 g rl MgS04.7H20 (magnesium 

sulphate heptahydrate) and 8 g rl agar for 24 hours to detect contaminants. There was one 

shoot/tube (10 x 2.5 cm) with 2.5 ml of microbial medium. After 24 hours, nodal shoots 

were removed from microbial medium and transferred to either bud break or 

multiplication medium depending on the age of the parent plants (explants from mature 

parent plants were placed on bud break and thereafter multiplication medium, while 

explants from young parent plants were placed directly onto multiplication medium). The 

tubes containing microbial medium that housed nodal shoots for 24 hours were monitored 

for contamination over a period of five days. 

Bud break medium consisted of Murashige and Skoog (MS) salts and vitamins 

(Murashige and Skoog, 1962; Highveld Biological, South Africa), 0.1 mg rl biotin, 

0.1 mg rl calcium pantothenate, 0.04 mg rl a-napthaleneacetic acid (NAA), 0.11 mg rl 
6-benzylaminopurine (BAP), 0.05 mg rl kinetin, 20 g rl sucrose and 4 g rl Gelrite 

(Polychem, South Africa). Shoots remained on this medium for ten to fourteen days. 

There was 10 ml of medium and one shoot/tube. Multiplication medium consisted of MS 

salts and vitamins, 0.1 mg rl biotin, 0.1 mg rl calcium pantothenate, 0.01 mg rl NAA, 0.2 

mg rl BAP, 30 g rl sucrose and 4 g rl Gelrite. 

In order to generate a supply of in vitro shoots for use as explants in subsequent indirect 

organogenesis work, shoots were multiplied either in the semi-solid (Figure 2.2A) or 

RITA (Recipient for Automated Temporary Immersion System) systems (Figure 2.2B). 

There was one shoot/tube with 20 ml multiplication medium in the semi-solid system or 

fifteen shoots/vessel with 200 ml liquid multiplication medium in the RIT A system 

(30 seconds flush and 10 minutes rest). In vitro shoots were subcultured onto fresh 

medium every four to six weeks in the semi-solid system and every two to three weeks in 

the RITA system. A diagrammatic representation of the operation of a RITA bioreactor is 

provided in Figure 2.3. When required, shoots were elongated on semi-solid medium 

comprising MS salts and vitamins, 0.1 mg rl biotin, 0.1 mg rl calcium pantothenate, 

0.35 mg rl NAA, 0.1 mg rl kinetin, 0.05 mg rl indole-3-butyric acid (ffiA), 20 g rl 
sucrose and 4 g rl Gelrite for four to six weeks. 
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All media were adjusted to pH 5.6 - 5.8 (except media containing the antibiotics 

kanamycin and rifampicin which were adjusted to pH 6.5) (Reed et al., 1995) prior to 

autoclaving for 20 minutes at 120 DC and 121 KPa. 

All cultures were maintained in the growth room under a 16-h photoperiod at a 

photosynthetic photon flux density (PPFD) of 37 ~mol m-2 
S-I (sideways lighting) 

provided by Biolux tubes (Osram L58W) and 23 DC day/21 DC night unless otherwise 

stated. 

Figure 2.2: In vitro shoots of an E. grandis x E. urophylla clone (GU185). A) Shoots 

produced in the semi-solid system, bar = 2.3 cm; and B) shoots produced in the RITA 

system, bar = 1.6 cm. 
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Figure 2.3: Operating cycle of a RITA bioreactor. 

1. Plants are placed on a polyurethane foam disc in the upper compartment while the 
liquid medium remains in the lower compartment. 
2. An over pressure of sterile air is applied in the lower compartment that forces the 
medium into the upper compartment, immersing the plants. 
3. During the immersion period, a flow of sterile air aerates the medium, agitates the 
plants and replaces the atmosphere inside the vessel as the over pressure escapes through 
an outlet at the top of the apparatus. Optimum duration of flooding and rest must be 
determined empirically. 
4. When the over pressure drops, the medium returns to the lower compartment by 
gravity. The plants remain covered by a film of medium by capillary attraction (Teisson 
and Alvard, 1995; VITROPIC, 2004). 

2.3 Establishment of the indirect organogenesis protocol 

2.3.1 Callus induction and shoot initiation 

In vitro shoots of GU185 obtained from semi-solid and RITA systems were used as 

explants for callus induction and shoot initiation. Shoots (1.5 - 4 cm) were carefully 
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fragmented and all axillary buds were dissected out and discarded using a scalpel blade 

and then placed on callus induction media (Figure 2.4) containing MS salts and vitamins, 

30 g r' sucrose and 4 g r' Gelrite supplemented with either 5 mg r' !AA (indole-3-acetic 

acid) and 0.25 mg r' BAP or 5 mg r' NAA and 0.5 mg rl kinetin. Callus induction media 

were dispensed into Petri dishes (40 ml/dish) or culture tubes (20 ml/tube). There were 

ten to twenty Petri dishes/treatment (five fragmented shoots/dish) or 20 tubes/treatment 

(one fragmented shoot/tube). 

Parameters tested included: 1) age of parent plants (3 and 5 months); 2) system to 

generate in vitro shoots (semi-solid and RITA); 3) elongation status of explants; 4) 1 si and 

2nd generation in vitro shoots and; 5) hyperhydric shoots as explants for indirect 

organogenesis. Elongated shoots were produced by incubation on elongation medium 

(see section 2.2), 1 si generation shoots were produced by axillary bud multiplication of 

explants obtained from inserts and 2nd generation shoots were produced by indirect 

organogenesis. All cultures were incubated in the dark at 24 - 26°C. After five weeks, 

regenerated shoots were removed (to eliminate any 'escapes' from non-destroyed buds) 

and calli were subcultured onto fresh medium for another five weeks. At the end of ten 

weeks, indirect organogenic calli and shoot production was assessed. Selected parameters 

were tested on other clones viz. the system to generate in vitro shoots (GU180 and ZG 14), 

elongation status of explants (GU177 and TAG31) and the use of hyperhydric shoots as 

explants for indirect organogenesis (TAG31). In vitro shoots of the E. grandis x E. 

urophylla hybrid (GUI85) and the pure E. grandis clone (TAG31) were subjected to the 

protocol of Bandyopadhyay et al. (1999). This involved chopping shoots and placing 

them on callus induction media comprising MS salts and vitamins, 30 g r' sucrose, 4 g r' 
Gelrite, 1 mg r' NAA and 0.5 mg r' BAP for two subcultures of three to four weeks each 

in the dark. 
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Figure 2.4: Fragmented in vitro shoots used as explants for callus and shoot 

production, bar = 1.S cm. 

2.3.2 Root production 

In a preliminary study, GU18S shoots produced by indirect organogenesis were placed on 

root induction medium comprised of Yz MS salts and vitamins, IS g r1sucrose and 4 g rl 

Gelrite for four weeks. 

Subsequent studies involving all clones and E. grandis cultures (GU18S, TAG31 and 

ZG 14) used the rooting conditions of Mokotedi et al. (2000). The basic protocol involved 

placing shoots on root induction medium comprising Y4 MS salts and vitamins, 

IS g rl sucrose, 0.1 mg rl biotin, 0.1 mg rl calcium pantothenate and 4 g rl Gelrite 

supplemented with various concentrations of IBA (0 - 1 mg rl). Cultures were incubated 

in the dark for 72 hours (24 - 26 QC), after which they were transferred to a 16-h 

photoperiod at 66 Ilmo1.m-2.s-1 PPFD (both side and overhead lighting) and 27 QC day/ 

21 QC night. The entire rooting period, including the 72-h dark incubation, lasted four 

weeks. 
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An alteration to this protocol involved subjecting GU185 shoots to various pre-treatments 

prior to root induction, viz. shoots regenerated from calli were isolated and: 1) placed 

directly onto a pre-rooting medium (MS salts and vitamins, 15 g rl sucrose and 4 g rl 
Gelrite) for one week and then transferred to root induction medium; 2) first multiplied 

on semi-solid multiplication medium for four to six weeks, and 'new' shoots placed 

(singly) onto root induction medium and; 3) first multiplied as in 2) and then as in 1). 

2.3.3 Acclimatization of regenerated plants 

In a preliminary study, rooted shoots of GU185 produced by indirect organogenesis were 

acclimatized in sterile, moistened sand in a seedling tray (63 x 34 cm), enclosed in a large 

plastic bag (120 x 100 cm) and maintained in the greenhouse. In subsequent studies, 

shoots were acclimatized in pots (5.5 cm diameter) containing a rooting mix (2 perlite: 

1 coir) and sealed individually in plastic bags (17 x 14 cm). Further, plants were provided 

with nutrients (1/3 MS salts) and a source of water in a Petri dish. Plants were maintained 

in the growth room under a 16-h photoperiod at 66 Jlmol m-2 
S-l PPFD and 27°C day/21 

°C night. In all studies, the humidity of the microclimate was gradually reduced by 

punching holes in bags after two to three weeks and by the fourth week; the plastic bags 

were completely removed and acclimatized plants were transferred to ambient conditions. 

This method was also tested on other E. grandis clones (TAG31 and ZGI4). 

2.4 Data analysis and photography 

Means were determined from an average of two to three replicates with a sample size 

ranging from 50 - 115 explants. Data were analysed using a One Way Analysis of 

Variance (ANOVA) and means were contrasted using Scheffe's multiple range test (95% 

confidence interval), Kruskal Wallis, Mann-Whitney U or T-Tests where appropriate. 

Alphabetical values were assigned to the mean values recorded per treatment. Mean 

values that did not share the same letter were recognised as being significantly different. 

Photographs were recorded with a Nikon FM2 camera fitted with a 60 mm Mikro macro 

lens. 
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3. RESULTS 

3.1 STRATEGIES FOR THE PRODUCTION OF DECONT AMINATED 

EXPLANTS 

3.1.1 Decontamination of parent material 

A substantial problem often encountered in plant tissue culture laboratories is the 

successful disinfection of plant material taken from the field or greenhouse (Danby et aI., 

1994; Tanprasert and Reed, 1998). In the present study, explants (2 - 2.5 cm long shoots) 

excised from inserts maintained in the greenhouse were decontaminated and screened on 

microbial M 523 medium (Viss et aI. , 1991) for 24 h to detect contamination. Thereafter, 

decontaminated explants were placed onto bud break followed by multiplication media in 

order to. generate a supply of in vitro shoots for subsequent studies. In a preliminary 

study, the standard decontamination protocol that is routinely used in our laboratory for 

decontamination of Eucalyptus explants was applied to OUI77, OU178 and OU185 

inserts (Table 3.1). There was no significant difference in the percentage of explants 

contaminated by fungi at the bud break or multiplication stages (Table 3.1) for the clones 

tested. There was however, a significant difference in the percentage of explants 

contaminated by bacteria at the bud break stage (Table 3.1), as OU 178 explants yielded a 

significantly lower percentage of explants contaminated by bacteria (6.7%) than OUI77 

(46.5%) and OU185 (61.7%) at this stage. However, all exhibited high levels of fungal 

contamination. Therefore, regardless of the specific type of contamination, the overall 

effect was that the proliferation of contamination made it impossible to generate an 

adequate supply of in vitro shoots for further work, hence this protocol was deemed 

ineffective to produce decontaminated shoots. 
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Table 3.1: Effect of initial decontamination method on percentage bacterial and fungal 

contamination, death, bud break and the number of shoots/shoot explant using GUl77, GU178 and 

GU185 shoots. The initial decontamination method comprised two-minute dips in 0.2 g rl HgCI2 followed 

by 10 g rl Ca(OCI)2 with sterile water rinses between sterilants. Following decontamination, explants were 

sequentially placed on microbial M 523 , bud break and multiplication media for 24 h, 10 - 14 d and 28 d, 

respectively. a - b = mean separation within columns, Scheffe ' s multiple range test (p ::; 0.05 , n = 45 - 90). 

Clone Bud break stage Multiplication stage 

% % % % bud % % no. shoots/shoot 
bacteria fungi death break bacteria fungi explant 

GUI77 46.5" 34.9" Oa 27.3" 41.2" 58.8a I" 

GUI78 6.7 b 42.2" Oa 44.4" 20.8" 70.8a I a 

GUI85 61.7" 44.7a Oa Ob 

3.1.2 Production of decontaminated shoots of GU185 

In order to obtain decontaminated material for the development of the indirect 

organogenesis protocol, alternative strategies for the production of in vitro shoots needed 

to be investigated. As GU185 material was readily available, an investigation was 

perfonned in order to obtain decontaminated material of this clone. The strategies 

employed for this clone do not represent a progression of work, but simply outline the 

attempts made to generate clean material. 

Since the initial decontamination protocol (Table 3.1) was unsuccessful in producing a 

sufficient amount of material, a more stringent protocol was tested. This second method 

involved immersing shoots in a fungicide cocktail comprising I g r' Benlate, 1 g r' boric 

acid , 0.5 ml rl Bravo and two drops of Tween 20 for 10, 20 or 30 minutes followed by 

two-minute dips in 0.2 g rl HgCb and 109 rl Ca(OCI)2 as in Table 3.1 . Immersion in the 

fungicide cocktail reduced fungal contamination levels from 70.8% (Table 3.1) to 10 -

20% (Table 3.2). There was no significant difference in the percentage of explants 

contaminated by bacteria, fungi or percentage explant death for the immersion times 

tested (Table 3.2). However, there appeared to be a trend of increasingly greater levels of 
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bacterial contamination (15 - 62%) and death (5 - 20%) the longer explants were 

exposed to the fungicides (Table 3.2, protocols B - D). This result suggested a possible 

phytotoxic effect of the fungicides used, that has been reported by other workers (Shields 

et aI., 1984; Watt et at. , 1996). 

From the results obtained (Table 3.2), it was concluded that immersion of explants for 20 

- 30 minutes in the fungicide cocktail was detrimental to explant health (even though 

there was no significant difference in percentage contamination and death for the various 

immersion times), therefore protocols C and D were deemed inappropriate to produce 

decontaminated shoots. For these reasons, immersion of explants for 10 minutes in 

fungicides (1 g r' Benlate, 1 g r' boric acid and 0.5 ml r' Bravo) was selected as the best 

treatment for decontamination of explants. Beck et at. (1998) also found that successful 

decontamination of Acacia mearnsii coppice material could be achieved by soaking 

explants for 10 minutes in a solution containing 2 g r' Benlate and 1 g r' boric acid . 

Table 3.2: Effect of immersion time in the fungicide cocktail step of the decontamination protocol on 

percentage bacterial and fungal contamination and the number of shoots/shoot explant of GU185 

inserts. The fungicide cocktail contained 1 g r' Benlate, 1 g r' boric acid, 0.5 ml r' Bravo and two drops of 

Tween 20. Other steps in the decontamination protocol as in Table 3 .1. Following decontamination, 

explants were sequentially placed on microbial M 523 and multiplication media for 24 hand 28 d, 

respectively. a - b = mean separation within co lumns, Scheffe ' s mUltiple range test (p ~ 0.05, n = 20 - 50). 

Protocol A: control - shoots not decontaminated; 

B: shoots inunersed for 10 minutes in fungicide cocktail; 

C: shoots immersed for 20 minutes in fungicide cocktail; and 

D: shoots immersed for 30 minutes in fungicide cocktai l. 

Protoco l Fungicides HgCl2 Ca(OClh % % % no. shoots/ 
(min) (0 .2 g r') (IOg r' ) bacteria fungi dead shoot explant 

A 72" 28" 

B 10 + + 15b 20a Sa 2.2" 

C 20 + + 30"b 10" 15a 1.9ab 

0 30 + + 62"b 12" 
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As discussed above, when levels of fungal contamination were controlled, bacteria 

proliferated (Table 3.2). Therefore it was necessary to devise a strategy that would reduce 

these levels of bacterial contamination. Towards this end, two strategies were tested, viz. 

explants were sprayed with 70% (v/v) ethanol prior to harvesting and then subjected to 

the initial decontamination protocol as in Table 3.1 (Table 3.3, protocol E). In addition, 

shoots were decontaminated using the initial protocol and then incubated sequentially on 

media containing the antibiotics kanamycin (100 )Jg mr') and rifampicin (20 )Jg mr') for 

two days each with a recovery period for plants by a two-day incubation on antibiotic

free medium after exposure to each antibiotic treatment (Table 3.3 , protocol F). Protocol 

E (spraying plants with 70% v/v ethanol) still produced levels of bacterial contamination 

that were similar to those of protocols Band C (Table 3.2). In addition, fungal 

contamination of explants (32%) still proved to be a problem (Table 3.3). A similar 

difficulty was encountered by Moutia and Dookun (1999), who found that fungal 

contamination in sugarcane plants proliferated when 70% ethanol was used for 

disinfection. The antibiotics kanamycin and rifampicin reduced, but did not eliminate 

bacterial contamination. A number of authors have suggested that a combination of 

antibiotics were more effective at reducing bacterial contamination than the use of 

antibiotics in isolation (Young et al., 1984; Reed et at., 1998). There was no significant 

difference in percentage contamination and death of explants for protocols E and F (Table 

3.3). Further, the level of bacterial contamination encountered using protocol F (22%) 

was slightly higher than that of protocol B (Table 3.2) (15%). This clearly did not justify 

the use of the antibiotic treatment for decontamination purposes, even though the 

phytotoxicity of this treatment was minimal as only 2% of explants died (Table 3.3). 
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Table 3.3: Effect of 70% (v/v) ethanol or antibiotics (kanamycin and rifampicin) on percentage 

bacterial and fungal contamination, death and number of shoots/shoot explant of GU185 inserts. 

Other steps in the decontamination protocol as in Tab le 3.1. Following decontamination, exp lants were 

sequentially placed on microbial M 523 and multip lication media for 24 h and 28 d, respectively. Means 

with the same letter are not signifi cantly di fferent (Mann-Whitney U Test, p 2: 0.05, n = 50). 

Protocol E: spray plants with 70% (v/v) ethanol before harvesting; and 

Protocol 

E 

F 

F: incubation of shoo ts sequentially on media containing antibiotics kanamycin ( l OO ~lg mr l) and 

ri fampicin (20 ~lg mrl ) for two days each with a recovery period for plants by a two-day 

incubation on Y. MS, 0.5 g r l sucrose and 4 g rl Gelrite after each antibiotic treatment. 

Fungicides 
(min) 

+ 

+ 

Ca(OCI)2 
(lO g !" l) 

+ 

+ 

% 
bacteria 

323 

223 

% 
fungi 

323 

323 

% 
dead 

oa 

2a 

no. shoots/ 
shoot explant 

23 

1.8a 

Often a single disinfection step is insuffici ent in controlling both fungal and bacterial 

contamination (de Fossard and de Fossard, 1988). In the present study, when fungal 

contamination was controlled by the use of fungicides, bacterial contamination 

proliferated (Table 3.2) and when bacterial contamination was controlled by the use of 

antibiotics, fungal contamination persisted (Table 3.3). Clearly, a strategy needed to be 

devised that would ideally control both types of contamination simultaneously. 

Therefore, combinations of previously attempted treatments were tested (Table 3.4). 

There was no significant difference in the percentage of explants contaminated by fungi 

(20 - 22.9%) and percentage explant death (0 - 11 .4%) for the protocols tested (Table 

3.4). However, there was a significant di fference in · the percentage of explants 

contaminated by bacteria, with protocol H (Table 3.4) yielding a significantly higher 

percentage of explants contaminated by bacteri a (60%) than protocols G and I ( 10.6 and 

11.4% respectively). Therefore, protocol H was deemed inappropriate to produce 

decontaminated explants. Protocols G and I (Table 3.4) yielded comparable levels of 

contamination and only half the number of shoots/shoot explant than protocol B 

(Table 3.2). For these reasons, protocol B ( IO-minute immersion in fungicide cocktail 
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followed by standard decontamination protocol) was selected as the best decontamination 

method. 

Table 3.4: Effect of combinations of previously attempted treatments on percentage bacterial and 

fungal contamination, death and number of shoots/shoot explant of GU185 inserts. Other steps in the 

decontamination protocol as in Table 3.1. Following decontamination, explants were sequentially placed on 

microbial M 523 and multiplication media for 24 hand 28 d, respectively. a - b = mean separation within 

columns, Scheffe 's multiple range test (p :s; 0.05 , n = 35) . 

Protocol G: spray plants with 70% (v/v) ethanol before harvesting, followed by 10-minute immersion in 

fungicide cocktail during decontamination protocol ; 

Protocol 

H: 10-minute immersion of plants in fungicide cocktail during decontamination protocol and 

thereafter incubation on antibiotic-containing media (see F above) ; and 

I: spray plants with 70% (v/v) ethanol before harvesting and thereafter incubation on antibiotic-

containing media (see F above) . 

Fungicides HgCI2 Ca(OClh % % % no. shoots/ 
(min) (0.2 g rl) (IO g r l) bacteria fungi dead shoot explant 

G 10 + + 10.6a 22.9a 2.9a 1.2a 

H 10 + + 60b 20a Oa I a 

+ + II.4a 22 .9a 11.4" la 

A protocol that successfully reduced contamination levels of explants was, therefore, not 

achieved . As stated by Reed and Tanprasert (1995) , contamination will continue to be a 

problem in plant tissue culture. In this study, other combinations of treatments could have 

been tested, but it was decided that the amount of contamination achieved using protocol 

B was acceptable for the purpose of this study, which was to produce a supply of in vitro 

shoots for subsequent indirect organogenesis work. Therefore protocol B was used for the 

decontamination of shoot explants to yield in vitro shoots. 
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3.2 ESTABLISHMENT OF AN INDIRECT ORGANOGENESIS PROTOCOL: 

WORK WITH GU185 

3.2.1 Callus induction and shoot initiation 

Preliminary work done in our laboratory by another worker (Gaffoor, 2002) established 

the types and levels of plant growth regulators required for indirect organogenesis. In the 

present study, clonal in vitro shoots generated by axillary bud multiplication of explants 

obtained from greenhouse-established inserts, were carefully fragmented to ensure that all 

axillary buds were destroyed. The two types of plant growth regulator combinations that 

were initially tested were 5 mg r' IAA and 0.25 mg r' BAP, and 5 mg r' NAA and 

0.5 mg r' kinetin. Further, the effect of two types of culture vessels (Petri dishes and 

culture tubes) on callus induction and shoot proliferation was tested . There were five 

fragmented shoots/ Petri dish and one fragmented shoot/tube. Cultures were incubated in 

the dark for two subcultures of five weeks each, as did Laine and David (1994) and Cid et 

al. (1999). 

For both media and vessel types, all explants produced callus (Table 3.5). However, 

callus production was not extensive, as only small amounts of calli were produced. In an 

attempt to increase callus proliferation, calli that were produced after the first five weeks 

were subcultmed onto fresh callus induction media for a further five weeks, but this 

proved unsuccessful. The amount of calli produced is critical, as this factor is assumed to 

have a direct effect on the subsequent yield of regenerated shoots. 

Even though the amount of callus produced was relati vely small , there was a significant 

difference in the percentage of callus with shoots for media with different plant growth 

regulator combinations (Table 3.5). Callus induction medium supplemented with 5 mg r' 
NAA and 0.5 mg r' kinetin produced a significantly lower percentage of callus with 

shoots (14.6 - 51.8%) (Figure 3.IA) than medium with 5 mg r' IAA and 0.25 mg r' BAP 

(78.9 - 100%) (Figure 3.1 B). In addition, the former medium also produced roots (Figure 

3. 1 A), which were undesi rable, while the latter did not (Figure 3.IB). For these reasons , 
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medium supplemented with 5 mg r' IAA and 0.25 mg r' BAP was selected as the best 

medium for callus induction and shoot organogenesis. Explants incubated in Petri dishes 

produced a significantly lower percentage of callus with shoots (51.8 - 78.9%) than 

explants incubated in culture tubes (14.6 - 100%) (Figure 3.1C). However, it was decided 

to use Petri dishes for all subsequent work, as they are easier to handle than culture tubes. 

Also, although Petri dishes are expensive as they are consumable items, less media is 

used to culture explants (in the present study, there was one fragmented shoot per 20 ml 

medium in tubes, and five fragmented shoots per 40 ml medium in Petri dishes). Further, 

tubes need to be washed at the end of each culture stage whereas Petri dishes can simply 

be discarded. A commercial laboratory such as Mondi Forests will have to do a cost 

analysis in order to determine the expenses associated with the use of each type of 

container to select the most cost effective option. 

Table 3.5: Effect of media composition and vessel type on callus and shoot production using 3-month

old parent plants. Two media types tested were 5 mg rl IAA and 0.25 mg rl BAP and 5 mg rl NAA and 

0.5 mg rl kinetin, and the two vessels were Petri dishes and culture tubes. There were 5 fragmented 

shoots/Petri dish and 1 fragmented shoot/tube. Results after 2 subcultures of 5 weeks each. a - d = mean 

separation within columns, Scheffe ' s multiple range test (p :0:: 0.05 , n = 20 - 50). 

Vessel Media % explants with % callus with % callus with 
callus roots shoots 

lAA:BAP 100 0" 78 .9" 
Petri dish 

NAA:kin lOO 23b 51.8b 

lAA:BAP 100 Oa 100e 
Tubes 

NAA:kin 100 34.7b 14.6d 
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Figure 3.1: Indirect organogenic shoots produced from calli. A) shoots and roots 

produced in a Petri dish on medium containing 5 mg r' NAA and 0.5 mg r' kinetin, 

bar = 0.9 cm; B) shoots produced in a Petri dish on medium containing 5 mg r' IAA 

and 0.25 mg r' BAP, bar = 0.9 cm; C) shoots produced in a culture tube on medium 

containing 5 mg r' !AA and 0.25 mg 1-' BAP, bar = 1.03 cm. 
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3.2.2 Choice of explant 

The establishment of conditions for callus and shoot organogenesis were discussed in the 

previous section. The next step was to refine the protocol by identifying the best explant 

for callus and shoot organogenesis. The first factor that was considered was the age of the 

parent plant that was used to generate in vitro shoots. Shoots from 3 and 5-month-old 

parent plants (i.e. 3 and 5 months from the time at which the cuttings were set) that were 

kept in the greenhouse were decontaminated and multiplied by axillary bud proliferation 

to generate a supply of in vitro shoots, to be fragmented and used as explants for callus 

induction. The results in Table 3.6 indicated that although callus production (100%) was 

not affected by the age of the parent plant used to produce in vitro shoots, subsequent 

shoot regeneration was affected. In vitro shoots obtained from 3-month-old parent plants 

produced a significantly higher percentage of callus with shoots (78.9%) than in vitro 

shoots from 5-month-old parent plants (46.8%). Further, in vitro shoots obtained from 3-

month-old parent plants produced a significantly greater number of shoots per dish 

(33 shoots/dish) than in vitro shoots from 5-month-old plants (18 shoots/dish). From 

these results, it can be concluded that in vitro shoots obtained by axillary bud 

multiplication of 3-month-old parent plants provided a better source of explants for callus 

and shoot organogenesis than in vitro shoots obtained from 5-month-old parent plants. 

Table 3.6: Effect of age of parent plant that yield in vitro shoots (3 and 5 months) on callus and shoot 

production. Results after 2 subcultures of 5 weeks each on callus induction media supplemented with 

5 mg ]"1 IAA and 0.25 mg ]"1 BAP. There were 5 fragmented in vitro shoots/Petri dish. Means with different 

letters are significantly different (Mann-Whitney U Test, p .s; 0.05 , n = 50). 

Age of parent plant 
(months) 

3 

5 

% explants with 
callus 

100 

lOO 

% callus with 
shoots 

78. 9a 

no. shoots/ 
di sh 

33a 

Although the results obtained conclusively indicated that in vitro shoots obtained from 3-

month-old parent plants provided the best material for callus and shoot organogenesis, the 
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only material that was available at this time was 5-month-old inserts. Hence due to such 

practical constraints, 5-month-old inserts had to be used for all subsequent work. 

Plant material can be multiplied in vitro using a number of micropropagation systems. 

Two such systems are the semi-solid multiplication and the temporary immersion 

bioreactor (RIT A) that utilises liquid media. In the present study, ex plants from inserts 

were multiplied by axillary bud proliferation on semi-solid medium to generate 

decontaminated in vitro shoots. In order to ensure a constant supply of in vitro shoots for 

callus and shoot organogenesis, these in vitro shoots were multiplied in either the semi

solid or the RIT A system. In vitro shoots from these two systems were used to induce 

callus and shoot organogenesis. The results obtained (Table 3.7) indicated that there was 

a significant difference in the percentage of callus with shoots using explants from the 

two systems. Explants multiplied in the semi-solid system produced a significantly higher 

percentage of callus with shoots (46.8%) and number of shoots/dish (18 shoots/dish) than 

explants multiplied in RITA bioreactors (7.9% and 9 shoots/dish respectively). This result 

suggested that shoots multiplied on semi-solid medium provided the best explants for 

callus and shoot production. 

Table 3.7: Effect of system to generate in vitro shoots used as explants for callus and shoot 

production. Results after 2 subcultures of 5 weeks each on ca llus induction media supplemented with 

5 mg r' lAA and 0.25 mg r' BAP. There were 5 fragmented in vitro shoots/Petri dish. The two systems 

used to generate explants were semi-solid multiplication medium and liquid multiplication medium in 

RITA bioreactors. Means with different letters are significantly different (M ann-Whitney U Test, p s 0.05, 

n = 50 - 60). 

System to generate 
explants 

Semi-solid 

RITA 

% explants 
with ca llus 

lOO 

lOO 

* Data fo r semi-solid as in Table 3.6. 

% callus with 
shoots 

46.8a 

no. shoots/ 
dish 

18" 
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Physiological differences exist between shoots produced in RIT A bioreactors and those 

produced on semi-solid medium due to the different environments created by these two 

systems (Debergh et al. , 1992; Teisson and Alvard, 1995). As a result, shoots produced in 

RIT A bioreactors are often longer than those produced from semi-solid media (Etienne 

and Berthouly, 2002; Murch et al. , 2004). This phenomenon was observed in the present 

study. It was hypothesised that differences in the elongation status of shoots produced by 

these two systems could have accounted for the results in Table 3.7, i.e. that the shorter 

shoots produced in the semi-solid system provided better explants for callus and shoot 

production than the comparatively longer shoots produced in the RITA system. It was 

therefore decided to test the effect of the elongation status of shoots used as explants for 

callus and shoot production. Since it was impossible to generate in vitro shoots of the 

same size in the two systems, the effect of internode distance was investigated as an 

indicator of the elongation status of shoots produced by both systems. 

Although all explants produced 100% callus regardless of the elongation status of the in 

vitro shoots used as explants for callus induction (Table 3.8), there was a significant 

difference in the percentage of callus with shoots (Table 3.8). In the semi-solid system, 

shoots with the shortest internodes (0.3 cm) produced a significantly higher percentage of 

callus with shoots (46.8%) than those with the longer internode distance of 1.7 cm 

(15.4%). The former also produced a significantly higher number of shoots/dish (18 

shoots/dish) than the latter (8 shoots/dish). With the RIT A system, because of high and 

fast rates of multiplication, it was very difficult to separate shoots smaller than 2 cm. For 

this reason, longer shoots than those in semi-solid medium were used (2 and 5 cm). In 

this case, there was no significant difference in the percentage of callus with shoots (7 .9 

and 3.5%) and the number of shoots produced/dish (9 and 3 shoots/dish) for explants with 

short (2 cm) or long (5 cm) internodes (Table 3.8). The results for shoots multiplied in 

RIT A vessels were not significantly different to the 1.7 cm shoots produced in the semi

solid system. This suggested that elongated shoots do not provide suitable explants for 

callus and shoot production. Even though there was no significant difference in the 

percentage of callus with shoots and the number of shoots/dish in the RIT A system, the 
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absolute numbers indicated that the shoots with the shorter internode distance produced 

more calli with shoots and shoots/dish than shoots with the longer internode distance. 

Table 3.8: Effect of elongation status (internode distance) of ill vitro shoots used as explants for callUS 

and shoot production. Results after 2 subcultures of 5 weeks each on callus induction media supplemented 

with 5 mg r' IAA and 0.25 mg r' BAP. There were 5 fragmented ill vitro shoots/Petri dish. Different 

internodal distances were generated by incubating shoots on semi-solid multiplication or elongation 

medium and in RlTA bioreactors for 2 or 3 weeks . a - b = mean separation within columns, Scheffe"s 

multiple range test (p :::; 0.05, n = 45 - 50). 

System to generate Dist. bet. % explants with % callus with no. shoots/ 
explants internodes (cm) callus shoots dish 

0.3 lOO 46.S a ISa 

Semi-solid 
1.7 lOO 15.4b Sb 

2 100 7.9b 9b 

RlTA 
5 100 3.5b 3b 

* Data for 0.3 cm semi-solid and 2 week RIT A as in Table 3.7. 

A number of workers have noticed that rejuvenation of plant material is often induced 

during micropropagation (Boulay, 1987; Raghava Swamy et al., 1992) and that in vitro 

material is often more responsive to culture manipulations. Therefore it was decided to 

test the effect of shoots produced by axillary bud multiplication (1 SI generation shoots) 

and shoots produced by indirect organogenesis (2nd generation shoots) as explants for 

callus and shoot production. In vitro shoots produced in this manner were subjected to 

one round of multiplication in either the semi-solid or RIT A system and were then 

fragmented and used as explants for callus and shoot production (Table 3.9). The results 

in Table 3.9 showed that when the semi-solid system was used to generate explants, there 

was no significant difference in the percentage of callus with shoots (46.8 and 26.4%) 

and number of shoots/dish (18 shoots/dish) using 1 SI and 2nd generation shoots 

respectively. However, when the RIT A system was used to generate explants, there was a 

significant difference in the percentage of callus with shoots (7.9 and 4.8%) and the 

44 



number of shoots/dish (9 and 4 shoots/di sh) for 1 SI and 2nd generation shoots respectively, 

as 1 SI generation shoots consistently produced significantly more indirect organogenic 

callus and shoots than 2nd generation shoots (Table 3.9). The higher yields obtained when 

explants from the semi-solid system were used may be explained by the smaller size of 

the internodal distance of these shoots compared to those obtained from RIT A vessels, as 

was found in Table 3.8. The general trend that can be observed from Table 3.9 was that 

explants obtained from 1 sI generation shoots produced more callus with shoots and a 

greater number of shoots/dish than 2nd generation explants (even though there was no 

significant difference in the semi-solid system). From this result, it can be suggested that 

the ability of cells to de-differentiate has been reduced in the 2nd generation shoots but the 

potential of cells to produce ' organs ' is less affected. 

Table 3.9: Effect of 1st and 2nd generation shoots used as explants for callus and shoot production. 

Results after 2 subcultures of 5 weeks each on callus induction media supplemented with 5 mg r' IAA and 

0 .25 mg r' BAP. There were 5 fragmented in vitro shoots/Petri dish. The two systems used to generate 

explants were the semi-solid and RIT A systems. The I sI generation in vitro shoots were produced via 

axillary bud multiplication from 5-month-old inserts and 2nd generation shoots from indirect organogenesis . 

a - c = mean separation within columns, Scheffe ' s multiple range test (p::;; 0 .05 , n = 45 - 50). 

System to generate Generation % explants with % callus with no . shoots/ 
explants callus shoots dish 

lOO 46.8" 18" 
Semi-so lid 

2 100 26.4" 18a 

100 7.9b 9b 

RITA 
2 100 4 .8c 4c 

* Data for 1s1 generation semi-so lid and RITA as in Table 3.7. 
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3.2.3 Root production 

Root production on shoots obtained by indirect organogenesis was first attempted by 

placing shoots on medium comprising Y2 MS salts and vitamins, 15 g rl sucrose and 4 g rl 

Gelrite for four weeks. However, only 21 % of shoots produced roots (results not shown). 

Consequently, all subsequent work used the rooting conditions of Mokotedi et al. (2000) , 

viz. shoots were placed in culture tubes containing ;4 MS salts and vitamins, 15 g rl 

sucrose, 0.1 mg rl biotin, 0.1 mg rl calcium pantothenate, 4 g rl Gelrite and various 

concentrations of IBA. Cultures were then placed in the dark for 72 h followed by 

transfer to a high light intensity growth room (16-h photoperiod at 66 ).lmol m -2 s-I PPFD 

27 QC day/21 QC night); the entire culture period lasted four weeks. The results presented 

in Table 3.10 indicated that there was a significant difference in the percentage of rooting 

for the various IBA concentrations. Shoots placed on media with 0.1 mg rl IBA produced 

the significantly highest percentage rooting (53.2%). There was no significant difference 

in the number of roots produced/shoot. However, shoots incubated on media containing 

0.1 mgr l IBA produced a higher number of roots per shoot (2 .3 roots/shoot) than the 

other treatments (0 - 1 roots/shoot). For these reasons, 0.1 mgr l IBA was selected as the 

best concentration of IBA for root production. 

Table 3.10: Effect of IBA (0.01 and 0.1 mg rl) on root production in shoots obtained via indirect 

organogenesis. Medium components were Y. MS salts and vitamins, 15 g rl sucrose, 0.1 mg rl biotin, 

0.1 mg rl calcium pantothenate, 4 g rl Gelrite and 0 - 0 .1 mg rl IBA. Shoots were rooted under 

66 ~lmo l m-2 S· I PPFD 27 QC day/21 QC night following an initial 72 h dark incubation period. Results after 

4 weeks in culture. a - b = mean separati on within co lumns, Scheffe's multiple range test (p :s; 0 .05 , n = 

30). 

IBA (mg r l) % rooting no. roots/shoot 

0 03 03 

0.0 1 13.23 l a 

0. 1 53.2b 2 ,.,a 
.J 
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Efforts were made to increase levels of root induction obtained by subjecting shoots to 

specific pre-treatments prior to placing them on root induction medium. Rooting 

conditions were the same as those described for Table 3.10. Shoots subjected to pre

treatment 3 (Table 3.11) produced a significantly higher percentage of rooted shoots 

(26.7 - 90%) than those in pre-treatments 1 (13.3 - 53.3%) and 2 (13.3 - 46.7%). 

Therefore, pre-treatment 3 i.e. multiplying the shoots produced via indirect 

organogenesis, and then placing new shoots on medium without plant growth regulators 

for one week, before transferring them to rooting medium containing 0 - 1 mg rl IBA 

was selected as the best pre-treatment for root production. Within pre-treatment 3, there 

was a significant difference in the percentage of rooting and the number of roots/shoot for 

the different IBA concentrations, as 0.5 and 1 mg rl IBA produced the significantly 

highest percentage rooting (83.3 - 90%) and number of roots/shoot (5.5 - 13.4) than 

other tested concentrations (Table 3.11) (Figure 3.2). In addition, shoots incubated on 

0.5 mg rl IBA produced the significantly longest roots (3.29 cm) as well as roots of the 

desired morphology i.e. long, thick roots with a few well developed lateral roots. For 

these reasons, 0.5 mg rl IBA was selected as the best concentration of IBA for root 

induction in shoots produced by indirect organogenesis. 
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Table 3.11: Effect of rooting pre-treatments (1- 3) and IBA (0 - 1 mg rl) on root production in shoots 

obtained via indirect organogenesis. Resul ts after 4 weeks in culture. a - c = mean separa tion within 

columns, Scheffe ' s multiple range test (p :S; 0 .05 , n = 15 - 30). 

Shoots regenerated fro m ca lli were isolated and subj ected to the fo llowing pre-treatments: 

I : placed directly onto MS medium (MS salts and vitamins, 15 g r' sucrose and 4 g r' Gelrite) for I week 

and then trans ferred to rooting media; 

2: first multiplied on semi-solid multiplication medium for 4 - 6 weeks and new shoots placed singly onto 

rooting media; and 

3: first multiplied as in 2 and then as in I. 

Pre-treatment 

2 

3 

NT: Not tested 

IBA (mg r' ) 

o 

0.01 

0.1 

0.5 

0.75 

o 
0.01 

0.1 

0.5 

0.75 

o 
0.01 

0.1 

0. 5 

0.75 

% rooting 

0 

13.3" 

40a 

53 .3a 

NT 

NT 

13.3a 

20a 

46.7a 

46.7" 

NT 

NT 

26.7" 

33 .3a 

66.7" 

83.3b 

90b 

86.7b 

no. roots/shoot root length (cm) 

0 0 

1.5a l a 

1.5" l a 

1.5" l a 

NT NT 

NT NT 

1.5a 3.1 7b 

l a 1.3 1 a 

2.7a 1.84a 

5b 1.43a 

NT NT 

NT NT 

1.3" 2.7a 

1.6a 2.34a 

3.4a 2.5 2a 

5.5b 3.29b 

13.4c 2.1 2a 

11 .2c 1.3 1 a 
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Figure 3.2: In vitro root induction of E. grandis x E. urophylla indirect 

organogenic shoots at different IBA concentrations. A) 0.1 mg rl mA, bar = 1.03 

cm; B) 0.5 mg rl IBA, bar = 1.03 cm; C) 0.75 mg rl IBA, bar = 1.03 cm; and 

D) I mg rl mA, bar = 2.3 cm. 
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3.2.4 Acclimatization of regenerated plants 

In a preliminary study, rooted shoots were planted in autoclaved sand in a seedling tray 

and enclosed in a large plastic bag. However, this resulted in 100% death of plants 

(results not shown). Subsequently, attempts were made to acclimatize plants individually 

in plastic pots (S.Scm diameter) containing either autoclaved sand or a rooting mix 

(2 perlite: 1 coir). Once planted in pots, plants were sealed individually in plastic bags 

and the humidity of the microclimate was gradually reduced by punching holes in the 

bags after two weeks, and by the fourth week the plastic bags were completely removed. 

From Table 3.12, it can be seen that there was a significant difference in percentage 

survival for the three treatments. Shoots that were acclimatized in the rooting mix with 

added nutrients produced the significantly highest percentage survival (95%). This 

treatment produced healthy acclimatized plants (Figure 3.3) and was therefore used for 

further work. Bolar et al. (1998) obtained similar levels of survival (70 - 100%) when 

they used a similar protocol for acclimatization of micropropagated apple shoots. 

Table 3.12: Effect of different substrates and the presence of a nutrient source on acclimatization 

success. The two substrates tested were autoclaved sand and 2 perlite: I coir rooting mix. The nutrient 

source provided was l/3 MS salts. Survival rates after 28 d of acclimatization. a - c = mean separation 

within columns, Scheffe ' s multiple range test (p $ 0.05, n = 20 - 30). 

Substrate Nutrients % survival 

Autoclaved sand 64a 

Rooting mix 

Rooting mix + 95C 
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Figure 3.3: Hardened-off plant of E. grandis x E. urophyl/a produced by indirect 

organogenesis, bar = 0.5 cm. 
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3.3 COMPARISON OF DEVELOPED PROTOCOL WITH A PROTOCOL 

FROM PUBLISHED LITERATURE 

The protocol developed was compared with a protocol published by Bandyopadhyay et 

al. (1999) that reported a plant regeneration method using seedling explants of 

Eucalyptus nitens and Eucalyptus globulus. The different types of media used in the 

developed protocol and that of Bandyopadhyay et al. (1999) were tested. Both protocols 

were tested using GU185 and TAG31 shoots multiplied on semi-solid medium. The 

protocol of Bandyopadhyay et al. (1999) produced a significantly lower percentage of 

explants with callus (80 - 90%) than the developed protocol (100%) for both clones 

tested (Table 3.13). Further, the former resulted in a significantly lower percentage of 

callus with shoots (3.4 - 4.9%) than the developed (Hajari) protocol (11.7 - 46.8%). 

However, with respect to the number of shoots/dish, only GU 185 produced the 

significantly highest number of shoots/dish (18 shoots/dish) while, TAG31 shoots 

subjected to the Hajari protocol produced a similar number of shoots/dish (7 shoots/dish) 

to GU185 and TAG31 shoots subjected to the protocol of Bandyopadhyay et al. (1999) (6 

and 3 shoots/dish for GU185 and TAG31 respectively). This suggested that for the E. 

grandis x E. urophylla hybrid (GU185) and for the pure E. grandis clone (TAG3l), the 

protocol of Bandyopadhyay et al. (1999) was not suitable [even though there was no 

significant difference in the number of shoots produced per dish for T AG31 shoots 

subjected to the Hajari protocol and GU 185 and TAG31 shoots subjected to the protocol 

of Bandyopadhyay et al. (1999)]. The differences may be attributed to Bandyopadhyay et 

al. (1999) having worked with temperate eucalypt species, whereas the clones tested in 

this study are semi-tropical. Further, the protocol of Bandyopadhyay et al. (1999) was 

developed using seedling explants, whereas the developed protocol used in vitro shoots. 
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Table 3.13: A comparison of the developed protocol with that of Bandyopadhyay et al. (1999) for 

callus and shoot production. Work done using GU IS5 and TAG3 l shoots obtained fro m semi-solid 

multiplication medium. Resul ts after 2 subcultures of 5 weeks each for the developed protocol and 3 - 4 

weeks each for the protocol of Bandyopadhyay et af. (1999) . There were 5 fragmented in vitro shoots/Petri 

dish. a - c = mean separation within co lumns, Scheffe ' s multiple range test (p :-:; 0.05 , n = 50 - 60). 

Media composition: 

• Haj ari : MS salts and vitamins, 30 g rl sucrose, 4 g r l Gelrite, 5 mg rl IAA and 0 .25 mg rl BAP; 

and 

• Bandyopadhyay et af. ( 1999): MS salts and vitamins, 30 g rl sucrose, 4 g r l Gelrite, I mg r l NAA 

and 0.5 mg rl BAP. 

Protocol 

Hajari 

Bandyopadhyay et af. 
( 1999) 

Clone 

GU l S5 

TAG3 1 

GU IS5 

TAG3 1 

* Data for Hajari GUI S5 as in Table 3.6. 

% explants with 
ca llus 

lOO" 

l OO" 

SOb 

90b 

% callus with no . shoots/ 
shoots dish 

46.S' IS" 

11.7b 7b 

4.9C 6b 

3.4c 3b 
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3.4 STUDIES WITH OTHER CLONES 

3.4.1 Testing the developed protocol on other clones 

The developed protocol was tested for its applicability to other eucalypts using the 

hybrids GU180 and GUl77 and the pure species TAG31 and ZGI4. Explants from all 

clones tested produced 100% callus (results not shown). The lowest percentage of callus 

with shoots was produced by GUl77 (5.3%) followed by TAG31 (11.7%) and GU180 

(12.7%) with ZG14 and GU185 shoots (original experimental data) producing a 

significantly higher yield (31.7 and 46.8% respectively) . A similar trend was observed 

with the number of shoots/dish i.e. 6 shoots/dish by GU177, 7 shoots/dish by TAG31 and 

9 shoots/dish by GU 180. However, in this instance, ZG 14 produced more shoots/dish 

(24 shoots/dish) than GU 185 (18 shoots/dish), although this difference was not 

significant (Table 3.14). These results suggested that the different clones were exhibiting 

different genotype-dependent responses to the same treatment. Laine and David (1994) 

also reported a genotypic effect in the regeneration of plants from leaf explants of 

micropropagated clonal E. grandis. 

GU180 and GU177 shoots were not tested at the rooting and acclimatization stages as 

severe losses due to contamination were experienced in earlier stages and consequently 

there was insufficient material available for subsequent stages. For the clones tested, 

there was no significant difference in the percentage of rooting (83.3 - 92.5%) (Table 

3.14), although TAG3l produced the highest percentage rooting (92.5%). Further, there 

was no significant difference in percentage survival (90.7 - 95%). The results obtained in 

Table 3.14 indicated that the indirect organogenesis protocol developed for the E. grandis 

x E. urophylla hybrid (GU 185) could be applied to other E. grandis x E. urophylla 

hybrids (GU180 and GUl77) although these clones produced a significantly lower 

percentage of callus with shoots and number of shoots/dish than OU185 (Table 3.14). 

Further, the developed protocol could also be successfully applied to E. grandis clones 

(TAG3l and ZOI4). It is possible to estimate that using the developed protocol, if 100 
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initial explants are used, yields of 114 acclimatized T AG31 , 404 acclimatized ZG 14 and 

286 acclimatized GU 185 plants could be produced. 

Table 3.14: Responses of GU180, GUI77, TAG31 and ZG14 to the protocol developed for GUl85. 

Callus induction media was supplemented with 5 mg rl lAA and 0.25 mg r l BAP. There were 5 

fragmented in vitro shoots/Petri dish. Data for percentage rooting are presented using 0.5 mg rl IBA and 

percentage survival using 1/3 MS nutrients. a - b = mean separat ion within columns, Scheffe ' s multiple 

range test (p $ 0.05 , n = 50 - 60). 

Clone % callus with no. shoots/ % rooting % survival 
shoots dish 

GUI80 12.7" 9· NT NT 

GUI77 5.3" 6· NT NT 

TAG31 11.7" 7' 92.5" 90.7" 

ZG14 31.7b 24b 90· 91.4" 

GUI85 46.8b 18b 83.3" 95" 

NT: Not tested. 

3.4.2 Studies to improve yield 

3.4.2.1 Root production 

Although 90 - 92.5% rooting is considered good, attempts were made to increase this 

percentage by testing higher concentrations of IBA. The rooting protocol reported in 

section 3.2.3 for the E. grandis x urophy /la hybrid GU185 was tested on pure E. grandis 

species T AG31 and ZG 14 to investigate the general application of the protocol. The 

percentage of indirect organogenic T AG31 shoots that produced roots increased with 

increasing IBA concentration up to 0.5 mg rl and thereafter declined at higher 

concentrations (Table 3.15), however this difference was not significant. There was a 

significant difference however, in the number of roots/shoot, as shoots placed on media 

containing 0.5 and 1 mg rl IBA produced the highest number of roots/shoot (6.2 and 5.6 

roots/shoot respectively). It was concluded that the best concentration of IBA for root 
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production in TAG31 shoots was 0.1 - 0.5 mg ri , as the highest percentage rooting was 

obtained at this concentration (even though 0.1 mg rl IBA yielded significantly fewer 

roots per shoot than 1 mg rl IBA). Further, roots of the desired morphology i.e. long, 

thick roots with a few well developed lateral roots were obtained on media containing 0.1 

- 0.5 mg rl IBA. This is a similar concentration of IBA that was suggested for root 

production in GU185 shoots (Table 3.11), and as in Table 3.14. 

Table 3.15: Effect of IBA (0 - 1 mg rl) on root production in TAG31 shoots produced by indirect 

organogenesis. Results after four weeks in culture. Rooting conditions were the same as those described in 

Table 3.10. a - b = mean separation within columns, Scheffe ' s multiple range test (p :s; 0.05 , n = 40) . 

IBA (mg rl) % rooting no. roots/shoot root length (cm) 

0 70a l.4a 3.463 

0.01 85a 1.7a 1.57b 

0.1 93 .8a 3.2a 2.51 " 

0.5 92.53 6.2b 1.77b 

0.75 75" 3a 1.74b 

70" 5.6b 1.03b 

With ZG 14, there was a significant difference in the percentage of rooting and number 

roots/shoot for the different IBA concentrations (Table 3.16), as 0.5 and 0.75 mg rl IBA 

produced a significantly higher percentage of rooting (90%) and number of roots/shoot 

(7.2 and 7.5 roots/shoot respectively) than the other tested concentrations. From the 

results, it can be seen that the best concentration of IBA for root induction of ZG 14 

shoots was 0.5 and 0.75 mg rl . Since there was no significant difference in percentage 

rooting (Table 3.16) and the number of roots/shoot and root length for these two 

concentrations, the recommended concentration of IBA for root induction of ZG 14 was 

0.5mgrl. 
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Table 3.16: Effect of IBA (0 - 0.75 mg rl) on root production in ZG14 shoots produced by indirect 

organogenesis. Results after fo ur weeks in culture. Rooting conditions were the same as those described in 

Table 3. 10. a - b = mean separation within columns, Scheffe' s multiple range test (p ~ 0.05, n = 30). 

IBA (mg r l) % rooting no. roots/shoot root length (cm) 

0 20' 1.23 2.16' 

0.1 33.2' 1.5" 4.l8b 

0.5 90b 7.2b 2.13" 

0.75 90b 7.5b 1.87' 

3.4.2.2 Acclimatization of regenerated plants 

Similarly to the rooting, an investigation was performed to attempt to further increase 

percentage survival of explants during the acclimatization process. Towards this end, the 

rooting mix used for the acclimatization of regenerated plants was overlaid with a 1 - 2 

cm layer of river sand and a source of water was provided in Petri dishes for plants during 

the acclimatization process. The results obtained (Table 3.17) indicated that high survival 

rates were obtained for both treatments (93.3 - 96.7%), and that the use of river sand was 

not justified. 

Table 3.17: Effect of application of a 1 - 2 cm layer of river sand over the rooting mix on 

acclimatization of regenerated shoots of T AG31. Results after 28 d of acc limatization. Means with the 

same letter are not significantly different (Mann-Whitney U Test, p ~ 0.05 , n = 40 - 60). 

River sand % surviva l 

96. 7" 

+ 93.3" 
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3.4.2.3 Choice of explant for callus and shoot production 

a) Testing the effect of the system (semi-solid and RIT A) to generate explants for 

callus and shoot production 

The effect of the system to generate explants for callus and shoot production was also 

tested on another E. grandis x E. urophylla hybrid clone (OU 180) as well as a pure E. 

grandis clone (ZO 14) to test if the conclusions from that result had a broader application. 

In vitro shoots from both systems induced 100% callus (Table 3.18). For OU180, shoots 

generated in the RITA system produced a significantly higher percentage of callus with 

shoots (14.21%) than shoots generated in the semi-solid system (12.7%). However, the 

number of shoots/dish (9 shoots/dish) was identical for the two systems. Conversely, for 

ZO 14, shoots generated in the semi-solid system produced a significantly higher 

percentage of callus with shoots (31.7%) than those generated in the RITA system 

(25.8%). However, shoots generated in the RITA system produced a significantly greater 

number of shoots/dish (38 shoots/dish) than those from the semi-solid system 

(24 shoots/dish). For OU185 (Table 3.18), shoots generated in the semi-solid system 

consistently produced a significantly higher percentage of callus with shoots (46.8%) and 

number of shoots/dish (18 shoots/dish) than shoots generated in the RITA system (7.9% 

and 9 shoots/dish respectively). These results indicated that in contrast to clone OU 185, 

for clone OU 180 of the same hybrid both the semi-solid and RITA systems provided 

suitable explants for callus and shoot organogenesis. E. grandis (ZOI4) responded 

similarly to OU180. 
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Table 3.18: Effect of system to generate explants for callus and shoot production using GU180, ZG14 

and G U185 shoots. Results after 2 subcultures of 5 weeks each on callus induction media supplemented 

with 5 mg r l lAA and 0.25 mg r l BAP . There were 5 fragmented in vitro shoots/Petri dish. The two 

systems used to generate explants were the semi-solid and RlT A systems. a - d = mean separation within 

columns, Scheffe's multiple range test (p :s::: 0.05 , n = 30 - 60). 

Clone System to generate % explants with % callus with no. shoots/ 
explants ca llus shoots dish 

Semi-so lid 100 12.7a 9a 

GU I80 
RlTA 100 14.2b 9a 

ZG 14 
Semi-solid 100 3 1.7c 24c 

RlTA l OO 25.8 d 38d 

GU I85 Semi-solid lOO 46.8c 18'c 

RlTA 100 7.9a 9" 

* Data for GU 185, GU I80 and ZG I4 semi-solid as in Table 3.14 and GU I85 RITA as in Table 3.7. 

b) Testing the effect ofthe elongation status of shoots (with different internodal 

distances) as explants for callus and shoot production 

An important factor to consider for callus and shoot regeneration is the morphology of 

the plated explants used. As discussed previously (section 3.2.2), work with GU 185 

indicated that explants with a short internode (0.3 cm) produced more callus with shoots 

and indirect organogenic shoots/dish than shoots with longer internodes (1.7 cm). 

Similarl y, this effect was tested with other clones available viz. GU 177 and T AG3 1. 

However, only semi-solid medium was used and two internode d istances were tested. 

This study considered the effect of using shoots with different degrees of elongation 

(i nternode di stances) as explants fo r callus and shoot organogenesis. T ype I (intemode 

distance of 0.3 - 0.5 cm) and Type II (internode di stance of 1.5 - 1.7 cm). 
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There was no significant difference in the percentage of callus with shoots (5.3 and 4.6%) 

and number of shoots/dish (6 and 4 shoots/dish) between Type I and Type II explants of 

GU 177 (Table 3.19). For T AG31, Type II explants produced a higher (but not 

significant) percentage of callus with shoots than Type I explants (15.7 vs. 1l.7%), and a 

significantly greater number of shoots/dish (17 shoots/dish vs. 7 shoots/dish). For 

GU 185, Type I explants consistently produced a significantly higher percentage of callus 

with shoots (46.8%) and number of shoots/dish (18 shoots/dish) than Type II explants 

(15.4% and 8 shoots/dish). The results suggested that for GUl77, Type I explants 

produced a higher percentage of callus with shoots and number of shoots/dish than 

Type 11 explants although this difference was not significant (Table 3.19). The same 

conclusion was reached for GU 185 (Table 3.8). For T AG31, the reverse was true. 

Table 3.19: Effect of elongation status (internode distance) of in vitro shoots used as explants for 

callus and shoot production using GUI77, TAG31 and GU185 shoots. Results after 2 subcultures of5 

weeks each on callus induction media supplemented with 5 mg rl lAA and 0.25 mg rl BAP. There were 5 

fragmented in vitro shoots/Petri dish. Different internodal distances were generated by incubating shoots on 

semi-solid multiplication or elongation medium for 4 - 6 weeks. Explant type: Type I = 0.3 - 0.5 cm 

internodal distance and Type II = 1.5 - 1.7 cm internodal distance. a - c = mean separation within columns, 

Scheffe ' s multiple range test (p :$; 0.05 , n = 50 - 60) . 

Clone Explant type % explants with % callus with no. shoots/ 
callus shoots dish 

Type I 100 5.3" 6" 
GUI77 

Type II 100 4.6" 4" 

TAG31 Type I lOO 11 .7" 7" 

Type II lOO 15 .7" 17b 

GUI85 Type I lOO 46.8b 18b 

TypeIJ 100 15.4" 8e 

* Data for explant Type I GU 177, T AG3l and GUl 85 as in Table 3. 14. 
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c) Testing the effect of hyperhydric shoots as explants for callus and shoot 

production 

The use of liquid media for micropropagation often results in the production of 

hyperhydric shoots (Ziv, 1991 ; Sandal et al. , 2001). These shoots are usually discarded. 

An attempt was made to detelmine if such shoots could be ' salvaged' and used for callus 

and shoot organogenesis (Table 3.20). For both clones tested (GU 185 and TAG31), 100% 

of explants produced callus (results not shown). For GU185, non-hyperhydric shoots 

produced a significantly higher percentage of callus with shoots (46.8%) and number of 

shoots/dish (18 shoots/dish) than hyperhydric shoots (4.1 % and 4 shoots/dish 

respectively) . Conversely, for TAG31 , hyperhydric shoots produced the significantly 

highest percentage of callus with shoots (15.8 vs. 11.7%) and number of shoots/dish (21 

vs. 7 shoots/dish). This result indicated that hyperhydric shoots are capable of producing 

calli and shoots through indirect organogenesis. In addition, these results implied varying 

sensitivities of the different clones to the physiological state of the explant used for callus 

and shoot organogenesis and further that hyperhydric shoots of E. grandis clones need 

not be discarded as they have potential use as a source of explants for indirect 

organogenesis. 

Table 3.20: Effect of hyperhydric shoots as explants for callus and shoot production for GU185 and 

TAG31 shoots. Results after 2 subcultures of 5 weeks each on callus induction media supplemented with 

5 mg rl lAA and 0.25 mg rl BAP. There were 5 fragmented in vitro shoots/Petri dish. a - d = mean 

separation within columns, Scheffe 's multiple range test (p :::; 0.05 , n = 50 - lIS) . 

Clone Physiological state of % ca llus with no. shoo ts/ 
explant shoots di sh 

Hyperhydric 4 . la 4" 
GU I85 

Non-hyperhydric 46 .8b 18b 

TAG3 1 Hyperhydric 15 .8e 2 lc 

Non-hyperhydric 11 .7d 7d 

* Data for non-hyperhydric explants as in Table 3.14. 
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4. DISCUSSION 

4.1 The need for an indirect organogenesis protocol for Eucalyptus species and 

hybrids 

A protocol for the regeneration of plants via indirect organogenesis is of perceived value 

to the forestry industry for : 1) the potentially high multiplication rates that may be 

achieved (Sha Valli Khan et aI. , 2002); 2) the production of new genotypes through 

somaclonal variation and mutagenesis (Karp, 1995) and; 3) most importantly, the 

application of genetic engineering technology to yield transgenic trees with altered 

genotypes (Altman, 2003). However, the commercial planting of transgenic Eucalyptus 

trees will not become a reality overnight, as much research and field testing remains to be 

completed before such trees can be deployed for operational use. If the underpinning 

methods, such as the development of indirect organogenesis protocols that would allow 

for the regeneration of transformed Eucalyptus cells, could be established, this would 

ensure that when other aspects of the technology such as gene transfer methods, have 

been adequately researched, it can be rapidly applied to existing clonal programmes. 

The ideal situation would be to establish a protocol for indirect organogenesis using 

clonal material as these genotypes have been selected and identified as possessing 

desirable traits (Schween and Schwenkel, 2002) with predictable growth characteristics. 

This is in contrast to populations of plants raised from seed whose genotypes cannot be 

predicted with any consistency due to heterozygosity (Tibok et aI. , 1995). Only a small 

amount of literature is available that reports on indirect organogenesis protocols in 

eucalypts, and most of that work has been done using explants derived from seeds 

(section 1.4.3.2). 

In the present study, the first attempt to establish an indirect organogenesis protocol for 

clones of Eucalyptus, involved testing the protocol of Bandyopadhyay et al. (1999) for 

seedling material. The results for the E. grand is x E. urophyl/a hybrid (GUI85) and a 

pure E. grandis clone (T AG31) presented in Table 3.13 indicated that callus induction 
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was successful as 80 - 90% of explants produced callus. However, a low percentage of 

induced callus regenerated shoots (3.4 - 4.9%). Further, the number of shoots produced 

per dish was also low (3 - 6 shoots/dish), which was deemed to be an inadequate yield. 

This highlighted the need for the establishment of a high-yielding indirect organogenesis 

protocol specific for non-seedling material and for the genotypes of interest to the South 

Mrican forestry industry. 

4.2 Establishment of protocol with one clone (GU185) 

A number of parameters are known to influence callus induction and shoot regeneration 

such as the type and ratio of plant growth regulators (Gamborg and Shyluk, 1981 ; Tao et 

aI. , 2002; Faisal and Anis, 2003), explant type (Evans et aI. , 1981 ; Rani et aI. , 2003), 

genotype (Schween and Schwenke1, 2003), environmental factors such as light (Yepes 

and Aldwinckle, 1994; Sha Valli Khan et aI. , 2002), type of culture vessel (Choi et aI. , 

2001) and the gaseous environment therein (Ammirato, 1986), chemical factors such as 

gelling agents (Tanimoto and Ishioka, 1991 ; Wilson and lames, 2003) and carbon source 

(El-Bakry, 2002). In the present study, only the following parameters were considered: 

the effect of different culture vessels (tubes and Petri dishes), plant growth regulator 

combinations (5 mg )"1 IAA and 0.25 mg )"1 BAP vs. 5 mg )"1 NAA and 0.5 mg )"1 kinetin), 

age of parent plants (3 and 5 months) and the system to generate in vitro shoots (semi

solid and RITA systems) (Tables 3.5, 3.6 and 3.7). 

For all parameters tested, 100% of explants produced callus. Therefore, the strategy 

employed in this study to fragment in vitro shoots for use as explants for callus induction 

(Das et al., 2002) proved to be a good one. Further, the careful destruction of the axi llary 

buds, as well as discarding premature shoots after the first subculture, ensured that shoot 

regeneration occurred from callus cells only. When different culture vessels were used, 

even though explants incubated in Petri dishes produced a lower percentage of callus with 

shoots (5l.8 - 78 .9%) than those incubated in tubes (14.6 - 100%), the former were 

selected to be used for subsequent work as they were technically easier to handle than 

tubes, and seemed to produce more consistent results. The observed difference in the 
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percentage of callus with shoots for the two vessel types may be attributed to the different 

microenvironments within the vessels (McClelland and Smith, 1990). Further, the two 

vessels used in this study had different types of closures, (culture tubes were capped 

while the Petri dishes were sealed with Parafilm) due to the need to prevent microbial 

contamination and desiccation of plant tissues and the culture medium (Jackson et al. , 

1991 ; Buddendorf-loosten and Woltering, 1994). The two vessel types used also had 

different volumes of gases present. This, together with the different types of closures, has 

effects on the ventilation of cultures and subsequent composition of the gaseous 

environment (Zobayed et al. , 1999). According to those workers, the environment of the 

headspace within a culture vessel had a strong effect on the growth and development of 

cauliflower callus cultures; in a tightly sealed system, high levels of ethylene and CO2 

accumulated which inhibited callus and shoot growth. lackson et al. (1991) found that in 

vessels that were loosely sealed, very little ethylene accumulated. Similarly, Choi et al. 

(2001) found that shoot regeneration in persimmon was significantly influenced by the 

type of culture vessel , as shoot regeneration levels were higher in the comparatively 

larger Erlenmeyer flasks than in Petri dishes. 

In the present study, it appears that when explants were incubated in Petri dishes that 

were sealed with Parafilm, the tightly sealed vessel allowed for the accumulation of gases 

in the headspace that were detrimental to the growth and morphogenesis of induced 

callus. Similarly, presumably better ventilation was afforded in culture tubes that were 

not sealed with Parafilm (Table 3.5). The increased vessel volume of tubes relative to the 

amount of cultured material may also have had an impact on callus growth and 

morphogenesis. These factors could collectively account for the levels of regeneration of 

indirect organogenic shoots observed in tubes. Nevertheless, for the reasons mentioned 

above, Petri dishes were found to be suitable for the present study. 

It has been well established that auxins and cytokinins are the most important plant 

growth regulators in inducing morphogenesis (e.g. Horgan 1987; George, 1993). The 

commonly used auxins include indoleacetic acid (IAA), 2,4-dichlorophenoxyacetic acid 

(2,4-D), 2,4,5-trichlorophenoxyacetic acid (2,4,5-T), 4-chlorophenoxyacetic acid (CPA), 
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napthaleneacetic acid (NAA), indole-3-butyric acid (ffiA) and 4-amino-3 ,5,6-

trichloropicolonic acid (Pic1oram or TCP) (Collins et al., 1978; Zaerr and Mapes, 1982; 

Hughes, 1981). Auxins are usually required for the induction and maintenance of callus 

cultures (Zaerr and Mapes, 1982; Minocha, 1987). In some plants, relatively high 

concentrations of auxins induce regeneration of roots, for example, Zaerr and Mapes 

(1982) reported that roots were induced from callus when NAA was used. Indeed, NAA 

and ffiA are the auxins commonly used for root induction in plants (Minocha, 1987). 

This may explain the formation of roots from callus in the present study when NAA was 

used as the source of auxin (Table 3.5). Similarly, Tao et al. (2002) also reported that 

when NAA was used for callus and shoot organogenesis in Citrus grandis, roots were 

produced from calli . 

The commonly used cytokinins are 6-benzylaminopurine (BAP), isopentyladenine (2iP), 

kinetin, 6-( 4-hydroxy-3-methyl-trans-2-butenylamino) purine (zeatin) and thidiazuron 

(TnZ) (Zaerr and Mapes, 1982; Hughes, 1981; Huetteman and Preece, 1993; 

Barciszewski et aI. , 1999). Cytokinins are usually used in combination with auxins for 

the initiation and maintenance of callus cultures. The ratio of auxins: cytokinins 

determine whether roots or shoots will be induced in vitro (Minocha, 1987). 

The present study focused on two combinations of plant growth regulators (IAA and BAP 

vs. NAA and kinetin) and their levels (5 mg rl lAA and 0.25 mg rl BAP vs. 5 mg rl 
NAA and 0.5 mg rl kinetin) because these combinations and ratios were identified as 

ideal for callus and shoot production using clonal E. grand is x E. urophylla in vitro 

shoots by another worker in our laboratory (GatToor, 2002). Of these, 5 mg rl IAA and 

0.25 mg rl BAP proved to be the best combination, as it produced the significantly 

highest percentage of callus with shoots (78 .9 - 100%) (Table 3.5). 

Factors relating to the nature of the parent plant have been reported to influence the 

efficiency of shoot regeneration (George and Tripepi, 1994). In the present study, the 

etTect of the age of parent plants that were used to generate a source of in vitro shoots for 

indirect organogenesis was considered in a small preliminary study (Table 3.6). The few 
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results obtained indicated that in vitro shoots from 3-month-old parent plants produced 

more indirect organogenic shoots (33 shoots/dish) than in vitro shoots from 5-month-old 

parent plants (18 shoots/dish). This finding is in general agreement with other reports that 

juvenile material is more responsive in culture (Warrag et aI. , 1991) and in specific cases 

is capable of regenerating more shoots by indirect organogenesis than older material 

(Bandyopadhyay et aI. , 1999; Tao et aI. , 2002). Unfortunately, such young material was 

not available for an extended, in depth study, so 5-month-old material that was readily 

available and proved to be adequate for the purpose of this study (Table 3.6), were used 

in all subsequent work. 

Progress in this study (and in any other that depends on the availability of in vitro shoots), 

required the bulking up of a large number of explants. Shoots can be multiplied in vitro 

using the semi-solid or RIT A systems. RIT A bioreactors are capable of multiplying 

Eucalyptus in vitro shoots at a much faster rate, and producing greater yields (McAlister 

et aI. , 2002) than the semi-solid system. However, it was necessary to determine if in 

vitro shoots produced in the RIT A system would provide suitable explants for callus and 

shoot organogenesis. The results presented in Table 3.7 indicated that in vitro shoots 

multiplied in the semi-solid system yielded significantly more indirect organogenic 

shoots (18 shoots/dish) than those multiplied in the RITA system (9 shoots/dish). 

Therefore, although the RIT A system offers great advantages in terms of quick and high 

shoot multiplication rates, at present the best system to generate in vitro shoots for use as 

explants for callus and shoot production is the semi-solid system. Nevertheless, better 

yields than those obtained in this study are predicted for when a protocol for the specific 

use of in vitro shoots from RIT A vessels is optimised. Parameters that could be targeted 

towards this end include different levels, ratios and types of plant growth regulators (Ziv 

et aI. , 2003), immersion regimes, etc. Other studies that tested the elongation status of 

shoots obtained from semi-solid and RITA systems gave an indication of possible future 

studies in this regard . This will be discussed further in section 4.3.2. 

As previously mentioned in the results section, all calli produced were very small 

regardless of the system used to generate in vitro shoots and all other callus induction 
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parameters tested. This observation was important as this factor had an effect on the 

subsequent yield of shoots. A similar result was reported by Watt et al. (1991) for 

somatic embryogenesis in calli of E. grandis and by Tibok et al. (1995) for indirect 

organogenesis in calli of E. urophylla. In the present study, attempts were made to 

increase callus proliferation by subculturing the induced callus onto fresh medium but 

this was unsuccessful, as no size increase was observed. This represents a critical issue in 

terms of potential plant yields that needs to be resolved. 

Once shoots were obtained via indirect organogenesis, the next step was to establish 

optimal conditions for root induction. When this was initially attempted on medium 

devoid of plant growth regulators, root induction was low (21%). Blomstedt et al. (1991) 

also reported sporadic rooting of Eucalyptus regnans shoots on medium without plant 

growth regulators. Auxins are commonly used for the induction of roots (Nemeth, 1986; 

Gaspar and Coumans, 1987; Riov, 1993) and iliA is the most widely used auxin for root 

induction of Eucalyptus shoots produced by axillary bud multiplication. It has been 

applied as a pulse treatment, where a high concentration is provided for a short period of 

time (Pelosi et aI. , 1995; Willyams et aI. , 1998; Mokotedi et aI. , 2000; Fett-Neto et aI. , 

2001) and as a chronic treatment, where a lower concentration is provided for the 

duration of the culture period (Curir et aI. , 1990; Blomstedt et aI. , 1991 ; Bennett et aI. , 

1994; lones and van Staden, 1994; Yang et aI. , 1995). 

In the present study, increasing concentrations of iliA up to 0.1 mg rl promoted root 

induction in regenerated shoots (53.2%) (Table 3.10). Attempts were made to increase 

observed levels of root induction by subjecting shoots to specific pre-treatments prior to 

transfer to root induction medium (Table 3.11). In this respect, pre-treatment 3 viz. 

multiplying shoots produced by the developed protocol for indirect organogenesis, and 

then placing new shoots on medium without plant growth regulators for one week 

(conditioning), before transferring them to rooting medium, was selected as the best 

strategy for root induction using the E. grandis x E. urophylla hybrid GU185, as a high 

percentage of rooting (up to 90%) as well as roots of superior morphology (long, thick 

roots with a few well developed lateral roots) were produced. Bennett et al. (1994) 
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reported on the beneficial effects of a 'conditioning' medium prior to root induction in 

Eucalyptus globulus. 

When high concentrations of iliA were used (1 mg r1) to induce rooting, extensive 

callusing was observed at the base of shoots (Figure 3.2D). Similar results were reported 

with E. regnans (Blomstedt et aI. , 1991) and E. grandis x E. nitens (Mokotedi et aI. , 

2000). This is not ideal , as the proliferation of callus at the base of shoots during root 

induction may interrupt vascular connections between roots and the stem, thereby 

interfering with the transport of water and nutrients to the shoot (Martin, 1985). 

Therefore, it was concluded that the best concentration of iliA for root induction of 

GU185 shoots was 0.5 mg r1 . 

In vitro propagation protocols are often limited by poor survival of plantlets when 

transferred to ex vitro conditions (e.g. Rohr et ai. , 2003). This may be attributed to the 

fact that plantlets need to adapt to a number of changes during the acclimatization process 

including those that relate to the control of water loss and autotrophic growth (Marin, 

2003). One hundred percent mortality was obtained when plantlets were acclimatized 

using autoclaved sand with plantlets enclosed in a large plastic bag in a seedling tray. 

Therefore, in order to minimise possible stressful conditions during acclimatization, 

plantlets were acclimatized individually in small plastic pots enclosed in plastic bags and 

the humidity of the microclimate was gradually reduced over a period of four weeks. 

Further, different substrates for acclimatization (autoclaved sand and 2 perlite: 1 coir 

rooting mix) were tested, and nutrients CI3 MS salts) were provided to attempt to increase 

survival levels (Table 3.12). These conditions resulted in good survival of regenerated 

plants (up to 95%). It may be suggested that the relative differences in plant volume: air 

volume in the different size plastic bags presumably had an effect on acclimatization 

success, as it is known that the gaseous environment has an effect on the growth and 

development of plants (Jackson et ai. , 1991). 

In conclusion, the protocol developed for indirect organogenesis in the E. grand is x E. 

urophylla hybrid clone GU185 involves fragmenting in vitro shoots obtained via axillary 
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bud multiplication of greenhouse-established inserts and after destruction and removal of 

buds using a scalpel blade, placing them onto media supplemented with 5 mg rl IAA and 

0.25 mg rl BAP for two subcultures of five weeks each in the dark. Shoots regenerated 

from calli are then isolated and rooted on media supplemented with 0.5 mg rl IBA. 

Rooted plants were acclimatized individually in small plastic pots containing a rooting 

mix (2 perIite: 1 coir), provided with nutrients Ch MS salts) and sealed in plastic bags. 

The humidity of the microclimate was reduced by punching holes in the bags and by the 

fourth week, the bags were removed. 

4.3 Evaluation of strategies developed to overcome practical constraints 

A number of practical constraints were encountered during the establishment of the 

indirect organogenesis protocol. One was the availability of parent plants. The material 

for this work was supplied by Mondi Forests, which is located at Hilton, 

Pietermaritzburg. When parent plants were needed, and if they were available, they had 

to be transported to Durban, which is a 150 km return trip . In order to deal with these 

constraints, the strategy for the present study was to use greenhouse-established inserts as 

parent plants, which were used to initiate in vitro shoot multiplication cultures. These 

were used to induce callus, as research in our laboratory (Chetty, 2001), as well as 

published literature (Yasodha et al. , 1997), has suggested that in vitro shoot cultures are 

generally more responsive to culture manipulations than explants initiated directly into 

culture from ex vitro material. This phenomenon has been attributed to a proposed 

reversion to the juvenile phase (Wilkins, 1991 ; Raghava Swamy et al. , 1992). 

4.3.1 Dealing with microbial contamination 

A problem often encountered in the use of in vitro culture systems is that of 

contamination (Kunneman and Faaij-Groenen, 1988). Contamination results in the loss of 

cultures when microorganisms proliferate and overgrow the plant material (Reed et al. , 

1998) and/or reduced multiplication and rooting rates due to the production of phytotoxic 

metabolites (Leifert et al. , 1989; 1992; Thomas, 2004). Any of these translate into 
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economic losses (Reed et aI. , 1995) that can have serious implications in a commercial 

environment. Contaminants of plant tissue cultures include bacteria, fungi, yeasts, viruses 

and micro-arthropods such as mites and thrips (Shields et al., 1984; Young et aI. , \984; 

Long and Cassells, 1986; Blake, 1988; Niedz, 1998). It is often difficult to determine the 

exact source of contamination of plant cultures however some identified sources include 

ineffective decontamination, poor aseptic technique, normal airborne and human 

associated microorganisms and those that originate from contaminated stock plants when 

pre-treatment of such plants with chemicals prove to be ineffective (Gunson and Spencer

Phillips, 1994; Leifert and Waites, 1994; Reed and Tanprasert, 1995; Leifert and 

Cassells, 2001). 

In order to minImIse contamination problems, there are two standard practices: 

1) maintenance and treatment of parent plants and; 2) surface decontamination of 

explants prior to culture. The former involves adequate watering and fertilization regimes 

as well as treatments involving (usually) the application of fungicides (section 2.1) on a 

regular basis in an attempt to maintain parent plants free of contaminants. In the present 

study, minimal efforts were made to try to eliminate endogenous contamination in the 

parent plants. This is because experience gained at the University of KwaZulu-Natal and 

at Mondi Forests has indicated that young plants and particularly inserts are very 

sensitive to fungicide treatments. Therefore, in this study, only a mild fungicide treatment 

was applied to the inserts. However, in view of the results obtained (Tables 3.1, 3.2, 3.3 

and 3.4), it is suggested that this strategy should be investigated further. 

A range of decontamination methods were therefore tested in order to obtain explants for 

the development of the indirect organogenesis protocol, since the decontamination 

method that is routinely used in our laboratory for Eucalyptus explants proved to be 

ineffective, as up to 100% of explants were contaminated at the bud break stage (Table 

3.1). Ideally, a decontamination regime is used that is sufficiently toxic to 

microorganisms but that has a minimal phytotoxic effect on plant material (de Fossard 

and de F ossard, 1988; Gordon, 1991). The method employed depends on the plant 
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speCIes, type of explant, phytotoxicity, nature of contaminant and cost (Niedz and 

Bausher, 2002). 

Fungal contamination proved to be a problem, not surprisingly since in our laboratory 

and at Mondi Forests, fungal contamination of Eucalyptus plants has been identified as 

one of the most important causes of losses during micropropagation (Watt et aI. , 1996). 

In an attempt to deal with fungal contamination, explants were immersed in a fungicide 

cocktail comprising Ig rl Benlate, Ig rl boric acid, 0.5 ml rl Bravo and two drops of 

Tween 20 for 10 - 30 minutes (Table 3.2). Benlate and Bravo fungicides were used, as 

they are easily available in South Africa, are widely used in agriculture and forestry and a 

combination of these fungicides exhibits a broad spectrum of activity (Watt et aI. , 1996). 

It has been reported that Benlate acts by interfering with fungal microtubules (Shields et 

aI. , 1984) and the active ingredient in Bravo reacts with the thiol groups of cell 

constituents (Hassall , 1990). Various immersion times of the selected fungicides were 

tested, as the phytotoxicity offungicides such as Benlate has been reported (Shields et aI. , 

1984; Watt et aI. , 1996). The results presented in Table 3.2 indicated that the time of 

immersion in the fungicide cocktail did have an effect on explant health, as the longer 

immersion times were detrimental to explants. Therefore, 10-minute immersion of 

explants in the fungicide cocktail was selected as the best decontamination method for 

Eucalyptus shoots as only 15% of explants were observed to be contaminated by bacteria 

and 20% were contaminated by fungi using this method (Table 3.2). 

Fungal contamination levels were controlled with the use of fungicides (Table 3.2) but in 

such cases, bacterial contamination proliferated (15 - 62%). The addition of antibiotics to 

culture media is a widely used strategy to deal with bacterial contamination (Pollock et 

aI. , 1983; Falkiner, 1990). There are dangers associated with the repeated use of 

antibiotics such as the development of resistance by bacteria to the antibiotics used 

(Falkiner, 1990; Kneifel and Leonhardt, 1992). Therefore, it has been suggested that if 

antibiotics are to be used, they must be used to a very limited extent and only for a short 

period . The ideal antibiotic should have a broad antibacterial spectrum and be applied at a 

concentration that is sufficient to inhibit bacteria but does not harm the plant material 
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(Falkiner, 1990; Kneifel and Leonhardt, 1992). In the present study, the antibiotics 

kanamycin (100 Ilg mrl) and rifampicin (20 Ilg mrl) were used to reduce bacterial 

contamination (Table 3.3). The antibiotics were applied sequentially for two days each, 

with a two-day recovery period for plants on antibiotic-free medium between 

applications. Kanamycin and rifampicin were combined, and as such, they supplied a 

broad spectrum of activity. Kanamycin is an aminoglycoside antibiotic that inhibits 

bacterial protein synthesis and translocation by binding to the 70S ribosomal subunit 

thereby eliciting miscoding. Kanamycin exhibits an antimicrobial spectrum that includes 

Gram negative and positive bacteria and mycoplasma. Rifampicin inhibits the initiation 

of bacterial RNA synthesis by binding to the ~-subunit of RNA polymerase (Young et 

aI. , 1984; Falkiner, 1990; Sigma catalogue, 2003). The treatments with the antibiotics 

(Table 3.3) reduced but did not eliminate bacterial contamination levels, as 22% of 

explants were still contaminated by bacteria. Further, fungal contamination still proved to 

be a problem as 32% of explants were contaminated by fungi. Therefore the use of 

antibiotics for decontamination of Eucalyptus shoots was not justified. 

It has been reported that often a single surface decontamination step is insufficient in 

controlling both fungal and bacterial contamination (de Fossard and de Fossard, 1988; 

Leifert and Waites, 1994). Therefore, combinations of previously attempted methods for 

disinfection of explants were tried to reduce observed contamination levels (Table 3.4). 

The combinations of treatments tested either yielded unacceptably high levels of 

contamination, for example 60% bacterial contamination and 20% fungal contamination 

when explants were immersed for 10 minutes in the fungicide cocktail followed by 

incubation on antibiotic-containing media (Protocol H, Table 3.4) or very low numbers of 

shoots/shoot explant for example 1 - 1.2 shoots/shoot explant when explants were 

sprayed with 70% (v/v) ethanol and then immersed for 10 minutes in the fungicide 

cocktail (protocol G, Table 3.4) or when explants were sprayed with 70% (v/v) ethanol 

and then placed on antibiotic-containing media (Protocol I , Table 3.4). Therefore, it was 

decided that protocol B (1 O-minute immersion of explants in fungicide cocktail followed 

by standard decontamination protocol) (Table 3.2) was the best decontamination method. 

The levels of contamination encountered using this method (15% bacterial contamination 
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and 20% fungal contamination, Table 3.2) were deemed acceptable for the purposes of 

this study which was to provide a supply of in vitro shoots for development of the 

indirect organogenesis protocol. Similarly, Wilson and James (2003) first optimised in 

vitro shoot proliferation conditions in order to generate a supply of decontaminated in 

vitro apple shoots to be used as explants for regeneration and transformation work. 

4.3.2 The potential use of ruT A bioreactors 

In vitro shoots are conventionally multiplied using semi-solid multiplication medium. 

This process is laborious and time consuming as it takes time to multiply a suitable 

amount of shoots that can be used as explants for callus and shoot production. As 

discussed previously (section 4.2), an alternative to this constraint was thought to be the 

use of the temporary immersion bioreactor RIT A that uses liquid multiplication medium 

to rapidly multiply in vitro shoots (Teisson and Alvard, 1995; see section 2.2 of Materials 

and Methods) . 

There are a number of advantages in the use of liquid media for micropropagation 

including that media can be easily renewed or replaced, media can be sterilised by 

microfiltration, generally more uniform culture conditions are created with the use of 

liquid media, much larger containers can be used for culturing, transfer times can be 

reduced and the cleaning of containers after an incubation period is much easier (Etienne 

et aI. , 1999; Etienne and Berthouly, 2002). A number of workers have reported improved 

multiplication levels using temporary immersion bioreactors rather than conventional 

semi-solid medium. For example, McAlister et al. (2002) reported a four-to-six-fold 

increase in the yield of Eucalyptus clones in half the time using RIT A bioreactors. 

Similar conclusions were obtained by Escalona et al. (1999) for pineapple, by Lorenzo et 

al. (1998) for sugarcane and by (Alvard et aI., 1993) for banana. Temporary immersion 

systems have also been used to enhance somatic embryogenesis in cotton (Gawel and 

Robacker, 1990), rubber (Etienne et aI., 1997), tea (Akula et aI. , 2000) and Citrus 

(Cabasson et al., 1997). 
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According to Martre et al. (2001) and Etienne and Berthouly (2002), the high success rate 

of temporary immersion systems may be attributed to the fact that these systems allow for 

contact between all parts of the plant tissue and the nutrient medium and also enables 

complete renewal of the atmosphere inside the vessel by forced ventilation; this 

combination of characteristics does not usually occur in other culture systems. Another 

factor that contributes to the success achieved with RIT A systems is that the desiccation 

of plant material is prevented by the presence of a capillary film of medium over the 

explants. Also, the short immersion times ensures that there is minimal disruption of the 

gas exchanges between the plant and atmosphere (Etienne et aI. , 1999; Teisson and 

Alvard, 1995). There are however a few disadvantages associated with the use of 

temporary immersion systems, such as the phenomenon of hyperhydricity (Paek et al., 

2001 ; Sandal et at. , 2001 ; Etienne and Berthouly, 2002) but opportunities exist to 

minimise such problems in RIT A bioreactors by, for example, manipulating the 

frequency and duration of immersion times (Etienne and Berthouly, 2002). 

It has been reported that liquid medium often results in better growth and multiplication 

levels than semi-solid medium (Paek et aI. , 2001). Therefore, it can be suggested that the 

high multiplication levels in RITA vessels may result in plants that are physiologically 

different from those multiplied more slowly in the semi-solid system (Teisson and 

Alvard, 1995). A manifestation of these fast growth rates could be the longer shoots that 

are routinely produced in RITA vessels (Murch et al. , 2004). Other effects may be 

manifested at the cellular level in terms of ability of cells to de-differentiate to produce 

callus, morphogenetic potential of cells, etc. For these reasons, it was necessary to 

investigate some parameters relating to the unique nature of shoots produced in RIT A 

bioreactors to assess the usefulness of these in vitro shoots as explants for indirect 

organogenesis. When the elongation status of shoots multiplied in the semi-solid and 

RIT A systems were investigated as explants for indirect organogenesis (Table 3.8), it was 

discovered that elongated shoots from either system generally did not provide suitable 

explants as these shoots produced a lower number of shoots/dish (3 - 8 shoots/dish) than 

shorter explants (9 - 18 shoots/dish). Further, when 1st generation shoots (produced by 

axillary bud multiplication of greenhouse-established inserts) and 2nd generation shoots 
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(produced by indirect organogenesis) were used as explants for callus and shoot 

production, shoots from the semi-solid system provided better explants for indirect 

organogenesis than those from the RIT A system (Table 3.9) as the former yielded a 

greater number of shoots/dish (18 shoots/dish) than the latter (4 - 9 shoots/dish). 

The use of liquid media for micropropagation facilitates greater nutrient uptake and 

therefore promotes growth, but the phenomenon of hyperhydricity is common (Paek et 

a!. , 2001 ; Etienne and Berthouly, 2002) in Eucalyptus and other species (Whitehouse et 

a!. , 2002). Hyperhydric (or vitrified) plants are identified by a glassy, water-soaked 

appearance and anomalous growth (Ziv, 1991). These plants are characterised by having 

different patterns of development compared with non-hyperhydric plants, poor survival 

ex vitro as well as reported losses with regard to the regenerative ability of tissue 

(Gribble, 1999; Gaspar et a!. , 2002; Franck et a!. , 2004; Kevers et a!. , 2004). In the 

present study, a number of plants obtained from RIT A bioreactors were observed to be 

hyperhydric. These plants are usually discarded. In any laboratory but particularly in a 

commercial environment, this wastage can translate into significant losses of time and 

other costs. Therefore, these hyperhydric shoots were used for callus and shoot 

production to evaluate their use as explants (Table 3.20). Hyperhydric shoots were 

capable of producing callus and regenerating shoots. For the E. grand is x E. urophylla 

hybrid clone GU185, non-hyperhydric shoots produced significantly more indirect 

organogenic shoots (18 shoots/dish) than hyperhydric shoots (4 shoots/dish). The reverse 

was true for the pure E. grandis clone T AG31 . Hence, in a commercial laboratory, 

hyperhydric shoots need not be discarded and can be used as explants for callus and shoot 

production. 

4.4 Suitability of developed protocol for other clones 

In a commercial laboratory, the ideal situation would be for any protocol that is 

developed to have a broad general application i.e. suitable for a wide variety of clones. 

However, experience in our laboratory as well as reports in published literature (e.g . 

Thorpe et a!. , 1991 ; Rodriguez and Vendrame, 2003) indicate that this situation is seldom 
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true. Usually a protocol that is developed using one clone must be adjusted and optimised 

in order to yield similar or better results in another clone. This optimisation process is 

costly and time consuming and is not ideal in a commercial environment where 

propagation is carried out on a large scale and research activities are kept to a minimum. 

Therefore, a clone-unspecific protocol for indirect organogenesis in Eucalyptus species 

and hybrids is of perceived value to the commercial forestry industry. For these reasons, 

the indirect organogenesis protocol that was developed for the E. grand is x E. urophylia 

hybrid GU185 was tested on other hybrid clones (GU177 and GUI80), as well as on pure 

E. grandis clones (T AG31 and ZG 14) (Table 3.14). As expected (Laine and David 1994), 

the results indicated a genotype-dependent response. Nevertheless, in general, the 

developed protocol up to the shoot development stage, exhibited a broad general 

applicability to the clones tested with GU177, GU180 and TAG31 producing lower yields 

of shoots (6,9 and 7 shoots/dish) than ZG14 and GU185 (24 and 18 shoots/dish). 

The system used to generate explants for callus and shoot production (semi-solid and 

RITA) was also tested using GU180 and ZG14 clones (Table 3.18). For the E. grandis x 

E. urophylla hybrid GU180 a similar yield of shoots was produced for both systems 

(9 shoots/dish). For the pure E. grandis clone ZGI4, a significantly higher percentage of 

indirect organogenic calli with shoots was produced using shoots from the semi-solid 

system, but shoots from the RIT A system regenerated a greater number of shoots/dish 

(38 shoots/dish) than those from the semi-solid system (24 shoots/dish). These results 

indicated that the pure E. grandis clone ZG14 responded in a similar manner to the 

hybrid clone GU180 i.e. both semi-solid and RIT A systems provided suitable explants for 

callus and shoot organogenesis. This is in contrast to GU185, where shoots from the 

semi-solid system provided the best explants for callus and shoot production. 

When the elongation status of shoots were compared among hybrid clones (GU177 and 

GU 185) and pure speci'es (T AG31) (Table 3.19), it was concluded that for both hybrid 

clones, Type I explants (0.3 - 0.5 cm internodal distance) provided better explants for 

callus and shoot production than Type 11 explants (1. 5 - 1. 7 cm internodal distance) as 

the former yielded more indirect organogenic shoots (6 - 18 shoots/dish) than the latter (4 
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- 8 shoots/dish). Conversely, for TAG31 , Type II explants yielded a greater number of 

shoots/dish (17 shoots/dish) than Type I explants (7 shoots/dish). This result indicated 

that for T AG31 , the longer shoots yielded more indirect organogenic shoots than the 

shorter shoots, in contrast to the situation in the hybrid clones tested. 

Both the E. grandis x E. urophylla hybrid GU 185 and the pure E. grand is species T AG31 

and ZG14 illustrated good rooting responses (83 .3 - 92.5%) and survival after 

acclimatization (90.7 - 95%). With respect to the root induction stage, a similar 

concentration of IBA (0.5 mg rl) is suggested for the production of a high percentage of 

rooting (~90%), with roots of the desired morphology for the hybrid clone GU 185 and 

the pure species T AG31 and ZG 14 (Tables 3.15 and 3.16). For the acclimatization stage, 

similarly high survival (in excess of 90%) was recorded for both the hybrid and pure 

species (Table 3.14). Attempts were made to increase survival levels of T AG31 and 

ZG 14 by application of a layer of river sand over the rooting mix during the 

acclimatization process (Table 3.17). High survival percentages were recorded using this 

treatment, but the extra work associated with the use of the river sand treatment does not 

seem to justify the use of this method in future work. Hence, the strategy devised for the 

acclimatization of GU 1'85 regenerated shoots was also considered to be suitable for 

TAG31 and ZGI4. 

In conclusion, the protocol developed for the hybrid clone GU185 (Figure 4.1), can be 

applied to other hybrid clones and pure species, as all clones tested were capable of 

producing shoots via indirect organogenesis. However, the yield of shoots regenerated 

was clone-dependent, as has been reported in published literature (Das and Mitra, 1990; 

Laine and David, 1994; Yasodha et aI. , 1997). 

From the data obtained for all the clones, it is possible to estimate final total yields. If 100 

initial explants are used, then 286 acclimatized plants of the E. grand is x E. urophylla 

hybrid GU185 can potentially be produced while for the pure E. grand is clones, 114 

acclimatized T AG31 plants and 404 acclimatized ZG 14 plants can be produced. 

Optimisation of specifi c areas of the developed protocol can potentially further increase 
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observed yields. Unfortunately these results could not be compared with those from 

published protocols, as this information was not provided in the literature. 

Decontamination of parent material 
· 1 ·1 · 1 

19 I Benlate, Ig I boric acid, 0.5 ml I Bravo, 10 min, then 
.[ .[ 

0 .2 g I HgCI2 and 109 I Ca(OCI)2, 2 min each. Explants 

trimmed into 2 node shoots. 

• Multiplication 

RlTA : 15 shoots/vessel; 30 sec flush and 10 min rest; 2 - 3 w; 
.[ · 1 ·1 

MS nutrients, 0.01 mg I NAA, 0.2 mg I BAP, 0.1 mg I 
·1 · 1 

calcium pantothenate, 0.1 mg I biotin and 20 g I sucrose. 
·1 

Semi-solid : 1 shoot/tube; 4 - 6 w; medium as above with 4 g I 
Gelrite. 

Growth conditions : 24± 2° C; 37 ~mol m 
·2 · 1 

s PPFD; 16 h 
(day)/8 h (night). 

• Callus and shoot production 

Explants : fragmented in vitro shoots. Medium: MS nutrients, 
·1 ·1 ·1 ·1 

5 mg I IAA, 0.25 mg I BAP, 30 g I sucrose and 4 g I 
Gelrite. Calli subcultured onto fresh medium after 5 w (in the 
dark) after removal of regenerated shoots. 

• Root induction 

Medium: 1/4 MS nutrients, 15 g (1 sucrose, 0.1 mg (1 biotin, 
·1 ·1·[ 

0.1 mg I calcium pantothenate, 0 - 1 mg I iliA and 4 g I 
Gelrite. Growth conditions : 3 d dark incubation followed by 

· 2 . } 
transfer to 27° C; 66 ~mol m s PPFD; 16 h (day)/8 h 
(night), 4 w. 

• Acclimatization 

Rooted shoots transferred to plastic pots with rooting mix (2 
perlite: 1 coir) watered with 113 MS nutrients, sealed in 
transparent plastic bags and kept under rooting growth 
conditions. After 2 - 3 w holes were punched in the bags and 
after 4 w the bags were removed. 

Figure 4.1 : Schematic representation of indirect organogenesis protocol developed for 
Eucalyptus. 
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4.5 Applications of indirect organogenesis 

Some of the advantages of the applications of indirect organogenesIs In Eucalyptus 

species and hybrids have been mentioned in previous sections. One such advantage 

relates to the use of callus cultures to generate a source of variation needed in breeding 

programmes through the use of the phenomenon of somac1onal variation (Karp, 1995). 

Another advantage relates to the potentially high multiplication rates that are possible 

with the use of callus cultures. However, with the presently available protocol for indirect 

organogenesis, the high potential yield has not yet been achieved; with GU185 , for 

example, plantlet production via multiplication of axillary buds (direct organogenesis) 

was 2.4 shoots/initial shoot explant and the indirect organogenesis method yielded 3.6 -

6.6 shoots/initial shoot explant. Even though the indirect method yielded more shoots 

than the direct method, even greater yields can potentially be obtained with callus 

cultures. 

By far the greatest application of indirect organogenesis relates to the use of genetic 

engineering technology, hence the need for a protocol for indirect morphogenesis. 

Genetic engineering technology is of value to the forestry industry as this technology 

allows for the insertion of specific genes into selected elite trees. This is useful for the 

continued production of new genotypes of interest by making use of genes not in the gene 

pool of the species or hybrids. Obvious practical application is the planting of such 

improved trees on marginal sites. A few reports have been published on the regeneration 

and transformation of some Eucalyptus species and hybrids. Methods of transformation 

that have been reported include particle bombardment or biolistics of E. grandis x E. 

urophylla (Sartoretto et aI. , 2002) and E. grand is (WaIter et aI. , 1995), Agrobacterium 

tumefaciens mediated transformation of E. camaldulensis (Mullins et aI. , 1997; Ho et aI. , 

1998; Chen et aI. , 200 I) and E. grandis x E. urophylla (Tournier et aI. , 2003) and 

sonication-assisted Agrobacterium mediated transformation of E. grand is x E. urophylla 

(Gonzalez et aI. , 2002). There appears to be very few reports in the scientific literature on 

successful cases and field trials; it is possible that this work is being done 'in-house ' and 

therefore remains confidential. 
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Specific areas of application of genetic engmeenng technology to clonal eucalypt 

programmes include the production of herbicide-tolerant genotypes that will enable 

transgenic trees to be resistant to specific herbicides. This would allow for the use of 

environmentally friendly herbicides (Peacock, 1995). Another avenue for investigation is 

the generation of insect-resistant genotypes i.e. genotypes that are resistant to specific 

insect pest species. Specific gene constructs are available which when expressed provide 

resistance against specific Coleopteran and Lepidopteran pests. One such example is the 

biological insecticide produced by Bacillus thuringiensis (Bt) . B. thuringiensis is a 

bacterium that 'produces an insoluble crystal protein that causes starvation or death of 

target insects when ingested . An advantage in the use of Bt technology is that only target 

insects are killed. In contrast, conventional methods of spraying chemical insecticides are 

usually non-specific and could result in the death of a number of beneficial insects 

(Harcourt et a/. , 1995). 

The use of transgenic trees alleviates some of the problems associated with conventional 

spraying of herbicides and insecticides, for example high costs of chemicals, coordinating 

the timing of appl ication with the correct stage of the insect life cycle, favourable weather 

conditions and inaccessibility of many plantations (Harcourt et a/., 1995). Another area 

where genetic engineering technology is of use to commercial forestry is with respect to 

the generation of trees tolerant to abiotic stresses such as cold climates, drought, etc. 

Of particular interest to commercial eucalypt forestry, is the ability to increase the 

productivity of trees by altering trees for specific end uses. For example, the modification 

of lignin biosynthesis pathways to allow for easier and cheaper pulping of Eucalyptus 

trees (Burdon, 2003). In this regard, Chen et a/. (2001) have reported on the production of 

the first transgenic E. Gamaldulensis trees carrying the cinnamate 4-hydroxylase gene that 

is involved in the process of lignin biosynthesis. Once these workers produced transgenic 

plants, they were vegetatively propagated for field testing by the rooting of cuttings. This 

provides an example of the integration of new technologies with existing conventional 

programmes. In this manner, the true value of genetic engineering can be realised, as it 
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provides a mechanism for improving economically important traits that cannot be 

modified by conventional methods in a reasonable period (Chen et aI. , 2001). 

The great advantages that can be achieved with the use of genetic engineering technology 

are evident but there are risks associated with the use of this technology. These include 

gene flow through the spread of transgenes through pollen diffusion and hybridisation 

with closely related or wild species, horizontal gene transfer, negative effects on non

target organisms, creation of ' superweeds ', ethical issues, etc (Giovannetti, 2003). 

Strategies have been developed to attempt to minimise these risks. One such strategy is 

the engineering of sexual sterility in trees (Brunner et aI. , 1998) by, for example, the 

production of trees that do not develop floral structures or that produce non-reproductive 

floral structures (Brunner et aI. , 1998). Other reports have advocated the creation of 

refuges to create a buffer effect (Burdon, 2003). 

Currently there exists strict regulation regarding the release of genetically modified 

organisms into the environment. An overview of the current status and regulations 

regarding the release of genetically modified organisms is presented by Nap et al. (2003) . 

The great potential benefits of genetic engineering technology are evident, but the 

controversy surrounding this issue is unlikely to abate, as public perception of genetically 

engineered organi sms will continue to be a volatile issue. Only after extensive research 

and field testing should genetically modified organisms be released and even then, it is 

not possible to predict all the ecological implications. It is apparent, however, that at the 

present time, genetic engineering technology cannot he disregarded in the face of 

predicted timber and food shortages and increased population growth. 
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5. CONCLUDING REMARKS 

The protocol developed for indirect organogenesIs was detailed in Figure 4.1. As 

discussed, it was found to be suitable for the clones tested (GU185, GU180, GU177, 

TAG31 and ZGI4), with potential yields of 286 acclimatized GU185 plants, 114 

acclimatized TAG31 and 404 acclimatized ZG 14 plants, if 100 initial explants are used. 

A summary of the investigations performed during this study as well as future research 

opportunities is presented in Table 6.1. 

Table 6.1: Summary of success achieved during this study and areas of proposed future 

research. 

Investigation 

Production of decontaminated explants 

Establishment of indirect organogenesis 

protocol: work with GU185 

Stages: 

a) Callus induction and shoot initiation 

- studies relating to choice of explant 

b) Root production 

c) Acclimatization of regenerated plants 

Studies with other clones 

Testing developed protocol (stage a) 

Stages band c 

- studies relating to choice of explant 

Comparison of developed protocol with a 

protocol from published literature 

Result 

Achieved (section 3.1) 

Achieved (section 3.2.1) 

Preliminary investigations completed. 

Optimisation required (section 3.2.2) 

Achieved (section 3.2.3) 

Achieved (section 3.2.4) 

Achieved with GUI77, GU180, TAG31 and 

ZG14 (section 3.4.1) 

Achieved with TAG31 and ZG14 (section 

3.4.2) 

Preliminary investigations completed. 

Optimisation required (section 3.4.2.3) 

Section 3.3 . 
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It must be emphasised that the high potential multiplication levels generally associated 

with the use of callus cultures was not achieved in this study (section 4.5). One reason for 

this was the small size of calli produced in all studies. This represents an area that needs 

to be further investigated as this parameter has an effect on the subsequent regeneration 

of shoots. Hence, different media and culture conditions need to be researched to attempt 

to increase callus production, while retaining its morphogenetic capacity. 

Another aspect that requires consideration relates to the potential use of RIT A bioreactors 

to provide a method for the rapid multiplication of explants for callus induction. In the 

present study, inadequate yields of shoots were obtained when in vitro shoots from RIT A 

vessels were used as explants for callus and shoot production. If conditions are optimised 

for the use of such shoots as explants, then there exists the possibility for savings in time, 

labour and other costs. This is of particular importance in a commercial environment 

where propagation is carried out on a large scale. Parameters that could be investigated 

towards this end include different types and levels of plant growth regulators, immersion 

regimes, etc. 

The protocol developed also needs to be tested on a wider range of Eucalyptus clones, 

particularly those genotypes that are cold-tolerant. This is important to determine the 

general application of the protocol. 

In conclusion, the results presented indicate that the developed indirect organogenesis 

protocol is effective and future research opportunities exist to improve yields of plantlet 

regeneration further. 
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