
FORMALISMS FOR AGENTS REASONING WITH
STOCHASTIC ACTIONS AND PERCEPTIONS

by

GAVIN B. RENS

Submitted in fulfilment of the academic requirements for the degree of

DOCTOR OF PHILOSOPHY

in the

School of Mathematics, Statistics and Computer Science,

University of KwaZulu-Natal,
Durban,
South Africa

SUPERVISOR : PROF. T. MEYER
JOINT SUPERVISOR : PROF. G. LAKEMEYER

November 2014

SUMMARY

The thesis reports on the development of a sequence of logics (formal languages based on mathe-
matical logic) to deal with a class of uncertainty that agents may encounter. More accurately, the
logics are meant to be used for allowing robots or software agents to reason about the uncertainty
they have about the effects of their actions and the noisiness of their observations. The approach
is to take the well-established formalism called the partially observable Markov decision process
(POMDP) as an underlying formalism and then design a modal logic based on POMDP theory to
allow an agent to reason with a knowledge-base (including knowledge about the uncertainties).

First, three logics are designed, each one adding one or more important features for reasoning in
the class of domains of interest (i.e., domains where stochastic action and sensing are considered).
The final logic, called the Stochastic Decision Logic (SDL) combines the three logics into a co-
herent formalism, adding three important notions for reasoning about stochastic decision-theoretic
domains: (i) representation of and reasoning about degrees of belief in a statement, given stochas-
tic knowledge, (ii) representation of and reasoning about the expected future rewards of a sequence
of actions and (iii) the progression or update of an agent’s epistemic, stochastic knowledge.

For all the logics developed in this thesis, entailment is defined, that is, whether a sentence lo-
gically follows from a knowledge-base. Decision procedures for determining entailment are de-
veloped, and they are all proved sound, complete and terminating. The decision procedures all
employ tableau calculi to deal with the traditional logical aspects, and systems of equations and
inequalities to deal with the probabilistic aspects.

Besides promoting the compact representation of POMDP models, and the power that logic brings
to the automation of reasoning, the Stochastic Decision Logic is novel and significant in that it
allows the agent to determine whether or not a set of sentences is entailed by an arbitrarily precise
specification of a POMDP model, where this is not possible with standard POMDPs.

The research conducted for this thesis has resulted in several publications and has been presented
at several workshops, symposia and conferences.

Key terms: cognitive robotics, situated agents, reasoning, decision-making, uncertainty,
entailment, modal logic, probability, stochastic, POMDP, action, sensing, observation,
perception, epistemic, update

PREFACE

The research described in this thesis was carried out at the Centre for Artificial Intelligence Re-
search and CSIR Meraka in Pretoria from May 2010 to April 2014, under the supervision of Pro-
fessor Thomas Meyer, except for the period from October 2011 to September 2012, when research
was conducted at the Knowledge-Based Systems Group of the department of Computer Science at
the RWTH Technical University in Aachen, Germany, under the supervision of Professor Gerhard
Lakemeyer.

These studies represent original work by the author and have not otherwise been submitted in any
form for any degree or diploma to any tertiary institution. Whenever other researchers’ work is
used, they are duly acknowledged in the text.

COLLEGE OF AGRICULTURE, ENGINEERING AND SCIENCE
DECLARATION 2 - PUBLICATIONS

Below follows a list of publications that form part of or include research presented in this thesis,
whether submitted, accepted or published, with a remark indicating, for each publication, which
case applies. For each publication, I am the main author, with second, third, etc. authors contribut-
ing by providing guidance and valuable feedback and advice with respect to technical content.

• Published:
G. Rens, I. Varzinczak, T. Meyer, and A. Ferrein. A logic for reasoning about actions and ex-
plicit observations. In Jiuyong Li, editor, AI 2010: Advances in Artificial Intelligence, Pro-
ceedings of the Twenty-third Australasian Joint Conference, volume 6464 of LNAI, pages
395-404, Berlin/Heidelberg, December 2010. Springer Verlag. ISBN 978-3-642-17431-5.

• Published:
G. Rens, G. Lakemeyer, and T. Meyer. A logic for specifying agent actions and observa-
tions with probability. In K. Kersting and M. Toussaint, editors, Proceedings of the Sixth
Starting AI Researchers’ Symposium (STAIRS 2012), volume 241 of Frontiers in Articial
Intelligence and Applications, pages 252-263. IOS Press, 2012.
url: http://www.booksonline.iospress.nl/Content/View.aspx?piid=31509.

• Published:
G. Rens, T. Meyer, and G. Lakemeyer. On the logical specification of probabilistic transition
models. In Proceedings of the Eleventh International Symposium on Logical Formalizations
of Commonsense Reasoning (COMMONSENSE 2013), May 2013.
url: http://www.commonsense2013.cs.ucy.ac.cy/docs/commonsense2013 submission 9.pdf

• Published:
G. Rens and A. Ferrein. Belief-node condensation for online POMDP algorithms. In Pro-
ceedings of IEEE AFRICON 2013, pages 1270-1274, Red Hook, NY 12571 USA, Septem-
ber 2013. Institute of Electrical and Electronics Engineers, Inc.

• Published:
G. Rens, T. Meyer, and G. Lakemeyer. SLAP: Specification logic of actions with probability.
Journal of Applied Logic, 12(2), pages 128-150, April 2014.
url: http://www.sciencedirect.com/science/article/pii/S157086831300075X

• Published:
G. Rens, T. Meyer, and G. Lakemeyer. A logic for specifying stochastic actions and obser-
vations. In C. Beierle and C. Meghini, editors, Proceedings of the Eighth International Sym-
posium on Foundations of Information and Knowledge Systems (FoIKS), Lecture Notes in
Computer Science, pages 305-323. Springer-Verlag, 2014.

• To appear:
G. Rens, T. Meyer, and G. Lakemeyer. A Modal Logic for the Decision-Theoretic Pro-

ACKNOWLEDGEMENTS

I would like to thank especially two people for their support during my doctoral studies: Tommie
Meyer supervised my research in all respects and he gave patient advice whenever needed. Tom-
mie always treated me as a peer, yet he would advise with authority. I enjoyed our meetings. My
wife, Esmarie, supported me in domestic matters, helping me when i stressed out, and congratu-
lating me heartily on successes. I thank her for the four years of moral and loving support, not to
mention the years leading up to the doctoral studies.

Thanks to Gerhard Lakemeyer for his insights and advice. And thanks to Gerhard for letting me
study under his supervision for one year in Aachen, Germany. Thanks to Alexander (Sascha)
Ferrein for his collaborations, and for his support in the early stages of my PhD studies. I also
remember Ivan Varzinczak’s enthusiastic collaboration and tuition, where he co-authored the very
first paper during my PhD. Thanks to Arina Britz for believing in me all those years ago.

I appreciate the moral support of my parents and parents-in-law too. It is nice to be able to share
the highs and lows of the last four years with close family.

Administrative work is usually thankless. However, i very much appreciate the administrative
support of Laila Gurudas (always via email) situated at the Westville campus of the University of
KwaZulu-Natal, and Marlene Jivan at the CAIR office in Pretoria. You were both stellar.

Of course, i would not have been able to do the research full-time in relative comfort, if it were
not for the financial support of the University of KwaZulu-Natal, and the Meraka Institute of
the Council for Scientific and Industrial Research (CSIR). My scholarship was funded by both
these organizations. And the one year i could spend in Germany as part of my studies was made
possible by the German Academic Exchange Programme (DAAD) - it was a great experience,
both academically and culturally.

CONTENTS

List of Figures . xi
List of Tables . xiii

1. Introduction and Motivation . 1

2. Preliminary Concepts . 7
2.1 The Situation Calculus . 7
2.2 The Frame Problem . 9
2.3 Multi-modal Logics . 10
2.4 Decision Procedures . 14
2.5 Uncertainty and Nondeterministic Action . 16

3. Partially Observable Markov Decision Processes . 20
3.1 Basic Theory . 20
3.2 Finite-Horizon Planning in POMDPs . 23
3.3 Belief-Decision-Trees . 24
3.4 Decision-Making . 26
3.5 Concluding Remarks . 31

4. The Logic of Actions and Observations . 32
4.1 Defining the Logic . 34

4.1.1 Syntax . 34
4.1.2 Semantics . 35

4.2 Decision Procedure for Semantic Consequence 38
4.3 Properties of the Decision Procedure . 40

4.3.1 Soundness . 40
4.3.2 Completeness . 40
4.3.3 Termination . 41

4.4 Introducing Domain Specification Concepts . 42
4.4.1 Action . 43
4.4.2 Perception . 45

4.5 Specifying the Oil-drinking Scenario . 46
4.5.1 Effect Axioms . 50
4.5.2 Effect Closure Axioms . 50
4.5.3 Inexecutability Axioms . 51
4.5.4 Perceivability Axioms . 52

4.6 Example Entailments . 54
4.7 Concluding Remarks . 57

CONTENTS ix

5. The Specification Logic of Actions with Probability 60
5.1 Defining the Logic . 61

5.1.1 Syntax . 62
5.1.2 Semantics . 63
5.1.3 Reducing Entailment to Unsatisfiability 65

5.2 Decision Procedure for Semantic Consequence 66
5.2.1 The Tableau Phase . 66
5.2.2 Systems of Linear Inequalities . 68
5.2.3 The SLI Phase . 72

5.3 Properties of the Decision Procedure . 73
5.3.1 Soundness . 73
5.3.2 Completeness . 74
5.3.3 Termination . 75

5.4 Specifying Domains with SLAP . 75
5.5 Invariance . 78
5.6 From Underspecified to Completely Specified Transition Models 80

5.6.1 Always Assuming Invariance . 81
5.6.2 Always Assuming Uniform Distribution 82

5.7 The Two Approaches are Full Specifications . 83
5.8 Concluding Remarks . 91

6. The Specification Logic of Actions and Observations with Probability 94
6.1 Defining the Logic . 95

6.1.1 Syntax . 95
6.1.2 Semantics . 97

6.2 Decision Procedure for Semantic Consequence 99
6.2.1 The Tableau Phase . 99
6.2.2 Systems of Inequalities . 100
6.2.3 The Label-Assignment Phase . 102

6.3 Properties of the Decision Procedure . 104
6.3.1 Soundness . 104
6.3.2 Completeness . 104
6.3.3 Termination . 106

6.4 Specifying Domains with SLAOP . 106
6.4.1 Action Rules . 107
6.4.2 Perception Rules . 110
6.4.3 Utility Rules . 112

6.5 Using Entailment in SLAOP . 112
6.6 Concluding Remarks . 116

7. The Stochastic Decision Logic . 118
7.1 Defining the Logic . 119

7.1.1 Syntax . 119
7.1.2 Semantics . 121
7.1.3 The Correspondence Between SDL and POMDPs 124

CONTENTS x

7.2 Decision Procedure for Semantic Consequence 126
7.2.1 The Tableau Phase . 127
7.2.2 The SI Phase . 128

7.3 Properties of the Decision Procedure . 135
7.3.1 Soundness . 135
7.3.2 Completeness . 135
7.3.3 Termination . 136

7.4 Specifying Domains with SDL . 137
7.4.1 Static Laws . 138
7.4.2 Action Rules . 138
7.4.3 Perception Rules . 139
7.4.4 Utility Rules . 140
7.4.5 Initial Belief-states . 140

7.5 Using Entailment in SDL . 141
7.6 Concluding Remarks . 152

8. Related Work . 154
8.1 ALX . 154
8.2 The LAP Family . 155
8.3 Modeling Action, Knowledge and Control . 155
8.4 BHL’s Approach . 156
8.5 Imprecise Observations of Mobile Robots Specified by a Modal Logic 157
8.6 Using Modal Logic in Mobile Robots . 158
8.7 The ICL . 160
8.8 ESP . 161
8.9 PDEL . 162
8.10 E+ . 163
8.11 Concluding Remarks . 164

9. Conclusions . 165

Appendix 167

A. Proofs for Theorems and Lemmata . 168
A.1 LAO . 168
A.2 SLAP . 172
A.3 SLAOP . 178
A.4 SDL . 188

LIST OF FIGURES

2.1 Example structure in modal logic. (In this figure, ∼ denotes ¬.) 12
2.2 Example of the first part of a tableau tree for 2(¬f ∧¬h→ ([g]0.9h∧ [g]0.1¬h))∧

2(¬f ∧ ¬h→ [g]¬f) ∧ ¬(¬f ∧ d ∧ ¬h→ [g]0.9(¬f ∧ h)). 17

3.1 A one-tier belief-decision-tree. 25
3.2 A two-tier belief-decision-tree. 26
3.3 A two-step conditional policy. 26

4.1 A structure to illustrate the semantics of some basic sentences in LAO. An arrow
that does not emanate from a world but has the symbols “ς | α” at the arrow’s tail,
represent the fact that ς is perceivable in the world at which the arrow terminates,
give action α. ∼ denotes ¬. 37

4.2 An example of four possible worlds with two nondeterministic actions, B and D.
It is assumed that no action is executable from worlds in which f is false. Tilde
(∼) represents negation. 43

4.3 An example indicating which observations (O1, O2, O3, O4) are perceivable in
which possible worlds. 45

4.4 Transition diagram for grab. All blue arcs represent transitions due to the action.
All green arrows represent an obsNil observation. 47

4.5 Transition diagram for drink. All blue arcs represent transitions due to the action. 48
4.6 Transition diagram for replace. All blue arcs represent transitions due to the action. 49
4.7 Transition diagram for weigh. All blue arcs represent transitions due to the action. 49

5.1 A transition diagram for the grab action. The letters f, d and h, respectively
represent propositional literals full, drank and holding. And ∼ reads ‘not’. . . 64

5.2 First part of a tableau tree for 2(¬f ∧¬h→ ([g]0.9h∧ [g]0.1¬h))∧2(¬f ∧¬h→
[g]¬f) ∧ ¬(¬f ∧ d ∧ ¬h→ [g]0.9(¬f ∧ h)). 68

5.3 Last part of the tableau tree for 2(¬f∧¬h→ ([g]0.9h∧[g]0.1¬h))∧2(¬f∧¬h→
[g]¬f) ∧ ¬(¬f ∧ d ∧ ¬h→ [g]0.9(¬f ∧ h)). 69

6.1 A transition diagram for the grab action. 107
6.2 A transition diagram for the drink action. 108
6.3 A transition diagram for the replace action. 108
6.4 A transition diagram for the weigh action. 109
6.5 A transition diagram for the weigh action. 111
6.6 One branch of a tree for proving that {2β | β ∈ BK} entails ¬f ∧ d ∧ ¬h →

[g]0.9(¬f ∧ h). 114

LIST OF FIGURES xii

6.7 A tree for proving that {2β | β ∈ BK} entails (oH | w : 0.1) ∧ d ∧ h → (oL |
w : 0.7). 115

7.1 The two utility trees generated from ∆′. 132
7.2 The general form of a utility tree. The enclosed area indicates the subtree corre-

sponding to the general utility literal of (7.2). The root of the tree, ez , is situated
towards the left of the diagram. 133

7.3 The utility tree generated from {(1 d,oN−→ 2, JdK), (1 d,oL−→ 3, JdK), (1 d,oM−→ 4, JdK), (1 d,oH−→
5, JdK)}. 149

LIST OF TABLES

4.1 Proof that BK |=G IC→ 〈grab〉¬holding. 55
4.2 Proof that BK |=G holding→ [replace]¬holding. Continues in Tables 4.3 and 4.4.

55
4.3 Proof that BK |=G holding→ [replace]¬holding. Continued from Table 4.2. 56
4.4 Proof that BK |=G holding→ [replace]¬holding. Continued from Table 4.2. 56
4.5 Proof that BK |=G IC → 〈grab〉〈drink〉¬drank. Continues in Table 4.6. 56
4.6 Proof that BK |=G IC → 〈grab〉〈drink〉¬drank. Continued from Table 4.5. . . 56
4.7 Proof that BK |=G IC → ¬〈grab〉〈obsMedium | weigh〉>. Continued in Ta-

ble 4.8. 57
4.8 Proof that BK |=G IC → ¬〈grab〉〈obsMedium | weigh〉>. Continues from

Table 4.7. 57

1. INTRODUCTION AND MOTIVATION

The world is full of uncertainty and noise. Due to physiological limitations or due to limiting
factors in the environment, our actions are not always executed as we wish. For instance, one may
not always catch a ball thrown to one, simply because one does not have the motor skills to react
fast and accurate enough. The ball being slippery or the wind blowing may also contribute to the
difficulty of catching the ball. Walking straight also becomes more difficult for the elderly and the
intoxicated. Due to limitations in our sensing organs or due to limiting factors in the environment,
our perceptions are also not perfect. For instance, reading words at a distance can be difficult
due to being near-sighted. And lighting conditions also affect one’s ability to read words at a
distance. Smelling whether an aroma is of beef or bread is easier for some people, but becomes
more difficult, in general, to the degree that other aromas are present. Engineered systems and
machines have limitations analogous to physical human bodies.

In this thesis, when an agent is referred to, what is meant is a situated agent defined as follows.

Definition: A situated agent is an human engineered entity (machine, robot or software system)
in an environment, which has a degree of autonomy, can affect the environment and can be affected
by it.

We are concerned here with supplying artificial (human engineered) agents with one of the mod-
ules of its intelligence.

We call an actuator and sensor which has significant noise or produces significant uncertainty or
is, in general, imperfect and unpredictable to some significant degree, a stochastic actuator and a
stochastic sensor. Similarly, an environment which causes uncertainty in the effects of actions or
which causes noise in the data gathered during perception is referred to as a stochastic environ-
ment. We shall investigate how stochasticity in domains containing a stochastic agent or which
have a stochastic environment can be modeled with probability theory and formal languages.

When reasoning about the effects of actions (to decide what to do next), it is rational to incorporate
any knowledge about domain stochasticity rather than to simply ignore it. For instance, if you have
bad balance or if you are exhausted, your walking behavior will be unstable; you should thus not
walk near the edge of a cliff. That is, given knowledge about the uncertainty in the effect of
walking, one can make better decisions about where to walk (i.e., what to do). Hence, it is useful
to have a means of reasoning about the effects of actions in stochastic domains.

For non-trivial tasks, an agent keeps some form of representation of its knowledge. It is this repre-
sentation over which the agent reasons for decision-making. The work in this thesis is concerned
with defining languages to model situated agents who have to deal with the uncertainty and noise

INTRODUCTION AND MOTIVATION 2

inherent in their muscles/actuators, and uncertainty and noise caused by the environment in which
the agent normally operates.

Due to its autonomy, a situated agent must be able to reason in order to make decisions. Reasoning
involves weighing up alternatives. In order to compare alternatives, an agent must have represen-
tations or models of them. Hence, we shall assume that the agents we consider in this thesis
maintain models of their environment, even though their knowledge is incomplete and hazy. And
as an agent or robot executes actions and makes observations, it must update its beliefs (subjective
knowledge-base) accordingly.

Formal logics are generally accepted as being ideal for knowledge representation and reasoning
[Levesque and Pirri, 1999, Brachman and Levesque, 2004, Darwiche, 2008, Kowalski, 2011]. But
classical logics do not deal well with fine-grained uncertainty:

There are many normative arguments for the use of logic in AI (Nilsson 1991, Poole
et al. 1998). These arguments are usually based on reasoning with symbols with an
explicit denotation, allowing relations amongst individuals, and quantification over
individuals. This is often translated as needing (at least) the first-order predicate cal-
culus. Unfortunately, the first-order predicate calculus has very primitive mechanisms
for handling uncertainty, namely the use of disjunction and existential quantification.
[Poole, 1998, § 1.3]

We shall use probability theory to capture notions of stochasticity. One formalism, with its basis in
probability theory, for modeling and reasoning about stochastic domains, is the well-established
partially observable Markov decision process (POMDP) [Monahan, 1982]. POMDP theory has
proven to be a good general framework for formalizing dynamic, stochastic systems, with the
required fine granularity. Moreover, POMDPs add a notion of preference for informing agent be-
havior. That is, preferences assist agents to compare alternative options. A drawback of traditional
POMDP models though, is that they do not and cannot include information about general facts
and laws. Moreover, axioms describing the dynamics of a domain cannot be written in POMDP
theory. This is what logics are good at.

Several frameworks exist for reasoning about probabilistic inference in static domains [Bacchus,
1990, Fagin and Halpern, 1994, Halpern, 2003, Kooi, 2003, Shirazi and Amir, 2007, Van Benthem
et al., 2009]. Here, a “static domain” is a domain in which the physical state of the system does
not change, although the state of information of various agents in the system may change. A dis-
tinction between the two kinds of domains is not always clear, but we take action as primary and
action effects on belief as secondary. Some of these frameworks are concerned with how know-
ledge changes as new information is gained. However, the information received is not considered
to be a primitive object in the language of discourse. Moreover, they do not express the probability
with which the received information was expected in the current situation. That is, they take the
new information as certain. The focus of the logics presented in this thesis (our logics) is more
on how stochastic actions change the physical state of a system—than on the dynamics of agents’
epistemic state (belief revision [Gärdenfors, 1988]). With the main logic presented in this thesis,
the dynamics of an agent’s epistemic state is accounted for with the belief update approach of
Bayes’ Rule in probability theory (see, e.g., Russell and Norvig [2003] or Poole and Mackworth
[2010]).

INTRODUCTION AND MOTIVATION 3

Many popular frameworks for reasoning about action employ or are based on the situation calcu-
lus [Reiter, 2001]. Reified situations make the meaning of formulae perspicuous. For instance, the
framework proposed by Bacchus et al. [1999] (BHL) and the logic ESP by Gabaldon and Lake-
meyer [2007] are based on the situation calculus and are for reasoning with probabilities of actions
and observations. These logics are also able to express notions of (stochastic) belief. However,
the situation calculus seems too rich and expressive for our purposes, and it would be desirable
to remain decidable, hence the restriction in our logics to a propositional modal framework. Fur-
thermore our logics are narrower than those based on first-order predicate calculus in the sense
that our logics have finite vocabularies and they do not allow function symbols. Nor do our logics
allow predicates in general, only some very specialized predicates.

The entailment problem is decidable for all our logics, which set them apart from first-order logics
for reasoning about action (including the situation calculus) or reasoning with probabilities (in-
cluding BHL’s approach and ESP). In other words, having a decidable formalism to reason about
POMDPs is considered an asset and sets us apart from other more expressive logical formalisms
addressing action and sensing under uncertainty. Moreover, BHL’s approach and ESP cannot deal
with nondeterministic actions (see § 8.4 and § 8.8 in Chap. 8).

There are some other logics which also come close to what we desire [De Weerdt et al., 1999,
Van Diggelen, 2002, Van Benthem et al., 2009]. They incorporate notions of probability, but
they were not created with POMDPs in mind and typically do not take observations as first-class
objects. On the other hand, there are formalisms for specifying POMDPs that employ logic-
based representation [Boutilier and Poole, 1996, Wang and Schmolze, 2005, Sanner and Kersting,
2010], but they are not defined entirely as logics. Our work is to bring the representation of and
reasoning about POMDPs totally into the logical arena. One is then in very familiar territory and
new opportunities for the advancement in reasoning about POMDPs may be opened up.

A logic-based language such as Golog [Levesque et al., 1997] has proven effective for robot pro-
gramming, especially because of its ability to constrain the action search space by axiomatic/logical
statements. DTGolog [Boutilier et al., 2000] has the benefits of Golog, and furthermore can deal
with domains modeled as Markov decision processes (MDPs). But it is a programming language,
rather than a logic, and it does not deal with stochastic observations. PODTGolog [Rens, 2010] is
a Golog dialect attempting to deal with partially observable MDP (POMDP) environments, but it
does not have a well defined semantics.

The main contribution of this thesis is thus to provide a logic for specifying and reasoning over
nondeterministic, stochastic actions and perceptions, taking the semantics of POMDPs to do so.
We have called the proposed logic the Stochastic Decision Logic (SDL). SDL allows the user to
determine whether or not a set of sentences is entailed by an arbitrarily precise specification of
a POMDP model. As far as we know, this is a novel property of SDL. Moreover, the procedure
for deciding entailment is proved sound, complete and terminating. As a corollary, the entailment
question for SDL is decidable.

In total, four logics are developed in this thesis. The first two, the Logic of Actions and Obser-
vations (LAO) and the Specification Logic of Actions with Probability (SLAP) lay down a solid
foundation for what we want to achieve. A POMDP model includes an explicit set of observations.
To get closer to the semantics of POMDPs, we developed LAO, which is a logic with explicit ob-
servation constants. LAO excludes all probabilistic notions. LAO will also introduce the flavor of

INTRODUCTION AND MOTIVATION 4

modal logic we use as the basis for the other logics. LAO could also be used independently in do-
mains where one wants to give observations a more important status, or to separate observations
(events) from how an agent represents its knowledge. To sort out issues with the specification
of stochastic actions using our particular choice of logical language, we developed SLAP. With
SLAP, one can specify probabilistic transition models. SLAP could also be used independently
when there is a need to reason about stochastic actions, but where perception is needs not be mod-
eled. These two logics might be used for relatively simple investigations; for answering particular
philosophical or technical questions.

SLAP excludes any notion of perception/observation. Issues related to the specification of stochas-
tic observations are left for the development of the third logic presented: The Specification Logic
of Actions and Observations with Probability (SLAOP), can be thought of as a bridge from the
foundation logics to the fourth logic. It includes notions of stochastic actions and stochastic per-
ceptions, but it does not have a notion for (uncertain) epistemic states. SLAOP adds not only a
notion of stochastic perception to SLAP, but also notions of reward and cost, bringing the logic
into the realm of stochastic decision theory. Further elements are added to SLAOP so that the
jump from SLAOP to the SDL is manageable.

The fourth logic is SDL, the ‘main’ logic of this thesis. SDL includes all the features of the other
logics and also allows for the specification of and reasoning over epistemic stated and decision-
theoretic projections. SDL takes SLAOP as basis and adds three important notions for reasoning
about stochastic decision-theoretic domains: (i) representation of and reasoning about degrees of
belief in a statement, given stochastic knowledge, (ii) representation of and reasoning about the
utility (i.e., the expected future reward) of a sequence of actions and (iii) the progression or update
of an agent’s epistemic, stochastic knowledge. The task of the logic is to check whether a query
(stated in the language of the logic) follows from a knowledge-base (KB), which is typically a
POMDP model specification (also stated in the language of the logic). It will be seen that SDL
has a relatively close relationship with POMDPs in meaning and application. In Chapter 7, a the-
orem relating POMDPs to the SDL is stated. The main contribution of SDL is that a POMDP
model specification is allowed to be partial or incomplete with no restriction on the lack of infor-
mation specified for the model. The KB may even contain information about non-initial beliefs.
Essentially, entailment of arbitrary queries (expressible in the language) can be answered.

Every one of the four logics defined in this thesis has something in common with POMDPs—LAO
and SLAP to a lesser extent and SLAOP and the SDL to a greater extent. Reviewing POMDP
theory in Chapter 3 should help prepare the reader for the rest of the thesis. It is most needed for
the understanding of SLAOP and the SDL. Readers not familiar with POMDP theory may wish to
refresh their memory after Chapter 5 by consulting Chapter 3 again.

Each of our four logics employs a tableau calculus in the procedure to decide entailment. In the
logics containing probabilities, the tableaux are extended with sub-procedures for deciding the
feasibility of systems of equations and inequalities. These systems are used to check whether the
probabilistic information provided is satisfiable. Systems of linear inequalities are at the heart of
Nilsson’s probabilistic logic [Nilsson, 1986], which has been extended with stochastic actions by
Thiébaux et al. [1995]. Fagin et al. [1990] use a similar idea to prove that the axiomatization of
their logic for reasoning about probabilities is complete. For SLAOP and the SDL, systems of
equations must be set up to deal with stochastic perception information too. The logics of Nilsson

INTRODUCTION AND MOTIVATION 5

[1986], Thiébaux et al. [1995], Fagin et al. [1990] do not deal with observations.

The reason why we developed a sequence of four logics is so that the development could be kept
modular and thus manageable, and so that the reader would be introduced to SDL in easier steps.
If the reader feels that the introduction of SDL is too tedious, s/he may skip directly to Chapter 7
after reading Chapters 2 through 3.

The search space of sequences of optimal or even close to optimal actions in POMDPs is known to
be intractable [Pineau et al., 2003]. One way to deal with the search space explosion in POMDPs
is to use a particular class of algorithms which do not try to compute optimal policies (action
strategies) offline. Instead, a policy is computed online by local look-ahead from the current
belief-state up to a limited depth.

When the POMDP domain includes stochastic actions, nodes (representing belief-states) deeper
in the search tree increase in the number of non-trivial states mentioned per node. Successor
nodes in a search space require the application of a belief update procedure. Computation time of
updating a belief-state is exponential in the number of states contained in the belief. We investigate
methods to reduce the size of belief-nodes in the search tree, hence improving the running-time
of online POMDP algorithms. This study of belief-node condensation is somewhat tangential to
the presentation of the logics in the thesis. However, it is directly related to POMDPs, which is a
thread running through the whole thesis.

To recapitulate, this thesis presents new formalisms for agents reasoning with stochastic actions
and perceptions. In particular, the Stochastic Decision Logic (SDL) is developed to specify and
reason about decision-theoretic domains where noisy observations lead to epistemic states re-
presented as probability distributions over possible worlds. The semantics is based on the well-
established partially observable Markov decision process (POMDP) theory. SDL allows for an-
swering projection queries over incompletely specified POMDP models (equivalently, precisely
specified classes of POMDP models), which, to our knowledge, is the first logic with this ability.

There are three more reasons why a logic like the SDL may be desirable. (i) People familiar with
POMDP theory will find the thinking behind the SDL relatively obvious. (ii) POMDPs are well
studied and accepted as a general purpose formalism for reasoning about stochastic domains. (iii)
Having a logic based on POMDPs brings these benefits, plus the benefits of logical representation
and reasoning, including the compactness of logical representation and the power of reasoning
with semantic consequence.

The thesis is organized as follows. In each chapter defining a logic, a procedure is described for
deciding what statements (expressed as sentences in the logic) formally follow or can be inferred
from given information (also expressed as sentences of the logic). And for each logic, soundness,
completeness and termination of the decision procedure is proved. And each chapter defining a
logic, a framework for how the logic can be used in practice is presented. The research conducted
for this thesis has resulted in several publications. Where applicable, a publication is cited in the
introduction of the corresponding chapter.

In Chapter 2, we present a broad overview of notions and concepts often encountered when study-
ing logics and formalisms for situated agents. The relevant POMDP theory is reviewed in Chap-
ter 3. Chapter 4 presents the Logic of Actions and Observations (LAO). Chapter 5 present the

INTRODUCTION AND MOTIVATION 6

Specification Logic of Actions with Probability (SLAP). Chapter 6 present the Specification Logic
of Actions and Observations with Probability (SLAOP), and Chapter 7 present the Stochastic De-
cision Logic (SDL). Then we review several logics and formalisms closely related to our work
about formalisms for reasoning about stochastic agents and environments in Chapter 8. Here we
highlighting what the related work lacks and how our work might attempt to address these defi-
ciencies. We summarize what has been achieved in this thesis in the final chapter, and we point to
directions in which the research can be continued and improved in future.

2. PRELIMINARY CONCEPTS

It is assumed that the reader has a good basic understanding of propositional logic and first-order
logic. See, for instance, the books by Barwise and Etchemendy [1992] and Ben-Ari [2012].

In this chapter, we review several concepts and frameworks applicable to this thesis. These con-
cepts and frameworks also serve as a primer for the next chapter, which reviews some related
work and further motivates our work. We start with the basics of the situation calculus as a refer-
ence point for discussing logics for reasoning about action and change. Then, the famous frame
problem [McCarthy and Hayes, 1969] in reasoning about action and change or commonsense rea-
soning is reviewed. Section 2.3 covers the basics of modal logic, in particular, multi-modal logic.
Section 2.4 gives a brief reminder of decision processes relating to our work. Finally, we discuss
some issues around the notions of uncertainty and nondeterministic action.

2.1 The Situation Calculus

The situation calculus was invented by McCarthy [1963]; however, we discuss the later formalism
developed at the University of Toronto by Reiter, Levesque and others [Reiter, 2001, e.g.]. The sit-
uation calculus is a first-order logic (FOL) dialect for reasoning about dynamical systems based on
agent actions. Two logics for reasoning about agent actions comparable with the situation calcu-
lus are the event calculus [Kowalski and Sergot, 1986] and the fluent calculus [Thielscher, 1999].
The situation calculus was chosen as a primer of action-based logics because of its popularity and
because it is representative of the work in this area.

Actions and situations are reified to be objects in the language. The outcomes of a bout of rea-
soning in the situation calculus are meant to have an effect on the environment outside the agent.
Predicates describe situations, in any situation, a predicate F (· · · , s) is either true of false, where
s (a constant or a variable) is the name of some situation. The truth-value of F (· · · , s) depends
on what situation s refers to.

When an agent or robot performs an action, the truth-value of certain predicates may change. A
special function symbol do is defined in the situation calculus. do(a, s) is the name of the situation
that results from doing action a in situation s. Note that do(a2, do(a1, s)) is also a situation term,
where a2 and a1 are actions.

Predicates and functions whose values can change due to actions are called fluents. Fluents have
the situation term (like s or do(·, s), etc.) as the last argument. For example, if a robot is holding
something, the fluent Holding(r, x, s) (robot r is holding some x thing in situation s) is true, but
when the robot does action drop(r), Holding(r, x, do(drop(r), s)) should become false.

PRELIMINARY CONCEPTS 8

To reason in the situation calculus, one needs to define an initial knowledge-base (KB). The only
situation term allowed in the initial KB is the special initial situation S0. Constant S0 is the
situation before any action has been done.

There are three special types of formulae:1

1. Precondition axioms are formulae of the form Poss(a, s), which means action a is possible
in situation s (¬Poss(a, s) means it is not possible). Precondition axioms need to be defined
for each action. For example, if a robot r33 has only one arm and gripper, and the gripper is
already holding something (in situation s′), that is, if Holding(r33 , stone, s

′) is true, then
r33 cannot pick up something else; and then ¬∃x.Poss(pick up(r33 , x), s ′) is true. The
precondition axiom for the action pick up(r, x) could be defined as

Poss(pick up(r, x), s)↔ ¬Holding(r, x′, s) ∧Near(r, x, s).

That is, it is possible for robot r to pick x up in situation s if and only if r is not holding
anything and the robot is near to x in s.

2. Effect axioms are formulae which describe how the world changes due to actions, that is,
they specify the effects of actions. For instance,

Poss(pick up(r , x), s)→ Holding(r , x , do(pick up(r , x), s))

means that if it is possible for robot r to pick up some x thing, then r will be holding it after
performing the pick up action. Another example is

Holding(r , x , s) ∧ Big(x) ∧ TileFloor → FloorCracked(do(drop(r), s)). (2.1)

Predicate symbols Big and TileFloor are not fluents because their truth values are indepen-
dent of situations. They are referred to as rigid in situation calculus parlance. Effect axiom
2.1 describes the effect of action drop (a cracked floor) under the conditions that the robot
who is doing the dropping is holding something big and is standing on a tile floor.

3. Frame axioms: Suppose that the robot is holding something which is small or that the floor
is not tiled. Axiom 2.1 does not tell us the effect of action pick up on fluent FloorCracked .
To constrain or ‘frame’ the action’s effects, one must provide a set of frame axioms. For
every action a, for every fluent F , one axiom must be provided to specify: if F is true,
the conditions under which F remains true when action a is executed, and another axiom
must be provided to specify: if F is false, the conditions under which F remains false when
action a is executed. The point is that if the truth value of a fluent doesn’t change due to
some action, then that action has no effect on the fluent. In that case, the unaffected fluent
will not be mentioned in the effect axioms of the action. However, the knowledge that an
action has no effect on a fluent must be stated in an agent’s KB for the agent to know it. This
is the role of frame axioms. Picking something up has no effect on a floor:

FloorCracked(s) → FloorCracked(do(pick up(r, x), s))

¬FloorCracked(s) → ¬FloorCracked(do(pick up(r, x), s)).

1 As is convention in the situation calculus, free variables are assumed universally quantified.

PRELIMINARY CONCEPTS 9

A negative frame axiom for drop with respect to FloorCracked is

¬FloorCracked(s) ∧ (¬Big(x) ∨ ¬TileFloor)→ ¬FloorCracked(do(drop(r), s))

and a positive axiom is

FloorCracked(s))→ FloorCracked(do(drop(r), s)).

2.2 The Frame Problem

The three most well known issues in knowledge representation in physically dynamic domains are
(i) the qualification problem, (ii) the ramification problem and (iii) the frame problem.

The qualification problem appears when specifying when an action is possible. There seems to
be an infinite number of features in the real world which one must assign a value to before the
action can be said to be possible or impossible to execute. Fortunately, this problem is not so big
in synthetic, structured or finite domains.

The ramification problem occurs when it is hard or impossible to specify all effects—direct or
indirect—an action may have on the environment. Ramifications are dealt with implicitly for each
of the logics presented in this thesis, when we explain how the respective logics are used.

Of the three, the frame problem [McCarthy and Hayes, 1969] seems to be the hardest to solve or
has the worst effect on the amount of computation involved when reasoning with knowledge about
actions: Typically, any one action has a limited effect on the world. One has to somehow state
which features are not affected (i.e., stating that the rest of the world is not affected) to determine
what has changed and what not, due to the execution of the action. Having to write a statement for
every feature that is invariant with an action, for every action, seems counter-intuitive and there is
potentially a huge number of such statements. In terms of the situation calculus, approximately
2 × A × F frame axioms are required, where A is the number of actions, F is the number of
fluents and the 2 is for positive and negative axioms.

Reiter [1991] famously provided a solution to the frame problem for the situation calculus. He
suggested successor-state axioms (SSAs)—formulae with a special form—to solve the problem,
which is now sketched.

An SSA for action a combines all the effect axioms of a and the information captured by all the
frame axioms involving a. In fact, frame axioms for an action are another way of stating under
which conditions a fluent changes value [Brachman and Levesque, 2004, p. 292]. In other words,
instead of writing frame axioms, one can make the following completeness assumption about the
effect axioms. All the conditions under which fluent F can change value according to the effect
axioms for action a, are the only conditions under which F can change value due to a. This is also
known as the explanation closure of the effects of a on F .

There needs to be a successor-state axiom for each fluent, and each such successor-state axiom
mentions only the actions that have an effect on the particular fluent. Suppose there is one more
action in the vocabulary introduced in the previous section: step forward(r, s), meaning that
robot r steps one step forward. We could define the following successor-state axiom for the fluent

PRELIMINARY CONCEPTS 10

Holding(r, x, s):

Holding(r, x, do(a, s))↔Poss(a, s) ∧ ∃x.a = pick up(r, x) ∨
Holding(r, x, s) ∧ a 6= drop(r, x).

In other words, the robot is holding something if and only if it picks up something (if it is not al-
ready holding something) or it does not drop what it is already holding. Note that step forward(r)

is not mentioned in the above formula because it does not have an effect on the value of Holding .
Moreover, instead of approximately A (effect axioms) plus 2 × A × F frame axioms, there are
only approximately F SSAs.

Some non-situation-based logics have solutions to the frame problem, sometimes quite different
to Reiter’s approach. The event and fluent calculi, for instance, have their own solutions. And
the logic LAP; [Castilho et al., 1999] reviewed in Chapter 8 makes use of so-called semantic
dependence relations. Most logics extending or employing the situation calculus, rely on Reiter’s
solution or a variant thereof. An adequate ‘frame solution’ for our logic SLAP is presented in
Chapter 5, and it is applicable to SLAOP and the SDL too. The solution does not use SSAs nor
dependence relations.

Let D = Σ ∪ Dss ∪ Dap ∪ Duna ∪ DS0 , where

• Σ is the four foundational axioms for situations [Reiter, 2001, Section 4.2];

• Dss is all successor state axioms;

• Dap is all action precondition axioms,

• Duna is the set of unique names axioms for actions;

• DS0 is the set of formulae specifying the initial situation.

Then D together with a formula that captures the functional fluent consistency property (refer to
[Reiter, 2001, p. 60] for details) is a basic action theory. Reasoning with a basic action theory has
certain desirable properties. Please refer to Reiter [2001] for a detailed explication of his version
of the situation calculus. Alternatively, refer to Brachman and Levesque [2004] for a one-chapter
coverage of the situation calculus.

2.3 Multi-modal Logics

Modal logic [Hughes and Cresswell, 1996, Chagrov and Zakharyaschev, 1997, Blackburn et al.,
2001, 2007] is considered to be well suited to reasoning about beliefs and changing situations.
Modal logic was originally developed in philosophy to talk about notions with a ’modal’ char-
acter such as ”...time, space, obligation, conditionality, knowledge, computation, and action...”
[Blackburn et al., 2007, Preface]. The semantics of modal logic can be interpreted as a graph
representing ”... flows of time, relations between epistemic alternatives, transitions between com-
putational states, networks of possible worlds ...” [Blackburn et al., 2007, Chap. 1]. Modal logic
allows for the relatively compact and intuitive expression of a graph-like system where edges re-
present actions and vertices represent epistemic alternatives (belief-states). Our aim in this thesis

PRELIMINARY CONCEPTS 11

to develop a formalism with action transitions between epistemic or belief states makes modal
logic a good candidate.

The basic modal logic is classical propositional logic with the addition of a monadic or unary
operator 2. The grammar of the basic modal logic, as defined in Backus-Naur Form (BNF), is
then

φ ::= p | ¬φ | φ ∧ φ′ | 2φ,

where p is a propositional atom from a set of propositional atoms P = {p1, p2, . . .}, ¬ is read
‘not’ and ∧ is read ‘and’. Abbreviation ∨ (for ‘or’) and→ (for ‘implies’) are defined as usual. The
verum (>, truth) and falsum (⊥, falsehood) symbols may also be defined. Let L be the language
of basic modal logic, such that φ ∈ L for all formations of φ.

Depending on the purpose for which the modal logic will be used, the sentence 2φ may have
different interpretations in English, but the general ‘feeling’ or ‘mode’ of the sentence is the same.
2φ may be interpreted as ‘It is necessarily the case that φ’, ‘φ is obliged to be the case’, ‘It is
inevitable that φ’, and ‘φ has to be true’.2

‘It is not the case that φ is necessarily false’ can be written as ¬2¬φ. But this is the same as saying
‘It is possibly the case that φ’. It is thus convention to define a unary operator 3 as follows: 3φ
abbreviates ¬2¬φ, usually read ‘possibly φ’. 2 and 3 are called modal operators.

To provide a semantics for L, one can define a structureM = 〈W,R, I〉, where W is a nonempty
set of worlds, R is an accessibility relation between worlds and I : P → 2W an interpretation
function (also called a valuation function) that determines for each propositional atom, in which
worlds it is true.3 Formally, any sentence φ ∈ L is satisfied in structure M at worlds w ∈ W

(denotedM, w |= φ) when:

• M, w |= p ⇐⇒ w ∈ I(p);

• M, w |= ¬φ ⇐⇒ M, w 6|= φ;

• M, w |= φ ∧ φ′ ⇐⇒ M, w |= φ andM, w |= φ′;

• M, w |= 2φ ⇐⇒ for all w, if R(w,w′), thenM, w′ |= φ.

A formula φ is said to be valid in a structure (denotedM |= φ) ifM, w |= φ for every w ∈W .

This is the so-called possible worlds semantics of modal logics. The intuition behind this seman-
tics is that each world is an alternate state that the world can be in. If an agent maintains that it is
in world w (the state of the world), the agent may, according to its knowledge, also be in world w′

(a different state of the world) because of some information that the agent is missing.

The above is an epistemic view of possible worlds semantics. The connection between worlds is
formally captured with the relation R. R(w,w′) in the epistemic view can be read ‘Mental state
w′ is (epistemologically) accessible from mental state w.’ Therefore, if an agent is said to be in a
world w, then all worlds accessible from w are also possible, according to the agent.

We formally define when one sentence logically follows a set of sentences with the notion of
semantic consequence. We shall employ two kinds of semantic consequence with respect to modal

2 2 is one conventional symbol, but theoretically, any symbol can be used, for instance, K.
3 Kripke [1959] first suggested and subsequently developed possible world semantics via such structures.

PRELIMINARY CONCEPTS 12

p

p

p

p

p

p

1

2

1

2

1

2
~

~

~

w

w

w

1

2

3

M:

Fig. 2.1: Example structure in modal logic. (In this figure, ∼ denotes ¬.)

logic: local and global. Let K ⊆ L be a set of sentences.

Local semantic consequence: φ is a local semantic consequence of K if and only if, for every
structureM, for every world w ∈W ofM, ifM, w |= κ for every κ ∈ K, thenM, w |= φ.

Global semantic consequence: φ is a global semantic consequence of K if and only if, for every
structureM, ifM |= κ for every κ ∈ K, thenM |= φ.

To the reader unfamiliar with the two kinds of semantic consequence, the two definitions might
look the same, only with different wording. They are, in fact, different; it could happen that φ′

is a global semantic consequence of K, while it is not a local semantic consequence of K. (But
if φ′ is a local semantic consequence of K, then it must be a global semantic consequence of K.)
Intuitively, local consequence centres around truth at worlds, while global consequence centres
around truth in structures.

In the field of logic-based knowledge representation and reasoning, the term logical entailment is
also used. In this thesis, the two terms are used interchangeably. And if we say that K entails φ,
we mean that K has φ as a semantic consequence.

Suppose we have propositions p1, p2, and a structure M with worlds w1, w2, w3, the relation
R = {(w1, w2), (w1, w3), (w2, w2)} and the interpretation I(p1) = {w1, w2}, I(p2) = {w1}.
Then Figure 2.1 depicts M graphically. One can determine that in this structure

• M,w1 |= p2

• M,w1 |= 2¬p2

• M,w1 6|= 2¬p1

• M,w2 6|= 3p2

• M,w2 |= ¬3p2

• M,w1 |= 33p1

PRELIMINARY CONCEPTS 13

An ontic view of the possible worlds semantics interprets the accessibility relation as the worlds
that are physically accessible through action.4 For example, in the ontic view, a world wstepped
where a robot is one step farther on than it was, is accessible from a world wcurrent where the
robot has not yet taken a step forward. Moreover, in this example, (wcurrent, wstepped) should be
an element of R only if the robot has a ‘step-forward’ action available to it and it is possible for
the robot to perform that action in the current world.

Any agent or dynamical system typically has more than a single action that it can perform. The
specification of such a ‘multi-action’ system using a modal logic, requires a multi-modal logic.

Besides actions, a knowledge engineer may want to talk about several subsystems at once, for
example several agents in a system, or the engineer may want to capture different epistemic modes
of one system. In general, if a knowledge engineer wants to talk about k modes, s/he will need
k different modal operators 21, . . . ,2k. There is a dual 3` for each 2`. In multi-modal logics
about change, that is, in logics about dynamical systems with multiple modes, it is convention to
write [γ1], . . . , [γk] and 〈γ1〉, . . . , 〈γk〉 for the box and diamond operators respectively, where the
γ` are the different actions or events or whatever is required for the system being reasoned about.

One multi-modal logic originally developed for program verification in computer science is propo-
sitional dynamic logic (PDL) [Harel et al., 2000]. Informally, PDL is defined as follows. Suppose
p is an atomic proposition and a is an atomic program, then φ is a proposition, α is a compound
program and Φ is a formula:

φ ::= p | ¬φ | φ ∧ φ′

α ::= a | α;α′ | α ∪ α′ | α∗ | ψ?

ψ ::= p | ¬ψ | ψ ∧ ψ′ | [α]ψ.

[α;α′]ψ is an abbreviation for [α][α′]ψ and α;α′ intuitively means ‘execute α, then execute α′’.
[α ∪ α′]ψ is an abbreviation for [α]ψ ∧ [α′]ψ and α ∪ α′ intuitively means ‘choose either α or α′

nondeterministically, and execute it’. [ψ?]ψ′ abbreviates ψ → ψ′ and ψ? intuitively means ‘Test
the truth of ψ; proceed if true, fail if false’. [α∗]ψ does not have a straight-forward abbreviation
(see, e.g., Harel et al. [2000])—its intuitive meaning is ‘ψ is true after executing program α zero
or an arbitrary number of times’.

De Giacomo and Lenzerini [1996], and Prendinger and Schurz [1996], for instance, have presented
PDL-based frameworks for specifically reasoning about action and change in the context of agents
and not programs. In these frameworks, programs are viewed as complex agent actions. Meyer
[2000] discusses the uses of dynamic logic for reasoning about actions and agents.

For good introductory textbooks on modal logic, please refer to Hughes and Cresswell [1996]
and Chellas [1980]. Books by Chagrov and Zakharyaschev [1997], Blackburn et al. [2001] and
Blackburn et al. [2007] are also standard references. Most of the logics reviewed in Chapter 8
have a modal component.

4 Informally, something is ontic when it is physical and epistemic when it is mental.

PRELIMINARY CONCEPTS 14

2.4 Decision Procedures

Ultimately, the logics we are interested in in this thesis are to be used by agents to decide what
actions to take next. Such decisions typically hinge on whether or not a particular conjectured
statement is true, given the agents’ background knowledge. Suppose Ψ ∈ L is a sentence repre-
senting a particular conjecture, where L is some logical language. Suppose further that BK ⊂ L
is a set of sentences representing an agent’s background knowledge. Then we would like to de-
termine whether Ψ logically ‘follows’ from BK . In this thesis, we use local or global semantic
consequence to determine this.

To actually determine whether some Ψ is a semantic consequence of BK , some method, algo-
rithm or procedure must be employed. Such procedures usually assume the language/vocabulary
as known. A procedure should take Ψ and BK as input and produce ‘yes’ or ‘no’ as output,
depending on whether BK does or does not entail Ψ.

There are various decision procedures for entailment in formal logic. Different procedures are
better suited to different purposes, for instance, for making inferences in logic-based databases,
for making inferences with knowledge-bases written in particular logics, or for proving certain
properties of various logics. When it comes to logics for reasoning about action and change,
decision procedures with particular characteristics are designed and used. Next, we discuss one
popular procedure for the situation calculus. Then we outline the general procedure used to decide
entailment in the logics presented in this thesis, that is, the tableau calculus approach.

Since Reiter [2001] invented successor-state axioms for the situation calculus, the regression
method proved more efficient than classical decision procedures. Informally, regression works
as follows.

Assume there is a successor-state axiom in the theory Θ for each distinct fluent in the language
L. Part of the definition for the regression operator RΘ for Θ is: When F is a fluent whose
successor-state axiom in Θ is

(∀a, s)(∀x1, . . . , xn)Poss(a, s)→ F (x1, . . . , xn, do(a, s))↔ ΦF ,

then
RΘ[F (t1, . . . , tn, do(α, σ))] = ΦF |x1,...,xn,a,st1,...,tn,α,σ

,

where t1, . . . , tn are terms in L and α and σ are respectively an action term and a situation term in
L. “RΘ[G] is simply that formula obtained fromG by substituting suitable instances of ΦF in F ’s
successor-state axiom for each occurrence inG of a fluent atom of the formF (t1, . . . , tn, do(α, σ)),”
[Reiter, 1991, p. 16]. The idea behind the regression operator is to reduce the nesting of the do
symbol in the fluents appearing in G—if s appears in do(a, s) on the left-hand side a successor-
state axiom, the it always appears un-nested on the right-hand side of the axiom. Regression
continues until do no longer appears in RΘ[RΘ[· · ·RΘ[G] · · ·]] and the only situation term is
S0. It is then sufficient to consult only facts in the initial knowledge-base to determine whether
Θ |= G, broadly speaking.

But successor-state axioms are not definable for all kinds of logics for reasoning about dynamical
systems. This is especially the case when actions or events in the system have nondeterministic

PRELIMINARY CONCEPTS 15

effects.

The tableaux approach [Fitting, 1999] as a deductive system has proven well suited to modal logics
in general [Goré, 1999]. It can also be applied in classical logics [Ben-Ari, 2012]. Informally, a
tableau is a tree-like structure that is ‘grown’ by expanding the tree by adding branches for each
application of a rule. The ‘trunk’ of a tableau tree is some tuple involving a logical formula. If
a proof of validity for formula Φ is sought, then Φ in the trunk should be the negated or labeled
FALSE.5 Each path through a tree represents a (potential; partial) model (i.e., satisfying structure).
If the conjunction of the formulae on one path form a contradiction, that path is not a model. If
on some path, no contradiction can be generated by the rules of expansion, that path represents
a model. A path which supports a contradiction, is called closed. A path which is not closed is
called open. If all paths of a tree are closed, it means that no model for the trunk exists; the trunk
is unsatisfiable. In this case, the negation of the trunk is valid. If no more rules can be applied to
any formula on a path, and the path is open, then this path represents a model for the trunk, or, the
trunk is satisfiable.

Terminology differs when talking about tableaux. Actually, the word “path” is not used; instead
“branch” is used. In the explanation above, path was used because branch carries a meaning more
difficult to use informally. Some people refer to trees instead of branches, and sometimes one may
encounter a forest when one expects a tree.

A tableau calculus is a definition of the kinds of structures, rules and processes allowed. Different
logics may employ the same tableau calculus but implement these calculi differently. In this thesis,
we say that a particular instance of a tableau calculus is a tableau method. The different calculi
used for the different logics presented in this thesis all use a labeled formula notation, that is, sets
of formulae labeled with some meta-information are maintained. The calculi of the four logics
are almost identical; in fact, the tableau calculi used with our SLAP and SLAOP are identical
(although their tableau methods are slightly different). The calculus used with our LAO is closest
to the one used with the logic LAP [Castilho et al., 1999] (cf.. § 8.2). Both LAO and LAP use
a ‘skeleton’ structure in their calculi. The SLAP/SLAOP calculus does not use skeletons, because
they need not keep track of nested operators. Our SDL makes use of a kind of skeleton called an
activity sequence.

We now provide the SLAP/SLAOP tableau calculus. We shall indicate when some terminology
or elements is common to all calculi used in this thesis. The foundation calculus is adapted from
Castilho et al. [1999]. It is based on labeled formulae.

Definition 2.4.1: A labeled formula is a pair (x,Ψ), where Ψ ∈ LSLAP or Ψ ∈ LSLAOP is a
formula and x is an integer called the label of Ψ.

Definition 2.4.2: A node Γjk with superscript j (the branch index) and subscript k (the node in-
dex), is a set of labeled formulae.

Definition 2.4.3: For all calculi, the initial node, that is, Γ0
0, to which the tableau rules must be

applied, is called the trunk.6

5 Formulae may be labeled with some semantic information depending on the particular tableau calculus, or formulae
may be unlabeled.

6 A trunk is also the root of a graph which is a tree.

PRELIMINARY CONCEPTS 16

Definition 2.4.4: For all calculi, a tree T is a set of nodes. A tree must include Γ0
0 and only nodes

resulting from the application of tableau rules to the trunk and subsequent nodes.

Definition 2.4.5: If one has a tree with trunk Γ0
0 = 〈{(0,Ψ)}, ∅〉, we shall say one has a tree for

Ψ.

For all calculi, when we say ‘...where x is a fresh integer’, we mean that x is the smallest positive
integer of the right sort (formula label or branch index) not yet used in the node to which the
incumbent tableau rule will be applied.

For all calculi, a tableau rule applied to node Γjk creates one or more new nodes; its child(ren). If
it creates one child, then it is identified as Γjk+1. If Γjk creates a second child, it is identified as Γj

′

0 ,
where j′ is a fresh integer. That is, for every child created beyond the first, a new branch is started.

Definition 2.4.6: For all calculi, a node Γ is a leaf node of tree T if no tableau rule has been
applied to Γ in T .

Definition 2.4.7: For all calculi, a branch is the set of nodes on a path from the trunk to a leaf
node.

Note that nodes with different branch indexes may be on the same branch.

Definition 2.4.8: For all calculi, Γ is higher on a branch than Γ′ if and only if Γ is an ancestor of
Γ′.

We assume that it is implicit in all calculi that (i) a tableau rule may only be applied to an open
leaf node and (ii) a tableau rule may not be applied to a formula if it has been applied to that
formula higher in the tree, as defined in Definition 2.4.8. The second constraint prevents trivial
re-applications of rules. For example, if rule 2 were applied to (0,2f1) ∈ Γ2

3, then it may not be
applied to (0,2f1) ∈ Γ2

4.

Definition 2.4.9: A node Γ is closed if (x,⊥) ∈ Γ for any x ≥ 0. It is open if it is not closed. A
branch is closed if and only if its leaf node is closed. A tree is closed if all of its leaf nodes are
closed, else it is open.

Definition 2.4.10: For all calculi, a branch is saturated if and only if any rule that can be applied
to its leaf node has been applied. A tree is saturated if and only if all its branches are saturated.

Part of a tableau tree discussed in Chapter 5 is reproduced here (Fig. 2.2) to give the reader an idea
of the structure of a tableau tree. Please ignore the details in the figure for now.

2.5 Uncertainty and Nondeterministic Action

There are at least four kinds of uncertainty an agent may have:

1. about its state, that is, the agent may not know the status of every attribute of its world;

2. about the effect or outcome an action may have, that is, the agent cannot predict the effect
of some actions with certainty (nondeterministic/stochastic effect of an action);

3. about the accuracy of exogenous events, that is, the agent may perceive some events (obser-
vations) in nature incorrectly or partially;

PRELIMINARY CONCEPTS 17

Γ0
0 = {(0,2(¬(¬f ∧ ¬h) ∨ ([g]0.9h ∧ [g]0.1¬h))),

(0,2(¬(¬f ∧ ¬h) ∨ [g]¬f)),
(0,¬(¬(¬f ∧ d ∧ ¬h) ∨ [g]0.9(¬f ∧ h))}

(0,¬¬(¬f ∧ d ∧ ¬h) ∧ ¬[g]0.9(¬f ∧ h)) ∈ Γ0
1

nf

(0,¬¬(¬f ∧ d ∧ ¬h)), (0,¬[g]0.9(¬f ∧ h)) ∈ Γ0
2

∧

(0,¬f ∧ d ∧ ¬h) ∈ Γ0
3

¬

(0,¬f), (0, d), (0,¬h) ∈ Γ0
4

∧

(0,¬(¬f ∧ ¬h) ∨ ([g]0.9h ∧ [g]0.1¬h)), (0,¬(¬f ∧ ¬h) ∨ [g]¬f) ∈ Γ0
5

2

(0,¬(¬f ∧ ¬h) ∈ Γ0
6

(0,¬(¬f ∧ ¬h),
(0, [g]¬f) ∈ Γ1

0

(0, ([g]0.9h ∧ [g]0.1¬h)),
(0,¬(¬f ∧ ¬h) ∈ Γ2

0

(0, ([g]0.9h ∧ [g]0.1¬h)),
(0, [g]¬f) ∈ Γ3

0

Fig. 2.2: Example of the first part of a tableau tree for 2(¬f ∧¬h→ ([g]0.9h∧ [g]0.1¬h))∧2(¬f ∧¬h→
[g]¬f) ∧ ¬(¬f ∧ d ∧ ¬h→ [g]0.9(¬f ∧ h)).

PRELIMINARY CONCEPTS 18

4. about which action the agent will perform, when some action is chosen to execute (nonde-
terministic/stochastic choice between actions).

One way to express these uncertainties is with disjunction:

1. The agent may know that the door is open, but all that it knows about the light is that it is
on or off, but not which.

2. When the agent attempts to close the door, it might close completely or almost or only
slightly.

3. Seeing that the light is off might mean that it is off or it is on (but just seems off because it
is a low-wattage bulb and the sun is shining directly on the bulb).

4. When the agent intends to perform move in direction 10 ◦, it will actually perform
move in direction 12 ◦ or move in direction 11 ◦ or move in direction 10 ◦ or
move in direction 9 ◦ or move in direction 8 ◦.

Suppose that the uncertainty the agent has about which action it will perform (case 4) concerns
closing the door rather than the direction of its movement. That is, suppose that when the agent
wants to close the door, it might perform the action completely close door or almost close door

or only slightly close door . Now we see that cases 2 and 4 are very closely related. In fact, cases
like 2 can be modeled with the approach of case 4: Assuming that actions completely close door ,
almost close door and only slightly close door are deterministic, whenever the agent wants to
close door , let it perform completely close door or almost close door or only slightly close door .
Because the latter three actions are deterministic, the effects of performing close door are ‘guar-
anteed’ to be that it closes completely or almost or only slightly. When uncertainty between actions
(case 4) is used to simulate uncertainty in effects (case 2), it is said that action decomposition is
being employed [Bacchus et al., 1999], [Reiter, 2001, Sec. 12.1].

The new logics presented in this thesis only model uncertainty in effect directly, not via action
decomposition.

We use the convention that uncertainty expressed by disjunction is called nondeterministic uncer-
tainty (also called qualitative uncertainty). A more sophisticated way to express uncertainty is by
probability. Alternatives can be expressed more accurately; likelihoods of different possibilities
can be expressed exactly to reflect the known facts. However, confidence in the known facts (about
likelihoods) may be low, in which case it may be prudent to express uncertainty by disjunction or
even by fuzzy set theory. In this work, we shall always assume that the known probabilities are
known with high enough confidence that they can be used for modeling purposes. We use the
convention that uncertainty expressed by probability is called stochastic uncertainty (also called
quantitative uncertainty), although we use the word probabilistic too.

The four cases above could be expressed with probability as follows.

1. The agent may know that the door is open, but all that it knows about the light is that it is
on with a probability of 0.6 and off with a probability of 0.4.

2. When the agent attempts to close the door, it might close completely with a probability of
0.33, almost with a probability of 0.33 and only slightly with a probability of 0.34.

PRELIMINARY CONCEPTS 19

3. Seeing that the light is off might mean that it is off with a probability of 0.9, but it is on with
a probability of 0.1.

4. When the agent intends to perform move in direction 10 ◦, it will actually perform
move in direction 12 ◦ with probability 0.1, move in direction 11 ◦ with probability 0.2,
move in direction 10 ◦ with probability 0.5, move in direction 9 ◦ with probability 0.2
and move in direction 8 ◦ with probability 0.1.

Stochastic effect can also be simulated by stochastic choice with deterministic effect. However,
we take the direct approach in this work.

In the next chapter, we review the relevant theory of partially observable Markov decision pro-
cesses (POMDPs). This will help the reader to understand the motivation for the semantics of our
logics, especially the definitions of the Specification Logic of Actions and Observations (SLAOP)
and the Stochastic Decision Logic (SDL), presented in the latter half of the thesis.

3. PARTIALLY OBSERVABLE MARKOV DECISION PROCESSES

A partially observable Markov decision process (POMDP) [Aström, 1965, Smallwood and Sondik,
1973, Monahan, 1982, Lovejoy, 1991] is a generalization of the Markov decision process (MDP)
[Bellman, 1957, Howard, 1960, Puterman, 1994]. The semantics of SLAP (Chap. 5) are based
on MDPs, but the semantics of SLAOP (Chap. 6) and the SDL (Chap. 7) are based on POMDPs.
The POMDP formalism is well suited to representing a class of domains that occur frequently
in practice, including robotics [Kaelbling et al., 1998, Boutilier et al., 1999, Russell and Norvig,
2003]. Our work focuses on providing high-level decision-making capabilities for situated agents
who live in dynamic environments with time constraints for planning. One solution is to employ
a continuous planning strategy, or agent-centered search Koenig [2001]. Aligned with agent-
centered search is the forward-search approach or online plannning approach in POMDPs [Ross
et al., 2008]. This is the approach we use.

In partially observable Markov decision processes, actions have nondeterministic results as in
(fully observable) MDPs, but observations are uncertain. In other words, the effect of some chosen
action is somewhat unpredictable, yet may be predicted with a probability of occurrence. However,
in POMDPs, the world is not directly observable: some data are observable and the agent infers
how likely it is that the world is in some particular state. The agent thus believes to some degree—
for each possible state—that it is in that state, but it is never certain exactly which state it is in.
In fact, the agent maintains a probability distribution over the states reflecting its conviction for
being in each state.

Deciding which actions to take depends on the utility of the actions, conditioned on the states in
which they are performed. But the decision process is complicated due to the agent’s uncertainty
about its state.

The theory in this chapter can be found in the papers of Kaelbling, Cassandra and Littman [Cas-
sandra et al., 1994, Kaelbling et al., 1998], for example.

Section 3.1 covers the basic theory of POMDPs required for this thesis. Planning with POMDPs
is discussed in Section 3.2. In Section 3.3, we present a graphical representation of the planning
problem, which is an aid in understanding the process. Section 3.4 details two particular tasks that
can be performed on a POMDP. These two tasks are directly related to two operators in our logic
(the SDL) defined in Chapter 7.

3.1 Basic Theory

Formally, a POMDP is a tuple 〈S,A, T,R, Z,O, b0〉 where

PARTIALLY OBSERVABLE MARKOV DECISION PROCESSES 21

• S = {s1, s2, . . . , sn} is a finite set of states of the world (which the agent can be in);

• A = {a1, a2, . . . , ak} is a finite set of actions (which the agent can choose to execute);

• T : S × A × S → (R ∩ [0, 1]) is the state-transition function; T (s, a, s′) denotes the
probability of being in s′ after performing action a in state s;

• R : A×S → R is the reward function;R(a, s) is the immediate reward gained for executing
a while in state s;

• Z = {z1, z2, . . . , zm} is a finite set of observations the agent can perceive in its world;

• O : S×A×Z → (R∩ [0, 1]) is the observation function; O(s′, a, z) denotes the probability
of observing z in state s′ resulting from performing action a in some other state;

• b0 is the initial probability distribution over all states in S.

Let b be a total function from S into R. Each state s is associated with a probability b(s) = p ∈ R,
such that b is a probability distribution over the set S of all states. b can be called a belief-state.

An important function in POMDP theory, is the function that updates the agent’s belief-state, or
the state estimation function SE . SE (a, z, b) = bn is defined as

bn(s′) =
O(s′, a, z)

∑
s∈S T (s, a, s′)b(s)

Pr(z | a, b)
, (3.1)

where bn(s′) is the probability of the agent being in state s′ in the ‘new’ belief-state bn, relative to
a, z and the ‘old’ belief-state b.

Pr(z | a, b) =
∑
s′∈S

O(s′, a, z)
∑
s∈S

T (s, a, s′)b(s) (3.2)

in the denominator acts as a normalizer here. Equation (3.1) is derived from the Bayes Rule.
Notice that SE (·) requires a belief-state, an action and an observation as inputs to determine the
new belief-state.

When the states an agent can be in are belief-states (as opposed to objective, single states in S),
the reward function R must be lifted to operate over belief-states. The expected reward ρ(a, b) for
performing an action a in a belief-state b is defined as

ρ(a, b)
def
=
∑
s∈S

R(a, s)b(s). (3.3)

The notion of a policy captures what an agent should do or is instructed to do. There are several
definitions for what a policy is; we mention first the traditional definition and then a definition
more suited to our work. Formally, a policy π, in traditional POMDP theory, is a function from a
set of belief-states B (all those the agent can be in) to a set of actions:

π : B 7→ A. (3.4)

That is, actions are conditioned on beliefs. Therefore, for any belief-state the agent might find
itself in, it needs only consult its policy and it will know what to do next. The belief-state space

PARTIALLY OBSERVABLE MARKOV DECISION PROCESSES 22

is typically huge and determining a ‘good’ policy of this kind is impractical for agents who must
plan online. Our work is focused on agents who plan online.

Our approach is that of forward-search or online POMDP plannning [Ross et al., 2008]. An agent
looks ahead a few steps (typically less than ten) and determines a policy only for those steps
and only for the current belief-state. Actions are thus conditioned on the steps to go and not on
belief-states. This strategy is much more tractable than finding the best action for every possible
belief-state, for all future actions. At the end of this section, we further motivate our choice of the
forward-search approach.

Let the planning horizon h be the number of steps into the future that the agent will consider each
time it selects its next few actions; h can also be called the look-ahead depth; in the recursive
equations below, h can be thought of as the number of steps to go.

A policy with a planning horizon h is defined as a set of h pairs (h′, a) where h′ is the number of
steps to go and a is the action the agent will/should take. In other words,

π = {(h, a1), (h− 1, a2), (h− 2, a3), . . . , (1, ah)}.1

Theoretically, the agent could determine a policy for h actions and perform any of the first g ≤ h

actions recommended by the policy. The agent could then determine a new policy for h steps/actions,
perform the first g, and so on.

Suppose the agent has performed k − 1 steps. Then from step k onwards, the agent gets the
sequence of rewards

rk, rk+1, rk+2, . . .

for steps k, k + 1, k + 2, . . ., respectively. It is convention to deem a reward that can be obtained
farther into the future as less valuable than a reward obtained earlier. Later rewards are thus
‘discounted’ by a discount factor denoted by γ (0 < γ ≤ 1).2

The discounted rewards Vk from step k onwards, is defined as

Vk = rk + γ(rk+1 + γ(rk+2 + · · ·)) (3.5)

= rk + γVk+1.

That is, the agent receives the immediate reward plus the sum of discounted future rewards.

The notion of the value of a belief-state, given a policy, brings together all the theory discussed
so far: The value V π(b, h) of a belief-state b is the expected value of future states, given the
actions selected at each step using policy π, until the horizon h is reached. In the equations below,
Pr(z | a, b) can be viewed as the probability of reaching the next belief-state bn = SE (a, z, b).

V π(b, h)
def
= ρ(π(h), b) + γ

∑
z∈Z

Pr(z | π(h), b)V π(SE (π(h), z, b), h− 1)

V π(b, 1)
def
= ρ(π(1), b).

1 Superscripted action and observation symbols indicate their chronological position in a sequence, whereas sub-
scripted symbols refer to different members of A and O, respectively.

2 The discount factor is especially convenient for mathematical analysis of infinite sequences of actions.

PARTIALLY OBSERVABLE MARKOV DECISION PROCESSES 23

The rewards rh in (3.5) become the believed or expected rewards ρ(π(h), b) in the definition of
the value function above.

It is convenient to know the value of belief-state b with respect to policy π, starting with a certain
action a:

Qπ(a, b, h)
def
= ρ(a, b) + γ

∑
z∈Z

Pr(z | a, b)V π(SE (a, z, b), h− 1)

Qπ(a, b, 1)
def
= ρ(a, b).

Note that V π(b, h) = Qπ(π(h), b, h).

The forward-search approach results in relatively fast planning, compared to determining a full
policy as defined in (3.4). During the calculation of the value of an action, that is, how much
an action contributes to the expected future rewards, only belief-states which can be reached are
considered. Put differently, only belief-states relevant in the short-term are considered for deter-
mining which action to perform next. The agents we have in mind live in changing environments.
The longer it takes to generate a plan, the less likely it is that the current state is the state which
the agent was in when it started planning. That is, an agent should be reactive in dynamic envi-
ronments. However, there is a trade-off between reactivity and accuracy: Shorter policies result in
more reactive agents, but then their reward estimates are less likely to result in the correct action
selection (with respect to optimal selection). Hence, as time passes beyond time-point t when
planning commenced, the policy found will be less applicable at the time-point t′ when planning
ended. There is thus a trade-off between accuracy and reactivity, proportional to the dynamism of
the domain. This trade-off must be managed per domain.

3.2 Finite-Horizon Planning in POMDPs

We now turn to the actual topic of planning in partially observable Markov decision processes
(POMDPs). Planning in the POMDP framework can be reduced to the problem of determining
the ‘best’ actions to perform given the current belief-state.

Essentially, the forward-search approach looks ahead for h steps, calculates the total (discounted)
reward that can be obtained for various possible execution sequences and then selects the next
action as the first action of the sequence which provides the highest total reward. The idea is that
rewards for executing sequences of actions of length h are estimates for infinitely long sequences.
The larger h is, the more accurate is the estimate.

An optimal policy recommends the best actions. The optimal policy π∗ is simply the policy which
causes the agent to receive the maximum rewards over all future steps, till the horizon, starting in
a given belief-state:

Definition 3.2.1: A policy π is optimal with respect to a fixed belief-state b and planning horizon
h if there is no π′ such that V π′(b, h) > V π(b, h). In other words,

π∗ = arg max
π∈Πh

V π(b, h),

PARTIALLY OBSERVABLE MARKOV DECISION PROCESSES 24

where Πh is the set of all policies of length h.

The optimal value V ∗(b, h) of a belief-state b assumes that at each step the action that will maxi-
mize the state’s value will be selected. The policy is thus implicit and needs not be provided. The
optimal value of belief-state b for horizon h is

V ∗(b, h) = max
a∈A

[
ρ(a, b) + γ

∑
z∈Z

Pr(z | a, b)V ∗(SE (a, z, b), h− 1)

]
, (3.6)

where V ∗(b, 1) = maxa∈A ρ(a, b). It assumes that at each step the action that will maximize the
state’s value will be selected.

The optimal value of belief-state b for horizon h, starting with a certain action a is

Q∗(a, b, h) = ρ(a, b) + γ
∑
z∈Z

Pr(z | a, b)V ∗(SE (a, z, b), h− 1). (3.7)

V ∗(b, h) is called the state value function and Q∗(a, b, h) is called the action value function.

If an agent is not in possession of a policy, it can select its next action a∗ using

a∗ = arg max
a∈A

Q∗(a, b, h) (3.8)

where b is the current belief-state and h is the number of steps to go. The following relationship
holds: π∗(h) = a∗. This relationship supports the statement that the optimal policy is implicit in
the value function.

3.3 Belief-Decision-Trees

Online POMDP planning methods consist of two phases, a planning phase where a finite sequence
of actions is computed, and an execution phase where the actions are executed in the real environ-
ment. After executing the actions, the agent switches back to the planning phase.

In the planning phase, Equations (3.6) and (3.7) have a graphical representation as a tree with
belief-states and sensing events as nodes, and actions and observations as arcs, with the current
belief-state as the root node. Finding the optimal policy of length h is analogous to finding an
optimal path in the tree expanded to depth h. At each node (belief-state), certain action executions
are considered, and a decision can be made about which action the agent would execute if it were
in the projected belief-state. Such a tree for planning with belief-states is called a belief-decision-
tree. Figure 3.1 depicts a belief-decision-tree of depth h = 1; triangles are belief-states and circles
are sensing events. The actions considered in Figure 3.1 are left and right, the observations
the agent can make are o1 to o4, leading to four different new nodes.

Figure 3.2 is a two-tier (i.e., h = 2) belief-decision-tree with two actions and two observations.

Planning continues until (i) the time for planning runs out, (ii) the value of the best action so far
is satisfactory (ε-optimal) or (iii) the decision process has completed. If cases (i) or (ii) are not
satisfied, a node from the fringe of the current tree is set as the root of a new tree which will be
searched to depth h again, and so on. In case (iii), search will proceed to depth h, independent

PARTIALLY OBSERVABLE MARKOV DECISION PROCESSES 25

left

right

current

belief-state

new belief-state
o1

2

3

4

o

o

o
new belief-state

new belief-state

new belief-state

Fig. 3.1: A one-tier belief-decision-tree.

of time or whether the action considered for execution is satisfactory according to some prior
knowledge.

Once the whole tree is created, node values are propagated backwards from the leaf nodes to an-
cestors, upto the root node, using Equation (3.6). That is, a∗ = arg maxa∈AQ

∗(a, b, h′) (Eq. 3.8)
is employed at every belief-state node (represented by b), where h′ is the number of steps to go.

Suppose the agent is at the current belief-state b0 in Figure 3.2. And suppose executing act 1

gives more expected future reward than executing act 2. Now if the agent executes act 1, it
could perceive either obs 1 or obs 2 (at the green circle). If the agent perceives obs 2, its belief-
state will be updated to the red triangle in the first tier. Assume that act 2 gives more expected
future reward at this stage than executing act 1. Then if obs 1 is perceived (at the blue circle),
the red triangle leaf node will be reached.

An agent usually does not know which observation will be perceived at each event node. If an
agent performs several actions between planning phases, it must maintain a conditional policy,
conditioned on observations. For instance, suppose Figure 3.2 is the belief-decision-tree for some
agent with b0 as current belief-state. If the agent wants to do two actions before re-planning, then it
must maintain the conditional policy depicted in Figure 3.3 (which is a subtree of the tree depicted
in Figure 3.2). Here it is known that act 1 must be the first action to perform, but the second
action to execute depends on whether obs 1 or obs 2 is perceived. The conditional policy implies
that if obs 1 is perceived at the green circle, act 1 will produce the most expected reward, but if
obs 2 is perceived, act 2 is the preferred action.

If an agent will execute only one action after every planning phase, it needs not maintain a (con-
ditional) policy. It simply executes the first recommended action and then discards the policy. An
agent who executes only the one action at every plan-act cycle, may not even construct an actual
policy; it may only keep enough information in its working memory to determine which action to
perform next.

PARTIALLY OBSERVABLE MARKOV DECISION PROCESSES 26

act 1

act 2

obs 1

obs 2

obs 1

obs 2

obs 1

obs 1

obs 1

obs 1

obs 1

obs 1

obs 1

obs 1

obs 2

obs 2

obs 2

obs 2

obs 2

obs 2

obs 2

obs 2
act 1

act 1

act 1

act 1

act 2

act 2

act 2

act 2

b0

Fig. 3.2: A two-tier belief-decision-tree.

act 1

obs 1

obs 2

obs 1

obs 1

obs 2

obs 2
act 1

act 2

b0

Fig. 3.3: A two-step conditional policy.

3.4 Decision-Making

We show how to make decisions with POMDPs as related to decision-making in the Stochastic
Decision Logic (SDL) defined in Chapter 7. We shall assume in this section that a complete

PARTIALLY OBSERVABLE MARKOV DECISION PROCESSES 27

POMDP model is given, including the initial belief-state b0. A decision is made in the belief-state
b′ reached after a sequence of actions and observations. We consider decisions conditioned on two
kinds of statements, (i) the utility or expected reward of a sequence of actions starting in b′ and (ii)
the probability of being in a particular set of states in b′.

Suppose a sequence of actions and observations is represented as

Ja1 + z1KJa2 + z2K · · · Jay + zyK.

by for such a sequence, is determined by finding b1 = SE (a1, z1, b0), then b2 = SE (a2, z2, b1),
then . . . , then by = SE (ay, zy, by−1). That is,

by = SE (ay, zy, · · ·SE (a1, z1, b0) · · ·).

Consider the first kind of statement mentioned at the beginning of this section. Suppose an agent
wants to decide which action to execute next, and it is willing or able to reason, by projection, h
steps into the future. Let the h steps be represented as Ja1KJa2K · · · JahK. The utility of performing
each action in the sequence in succession is defined by

U(Ja1KJa2K · · · JahK, b) def
= ρ(a1, b) + γ

∑
z∈Z

Pr(z | a1, b)U(Ja2K · · · JahK, SE(a1, z, b)),

where U(JahK, b) def
= ρ(ah, b′). Suppose Ξh is every possible sequence of actions of length h.

Then
max

Ja1KJa2K···JahK∈Ξh
U(Ja1KJa2K · · · JahK, b) = V ∗(b, h).

A straightforward and practical way to use U(·) is to decide which of several possible sequences
of actions to execute in b. Suppose the agent is considering executing either Ja1KJa1K, Ja1KJa2K,
Ja2KJa1K or Ja2KJa2K. Then it would determine U(Ja1KJa1K, b′) = r11, U(Ja1KJa2K, b′) = r12,
U(Ja2KJa1K, b′) = r21 and U(Ja2KJa2K, b′) = r22, and decide to execute the sequence associated
with max{r11, r12, r21, r22}.

Let ϕ ⊆ S be a set of states. Making decisions based on the second kind of statement mentioned at
the beginning of this section is unusual in POMDP theory. Nevertheless, it is defined here to make
the link with SDL, which provides for expressing such statements quite naturally. The probability
with which the system/agent is in one of the states in ϕ is defined by

B(ϕ, b)
def
=
∑
s∈ϕ

b(s).

One example of how an agent could use such information follows. Suppose the agent knows (or
has calculated) that a sequence Ξ of actions will land it in one of the belief-states in set BΞ, and
the agent never wants to be in a state in ϕ with a probability greater than p. If for any one of
b′ ∈ BΞ, B(ϕ, b′) > p, then the agent should not execute Ξ.

PARTIALLY OBSERVABLE MARKOV DECISION PROCESSES 28

Examples

Let F = {f1, f2, . . . , fm} be a set of Boolean features of interest and S = {s1, s2, . . . , sn} the
2|F | set of states induced from F .3 For instance, if F = {f1, f2}, then S = {{(f1, 0), (f2, 0)},
{(f1, 1), (f2, 0)}, {(f1, 0), (f2, 1)}, {(f1, 1), (f2, 1)}}, where, in general, a pair (f, 1) is in a state
s if f is a feature of the domain/system when the system is in the state represented by s, else a pair
(f, 0) is in s. Let b′ = {(s1, p1), (s2, p2), . . ., (sn, pn)} be some belief-state.

To better motivate parts of our research and to provide a setting on which to base examples for
illustrating concepts, we present the oil-drinking scenario. The oil-drinking scenario will be used
throughout this thesis, augmented or modified as appropriate. Imagine a robot that is in need of an
oil refill. The robot has a single arm with a gripper at the end. There is an open can of oil on the
floor within reach of its gripper. If there is nothing else in the robot’s gripper, it can grab the can
(or miss it, or knock it over) and it can drink the oil by lifting the can to its ‘mouth’ and pouring
the contents in (or miss its mouth and spill). The robot may also want to confirm whether there is
anything left in the oil-can by weighing its contents with its arm—there is a weight-sensor built
into the arm. And once holding the can, the robot may wish to replace it on the floor.

The robot thus has the set of (intended) actions {grab, drink, weigh, replace}with the expected
intuitive meanings. The robot can perceive observations only from the set {obsNil, obsHeavy,
obsMedium, obsLight}. Intuitively, when the robot performs a weigh action, it will perceive
either obsHeavy, obsMedium or obsLight; for other actions, it will ‘perceive’ obsNil, no per-
ception occurs, or a null observation is perceived. The robot experiences its world (domain) via
three Boolean features: {full, drank, holding}meaning respectively that the the oil-can is full,
that the robot has drunk the oil and that it is currently holding something in its gripper.

Let f stand for full and let h stand for holding. Let g stand for grab, d for drink and w for
weigh. Let N stand for obsNil, L for obsLight, M for obsMedium and H for obsHeavy}. We
define the following POMDP model.

• S = {{(f, 0), (h, 0)}, {(f, 1), (h, 0)}, {(f, 0), (h, 1)}, {(f, 1), (h, 1)}};

• A = {g, d, w};

• Zero probability transitions are not shown.

T ({(f, 0), (h, 0)}, g, {(f, 0), (h, 0)}) = 0.1

T ({(f, 0), (h, 0)}, g, {(f, 0), (h, 1)}) = 0.1

T ({(f, 0), (h, 0)}, g, {(f, 1), (h, 1)}) = 0.8

T ({(f, 1), (h, 0)}, g, {(f, 0), (h, 0)}) = 0.1

T ({(f, 1), (h, 0)}, g, {(f, 0), (h, 1)}) = 0.1

T ({(f, 1), (h, 0)}, g, {(f, 1), (h, 1)}) = 0.8

T ({(f, 0), (h, 1)}, d, {(f, 0), (h, 0)}) = 0.05

3 Any state which can be described by a set of multi-valued features can be uniquely described by a sufficiently large
set of Boolean features.

PARTIALLY OBSERVABLE MARKOV DECISION PROCESSES 29

T ({(f, 0), (h, 1)}, d, {(f, 0), (h, 1)}) = 0.95

T ({(f, 1), (h, 1)}, d, {(f, 0), (h, 0)}) = 0.05

T ({(f, 1), (h, 1)}, d, {(f, 0), (h, 1)}) = 0.95

T ({(f, 0), (h, 0)}, w, {(f, 0), (h, 0)}) = 1

T ({(f, 1), (h, 0)}, w, {(f, 1), (h, 0)}) = 1

T ({(f, 0), (h, 1)}, w, {(f, 0), (h, 1)}) = 1

T ({(f, 1), (h, 1)}, w, {(f, 1), (h, 1)}) = 1

• R(g, {(f, 0), (h, 0)}) = −6

R(g, {(f, 1), (h, 0)}) = −1

R(g, {(f, 0), (h, 1)}) = 9

R(g, {(f, 1), (h, 1)}) = −1

R(d, {(f, 0), (h, 0)}) = −6

R(d, {(f, 1), (h, 0)}) = −1

R(d, {(f, 0), (h, 1)}) = 9

R(d, {(f, 1), (h, 1)}) = −1

R(w, {(f, 0), (h, 0)}) = −5.8

R(w, {(f, 1), (h, 0)}) = −2

R(w, {(f, 0), (h, 1)}) = 9.2

R(w, {(f, 1), (h, 1)}) = −2

• Z = {N,L,M,H}

• Zero probability observations are not shown.

O({(f, 0), (h, 0)}, g,N) = 1

O({(f, 0), (h, 0)}, d,N) = 1

O({(f, 0), (h, 0)}, w, L) = 1
3

O({(f, 0), (h, 0)}, w,M) = 1
3

O({(f, 0), (h, 0)}, w,H) = 1
3

O({(f, 1), (h, 0)}, g,N) = 1

O({(f, 1), (h, 0)}, d,N) = 1

O({(f, 1), (h, 0)}, w, L) = 1
3

O({(f, 1), (h, 0)}, w,M) = 1
3

O({(f, 1), (h, 0)}, w,H) = 1
3

PARTIALLY OBSERVABLE MARKOV DECISION PROCESSES 30

O({(f, 0), (h, 1)}, g,N) = 1

O({(f, 0), (h, 1)}, d,N) = 1

O({(f, 0), (h, 1)}, w, L) = 0.5

O({(f, 0), (h, 1)}, w,M) = 0.3

O({(f, 0), (h, 1)}, w,H) = 0.2

O({(f, 1), (h, 1)}, w, L) = 0.1

O({(f, 1), (h, 1)}, w,M) = 0.2

O({(f, 1), (h, 1)}, w,H) = 0.7

• b0 = {({(f, 1), (h, 1)}, 0.35), ({(f, 1), (h, 0)}, 0.35), ({(f, 0), (h, 1)}, 0.2),

({(f, 0), (h, 0)}, 0.1)}.

It could be that the robot is programmed to grab the oil-can and then weigh it, only if it believes
with a probability greater than 0.85 that it is holding the can after the two actions are performed.
So the robot must determine whether

B({{(f, 1), (h, 1)}, {(f, 0), (h, 1)}}, b2) > 0.85,

where b2 = SE (w,M, b1) and b1 = SE (g,N, b0). In other words, it must determine whether the
probability of being in a state where feature holding is true is greater than 0.85 after executing
the sequence Jg +NKJw +MK in the initial belief-state. Using Equation (3.1), one can calculate
that

b1 = {({(f, 1), (h, 1)}, 0.81), ({(f, 1), (h, 0)}, 0), ({(f, 0), (h, 1)}, 0.09), ({(f, 0), (h, 0)}, 0.09)}

and

b2 ={({(f, 1), (h, 1)}, 0.72973), ({(f, 1), (h, 0)}, 0), ({(f, 0), (h, 1)}, 0.12162),

({(f, 0), (h, 0)}, 0.14865)}.

Finally, we see that
0.72973 + 0.12162 > 0.85

There is a subtlety in the interpretation of this result: It is not the case that the probability of
grabbing the can and then weighing it and perceiving that it is of medium weight and then still
holding the can is greater than 0.85. It is the case that IF the robot grabs the oil-can (and perceives
nothing/Nil) and IF it weighs the can and IF it is perceived to be medium, THEN the probability
of still holding the can is greater than 0.85.

Second, we determine whether U(JdKJdK, b1) ≤ 7, where b1 = SE (g,N, b0). In other words, we
want to determine whether the utility of drinking twice in a row is less than or equal to 7 units
after grabbing the oil-can and perceiving nothing (Nil) in the initial belief-state. For simplicity,

PARTIALLY OBSERVABLE MARKOV DECISION PROCESSES 31

assume γ = 1.

U(JdKJdK, b1) = ρ(d, b1) +
∑
z∈Z

Pr(z | d, b1)U(JdK,SE (d, z, b1)). (3.9)

Notice that Pr(L | d, b1) = Pr(M | d, b1) = Pr(H | d, b1) = 0, because O(s, d, L) =

O(s, d,M) = O(s, d,H) = 0 for all states s. So (3.9) becomes

U(JdKJdK, b1) = ρ(d, b1) + Pr(N | d, b1)U(JdK, SE(d, z, b1))

= ρ(d, b1) + Pr(N | d, b1)U(JdK, b2
′
)

= ρ(d, b1) + Pr(N | d, b1)ρ(d, b2
′
)

= 0.81(−1) + 0(−1) + 0.09(9) + 0.09(−6) +

0.90(0(−1) + 0(−1) + 0.95(9) + 0.05(−6))

= 6.95455

where Pr(N | d, b1) = 0.90 and

b2
′

= {({(f, 1), (h, 1)}, 0), ({(f, 1), (h, 0)}, 0), ({(f, 0), (h, 1)}, 0.95), ({(f, 0), (h, 0)}, 0.05)}.

Suppose the robot is programmed to never drink twice in a row if the utility of doing so is less
than 7 units. Then the robot knows that if it grabs the oil-can (and certainly perceives Nil), it will
be in a belief-state where it should not drink twice in a row.

3.5 Concluding Remarks

Arguably, the POMDP-approach’s popularity is due to the relative simplicity and intuitiveness of
its model and its general applicability to a wide range of stochastic domains. Only a very small
part of POMDP theory was covered in this chapter; only the part on which the SDL is based.
In particular, infinite-horizon POMDPs were not discussed, algorithms for finding optimal poli-
cies, optimization techniques, the many approximate POMDP algorithms and their computational
complexity were not discussed.

For further reading, refer to Cassandra et al. [1994], Kaelbling et al. [1998], Boutilier et al. [1999]
and Russell and Norvig [2003]. For the foundations of POMDP theory, refer to the following
literature: [Aström, 1965, Smallwood and Sondik, 1973, Monahan, 1982, Lovejoy, 1991].

4. THE LOGIC OF ACTIONS AND OBSERVATIONS

An earlier version of the logic presented in this chapter was presented at the twenty-third Aus-
tralasian Joint Conference on Artificial Intelligence in Adelaide, Australia [Rens et al., 2010].

It is the norm in dynamic logics (and some other agent oriented logics) to deal with observations
as elements of knowledge, as propositions; and perception is normally coded as action. That is,
observations-as-propositions evaluate to ‘true’ or ‘false’ depending on some action(s). However,
the approach of interpreting observations as mere propositions may be counterintuitive to some
people, because knowledge may be seen as something different from events (observations) that
generate or modify knowledge.

Remark: If an intelligent agent is regarded as a system, then there are inputs to the system that
affect it, and outputs from the system that affect the environment. The inputs are observations and
the outputs are actions. If one assumes that the system state is represented by a knowledge-base of
propositions, then from the systems view, it is clear that observations and propositions are different
in nature.

From a philosophical perspective, an observation is a concept in the ‘mind’ of an agent—observa-
tions are just symbols that an agent uses to reason about its input signals. The use of sensors is
an integral and indispensable component of the robotic system. Sensors are employed to bring
information inherent in the environment into the robot’s ‘mind’. A sensor transfers energy in the
environment into numeric/symbolic values that may be interpreted and stored as propositions in
the robot’s knowledge-base [Levesque and Lakemeyer, 2008]. When an agent performs an action,
a certain kind of sensory input is possible, with a certain range. This work takes the stance that
all actions have an ontic (physical) component and an epistemic (knowledge) component. The
ontic component has an effect on the outside world, and the epistemic component receives signals
from / is affected by the world. The signal impinges on the agent’s senses and the agent interprets
or ‘perceives’ the signal as an observation, in the context of the immediately preceding action.

For example, if action open−eyes is performed, several signals are possible, depending on the
situation, like wall−3−meters−ahead or overcast−sky. If the agent performs an action
like step−once−forward, there is only one observation possible, viz. null, the ‘dummy’
observation. Unlike the eye, the leg or wheel is not a sensory organ. When our agent activates
a device (the agent acts) and the device receives no input signal, it interprets this state of affairs
as the null observation.1 Hence, we take the philosophical stance that for every action an agent
performs, the agent perceives exactly one observation, that is, actions and observations always
appear in pairs, even if implicitly. This is the approach of POMDPs that we rely on in the present
work [Pineau, 2004, e.g.].

1 The null observation will be denoted by the special named constant, obsNil.

THE LOGIC OF ACTIONS AND OBSERVATIONS 33

Therefore, the ability to distinguish between observations and propositions allows for a more
precise specification of a given domain, as we shall see later in this chapter. It turns out that the
notion of observations as explicit syntactic and semantic objects of a logic is not completely new.
For instance, Van Benthem et al. [2009] do so (cf. their logic PDEL in Section 8.9). They allude
that their “events” are closer to observations than logical propositions. Observations are mappings
in the approach of Geffner and Wainer [1998]. However, it will be seen that LAO’s observations
are much simpler than their mappings.

The domain of the oil-drinking scenario is (partially) formalized as follows. The robot has the
set of actions A = {grab, drink, weigh, replace}, can make observations from the set Ω =

{obsNil, obsHeavy, obsMedium, obsLight} and the robot experiences its world via three Boolean
features: F = {full, drank, holding}. This formalization seems more intuitive than lumping
all observations in with propositions, for instance, by making F = {full, drank, holding,
obsnil, heavy, medium, light}.

Given a formalization K of our scenario, the robot may have the following queries:

• Is it possible that after grabbing the oil-can, I will not be holding it?
That is, does 〈grab〉¬holding follow from K?

• If I weigh the oil-can and perceive that it is light, is it necessary that I have drunk the oil?
That is, does [obsLight | weigh] drank follow from K?

The logic we present here allows for expressing observations explicitly, distinct from propositions.
It is called the Logic of Actions and Observations (LAO). LAO is a modal logic with quantification
and equality over the actions and observations. It will be able to accommodate formal descriptions
of nondeterministic uncertainty in the actions and in the observations.

LAO is based on LAP (the Logic of Actions and Plans [Castilho et al., 1999]), but with one major
difference: the addition of observations. That is, LAO refers to a set of observations that are
explicitly identified by a knowledge engineer or agent-system designer (cf. the Remark above). A
minor, yet important difference is the addition of action and observation variables, quantification
and equality. Another important difference is that the notion of global semantic consequence in
the semantics replaces their 2 operator.

In a discrete, non-probabilistic setting such as LAO, uncertainty about sensor signals can be cap-
tured by a knowledge engineer by specifying that more than one observation is possible, given
some (sensing) action. Whether one or more observations is possible, the knowledge engineer
may know that when a certain action is performed under certain conditions, the correct observa-
tion cannot be made or has never been made by agents in the past, in similar conditions. The
knowledge engineer will thus model the correct observation as impossible given the action is per-
formed in the particular situation. Discrete logics are limited in how they can model sensory noise.
Probabilistic logics should be able to model noise in perception more naturally, to an arbitrary ac-
curacy, given the available information about the two sources of noise associated with perception.
Dealing with noisy sensing is the topic of later chapters.

Although there are several formalisms in the literature on reasoning about and specifying agents
and their actions, we found them lacking when it comes to treating observations as objects on a
par with actions, while retaining important computational properties. Existing first-order based

THE LOGIC OF ACTIONS AND OBSERVATIONS 34

approaches are in general undecidable or arguably have too complicated semantics. For these rea-
sons, we prefer to anchor our framework on a version of dynamic logic and strive for an extension
of it by allowing for observations as explicit entities.

By adding explicit observation constants to a simple dynamic logic, the resulting logic may be
slightly more complex, while perhaps simplifying, for the domain expert, dealing with observa-
tion.

We also provide a framework to formally specify, in the language of LAO, the domain in which
an agent or robot is expected to live.

Section 4.1 defines the syntax and semantics of LAO. We present the decision procedure for se-
mantic consequence in Section 4.2. Soundness, completeness and termination of the decision pro-
cedure are proved in Sections 4.3.1, 4.3.2 and 4.3.3. Sections 4.4.1 explains how to specify action
effects. Section 4.4.2 discusses the executability of actions and the perceivability of observations.
Section 4.5 presents a domain specification of the oil-drinking scenario, and the determination of
several entailment examples in that domain is shown in Section 4.6.

4.1 Defining the Logic

First, the syntax of the logic is presented, then its semantics.

4.1.1 Syntax

The vocabulary of our language contains five sorts of objects of interest:

1. a finite set of fluents (alias, propositional atoms) F = {f1, . . . , fn},

2. a finite set of names of atomic actions A = {α1, . . . , αn},

3. a countable set of action variables VA = {va1 , va2 , . . .},

4. a finite set of names of atomic observations Ω = {ς1, . . . , ςn},

5. a countable set of observation variables VΩ = {vo1, vo2, . . .}.

We shall refer to elements of A ∪ Ω as constants and elements of VA ∪ VΩ as variables. A literal
` is a fluent or its negation.

We are going to work in a multi-modal setting, in which we have a modal operator [ς|α], one for
each pair (α, ς) in A× Ω.

Definition 4.1.1: Let α ∈ (A ∪ VA), ς ∈ (Ω ∪ VΩ), v ∈ (VA ∪ VΩ) and f ∈ F . The language of
LAO, denoted LLAO , is the least set of those Φ that contain no free variables:

Φ ::= f | > | ¬Φ | Φ ∧ Φ | α = α | ς = ς | [ς | α]Φ | (∀v)Φ.

The scope of quantifier (∀v′) is determined in the same way as is done in first-order logic. A
variable v appearing in a formula Ψ is said to be bound by quantifier (∀v′) if and only if v is the
same variable as v′ and is in the scope of (∀v′). If a variable is not bound by any quantifier, it is

THE LOGIC OF ACTIONS AND OBSERVATIONS 35

free. In LLAO , variables are not allowed to be free; they are always bound. For example, [vo|α] is
not in LLAO , but (∀vo)[vo|α] is.

⊥ is an abbreviation for ¬>, Φ∨Φ′ is an abbreviation for ¬(¬Φ∧¬Φ′), Φ→ Φ′ is an abbreviation
for ¬Φ ∨ Φ′, Φ ↔ Φ′ is an abbreviation for (Φ → Φ′) ∧ (Φ′ → Φ), c 6= c′ is an abbreviation for
¬(c = c′) and (∃v) is an abbreviation for ¬(∀v)¬. → and↔ have the weakest bindings and ¬ the
strongest; parentheses enforce or clarify the scope of operators conventionally.

The sentence [ς | α]Φ is read ‘Φ must hold after ς is observed, given α is executed’. For instance,
[obsLight | weigh]¬full means ‘After perceiving that the oil-can is light, given a weighing
action, the can is necessarily not full’. [α]Φ is an abbreviation for (∀vo)[vo | α]Φ and is read ‘Φ
must hold (after any/every observation) given α is executed’. For instance, [replace]¬holding
means ‘After replacing the oil-can, it is definitely not being held (regardless of observations)’.

〈α〉Φ and 〈ς | α〉Φ abbreviate ¬[α]¬Φ and ¬[ς | α]¬Φ respectively. One conventional reading for
〈α〉Φ is ‘It is possible that Φ holds after α is performed’. The reading of 〈ς | α〉Φ is ‘It is possible
that Φ holds after ς is perceived, given α is performed’.

4.1.2 Semantics

Our semantics follows that of multi-modal logic K [Popkorn, 1994] with possible worlds [Kripke,
1959, Hintikka, 1962], however, structures do not have the standard Kripke-style semantics (see,
e.g., [Chellas, 1980, Popkorn, 1994, Hughes and Cresswell, 1996]). Standard Kripke modal logic
structures (alias, possible worlds models) are tuples 〈W,R, V 〉, where W is a (possibly infinite)
set of states (possibly without internal structure),R is a binary relation onW , and V is a valuation,
assigning subsets of W to each atomic proposition.

Intuitively, when talking about some world w, we mean a set of features (formally, fluents) that the
agent understands and that describes a state (of affairs) in the world or that describes a possible,
alternative world. Let w : F 7→ {0, 1} be a total function that assigns a truth value to each fluent.
Let C be the set of all possible functions w. We call C the conceivable worlds.

Definition 4.1.2: A LAO structure is a tuple S = 〈W,R,O,N,Q〉 such that

1. W ⊆ C is the nonempty finite set of possible worlds;

2. R is a mapping that provides an accessibility relation Rα ⊆W ×W for each action α ∈ A;

3. O is a nonempty finite set of observations;

4. N : Ω 7→ O is a total bijection that associates to each name in Ω, a unique observation in
O;

5. Q is a mapping that provides a perceivability relation Qα ⊆ O×W for each action α ∈ A;

Rα defines which worlds w+ are accessible via action α performed in world w− and Qα defines
which observations o are perceivable in worlds w+ accessible via action α. For ς ∈ Ω, N(ς) =

o ∈ O. Because N is a total bijection, it follows that |O| = |Ω|. Next we define satisfaction of
formulae in LLAO .

THE LOGIC OF ACTIONS AND OBSERVATIONS 36

Let S be a LAO structure, with α, α′ ∈ A, va ∈ VA, ς, ς ′ ∈ Ω, vo ∈ VΩ and f ∈ F . And let Φ be
any sentence in LLAO .

Definition 4.1.3 (Truth Conditions): We say Φ is satisfied at world w in structure S (written
S, w |= Φ) if and only if the following hold:

1. S, w |= f ⇐⇒ w(f) = 1;

2. S, w |= > for any/every w ∈W ;

3. S, w |= α = α′ ⇐⇒ α, α′ ∈ A are the same element;

4. S, w |= ς = ς ′ ⇐⇒ ς, ς ′ ∈ Ω are the same element;

5. S, w |= [ς | α]Φ ⇐⇒ for all w′, if (w,w′) ∈ Rα and (N(ς), w′) ∈ Qα,
then S, w′ |= Φ;

6. S, w |= ¬Φ ⇐⇒ S, w 6|= Φ;

7. S, w |= Φ ∧ Φ′ ⇐⇒ S, w |= Φ and S, w |= Φ′;

8. S, w |= (∀va)Φ ⇐⇒ S, w |= Φ|vaα for all α ∈ A;

9. S, w |= (∀vo)ϕ ⇐⇒ S, w |= Φ|voς for all ς ∈ Ω,

where we write Φ|vc to mean the formula Φ with all variables v ∈ (VA ∪ VΩ) appearing in it
replaced by constant c ∈ A ∪ Ω of the right sort.

A formula Φ is valid in a LAO structure (denoted S |= Φ) if S, w |= Φ for every w ∈ W . Φ is
LAO-valid (denoted |= Φ) if Φ is valid in every structure S . Φ is satisfiable if S, w |= Φ for some
S and w ∈W .

Let K ⊆ LLAO and Φ ∈ LLAO . We define global semantic consequence (denoted K |=G Φ) as
follows:

for all S, for all κ ∈ K, if S |= κ, then S |= Φ.

Due to the nature of the ‘observation naming’ function N , in the rest of this chapter, to simplify
notation, we let O = Ω (such that N(ς) = ς).

The motivation behind the definition of S, w |= [ς | α]Φ is as follows. Just as worlds w′ are not
considered if (w,w′) 6∈ Rα, worldsw′ are not considered if (ς, w′) 6∈ Qα. In other words, whether
or not a world w′ is reachable (via Rα), if the agent perceived ς and the agent knows that ς is not
perceivable in w′, then the agent knows it is not in w′. Then what is true and false in w′ has no
influence on the satisfaction of S, w |= [ς | α]Φ. But in every world w′ reachable from w and
in which ς is perceivable, Φ must be true. In yet other words, all worlds w′ for which (w,w′) ∈
Rα and (ς, w′) ∈ Qα hold, are possible successor worlds, and only those worlds are possible,
and Φ must be true in all those worlds. While actions can add worlds that an agent believes
possible, thus increasing uncertainty, observations eliminate reachable worlds from consideration,
thus increasing certainty.

In the proof of the proposition below, we use infix notation, that is, we write xAy instead of
(x, y) ∈ A, where A is a binary relation. Infix notation may be used from time to time in this
thesis.

THE LOGIC OF ACTIONS AND OBSERVATIONS 37

Proposition 4.1.1: [α] has the regular multi-modal logic interpretation. That is, if S, w |= [α]Φ,
then For all w′, if wRαw′, then S, w′ |= Φ.

Proof:
Let S be an arbitrary LAO structure and let w be an arbitrary world in S.

S, w |= [α]Φ

⇒ S, w |= (∀vo)[vo | α]Φ

⇒ For all o ∈ O, for all w′, if wRαw′ and oQαw′, then S, w′ |= Φ

⇒ There are no o, w′ s.t. it is not the case that if wRαw′ and oQαw′, then S, w′ |= Φ

⇒ Not: there exist w′ and o s.t. if wRαw′ and oQαw′, then S, w′ 6|= Φ

⇒ Not: there exists w′ s.t. if wRαw′, then S, w′ 6|= Φ

⇒ For all w′, if wRαw′, then S, w′ |= Φ.

q

~ p

w

w

w

1

2

3

S: p

~ p

4
w

~ q

~ q

q

p

go

go

go

o
1 | go

o
1 | go

o
2 | go

o
2 | go

Fig. 4.1: A structure to illustrate the semantics of some basic sentences in LAO. An arrow that does not
emanate from a world but has the symbols “ς | α” at the arrow’s tail, represent the fact that ς is
perceivable in the world at which the arrow terminates, give action α. ∼ denotes ¬.

Consider the example based on Figure 4.1. Observe that

• S, w1 6|= [go]p.

• S, w1 |= [o1 | go]p.

• S, w1 6|= [o1 | go]q.

• S, w1 6|= [o1 | go]¬q.

• S, w1 |= 〈go〉(¬p ∧ ¬q).

THE LOGIC OF ACTIONS AND OBSERVATIONS 38

• S, w1 6|= 〈o1 | go〉(¬p ∧ ¬q).

• S, w1 |= 〈o2 | go〉(¬p ∧ ¬q).

Propositions 4.1.2 and 4.1.3 state that a formula of the form (∀v)ϕ can be interpreted as a finite
conjunction of ϕ where in each conjunct, variable v is replaced by the appropriate constant (action
or observation).

Proposition 4.1.2: Let va ∈ VA and A = {α1, . . . , αn}.
S, w |= (∀va)ϕ iff S, w |= ϕ|vaα1

∧ . . . ∧ ϕ|vaαn .

Proof:
S, w |= (∀va)ϕ
⇐⇒ S, w |= ϕ|vaa for all α ∈ A
⇐⇒ S, w |= ϕ|vaα1

and . . . and S, w |= ϕ|vaαn
⇐⇒ S, w |= ϕ|vaα1

∧ . . . ∧ ϕ|vaαn .

Proposition 4.1.3: Let vo ∈ VΩ and Ω = {ς1, . . . , ςn}.
S, w |= (∀vo)ϕ iff S, w |= ϕ|voς1 ∧ . . . ∧ ϕ|

vo
ςn .

Proof:
Symmetrical to the case for actions.

4.2 Decision Procedure for Semantic Consequence

The decision procedure for global semantic consequence in LAO employs a tableau method and
then post processing of a saturated tableau tree to determine whether the tree is open or closed, as
defined below. The procedure determines whether K |=G Ψ, where K is any set of global axioms
in LLAO and Ψ is any (local) sentence in LLAO .

Because the vocabulary of LAO is finite, it can be assumed that K is finite (assuming K contains
the domain axioms). We also assume Ψ is of finite length.

The necessary definitions and terminology are given next.

Definition 4.2.1: A labeled formula is a pair (x,Ψ), where Ψ ∈ LLAO is a formula and x is an
integer called the label of Ψ.

Definition 4.2.2: A skeleton Σ is a ternary relation Σ ⊆ (Ω ∪N)×A×N. Elements (·, a, n′) of
the relation are denoted · a→ n′.

A skeleton is used to keep track of transitions between worlds and which observations were per-
ceived in which worlds.

Definition 4.2.3: A node Γjk with superscript j (the branch index) and subscript k (the node index)
is a pair 〈∆,Σ〉, where ∆ is a set of labeled formulae and Σ is a skeleton.

Definition 4.2.4: If one has a tree with trunk Γ0
0 = 〈{(0,Ψ)}, ∅〉, we’ll say one has a tree for Ψ.

Definition 4.2.5: A node Γ = 〈∆,Σ〉 is closed if (x,⊥) ∈ ∆ for any x ≥ 0. It is open if it is not
closed. A branch is closed if and only if its leaf node is closed. A tree is closed if all of its leaf
nodes are closed, else it is open.

THE LOGIC OF ACTIONS AND OBSERVATIONS 39

A preprocessing step occurs, where all (sub)formulae of the form (∀va)Φ and (∀vo)Φ are replaced
by, respectively, (Φ|vaα1

∧ . . . ∧ Φ|vaαn) and (Φ|voς1 ∧ . . . ∧ Φ|voςn).

The tableau rules for LAO follow. Let Γjk = 〈∆j
k,Σ

j
k〉 be a leaf node.

1. rule ⊥: If ∆j
k contains (x,Φ) and (x,¬Φ), then create node Γjk+1 = 〈∆j

k ∪ {(x,⊥)},Σj
k〉.

2. rule ¬: If ∆j
k contains (x,¬¬Φ), then create node Γjk+1 = 〈∆j

k ∪ {(x,Φ)},Σj
k〉.

3. rule ∧: If ∆j
k contains (x,Φ ∧ Φ′), then create node Γjk+1 = 〈∆j

k ∪ {(x,Φ), (x,Φ′)},Σj
k〉.

4. rule ∨: If ∆j
k contains (x,¬(Φ ∧Φ′)), then create node Γjk+1 = 〈∆j

k ∪ {(x,¬Φ)},Σj
k〉 and

node Γj
′

0 = 〈∆j
k ∪ {(x,¬Φ′)},Σj

k〉, where j′ is a fresh integer.

5. rule =: If ∆j
k contains (x, c = c′) and in fact, constants c and c′ are not identical, or

if it contains (x, c 6= c′) and in fact, constants c and c′ are identical, then create node
Γjk+1 = 〈∆j

k ∪ {(x,⊥)},Σj
k〉.

6. rule 3: If ∆j
k contains (x,¬[ς | α]Φ): (i) If ∆j

k contains (x′,¬Φ) for some label x′ and ς α→
x′ 6∈ Σ, then create node Γjk+1 = 〈∆j

k,Σ
j
k ∪ {x

α→ x′, ς
α→ x′}〉, (ii) If ∆j

k does not contain
(x′,¬Φ) for some label x′, then create node Γjk+1 = 〈∆j

k ∪ {(x
′,¬Φ), (x′,

∧
κ∈K κ)},Σj

k ∪
{x α→ x′, ς

α→ x′}〉, where x′ is a fresh integer.

7. rule 2: If ∆j
k contains (x, [ς | α]Φ) and Σj

k contains x α→ x′ and ς α→ x′, then create node
Γjk+1 = 〈∆j

k ∪ {(x
′,Φ)},Σj

k〉.

To make explicit that the formulae in K are global, they are all added to each new world (fresh
integer) introduced in rule 〈ς | α〉.

Below, a procedure is provided for determining whether a tableau tree is open or closed. First,
some definitions and observations are required. A leaf node represents a unique (partial) LAO
structure. To ensure soundness and completeness of the decision procedure, a structure must be
constructed for an open tree in a particular manner.

In the following construction of a structure, given some open node, truth-values of some flu-
ents may not be specified by the node. This is true even though, by definition, all worlds are
everywhere-defined. Let Γ = 〈∆,Σ〉 be an arbitrary node.

Definition 4.2.6: We denote the world associated with label x as wx if: wx(f) = 1 if (x, f) ∈ ∆

and wx(f) = 0 if (x,¬f) ∈ ∆ (else wx(f) is unspecified), where f ∈ F . We say that wx is fully
specified in Γ if and only if either (x, f) ∈ ∆ or (x,¬f) ∈ ∆ (but not both) for every f ∈ F .

Next we define when a tree is open or closed. Let Labels(∆) = {0, . . . , k} be all the labels in ∆

(i.e., 0 and the k fresh integers).

Do the following in sequence.

1. Expand the tree to saturation.

2. If the tree is closed, stop. Else continue.

3. If there is an open leaf node Γ = 〈∆,Σ〉 for which there exists a label x ∈ Labels(∆) such
that wx and wx′ are fully specified and wx = wx′ where x 6= x′, continue. Else go to step

THE LOGIC OF ACTIONS AND OBSERVATIONS 40

5. For each open leaf node Γ = 〈∆,Σ〉:

• For every label x ∈ Labels(∆), if wx and wx′ are fully specified and wx = wx′ where
x 6= x′, then replace all x and x′ in ∆ and Σ by the fresh integer x′′.

4. Go to step 1.

5. For each open leaf node Γ = 〈∆,Σ〉:

• If for every label x ∈ Labels(∆), wx is fully specified, then the tree is open, stop. Else
continue.

• For every label x ∈ Labels(∆), if neither (x, f) ∈ ∆ nor (x,¬f) ∈ ∆ for some
f ∈ F , then create children Γ′ and Γ′′ of Γ, where Γ′ = 〈∆ ∪ {(x, f)},Σ〉 and
Γ′′ = 〈∆ ∪ {(x,¬f)},Σ〉.

6. Go to step 1.

Definition 4.2.7: We call the state of a tree after the decision procedure has stopped finished.

In essence, what the decision procedure does is create a new node for each different world a label
can represent, merge labels when they represent the same world, and once all labels in a node
represent fully specified worlds, a check is made of whether any of these nodes is open after all
applicable rules have been applied.

Definition 4.2.8: Let K be a finite subset of LLAO . If a tree for
∧
κ∈K κ∧¬Ψ is closed, we write

K `LAO Ψ. If there is a finished open tree for
∧
κ∈K κ ∧ ¬Ψ, we write K 6`LAO Ψ.

4.3 Properties of the Decision Procedure

All proofs not given here can be found in the appendix Section A.1.

4.3.1 Soundness

Lemma 4.3.1: Let T be a finished tree. For every node Γ = 〈∆,Σ〉 in T : If there exists a structure
S such that for all w ∈ W, S, w |=

∧
κ∈K κ and for every x ∈ Labels(∆), there exists a w′ ∈ W

such that for all (x,Φ) ∈ Γ, S, w′ |= Φ, then the (sub)tree rooted at Γ is open.

Theorem 4.3.1: (Soundness) If K `LAO Φ then K |=G Φ.

4.3.2 Completeness

We start with the description of the construction of a LAO structure, given the leaf node Γ =

〈∆,Σ〉 of a finished tree. Let S = 〈W,R,O,N,Q〉 be a structure defined as follows:

• W = {wx | for each label x ∈ Labels(∆)}.

• R = {Rα | α ∈ A} s.t. Rα = {(wx, wx′) | x
α→ x′ ∈ Σ}.

• O = Ω.

THE LOGIC OF ACTIONS AND OBSERVATIONS 41

• N(ς) = ς .

• Q = {Qα | α ∈ A} s.t. Qα = {(ς, wx) | ς α→ x ∈ Σ}.

In the definition of the possible worlds W in the construction above, one can think of each label
x representing world wx. Note that if a structure is being constructed from an open leaf node of
a finished tree (after the decision procedure), all worlds associated with labels in the tree will be
fully specified. Moreover, each label will represent a unique world, that is, x, x′ ∈ Labels(Γ)

such that x 6= x′ if and only if wx, wx′ ∈W such that wx 6= wx′ .

Lemma 4.3.2: By Definition 4.1.2, if S is constructed as above, S is a LAO structure.

Proof:
1. W is nonempty because w0 must be in W . It is finite because W ⊆ C, in other words, 2|F|

is the maximum number of worlds;

2. R is a mapping that provides a relation Rα : W 7→W for each action α ∈ A;

3. O = Ω is a nonempty finite set of observations;

4. N : Ω 7→ O is a total bijection;

5. Q is a mapping that provides a relation Qα : O 7→W for each action α ∈ A;

Let Γ = 〈∆,Σ〉 be an open leaf node of a finished tree. By the first bullet point of step 5 of the
decision procedure and due to Γ being an open leaf node, wx is fully specified for every label
x ∈ Labels(∆) (cf. Def. 4.2.6). Moreover, by step 3, wx is unique in that x, x′ ∈ Labels(Γ) such
that x 6= x′ if and only if wx, wx′ ∈W such that wx 6= wx′ .

Lemma 4.3.3: Let Γ be an open leaf node of a finished tree. For all x ∈ Labels(∆), if (x,Φ) ∈ ∆,
then S, wx |= Φ.

Theorem 4.3.2: (Completeness) If K |=G Φ then K `LAO Φ.

4.3.3 Termination

Definition 4.3.1: Let Φ′ be a strict sub-part of Φ. A tableau rule has the subformula property if
and only if the new node(s) (Γ′) created by the application of the rule, contains (x,Φ′) or (x,¬Φ′)

for some x, due to applying the rule.

Lemma 4.3.4: A tree for any formula Φ ∈ LLAO becomes saturated at step 1 of the decision
procedure.

Proof:
We can divide all the tableau rules into two categories: (i) those which add ⊥ to the new node
and (ii) those with the subformula property. Category-(i) rules never cause rules to become appli-
cable later. As a direct consequence of sentences being finite and the subformula property, every
category-(ii) rule must eventually become inapplicable. Therefore, all rules eventually become
inapplicable, and it follows that any tree (for any formula) would become saturated.

THE LOGIC OF ACTIONS AND OBSERVATIONS 42

Theorem 4.3.3: The entailment decision procedure for LAO terminates.

Proof:
A tree is either open or closed. If it is closed, the procedure will stop at step 2. We must show that
if the tree does not become closed, step 5 will eventually be reached while for some open leaf node
〈∆,Σ〉, for every label x ∈ Labels(∆), wx is fully specified (because then the procedure stops).

Due to Lemma 4.3.4, step 1 always terminates (with a finite number of tree branches).

If the iterative part of step 3 is reached (the bullet point in step 3), the size of Labels(∆) (for
each leaf node) can only remain the same or become smaller. But could it happen that due to the
application of the iterative part of step 3, one or more fresh labels are introduced in step 1 such that
the iterative part of step 3 is always executed? Only rule 3 can introduce a fresh integer, moreover,
only when (x,¬[ς | α]Φ) ∈ ∆ and (x′,¬Φ) 6∈ ∆ for some labels x, x′. But this condition will
not become true when previously false simply because x or x′ are changed for new integers. (By
the time a tree is saturated, whenever (x,¬[ς | α]Φ) ∈ ∆ for some x, (x′,¬Φ) ∈ ∆ for some x′.)
Hence, eventually, the iterative part of step 3 becomes inapplicable for all open leaf nodes, and
when the process enters step 3, it jumps to step 5. Due to successive applications of the second
bullet point of step 5, for some open leaf node 〈∆,Σ〉, for every label x ∈ Labels(∆), wx is fully
specified, and the procedure stops.

Corollary 4.3.1: The entailment problem for LAO is decidable.

Because the procedure is sound (Th. 4.3.1), complete (Th. 4.3.2) and terminating (Th. 4.3.3),
entailment is decidable.

4.4 Introducing Domain Specification Concepts

Here we introduce the ideas behind specifying action rules and perception rules. In the context of
LAO, we are interested in four things in the domain of interest:

(i) The initial condition, that is, a specification of the world the agent finds itself in when it becomes
active. The agent’s initial condition will be referred to as IC and is a sentence involving only
fluents.

(ii) There will likely be facts about the domain that do not change; fixed laws about parts of
the environment. Static laws are axioms about phenomena such as, ‘a roof is above a floor’,
‘aeroplanes fly’, ‘my cat’s name is Zoë’ and so on. Refer to these laws as SL.

(iii) The dynamics of the environment or system must be specified. That is, rules about the effects
of actions and about conditions for performing the actions must be provided. Refer to these action
rules as AR.

(iv) The observability of the environment must be specified. That is, rules about which observa-
tions are perceivable in which situations (worlds). Refer to these perception rules as PR.

The union of SL, AR and PR is referred to as an agent’s background knowledge and is denoted
BK . The main task in LAO is to determine whether some sentence of interest Φ ∈ LLAO is true in
the initial condition, given an agent’s background knowledge, that is, whether BK |=G IC → Φ.

THE LOGIC OF ACTIONS AND OBSERVATIONS 43

e

~e

e

~e

f ~f

f ~f

B

B

D

D

Fig. 4.2: An example of four possible worlds with two nondeterministic actions, B and D. It is assumed
that no action is executable from worlds in which f is false. Tilde (∼) represents negation.

These ideas are expanded upon, with the help of the oil-drinking scenario, in Section 4.5. For now,
to simplify the exposition, we refer to the transition diagram depicted in Figure 4.2 instead of the
oil-drinking scenario.

4.4.1 Action

Figure 4.2 is a simple example with four conceivable worlds—determined by two fluents e and
f—and two nondeterministic actions B and D. Observations are not mentioned in the figure, but
they need not be considered when developing a theory of the effects of actions. More will be said
about observations later in this section.

How can we capture the behavior of B? The following axiom seems reasonable.

e ∧ f → 〈B〉(e ∧ ¬f) ∧ 〈B〉(¬e ∧ ¬f). (4.1)

That is, whenever I am in a (e ∧ f)-world (i.e., a world which satisfies e ∧ f), it is possible to end
up in a (e ∧ ¬f)-world after executing action B and it is possible to end up in a (¬e ∧ ¬f)-world
after executing action B.

One might say that Equation 4.1 leads to a contradiction, but in modal logic, {〈α〉ϕ∧ 〈α〉ϕ′} 6|=G

〈α〉(ϕ ∧ ϕ′).

As a matter of interest, expressing the effects of an action can usually be done in several ways. For
instance, the effects of B could also be written as

e ∧ f → 〈B〉e ∧ 〈B〉¬e ∧ [B]¬f.

To be able to infer what effects B cannot have and what happens when preconditions are not met,
we need axioms to capture completeness assumptions, that is, axioms to guarantee that what we
have said about the behavior of B, completely specifies its behavior.

THE LOGIC OF ACTIONS AND OBSERVATIONS 44

Adding the ‘reverse’ implication

e ∧ f ← 〈B〉(e ∧ ¬f) ∧ 〈B〉(¬e ∧ ¬f)

which is semantically equivalent to

¬(e ∧ f)→ ¬(〈B〉(e ∧ ¬f) ∧ 〈B〉(¬e ∧ ¬f))

which is semantically equivalent to

¬e ∨ ¬f → [B](¬e ∨ f) ∨ [B](e ∨ f)

will not work. This states that if condition ¬e ∨ ¬f holds, then it is always the case that ¬e ∨ f
or it is always the case that e ∨ f , which is not what we want. To express that it is impossible for
effect e ∧ ¬f or effect ¬e ∧ ¬f not to occur under condition e ∧ f , one can write

e ∧ f → ¬〈B〉¬((e ∧ ¬f) ∨ (¬e ∧ ¬f)). (4.2)

In other words, to express that all the effects of performing B in a (e ∧ f)-world are e ∧ ¬f and
¬e ∧ ¬f , one can write (4.2) or

e ∧ f → [B]((e ∧ ¬f) ∨ (¬e ∧ ¬f)). (4.3)

Axioms (4.2) and (4.3) are semantically equivalent. This is the effect closure of Axiom (4.1).

To express that e ∧ f is the only condition under which action B can have an effect, we need an
axiom which states that under any other conditions, there are no effects. Another way of saying
this is to say that B cannot be executed when the agent is not in the (e ∧ f)-world:

¬(e ∧ f)→ [B]⊥ (4.4)

which is semantically equivalent to

¬e ∨ ¬f → ¬〈B〉> (4.5)

which is semantically equivalent to
〈B〉> → e ∧ f. (4.6)

In fact, the general form of an axiom to state that action α is inexecutable under condition φ, is

φ→ ¬〈α〉>.

Axioms (4.4), (4.5) and (4.6) are each the condition closure of Axiom (4.1).

Notice that Axiom (4.1) entails e ∧ f → 〈B〉>. In general, an axiom to state that action α is
executable under condition φ, has the form

φ→ 〈α〉>.

Therefore, effect axioms automatically specify the conditions under which actions can be exe-

THE LOGIC OF ACTIONS AND OBSERVATIONS 45

e

~e

e

~e

f ~f

f ~f

B

B

D

D

O

O

O

O

OO2

2

1

1

3

3

Fig. 4.3: An example indicating which observations (O1, O2, O3, O4) are perceivable in which possible
worlds.

cuted. Hence, we could have written e∧f ↔ 〈B〉> instead of Axiom (4.4), but it is not necessary.

To summarize, the full specification of the transition model represented by Figure 4.2 follows.

e ∧ f → 〈B〉(e ∧ ¬f) ∧ 〈B〉(¬e ∧ ¬f) ¬e ∧ f → 〈D〉(¬e ∧ f) ∧ 〈D〉(e ∧ ¬f)

e ∧ f → [B]((e ∧ ¬f) ∨ (¬e ∧ ¬f)) ¬e ∧ f → [D]((¬e ∧ f) ∨ (e ∧ ¬f))

〈B〉> → e ∧ f 〈D〉> → ¬e ∧ f.

4.4.2 Perception

Figure 4.3 is the same transition diagram as Figure 4.2, but with the information about observations
added. Figure 4.3 shows that four observations (O1, O2, O3, O4) are perceivable. A short (in this
example, green) arrow entering a world from nowhere indicates that the observation which labels
the arrow is perceivable in that world. There are a few things that need pointing out. In every
reachable world (via B or D), at least one observation is perceivable. No perception is possible in
unreachable worlds. There is no fundamental constraint on which observations are perceivable in
reachable worlds.

Axioms describing when these observations are perceivable follow.

〈O1 | B〉(e ∧ ¬f) 〈O1 | D〉(e ∧ ¬f)

〈O2 | B〉(e ∧ ¬f) 〈O2 | D〉(e ∧ ¬f)

〈O3 | B〉(e ∧ ¬f) 〈O3 | D〉(e ∧ ¬f)

〈O1 | B〉(¬e ∧ ¬f) 〈O2 | D〉(¬e ∧ f)

〈O3 | B〉(¬e ∧ ¬f)

Stating which observations are imperceivable (in the reachable worlds) is done with the following

THE LOGIC OF ACTIONS AND OBSERVATIONS 46

axioms.
¬〈O2 | B〉(¬e ∧ ¬f) ¬〈O1 | D〉(¬e ∧ f) ¬〈O3 | D〉(¬e ∧ f)

4.5 Specifying the Oil-drinking Scenario

In this section, we completely specify or model the oil-drinking scenario. Some issues in domain
specification, in general, which were not covered in the two previous sections, will be discussed
here. These issues are easier to explain with the aid of the scenario.

The set of fluents is F = {full, drank, holding}, denoted f , d and h, respectively, in the
figures. Figures 4.4, 4.5, 4.6 and 4.7 are the transition diagrams for the scenario, corresponding
to the four actions the robot can perform (the ∼ indicates negation of a fluent). The set of actions
is A = {grab, weigh, drink, replace}. The set of observations is Ω = {ObsNil, obsLight,
obsMedium, obsHeavy}.

What does it mean to say the robot drank the oil? Normally, it would mean that the robot had
the oil-can in its gripper, the can was initially full and the oil was successfully poured into its
mouth (the robot did not miss its mouth). But what action would one say the robot performed if
its arm and gripper made the same movements as in a ‘successful’ drinking action, but without the
oil-can in its gripper, having initially missed grabbing it? We would at least want to say that the
robot attempted a drinking action. However, the successful drinking attempt is also an attempt.
Suppose the oil-can is under a table, the table top’s hight is below the robot’s mouth and the
robot is standing against the table. Suppose further that the robot successfully grabs the can under
the table, raises its arm towards its mouth but is barred by the table top (from underneath) from
bringing the can to its mouth. We would say that the robot had the intention of drinking the oil,
although it was a failed attempt. A final example: suppose some unknown agent took the oil-can
and poured the oil into the robot’s mouth. One could say that the robot drank the oil, but then one
is talking about effects, not about the robot’s physical activity or intended physical activity. Our
approach to modeling actions is thus the following.

An action is the attempt to execute a recognized physical activity. When it is said that an
action was performed, it means the action was attempted, independent of success or failure.
The success/failure of the action is measured by the effects of the action.

What we mean by “recognized” is that the physical activity is a skill the agent knows it has and it
has a name for the skill.

So even if there is no oil-can in the robot’s gripper, if the robot initiated the drink action, tech-
nically speaking, one may say that the robot drank. However, to avoid confusion while talking
about actions in natural language, one should refrain from saying the robot ‘drank’ without adding
whether it was a success or a failed attempt—unless it is clear in the particular discussion that only
action attempts are being discussed.

A related issue is executability. In our work, executability is with respect to the ontic view, not the
deontic view. In other words, independent of an action being permissible (deontic view), if it is
physically possible (ontic view), it is executable. For instance, the action of poking your finger in

THE LOGIC OF ACTIONS AND OBSERVATIONS 47

your eye is possible (executable), but you usually decide not to. Our second principle for actions
is thus the following.

An action is executable in a world if and only if the situation represented by the world implies
that the action is physically possible.

What constitutes physical possibility of actions is up to the knowledge engineer to decide. How-
ever, such design choices must be clearly stated and motivated, and consistently applied.

We do not claim that the following specification is the only correct way. Due to the limited
number of fluents, actions and observations, what can be expressed is also limited. In other words,
one could have got closer to a satisfactory specification of the scenario with more objects in the
vocabulary (given the constraints of the syntax of LAO), however, for illustration purposes, we
have kept the vocabulary as small as possible without being (completely) trivial.

f
d

h

grab

~f

f ~f

f ~f

f

~f

d

d d

~d

~d ~d~d

h

h h

~h ~h

~h

~h

obsNil

Fig. 4.4: Transition diagram for grab. All blue arcs represent transitions due to the action. All green arrows
represent an obsNil observation.

The robot can grab at the oil-can in the four worlds where it is not holding anything. Due to the
possibility of knocking the can and spilling some oil, and the possibility of not grabbing hold of
the can, and due to the uncertainty of what will happen, more than one world is reachable from
any of the four worlds in which grab is executable. If the robot successfully grabs the can, it did
not knock it and spill the oil.

The robot will only attempt a drink action when holding the oil-can. It is arguable whether it is
physically possible to attempt drinking when not holding the can. We have made the design choice
that it is impossible. The only reachable worlds via drink are where the oil-can is not full and the

THE LOGIC OF ACTIONS AND OBSERVATIONS 48

f d
h

drink

~f

f ~f

f ~f

f

~f

d

d d

~d

~d ~d~d

h

h h

~h ~h

~h

~h

obsNil

obsNil

Fig. 4.5: Transition diagram for drink. All blue arcs represent transitions due to the action.

robot is holding the can. Drinking always results in the can being empty, because either the robot
successfully consumes the oil, or misses its mouth and spills the oil. Note that when the can is full
and the robot has not drunk the oil, then after a drink action, either drank will be true, or it will
be false when the robot misses its mouth.

When replacing the oil-can, the robot never spills the oil (if the can contains oil). Here it is
assumed that the robot to be modeled is expert at placing the can on the floor.

The motivation for modeling weigh as represented in Figure 4.7 is as follows. Firstly, weigh is
a sensory action; it does not change the state of the world (hence, the loop arcs). However, the
robot can tell which observations are perceivable in the four reachable worlds. Weighing can only
occur when the oil-can is being held. In the (f ∧ d ∧ h)-world, it is a contradiction to say that
the can is full and the robot has drunk the oil. The best way to reflect this ‘chaotic’ situation is to
say that all observations associated with weigh are perceivable. (The reason why ObsNil is not
associated with weigh is discussed a little later.) In the (¬f ∧ d∧ h)-world, it seems highly likely
that there is no more oil in the can: it has either been drunk or spilt. The can thus weighs light. In
the (f ∧¬d∧h)-world, the fact that the oil-can is said to be full, means that nothing has been spilt.
Moreover, due to drank being negative, the drink action has probably not been attempted. The
can is thus very likely completely full and heavy. The (¬f ∧¬d∧ h)-world seems to indicate that
some oil was spilt out of the can when the can was grabbed. The can could have been knocked
over, spilling all the oil, or just bumped, spilling a little bit of oil. Either way, if the can is not full,
it is not heavy.

Besides the more obvious information represented, one can glean from the diagrams that

THE LOGIC OF ACTIONS AND OBSERVATIONS 49

f d
h

~f

f ~f

f ~f

f

~f

d

d d

~d

~d ~d~d

h

h h

~h ~h

~h

~h

obsNil

replace

Fig. 4.6: Transition diagram for replace. All blue arcs represent transitions due to the action.

f d
h

~f

f ~f

f ~f

f

~f

d

d d

~d

~d ~d~d

h

h h

~h ~h

~h

~h

obsHeavy obsLight

weigh

obsHeavy

obsLight

obsLight

obsMedium

obsMedium

Fig. 4.7: Transition diagram for weigh. All blue arcs represent transitions due to the action.

THE LOGIC OF ACTIONS AND OBSERVATIONS 50

• drank is invariant with grab.

• All fluents are invariant with weigh.

• full and drank are both invariant with replace.

We now write the effect axioms, effect closure axioms and inexecutability axioms for the four
actions.

4.5.1 Effect Axioms

Effect axioms have the form

φ→ 〈α〉ϕ1 ∧ 〈α〉ϕ2 ∧ · · · ∧ 〈α〉ϕk,

where φ is the condition for effects ϕ1, ϕ2, . . . , ϕk, given α is executed in a φ-world. For every
action, there is a set of such axioms, an axiom for each condition.

f ∧ d ∧ ¬h → 〈grab〉(f ∧ d ∧ h) ∧ 〈grab〉(f ∧ d ∧ ¬h) ∧ 〈grab〉(¬f ∧ d ∧ ¬h)

¬f ∧ d ∧ ¬h → 〈grab〉(¬f ∧ d ∧ h) ∧ 〈grab〉(¬f ∧ d ∧ ¬h)

f ∧ ¬d ∧ ¬h → 〈grab〉(f ∧ ¬d ∧ h) ∧ 〈grab〉(f ∧ ¬d ∧ ¬h) ∧ 〈grab〉(¬f ∧ ¬d ∧ ¬h)

¬f ∧ ¬d ∧ ¬h → 〈grab〉(¬f ∧ ¬d ∧ h) ∧ 〈grab〉(¬f ∧ ¬d ∧ ¬h)

¬f ∧ d ∧ h → 〈drink〉(¬f ∧ d ∧ h)

f ∧ ¬d ∧ h → 〈drink〉(¬f ∧ d ∧ h) ∧ 〈drink〉(¬f ∧ ¬d ∧ h)

¬f ∧ ¬d ∧ h → 〈drink〉(¬f ∧ ¬d ∧ h)

f ∧ d ∧ h → 〈replace〉(f ∧ d ∧ ¬h)

¬f ∧ d ∧ h → 〈replace〉(¬f ∧ d ∧ ¬h)

f ∧ ¬d ∧ h → 〈replace〉(f ∧ ¬d ∧ ¬h)

¬f ∧ ¬d ∧ h → 〈replace〉(¬f ∧ ¬d ∧ ¬h)

f ∧ d ∧ h → 〈weigh〉(f ∧ d ∧ h)

¬f ∧ d ∧ h → 〈weigh〉(¬f ∧ d ∧ h)

f ∧ ¬d ∧ h → 〈weigh〉(f ∧ ¬d ∧ h)

¬f ∧ ¬d ∧ h → 〈weigh〉(¬f ∧ ¬d ∧ h)

4.5.2 Effect Closure Axioms

For each effect axiom, there must be an associated effect closure axiom of the form

φ→ [α](ϕ1 ∨ ϕ2 ∨ · · · ∨ ϕk)

THE LOGIC OF ACTIONS AND OBSERVATIONS 51

or a semantically equivalent sentence.2 Effect closure axioms are similar to but not the same as
frame axioms. Frame axioms are not used in this chapter; see the discussion in the last section.

f ∧ d ∧ ¬h → [grab]((f ∧ d) ∨ (¬f ∧ d ∧ ¬h))

¬f ∧ d ∧ ¬h → [grab](¬f ∧ d)

f ∧ ¬d ∧ ¬h → [grab]((f ∧ ¬d) ∨ (¬f ∧ ¬d ∧ ¬h))

¬f ∧ ¬d ∧ ¬h → [grab](¬f ∧ ¬d)

¬f ∧ d ∧ h → [drink](¬f ∧ d ∧ h)

f ∧ ¬d ∧ h → [drink](¬f ∧ h)

¬f ∧ ¬d ∧ h → [drink](¬f ∧ ¬d ∧ h)

f ∧ d ∧ h → [replace](f ∧ d ∧ ¬h)

¬f ∧ d ∧ h → [replace](¬f ∧ d ∧ ¬h)

f ∧ ¬d ∧ h → [replace](f ∧ ¬d ∧ ¬h)

¬f ∧ ¬d ∧ h → [replace](¬f ∧ ¬d ∧ ¬h)

f ∧ d ∧ h → [weigh](f ∧ d ∧ h)

¬f ∧ d ∧ h → [weigh](¬f ∧ d ∧ h)

f ∧ ¬d ∧ h → [weigh](f ∧ ¬d ∧ h)

¬f ∧ ¬d ∧ h → [weigh](¬f ∧ ¬d ∧ h)

4.5.3 Inexecutability Axioms

We now extend the discussion about condition closure started in Section 4.4.1. Suppose there are
` effect axioms for action α, with conditions φ1, φ2, . . . , φ`, respectively. Then, assuming that
effect axioms are meant to say all there is to be said about actions (the completeness assumption),
we want to express that if a world does not satisfy one of the ` conditions, then it is not possible
to execute. This can be written as

¬(φ1 ∨ φ2 ∨ · · · ∨ φ`)→ ¬〈α〉>

or
〈α〉> → (φ1 ∨ φ2 ∨ · · · ∨ φ`).

Often φ1 ∨ φ2 ∨ · · · ∨ φ` has a compact equivalent form.
2 Note that one does not employ effect closure axioms in the subsequent logics, because of the extra information

provided by probabilities.

THE LOGIC OF ACTIONS AND OBSERVATIONS 52

〈grab〉> → ¬h
〈drink〉> → h ∧ ¬(f ∧ d)

〈replace〉> → h

〈weigh〉> → h

Incidentally, the inverse of the inexecutability axioms state the executability of the incumbent
action. We know that, for instance, grab is executable only under the condition that holding is
false; given the completeness assumption, we thus know that grab is inexecutable when holding

is true. That is,
holding→ ¬〈grab〉>.

However, this is semantically equivalent to

〈grab〉> → ¬h.

Hence,

Remark 4.5.1: Due to inexecutability axioms being derived from the process of condition clo-
sure, they can also be called condition closure axioms.

4.5.4 Perceivability Axioms

Next we discuss the specification of perception. Let E(α) = {ϕ1, ϕ2, . . . , ϕk×`} be the set of all
effects of action α executed under all executable conditions. Then the perceivability axioms for α
are

(∀vo) vo = ς11 ∨ vo = ς12 ∨ · · · ∨ vo = ς1m ↔ 〈vo | α〉φ1

(∀vo) vo = ς21 ∨ vo = ς22 ∨ · · · ∨ vo = ς2m ↔ 〈vo | α〉φ2

...

(∀vo) vo = ς11 ∨ vo = ς12 ∨ · · · ∨ vo = ς1m ↔ 〈vo | α〉φj ,

where, (i) φ1 ∨ φ2 ∨ · · · ∨ φj ≡
∨
ϕ∈E(α) ϕ and (ii) for any pair φi and φi′ , φi ∧ φi′ ≡ ⊥.

The first axiom, for instance, expresses that in a φ1-world, given α was executed, ς11, ς12, . . . , ς1m
are perceivable, and any other observations are imperceivable when φ1.

It is convenient to define ontic (physical) actions and sensory actions. Ontic actions have inten-
tional ontic effects, that is, effects on the environment that were the main intention of the agent.
In every world reached via an ontic action, there is exactly one particular perception, that is, the
null perception, or the perception of the special observation obsNil . Sensory actions result in
perceptions beside obsNil , and might only have (unintended) side-effects. For now, however, we
constrain all sensory actions to have no side-effects.

THE LOGIC OF ACTIONS AND OBSERVATIONS 53

Suppose αont is an ontic action. Then it will have perception axioms of the form

(∀vo) vo = obsNil↔ 〈vo | αont〉ϕ1

(∀vo) vo = obsNil↔ 〈vo | αont〉ϕ2

...

(∀vo) vo = obsNil↔ 〈vo | αont〉ϕm,

which can be written as

(∀vo) vo = obsNil→ 〈vo | αont〉ϕ1

(∀vo) 〈vo | αont〉ϕ1 → vo = obsNil

(∀vo) vo = obsNil→ 〈vo | αont〉ϕ2

(∀vo) 〈vo | αont〉ϕ2 → vo = obsNil

...

(∀vo) vo = obsNil→ 〈vo | αont〉ϕm
(∀vo) 〈vo | αont〉ϕm → vo = obsNil,

which can be written as

(∀vo) vo = obsNil→ 〈vo | αont〉ϕ1 ∧ 〈vo | αont〉ϕ2 ∧ · · · ∧ 〈vo | αont〉ϕm
(∀vo) 〈vo | αont〉ϕ1 → vo = obsNil

(∀vo) 〈vo | αont〉ϕ2 → vo = obsNil

...

(∀vo) 〈vo | αont〉ϕm → vo = obsNil,

which can be written as

〈obsNil | αont〉ϕ1 ∧ 〈obsNil | αont〉ϕ2 ∧ · · · ∧ 〈obsNil | αont〉ϕm
(∀vo) 〈vo | αont〉ϕ1 ∨ 〈vo | αont〉ϕ2 ∨ · · · ∨ 〈vo | αont〉ϕm → vo = obsNil,

which can be written as

〈obsNil | αont〉ϕ1 ∧ 〈obsNil | αont〉ϕ2 ∧ · · · ∧ 〈obsNil | αont〉ϕm (4.7)

(∀vo) 〈vo | αont〉(ϕ1 ∨ ϕ2 ∨ · · · ∨ ϕm)→ vo = obsNil. (4.8)

Often ϕ1 ∨ ϕ2 ∨ · · · ∨ ϕm has a compact equivalent form.

The perceivability axioms for ontic actions can thus be written in this compact form (4.7 and
4.8). Due to sensory actions typically involving more than one observation and the observations
possibly being different for different worlds, such a generally applicable compact form cannot be
suggested for sensory actions. The perceivability axioms for the oil-drinking scenario follow.

THE LOGIC OF ACTIONS AND OBSERVATIONS 54

〈obsNil | grab〉(f ∧ d ∧ h) ∧ 〈obsNil | grab〉(f ∧ d ∧ ¬h)∧
〈obsNil | grab〉(f ∧ ¬d ∧ h) ∧ 〈obsNil | grab〉(f ∧ ¬d ∧ ¬h)∧
〈obsNil | grab〉(¬f ∧ d ∧ h) ∧ 〈obsNil | grab〉(¬f ∧ d ∧ ¬h)∧
〈obsNil | grab〉(¬f ∧ ¬d ∧ h) ∧ 〈obsNil | grab〉(¬f ∧ ¬d ∧ ¬h)

(∀vo) 〈vo | grab〉> → vo = obsNil

〈obsNil | drink〉(¬f ∧ d ∧ h) ∧ 〈obsNil | drink〉(¬f ∧ ¬d ∧ h)

(∀vo) 〈vo | drink〉(¬f ∧ h)→ vo = obsNil

〈obsNil | replace〉(f ∧ d ∧ ¬h) ∧ 〈obsNil | replace〉(f ∧ ¬d ∧ ¬h)∧
〈obsNil | replace〉(¬f ∧ d ∧ ¬h) ∧ 〈obsNil | replace〉(¬f ∧ ¬d ∧ ¬h)

(∀vo) 〈vo | replace〉¬h→ vo = obsNil

(∀vo) vo 6= obsNil↔ 〈vo | weigh〉(f ∧ d ∧ h)

(∀vo) vo = obsLight↔ 〈vo | weigh〉(¬f ∧ d ∧ h)

(∀vo) vo = obsHeavy↔ 〈vo | weigh〉(f ∧ ¬d ∧ h)

(∀vo) vo = obsLight ∨ vo = obsMedium↔ 〈vo | weigh〉(¬f ∧ ¬d ∧ h).

4.6 Example Entailments

This section includes several examples of the decision procedure at work, all involving our oil-
drinking scenario. The main task in LAO is to determine whether an arbitrary sentence Φ is
implied by the initial condition IC , given the agent’s background knowledge of static laws SL,
action rules AR and perception rules PR. That is, we want to determine whether

BK |=G IC → Φ,

where BK = SL ∪AR ∪ PR.

As explained in the previous chapter, the trunk of the tree must be

〈{(0,
∧

κ∈BK

κ ∧ ¬(IC → Φ))}, ∅〉,

which can be written as

〈{(0, κ1), (0, κ2), . . . , (0, κz), (0, IC), (0,¬Φ)}, ∅〉

with some pre-processing, where BK = {κ1, κ2, . . . , κz}.

For the examples in this section, let SL be empty, AR consists of the effect axioms, effect clo-
sure axioms and inexecutability axioms, and PR consists of the perceivability axioms of the oil-
drinking scenario presented in Section 4.5. Let IC = {f ∧ ¬d ∧ ¬h}.

Tables 4.1 to 4.8 depict the tableaux of the different examples. In the examples, to shorten and
clarify proofs, we shall use syntactic abbreviations, and we shall not show every rule application,

THE LOGIC OF ACTIONS AND OBSERVATIONS 55

as long as the steps remain clear. The ‘Comment’ column mentions the rule applied and the
numbers in the ‘Comment’ column refer to the line to which the rule was applied. Furthermore,
the following abbreviations for constants will be used: grab := g, drink := di, weigh := w,
replace := r, full := f , drank := d, holding := h, obsNil := oN , obsHeavy := oH ,
obsMedium := oM and obsLight := oL.

Standard logical equivalences will be used to transform formulae into more ‘normal’ forms: “nf.
x” in the ‘Comment’ column means that ‘normal forming’ was applied to line x. “rule R` xw.z”
means that rule R` was applied to a formula in line x with the aid of an element of Σ in line z. If
there is not enough space in the ‘Comment’ column, the comment will be written just beneath the
applicable node.

Occurrences of sentences of the form

(x, `1 ∧ `2 ∧ · · · ∧ `k → Φ1 ∧ Φ2 ∧ · · · ∧ Φm)

will be processed into

(x, ¯̀
1) OR (x, ¯̀

2) OR · · · OR (x, ¯̀
k) OR (x,Φ1), (x,Φ2), · · · (x,Φm),

where `i is a fluent literal and ¯̀
i is a fluent literal with polarity opposite to `i, and OR indicates

branching.

Line Γ & Σ Comment

1 (0, κ1), (0, κ2), . . . , (0, κz), (0, IC), (0,¬¬[g]h) trunk

2 (0, f ∧ ¬d ∧ ¬h→ · · · ∧ 〈g〉(f ∧ ¬d ∧ ¬h) ∧ · · ·), (0, f), (0,¬d), (0,¬h), (0, [g]h) rule ∧ & nf. 1

3 (0,¬f) (0, d) (0, h) (0, 〈g〉(f ∧ ¬d ∧ ¬h)) rule ∨ & nf. 2

4 (0,⊥) (0,⊥) (0,⊥) (1, f), (1,¬d), (1,¬h), 0
g−→ 1, . . . rule 3 & ∧ 3

5 rule ⊥ 2,3 rule ⊥ 2,3 rule ⊥ 2,3 (1, h) rule 2 1w.4

6 (1,⊥) rule ⊥ 4,5

Tab. 4.1: Proof that BK |=G IC→ 〈grab〉¬holding.

Table 4.1 proves that it is possible for the robot not to be holding the oil-can (to have missed it)
after grabbing at it in the initial condition.

Line Γ & Σ Comment

1 (0, κ1), (0, κ2), . . . , (0, κz), (0, h), (0,¬[r]¬h)) trunk

2 (1, h), 0
r−→ 1, oN

r−→ 1, oH
r−→ 1, oM

r−→ 1, oL
r−→ 1 rule 3 1

3 (0,¬f ∧ ¬d ∧ h→ [r](¬f ∧ ¬d ∧ ¬h)) AR

4 (0, f ∧ d ∧ h→ [r](f ∧ d ∧ ¬h)) AR

5 (0,¬f ∧ d ∧ h→ [r](¬f ∧ d ∧ ¬h)) AR

6 (0, f ∧ ¬d ∧ h→ [r](f ∧ ¬d ∧ ¬h)) AR

7 (0, f) (0, d) (0,¬h) (0, [r](¬f ∧ ¬d ∧ ¬h)) from 3

8 (0,¬f) (0,¬d) (0,¬h) (0, [r](¬f ∧ d ∧ ¬h)) Tbl. 4.4 (0,⊥) (1,¬f), (1,¬d), (1,¬h) rule 2 7w.2

9 from 4 from 4 from 4 from 4 rule ⊥ 1,7 (1,⊥) rule ⊥ 2,8

10 (0,⊥) Tbl. 4.3 (0,⊥) (1,¬f), (1, d), (1,¬h)

11 rule ⊥ 7,8 rule ⊥ 1,8 (1,⊥)

12 rule ⊥ 2,10

Tab. 4.2: Proof that BK |=G holding→ [replace]¬holding. Continues in Tables 4.3 and 4.4.

THE LOGIC OF ACTIONS AND OBSERVATIONS 56

Tables 4.2 through 4.4 prove that if all the robot initially knows—besides its background knowledge—
is that it is holding the can, then it is necessary that it is not holding it after replacing the can.

Line Γ & Σ Comment

1 (0,¬f) (0, d) (0,¬h) (0, [r](f ∧ ¬d ∧ ¬h)) from 4 in Tbl. 4.2

2 (0,⊥) (0,⊥) (0,⊥) (1, f), (1,¬d), (1,¬h)

3 rule ⊥ 1, and rule ⊥ 1, and rule ⊥ 1, and (1,⊥) rule ⊥ 2, and

4 7 in Tbl. 4.2 8 in Tbl. 4.2 1 in Tbl. 4.2 2 in Tbl. 4.2

Tab. 4.3: Proof that BK |=G holding→ [replace]¬holding. Continued from Table 4.2.

Line Γ & Σ Comment

1 (0,¬f) (0,¬d) (0,¬h) (0, [r](f ∧ d ∧ ¬h)) from 2 in Tbl. 4.2

2 the following is from 3 in Tbl. 4.2: (0,⊥) (0,⊥) (1, f), (1, d), (1,¬h) rule 3 1w.

3 (0, f) (0,¬d) (0,¬h) (0, [r](¬f ∧ d ∧ ¬h)) rule ⊥ 1, and rule ⊥ 1, and (1,⊥) 2 in Tbl. 4.2

4 (0,⊥) (0,⊥) (0,⊥) (1,¬f), (1, d), (1,¬h) 7 in Tbl. 4.2 1 in Tbl. 4.2 rule ⊥ 2, and

5 rule ⊥ 1,3 rule ⊥ 3, and rule ⊥ 3, and (1,⊥) 2 in Tbl. 4.2

6 7 in Tbl. 4.2 1 in Tbl. 4.2 rule ⊥ 4, and

2 in Tbl. 4.2

Tab. 4.4: Proof that BK |=G holding→ [replace]¬holding. Continued from Table 4.2.

Line Γ & Σ Comment

1 (0, κ1), (0, κ2), . . . , (0, κz), (0, f), (0,¬d), (0,¬h), (0,¬¬[g][di]d) trunk

2 (0, f), (0,¬d), (0,¬h), (0, [g][di]d) rule ¬ 1

3 (0, f ∧ ¬d ∧ ¬h→ [g]((f ∧ ¬d) ∨ (¬f ∧ ¬d ∧ ¬h))) AR

4 (0,¬f) (0, d) (0, h) (0, [g]((f ∧ ¬d) ∨ (¬f ∧ ¬d ∧ ¬h)) from 3

5 (0,⊥) (0,⊥) (0,⊥) (0, f ∧ ¬d ∧ ¬h→ 〈g〉(f ∧ ¬d ∧ h) ∧ · · ·) AR

6 rule ⊥ 1,4 rule ⊥ 1,4 rule ⊥ 1,4 (0,¬f) (0, d) (0, h) (0, 〈g〉(f ∧ ¬d ∧ h)), . . . from 5

7 (0,⊥) (0,⊥) (0,⊥) (1, f ∧ ¬d ∧ h), 0
g−→ 1 rule 3 6

8 rule ⊥ 1,6 rule ⊥ 1,6 rule ⊥ 1,6 Tbl. 4.6

Tab. 4.5: Proof that BK |=G IC → 〈grab〉〈drink〉¬drank. Continues in Table 4.6.

Tables 4.5 and 4.6 prove that it is possible to not have drunk the oil after performing the drink

action after performing the grab action in the initial condition.

Line Γ & Σ Comment

1 (1, f), (1,¬d), (1, h) from 7 in Tbl. 4.5

2 (1, [di]d) rule 2 2w.

3 (0, f ∧ ¬d ∧ h→ 〈di〉(¬f ∧ d ∧ h) ∧ 〈di〉(¬f ∧ ¬d ∧ h))) 7 in Tbl. 4.5

4 (0,¬f) (0, d) (0,¬h) (1, 〈di〉(¬f ∧ d ∧ h)), (1, 〈di〉(¬f ∧ ¬d ∧ h)) from 3

5 (0,⊥) (0,⊥) (0,⊥) (2,¬f ∧ ¬d ∧ h), 1
di−→ 2 rule 3 4

6 rule ⊥ 1,4 rule ⊥ 1,4 rule ⊥ 1,4 (2,¬f), (2,¬d), (2, h) rule ∧ 5

7 (2, d) rule 2 2w.5

8 (2,⊥) rule ⊥ 6,7

Tab. 4.6: Proof that BK |=G IC → 〈grab〉〈drink〉¬drank. Continued from Table 4.5.

Tables 4.7 and 4.8 prove that it is not possible to perceive that the can has a medium weight
after performing the grab action in the initial condition and then the weigh action. Note that
this statement could be due to grabbing or weighing being inexecutable; it is however, simply
because obsMedium is inperceivable in the world resulting from doing grab then weigh in the
initial world. Due to limited space, Table 4.7 has no Comment column.

THE LOGIC OF ACTIONS AND OBSERVATIONS 57

Line Γ & Σ

1 (0, κ1), (0, κ2), . . . , (0, κz), (0, f), (0,¬d), (0,¬h), (0,¬[g][oM | w]⊥)

2 (1,¬[oM | w]⊥), 0
g−→ 1

3 (2,¬⊥), 1
w−→ 2, oM

w−→ 2

4 (0, f ∧ ¬d ∧ ¬h→ [g]((f ∧ ¬d) ∨ (¬f ∧ ¬d ∧ ¬h)))

5 (0,¬f) (0, d) (0, h) (0, [g]((f ∧ ¬d) ∨ (¬f ∧ ¬d ∧ ¬h)))

6 (0,⊥) (0,⊥) (0,⊥) (1, f), (1,¬d) (1,¬f), (1,¬d), (1,¬h)

7 rule ⊥ 1,5 rule ⊥ 1,5 rule ⊥ 1,5 (1, f ∧ ¬d ∧ h→ [w](f ∧ ¬d ∧ h)) (1, 〈w〉> → h)

8 (1,¬f) (1, d) (1,¬h) (1, [w](f ∧ ¬d ∧ h)) (1,¬〈w〉>) (1, h)

9 (1,⊥) (1,⊥) (1, 〈w〉> → h) (2, f ∧ ¬d ∧ h) (2,⊥) (1,⊥)

10 (1,¬〈w〉>) (1, h) (2, f), (2,¬d), (2, h)

11 (2,⊥) (1,⊥) Tbl. 4.8

Tab. 4.7: Proof that BK |=G IC → ¬〈grab〉〈obsMedium | weigh〉>. Continued in Table 4.8.

Line Γ & Σ Comment

1 (1, (∀vo) vo = oH ↔ 〈vo | w〉(f ∧ ¬d ∧ h)) from PR

2 (1, oN = oH ↔ 〈oN | w〉(f ∧ ¬d ∧ h) ∧
oL = oH ↔ 〈oL | w〉(f ∧ ¬d ∧ h) ∧ expanding 1

oM = oH ↔ 〈oM | w〉(f ∧ ¬d ∧ h) ∧
oH = oH ↔ 〈oH | w〉(f ∧ ¬d ∧ h))

3 (1,⊥ → 〈oM | w〉(f ∧ ¬d ∧ h)), (1, 〈oM | w〉(f ∧ ¬d ∧ h)→ ⊥) simplifying 2

4 (1,¬〈oM | w〉(f ∧ ¬d ∧ h)) simplifying 3

5 (2,¬(f ∧ ¬d ∧ h)) rule 2 4w.3 in Tbl. 4.7

6 (2,¬f) (2, d) (2,¬h) rule ∨ 5

7 (2,⊥) (2,⊥) (2,⊥) rule ⊥ 6, and 10 in Tbl. 4.7

Tab. 4.8: Proof that BK |=G IC → ¬〈grab〉〈obsMedium | weigh〉>. Continues from Table 4.7.

4.7 Concluding Remarks

We have presented the definition of a modal logic involving actions and observations. A procedure
for deciding whether entailments hold was provided, and the procedure was shown to be sound,
complete and terminating. The logic is thus decidable on the question of entailment.

In the previous version of LAO [Rens et al., 2010], a modal operator [α] was part of the language.
In this version, we have abbreviated it using quantification and modal operator [ς | α]. The
meaning of [α] is the same in both versions, however, by taking it out of the language here, proofs
of soundness and completeness are simpler than before. The main reason for defining [α] as an
abbreviation is to obviate any issues of interaction with sentences involving [ς | α]. Tableau rules
〈α〉 and [α] of the previous version [Rens et al., 2010] are thus also removed here.

The previous version of rule 3 [Rens et al., 2010] may cause the procedure not to terminate for
some particular kinds of sentences. For instance, suppose K = {¬[ς1 | α1]f1} and suppose we
have the query K |=G f2. The trunk of a tableaux tree for the query is 〈{(0,¬[ς1 | α1]f1 ∧
¬f2)}, ∅〉. Then one sequence of (nondeterministic) rule applications is as follows.

rule ∧: ∆ = {(0,¬[ς1 | α1]f1), (0,¬f2)} and Σ = ∅ are in the new node.

rule 3: ∆ = {(1,¬f1), (0,¬f2), (1,¬[ς1 | α1]f1)} and Σ = {0 α1−→ 1, ς1
α1−→ 1} are in

the new node.

THE LOGIC OF ACTIONS AND OBSERVATIONS 58

rule 3: ∆ = {(2,¬f1), (1,¬f1), (0,¬f2), (1,¬[ς1 | α1]f1), (2,¬[ς1 | α1]f1)} and
Σ = {1 α1−→ 2, ς1

α1−→ 2, 0
α1−→ 1, ς1

α1−→ 1} are in the new node.

rule 3: · · ·

The new version of rule 3 ensures that the rule is not infinitely applicable.

It may be sufficient to represent an agent’s ‘belief-state’ with a certain set of propositions, for
example, the robot does not require heavy, medium and light to be propositions. Computational
complexity in logics with possible world semantics is usually affected by the number of possible
worlds being considered. Because the number of possible worlds representable increases exponen-
tially with the number of propositions in the vocabulary, it would be advisable to minimize the size
of the vocabulary. For instance, if the robot’s vocabulary were {full, drank, holding, heavy,
medium, light}, it would have to consider 26 = 64 worlds instead of 23 = 8. We were thus
tempted to cite this as another motivation to separate observations and propositions as different
sorts of objects. Unfortunately, instead of having |A| [α] operators, we have |A| × |Ω| operators
of the form [ς | α]. Exactly what the implication of the larger number of [ς | α] operators is for
computational complexity, must still be determined.

Although laws can be captured with global axioms, eliminating the need for 2 to express laws, as
in our logic LAO, it is not obvious how immutable propositions [Castilho et al., 1999] and goals
for planning can be specified without 2 and 3. This deficiency is addressed to some degree in
our logics SLAP and SLAOP by the addition of a 2 (necessity) operator. More about this, with
respect to our other logics, is discussed in later chapters.

A relatively straightforward approach to domain specification with LAO was presented. We could
arguably have presented a more economical approach, for instance, focusing on each fluent in
turn, and specifying how it changes due to the different actions. This is the Reiter-style [Reiter,
1991], which also goes towards solving the frame problem in the situation calculus. The approach
we presented, however, is an almost direct translation of transition diagrams, which are quite easy
to understand. We thus preferred this approach as an introduction of domain specification in this
thesis. Furthermore, solving the frame problem for LAO is not important for this thesis; LAO is
defined as a ‘stepping-stone’ for defining more expressive logics, for which the frame problem
will be addressed.

If αont is an ontic action, then presently, one of the perceivability axioms is

〈obsNil | α〉ϕ1 ∧ 〈obsNil | α〉ϕ2 ∧ · · · 〈obsNil | α〉ϕm

where ϕ1, ϕ2, . . . , ϕm identify all the reachable worlds via αont (see Axiom 4.7). This axiom
could be very large—in the worst case, it could have 2|F| conjuncts. With the LAO syntax as it is,
we cannot see how to express (4.7) more compactly. Essentially, what we are trying to say is that
for all worlds reachable via an ontic action, only obsNil is perceivable in those worlds. That is,

for all w,w′ ∈W, for all ς ∈ Ω, if (w,w′) ∈ Rαont , then (ς, w′) ∈ Qαont s.t. ς = obsNil .

We leave this problem for future work.

LAO is a formalism for reasoning about actions based on multi-modal logic which allows for

THE LOGIC OF ACTIONS AND OBSERVATIONS 59

expressing observations as first-class objects. We introduced a new modal operator, namely [ς | α],
which allows us to capture the notion of perceiving an observation given that an action has taken
place. Formulae of the type [ς | α]ϕ mean ‘after perceiving observation ς , given α was performed,
necessarily ϕ’. This work focuses on the challenges concerning sensing with explicit observations,
and acting with nondeterministic effects. We presented a correct and decidable tableau method for
the logic.

Uncertainty is dealt with in LAO using nondeterminism in actions and observations. This is a
rather course grained method. In the rest of this thesis, we develop logics which deal with un-
certainty using probabilities. The next chapter introduces our approach to expressing stochastic
uncertainty via a logic with probabilistic action effects—stochastic observations are added later in
the thesis.

5. THE SPECIFICATION LOGIC OF ACTIONS WITH PROBABILITY

The first three sections of this chapter are more or less a reproduction of an article published in
the Journal of Applied Logic [Rens et al., 2014a]. Preliminary research about the work appear-
ing in this chapter concerning domain specification was presented at the Symposium on Logical
Formalizations of Commonsense Reasoning in Ayia Napa, Cyprus [Rens et al., 2013].

The previous two chapters presented the Logic of Actions and Observations (LAO). In this chap-
ter, we present a logic for specifying agents’ stochastic action models, or more generally, for
specifying probabilistic transition systems—the Specification Logic of Actions with Probability
(SLAP). Our logic takes the possible worlds semantics of modal logic and draws inspiration from
Markov decision process (MDP) theory to deal with probabilities. MDP theory [Bellman, 1957,
Howard, 1960, Puterman, 1994] has proven to be a good general framework for formalizing dy-
namic stochastic systems with complete state observability.

LAO is more expressive in the sense that one can reason about sequences of actions and obser-
vations. SLAP does not have a notion of observation and one cannot reason about sequences of
actions in SLAP. However, SLAP is more expressive than LAO in the sense that the uncertainty in
action transitions can be expressed much more finely.

Another important difference between LAO and SLAP is that entailment in LAO is defined via
global semantic consequence, whereas entailment in SLAP is defined via local semantic conse-
quence. The reason for changing from global to local semantic consequence is because at the
time of developing LAO, global entailment seemed appropriate, and to produce a ‘cleaner’ syntax.
However, while developing SLAP, local entailment seemed more appropriate: In SLAP, a ‘box’
modal operator is added to the language to mark axioms as globally applicable. Being able to mark
sentences as globally applicable puts more control in the hands of the knowledge engineer. How-
ever, with a box operator defined, local consequence is appropriate. Technically though, global
semantic consequence could have been defined for SLAP too. Because SLAOP and SDL build
directly on SLAP, they also employ local consequence.

The oil-drinking scenario—introduced in Chapter 4—is partially formalized as follows. The robot
has the set of (intended) actions A = {grab, drink, replace} with expected meanings. Note
that there is no set of observations, and having a weighing action would thus not make sense.
The robot experiences its world (domain) through three Boolean features: F = {full, drank,
holding} meaning respectively that the oil-can is full, that the robot has drunk the oil and that it
is currently holding something in its gripper. Given a formalization K of our scenario, the robot
may have the following queries:

• If the oil-can is full, I have not drunk the contents and I am holding the can, is there a
0.15 probability that after ‘drinking’ the contents, the oil-can is still full, I have still not

THE SPECIFICATION LOGIC OF ACTIONS WITH PROBABILITY 61

drunk the oil and I am still holding the can? That is, does (full ∧ ¬drank ∧ holding)→
[drink]0.15(full ∧ ¬drank ∧ holding) follow from K?

• If the oil-can is empty and I’m not holding it, is there a 0.9 probability that I’ll be holding
it after grabbing it, and a 0.1 probability that I’ll have missed it? That is, does (¬full ∧
¬holding) → ([grab]0.9(¬full ∧ holding) ∧ [grab]0.1(¬full ∧ ¬holding)) follow
from K?

In SLAP we are interested in whether IC → Φ follows from
∧
κ∈K2κ, where Φ is any ‘legal’

sentence of interest, IC is the initial condition and 2 marks sentences as laws of the domain, that
is, sentences which must be true in every possible world.

In the second half of this chapter we show how SLAP can be used for specifying probabilistic
transition models; we especially investigate strategies for providing smaller ‘full’ specifications.
The work in this chapter also constitutes our solution to the frame problem in the context of
probabilistic transitions or stochastic actions.

Many environments can be modeled as probabilistic transition systems. For instance, a robot
which is uncertain about the outcomes of its actions could rely on such a model. Or to simulate
some biological process may require a model of how likely it is that a particular state of the
process will arise, given some (cellular/molecular/chemical) event occurs in another process state.
Usually, a full specification of transition probabilities is required so that the likelihood of the
system changing from one current state sc to a resulting state sr can be deduced, for all system
states.

There are naı̈ve ways of specifying a system’s dynamics and there are more sophisticated ways
which attempt to make the task of specification easier and the specifications more compact, by
making use of regularities and common sense. Intuitive lines of reasoning are followed, relying
on two kinds of default assumptions when transition information is deficient. Transition infor-
mation may be unobtainable or difficult to deduce, or the knowledge engineer may know that the
default assumption is correct for a given domain and thus knows that s/he needs not (re)state the
information.

For us, it thus makes sense to tackle these issues using SLAP. However, the research discussed in
this chapter may well be applied to other logics with probabilistic transition semantics.

Section 5.1 defines SLAP. Section 5.2 provides a decision procedure for determining entailment
of sentences in SLAP. In Section 5.3, we prove that the procedure is sound, complete and that it
terminates, that is, we show that SLAP is decidable with respect to entailment. In Section 5.4, we
introduce the basic approach to specifying a domain. Section 5.5 investigates how invariance of
features of the world under certain conditions can be captured. The domain specification approach
is then extended employing the new insights. Section 5.6 tackles the issue of how to complete
underspecified specifications. In Section 5.7, we prove that our two approaches for completing
specifications lead to ‘full’ specifications.

5.1 Defining the Logic

First, the syntax of the logic is presented, then its semantics.

THE SPECIFICATION LOGIC OF ACTIONS WITH PROBABILITY 62

5.1.1 Syntax

The vocabulary of our language contains three sorts of objects of interest:

1. a finite set of fluents (alias, propositional atoms) F = {f1, . . ., fn},

2. a finite set of names of atomic actions A = {α1, . . . , αn},

3. all rational numbers Q.

From now on, we denote Q ∩ [0, 1] as Q[0,1]. We are going to work in a multi-modal setting, in
which we have modal operators [α]q, one for each α ∈ A and q ∈ Q[0,1].

Definition 5.1.1: Let α ∈ A, q ∈ Q[0,1] and f ∈ F . The language of SLAP, denoted LSLAP , is
the least set of Ψ defined by the grammar:1

ϕ ::= f | > | ¬ϕ | ϕ ∧ ϕ.
Φ ::= ϕ | ¬Φ | Φ ∧ Φ | [α]qϕ.

Ψ ::= Φ | 2Φ | Ψ ∧Ψ.

We shall also require the definition of L−2SLAP , the least set of Φ as defined above.

In SLAP, sentences of the form ¬2Φ are not in the language. The reason is that the decision
procedure for SLAP entailment would not notice certain contradictions which may occur due to
such sentences being allowed. Note that formulae with nested modal operators of the form 22Φ,
222Φ, etc. or of the form [α]q[α]qϕ, [α]q[α]q[α]qϕ, etc. are not in LSLAP . ‘Single-step’ or
‘flat’ formulae are sufficient to specify action transitions and transition probabilities. As usual, we
treat ⊥,∨,→ and↔ as abbreviations. → and↔ have the weakest bindings and ¬ the strongest;
parentheses enforce or clarify the scope of operators conventionally.

Two distinguished schemata are [α]qϕ and ¬[α]qϕ and shall be referred to as dynamic literals.
Any formula which includes a dynamic literal shall be referred to as dynamic. [α]qϕ is read ‘The
probability of reaching a world in which ϕ holds after executing α, is equal to q’.2 [α] abbreviates
[α]1. 〈α〉ϕ abbreviates ¬[α]0ϕ and is read ‘It is possible to reach a world in which ϕ holds
after executing α’. Note that 〈α〉ϕ does not mean ¬[α]¬ϕ. One reads 2Φ as ‘Φ holds in every
possible world’. We require the 2 operator to mark certain information (sentences) as holding in
all possible worlds—essentially, the axioms which model the domain of interest.

Definition 5.1.2: A formula Ψ ∈ LSLAP is in conjunctive normal form (CNF) if and only if it is
in the form

Ψ1 ∧Ψ2 ∧ · · · ∧Ψn,

where each of the Ψi is a disjunction of literals, whether dynamic or propositional. The Ψis of a
formula in CNF are called clauses.

A formula Ψ ∈ LSLAP is in disjunctive normal form (DNF) if and only if it is in the form

Ψ1 ∨Ψ2 ∨ · · · ∨Ψn,

1 In one of our publications [Rens et al., 2013], we erroneously omitted Ψ ∧Ψ from the definition of Ψ.
2 To put the reader’s mind at ease, the final logic defined in this thesis (SDL) can express boundary probabilities, for

instance, [α]ϕ ≥ p (see Def. 7.1.1).

THE SPECIFICATION LOGIC OF ACTIONS WITH PROBABILITY 63

where each of the Ψi is a conjunction of literals, whether dynamic or propositional. The Ψis of a
formula in DNF are called terms.

Note that if a dynamic literal [α]qϕ or ¬[α]qϕ is a disjunct/conjunct of Ψi, ϕ is allowed to have
any form, as long as ϕ ∈ LSLAP .

5.1.2 Semantics

SLAP structures are derived from Markov decision processes (MDPs) [Bellman, 1957, Howard,
1960, Puterman, 1994]. An MDP model is a tuple 〈S,A, T ,R, s0〉: S is a finite set of states the
agent can be in; A is a finite set of actions the agent can choose to execute; T is the function
defining the probability of reaching one state from another, for each action;R is a function, giving
the expected immediate reward gained by the agent, for any state and agent action; and s0 is the
initial state in S . However, rewards are not modeled in SLAP structures.

Just like LAO structures, SLAP structures are not Kripke-style models: Its semantics has a struc-
ture of the form 〈W,R〉, whereW is a finite set of worlds such that each world assigns a truth-value
to each atomic proposition, and R is a binary relation on W . Moreover, SLAP is multi-modal in
that there are multiple accessibility relations.

Intuitively, when talking about some world w, we mean a set of features (propositions) that the
agent understands and that describes a state of affairs in the world or that describes a possible,
alternative world. Let w : F 7→ {0, 1} be a total function that assigns a truth-value to each
proposition. Let C be the set of all possible functions w. We call C the conceivable worlds.

Definition 5.1.3: A SLAP structure is a tuple S = 〈W,R〉 such that

1. W ⊆ C a non-empty set of possible worlds.

2. R : A 7→ Rα, where Rα : (W × W) 7→ Q[0,1] is a total function from pairs of worlds
into the rationals; That is, R is a mapping that provides an accessibility relation Rα for each
action α ∈ A; For every w− ∈ W , it is required that either

∑
(w−,w+,pr)∈Rα pr = 1 or∑

(w−,w+,pr)∈Rα pr = 0.

Note that the set of possible worlds may be the whole set of conceivable worlds.

Rα defines the transition probability pr ∈ Q[0,1] between worlds w+ and w− via action α. If
(w−, w+, 0) ∈ Rα, then w+ is said to be inaccessible or not reachable via α performed in w−,
else if (w−, w+, pr) ∈ Rα for pr ∈ (0, 1], then w+ is said to be accessible or reachable via action
α performed in w−. If for some w−,

∑
(w−,w+,pr)∈Rα pr = 0, we say that α is inexecutable in

w−.

Figure 5.1 is a pictorial representation of transitions and their probabilities for the action grab of
the oil-can scenario. The eight circles represent the eight conceivable worlds with their valuations.

Definition 5.1.4 (Truth Conditions): Let S be an SLAP structure, with α, α′ ∈ A and q, pr ∈
Q[0,1]. Let f ∈ F and let Ψ and ϕ be sentence in LSLAP . We say Ψ is satisfied at world w in
structure S (written S, w |= Ψ) if and only if the following hold:

1. S, w |= > for all w ∈W ;

THE SPECIFICATION LOGIC OF ACTIONS WITH PROBABILITY 64

f
d

h

grab

~f

f ~f

f ~f

f

~f

d

d d

~d

~d ~d~d

h

h h

~h ~h

~h

~h

0.2

0.1

0.7

0.1

0.9

0.1

0.2

0.7

0.1

0.9

Fig. 5.1: A transition diagram for the grab action. The letters f, d and h, respectively represent propositional
literals full, drank and holding. And ∼ reads ‘not’.

2. S, w |= f ⇐⇒ w(f) = 1 for w ∈W ;

3. S, w |= ¬Ψ ⇐⇒ S, w 6|= Ψ;

4. S, w |= Ψ ∧Ψ′ ⇐⇒ S, w |= Ψ and S, w |= Ψ′;

5. S, w |= [α]qϕ ⇐⇒
(∑

(w,w′,pr)∈Rα,S,w′|=ϕ pr
)

= q;

6. S, w |= 2Ψ ⇐⇒ for all w′ ∈W, S, w′ |= Ψ.

Looking at Figure 5.1, for instance, if the robot is in a situation where the oil-can is full, the oil
has not been drunk and the can is not being held, then the probability that the oil-can is still full
after grabbing the can is 0.7 + 0.1 = 0.8. Thus, in the syntax of SLAP, given a formalization BK

of the scenario, (full ∧ ¬drank ∧ ¬holding)→ [grab]0.8full follows from BK .

A formula Ψ is valid in an SLAP structure (denoted S |= Ψ) if S, w |= Ψ for every w ∈ W . Ψ

is SLAP-valid (denoted |= Ψ) if Ψ is true in every structure S . If |= θ ↔ ψ, we say θ and ψ are
semantically equivalent (abbreviated θ ≡ ψ).

Ψ is satisfiable if S, w |= Ψ for some S and w ∈ W . A formula that is not satisfiable is unsatisfi-
able or a contradiction. The truth of a propositional formula depends only on the world in which it
is evaluated. We may thus write w |= Ψ instead of S, w |= Ψ when Ψ is a propositional formula.

Let K ⊆ LSLAP and Φ ∈ LSLAP . We say that Φ is a local semantic consequence of K (denoted
K |= Φ) if for all structures S and all w ∈ W of S , if for all κ ∈ K, S, w |= κ, then S, w |= Φ.
We also say that K entails Φ whenever K |= Φ.

Recall that L−2SLAP is all formulae in LSLAP such that the formulae contain no 2 operators.

THE SPECIFICATION LOGIC OF ACTIONS WITH PROBABILITY 65

Proposition 5.1.1: For every Ψ ∈ L−2SLAP , there exists a formula Ψ′ ∈ L−2SLAP in CNF and there
exists a formula Ψ′′ ∈ L−2SLAP in DNF such that Ψ ≡ Ψ′ ≡ Ψ′′.

The proof is straightforward, appealing to basic logical equivalences.

5.1.3 Reducing Entailment to Unsatisfiability

Let K be a finite subset of LSLAP and let Φ be an element of L−2SLAP .

Proposition 5.1.2: K |= Φ ⇐⇒
∧
κ∈K κ ∧ ¬Φ is unsatisfiable.

Proof:
K |= Φ

⇐⇒ ∀S, w, if S, w |=
∧
κ∈K κ, then S, w |= Φ

⇐⇒ ∀S, w, S, w 6|=
∧
κ∈K κ or S, w |= Φ

⇐⇒ @S, w s.t. S, w |=
∧
κ∈K κ and S, w 6|= Φ

⇐⇒ @S, w s.t. S, w |=
∧
κ∈K κ and S, w |= ¬Φ

⇐⇒
∧
κ∈K κ ∧ ¬Φ is unsatisfiable.

Note that ¬2Φ′ 6∈ LSLAP . This is why Φ in Proposition 5.1.2 is restricted to be in L−2SLAP . The
restriction is not a problem when 2 is used only to define domain axioms or laws, which are
always in the knowledge-base or an agent’s background knowledge BK (here represented by K)
and not in Φ. The decision procedure for entailment in SLAP is thus based on Proposition 5.1.2
(with restricted arguments).

In the introduction, we mentioned that we are interested in whether IC → Φ follows from∧
κ∈K2κ, in general. In practical terms, this is stated as

{2β | β ∈ BK} |= IC → Φ,

where Φ ∈ L−2SLAP is any sentence of interest, IC ∈ L−2SLAP is a sentence describing an agent’s
initial condition and BK ⊂ L−2SLAP is the agent’s background knowledge.

A complete specification of the probabilistic effects of action grab (Fig. 5.1), for instance, is

full ∧ drank ∧ ¬holding → [grab]0.7(full ∧ drank ∧ holding) ∧
[grab]0.3(drank ∧ ¬holding);

full ∧ ¬drank ∧ ¬holding → [grab]0.7(full ∧ ¬drank ∧ holding) ∧
[grab]0.3(¬drank ∧ ¬holding);

¬full ∧ drank ∧ ¬holding → [grab]0.9(¬full ∧ drank ∧ holding) ∧
[grab]0.1(¬full ∧ drank ∧ ¬holding);

¬full ∧ ¬drank ∧ ¬holding → [grab]0.9(¬full ∧ ¬drank ∧ holding) ∧
[grab]0.1(¬full ∧ ¬drank ∧ ¬holding).

The above sentences would appear in BK . IC could, for example, be full∧¬drank∧ holding
and Φ could, for example, be [drink]0.15(full ∧ ¬drank ∧ holding).

THE SPECIFICATION LOGIC OF ACTIONS WITH PROBABILITY 66

In terms of the decision procedure, the question of whether

{2β | β ∈ BK} |= IC → Φ

is posed as the question of whether ∧
β∈BK

2β ∧ ¬(IC → Φ)

is (un)satisfiable.

In the soundness and completeness proofs (§ 5.3.1 and § 5.3.2), even though formulae of the form
¬Φ are analyzed, ¬Φ always has the form

∧
κ∈K κ ∧ ¬Φ′, where Φ′ does not mention the 2

operator.

5.2 Decision Procedure for Semantic Consequence

In this section we describe a proof procedure which has two phases: creation of a tableau tree
(the tableau phase) and then seeking solutions for a linear system of inequalities (equations and
disequations; the SLI phase). The tableau method we propose is adapted from Castilho et al.
[1999]. The basic approach is similar, but it has been extensively modified to suit our needs. In
the SLI phase, solutions are sought for systems of inequalities generated from formulae involving
dynamic literals appearing in a particular form in the open branches of the tree created in the
tableau phase. Depending on the results, certain branches may become closed. Depending on
the final structure and contents of the tree, the sentence for which the tree was created can be
determined as valid or not.

To clarify the reasoning behind the processes of the two phases, we introduce an example and
apply the processes of each phase to it. The example will not illustrate how every kind of scenario
which can occur is dealt with, but it should give a flavour for how the procedure works.

5.2.1 The Tableau Phase

The tableau rules for SLAP follow. Let Γjk be a leaf node.

1. rule ⊥: If Γjk contains (x,Ψ) and (x,¬Ψ), then create node Γjk+1 = Γjk ∪ {(x,⊥)}.

2. rule ¬: If Γjk contains (x,¬¬Ψ), then create node Γjk+1 = Γjk ∪ {(x,Ψ)}.

3. rule ∧: If Γjk contains (x,Ψ ∧Ψ′), then create node Γjk+1 = Γjk ∪ {(x,Ψ), (x,Ψ′)}.

4. rule ∨: If Γjk contains (x,¬(Ψ ∧ Ψ′)), then create node Γjk+1 = Γjk ∪ {(x,¬Ψ)} and node

Γj
′

0 = Γjk ∪ {(x,¬Ψ′)}, where j′ is a fresh integer.

5. rule 3ϕ: If Γjk contains (0,¬[α]0ϕ) or (0, [α]qϕ) for q > 0, then create node Γjk+1 =

Γjk ∪ {(x, ϕ)}, where x is a fresh integer.

6. rule 2: If Γjk contains (0,2Φ) and (x,Φ′) for any x ≥ 0, and if it does not yet contain
(x,Φ), then create node Γjk+1 = Γjk ∪ {(x,Φ)}.

THE SPECIFICATION LOGIC OF ACTIONS WITH PROBABILITY 67

Example

Suppose that

2(¬full ∧ ¬holding→ [grab]0.9holding ∧ [grab]0.1¬holding)

and
2(¬full ∧ ¬holding→ [grab]¬full)

are two domain axioms in our oil-drinking robot’s background knowledge. Figures 5.2 and 5.3
depict a tableau tree for (partially) deciding whether the robot’s background knowledge entails

¬full ∧ drank ∧ ¬holding→ [grab]0.9(¬full ∧ holding).

That is, we want to determine whether the probability of being in a situation where the oil-can
is not full while being held is 0.9 after grabbing the can in a situation where it is not full, it is
on the floor and the oil has already been drunk—given the axioms about how the domain works.
full, drank, holding and grab are respectively abbreviated as f, d, h and g.

Deciding whether

{2(¬f ∧ ¬h→ ([g]0.9h ∧ [g]0.1¬h)),2(¬f ∧ ¬h→ [g]¬f)}
|=

¬f ∧ d ∧ ¬h→ [g]0.9(¬f ∧ h)

holds is equivalent to determining whether the tree for

2(¬f ∧ ¬h→ ([g]0.9h ∧ [g]0.1¬h))∧
2(¬f ∧ ¬h→ [g]¬f)∧
¬(¬f ∧ d ∧ ¬h→ [g]0.9(¬f ∧ h))

closes. (The trunk in the figure is written in a slightly more convenient form.)

The vertices represent nodes and the arcs represent the application of tableau rules. Arcs are la-
beled with the rule they represent, except when branching occurs, in which case, obviously the ∨
rule was applied. In Figures 5.2 and 5.3, it is shown how the vertices relate to the corresponding
node. The reader should keep in mind that the node corresponding to a vertex v contains all the la-
beled formulae in vertices above v on the same branch (v’s ancestors)—the vertices show only the
elements of nodes which are ‘added’ to a node due to the application of some rule. An exception
is the top vertex of a tree, which is the trunk and not the result of any rule application. In order
to show the development of the tree, some liberties were taken with respect to rule application: In
some cases, rule application is not shown, that is, from parent node to child node, a formula may
be ‘processed’ more than is possible by the application of the rule represented by the arc from
parent to child in the figure.

The arc labeled “nf” denotes normal forming: ¬(¬(¬f∧d∧¬h)∨[g]0.9(¬f∧h)) is an abbreviation
for ¬¬(¬f ∧ d ∧ ¬h) ∧ ¬[g]0.9(¬f ∧ h).

THE SPECIFICATION LOGIC OF ACTIONS WITH PROBABILITY 68

Γ0
0 = {(0,2(¬(¬f ∧ ¬h) ∨ ([g]0.9h ∧ [g]0.1¬h))),

(0,2(¬(¬f ∧ ¬h) ∨ [g]¬f)),
(0,¬(¬(¬f ∧ d ∧ ¬h) ∨ [g]0.9(¬f ∧ h))}

(0,¬¬(¬f ∧ d ∧ ¬h) ∧ ¬[g]0.9(¬f ∧ h)) ∈ Γ0
1

nf

(0,¬¬(¬f ∧ d ∧ ¬h)), (0,¬[g]0.9(¬f ∧ h)) ∈ Γ0
2

∧

(0,¬f ∧ d ∧ ¬h) ∈ Γ0
3

¬

(0,¬f), (0, d), (0,¬h) ∈ Γ0
4

∧

(0,¬(¬f ∧ ¬h) ∨ ([g]0.9h ∧ [g]0.1¬h)), (0,¬(¬f ∧ ¬h) ∨ [g]¬f) ∈ Γ0
5

2

(0,¬(¬f ∧ ¬h) ∈ Γ0
6

(0,¬(¬f ∧ ¬h),
(0, [g]¬f) ∈ Γ1

0

(0, ([g]0.9h ∧ [g]0.1¬h)),
(0,¬(¬f ∧ ¬h) ∈ Γ2

0

(0, ([g]0.9h ∧ [g]0.1¬h)),
(0, [g]¬f) ∈ Γ3

0

continues below

Fig. 5.2: First part of a tableau tree for 2(¬f ∧ ¬h → ([g]0.9h ∧ [g]0.1¬h)) ∧ 2(¬f ∧ ¬h → [g]¬f) ∧
¬(¬f ∧ d ∧ ¬h→ [g]0.9(¬f ∧ h)).

On the left-hand side of the Figure 5.3, it seems that three nodes ‘share’ two children. This is only
to fit all the information in the diagram. Actually, each of nodes Γ0

6, Γ1
0 and Γ2

0 branches to two
of its own children, and these children share some of the same formulae with their ‘cousins’ as
indicated. In other words, strictly speaking, there should be six branches instead of two.

Determining whether the tree finally closes will be seen in the Example section after the SLI phase
is described (§ 5.2.3). Each open leaf node will be involved in the SLI phase for a final decision.

5.2.2 Systems of Linear Inequalities

Suppose a tree has been ‘grown’ till saturation and it has some open branches. It might be the case
that there are formulae in the leaf nodes of some open branches, specifying transition probabilities
of some action, which are mutually unsatisfiable.

THE SPECIFICATION LOGIC OF ACTIONS WITH PROBABILITY 69

continued from above

(0,¬(¬f ∧ ¬h) ∈ Γ0
6

(0,¬(¬f ∧ ¬h),
(0, [g]¬f) ∈ Γ1

0

(0, ([g]0.9h ∧ [g]0.1¬h)),
(0,¬(¬f ∧ ¬h) ∈ Γ2

0

(0, ([g]0.9h ∧ [g]0.1¬h)),
(0, [g]¬f) ∈ Γ3

0

(0,¬¬f) ∈ Γ0
7,Γ

1
1,Γ

2
1 (0,¬¬h) ∈ Γ4

0,Γ
5
0,Γ

6
0

(0, f) ∈ Γ0
8,Γ

1
2,Γ

2
2

¬

(0, h) ∈ Γ4
1,Γ

5
1,Γ

6
1

¬

(0,⊥) ∈ Γ0
9,Γ

1
3,Γ

2
3

⊥

(0,⊥) ∈ Γ4
2,Γ

5
2,Γ

6
2

⊥

(0, [g]0.9h), (0, [g]0.1¬h), (0, [g]¬f) ∈ Γ3
1

∧

(1, h), (2,¬h), (3,¬f) ∈ Γ3
2

3ϕ

(1, f ∨ h ∨ ([g]0.9h ∧ [g]0.1¬h)),
(1, f ∨ h ∨ [g]¬f),

(2, f ∨ h ∨ ([g]0.9h ∧ [g]0.1¬h)),
(2, f ∨ h ∨ [g]¬f),

(3, f ∨ h ∨ ([g]0.9h ∧ [g]0.1¬h)),
(3, f ∨ h ∨ [g]¬f) ∈ Γ3

3

2

(1, f), (2, f),
(3, f) ∈ Γ3

4

(3,⊥) ∈ Γ3
5

⊥
(1, f), (2, f),
(3, h) ∈ Γ7

0

· · ·

(1, [g]0.9h), (1, [g]0.1¬h),
(1, [g]¬f), (2, [g]0.9h),

(2, [g]0.1¬h), (2, [g]¬f),
(3, [g]0.9h), (3, [g]0.1¬h),

(3, [g]¬f) ∈ Γ8
0

Fig. 5.3: Last part of the tableau tree for 2(¬f ∧ ¬h → ([g]0.9h ∧ [g]0.1¬h)) ∧ 2(¬f ∧ ¬h → [g]¬f) ∧
¬(¬f ∧ d ∧ ¬h→ [g]0.9(¬f ∧ h)).

THE SPECIFICATION LOGIC OF ACTIONS WITH PROBABILITY 70

For instance, the tree for [grab]0.9holding ∧ [grab]0.6holding has exactly four nodes:

Γ0
0 = {(0, [grab]0.9holding ∧ [grab]0.6holding)}

and after the application of rule ∧,

Γ0
1 = {(0, [grab]0.9holding ∧ [grab]0.6holding),

(0, [grab]0.9holding),

(0, [grab]0.6holding)}

and after the application of rule 3ϕ to (0, [grab]0.9holding),

Γ0
2 = {(0, [grab]0.9holding ∧ [grab]0.6holding),

(0, [grab]0.9holding),

(0, [grab]0.6holding),

(1, holding)}

and finally, after another application of rule 3ϕ, but this time to (0, [grab]0.6holding),

Γ0
3 = {(0, [grab]0.9holding ∧ [grab]0.6holding),

(0, [grab]0.9holding),

(0, [grab]0.6holding),

(1, holding),

(2, holding)}.

But stating that a transition to a world at which holding is true can be reached with two different
probabilities (0.9 and 0.6) is a contradiction.

To determine whether a formula is valid or not, the decision procedure checks whether all branches
of a tree are closed or not. Because the branch/tree for the incumbent example should close,
we need a procedure which will check for contradictions in sets of dynamic formulae, and if a
contradiction is found, create a new node containing (x,⊥) at the end of the applicable branch.

A naı̈ve solution might be to add a tableau rule which deals with this case. However, there are
many subtle cases and designing rules to cover all cases is very difficult. And proving that the
tableau system with all these rules is complete is challenging, to say the least. One instance of a
formula which is a contradiction yet not obviously so, is

[grab]0.9holding ∧
[grab]0.1¬holding ∧
[grab]¬full ∧
¬[grab]0.9(¬full ∧ holding),

where the set of possible worlds is all conceivable worlds.

To be certain that all possible contradictions are noticed, a system of equations and disequations

THE SPECIFICATION LOGIC OF ACTIONS WITH PROBABILITY 71

(a system of linear inequalities (SLI)) is generated from a set of dynamic literals concerning the
same action appearing in the leaf node of an open branch. Fagin et al. [1990] use a similar idea
to prove that the axiomatization of their logic for reasoning about probabilities is complete. This
is done for every action in A. The SLI phase (§ 5.2.3) will determine whether to make an open
branch closed, depending on whether some SLI generated is feasible or infeasible (feasibility of
an SLI is defined in Def. 5.2.4).

Now we explain how a system of linear inequalities can be generated from a set of dynamic literals.

Definition 5.2.1: W (Γ, x)
def
= {w ∈ C | w |= ` for all (x, `) ∈ Γ where ` is a propositional

literal}.

Definition 5.2.2: X(Γ)
def
= {0, 1, . . . , x′} are all the labels mentioned in Γ.

Definition 5.2.3: W (Γ)
def
=
⋃
x∈X(Γ)W (Γ, x).

Let n = |W (Γ)|. Let W (Γ)# = (w1, w2, . . . , wn) be an ordering of the worlds in W (Γ). With
each world wk ∈W (Γ)#, we associate a rational variable prk ∈ Q[0,1]. One can generate

ci,1pr1 + ci,2pr2 + · · ·+ ci,nprn = qi,

for a formula (x, [α]qiϕi) ∈ Γ and

ci,1pr1 + ci,2pr2 + · · ·+ ci,nprn 6= qi,

for a formula (x,¬[α]qiϕi) ∈ Γ, such that ci,k = 1 if wk |= ϕi, else ci,k = 0, where x represents
a label.

Let ∆(α) be a set of dynamic literals mentioning α, and let ∆(α)# =

([α]q1ϕ1, [α]q2ϕ2, . . . , [α]qgϕg,¬[α]qg+1ϕg+1,¬[α]qg+2ϕg+2, . . . ,¬[α]qg+hϕg+h)

be an ordering of the members of ∆(α). (When SLIs are actually generated in the SLI phase,
exactly which literals are involved will be specified.)

With this notation in hand, given some α, we define the system

c1,1pr1 + c1,2pr2 + · · ·+ c1,nprn = q1

c2,1pr1 + c2,2pr2 + · · ·+ c2,nprn = q2
...

cg,1pr1 + cg,2pr2 + · · ·+ cg,nprn = qg
cg+1,1pr1 + cg+1,2pr2 + · · ·+ cg+1,nprn 6= qg+1

cg+2,1pr1 + cg+2,2pr2 + · · ·+ cg+2,nprn 6= qg+2
...

cg+h,1pr1 + cg+h,2pr2 + · · ·+ cg+h,nprn 6= qg+h
pr1 + pr2 + · · ·+ prn = q∗,

(5.1)

where each of the first g + h (in)equalities represents a member in ∆(α)# and such that q∗ = 1

or q∗ = 0. Note that due to q∗ having two possible values, system (5.1) represents two distinct

THE SPECIFICATION LOGIC OF ACTIONS WITH PROBABILITY 72

systems of equations.

Definition 5.2.4: A solution set for an SLI S is the set of all solutions of the form (s1, s2, . . . , sn)

for S, where assigning si to pri for i = 1, 2, . . . , n solves all the (in)equalities in S simultaneously.
An SLI is feasible if and only if its solution set is not empty.

Assigning si to pri for i = 1, 2, . . . , n simply means that the values which the pri variables must
take for all the (in)equalities to be simultaneously true are the si. These are the feasible transition
probabilities to all possible worlds, given some action executed in some world, and given a set of
formulae (partially) specifying the action’s transition behavior for/from that world.

We shall say that system (5.1), generated as above, is feasible if and only if one or both of the two
systems (either with q∗ = 1 or with q∗ = 0) has a feasible solution, that is, if and only if the union
of their solution sets is not empty.

The equation
pr1 + pr2 + · · ·+ prn = q∗,

is to ensure that either
∑

(w−,w+,pr)∈Rα pr = 1 or
∑

(w−,w+,pr)∈Rα pr = 0, as stated in Defini-
tion 5.1.3 on page 63.

5.2.3 The SLI Phase

Definition 5.2.5: Let ∆(α) be a set of dynamic literals mentioning α. Z(∆(α)) is the solution
set for the SLI generated from ∆(α).

Definition 5.2.6: F (Γ, α, x)
def
= {[α]qϕ | (x, [α]qϕ) ∈ Γ} ∪ {¬[α]qϕ | (x,¬[α]qϕ) ∈ Γ}.

After the tableau phase has completed, the SLI phase begins. For each leaf node Γjk of an open
branch, do the following.

If Z(F (Γjk, α, x)) = ∅ for some action α ∈ A and some label x ∈ X(Γjk), then create new
leaf node Γjk+1 = Γjk ∪ {(x,⊥)}.

Definition 5.2.7: A tree is called finished after the SLI phase is completed.

Note that all branches of a finished tree are saturated.

Definition 5.2.8: If a tree for ¬Ψ is closed, we write ` Ψ. If there is a finished tree for ¬Ψ with
an open branch, we write 6` Ψ.

Example

We continue with the example of Figures 5.2 and 5.3. Only the leaf node of the right-most (open)
branch of the tree is considered. Using the same kind of analysis made below, it can be shown that
every branch which is open after the tree is saturated should close due to the infeasibility of some
SLI generated from a set of formulae in the applicable leaf node.

THE SPECIFICATION LOGIC OF ACTIONS WITH PROBABILITY 73

For brevity, denote w1 as 111 where w1 |= full ∧ drank ∧ holding, w2 as 110 where w2 |=
full∧drank∧¬holding, . . . , w8 as 000 where w8 |= ¬full∧¬drank∧¬holding. We shall
refer to the open leaf node on the RHS in Figures 5.2 and 5.3 as Γ. Observe that

• W (Γ, 0) = {010},

• W (Γ, 1) = {111, 101, 011, 001},

• W (Γ, 2) = {110, 100, 010, 000},

• W (Γ, 3) = {011, 010, 001, 000},

and W (Γ) = {111, 101, 011, 001, 110, 100, 010, 000} = C.

0. F (Γ, grab, 0) = {[grab]0.9holding, [grab]0.1¬holding, [grab]¬full,
¬[grab]0.9(¬full ∧ holding)}.

1. F (Γ, grab, 1) = {[grab]0.9holding, [grab]0.1¬holding, [grab]¬full}.

2. F (Γ, grab, 2) = {[grab]0.9holding, [grab]0.1¬holding, [grab]¬full}.

3. F (Γ, grab, 3) = {[grab]0.9holding, [grab]0.1¬holding, [grab]¬full}.

The system generated from F (Γ, grab, 0) is

0 + 0 + 0 + 0 + pr5 + 0 + pr7 + 0 = 0.9

0 + pr2 + 0 + pr4 + 0 + pr6 + 0 + pr8 = 0.1

0 + 0 + 0 + 0 + pr5 + pr6 + pr7 + pr8 = 1

pr1 + 0 + pr3 + 0 + pr5 + 0 + pr7 + 0 6= 0.9

pr1 + pr2 + pr3 + pr4 + pr5 + pr6 + pr7 + pr8 = 1.

Due to pr5 + pr6 + pr7 + pr8 = 1 (3rd equation), it must be the case that pr5 + pr7 6= 0.9

(4th disequation). But it is required by the first equation that pr5 + pr7 = 0.9, which forms a
contradiction. Thus, there exists an action and a label for which Z(F (Γ, grab, x) = ∅ and the
branch closes.

5.3 Properties of the Decision Procedure

All proofs not given here can be found in the appendix Section A.2.

5.3.1 Soundness

Lemma 5.3.1: Let T be a finished tree. For every node Γ in T : If there exists a structure S such
that for all (x,Φ) ∈ Γ there exists a w ∈ W such that S, w |= Φ, then the (sub)tree rooted at Γ is
open.

Theorem 5.3.1: (Soundness) If ` Ψ then |= Ψ. (Contrapositively, if 6|= Ψ then 6` Ψ.)

THE SPECIFICATION LOGIC OF ACTIONS WITH PROBABILITY 74

5.3.2 Completeness

We start with the description of the construction of an SLAP structure, given the leaf node Γ

of some open branch of a finished tree. First, we define X(Γ)# to be some sequence of la-
bels (x1, x2, . . . , xn) such that w1 ∈ W (Γ, x1), w2 ∈ W (Γ, x2), . . ., wn ∈ W (Γ, xn), where
(w1, w2, . . . , wn) = W (Γ)#. By the definition of W (Γ, xn) (Def. 5.2.1), X(Γ)# is not neces-
sarily unique, and it is guaranteed to define at least one sequence of labels. S = 〈W,R〉 can be
constructed as follows:

• Let W = W (Γ).

• For every action α ∈ A, the accessibility relation Rα can be constructed as follows. Let
Rα = {(wi, wj , sαj) |

– wi, wj ∈W (Γ)#,

– xi ∈ X(Γ)#,

– (s1, s2, . . . , sn) ∈ Z(F (Γ, α, xi))}.

Lemma 5.3.2: S is an SLAP structure.

Proof:
The components of the structure are well-formed:

• W = W (Γ) =
⋃
x∈X(Γ){w ∈ C | w |= ` for all (x, `) ∈ Γ where ` is a propositional

literal}. That is,W = {w ∈ C | for all x,w |= ` for all (x, `) ∈ Γ where ` is a propositional
literal}. Thus, for W to be empty, it must be the case that for all w ∈ C, there exists some
(x, `) ∈ Γ, for which w 6|= `. But this is a contradiction. Hence, W is not empty.

• Due to Γ being open, we know that Z(F (Γ, α, x)) is not empty for all x ∈ X(Γ) and all
α ∈ A.

By construction, R maps each action α ∈ A to Rα such that Rα is a relation in W ×W ×
Q[0,1]. Moreover, if (w,w′, pr), (w,w′, pr′) ∈ Rα, then pr = pr′. This is because in the
SLI generated from F (Γ, α, x), the same variable represents pr and pr′ and it can have only
one value. Hence, Rα is a (total) function Rα : (W ×W) 7→ Q[0,1].

And by construction, the fact that pr1 + pr2 + · · ·+ prn = 1 or pr1 + pr2 + · · ·+ prn = 0

is an equation in any SLI generated, either
∑

(w,w′,pr)∈Rα pr = 1 or
∑

(w,w′,pr)∈Rα pr = 0,
for every w ∈W .

W.l.o.g., one can assume that, for every (x,2Φ) ∈ Γ, Φ is in DNF.

Lemma 5.3.3: Let Γ be the leaf node of a finished tree, where (0,2Φ) ∈ Γ, for some 2Φ ∈
LSLAP . For every label x ∈ X(Γ), there exists a term (Φ1 ∧ Φ2 ∧ · · · ∧ Φm) of Φ such that
(x,Φ1), (x,Φ2), . . ., (x,Φm) ∈ Γ.

Proposition 5.3.1: Let Γ be the leaf node of an open branch of a finished tree and let S be con-
structed as described above. Let (x, δ) ∈ Γ where δ is a dynamic literal. If S, w |= δ for some
w ∈W (Γ, x), then S, w′ |= δ for all w′ ∈W (Γ, x).

THE SPECIFICATION LOGIC OF ACTIONS WITH PROBABILITY 75

Proof:
By construction, Rα = {(w,wj , sj) | x ∈ X(Γ), w ∈ W (Γ, x), wj ∈ W (Γ)# and (s1, s2, . . .,
sn) ∈ Z(F (Γ, α, x))}. Now suppose that S, w |= δ for some w ∈ W (Γ, x). Notice that by the
definition of Rα above, if there is a solution in Z(F (Γ, α, x) for w ∈ W (Γ, x), that solution is
available for all w′ ∈ W (Γ, x). Therefore, S, w′ |= δ for all w′ ∈ W (Γ, x). The proposition
follows.

Lemma 5.3.4: If Γ is the leaf node of an open branch of a finished tree, then there exists a struc-
ture S such that for all (x,Ψ) ∈ Γ, S, w |= Ψ for some w ∈W (Γ, x).

Theorem 5.3.2: (Completeness) If |= Ψ then ` Ψ. (Contrapositively, if 6` Ψ then 6|= Ψ.)

5.3.3 Termination

Lemma 5.3.5: A tree for any formula Φ ∈ LSLAP becomes saturated. That is, the tableau phase
terminates.

Proof:
We can divide all the tableau rules into two categories: (i) those which add ⊥ to the new node
and (ii) those with the subformula property. Category-(i) rules never cause rules to become appli-
cable later. As a direct consequence of sentences being finite and the subformula property, every
category-(ii) rule must eventually become inapplicable. Therefore, all rules eventually become
inapplicable, and it follows that any tree (for any formula) would become saturated.

Theorem 5.3.3: The entailment decision procedure for SLAP terminates.

Proof:
Due to Lemma 5.3.5, the tableau phase terminates (with a finite number of branches).

Let Γ be the leaf node of an open branch. There is a finite number of labels in X(Γ). In the SLI
phase: for each open branch of a tree for Φ, a solution set for an SLI is sought (at most) once
for each action in A, for each label in X(Γ).3 Hence, a solution set for an SLI is sought a finite
number of times in the SLI phase.

Finding the solution set for an SLI is decidable as used in the SLI phase [Dantzig, 1963 & 1998,
Kroening and Strichman, 2008] and the process thus terminates in this phase.

Corollary 5.3.1: The entailment problem for SLAP is decidable.

Because the procedure is sound (Th. 5.3.1), complete (Th. 5.3.2) and terminating (Th. 5.3.3),
entailment is decidable.

5.4 Specifying Domains with SLAP

We provide a framework to formally specify—in the language of SLAP—the domain in which an
agent or robot is expected to live. In the context of SLAP, we are interested in three things in the
domain of interest:

3 The proof in the article [Rens et al., 2014a] erroneously refers to “label assignments”.

THE SPECIFICATION LOGIC OF ACTIONS WITH PROBABILITY 76

(i) The initial condition IC .

(ii) The static laws SL.

(iii) The action rules AR.

How to write the axioms of AR is the focus of this chapter.

Let the union of all the axioms in SL and AR be denoted by the set BK—the agent’s background
knowledge.

In the context of SLAP we are interested in

{2β | β ∈ BK} |= IC → Φ,

where Φ ∈ L−2SLAP is any sentence of interest, IC ∈ L−2SLAP and BK ⊂ L−2SLAP .

Recall that we use the following abbreviations for constants in our scenario: grab := g, drink :=

di, replace := r, full := f , drank := d and holding := h.

In SLAP, one can express that action α has effect ϕ with probability q under condition φ as
φ→ [α]qϕ. In general, an effect axiom has the form

φ→ [α]q1ϕ1 ∧ [α]q2ϕ2 ∧ . . . ∧ [α]qnϕn

for expressing the different effects of an action and their associated occurrence probabilities, under
a particular condition. To set the stage, we provide a definition of a ‘proper’ specification of the
probabilistic effects of an action.

Definition 5.4.1: For some action α ∈ A, a set of effect axioms is a proper effects specification
(or PES for short) if and only if it takes the form

φ1 → [α]q11ϕ11 ∧ · · · ∧ [α]q1nϕ1n

φ2 → [α]q21ϕ21 ∧ · · · ∧ [α]q2nϕ2n

...

φj → [α]qj1ϕj1 ∧ · · · ∧ [α]qjnϕjn,

where (i) no qik = 0, (ii) the transition probabilities qi1, . . . , qin of any axiom imust sum to 1, (iii)
for every i, for any pair of effects ϕik and ϕik′ , ϕik ∧ ϕik′ ≡ ⊥ and (iv) for any pair of conditions
φi and φi′ , φi ∧ φi′ ≡ ⊥.

We insist that no qik = 0, because the definition is of the specification of an action’s effects:
Suppose

φ→ . . . ∧ [α]0ϕ ∧ · · ·

is an axiom of our background knowledge, then due to no ϕ-world being reachable via α under
condition φ, ϕ cannot be an effect in this case. This axiom should thus not be an effect axiom.

THE SPECIFICATION LOGIC OF ACTIONS WITH PROBABILITY 77

Proper specifications of the probabilistic effects of actions g, di and r, respectively, are

f ∧ d ∧ ¬h → [g]0.7(f ∧ d ∧ h) ∧ [g]0.3(d ∧ ¬h);

f ∧ ¬d ∧ ¬h → [g]0.7(f ∧ ¬d ∧ h) ∧ [g]0.3(¬d ∧ ¬h);

¬f ∧ d ∧ ¬h → [g]0.9(¬f ∧ d ∧ h) ∧ [g]0.1(¬f ∧ d ∧ ¬h);

¬f ∧ ¬d ∧ ¬h → [g]0.9(¬f ∧ ¬d ∧ h) ∧ [g]0.1(¬f ∧ ¬d ∧ ¬h).

f ∧ ¬d ∧ h → [di]0.85(¬f ∧ d ∧ h) ∧ [d]0.15(¬f ∧ ¬d ∧ h);

¬f ∧ d ∧ h → [di](¬f ∧ d ∧ h);

¬f ∧ ¬d ∧ h → [di](¬f ∧ h).

f ∧ d ∧ h → [r](f ∧ d ∧ ¬h);

f ∧ ¬d ∧ h → [r](f ∧ ¬d ∧ ¬h);

¬f ∧ d ∧ h → [r](¬f ∧ d ∧ ¬h);

¬f ∧ ¬d ∧ h → [r](¬f ∧ ¬d ∧ ¬h).

The above sets of axioms will be denoted as PES g, PESdi and PES r respectively. Let PES g ∪
PESdi ∪ PES r = PES 1.

When trying to capture the behavior or dynamics of an action, one typically wants to capture
what objects in the environment the action affects, what objects are not affected, in what situa-
tions/conditions the action can be performed and when it can physically not be performed. Ob-
serve that action α is executable under condition φ if there exists an effect axiom with condition
φ in a PES for α. But one cannot say—given only a PES—when α is inexecutable or whether
the action may be executable under unmentioned conditions. Finally, one can only say what flu-
ents do not change, under the conditions of the given axioms. However, a PES does not carry the
information of whether the axioms are meant to cover all conditions. The rest of this chapter is
dedicated to dealing with these deficits.

If a knowledge engineer for some reason does not specify what an action α’s effects are, given
some condition φ, but s/he wants to specify that the action is executable in φ, then s/he can simply
write φ → [α]1>. According to the following proposition, one can also write φ → 〈α〉> to
express executability.

Proposition 5.4.1: [α]> ≡ 〈α〉>.

Proof:
Let S be an arbitrary SLAP structure and w a world in it.

S, w |= [α]>
⇐⇒

(∑
(w,w′,pr)∈Rα,S,w′|=> pr

)
= 1 (by the truth condition for [α]>)

⇐⇒ there exists a w′ ∈W s.t. (w,w′, pr) ∈ Rα where pr > 0 (by Def. 5.1.3)
⇐⇒

(∑
(w,w′,pr)∈Rα,S,w′|=> pr

)
6= 0

⇐⇒ ¬[α]0>
⇐⇒ 〈α〉>.

THE SPECIFICATION LOGIC OF ACTIONS WITH PROBABILITY 78

To express that α is inexecutable under condition φ, the knowledge engineer can write φ→ [α]0>.

5.5 Invariance

A frame axiom [Reiter, 1991] captures the idea of the ‘momentum’ of a state. That is, things
which are unaffected by an action, should remain unaffected after the completion of the action.
The general problem of how to minimize or avoid specifying the multitude of frame axioms usually
required is known as the frame problem [McCarthy and Hayes, 1969]. Bacchus et al. [1999] supply
one approach to deal with the frame problem in a language able to express probabilistic transitions.
More will be said about this in the concluding remarks at the end of this chapter.

We see in PES r that for the action r, only h is affected. So for r, the four frame axioms are

h ∧ f → [r]f ; h ∧ ¬f → [r]¬f ; h ∧ d→ [r]d; h ∧ ¬d→ [r]¬d.

Here, h is the condition under which the frame axioms are applicable.

In general, a positive frame axiom has the form

FrCond+(α, f) ∧ f → [α]f

and a negative frame axiom has the form

FrCond−(α, f) ∧ ¬f → [α]¬f,

where FrCond+(α, f) is a formula stating the conditions under which literal f remains positive
and FrCond−(α, f) is a formula stating the conditions under which literal ¬f remains negative.

Instead of stating frame axioms directly, we shall use a slightly more concise expression by col-
lecting all fluents invariant under the same conditions. We define the following abbreviation.

Inv(α, φ, {f1, . . . , fm})
def
= for i ∈ {1, . . . ,m}, φ→ ((fi → [α]fi) ∧ (¬fi → [α]¬fi)),

where f1, . . . , fm ∈ F . Inv(α, φ, {f1, . . . , fm}) is called the invariance predicate. It is read
‘When α is executed under condition φ, the truth-values of fluents f1, . . . , fm are invariant.

To relate frame axioms and invariance predicates, note that the following two statements hold (⇒
is read ‘implies’).

S, w |= Inv(α,FrCond+(α, f) ∧ f, F) s.t. f ∈ F
⇒ S, w |= FrCond+(α, f) ∧ f → [α]f.

S, w |= Inv(α,FrCond−(α, f) ∧ ¬f, F) s.t. f ∈ F
⇒ S, w |= FrCond−(α, f) ∧ ¬f → [α]¬f.

Note the subtlety that the literal of the right polarity must be included in the condition of the
invariance predicate.

THE SPECIFICATION LOGIC OF ACTIONS WITH PROBABILITY 79

We shall collect all invariance predicates in the set INV . Our approach assumes that for every/any
α, for all Inv(α, φ, F), Inv(α, φ′, F ′) ∈ INV , φ ∧ φ′ ≡ ⊥. Furthermore, for every effect axiom
φ→ Φ for α, for all Inv(α, φ′, F) ∈ INV , either φ∧φ′ ≡ ⊥ or φ |= φ′. These assumptions keep
things organized.

Now suppose we have the following invariance predicates (denoted INV 1).

Inv(g, f ∧ ¬h, {d});
Inv(g,¬f ∧ ¬h, {f, d});
Inv(di,¬f ∧ ¬d ∧ h, {f, h});
Inv(di,¬f ∧ d ∧ h, {f, d, h});
Inv(di, f ∧ ¬d ∧ h, {h});
Inv(r, h, {f, d}).

INV 1 is a partial specification of action effects of the oil-drinking scenario. To further specify
effects, one can supply the following effect axioms (denoted as PES 2).

f ∧ ¬h → [g]0.7(f ∧ h) ∧ [g]0.3¬h;

¬f ∧ ¬h → [g]0.9h ∧ [g]0.1¬h;

f ∧ ¬d ∧ h → [di]0.85(¬f ∧ d) ∧ [di]0.15(¬f ∧ ¬d);

h → [r]¬h.

Note that
∧
β∈PES1

β ≡
∧
δ∈INV 1∪PES2

δ, but INV 1 ∪PES 2 is significantly smaller than PES 1.

Furthermore, we shall assume that effect and invariance specifications are complete, that is, that
the knowledge engineer makes the completeness assumption about these specifications. Recall
that 〈α〉> abbreviates ¬[α]0> and note that S, w |= [α]qϕ for q > 0 and ϕ 6≡ ⊥ if and only if
S, w |= ¬[α]0> (for all S and w). Therefore, if there is an effect axiom invariance predicate with
condition φ, then one can assume the presence of an executability axiom φ → 〈α〉>. However,
we must still specify that an action is inexecutable when none of the effect axiom conditions or
invariance predicate conditions is met. Hence, the following inexecutability axiom is assumed
present.4

〈α〉> → (φ1 ∨ · · · ∨ φj) ∨
∨

φ∈CondInv (α)

φ,

where φ1, . . . , φj are the conditions of the effect axioms for α and Cond Inv (α) is the set of all
the conditions mentioned in the invariance predicates for α. The inexecutability axioms for our
example are

〈g〉> → ¬h; 〈di〉> → h ∧ ¬(f ∧ d); 〈r〉> → h. (5.2)

We shall collect all inexecutability axioms in the set INX . We shall refer to the set (5.2) in
particular as INX 1.

4 Inexecutability axioms are also called condition closure axioms.

THE SPECIFICATION LOGIC OF ACTIONS WITH PROBABILITY 80

5.6 From Underspecified to Completely Specified Transition Models

In this section, we define a complete transition model specification to capture the notion of a model
which provides information about transitions between every pair of states. The two subsections
provide approaches for completing partial specifications. A transition model specification is partial
when some fluent in the specification is underspecified. The notion of an ”underspecified” fluent
is formalized by Definitions 5.6.2 and 5.6.3 below. We propose two alternative approaches for
completing partial specifications in the subsections below. In Section 5.7, it is proved that these
approaches do in fact generate complete transition model specifications.

Definition 5.6.1: A complete transition model specification (short: CTS) for action α is any set
B ⊂ L involving only action α, such that there exists a structure S = 〈C,R〉 and S |=

∧
β∈B β,

and there is no S ′ = 〈C,R′〉 such that S ′ |=
∧
β∈B β.

A PES is, in general, not a CTS: Let F = {f1}, α1 ∈ A and B = {f1 → [α1]f1}. Then
B is a PES for α1. And let w1 |= f1 and w2 |= ¬f1. Assume S ′ |= f1 → [α1]f1, where
S ′ = 〈C,R′〉, (w2, w2, 0.4) ∈ R′α1

and (α1, R
′
α1

) ∈ R′ and assume S ′′ |= f1 → [α1]f1, where
S ′′ = 〈C,R′′〉, (w2, w2, 0.5) ∈ R′′α1

and (α1, R
′′
α1

) ∈ R′′. But the two structures S ′ and S ′′ are
different. Therefore, f1 → [α1]f1 does not uniquely specify the accessibility relation for α1. But
the definition of a CTS says it must be unique.

Suppose a completeness assumption about effect axioms is as follows: The conditions of effect
axioms for action α specifies all the conditions under which α has an effect, that is, under which α
causes a fluent to change (see, e.g., Reiter [1991], §2.3). In deterministic systems, if one makes the
completeness assumption about effect conditions, one can deduce frame axioms from the effect
axioms [Reiter, 1991]. But effect axioms for non-deterministic systems are different, and frame
axioms are not enough: Let BKod := INV 1 ∪ PES 2 ∪ INX 1. Note that BKod 6|= f ∧ ¬h →
[g]q(f ∧¬h)∨ [g]q′(¬f ∧¬h) for any q and q′. One could assume, due to lack of knowledge, that
the truth-value of f does not change, that is

BKod |= f ∧ ¬h→ [g]0.3(f ∧ ¬h),

or one could assume a uniform distribution of probability over the possible values of f , that is

BKod |= f ∧ ¬h→ [g]0.15(f ∧ ¬h) ∧ [g]0.15(¬f ∧ ¬h).

There seems to be no clear way to decide between the two assumptions without knowledge of
the domain; it depends on the domain of interest. In the following approaches dealing with this
issue, we require two rather complicated definitions. Each definition is followed by an intuitive
explanation.

Definition 5.6.2: Let Υeff (α, φ)
def
= {φ′ | Inv(α, φ′, F) ∈ INV , φ ∧ φ′ 6≡ ⊥}. Given effect

axiom φ→ [α]q1ϕ1∧ [α]q2ϕ2∧ . . .∧ [α]qnϕn for α of a PES, fluent f is effectively underspecified
in effect ϕ ∈ {ϕ1, ϕ2, · · · , ϕn} under condition φ ∧ φ′ if [α]qϕ 6|= [α]q(ϕ ∧ f) and [α]qϕ 6|=
[α]q(ϕ ∧ ¬f) and f 6∈ F , where Inv(α, φ′, F) ∈ INV for φ′ ∈ Υeff (α, φ).

Intuitively, a fluent is underspecified in an effect ϕ (of the effect axiom for α with condition φ)
under condition φ ∧ φ′, if its truth-value is unknown after transition [α]qϕ, and the invariance

THE SPECIFICATION LOGIC OF ACTIONS WITH PROBABILITY 81

predicate for α with condition φ′ does not reveal the truth-value of the fluent.

Definition 5.6.3: Let Υinv (α, φ′)
def
= {φ | φ → Φ is an effect axiom for α, φ′ ∧ φ 6≡ ⊥}. Given

invariance predicate Inv(α, φ, F) ∈ INV , fluent f is invariantly underspecified under condition
φ′ ∧ ¬

∨
φ∈CondInv (α) φ if this condition is not a contradiction and if f 6∈ F .

Intuitively, a fluent is underspecified under satisfiable condition φ′ ∧ ¬
∨
φ∈CondInv (α) φ, if the

invariance predicate for α with condition φ′ does not reveal the truth-value of the fluent.

The definitions assume that all relevant information about effects of actions is contained in a
clearly defined PES and set INV . If effect information were not easily located in this manner, it
would be very difficult to ‘complete’ the specifications of effects of actions as is done subsequently.
In other words, our proposal for the management of probabilistic transition models includes the
requirement that a PES and a set INV are clearly defined and accessible by the system or system-
user.

When we say a fluent is underspecified, we mean it in the sense of one or more of Defini-
tions 5.6.2 and 5.6.3. Next, we propose two alternative approaches for completing incompletely
specified transition models. The approaches are: When a fluent is underspecified under a particu-
lar condition, (1) assume that it is invariant under that condition or (2) assume that it is uniformly
distributed under that condition.

It is important to know that when we say “assume the presence of” some formulae in the ap-
proaches below, we do not intend that the formulae necessarily be added to the agent’s background
knowledge. Our intention is that the knowledge engineer decides before hand which default as-
sumption must be made when information is underspecified. The inference engine should then
simulate the presence of the applicable formulae assumed present in some efficient manner. In
this way, representation, that is, the work that the knowledge engineer must do, remains concise.

5.6.1 Always Assuming Invariance

For every α ∈ A and f ∈ F , for all conditions φ of effect axioms for α and conditions φ′ of
invariance predicates for α, if f is effectively underspecified in effect ϕ under condition φ ∧ φ′,
assume the presence of frame axioms

φ ∧ φ′ ∧ f → [α]q(ϕ ∧ f) and φ ∧ φ′ ∧ ¬f → [α]q(ϕ ∧ ¬f).

For every α ∈ A and f ∈ F , for all conditions φ′ of invariance predicates for α, if f is invariantly
underspecified under condition φ′ ∧ ¬

∨
φ∈CondInv (α) φ, assume the presence of frame axioms

φ′ ∧ ¬
∨

φ∈CondInv (α)

φ ∧ f → [α]q(ϕ ∧ f) and φ′ ∧ ¬
∨

φ∈CondInv (α)

φ ∧ ¬f → [α]q(ϕ ∧ ¬f).

Given PES 1, INV is empty and there are thus no invariably underspecified fluents. However, f

THE SPECIFICATION LOGIC OF ACTIONS WITH PROBABILITY 82

and d are effectively underspecified, leading to the assumption of these invariance formulae:

f ∧ d ∧ ¬h → [g]0.3(d ∧ ¬h ∧ f);

f ∧ ¬d ∧ ¬h → [g]0.3(¬d ∧ ¬h ∧ f);

¬f ∧ ¬d ∧ h → [di](¬f ∧ ¬d ∧ h).

(5.3)

Given PES 2 and INV 1: f is effectively underspecified in effect ¬h under condition (f ∧ ¬h) ∧
(f ∧ ¬h). The invariance formulae due to f are thus

(f ∧ ¬h) ∧ f → [g]0.3(¬h ∧ f) and (f ∧ ¬h) ∧ ¬f → [g]0.3(¬h ∧ ¬f),

which simplifies to
f ∧ ¬h→ [g]0.3(¬h ∧ f). (5.4)

d is invariantly underspecified under condition (¬f∧¬d∧h)∧¬(f∧¬d∧h) (which is semantically
equivalent to ¬f ∧ ¬d ∧ h). The invariance formulae due to d are thus

(¬f ∧ ¬d ∧ h) ∧ d→ [di]d and (¬f ∧ ¬d ∧ h) ∧ ¬d→ [di]¬d,

which simplifies to
¬f ∧ ¬d ∧ h→ [di]¬d. (5.5)

Proposition 5.6.1: PES 1 ∪{(5.3)} is semantically equivalent to PES 2 ∪ INV 1 ∪{(5.4), (5.5)}.

Proof:
Observe that

(f ∧ d ∧ ¬h→ [g]0.3(d ∧ ¬h ∧ f)) ∧ (f ∧ ¬d ∧ ¬h→ [g]0.3(¬d ∧ ¬h ∧ f))

≡ Inv(g, f ∧ ¬h, {d}) ∧ (f ∧ ¬h→ [g]0.3(¬h ∧ f)),

where the formulae on the LHS are in {(5.3)} and on the RHS, Inv(g, f ∧ ¬h, {d}) ∈ INV 1 and
f ∧ ¬h→ [g]0.3(¬h ∧ f) is (5.4). And observe that

¬f ∧ ¬d ∧ h→ [di](¬f ∧ ¬d ∧ h)

≡ (¬f ∧ ¬d ∧ h→ [di](¬f ∧ h)) ∧ (¬f ∧ ¬d ∧ h→ [di]¬d),

where the formula on the LHS is in {(5.3)} and on the RHS, ¬f ∧¬d∧h→ [di](¬f ∧h) ∈ PES 1

and ¬f ∧ ¬d ∧ h→ [di]¬d is (5.5).

Proposition 5.6.1 is supporting evidence that our strategies are correct.

5.6.2 Always Assuming Uniform Distribution

Let U eff (α, φ, φ′, ϕ)
def
= {f ∈ F | f is effectively underspecified for α in effect ϕ under condition

φ ∧ φ′}, where φ is the condition of some effect axiom for α and φ′ is the condition of some

invariance predicate for α, and U inv (α, φ′)
def
= {f ∈ F | f is invariantly underspecified for α

under condition φ′ ∧ ¬
∨
φ∈CondInv (α) φ as described in Definition 5.6.3}.

THE SPECIFICATION LOGIC OF ACTIONS WITH PROBABILITY 83

For every α ∈ A, for all conditions φ of effect axioms for α, for every transition [α]qϕ of the ax-
iom, for all conditions φ′ of invariance predicates for α, assume the presence of equiprob formula

φ→ [α]q1(ϕ ∧ γ1) ∧ · · · ∧ [α]qm(ϕ ∧ γm),

where {γ1, . . . , γm} is the m = 2|U
eff (α,φ,φ′,ϕ)| permutations of conjunctions of literals, given all

the fluents in U eff (α, φ, φ′, ϕ) and q1 = · · · = qm = q/m. For instance, if U eff (α, φ, φ′, ϕ) =

{f2, f4} then the literal conjunction permutations are {f2 ∧ f4, f2 ∧¬f4, ¬f2 ∧ f4, ¬f2 ∧¬f4}.

For every action α ∈ A, for all conditions φ′ of invariance predicate for α, assume the presence
of equiprob formula

φ′ ∧ ¬
∨

φ∈CondInv (α)

φ→ [α]q1γ1 ∧ · · · ∧ [α]qnγn,

where {γ1, . . . , γn} are the n = 2|U
inv (α,φ′)| permutations of conjunctions of literals, given all the

fluents in U inv (α, φ′) and q1 = · · · = qn = q/n. Note that an equiprob formula needs not be
stated if its condition φ′ ∧ ¬

∨
φ∈CondInv (α) φ is a contradiction. The same goes for cases when

U inv (α, φ′) is empty.

Given PES 1, INV is empty and there are thus no invariably underspecified fluents. However, f
and d are effectively underspecified, leading to the assumption of these equiprob formulae:

f ∧ d ∧ ¬h → [g]0.15(d ∧ ¬h ∧ f) ∧ [g]0.15(d ∧ ¬h ∧ ¬f);

f ∧ ¬d ∧ ¬h → [g]0.15(¬d ∧ ¬h ∧ f) ∧ [g]0.15(¬d ∧ ¬h ∧ ¬f);

¬f ∧ ¬d ∧ h → [d]0.5(¬f ∧ d ∧ h) ∧ [d]0.5(¬f ∧ ¬d ∧ h).

(5.6)

Given INV 1 and PES 2: U eff (g, f ∧ ¬h, f ∧ ¬h,¬h) = {f} (due to [g]0.3¬h in effect axiom
f ∧ ¬h→ [g]0.7(f ∧ h) ∧ [g]0.3¬h). Hence, equiprob formula

f ∧ ¬h→ [g]0.15(¬h ∧ f) ∧ [g]0.15(¬h ∧ ¬f) (5.7)

is assumed present. For all other conditions (combinations of φ and φ′), U eff (α, φ, φ′, ϕ) = ∅.
And due to invariance predicate Inv(di,¬f ∧¬d∧ h, {f, h}) in INV 1, U inv (di,¬f ∧¬d∧ h) =

{d}. Hence, equiprob formula

¬f ∧ ¬d ∧ h→ [di]0.5d ∧ [di]0.5¬d (5.8)

is assumed present. For all other conditions φ′, U inv (α, φ′) = ∅.

Remark 5.6.1: PES 1 ∪ {(5.6)} is semantically equivalent to PES 2 ∪ INV 1 ∪ {(5.7), (5.8)}.

5.7 The Two Approaches are Full Specifications

This section presents a theorem (Thm. 5.7.1) which proves that there exists a process for trans-
forming a PES, a set INV and the associated frame axioms or equiprob formulae into a complete
transition model specification (CTS). After the theorem and its proof, we transform PES 2 and

THE SPECIFICATION LOGIC OF ACTIONS WITH PROBABILITY 84

INV 1 and the associated frame axioms or equiprob formulae given in Sections 5.6.1 and 5.6.2,
respectively, to illustrate the transformation process.

If there exists a world w ∈ C such that w |= δ, where δ is a propositional formula, and for all
w′ ∈ C, if w′ 6= w then w′ 6|= δ, we say that δ is definitive (then, δ defines a world; δ is a complete
propositional theory). Let cpt be the smallest set of all definitive formulae induced from F .

Definition 5.7.1: A verbose effects specification (VES) is a PES where all effect axiom conditions
(the φ left of the→) and effects (the ϕ right of the→) are definitive formulae.

Lemma 5.7.1: Let INX V be ¬〈α〉> → ¬(φ1 ∨ · · · ∨ φj), where φ1, . . . , φj are the j conditions
of the j effect axioms in a VES V for α, and V is generated using the process described in the
proof of Theorem 5.7.1. Then INX V ∧

∧
β∈V β is a CTS.

Proof:
We must show that there exists a unique Rα : (C × C) 7→ Q[0,1] which is a total function from
pairs of worlds into the rationals, and for every w− ∈ C, either

∑
(w−,w+,pr)∈Rα pr = 1 or∑

(w−,w+,pr)∈Rα pr = 0, such that (α,Rα) ∈ R and 〈C,R〉 |= INX V ∧
∧
β∈V β.

For the sake of reference, let

φ→ [α]q1ϕ1 ∧ [α]q2ϕ2 ∧ . . . ∧ [α]qnϕn

be an arbitrary effect axiom of V . We may refer to the axiom as η. Construct Rα as follows: For
all w−, w+ ∈ C: If w− 6|= (φ1 ∨ · · · ∨ φj), then (w−, w+, 0) ∈ Rα. Else if w− |= φ: if w+ |= ϕk
then (w−, w+, qk) ∈ Rα, else if w+ 6|= ϕ1 ∨ · · · ∨ ϕn then (w−, w+, 0) ∈ Rα.

Now, the domain and co-domain of Rα are clearly adhered to. Rα is a function because of the
constraint of a PES that for every i, for any pair of effects ϕik and ϕik′ , ϕik ∧ ϕik′ ≡ ⊥, that is,
never is more than one probability specified for reaching a world w+ from some world w−.

Rα is a total function because, given any pair (w−, w+) ∈ (C × C), if w− |= ψi where φi
is the condition of the i-th effect axiom, then either (i) w+ |= ϕik for some transition [α]qϕik
in the axiom, in which case (w−, w+, q) ∈ Rα or (ii) w+ 6|= ϕik for all transitions in the ax-
iom, in which case (w−, w+, 0) ∈ Rα, due to the PES constraint that the transition probabilities
qi1, . . . , qin of any axiom i must sum to 1. Else, for all w− ∈ C such that w− |= ¬(φ1 ∨ · · · ∨φj),
(w−, w+, 0) ∈ Rα for all w+ ∈ C, due to the PES constraint that for any pair of conditions φi
and φi′ , φi ∧φi′ ≡ ⊥. It follows implicitly that for every w− ∈ C, either

∑
(w−,w+,pr)∈Rα pr = 1

or
∑

(w−,w+,pr)∈Rα pr = 0.

Simply, by construction of Rα, it follows that 〈C,R〉 |= INX V . And as a direct consequence of
the construction of Rα, it follows that 〈C,R〉 |=

∧
β∈V β.

We shall now show that no other R′α (6= Rα) can be constructed such that (α,R′α) ∈ R′ and
〈C,R′〉 |= INX V ∧

∧
β∈V β. Let (w−, w+, qk) be some element of Rα as constructed. Let

q′ ∈ Q[0,1] such that |q′ − qk| > 0. If w− 6|= (φ1 ∨ · · · ∨ φj), then (w−, w+, q′) ∈ R′α, where
q′ > 0. But then 〈C,R′〉 6|= INX V . And if w− |= φ and w+ |= ϕk, then qk 6= q′ and 〈C,R′〉 6|=
φ → [α]qkϕk, which implies that 〈C,R′〉 6|= η, which implies that 〈C,R′〉 6|=

∧
β∈V β. Else,

if w− |= φ and w+ 6|= ϕ1 ∨ · · · ∨ ϕn then (w−, w+, q′) ∈ Rα where q′ 6= 0. But this is a
contradiction, because it is required that

∑
(w−,w+,pr)∈Rα pr = 1, but due to the PES constraint

THE SPECIFICATION LOGIC OF ACTIONS WITH PROBABILITY 85

that the transition probabilities qi1, . . . , qin of any axiom imust sum to 1,
∑

(w−,w+,pr)∈Rα pr > 1.

Definition 5.7.2: Note that any formula φ→ Φ (with condition φ) such that φ 6|= f and φ 6|= ¬f
for some f ∈ F , is semantically equivalent to (φ ∧ f → Φ) ∧ (φ ∧ ¬f → Φ). Given this
observation, one can expand any formula of the form φ→ Φ into a set of semantically equivalent
formulae, each with a definitive condition. We shall refer to this process applied to a set X of
formulae as expending X by conditions.

Proposition 5.7.1: (φ → [α]ϕ) ∧ (φ′ → [α]qϕ
′) ∧ (φ′ → φ) |= φ′ → [α]q(ϕ ∧ ϕ′) for all

q ∈ Q[0,1].

Proof:
Let S be an arbitrary SLAP structure and w a world in it. Suppose S, w |= (φ → [α]ϕ) ∧
(φ′ → [α]qϕ

′) ∧ (φ′ → φ). Assume S, w |= φ′. Then S, w |= φ (and thus S, w |= [α]ϕ) and
S, w |= [α]qϕ

′ (i.e., S, w |= φ ∧ [α]ϕ ∧ [α]qϕ
′.

Now, S, w |= [α]ϕ ∧ [α]qϕ
′ iff∑

(w,w′,pr)∈Rα,S,w′|=ϕ

pr = 1 and
∑

(w,w′,pr)∈Rα,S,w′|=ϕ′
pr = q.

Therefore, {(w,w′, pr) ∈ Rα | w′ |= ϕ′} ⊆ {(w,w′, pr) ∈ Rα | w′ |= ϕ, pr > 0}. Hence,
S, w |= iff

∑
(w,w′,pr)∈Rα,S,w′|=ϕ∧ϕ′ pr = q, and by definition, S, w |= [α]q(ϕ ∧ ϕ′).

Proposition 5.7.2: A fluent cannot be effectively and invariantly underspecified under the same
condition.

Proof:
By definition of Υinv (α, φ′), whenever φ∧φ′ 6≡ ⊥, then φ ∈ Υinv (α, φ′). Note that¬

∨
φ∈CondInv (α) φ

≡ ¬φ1 ∧ ¬φ2 ∧ · · · ∧ ¬φn, where Υinv (α, φ′) = {φ1, φ2, . . . , φn}. But φ ∈ {φ1, φ2, . . . , φn}.
Therefore, φ ∧ ¬

∨
φ∈CondInv (α) φ ≡ ⊥ and the proposition follows.

Theorem 5.7.1: For both approaches, given a PES Π for α, a set of invariance predicates INV

for α, an inexecutability axiom INX for α derived from Π and INV , a set of frame axioms FA

for α and a set of equiprob formulae EF for α, their union is a CTS for α.

Proof:
Suppose V is a VES forα and INX V is an inexecutability axiom derived from V as in Lemma 5.7.1.
If we can show that V and INX V exist such that INX ∧

∧
β∈Π∪INV∪FA∪EF ≡ INX V ∧

∧
δ∈V δ,

then by Lemma 5.7.1, we have proved the theorem. Hence, we show how to convert Π ∪ INV ∪
FA ∪ EF into a semantically equivalent VES V and we prove that INX ≡ INX V .

We show how to ‘enlarge’ Π into a VES using four rewrite rules involving INV , IF and EF . The
rewrite rules are:

1. For every Inv(α, φ, {f1, . . . , fm}) ∈ INV , for i ∈ {1, . . . ,m}, add φ ∧ fi → [α]fi and
φ∧¬fi → [α]¬fi to INV if φ∧fi, respectively, φ∧¬fi is satisfiable. Remove all invariance
predicates from INV .

2. Expand Π, INV , FF and EF by conditions.

THE SPECIFICATION LOGIC OF ACTIONS WITH PROBABILITY 86

3. For every φ′ → [α]` ∈ INV , if there is no φ → Φ ∈ Π such that φ ≡ φ′, then add
φ′ → [α]> to Π.

4. When assuming invariance: Note that EF is empty. For every φ → Φ ∈ Π, for every
φ′ → [α]qϕ

′ ∈ FA such that φ ≡ φ′, for every [α]qϕ in Φ, if ϕ′ |= ϕ, then replace [α]qϕ by
[α]qϕ

′.

When assuming uniform distribution: Note that FA is empty. For every φ → Φ ∈ Π, for
every φ→ [α]q1(ϕ∧γ1)∧· · ·∧[α]qm(ϕ∧γm),∈ EF such that φ ≡ φ′, for every [α]qϕ in Φ,
if ϕi |= ϕ for all i ∈ {1, . . . ,m}, then replace [α]qϕ by [α]q1(ϕ∧γ1)∧· · ·∧ [α]qm(ϕ∧γm).

5. For every φ→ Φ ∈ Π, if φ′ → [α]` ∈ INV such that φ ≡ φ′, then replace every [α]ϕ in Φ

by [α](ϕ ∧ `).

Recalling that Inv(α, φ, {f1, . . . , fm}) abbreviates: for i ∈ {1, . . . ,m}, φ → ((fi → [α]fi) ∧
(¬fi → [α]¬fi)), step 1 is sound. By Definition 5.7.2, step 2 is sound. Due to φ′ → [α]` |=
φ′ → [α]>, step 3 is sound. Note that, by Proposition 5.7.2, no formula in Π is modified/rewritten
twice in step 4. Hence, the process in step 4 does not cause side-effects. And together with the
two assumptions and the respective explanations of the approaches to complete the specifications,
step 4 is sound. By Proposition 5.7.1, step 5 is sound.

Note that the two approaches of Sections 5.6.1 and 5.6.2 are designed exactly to deal with fluents
not dealt with before, that is, to appropriately add literals corresponding to every fluent not men-
tioned in an effect of some effect axiom, for every effect in every axiom. Thus, by the nature of
INV , FA and EF and the rewrite rules of steps 4 and 5, every effect of every effect axiom is now
a definitive formula.

A VES is a PES; the conditions of all its effect axioms must thus be disjoint. It is assumed that
Π is initially a PES, hence, with disjoint conditions. None of the rewrite rules causes some pair
of conditions in Π to be joint: In particular, step 2: Expansion by conditions cannot cause joint
conditions.

Observe that INX depends only on the axiom conditions of the original Π, which has essentially
the same axiom conditions as those of V (given that condition expansion in step 2 does not add
conditions), and INX V depends only on the axiom conditions of V . Hence INX ≡ INX V .

Example

PES 2 and INV 1 presented in Section 5.5 are repeated here, for convenience:

INV 1:

Inv(g, f ∧ ¬h, {d});
Inv(g,¬f ∧ ¬h, {f, d});
Inv(di,¬f ∧ ¬d ∧ h, {f, h});
Inv(di,¬f ∧ d ∧ h, {f, d, h});
Inv(di, f ∧ ¬d ∧ h, {h});
Inv(r, h, {f, d}).

THE SPECIFICATION LOGIC OF ACTIONS WITH PROBABILITY 87

PES 2:

f ∧ ¬h → [g]0.7(f ∧ h) ∧ [g]0.3¬h;

¬f ∧ ¬h → [g]0.9h ∧ [g]0.1¬h;

f ∧ ¬d ∧ h → [di]0.85(¬f ∧ d) ∧ [di]0.15(¬f ∧ ¬d);

h → [r]¬h.

When assuming invariance (AI) by default, FA:

f ∧ ¬h → [g]0.3(¬h ∧ f);

¬f ∧ ¬d ∧ h → [di]¬d.

When assuming uniform distribution (AUD) by default, EF :

f ∧ ¬h → [g]0.15(¬h ∧ f) ∧ [g]0.15(¬h ∧ ¬f);

¬f ∧ ¬d ∧ h → [di]0.5d ∧ [di]0.5¬d.

The transformation process is now applied to these sentences, using the five rewrite rules presented
in the proof of Theorem 5.7.1.

Rule 1
INV 1:

f ∧ ¬h ∧ d → [g]d;

f ∧ ¬h ∧ ¬d → [g]¬d;

¬f ∧ ¬h → [g]¬f ;

¬f ∧ ¬h ∧ d → [g]d;

¬f ∧ ¬h ∧ ¬d → [g]¬d;

¬f ∧ ¬d ∧ h → [di]¬f ;

¬f ∧ ¬d ∧ h → [di]h;

¬f ∧ d ∧ h → [di]¬f ;

¬f ∧ d ∧ h → [di]d;

¬f ∧ d ∧ h → [di]h;

f ∧ ¬d ∧ h → [di]h;

h ∧ f → [r]f ;

h ∧ ¬f → [r]¬f ;

h ∧ d → [r]d;

h ∧ ¬d → [r]¬d.

THE SPECIFICATION LOGIC OF ACTIONS WITH PROBABILITY 88

Rule 2
PES 2:

f ∧ ¬h ∧ d → [g]0.7(f ∧ h) ∧ [g]0.3¬h;

f ∧ ¬h ∧ ¬d → [g]0.7(f ∧ h) ∧ [g]0.3¬h;

¬f ∧ ¬h ∧ d → [g]0.9h ∧ [g]0.1¬h;

¬f ∧ ¬h ∧ ¬d → [g]0.9h ∧ [g]0.1¬h;

f ∧ ¬d ∧ h → [di]0.85(¬f ∧ d) ∧ [di]0.15(¬f ∧ ¬d);

h ∧ f ∧ d → [r]¬h;

h ∧ f ∧ ¬d → [r]¬h;

h ∧ ¬f ∧ d → [r]¬h;

h ∧ ¬f ∧ ¬d → [r]¬h.

When AI, FA:

f ∧ ¬h ∧ d → [g]0.3(¬h ∧ f);

f ∧ ¬h ∧ ¬d → [g]0.3(¬h ∧ f);

¬f ∧ ¬d ∧ h → [di]¬d.

When AUD, EF :

f ∧ ¬h ∧ d → [g]0.15(¬h ∧ f) ∧ [g]0.15(¬h ∧ ¬f);

f ∧ ¬h ∧ ¬d → [g]0.15(¬h ∧ f) ∧ [g]0.15(¬h ∧ ¬f);

¬f ∧ ¬d ∧ h → [di]0.5d ∧ [di]0.5¬d.

THE SPECIFICATION LOGIC OF ACTIONS WITH PROBABILITY 89

INV 1:

f ∧ ¬h ∧ d → [g]d;

f ∧ ¬h ∧ ¬d → [g]¬d;

¬f ∧ ¬h ∧ d → [g]¬f ;

¬f ∧ ¬h ∧ ¬d → [g]¬f ;

¬f ∧ ¬h ∧ d → [g]d;

¬f ∧ ¬h ∧ ¬d → [g]¬d;

¬f ∧ ¬d ∧ h → [di]¬f ;

¬f ∧ ¬d ∧ h → [di]h;

¬f ∧ d ∧ h → [di]¬f ;

¬f ∧ d ∧ h → [di]d;

¬f ∧ d ∧ h → [di]h;

f ∧ ¬d ∧ h → [di]h;

h ∧ f ∧ d → [r]f ;

h ∧ ¬f ∧ d → [r]¬f ;

h ∧ d ∧ f → [r]d;

h ∧ ¬d ∧ f → [r]¬d;

h ∧ f ∧ ¬d → [r]f ;

h ∧ ¬f ∧ ¬d → [r]¬f ;

h ∧ d ∧ ¬f → [r]d;

h ∧ ¬d ∧ ¬f → [r]¬d.

Rule 3
The following are added to PES 2.

¬f ∧ ¬d ∧ h → [di]>;

¬f ∧ d ∧ h → [di]>.

Rule 4
When AI, the changes in PES 2 are:

f ∧ ¬h ∧ d → [g]0.7(f ∧ h) ∧ [g]0.3(¬h ∧ f);

f ∧ ¬h ∧ ¬d → [g]0.7(f ∧ h) ∧ [g]0.3(¬h ∧ f);

¬f ∧ ¬d ∧ h → [di]¬d.

THE SPECIFICATION LOGIC OF ACTIONS WITH PROBABILITY 90

When AUD, the changes in PES 2 are:

f ∧ ¬h ∧ d → [g]0.7(f ∧ h) ∧ [g]0.15(¬h ∧ f) ∧ [g]0.15(¬h ∧ ¬f);

f ∧ ¬h ∧ ¬d → [g]0.7(f ∧ h) ∧ [g]0.15(¬h ∧ f) ∧ [g]0.15(¬h ∧ ¬f);

¬f ∧ ¬d ∧ h → [di]0.5d ∧ [di]0.5¬d.

Rule 5
When AI, PES 2:

f ∧ ¬h ∧ d → [g]0.7(f ∧ h) ∧ [g]0.3(¬h ∧ f);

f ∧ ¬h ∧ ¬d → [g]0.7(f ∧ h) ∧ [g]0.3(¬h ∧ f);

¬f ∧ ¬h ∧ d → [g]0.9(h ∧ ¬f ∧ d) ∧ [g]0.1(¬h ∧ ¬f ∧ d);

¬f ∧ ¬h ∧ ¬d → [g]0.9(h ∧ ¬f ∧ ¬d) ∧ [g]0.1(¬h ∧ ¬f ∧ ¬d);

f ∧ ¬d ∧ h → [di]0.85(¬f ∧ d ∧ h) ∧ [di]0.15(¬f ∧ ¬d ∧ h);

¬f ∧ ¬d ∧ h → [di](¬d ∧ ¬f ∧ h);

¬f ∧ d ∧ h → [di](> ∧ ¬f ∧ d ∧ h);

h ∧ f ∧ d → [r](¬h ∧ f ∧ d);

h ∧ f ∧ ¬d → [r](¬h ∧ ¬d ∧ f);

h ∧ ¬f ∧ d → [r](¬h ∧ ¬f ∧ d);

h ∧ ¬f ∧ ¬d → [r](¬h ∧ ¬f ∧ ¬d).

When AUD, PES 2:

f ∧ ¬h ∧ d → [g]0.7(f ∧ h) ∧ [g]0.15(¬h ∧ f) ∧ [g]0.15(¬h ∧ ¬f);

f ∧ ¬h ∧ ¬d → [g]0.7(f ∧ h) ∧ [g]0.15(¬h ∧ f) ∧ [g]0.15(¬h ∧ ¬f);

¬f ∧ ¬h ∧ d → [g]0.9(h ∧ ¬f ∧ d) ∧ [g]0.1(¬h ∧ ¬f ∧ d);

¬f ∧ ¬h ∧ ¬d → [g]0.9(h ∧ ¬f ∧ ¬d) ∧ [g]0.1(¬h ∧ ¬f ∧ ¬d);

f ∧ ¬d ∧ h → [di]0.85(¬f ∧ d ∧ h) ∧ [di]0.15(¬f ∧ ¬d ∧ h);

¬f ∧ ¬d ∧ h → [di]0.5(d ∧ ¬f ∧ h) ∧ [di]0.5(¬d ∧ ¬f ∧ h);

¬f ∧ d ∧ h → [di](> ∧ ¬f ∧ d ∧ h);

h ∧ f ∧ d → [r](¬h ∧ f ∧ d);

h ∧ f ∧ ¬d → [r](¬h ∧ ¬d ∧ f);

h ∧ ¬f ∧ d → [r](¬h ∧ ¬f ∧ d);

h ∧ ¬f ∧ ¬d → [r](¬h ∧ ¬f ∧ ¬d).

The following is the set of inexecutability axioms INX 2 derived from the new PES 2:

〈g〉 → (f ∧ ¬h ∧ d) ∨ (f ∧ ¬h ∧ ¬d) ∨ (¬f ∧ ¬h ∧ d) ∨ (¬f ∧ ¬h ∧ ¬d);

〈di〉 → (f ∧ ¬d ∧ h) ∨ (¬f ∧ ¬d ∧ h) ∨ (¬f ∧ d ∧ h);

〈r〉 → (h ∧ f ∧ d) ∨ (h ∧ f ∧ ¬d) ∨ (h ∧ ¬f ∧ d) ∨ (h ∧ ¬f ∧ ¬d)

THE SPECIFICATION LOGIC OF ACTIONS WITH PROBABILITY 91

which is semantically equivalent to

〈g〉> → ¬h;

〈di〉> → h ∧ ¬(f ∧ d);

〈r〉> → h.

which is identical to INX 1 (Formulae 5.2, page 79). Furthermore, PES 2 is a VES, and it is thus
easy to see that PES 2 ∪ INX 2 is three transition model specifications for the three actions.

5.8 Concluding Remarks

We presented a non-nesting logic (SLAP) for modeling probabilistic transition systems. The logic
is based on modal logic with possible worlds semantics. We proved that determining whether an
SLAP sentence is valid is decidable. We showed how entailment can be cast as a validity problem
and an example domain problem was presented. A crucial part of proving SLAP decidable was
reliant on the decidability of the feasibility of systems of linear inequalities.

Adding stochastic observations, that is, a means to reason about noisy sensing to SLAP will yield
the logic called SLAOP, a logic for specifying partially observable Markov decision processes
(POMDPs) [Monahan, 1982, Lovejoy, 1991].

The 2 (necessity) operator in SLAP may not be nested. This makes the logic less expressive, in a
sense, than logics which do allow nesting of necessity operators. For instance, the related logics
LAP and ESP allow nesting of necessity operators. This ‘deficiency’ also applies to our SLAOP.
However, SLAP and SLAOP were designed to be steps in the design of our Stochastic Decision
Logic (SDL). SDL does allow for some form of modal operator nesting, however, not exactly the
same kind as in LAP and ESP . This issue will be discussed in the chapter defining SDL.

Iocchi et al. [2009] also say that one of their aims is to extend E+ to represent POMDPs. But
it seems that their extension of E+ and our extension of SLAP to achieve POMDP specifications
will result in significantly different logics, with possibly different computability and computational
properties.

The work appearing in this chapter has been presented at a workshop [Rens et al., 2013]. However,
Definitions 5.6.2 and 5.6.3 above, replace three definitions in the workshop paper. With the new
definitions, the two approaches corresponding to the two assumptions (Secs. 5.6.1 and 5.6.2) are
slightly simpler. Furthermore, these two approaches for generating full specifications, presented
in this chapter, do not constrain the knowledge engineer as much: In the approach presented in the
workshop paper, the following constraints were in place. For every effect axiom φ→ Φ for α, for
all Inv(α, φ′, F) ∈ INV , either φ∧φ′ ≡ ⊥ or φ |= φ′. These constraints are no longer necessary
with the new approach.

We proved that our two approaches to complete underspecified transition models result in complete
transition model specifications.

There seems to be two issues with underspecified models. One is knowing what information is
missing. The other is deciding what information to add and how to add it correctly and completely.

THE SPECIFICATION LOGIC OF ACTIONS WITH PROBABILITY 92

We have presented a systematic approach to generate complete specifications of probabilistic tran-
sition models (CTSs) with a probabilistic modal logic. For these specifications to be more com-
pact than they would be if transition probabilities were simply written down, it is expected that
a user/knowledge engineer will capture (with sentences of a logical language) some transition
information from the domain of interest, and then for missing information, express the desired
transition behavior of the model of the domain, and finally, for information still not provided by
the user, s/he must take a stance as to what the default transition behavior should be: invariance of
the truth-values of fluents not mentioned in the effect axioms, or uniform distribution of transition
probabilities. In real world situations, a combination of assumptions may be more effective. For
instance, in a very dynamic environment, the default should perhaps be ‘variance’. That is, when
information is not given about how the truth-value of a fluent should change when some action is
executed, it could be assumed that the fluent’s value will always change. Nevertheless, assuming
(necessary) (in)variance is an assumption of certainty; these are ‘minimum entropy’/certain infor-
mation assumptions and could be studied under the topic of traditional nonmonotonic reasoning
[Brewka, 2012].

The ‘uniform distribution’ assumption on the other hand is a kind of ‘maximum entropy’ ap-
proach. Wang and Schmolze [2005] have a very similar approach to ours to achieve compact
representations in POMDP planning. Some researchers (see, e.g., Grove et al. [1994] and the
work of Kern-Isberner [2001] and colleagues) have proposed the assignment of a unique proba-
bility distribution over a vocabulary such that information theoretic entropy is maximized while
the available probabilistic information is conserved. This principle of maximum entropy [Jaynes,
1978] seems to be a reasonable approach, but it may also be reasonable to assume a particular a
priori probability distribution for a given domain when no other information is forthcoming. Al-
though “default reasoning about probabilities” [Jaeger, 1994] is usually applied to what is believed
in the current situation, the idea is easily applied to what will be believed in the next situation, that
is, to transition models.

Another approach to more compact specifications is via notions of conditional independence of
Belief Networks. See, for example, Fierens et al. [2005] for a starting point in the area of combin-
ing belief nets with logic. We have not looked at the relationship between the notion of invariance
and conditional independence in a probabilistic setting.

Bacchus et al. [1999] give an account of specifying stochastic actions in the situation calculus
while retaining Reiter’s solution to the frame problem [Reiter, 1991] via successor-state axioms
(SSAs). In particular, §3 of their paper shows how to deal with a nondeterministic action by ‘de-
composing’ it into a set of deterministic actions, each leading to one of the effects of the nonde-
terministic action. In SLAP, stochastic (nondeterministic) actions are specified ‘directly’, actions
are not decomposed. The ‘direct approach’ corresponds more closely to POMDP models than the
‘decomposition approach’, and thus aligns better with logics with explicit POMDP semantics. We
could thus not rely on Reiter’s solution. A deeper study is needed to compare the pros and cons of
using decomposition and SSAs, on the one hand, and using our direct approach without SSAs, on
the other hand.

Finally, it might be a good idea to define a variance set Var(·) instead of the invariance predicate:

Var(α, φ)
def
= {f ∈ F | f ’s truth-value varies with the execution of α under condition φ}.

THE SPECIFICATION LOGIC OF ACTIONS WITH PROBABILITY 93

There are usually fewer variant fluents than invariant fluents, given some action. It will thus
likely be more efficient to specify Var(·) than Inv(·). A decision procedure must then use the
information captured by Var(·) appropriately. This is very close to the idea of the dependence
relation ; of Castilho et al. [1999]. This is left for future work.

The next chapter introduces the Specification Logic of Actions and Observations with Probability
(SLAOP), and how to use it. Its development was important in that it clarifies issues involving
reasoning with stochastic actions and observations. We shall see in the latter part of Chapter 6that
SLAOP is useful as a stand-alone logic.

6. THE SPECIFICATION LOGIC OF ACTIONS AND OBSERVATIONS WITH
PROBABILITY

An early version of the logic presented in this chapter was presented at the sixth Starting Artificial
Intelligence Research Symposium (STAIRS) in Montpellier, France [Rens et al., 2012]. The cur-
rent version was presented at the eighth international symposium on Foundations of Information
and Knowledge Systems (FoIKS) in Bordeaux, France [Rens et al., 2014b].

In order for robots and intelligent agents in stochastic domains to reason about actions and obser-
vations, they must first have a representation or model of the domain over which to reason. For
example, a robot may need to represent available knowledge about its grab action in its current
situation. It may need to represent that when ‘grabbing’ the oil-can, there is a 5% chance that it
will knock over the oil-can. As another example, if the robot has access to information about the
weight of an oil-can, it may want to represent the fact that the can weighs heavy 90% of the time
in ‘situation A’, but that it is heavy 98% of the time in ‘situation B’.

This chapter presents the Specification Logic of Actions and Observations with Probability (SLAOP).
The logic is meant to facilitate the specification of domains with agents whose actions and obser-
vations are stochastic. With SLAOP, POMDP models can be represented compactly. However,
models which provide the initial belief-state cannot be represented, because SLAOP cannot ex-
press the notion of a belief-state.

The version of SLAOP presented here is an extension of SLAP from the two preceding chapters.
SLAP is extended with (i) notions of rewards and action costs, (ii) a notion of equality between
actions and observations and (iii) observations for dealing with perception/sensing. To establish a
correspondence between POMDPs and SLAOP, SLAOP must view observations as objects at the
same semantic level as actions. We make use of ideas introduced with LAO to add observations
as first-class objects.

The present version of SLAOP presented at the FoIKS symposium includes significant progress
on the preliminary version presented at STAIRS. We mention only some of the major changes
between the two versions. Firstly, the present version inherits the 2 operator from SLAP, which
is important for marking sentences as globally applicable axioms. The preliminary version of
SLAOP had no 2 operator. Another change is, instead of the predicate (ς | α : q) used in the
present version, a modal operator [ς | α]qϕ with a slightly different definition was used in the ‘old’
SLAOP. [ς | α]qϕ can be read ‘The probability of perceiving ς in a world in which ϕ holds is equal
to q, given αwas performed.’ It turned out that specifying ϕ creates unwanted interactions with the
modal operator [α]qϕ for specifying transition probabilities. Moreover, we have determined that
(ς | α : q) (with the given meaning; cf. § 6.1.2) is sufficient for specifying perception probabilities
(cf. § 6.5). Last and most importantly, the decision procedure of the preliminary version relied
on many intricate tableau rules; relying on the solvability of systems of inequalities (as in the

THE SPECIFICATION LOGIC OF ACTIONS AND OBSERVATIONS WITH PROBABILITY 95

present version) is much cleaner and the decidability of such systems carries over to help prove
the decidability of SLAOP. The decision procedure for the previous version of SLAOP was not
proven complete. The current version is proved complete and terminating.

Recall the oil-drinking domain with

• actions A = {grab, drink, weigh, replace},

• observations Ω = {obsNil, obsLight, obsMedium, obsHeavy} and

• fluents F = {full, drank, holding}.

Intuitively, when the robot performs a weigh action (i.e., it activates its ‘weight’ sensor) it will
perceive either obsLight, obsMedium or obsHeavy; for other actions, it will perceive obsNil.

Given a formalization BK of our scenario, the robot may have the following queries:

• If the oil-can is empty and I’m not holding it, is there a 0.9 probability that I’ll be holding
it after grabbing it, and a 0.1 probability that I’ll have missed it? That is, does (¬full ∧
¬holding) → ([grab]0.9(¬full ∧ holding) ∧ [grab]0.1(¬full ∧ ¬holding)) follow
from BK ?

• If the oil-can is not full, I’ve drunk the oil and I’m holding the can, is there a 0.7 proba-
bility of perceiving the can is light, given I weighed it? That is, does (¬full ∧ drank ∧
holding)→ (obsLight | weigh : 0.7) follow from BK ?

In the second half of this chapter, we show how SLAOP can be used for specifying models of
domains with stochastic actions and observations, including action rewards and costs.

Specifying the action model is very similar to how it is done with LAO, but necessarily includes
techniques used with SLAP. Here, we shall not investigate the ‘completion’ of proper effects spe-
cifications (PESs) as is done in the Chapter 5, however, we shall assume that the specifications are
PESs.

Specifying the probabilistic perception models must be done carefully for them to be internally
coherent and coherent with the action models. Specifying rewards and costs is simple.

Section 6.1 defines SLAOP. Section 6.2 provides a decision procedure for determining entailment
of sentences in SLAOP. In Section 6.3, we prove that the procedure is sound, complete and that
it terminates, that is, we show that SLAOP is decidable with respect to entailment. Section 6.4
discusses the specification of action rules, perception rules and utility rules. In Section 6.5, we
present two examples of how the entailment decision procedure for SLAOP can be used.

6.1 Defining the Logic

First we present the syntax of SLAOP, then we state its semantics.

6.1.1 Syntax

The vocabulary of the language contains six sorts of objects of interest:

THE SPECIFICATION LOGIC OF ACTIONS AND OBSERVATIONS WITH PROBABILITY 96

1. a finite set of fluents (alias, propositional atoms) F = {f1, . . . , fn},

2. a finite set of names of atomic actions A = {α1, . . . , αn},

3. a finite set of names of atomic observations Ω = {ς1, . . . , ςn},

4. all real numbers R,1

5. a countable set of action variables VA = {vα1 , vα2 , . . .},

6. a countable set of observation variables VΩ = {vς1, v
ς
2, . . .}.

From now on, we denote R∩ [0, 1] as [0, 1]. We shall refer to elements of A∪Ω as constants. We
are going to work in a multi-modal setting, in which we have modal operators [α]q, one for each
α ∈ A and q ∈ [0, 1], and predicates (ς | α : q), one for each pair in Ω×A and q ∈ [0, 1].

Definition 6.1.1: Let f ∈ F , α ∈ (A∪ VA), ς ∈ (Ω∪ VΩ), v ∈ (VA ∪ VΩ), q ∈ [0, 1] and r ∈ R.
The language of SLAOP, denoted LSLAOP , is the least set of Ψ defined by the grammar:

ϕ ::= f | > | ¬ϕ | ϕ ∧ ϕ.
Φ ::= ϕ | α = α | ς = ς | Reward(r) | Cost(α, r) | [α]qϕ | (ς | α : q) | (∀v)Φ | ¬Φ | Φ ∧ Φ.

Ψ ::= Φ | 2Φ | ¬Ψ | Ψ ∧Ψ.

The scope of quantifier (∀v) is determined in the same way as is done in first-order logic. A
variable v appearing in a formula Ψ is said to be bound by quantifier (∀v) if and only if v is the
same variable as v and is in the scope of (∀v). If a variable is not bound by any quantifier, it is
free. In LSLAOP , variables are not allowed to be free; they are always bound.

Note that formulae with nested modal operators of the form 22Φ, 222Φ, [α]q[α]qϕ and [α]q[α]q[α]qϕ

et cetera are not in LSLAOP . ‘Single-step’ or ‘flat’ formulae are sufficient to specify action tran-
sition probabilities, that is, for specifying a transition model. To reason about the effects of se-
quences of actions, nesting may be appropriate, but SLAOP is not for reasoning at that level. As
usual, we treat ⊥,∨,→ and↔ as abbreviations. → and↔ have the weakest bindings and ¬ the
strongest; parentheses enforce or clarify the scope of operators conventionally.

The definition of a POMDP reward functionR(a, s) may include not only the reward value of state
s, but it may deduct the cost of performing a in s. It will be convenient for the person specifying a
POMDP using SLAOP to be able to specify action costs independently from the rewards of states,
because these two notions are not necessarily connected. To specify rewards and execution costs in
SLAOP, we require Reward and Cost as special predicates. Reward(r) can be read ‘The reward
for being in the current situation is r units’ and we read Cost(α, c) as ‘The cost for executing α is
c units’.

[α]qϕ is read ‘The probability of reaching a ϕ-world after executing α, is equal to q’. [α] ab-
breviates [α]1. (ς | α : q) is read ‘The probability of perceiving ς , given α was performed, is
q’.

1 In SLAP [Rens et al., 2014a] and the previous version of SLAOP [Rens et al., 2012], rational numbers were used.
Due to our completeness proof relying on Tarski [1957]’s quantifier elimination method which involves real numbers,
we use real numbers here.

THE SPECIFICATION LOGIC OF ACTIONS AND OBSERVATIONS WITH PROBABILITY 97

〈α〉ϕ abbreviates ¬[α]0ϕ and is read ‘It is possible to reach a world in which ϕ holds after exe-
cuting α’. Note that 〈α〉ϕ does not mean ¬[α]¬ϕ. [α]qϕ and ¬[α]qϕ are referred to as dynamic
literals. (ς | α : q) and ¬(ς | α : q) are referred to as perception literals.

One reads 2Φ as ‘Φ holds in every possible world’. We require the 2 operator to mark certain
information (sentences) as holding in all possible worlds. These sentences are, essentially, the
axioms which model the domain of interest. (∀vα) is to be read ‘For all actions’ and (∀vς) is to
be read ‘For all observations’. (∀v)Φ (where v ∈ (VA ∪ VΩ)) can be thought of as a syntactic
shorthand for the finite conjunction of Φ with the variables replaced by the constants of the right
sort (cf. Def. 6.1.3 for the formal definition). (∃v)Φ abbreviates ¬(∀v)¬Φ.

6.1.2 Semantics

SLAOP structures extend SLAP structures. Recall that w : F 7→ {0, 1} is a total function that
assigns a truth-value to each fluent. And C is the set of conceivable worlds.

SLAP structures are comparable to Markov decision processes (MDPs) [Puterman, 1994] without
reward functions, whereas SLAOP structures are comparable to POMDPs (with reward functions).
A POMDP model is a tuple 〈S,A, T,R,Ω, O, b0〉; S is a finite set of states the agent can be in; A
is a finite set of actions the agent can choose to execute; T is the function defining the probability
of reaching one state from another for each action; R is a function giving the expected immediate
reward gained by the agent for any state and agent action; Ω is a finite set of observations the agent
can experience of its world; O is a function giving a probability distribution over observations for
any state and action performed to reach that state; b0 is the initial probability distribution over all
states in S.

A SLAOP structure is a ‘translation’ of a POMDP model, except for the initial belief-state b0.2

Definition 6.1.2: A SLAOP structure is a tuple S = 〈W,R,O,N,Q,U〉 such that

1. W ⊆ C a non-empty set of possible worlds.

2. R : A 7→ Rα, where Rα : (W × W) 7→ [0, 1] is a total function from pairs of worlds
into the reals; That is, R is a mapping that provides an accessibility relation Rα for each
action α ∈ A; For every w− ∈ W , it is required that either

∑
w+∈W Rα(w−, w+) = 1 or∑

w+∈W Rα(w−, w+) = 0.

3. O is a nonempty finite set of observations;

4. N : Ω 7→ O is a bijection that associates to each name in Ω, a unique observation in O;

5. Q : A 7→ Qα, where Qα : (W × O) 7→ [0, 1] is a total function from pairs in W × O
into the reals; That is, Q is a mapping that provides a perceivability relation Qα for each
action α ∈ A; For all w−, w+ ∈ W : if Rα(w−, w+) > 0, then

∑
o∈OQα(w+, o) = 1,

that is, there is a probability distribution over observations in a reachable world; Else if
Rα(w−, w+) = 0, then

∑
o∈OQα(w+, o) = 0;

2 Specification of the initial belief-state is required at a higher level of reasoning. SDL is designed for that level (see
Chap. 7).

THE SPECIFICATION LOGIC OF ACTIONS AND OBSERVATIONS WITH PROBABILITY 98

6. U is a pair 〈Re,Co〉, where Re : W 7→ R is a reward function and Co is a mapping that
provides a cost function Coα : C 7→ R for each α ∈ A.

Note that the set of possible worlds may be the whole set of conceivable worlds.

Rα defines the transition probability pr ∈ [0, 1] between worlds w+ and world w− via action α.
If Rα(w−, w+) = 0, then w+ is said to be inaccessible or not reachable via α performed in w−,
else if Rα(w−, w+) > 0, then w+ is said to be accessible or reachable via action α performed in
w−. If for some w−,

∑
w+∈W Rα(w−, w+) = 0, we say that α is inexecutable in w−.

Qα defines the observation probability pr ∈ [0, 1] of observation o perceived in world w+ after
the execution of action α. Assuming w+ is accessible, if Qα(w+, o) > 0, then o is said to be
perceivable in w+, given α, else if Qα(w+, o) = 0, then o is said to be unperceivable in w+,
given α. The definition of perceivability relations implies that there is always at least one possible
observation in any world reached due to an action.

Because N is a bijection, it follows that |O| = |Ω|. (We take |X| to be the cardinality of set X .)
The value of the reward function Re(w) is a real number representing the reward an agent gets
for being in or getting to the world w. It must be defined for each w ∈ W . The value of the cost
function Co(α,w) is a real number representing the cost of executing α in the world w. It must
be defined for each action α ∈ A and each w ∈W .

Definition 6.1.3 (Truth Conditions): Let S be a SLAOP structure, with α, α′ ∈ A, q, pr ∈ [0, 1]

and r ∈ R. Let f ∈ F and let Φ be any sentence in LSLAOP . We say Φ is satisfied at world w in
structure S (written S, w |= Φ) if and only if the following holds:

S, w |= > for all w ∈W ;

S, w |= f ⇐⇒ w(f) = 1 for w ∈W ;

S, w |= ¬Ψ ⇐⇒ S, w 6|= Ψ;

S, w |= Ψ ∧Ψ′ ⇐⇒ S, w |= Ψ and S, w |= Ψ′;

S, w |= (α = α′) ⇐⇒ α, α′ ∈ A are the same element;

S, w |= (ς = ς ′) ⇐⇒ ς, ς ′ ∈ Ω are the same element;

S, w |= Reward(r) ⇐⇒ Re(w) = r;

S, w |= Cost(α, r) ⇐⇒ Coα(w) = r;

S, w |= [α]qϕ ⇐⇒
∑

w′∈W,S,w′|=ϕRα(w,w′) = q;

S, w |= (ς | α : q) ⇐⇒ Qα(w,N(ς)) = q;

S, w |= 2Φ ⇐⇒ for all w′ ∈W,S, w′ |= Φ;

S, w |= (∀vα)Φ ⇐⇒ S, w |= Φ|vαα1
∧ . . . ∧ Φ|vααn ;

S, w |= (∀vς)Φ ⇐⇒ S, w |= Φ|vςς1 ∧ . . . ∧ Φ|vςςn ,

where we write Φ|vc to mean the formula Φ with all variables v ∈ (VA ∪ VΩ) appearing in it
replaced by constant c ∈ A ∪ Ω of the right sort.

THE SPECIFICATION LOGIC OF ACTIONS AND OBSERVATIONS WITH PROBABILITY 99

A formula Ψ is valid in a SLAOP structure (denoted S |= Ψ) if S, w |= Ψ for every w ∈ W . Ψ

is SLAOP-valid (denoted |= Ψ) if Ψ is true in every structure S. If |= θ ↔ ψ, we say θ and ψ are
semantically equivalent (abbreviated θ ≡ ψ).

Ψ is satisfiable if S, w |= Ψ for some S and w ∈ W . A formula that is not satisfiable is unsatisfi-
able or a contradiction. The truth of a propositional formula depends only on the world in which it
is evaluated. We may thus write w |= Ψ instead of S, w |= Ψ when Ψ is a propositional formula.

LetK ⊆ LSLAOP and Ψ ∈ LSLAOP . We say that Ψ is a local semantic consequence ofK (denoted
K |= Ψ) if for all structures S, and all w ∈ W of S, if S, w |=

∧
κ∈K κ then S, w |= Ψ. We shall

also say that K entails Ψ whenever K |= Ψ. In fact, K |= Ψ if and only if |=
∧
κ∈K κ → Ψ (i.e.,

K entails Ψ iff
∧
κ∈K κ→ Ψ is SLAOP-valid).

If there exists a world w ∈ C such that w |= δ, where δ is a propositional formula, and for all
w′ ∈ C, if w′ 6= w then w′ 6|= δ, we say that δ is definitive (then, δ defines a world; δ is a
complete propositional theory). Let cpt(ϕ) be all the definitive formulae which entail ϕ, that is,
cpt(ϕ) = {δ ∈ LSLAOP | δ is definitive and δ |= ϕ}.

6.2 Decision Procedure for Semantic Consequence

In this section we describe a decision procedure which has two phases: creation of a tableau tree
(the tableau phase) which essentially eliminates propositional connectives, then a phase which
checks for inconsistencies given possible mappings from ‘labels’ (of the tableau calculus) to
worlds (the label assignment phase). Particularly, in the label assignment phase, solutions for
systems of inequalities (equations and disequalities) are sought.

We point out that the label assignment phase corresponds to the SLI phase of the decision proce-
dure for SLAP, in the sense that for both logics, the second phase proceeds after the tableau phase
and it deals with systems of equations. The difference however, is that for SLAOP the meaning of
labels are explicitly addressed (see § 6.2.3). In fact, a label assignment approach could also have
been taken for SLAP. However, due to SLAOP being more expressive and thus more complicated
than SLAP, we thought it prudent—for the sake of clarity—to address the meaning of labels more
directly in SLAOP. The proof of completeness for SLAOP’s decision procedure is then easier to
understand. Nevertheless, SLAOP’s decision procedure is potentially computationally complexer.
Finally, in SLAP, sentences of the form ¬2Φ are not in the language, but due to the label assign-
ment approach, sentences of this form can be dealt with in SLAOP.

6.2.1 The Tableau Phase

A preprocessing step occurs, where all (sub)formulae of the form (∀vα)Φ and (∀vς)Φ are replaced
by, respectively, (Φ|vαα1

∧ . . .∧Φ|vααn) and (Φ|vςς1 ∧ . . .∧Φ|vςςn). The occurrence of (∃vς)¬(vς | α : 0)

in rule obs (below) is only an abbreviation for the semantically equivalent formula without a
quantifier and variables.

The tableau rules for SLAOP follow. Let Γjk be a leaf node.

• rule ⊥: If Γjk contains (x,Φ) and (x,¬Φ), then create node Γjk+1 = Γjk ∪ {(x,⊥)}.

THE SPECIFICATION LOGIC OF ACTIONS AND OBSERVATIONS WITH PROBABILITY 100

• rule ¬: If Γjk contains (x,¬¬Φ), then create node Γjk+1 = Γjk ∪ {(x,Φ)}.

• rule ∧: If Γjk contains (x,Φ ∧ Φ′), then create node Γjk+1 = Γjk ∪ {(x,Φ), (x,Φ′)}.

• rule ∨: If Γjk contains (x,¬(Φ ∧ Φ′)), then create node Γjk+1 = Γjk ∪ {(x,¬Φ)} and node

Γj
′

0 = Γjk ∪ {(x,¬Φ′)}, where j′ is a fresh integer.

• rule =: If Γjk contains (x, c = c′) and c and c′ are distinct constants, or if Γjk contains
(x,¬(c = c′)) and c and c′ are identical constants, then create node Γjk+1 = Γjk ∪ {(x,⊥)}.

• rule 3ϕ: If Γjk contains (0,¬[α]0ϕ) or (0, [α]qϕ) for q > 0, then create node Γjk+1 =

Γjk ∪ {(x, ϕ)}, where x is a fresh integer.

• rule obs: If Γjk contains (x,¬[α]0ϕ) or (x, [α]qϕ) for q > 0 and some x, then create node
Γjk+1 = Γjk∪{(0,2(δ1 → (∃vς)¬(vς | α : 0))∨2(δ2 → (∃vς)¬(vς | α : 0))∨· · ·∨2(δn →
(∃vς)¬(vς | α : 0)))}, where δi ∈ cpt(ϕ).

• rule 2: If Γjk contains (0,2Φ) and (x,Φ′) for any x ≥ 0, and if it does not yet contain
(x,Φ), then create node Γjk+1 = Γjk ∪ {(x,Φ)}.

• rule 3: If Γjk contains (0,¬2Φ), then create node Γjk+1 = Γjk ∪ {(x,¬Φ)}, where x is a
fresh integer.

6.2.2 Systems of Inequalities

We first need to explain how a system of inequalities (SI) can be generated from a set of dynamic
and perception literals, before the label assignment phase can be explained.

Definition 6.2.1: W (Γ, x)
def
= {w ∈ C | w |= ` for all (x, `) ∈ Γ where ` is a propositional

literal}.

Definition 6.2.2: X(Γ)
def
= {0, 1, . . . , x′} are all the labels mentioned in Γ.

Definition 6.2.3: W (Γ)
def
=
⋃
x∈{0,1,...,x′}W (Γ, x), where x′ is the largest label in X(Γ).

Let n = |W (Γ)|. Let W (Γ)# = (w1, w2, . . . , wn) be an ordering of the worlds in W (Γ). With
each world wk ∈W (Γ)#, we associate a real variable prαk ∈ Q[0,1]. One can generate

ci,1pr
α
1 + ci,2pr

α
2 + · · ·+ ci,npr

α
n = qi,

and
ci,1pr

α
1 + ci,2pr

α
2 + · · ·+ ci,npr

α
n 6= qi,

for a formulae (x, [α]qiϕi) ∈ Γ, respectively (x,¬[α]qiϕi) ∈ Γ such that ci,k = 1 if wk |= ϕi, else
ci,k = 0, where x represents a label.

Let ∆(α) be a set of dynamic literals mentioning α, and let

∆(α)# = {[α]q1ϕ1, [α]q2ϕ2, . . . , [α]qgϕg,¬[α]qg+1ϕg+1,¬[α]qg+2ϕg+2, . . . ,¬[α]qg+hϕg+h}

THE SPECIFICATION LOGIC OF ACTIONS AND OBSERVATIONS WITH PROBABILITY 101

be an ordering of the members of ∆(α). With this notation in hand, given some α, we define the
system

c1,1pr
α
1 + c1,2pr

α
2 + · · ·+ c1,npr

α
n = q1

c2,1pr
α
1 + c2,2pr

α
2 + · · ·+ c2,npr

α
n = q2

...
cg,1pr

α
1 + cg,2pr

α
2 + · · ·+ cg,npr

α
n = qg

cg+1,1pr
α
1 + cg+1,2pr

α
2 + · · ·+ cg+1,npr

α
n 6= qg+1

cg+2,1pr
α
1 + cg+2,2pr

α
2 + · · ·+ cg+2,npr

α
n 6= qg+2

...
cg+h,1pr

α
1 + cg+h,2pr

α
2 + · · ·+ cg+h,npr

α
n 6= qg+h

prα1 + prα2 + · · ·+ prαn = dprα1 + prα2 + · · ·+ prαne,

(6.1)

where each of the first g + h (in)equalities represents a member in ∆(α)#. The equation

prα1 + prα2 + · · ·+ prαn = dprα1 + prα2 + · · ·+ prαne

is to ensure that either
∑

(w−,w+,pr)∈Rα pr = 1 or
∑

(w−,w+,pr)∈Rα pr = 0, as stated in Defini-
tion 6.1.2 on page 98.

Let m = |Ω|. Let Ω# = (ς1, ς2, . . . , ςm) be an ordering of the observations in Ω. With each
observation in ςj ∈ Ω#, we associate a real variable prςj .

One can generate
prσj = qj and prσj 6= qj

for a formula (x, (σj | α : qj)) ∈ Γ, respectively, (x,¬(σj | α : qj)) ∈ Γ, where σj ∈ Ω# and
prσj ∈ {pr

ς
1, . . . , pr

ς
2, . . . , pr

ς
m}.

Let Ω(α) be a set of perception literals involving α, and let

Ω(α)# = {(ς1 | α : q1), . . . , (ςt | α : qt),¬(ςt+1 | α : qt+1), . . . ,¬(ςt+v | α : qt+v)}

be an ordering of the members of Ω(α).

Then given some α, one can induce the following system.

prσ1 = q1

prσ2 = q2
...
prσt = qt
prσt+1 6= qt+1

prσt+2 6= qt+2
...

prσt+v 6= qt+v
prς1 + prς2 + · · ·+ prς2 + · · ·+ prςm = dprς1 + prς2 + · · ·+ prς2 + · · ·+ prςme,

(6.2)

THE SPECIFICATION LOGIC OF ACTIONS AND OBSERVATIONS WITH PROBABILITY 102

where each of the first t+ v (in)equalities represents a member in Ω(α)#. The equation

prς1 + prς2 + · · ·+ prς2 + · · ·+ prςm = dprς1 + prς2 + · · ·+ prς2 + · · ·+ prςme

is to ensure that either
∑

o∈O,(o,w+,q)∈Qα q = 1 or
∑

o∈O,(o,w+,q)∈Qα q = 0, as stated in Defini-
tion 6.1.2 on page 98.

Let S(∆(α)) and S(Ω(α)) be the systems formed from ∆(α) (System 6.1), respectively, Ω(α)

(System 6.2). Let V be the set of all variables mentioned in S(∆(α)) or S(Ω(α)).

Definition 6.2.4: Z(∆(α)) andZ(Ω(α)) denote the solution set for S(∆(α)), respectively, S(Ω(α)).
It is the set of all solutions of the form (sα1 , s

α
2 , . . . , s

α
n), respectively, (sς1, s

ς
2, . . . , s

ς
m), where

assigning sαi to prαi ∈ V for i = 1, 2, . . . , n, respectively, assigning sςj to prςj ∈ V for j =

1, 2, . . . ,m solves all the (in)equalities in S(∆(α)), respectively, S(Ω(α)) simultaneously. An SI
is feasible if and only if its solution set is not empty.

Suppose ∆(replace) contains

[replace]0.43(full ∧ ¬holding) and ¬[replace]0.43(full ∧ ¬holding).

Then S(∆(replace)) will contain

0 + prα2 + 0 + prα4 + 0 + 0 + 0 + 0 = 0.43

0 + prα2 + 0 + prα4 + 0 + 0 + 0 + 0 6= 0.43.

This system is clearly infeasible, and the whole system S(∆(replace)), of which this one is a
subsystem, is, by extension, also infeasible. As will be seen in the next subsection, a node for
which an infeasible system can be generated will be recognized as closed.

Suppose Ω(weigh) contains (obsHeavy|weigh : 0.56) and (obsHeavy|weigh : 0.55). Then
S(Ω(weigh)) will contain

prς4 = 0.56

prς4 = 0.55,

where Ω# = {obsNil, obsLight, obsMedium, obsHeavy}. This system is clearly infeasible,
and thus also S(Ω(weigh)).

Lemma 6.2.1: Determining whether an SI (as defined in this thesis) is feasible, is decidable.

Please find the proof in appendix Section A.3.

6.2.3 The Label-Assignment Phase

Given two formulae (x,Φ), (x′,Φ′) ∈ Γ such that Φ contradicts Φ′, if x and x′ represent the same
world, then Γ should close. But if x 6= x′, one must determine whether x and x′ can be made to
represent different worlds. In other words, one must check whether there is a ‘proper’ assignment
of worlds to labels such that no contradictions occur.

THE SPECIFICATION LOGIC OF ACTIONS AND OBSERVATIONS WITH PROBABILITY 103

Informally, x ∈ X(Γ) could represent any one of the worlds in W (Γ, x). Now suppose (x,Φ),

(x′,Φ′) ∈ Γ such that Φ contradicts Φ′ and W (Γ, x) = {w1, w2} and W (Γ, x′) = {w2, w3}.
Assuming that Φ and Φ′ do not involve the 2 operator, it is conceivable that there exists a structure
S such that (i) S, w1 |= Φ and S, w2 |= Φ′, (ii) S, w1 |= Φ and S, w3 |= Φ′ or (iii) S, w2 |= Φ

and S, w3 |= Φ′. But to have S, w2 |= Φ and S, w2 |= Φ′ is inconceivable. Hence, if it were
the case that, for example, W (Γ, x) = {w2} and W (Γ, x′) = {w2}, then we would have found a
contradiction and Γ should be made closed.

To formalize the process, some more definitions are required:

Definition 6.2.5: SoLA(Γ)
def
= {(0:w0, 1:w1, . . . , x′:wx

′
) | wx ∈ W (Γ, x) and x ∈ {0, 1, . . .,

x′} = X(Γ)}. We shall call an element of SoLA(Γ) a label assignment. LA(Γ) denotes an
element of SoLA(Γ). When it is clear that we are talking about an element of SoLA(Γ), we
simply write LA.

Definition 6.2.6: E(Γ, x)
def
= {(x,Φ) ∈ Γ | Φ is Reward(r) or ¬Reward(r) or Cost(α, c) or

¬Cost(α, c) for some/any constants r and c and some/any action α}.

Definition 6.2.7: E(Γ,LA, w)
def
=
⋃
x:w∈LA(Γ)E(Γ, x).

In natural language, E(Γ,LA, w) is a set of formulae (as defined) in Γ with labels x such that the
labels could logically represent world w, that is, such that w |= ` for all (x, `) ∈ Γ, and LA is one
of the ways in which worlds can be assigned to labels mentioned in Γ.

Definition 6.2.8: F (Γ, α, x)
def
= {[α]qϕ | (x, [α]qϕ) ∈ Γ} ∪ {¬[α]qϕ | (x,¬[α]qϕ) ∈ Γ}.

Definition 6.2.9: F (Γ, α,LA, w)
def
=
⋃
x:w∈LA(Γ) F (Γ, α, x).

In natural language, F (Γ, α,LA, w) is the set of dynamic literals mentioning α in Γ with labels x
such that the labels could logically represent world w.

Definition 6.2.10: G(Γ, α, x)
def
= {(ς | α : q) | (x, (ς | α : q)) ∈ Γ} ∪ {¬(ς | α : q) | (x,¬(ς |

α : q)) ∈ Γ}.

Definition 6.2.11: G(Γ, α,LA, w)
def
=
⋃
x:w∈LA(Γ)G(Γ, α, x).

In natural language, G(Γ, α,LA, w) is the set of perception literals mentioning α in Γ with labels
x such that the labels could logically represent world w.

After the tableau phase has completed, the label assignment phase begins. For each leaf node Γjk
of an open branch, do the following.

For every LA ∈ SoLA(Γjk), if one of the following two cases holds, then mark LA as UNSAT.

• For some w ∈W (Γjk), E(Γjk,LA, w) contains

– Reward(r) and Reward(r′) such that r 6= r′, or

– Reward(r) and ¬Reward(r), or

– Cost(α, c) and Cost(α, c′) (same action α) such that c 6= c′, or

– Cost(α, c) and ¬Cost(α, c) (same action α).

THE SPECIFICATION LOGIC OF ACTIONS AND OBSERVATIONS WITH PROBABILITY 104

• For some action α ∈ A and some w ∈ W (Γjk), Z(F (Γjk, α,LA, w)) = ∅ or
Z(G(Γjk, α,LA, w)) = ∅.

If every LA ∈ SoLA(Γjk) is marked as UNSAT, then create new leaf node Γjk+1 = Γjk ∪
{(0,⊥)}.

That is, if for all logically correct ways of assigning possible worlds to labels (i.e., for all the
label assignments in SoLA(Γjk)), no assignment (LA) satisfies all formulae in Γjk, then Γjk is
unsatisfiable.

Definition 6.2.12: A tree is called finished after the label assignment phase is completed.

Note that all branches of a finished tree are saturated.

Definition 6.2.13: If a tree for ¬Ψ is closed, we write ` Ψ. If there is a finished tree for ¬Ψ with
an open branch, we write 6` Ψ.

6.3 Properties of the Decision Procedure

All proofs not given here can be found in the appendix Section A.3.

6.3.1 Soundness

Lemma 6.3.1: Let Γ be the leaf node of a saturated tree. Suppose there exists a structure S =

〈W,R,O,N,Q,U〉 such that W = W (Γ), and for all (x, δω) ∈ Γ, where δω is a dynamic or
perception literal involving α, there exists a w ∈W (Γ) such that S, w |= δω. Then there exists an
LA ∈ SoLA(Γ) such that for all w ∈ W (Γ), Z(F (Γ, α,LA, w)) 6= ∅ and Z(G(Γ, α,LA, w)) 6=
∅.

Lemma 6.3.2: Let T be a finished tree. For every node Γ in T : If there exists a structure S such
that for all (x,Φ) ∈ Γ there exists a w ∈ W such that S, w |= Φ, then the (sub)tree rooted at Γ is
open.

Theorem 6.3.1: (Soundness) If ` Ψ then |= Ψ. (Contrapositively, if 6|= Ψ then 6` Ψ.)

6.3.2 Completeness

We start with the description of the construction of a SLAOP structure, given the leaf node Γ of
some open branch of a finished tree. S = 〈W,R,O,N,Q,U〉 can be constructed as follows:

• Let W = W (Γ).

• For every action α ∈ A, the accessibility relation Rα can be constructed as follows. Let
Rα(w,wj) = sαj ⇐⇒

– w ∈W ,

THE SPECIFICATION LOGIC OF ACTIONS AND OBSERVATIONS WITH PROBABILITY 105

– wj ∈W (Γ)#,

– (sα1 , s
α
2 , . . . , s

α
n) ∈ Z(F (Γ, α,LA, w)).

In other words, for every w ∈ W , determine which labels represent it according to the
label assignment LA and then use any solution (sα1 , s

α
2 , . . . , s

α
n) for the SI generated from

F (Γ, α,LA, w) to assign the transition probabilities, where sα1 is the probability of reaching
world w1 from world w, sα2 is the probability of reaching world w2 from world w, and so
on until sαn/wn.

• Let O = Ω.

• Let N = {(o, o) | o ∈ O}.

• For every action α ∈ A, the perceivability relationQα can be constructed as follows. Recall
that Ω# = (ς1, ς2, . . . , ςm) is an ordering of Ω. Let Qα(wj , N(ςj)) = sςj ⇐⇒

– ςj ∈ Ω#,

– wj ∈W (Γ)#,

– (sς1, s
ς
2, . . . , s

ς
m) ∈ Z(G(Γk, α,LA, wj)),

In other words, for every w ∈ W , determine which labels represent it according to the
label assignment LA and then use any solution (sς1, s

ς
2, . . . , s

ς
m) for the SI generated from

G(Γ, α,LA, w) to assign the perception probabilities, where sς1 is the probability of per-
ceiving ς1 in world w, sς2 is the probability of perceiving ς2 in w, and so on until sςm.

• If there is (x,¬Reward(r)) ∈ Γ for some x and r, then let maxRew(Γ) =

maxr{(x,¬Reward(r)) ∈ Γ}, else, let maxRew(Γ) = 0. For each (x,Reward(r)) ∈ Γ,
let Re(w) = r, where x:w ∈ X(Γ). For all w ∈ W (Γ), if it is not the case that
(x,Reward(r)) ∈ Γ, where x:w ∈ X(Γ), then let Re(w) = maxRew(Γ) + 1. If there is
(x,¬Cost(α, c)) ∈ Γ for some x, α and c, then let maxCost(Γ) = maxc{(x,¬Cost(α, c)) ∈
Γ}, else, let maxCost(Γ) = 0. For each (x,Cost(α, c)) ∈ Γ, let Coα(w) = c, where
x:w ∈ X(Γ). For all w ∈ W (Γ), if it is not the case that (x,Cost(α, c)) ∈ Γ, where
x:w ∈ X(Γ), then let Coα(w) = maxCost(Γ) + 1. Let U = 〈Re,Co〉 such that Co =

{(α,Coα) | α ∈ A}.

Lemma 6.3.3: S is a SLAOP structure.

W.l.o.g., one can assume that, for every (x,2Φ) ∈ Γ, Φ is in DNF.

Lemma 6.3.4: Let Γ be the leaf node of a finished tree, where (0,2Φ) ∈ Γ, for some 2Φ ∈
LSLAOP . For every label x ∈ X(Γ), there exists a term (Φk1 ∧ Φk2 ∧ · · · ∧ Φkmk) of Φ such that
(x,Φk1), (x,Φk2), . . ., (x,Φkmk) ∈ Γ.

Proof:
The same as the proof of Lemma 5.3.3.

Lemma 6.3.5: Let Γ be the leaf node of an open branch of a finished tree. We know that there
exists a label assignment LA ∈ SoLA(Γ) such that Z(F (Γ, α,LA, w)) and Z(G(Γ, α,LA, w))

are not empty, for all w ∈ W (Γ) and all α ∈ A. If S is constructed as described above, then for
all (x,Ψ) ∈ Γ, S, w |= Ψ for x:w ∈ LA.

THE SPECIFICATION LOGIC OF ACTIONS AND OBSERVATIONS WITH PROBABILITY 106

Theorem 6.3.2: (Completeness) If |= Ψ then ` Ψ. (Contrapositively, if 6` Ψ then 6|= Ψ.)

6.3.3 Termination

Lemma 6.3.6: A tree for any formula Φ ∈ LSLAOP becomes saturated. That is, the tableau phase
terminates.

Proof:
We can divide all the tableau rules into three categories: (i) those which add ⊥ to the new node,
(ii) those with the subformula property and (iii) rule obs. Category-(i) rules never cause rules to
become applicable later. As a direct consequence of sentences being finite and the subformula
property, every category-(ii) rule must eventually become inapplicable. Rule obs is reproduced
here: If Γjk contains (x,¬[α]0ϕ) or (x, [α]qϕ) for q > 0 and some x, then create node Γjk+1 =

Γjk ∪{(0,2(δ1 → (∃vς)¬(vς | α : 0))∨2(δ2 → (∃vς)¬(vς | α : 0))∨· · ·∨2(δn → (∃vς)¬(vς |
α : 0)))}, where δi ∈ cpt(ϕ). Note that 2(δ1 → (∃vς)¬(vς | α : 0)) ∨ 2(δ2 → (∃vς)¬(vς | α :

0)) ∨ · · · ∨ 2(δn → (∃vς)¬(vς | α : 0)) is not dynamic; it can thus not make rule obs applicable.
That is, rule obs can only cause category-(i) and category-(ii) rules to become applicable.

Therefore, all rules eventually become inapplicable, and it follows that any tree (for any formula)
would become saturated.

Theorem 6.3.3: The decision procedure for SLAOP terminates.

Proof:
Due to Lemma 6.3.6, the tableau phase terminates (with a finite number of branches).

In the label assignment phase: For every leaf node Γ of an open branch, for every LA ∈ SoLA(Γ),
two cases are checked: (i) whether E(Γ,LA, w) is satisfiable for all w ∈ W (Γ) and (ii) whether
there exists a solution set for an SI; once for each action in A for each world in W (Γ).

W (Γ) and X(Γ) are both finite and thus SoLA(Γ) is finite. E(Γ,LA, w) is finite and so is A. By
Lemma 6.2.1, finding the solution set for an SI is decidable as used in the label assignment phase
and the process thus terminates in this phase.

Corollary 6.3.1: The entailment problem for SLAOP is decidable.

Because the procedure is sound (Th. 6.3.1), complete (Th. 6.3.2) and terminating (Th. 6.3.3),
entailment is decidable.

6.4 Specifying Domains with SLAOP

A straightforward approach to specifying a stochastic, partially observable domain or environment
will be presented in this section. In each case, the general approach will be presented, followed
by an example based on the oil-drinking scenario. A static law is any sentence which does not
contain reward, cost, dynamic or perception literals. Otherwise, there is no particular structure to
a static law; they will thus not be discussed further in this chapter.

THE SPECIFICATION LOGIC OF ACTIONS AND OBSERVATIONS WITH PROBABILITY 107

f
d

h

grab

~f

f ~f

f ~f

f

~f

d

d d

~d

~d ~d~d

h

h h

~h ~h

~h

~h

0.2

0.1

0.7

0.1

0.9

0.1

0.2

0.7

0.1

0.9

Fig. 6.1: A transition diagram for the grab action.

6.4.1 Action Rules

Action rules correspond to R of SLAOP structures and T of POMDP models. As also for SLAP,
three kinds of axioms make up the action rules: For every action α ∈ A, one requires effect axioms
and inexecutability axioms.

Figures 6.1, 6.2, 6.3 and 6.4 are pictorial representations of transitions and their probabilities for
the actions grab (g), drink (di), replace (r) and weigh (w) of the oil-drinking scenario. The
eight circles represent the eight conceivable worlds with their valuations. The letters f , d and h
represent, respectively, propositional literals full, drank and holding. And ∼ reads ‘not’.

Effect Axioms

Effect axioms should take the form

φ1 → [α]p11ϕ11 ∧ · · · ∧ [α]p1nϕ1n

φ2 → [α]p21ϕ21 ∧ · · · ∧ [α]p2nϕ2n

...

φj → [α]pj1ϕj1 ∧ · · · ∧ [α]pjnϕjn,

where (i) no pik = 0, (ii) the transition probabilities pi1, . . . , pin of any axiom imust sum to 1, (iii)
for every i, for any pair of effects ϕik and ϕik′ , ϕik ∧ ϕik′ ≡ ⊥ and (iv) for any pair of conditions
φi and φi′ , φi ∧ φi′ ≡ ⊥.

Effect axioms of actions grab, drink, replace and weigh follow.

THE SPECIFICATION LOGIC OF ACTIONS AND OBSERVATIONS WITH PROBABILITY 108

f d
h

drink

~f

f ~f

f ~f

f

~f

d

d d

~d

~d ~d~d

h

h h

~h ~h

~h

~h

0.85

0.15

1.0

1.0

Fig. 6.2: A transition diagram for the drink action.

f d
h

~f

f ~f

f ~f

f

~f

d

d d

~d

~d ~d~d

h

h h

~h ~h

~h

~h

replace

1.0

1.0

1.0 1.0

Fig. 6.3: A transition diagram for the replace action.

THE SPECIFICATION LOGIC OF ACTIONS AND OBSERVATIONS WITH PROBABILITY 109

f d
h

~f

f ~f

f ~f

f

~f

d

d d

~d

~d ~d~d

h

h h

~h ~h

~h

~h

weigh

1.0

1.0

1.0 1.0

Fig. 6.4: A transition diagram for the weigh action.

f ∧ d ∧ ¬h → [g]0.7(f ∧ d ∧ h) ∧ [g]0.2(¬f ∧ d ∧ ¬h) ∧ [g]0.1(f ∧ d ∧ ¬h);

f ∧ ¬d ∧ ¬h → [g]0.7(f ∧ ¬d ∧ h) ∧ [g]0.2(¬f ∧ ¬d ∧ ¬h) ∧ [g]0.1(f ∧ ¬d ∧ ¬h);

¬f ∧ d ∧ ¬h → [g]0.9(¬f ∧ d ∧ h) ∧ [g]0.1(¬f ∧ d ∧ ¬h);

¬f ∧ ¬d ∧ ¬h → [g]0.9(¬f ∧ ¬d ∧ h) ∧ [g]0.1(¬f ∧ ¬d ∧ ¬h).

f ∧ ¬d ∧ h → [di]0.85(¬f ∧ d ∧ h) ∧ [di]0.15(¬f ∧ ¬d ∧ h);

¬f ∧ d ∧ h → [di](¬f ∧ d ∧ h);

¬f ∧ ¬d ∧ h → [di](¬f ∧ h).

f ∧ d ∧ h → [r](f ∧ d ∧ ¬h);

f ∧ ¬d ∧ h → [r](f ∧ ¬d ∧ ¬h);

¬f ∧ d ∧ h → [r](¬f ∧ d ∧ ¬h);

¬f ∧ ¬d ∧ h → [r](¬f ∧ ¬d ∧ ¬h).

THE SPECIFICATION LOGIC OF ACTIONS AND OBSERVATIONS WITH PROBABILITY 110

f ∧ d ∧ h → [w](f ∧ d ∧ h);

f ∧ ¬d ∧ h → [w](f ∧ ¬d ∧ h);

¬f ∧ d ∧ h → [w](¬f ∧ d ∧ h);

¬f ∧ ¬d ∧ h → [w](¬f ∧ ¬d ∧ h).

Inexecutability Axioms

Suppose there are j effect axioms for action α, with conditions φ1, φ2, . . . , φj . Then, assuming
that effect axioms are meant to say all there is to be said about actions (the completeness assump-
tion), we want to express that if a world does not satisfy one of the j conditions, then it is not
possible to execute. This can be written as

¬(φ1 ∨ φ2 ∨ · · · ∨ φj)→ ¬〈α〉>

or
〈α〉> → (φ1 ∨ φ2 ∨ · · · ∨ φj).

Often φ1 ∨ φ2 ∨ · · · ∨ φj has a compact equivalent form.

The inexecutability axioms of the four actions follow.

〈grab〉> → ¬holding;

〈drink〉> → holding ∧ ¬(full ∧ drank);

〈replace〉> → holding;

〈weigh〉> → holding.

Recall that inexecutability axioms can also be called condition closure axioms because inexe-
cutability axioms are derived from the closure of the conditions of actions’ executability.

6.4.2 Perception Rules

Perception rules correspond to Q of SDL structures and O of POMDP models.

Let E(α) = {ϕ11, ϕ12, . . . , ϕ21, ϕ22, . . . , ϕjn} be the set of all effects of action α executed under
all executable conditions. For every action α, perception rules typically take the form

φ1 → (ς11 | α : p11) ∧ · · · ∧ (ς1m | α : p1m)

φ2 → (ς21 | α : p21) ∧ · · · ∧ (ς2m | α : p2m)

...

φk → (ςk1 | α : pk1) ∧ · · · ∧ (ςkm | α : pkm),

where (i) the sum of perception probabilities pi1, . . . , pim of any rule i must sum to 1, (ii) for any
pair of conditions φi and φi′ , φi ∧ φi′ ≡ ⊥ and (iii) φ1 ∨ φ2 ∨ · · · ∨ φk ≡

∨
ϕ∈E(α) ϕ.

THE SPECIFICATION LOGIC OF ACTIONS AND OBSERVATIONS WITH PROBABILITY 111

f d
h

~f

f ~f

f ~f

f

~f

d

d d

~d

~d ~d~d

h

h h

~h ~h

~h

~h

obsHeavy obsLight

weigh

obsHeavy

obsLight

obsLight

obsMedium

obsMedium

0.333

0.333
0.333

obsMedium

obsMedium

obsHeavy

obsHeavyobsLight

0.10.7

0.2

0.2

0.7
0.1

0.5

0.3

0.2

Fig. 6.5: A transition diagram for the weigh action.

In the oil-drinking scenario, the robot perceives only obsNil when it executes grab, drink or
replace, because they are ontic actions. Their perception rules are simply

> → (obsNil | grab : 1)

h ∧ ¬(f ∧ d) → (obsNil | drink : 1)

¬h → (obsNil | replace : 1).

Action weigh is a sensory action. It does not have the simple form of ontic actions. The following
abbreviations for observation constants will be used: obsHeavy := oH , obsMedium := oM and
obsLight := oL. The perception rules capturing the meaning of Figure 6.5 are

f ∧ d ∧ h → (oL | w : 0.3̄) ∧ (oM | w : 0.3̄) ∧ (oH | w : 0.3̄)

f ∧ ¬d ∧ h → (oL | w : 0.1) ∧ (oM | w : 0.2) ∧ (oH | w : 0.7)

¬f ∧ d ∧ h → (oL | w : 0.7) ∧ (oM | w : 0.2) ∧ (oH | w : 0.1)

¬f ∧ ¬d ∧ h → (oL | w : 0.5) ∧ (oM | w : 0.3) ∧ (oH | w : 0.2)

THE SPECIFICATION LOGIC OF ACTIONS AND OBSERVATIONS WITH PROBABILITY 112

A perception axiom/rule of the form

φi → · · · ∧ (ς | α : 0) ∧ · · ·

implies that ς is unperceivable in a φi-world given that the world is reachable via α. Likewise, if
ς 6∈ {ςi1, . . . , ςim} and

φi → (ςi1 | α : pi1) ∧ · · · ∧ (ςim | α : pim)

is a perception rule, then ς is unperceivable in a φi-world given that the world is reachable via α.

6.4.3 Utility Rules

The rewards and costs of actions in different states must be specified. Refer to these utility rules
as UR. Utility rules correspond to U of SLAOP structures and R of POMDP models. Utility rules
typically take the form

φ1 → Reward(r1)

φ2 → Reward(r2)

...

φj → Reward(rj),

meaning that in all worlds where φi is satisfied, the agent gets ri units of reward. And for every
action α,

φ1 → Cost(α, r1)

φ2 → Cost(α, r2)

...

φj → Cost(α, rj),

meaning that the cost for performing α in a world where φi is satisfied is ri units. The conditions
are disjoint as for action and perception rules.

6.5 Using Entailment in SLAOP

Recall that we denote the action rules as AR, perception rules as PR, utility rules as UR and
static laws as SL. Let the agent’s background knowledge be denoted BK . We define BK to be
AR ∪ PR ∪UR ∪ SL.

Given some initial condition IC , an agent can ask whether some arbitrary sentence Ψ ∈ LSLAOP

follows from or is entailed by its background knowledge in the initial condition. That is, an agent
can query whether

{2β | β ∈ BK} |= IC → Ψ

THE SPECIFICATION LOGIC OF ACTIONS AND OBSERVATIONS WITH PROBABILITY 113

holds, where IC is a propositional sentence, the sentences in BK contain no 2 operator, and there
is no restriction on Ψ.

Two examples based on the oil-drinking scenario are presented next. Suppose the following do-
main axioms3 are part of the robot’s background knowledge BK for the oil-drinking scenario. For
brevity, we use a condensed subset of the full specification given in the previous section.

f ∧ d ∧ h→ (∀vς)(vς | w : 0.3̄)

f ∧ ¬d ∧ h→ (oL | w : 0.1) ∧ (oH | w : 0.7)

((f ∧ ¬d) ∨ (¬f ∧ d)) ∧ h→ (oM | w : 0.2)

¬f ∧ d ∧ h→ (oL | w : 0.7) ∧ (oH | w : 0.1)

¬f ∧ ¬d ∧ h→ (oL | w : 0.5) ∧ (oM | w : 0.3) ∧ (oH | w : 0.2)

¬f ∧ ¬h→ [g]0.9h ∧ [g]0.1¬h ∧ [g]¬f.

The fact that one can do meaningful reasoning with an incomplete specification, also shows the
flexibility of the logic.

In Figures 6.6 and 6.7, the vertices represent nodes and the arcs represent the application of tableau
rules. Arcs are labeled with the rule they represent, except when branching occurs, in which case,
the ∨ rule was applied. The figures show how the vertices relate to the corresponding nodes.
The reader should keep in mind that the node corresponding to a vertex v contains all the labeled
formulae in vertices above v on the same branch—the vertices show only the elements of nodes
which are ‘added’ to a node due to the application of some rule. An exception is the top vertex of
a tree, which is the trunk and not the result of any rule application.

In order to show the development of the tree, some liberties were taken with respect to rule ap-
plication: In some cases, rule application is not shown, that is, from parent node to child node, a
formula may be ‘processed’ more than is possible by the application of the rule represented by the
arc from parent to child in the figure. The arc labeled “nf” denotes normal forming: translating
abbreviations into symbols in the language.

For the first example, we claim that

{2β | β ∈ BK} |= ¬f ∧ d ∧ ¬h→ [g]0.9(¬f ∧ h). (6.3)

Figure 6.6 shows only one branch of a tree for∧
β∈BK

2β ∧ ¬(¬f ∧ d ∧ ¬h→ [g]0.9(¬f ∧ h)). (6.4)

For the claim (Statement 6.3) to hold, the tree for (6.4) must close. We shall only show that the
branch in Figure 6.6 closes. The leaf node of the branch is open and must thus be considered in
the label assignment phase.

For clarity, denote w1 as 111 where w1 |= f ∧ d ∧ h, w2 as 110 where w2 |= f ∧ d ∧ ¬h, . . . , w8

3 Only the last of these sentences can be expressed in SLAP. Notice the compact representation of the perception
probabilities in the first sentence, due to quantification.

THE SPECIFICATION LOGIC OF ACTIONS AND OBSERVATIONS WITH PROBABILITY 114

Γ0
0 = {(0,

∧
β∈BK 2β ∧ ¬(¬f ∧ d ∧ ¬h→ [g]0.9(¬f ∧ h))}

(0,¬¬(¬f ∧ d ∧ ¬h) ∧ ¬[g]0.9(¬f ∧ h)) ∈ Γ0
1

nf

(0,¬¬(¬f ∧ d ∧ ¬h)), (0,¬[g]0.9(¬f ∧ h)) ∈ Γ0
2

∧

(0,¬f ∧ d ∧ ¬h) ∈ Γ0
3

¬

(0,¬f), (0, d), (0,¬h) ∈ Γ0
4

∧

(0,¬(¬f ∧ ¬h) ∨ ([g]0.9h ∧ [g]0.1¬h ∧ [g]¬f)) ∈ Γ0
5

2

(0, ([g]0.9h ∧ [g]0.1¬h ∧ [g]¬f) ∈ Γ3
0

∨

(0, [g]0.9h), (0, [g]0.1¬h), (0, [g]¬f) ∈ Γ3
1

∧

(1, h), (2,¬h), (3,¬f) ∈ Γ3
2

3ϕ

(1, f ∨ h ∨ ([g]0.9h ∧ [g]0.1¬h)), (1, f ∨ h ∨ [g]¬f),
(2, f ∨ h ∨ ([g]0.9h ∧ [g]0.1¬h)), (2, f ∨ h ∨ [g]¬f),

(3, f ∨ h ∨ ([g]0.9h ∧ [g]0.1¬h)), (3, f ∨ h ∨ [g]¬f) ∈ Γ3
3

2

(1, [g]0.9h), (1, [g]0.1¬h), (1, [g]¬f), (2, [g]0.9h),
(2, [g]0.1¬h), (2, [g]¬f), (3, [g]0.9h), (3, [g]0.1¬h),

(3, [g]¬f) ∈ Γ8
0

∨

Fig. 6.6: One branch of a tree for proving that {2β | β ∈ BK} entails ¬f ∧ d ∧ ¬h→ [g]0.9(¬f ∧ h).

THE SPECIFICATION LOGIC OF ACTIONS AND OBSERVATIONS WITH PROBABILITY 115

Γ0
0 = {(0,

∧
β∈BK 2β ∧ ¬((oH | w : 0.1) ∧ d ∧ h→ (oL | w : 0.7)))}

(0, (oH | w : 0.1) ∧ d ∧ h ∧ ¬(oL | w0.7) ∈ Γ0
1

nf

(0, (oH | w : 0.1)), (0, d), (0, h), (0,¬(oL | w : 0.7) ∈ Γ0
2

∧

(0,¬f ∧ d ∧ h→ (oL | w : 0.7) ∧ (oH | w : 0.1)) ∈ Γ0
3

2

(0, (f ∨ ¬d ∨ ¬h) ∨ ((oL | w : 0.7) ∧ (oH | w : 0.1))) ∈ Γ0
4

nf

(0, f)) ∈ Γ0
5 (0,¬d)) ∈ Γ1

0 (0,¬h)) ∈ Γ2
0 (0, (oL | w : 0.7) ∧ (oH | w : 0.1))) ∈ Γ3

0

(0,⊥) ∈ Γ1
1

⊥

(0,⊥) ∈ Γ2
1

⊥

(0, f ∧ d ∧ h→ (∀vς)(vς | w : 0.3̄)) ∈ Γ0
6

2

(0, (oL | w : 0.7)), (0, (oH | w : 0.1))) ∈ Γ3
1

∧

(0,⊥) ∈ Γ3
2

⊥

(0,¬f ∨ ¬d ∨ ¬h ∨ ((oL | w : 0.3̄) ∧ (oM | w : 0.3̄) ∧ (oH | w : 0.3̄))) ∈ Γ0
7

nf

(0,¬f) ∈ Γ0
8

(0,¬d) ∈ Γ4
0 (0,¬h) ∈ Γ5

0

(0, (oL | w : 0.3̄)),
(0, (oM | w : 0.3̄)),

(0, (oH | w : 0.3̄)) ∈ Γ6
0

(0,⊥) ∈ Γ0
9

⊥

(0,⊥) ∈ Γ4
1

⊥

(0,⊥) ∈ Γ5
1

⊥

(0,⊥) ∈ Γ6
1

label assig. phase

Fig. 6.7: A tree for proving that {2β | β ∈ BK} entails (oH | w : 0.1) ∧ d ∧ h→ (oL | w : 0.7).

THE SPECIFICATION LOGIC OF ACTIONS AND OBSERVATIONS WITH PROBABILITY 116

as 000 where w8 |= ¬f ∧ ¬d ∧ ¬h. We shall refer to the leaf node as Γ. Observe that

• W (Γ, 0) = {010},

• W (Γ, 1) = {111, 101, 011, 001},

• W (Γ, 2) = {110, 100, 010, 000},

• W (Γ, 3) = {011, 010, 001, 000}.

and that W (Γ) = {111, 101, 011, 001, 110, 100, 010, 000} = C. Observe that 0:010 is in every
label assignment in SoLA(Γ).

Note thatF (Γ, grab, 0) ⊆ F (Γ, grab,LA, 010) for all LA ∈ SoLA(Γ). And note thatF (Γ, grab, 0)

equals

{[grab]0.9holding, [grab]0.1¬holding, [grab]¬full,¬[grab]0.9(¬full ∧ holding)}.

The system generated from F (Γ, grab, 0) is

0 + 0 + 0 + 0 + prα5 + 0 + prα7 + 0 = 0.9

0 + prα2 + 0 + prα4 + 0 + prα6 + 0 + prα8 = 0.1

0 + 0 + 0 + 0 + prα5 + prα6 + prα7 + prα8 = 1

prα1 + 0 + prα3 + 0 + prα5 + 0 + prα7 + 0 6= 0.9

prα1 + prα2 + prα3 + prα4 + prα5 + prα6 + prα7 + prα8 = 1.

Due to prα5 + prα6 + prα7 + prα8 = 1 (3rd equation), it must be the case that prα5 + prα7 6= 0.9

(4th inequation). But it is required by the first equation that prα5 + prα7 = 0.9, which forms a
contradiction. Thus, for every label assignment, there exists an action and a world w—that is,
010—for which Z(F (Γ, grab,LA, w) = ∅ and the branch closes.

For the second example, we claim that {2β | β ∈ BK} |= (oH | w : 0.1) ∧ d ∧ h → (oL | w :

0.7). Figure 6.7 shows the closed tree for∧
β∈BK

2β ∧ ¬((oH | w : 0.1) ∧ d ∧ h→ (oL | w : 0.7)).

The arc labelled “label assig. phase” means that for all label assignments, the SI generated for a
set of formulae will include (oH | w : 0.1) and (oH | w : 0.3̄), which will cause all SIs to be
infeasible. Hence, the label assignment phase will create a new node containing (0,⊥) at the end
of the branch.

6.6 Concluding Remarks

A decidable logic with a semantics closely related to partially observable Markov decision pro-
cesses (POMDPs) was presented. The logic is a step towards the definition of a logic for reasoning
about an agent’s belief-states and expected future rewards, where the agent’s actions and observa-
tions are stochastic.

THE SPECIFICATION LOGIC OF ACTIONS AND OBSERVATIONS WITH PROBABILITY 117

Predicate (ς | α : q) is useful for specifying the probability of perceiving an observation in the
‘current’ world. However, it would be useful to query the probability q of ending in a ϕ-world
after executing action α in the ‘current’ world and then perceiving ς in the ϕ-world. To make such
queries possible, one could add a modal operator with the following definition.
S, w |= [α+ ς : q]ϕ ⇐⇒

∑
w′∈W,S,w′|=ϕRα(w,w′)×Qα(w′, N(ς)) ≥ q.

Informally, sentences of the form [α]qϕ and (ς | α : q) have a meaning ‘probability is exactly q.’ In
our Stochastic Decision Logic (SDL), to make the language more expressive, there are sentences
with the meaning ‘probability is less than, less than or equal to, etc. q.’

For specifying a domain in SLAOP, the question of what world an agent is in does not arise. But
due to partial observability, after the agent has executed a few actions, the agent will only have
an (uncertain) belief about which world it is in, as opposed to (certain) knowledge of where it is.
For an agent to reason with beliefs, the notion of an epistemic or belief state needs to be added to
SLAOP. We would also like to add a notion of the expected value of a sequence of actions, and
then be able to determine whether the expected value is less than, less than or equal to, etc. some
given value. As in SLAP, the 2 (necessity) operator in SLAOP may not be nested. All this is dealt
with by SDL.

The complexity of the decision procedure has not been analysed. Our focus for SLAOP is mainly
decidability. Evaluation of the systems of equations in the label assignment phase has the poten-
tial for being very expensive. These are linear systems of equations; one could thus investigate
Linear Programming methods [Dantzig, 1963 & 1998, Murty, 1983, Gass, 2010] to optimize the
evaluation of the systems.

We feel that presenting a decidability result for a new class of logics is not trivial. Even though the
entailment problem in SLAOP—as presented in this chapter—may be intractable, it is important
to have a decision procedure as a launchpad for tackling the computational complexity.

SLAOP is a decidable logic for specifying stochastic actions, stochastic observation, and rewards
and costs of actions. The introduction of equality between actions and observations and the defi-
nition of finite quantification allows one to express some kinds of sentences more compactly.

A sound and complete procedure for deciding whether entailment queries hold was presented. One
of the main contributions of the work is the formulation of the decision procedure with a tableau
phase and a label assignment phase which appeals to solving systems of equations.

Due to the approach of using label assignments in the entailment decision procedure, sentences
of the form ¬2Φ are part of the language of SLAOP; entailment queries involving this form of
sentence can be dealt with. The language of SLAP does not include sentences of this form because
its entailment decision procedure cannot deal with them.

Both approaches have their pros and cons, so we decided to document them both. Please refer to
the discussion at the beginning of Section 6.2.

The logic cannot be used directly for reasoning about what is true after some sequence of actions
and observations, and the utility of a sequence of actions cannot be determined. Moreover, we
must add a notion of belief-state if we want a logic which simulates POMDPs. These issues will
be tackled in the logic defined in the next chapter.

7. THE STOCHASTIC DECISION LOGIC

A paper about the work presented in this chapter has been accepted for presentation at the Seventh
International Conference on Agents and Artificial Intelligence (ICAART), held in Lisbon, Portugal
in January 2015.

In this chapter, we propose the Stochastic Decision Logic (SDL), combining the benefits of POMDP
theory and logic for posing entailment queries about POMDP models. Traditionally, to make any
deductions in POMDP theory, a POMDP model must be completely specified. A major contribu-
tion of this work is that it allows the user to determine whether or not a set of sentences is entailed
by an arbitrarily precise specification of a POMDP model. By “arbitrarily precise specification”
we mean that the transition function, the perception function, the reward function or the initial
belief-state may not be completely defined by the logical specification provided. Another view
is that the logic allows for the (precise) specification of and reasoning over classes of POMDP
models.

Full-scale planning will not be considered here. However, as a preliminary step, projections con-
cerning epistemic situations and expected rewards will be possible. That is, at this stage, the logic
cannot be used to produce a reward-maximizing policy conditioned on observations. The logic
can, however, track beliefs, given a sequence of executed actions or a sequence of actions being
considered for execution. More precisely, with SDL, an agent can determine (i) the degree of be-
lief in a propositional sentence after an arbitrary finite number of actions and observations and (ii)
the utility of a finite sequence of actions after a number of actions and observations. We provide
a procedure to determine whether some hypothesised situation follows from a knowledge base of
the system and some beliefs corresponding to or possibly in conflict with the real system state.

In SDL, a particular kind of entailment is important and we shall provide an entailment checking
procedure. Soundness, completeness and termination of the proposed entailment decision proce-
dure is proved. Moreover, SDL is decidable with respect to entailment.

Most syntactic and semantic elements of SDL have their foundations in the Specification Logic
of Actions with Probability (SLAP) and the Specification Logic of Actions and Observations with
Probability (SLAOP). However, one cannot reason about degrees of belief or expected rewards
(utility) in those logics. 1

Here is a flavor of the language and use of SDL referring to the ‘oil-drinking’ scenario: The
syntactic elements mentioned in the following examples are formally defined in Section 7.1.1.
Bϕ ≥ p is read ‘The degree of belief in ϕ is greater than or equal to p’ and UΛ > r is read ‘The
utility of performing Λ is greater than r’. Given a complete formalization K of the oil-drinking
scenario, a robot may have the following queries:

1 SDL is not, formally speaking, an extension of either of these.

THE STOCHASTIC DECISION LOGIC 119

• Is the degree of belief that I’ll have the oil-can in my gripper greater than or equal to 0.9,
after I attempt grabbing it twice in a row? That is, does

Jgrab, obsNilK Jgrab, obsNilKB(holding) ≥ 0.9

follow from K?

• After grabbing the can, then perceiving that it has medium weight, is the utility of drinking
the contents of the oil-can, then placing it on the floor, more than 6 units? That is, does

Jgrab, obsNilK Jweigh, obsMediumKUJdrinkK JreplaceK > 6

follow from K?

In SDL, the specification of action and perception rules follow the same recipe as in SLAOP.
Nevertheless, the specification framework will be presented in terms of SDL. What needs to be
addressed in particular is how to specify initial belief-states. The following correspondence is
noted. Let

φ→ Φ ∈ LSLAOP

be an effect, effect closure or inexecutability axiom, or a perception or utility rule. Then 2(φ →
Φ) in SLAOP corresponds to

φ⇒ Φ

in SDL.

Section 7.1 defines SDL. Section 7.2 provides a decision procedure for determining entailment of
sentences in SDL. In Section 7.3, we prove that the procedure is sound, complete and that it ter-
minates, that is, we show that SDL is decidable with respect to entailment. Section 7.4 explicates
the framework for specifying domains with SDL, including how to write information concern-
ing belief-states and utilities of sequences of actions. Section 7.5 presents several examples of
entailment queries, using the oil-drinking scenario.

7.1 Defining the Logic

First, the syntax of the logic is presented, then its semantics. The last subsection discusses the
correspondence between POMDPs and SDL.

7.1.1 Syntax

The vocabulary of our language contains six sorts of objects of interest:

1. a finite set of fluents F = {f1, . . . , fn},

2. a finite set of names of atomic actions A = {α1, . . . , αn},

3. a countable set of action variables VA = {va1 , va2 , . . .},

4. a finite set of names of atomic observations Ω = {ς1, . . . , ςn},

5. a countable set of observation variables VΩ = {vo1, vo2, . . .},

THE STOCHASTIC DECISION LOGIC 120

6. all real numbers R.

We denote R∩ [0, 1] as [0, 1] and we refer to elements ofA∪Ω as constants. We work in a multi-
modal setting, in which we have modal operators [α], one for each α ∈ A, and a belief update
modal operator (or update operator for short) Jα + ςK, one for each pair in A × Ω. Intuitively,
Jα+ςKΨ means ‘Ψ holds in the belief-state resulting from performing action α and then perceiving
ς’. For instance, Jα1 + ς1K Jα2 + ς2K expresses that the agent executes α1 then perceives ς1 then
executes α2 then perceives ς2. B is a modal operator for belief and U is a modal operator for
utility.

We first define a language L, then a useful sublanguage LSDL ⊂ L. The reason why we define L
is because it is easier to define the truth condition for L; the truth conditions for LSDL then follow
directly.

Definition 7.1.1: First the propositional fragment:

ϕ ::= f | > | ¬ϕ | ϕ ∧ ϕ,

where f ∈ F . Then the fragment Φ used in formulae of the form ϕ⇒ Φ (see the definition of Θ

below). Let α ∈ (VA ∪ A), ς ∈ (VΩ ∪ Ω), p ∈ [0, 1], r ∈ R and ./ ∈ {<,≤,=, ≥, >}.

Φ ::= ϕ | α = α | ς = ς | Reward(r) | Cost(α, r) | [α]ϕ ./ p | (α|ς) ./ p | ¬Φ | Φ ∧ Φ,

where ϕ is defined above. Let va ∈ VA and vo ∈ VΩ. The language of L is defined as Θ:

Λ ::= JαK | ΛJαK

Θ ::= > | α = α | ς = ς | Cont(α, ς) | Bϕ ./ p | UΛ ./ r |
ϕ⇒ Φ | Jα+ ςKΘ | (∀va)Θ | (∀vo)Θ | ¬Θ | Θ ∧Θ | Θ ∨Θ,

where ϕ and Φ are defined above.

The language of SDL, denotedLSDL, is the subset of formulae ofL excluding formulae containing
subformulae of the form ¬(ϕ⇒ Φ).

The scope of quantifier (∀v′) is determined in the same way as is done in first-order logic. A
variable v appearing in a formula Θ is said to be bound by quantifier (∀v′) if and only if v is the
same variable as v′ and is in the scope of (∀v′). If a variable is not bound by any quantifier, it is
free. In L, variables are not allowed to be free; they are always bound. That ends the definition.

[α]ϕ ./ p is read ‘The probability x of reaching a ϕ-world after executing α is such that x ./ p’.
Whereas [α] is a modal operator, (ς|α) is a predicate; (ς|α) ./ p is read ‘The probability x of
perceiving ς , given α was performed is such that x ./ p’.

Cont(α, ς) is read ‘Consciousness continues after executing α and then perceiving ς’. Bϕ ./ p

is read ‘The degree of belief x in ϕ is such that x ./ p’. Performing Λ = Jα1KJα2K · · · JαzK means
that α1 is performed, then α2 then . . . then αz . UΛ ./ r is thus read ‘The utility x of performing
Λ is such that x ./ r’. Evaluating some sentence Ψ after a sequence of z update operations, means

THE STOCHASTIC DECISION LOGIC 121

that Ψ will be evaluated after the agent’s belief-state has been updated according to the sequence

Jα+ ςK · · · Jα′ + ς ′K︸ ︷︷ ︸
z times

of actions and observations. ϕ ⇒ Φ is read ‘It is a general law of the domain that Φ holds in all
situations (worlds) which satisfy ϕ’.

Note that, for instance, ¬(ϕ ⇒ Φ) ∧ (ϕ′ ⇒ Φ′) ∧ ¬Cont(α, ς) 6∈ LSDL, but (ϕ ⇒ Φ) ∧
(ϕ′ ⇒ Φ′) ∧ ¬Cont(α, ς) ∈ LSDL. And, for instance, ¬(∀v′)(ϕ ⇒ Φ) ∨ (ϕ′ ⇒ Φ′) ∨
¬(∀v′′)Cont(α, ς) 6∈ LSDL, but (∀v′)(ϕ⇒ Φ) ∨ (ϕ′ ⇒ Φ′) ∨ ¬(∀v′′)Cont(α, ς) ∈ LSDL.

⊥ abbreviates ¬>, θ → θ′ abbreviates ¬θ ∨ θ′ and ↔ abbreviates (θ → θ′) ∧ (θ′ → θ). In
grammars ϕ and Φ, θ ∨ θ′ abbreviates ¬(¬θ ∧ ¬θ′), but in grammar Θ, ∨ is defined directly. →
and↔ have the weakest bindings, with⇒ just stronger; and ¬ the strongest. Parentheses enforce
or clarify the scope of operators conventionally.

c = c′ is an equality literal, Reward(r) is a reward literal, Cost(α, r) is a cost literal, [α]ϕ ./ p is
a dynamic literal, (ς|α) ./ p is a perception literal, and ϕ ⇒ Φ is a law literal. Cont(α, ς) is an
executability literal, Bϕ ./ p is a belief literal and UΛ ./ r is a utility literal. The negation of
all these literals are also literals with the associated names.

Note that formulae with nested modal operators of the form BBϕ, BBBϕ, et cetera, UUΛ,
UUUΛ, et cetera, [α][α]ϕ and [α][α][α]ϕ et cetera are not in LSDL. However, formulae of the
form Jα + ςK(Jα′ + ς ′KΨ′ ∧ Jα′′ + ς ′′KΨ′′), Jα + ςK(Ψ ∧ Jα′ + ς ′KJα′′ + ς ′′KΨ′) for instance, are
in LSDL.

7.1.2 Semantics

Let w : F 7→ {0, 1} be a total function that assigns a truth value to each fluent. We call w a world.
Let C be the set of 2|F| conceivable worlds, that is, all possible functions w.

Definition 7.1.2: An SDL structure is a tuple D = 〈R,Q,U〉 such that2

• R : A 7→ Rα, where Rα : (C × C) 7→ [0, 1] is a total function from pairs of worlds
into the reals; That is, R is a mapping that provides an accessibility relation Rα for each
action α ∈ A; For every w− ∈ C, it is required that either

∑
w+∈C Rα(w−, w+) = 1 or∑

w+∈C Rα(w−, w+) = 0.

• Q : A 7→ Qα, where Qα : (C × Ω) 7→ [0, 1] is a total function from pairs in C × Ω

into the reals; That is, Q is a mapping that provides a perceivability relation Qα for each
action α ∈ A; For all w+ ∈ C, if there exists a w− ∈ C such that Rα(w−, w+) > 0, then∑

ς∈ΩQα(w+, ς) = 1, else
∑

ς∈ΩQα(w+, ς) = 0.

• U is a pair 〈Re,Co〉, where Re : C 7→ R is a reward function and Co is a mapping that
provides a cost function Coα : C 7→ R for each α ∈ A.

2 The set of possible worlds W is not part of SDL structures because the whole set of conceivable worlds will
always be referenced. And the set O and associated naming function N found in LAO and SLAOP structures are left
out, because N is a bijection, meaning that O actually adds nothing. In retrospect, LAO and SLAOP structures could
also work without O and N .

THE STOCHASTIC DECISION LOGIC 122

As in partially observable Markov decision processes (POMDPs), in SDL, an agent typically does
not know in which world w ∈ C it actually is, but for each w it has a degree of belief that it is in
that world. Let b : C 7→ [0, 1] be a probability distribution over C, referred to as a belief-state.
The degree of belief in w is denoted by the probability measure b(w). We refer to all probability
mass functions b over C as the set P .

As an agent acts and evolves, what it believes changes, that is, b changes for each agent activity.
We assume the agent remains in one physical environment for its lifetime, and we assume that
its sets A and Ω remain the same. The fact that the agent does not change environments has the
consequence that the structure modeling the agent and its environment also remain static.

Definition 7.1.3: The probability of reaching the next belief-state after executingα and perceiving
ς is

PNB (α, ς, b) =
∑
w′∈C

Qα(ς, w′)
∑
w∈C

Rα(w,w′)b(w).

PNB (·) has the same intuitive meaning as Pr(z | a, b) (Eq. 3.2).

Definition 7.1.4: We define a belief update function BU(α, ς, b) = b′:

b′(w′) =
Qα(w′, ς)

∑
w∈C Rα(w,w′)b(w)

PNB (α, ς, b)
,

for PNB (α, ς, b) 6= 0.

b′ is the belief-state attained by executing α in b and perceiving ς in the resulting state. Recall that
b′(w′) is the probability of being in world w′ while in belief-state b′. BU(·) has the same intuitive
meaning as the state estimation function (Eq. 3.1).

Let a be a POMDP action and s a POMDP state. Given the opportunity to be slightly more
clear about the specification of rewards in SDL, we interpret R(a, s) from the chapter reviewing
POMDPs as R(s) − C(a, s), where R(s) provides the positive reward portion of R(a, s) and
C(a, s) provides the punishment or cost portion. By this interpretation, we assume that simply
being in a state has an intrinsic reward (independent of an action), however, that punishment is
conditional on actions and the states in which they are executed. There are many other ways
to interpret R(a, s), and R(a, s) is not even the most general reward function possible; a more
general function is R(s, a, s′) meaning that rewards depend on a state s, an action executed in s
and a state s′ reached due to performing a in s. SDL adopts one of several reasonable approaches.
In the semantics of SDL, we equate state s with world w ∈ C and action a with α ∈ A, and
interpret R(a, s) as Re(w)− Coα(w).

We derive a reward function over belief-states for SDL in a similar fashion as we did with Equa-
tion 3.3, however, including the notion of cost.

RC(α, b) =
∑
w∈C

(Re(w)− Coα(w))b(w).

Definition 7.1.5: Let α, α′ ∈ A, ς, ς ′ ∈ Ω, p ∈ [0, 1] and r ∈ R. Let f ∈ F and let Θ be any
sentence in L. Let ./ ∈ {<,≤,=,≥, >}. We say Θ ∈ L is satisfied at world w and belief-state b

THE STOCHASTIC DECISION LOGIC 123

in SDL structure D (written Dbw |= Θ) if and only if the following holds:3

Dbw |= > for all w ∈ C;

Dbw |= f ⇐⇒ w(f) = 1;

Dbw |= ¬ϕ ⇐⇒ Dbw 6|= ϕ;

Dbw |= ϕ ∧ ϕ′ ⇐⇒ Dbw |= ϕ and Dbw |= ϕ′;

Dbw |= α = α′ ⇐⇒ α and α′ are the same element;

Dbw |= ς = ς ′ ⇐⇒ ς and ς ′ are the same element;

Dbw |= Reward(r) ⇐⇒ Re(w) = r;

Dbw |= Cost(α, c) ⇐⇒ Coα(w) = c;

Dbw |= [α]ϕ ./ p ⇐⇒
∑

w′∈C
Dbw′|=ϕ

Rα(w,w′) ./ p;

Dbw |= (ς|α) ./ p ⇐⇒ Qα(w, ς) ./ p;

Dbw |= ¬Φ ⇐⇒ Dbw 6|= Φ;

Dbw |= Φ ∧ Φ′ ⇐⇒ Dbw |= Φ and Dbw |= Φ′;

Dbw |= Cont(α, ς) ⇐⇒ PNB (α, ς, b) 6= 0;

Dbw |= Bϕ ./ p ⇐⇒
∑

w′∈C
Dbw′|=ϕ

b(w′) ./ p;

Dbw |= UJαK ./ r ⇐⇒ RC(α, b) ./ r;

Dbw |= UJαKΛ ./ r ⇐⇒
(
RC(α, b) +

∑
ς∈Ω

b′=BU(α,ς,b)
Db′w|=UΛ=r′

PNB (α, ς, b) · r′
)
./ r;

Dbw |= ϕ⇒ Θ ⇐⇒ for all w′ ∈ C, Dbw′ 6|= ϕ or Dbw′ |= Θ;

Dbw |= Jα+ ςKΘ ⇐⇒ PNB (α, ς, b) 6= 0 and Db′w |= Θ, where b′ = BU(α, ς, b);

Dbw |= ¬Θ ⇐⇒ Dbw 6|= Θ;

Dbw |= Θ ∧Θ′ ⇐⇒ Dbw |= Θ and Dbw |= Θ′;

Dbw |= Θ ∨Θ′ ⇐⇒ Dbw |= Θ or Dbw |= Θ′;

Dbw |= (∀va)Θ ⇐⇒ Dbw |= Θ|vaα1
∧ . . . ∧Θ|vaαn ;

Dbw |= (∀vo)Θ ⇐⇒ Dbw |= Θ|voς1 ∧ . . . ∧Θ|voςn ,

where we write Θ|vc to mean the formula Θ with all variables v ∈ (VA ∪ VΩ) appearing in it
replaced by constant c ∈ A ∪ Ω of the right sort.

A sentence Ψ ∈ LSDL is satisfiable if there exists a structure D, a belief-state b and a world w
such that Dbw |= Ψ, else Ψ is unsatisfiable.

3 As is convention in this thesis, ⇐⇒ means ‘if and only if’. Where⇒ appears in the definition of ϕ⇒ Θ below,
it is clear that the symbol is used at the object level.

THE STOCHASTIC DECISION LOGIC 124

Let K ⊆ LSDL and Ψ ∈ LSDL. We say that Ψ is a local semantic consequence of K (or K
entails Ψ; denoted K |= Ψ) if for all structures D, all belief-states b, all w ∈ C: if Dbw |= κ

for every κ ∈ K, then Dbw |= Ψ. When K is a finite subset of LSDL, it is easy to show that
K |= Ψ ⇐⇒

∧
κ∈K κ ∧ ¬Ψ is unsatisfiable. SDL decision procedure for entailment is based on

this latter correspondence.

7.1.3 The Correspondence Between SDL and POMDPs

In this section we investigate the theoretical correspondence between SDL and POMDPs. We start
with some preliminary remarks to align SDL structures and POMDP models. Theorem 7.1.1 is
the main result.

In much literature on POMDPs, a model or tuple of components is not defined; the compo-
nents of a POMDP are simply presented outside of any particular structure (e.g., [Geffner and
Bonet, 1998, Smith and Simmons, 2005]). Kaelbling et al. [1998] define a POMDP model as
〈S,A, T,R,Ω, O〉 without the initial belief-state, and Virin et al. [2007] define a POMDP model
as 〈S,A, tr,R,Ω, O, b0〉, where tr is used instead of T . Pineau et al. [2003] define a POMDP
model as 〈S,A,O, b0, T,Ω, R, γ〉, even including the discount factor, but switching the use of O
and Ω so that for them, O is the set of observations and Ω is the observation function. We use
Z for the name of the observation function, as in the book Probabilistic Robotics [Thrun et al.,
2005]. Clearly, the convention for describing a POMDP has not yet been settled.

We have chosen to ignore the discount factor γ in SDL; equivalently, we consider only POMDP
models with γ = 1. This is done for two reasons, (i) we wish to introduce our logic as simply as
possible (without being trivial) and (ii) finite horizon problems do not require a discount factor for
convergence when seeking a solution policy.

Let L6⇒SDL be the subset of formulae of LSDL excluding formulae containing subformulae of the
form ϕ ⇒ Φ (i.e., excluding law literals). Fix a set of fluents F and let C be the conceivable
worlds induced from F . Let δw be a complete propositional theory such that w |= δw and for all
other w′ ∈ C, w′ 6|= δw. Let M = 〈S,A, T,R, Z,O, b0〉 be any POMDP model such that S ⊆ C,
S 6= ∅, γ = 1 in the POMDP value function, A = A and Ω = Z. Let b0 = {(w1, p1), (w2, p2),
. . ., (wn, pn)} and S = {w1, w2, . . . , wn}.

Definition 7.1.6: Let BK ⊂ LSDL and IB ∈ LSDL. 〈BK , IB〉 is a specification of POMDP M
if and only if

• For every w× ∈ C, if w× 6∈ S, then BK |= δw
× ⇒ ⊥.

• For all w,w′ ∈ S and all α ∈ A, BK |= δw ⇒ ([α]δw
′

= p), such that p = T (w,α,w′).

• For all w ∈ S, all ς ∈ Ω and all α ∈ A, BK |= δw ⇒ ((ς | α) = p), such that
p = O(w,α, ς).

• For all w ∈ S and all α ∈ A, BK |= δw ⇒ (Reward(r) ∧ Cost(α, 0)), such that r =

R(α,w).

• IB |= Bδw1 = p1 ∧Bδw2 = p2 ∧ · · · ∧Bδwn = pn.

THE STOCHASTIC DECISION LOGIC 125

What the following lemma essentially says is that Θ− is satisfied at D, b0 and w if and only if
IB → Θ− is satisfied at D, w and any arbitrary belief-state, where IB specifies b0.

Lemma 7.1.1: Let 〈BK , IB〉 be a specification of POMDP M = 〈S,A, T,R, Z,O, b0〉. Let Θ−

be an element of L 6⇒SDL, D an arbitrary SDL structure and w an arbitrary element of C. Then
Db0w |= Θ− if and only if for all belief-states b′ ∈ P , Db′w |= IB → Θ−.

Proof:
Clearly, if Db0w |= IB then for all b′ ∈ P , if b′ 6= b0, then Db′w 6|= IB . Therefore, Db0w |= Θ−

⇐⇒ for all b′ ∈ P , if b′ 6= b0, then Db′w 6|= IB , else Db′w |= Θ−

⇐⇒ for all b′ ∈ P , Db′w 6|= IB or Db′w |= Θ−

⇐⇒ for all b′ ∈ P , Db′w |= IB → Θ−.

Informally, the following lemma sets up correspondences between three forms of SDL formulae
and the three corresponding notions defined in the chapter on POMDPs (Chap. 3).

Lemma 7.1.2: Let Sϕ = {w ∈ C | w |= ϕ} such that Sϕ ⊆ S, where ϕ ∈ LSDL is a proposi-
tional sentence.

For all b ∈ P and all w ∈ C:
(i) Dbw |= UΛ = r iff U(Λ, b) = r,
(ii) Dbw |= Bϕ = p iff B(Sϕ, b) = p and
(iii) given sequence Jα1 + ς1K · · · Jαy + ςyK, SE (αy, ςy, · · · SE (α1, ς1, b0) · · ·) = BU (αy, ςy,
· · · BU (α1, ς1, b0) · · ·).

Proof:
Let D = 〈R,Q,U〉 be an SDL structure such that Dbw |=

∧
β∈BK β for all b ∈ P and all

w ∈ C. Due to Definition 7.1.6, it must be that for all w,w′ ∈ S, all ς ∈ Ω and all α ∈ A,
Rα(w,w′) = T (w,α,w′), Qα(w, ς) = O(w,α, ς) and Re(w) − Coα(w) = R(α,w), where
U = 〈Re,Co〉.

Then, for all α ∈ A, ς ∈ Ω and b ∈ P , by Definition 7.1.3, PNB (α, ς, b) = Pr(ς | α, b), by
Definition 7.1.4, BU (α, ς, b) = SE (α, ς, b) and by definitions of RC(·) and ρ(·), RC(α, b) =

ρ(α, b).

Now, given the equations above, the symmetries in the following definitions should be obvious:
(i) Dbw |= UΛ = r and U(Λ, b) = r, (ii) Dbw |= Bϕ = p and B(Sϕ, b) = p and (iii) SE (·) and
BU (·).

The lemma follows.

The theorem below relates POMDP models with SDL structures by relating functions U(·) and
B(·) defined in Chapter 3 to SDL modal operators U and B.

Theorem 7.1.1: Let 〈BK , IB〉 be a specification of POMDP M = 〈S,A, T,R, Z,O, b0〉. Let
Sϕ = {w ∈ C | w |= ϕ} such that Sϕ ⊆ S, where ϕ ∈ LSDL is a propositional sentence.

Given any sequence of actions and observations Jα1 + ς1K · · · Jαy + ςyK, U(Λ, by) ./ r and
B(Sϕ, by) ./′ p, where by = SE (αy, ςy, · · ·SE (α1, ς1, b0) · · ·) if and only if BK |= IB →
Jα1 + ς1K · · · Jαy + ςyK(UΛ ./ r ∧Bϕ ./′ p).

THE STOCHASTIC DECISION LOGIC 126

Proof:
Let D = 〈R,Q,U〉 be an SDL structure such that Dbw |=

∧
β∈BK β for all b ∈ P and all w ∈ C.

Let by = SE (αy, ςy, · · ·SE (α1, ς1, b0) · · ·).

(⇒) Suppose U(Λ, by) ./ r and B(Sϕ, by) ./′ p. Then by items (i) and (ii) of Lemma 7.1.2,
for all w ∈ C: Dbyw |= UΛ ./ r and Dbyw |= Bϕ ./′ p. Thus, by item (iii) of Lemma 7.1.2
and the definition of Jς + αKΦ, for all w ∈ C: Db0w |= Jα1 + ς1K · · · Jαy + ςyKUΛ = r and
Db0w |= Jα1 + ς1K · · · Jαy + ςyKBϕ = p. Hence, by construction of D for all structures D′ and
all w ∈ C: if D′b0w |= β for every β ∈ BK , then D′b0w |= Jα1 + ς1K · · · Jαy + ςyKUΛ ./ r and
D′b0w |= Jα1 + ς1K · · · Jαy + ςyKBϕ ./′ p. By Lemma 7.1.1, this implies that for all structures
D′, all belief-states b and all w ∈ C: if D′bw |= β for every β ∈ BK , then D′bw |= IB →
Jα1 + ς1K · · · Jαy + ςyKUΛ ./ r and D′bw |= IB → Jα1 + ς1K · · · Jαy + ςyKBϕ ./′ p. Referring
to item (iii) of Lemma 7.1.2 and using the definition of ∧, this implies that for all structures
D′, all belief-states b, all w ∈ C: if D′bw |= β for every β ∈ BK , then D′bw |= IB →
Jα1 + ς1K · · · Jαy + ςyK(UΛ ./ r ∧ Bϕ ./′ p). Therefore, due to the definition of entailment,
BK |= IB → Jα1 + ς1K · · · Jαy + ςyK(UΛ ./ r ∧Bϕ ./′ p).

(⇐) On the other hand, suppose BK |= IB → Jα1 + ς1K · · · Jαy + ςyK(UΛ ./ r ∧ Bϕ ./′ p).
Then, due to the definition of entailment, for all structures D′, all belief-states b and all w ∈ C: if
D′bw |= β for every β ∈ BK , thenD′bw |= IB → Jα1 + ς1K · · · Jαy+ ςyK(UΛ ./ r∧Bϕ ./′ p).
Thus, by item (iii) of Lemma 7.1.2 and the definition of ∧, for all structures D′, all belief-states b,
all w ∈ C: if D′bw |= β for every β ∈ BK , then D′bw |= IB → Jα1 + ς1K · · · Jαy + ςyKUΛ ./ r

andD′bw |= IB → Jα1 +ς1K · · · Jαy+ςyKBϕ ./′ p. Hence, by Lemma 7.1.1, for all structuresD′

and all w ∈ C: if D′b0w |= β for every β ∈ BK , then D′b0w |= Jα1 + ς1K · · · Jαy + ςyKUΛ ./ r

andD′b0w |= Jα1+ς1K · · · Jαy+ςyKBϕ ./′ p. Due to the way in whichD is constructed, it follows
that for all w ∈ C: Db0w |= Jα1 + ς1K · · · Jαy + ςyKUΛ = r and Db0w |= Jα1 + ς1K · · · Jαy +

ςyKBϕ = p. Using item (iii) of Lemma 7.1.2 and the definition of Jς +αKΦ, the former statement
implies that for all w ∈ C: Dbyw |= UΛ ./ r and Dbyw |= Bϕ ./′ p. Therefore, by items (i)
and (ii) of Lemma 7.1.2, it must be the case that U(Λ, by) ./ r and B(Sϕ, by) ./′ p.

7.2 Decision Procedure for Semantic Consequence

We provide a decision procedure for checking the validity of sentences in LSDL. There are two
phases in the decision procedure. First comes the tableau phase, which essentially eliminates
propositional connectives, and processes sentences in preparation for the second phase. Second,
the systems of inequalities (SI) phase creates systems of inequalities from literals, checking the
systems’ feasibility.

The labels of the labeled formulae defined for the decision procedure of SDL are not integers, but
so-called activity sequences. By labeling formulae with activity sequences, one is able to track
the ‘movement’ between sets of possible worlds. Certain machinery is required to process activity
sequences. The formalities follow.

THE STOCHASTIC DECISION LOGIC 127

7.2.1 The Tableau Phase

The necessary definitions and terminology are given next.

Definition 7.2.1: A labeled formula is a pair (Σ,Ψ), where Ψ ∈ LSDL is any formula and Σ is
either 0 or a sequence of the form 0

α1,ς1−→ e1
α2,ς2−→ e2 · · ·

αz ,ςz−→ ez called an activity sequence. The

ei represent belief-states. If Σ is 0
α1,ς1−→ e1 · · ·

αz ,ςz−→ ez , then the concatenation of Σ and
α′,ς′−→ e′,

denoted as Σ
α′,ς′−→ e′ is the sequence 0

α1,ς1−→ e1 · · ·
αz ,ςz−→ ez

α′,ς′−→ e′.

Definition 7.2.2: If one has a tree with trunk Γ0
0 = {(0,Ψ)}, we shall say one has a tree for Ψ.

A node Γ is closed if (Σ,⊥) ∈ Γ for any Σ. It is open if it is not closed. A tree is closed if all of
its leaf nodes are closed, else it is open.

Recall that δw is a complete propositional theory such that w |= δw and for all other w′ ∈ C, w′ 6|=
δw. We denote the smallest set of complete propositional theories entailing some propositional
formula ϕ as cpt(ϕ). We call elements of cpt(ϕ) definitive.

A preprocessing step occurs, where all (sub)formulae of the form (∀va)Ψ and (∀vo)Ψ are replaced
by, respectively, (Ψ|vaα1

∧ . . . ∧Ψ|vaαn) and (Ψ|voς1 ∧ . . . ∧Ψ|voςn).

Another preprocessing step occurs, where all (sub)formulae of the form ϕ ⇒ Φ are replaced by
ϕ⇒ Φ′, where Φ′ is the CNF of Φ.

The tableau rules for SDL follow. Let Γjk be a leaf node.

• rule ¬: If Γjk contains a formula (Σ,Ψ) with a double negation somewhere in it, then create
node Γjk+1 = Γjk ∪ {(Σ,Ψ

′)}, where Ψ′ is Ψ with the double negation removed.

• rule ∧: If Γjk contains (Σ,Ψ ∧ Ψ′) or (Σ,¬(Ψ ∨ Ψ′)), then create node Γjk+1 = Γjk ∪
{(Σ,Ψ), (Σ,Ψ′)}, respectively, Γjk+1 = Γjk ∪ {(Σ,¬Ψ), (Σ,¬Ψ′)}.

• rule ∨: If Γjk contains (Σ,Ψ ∨ Ψ′) or (Σ,¬(Ψ ∧ Ψ′)), then create nodes Γjk+1 = Γjk ∪
{(Σ,Ψ)} and Γj

′

0 = Γjk ∪ {(Σ,Ψ
′)}, or respectively, nodes Γjk+1 = Γjk ∪ {(Σ,¬Ψ)} and

Γj
′

0 = Γjk ∪ {(Σ,¬Ψ′)}, where j′ is a fresh integer.

• rule =: If Γjk contains (Σ, c = c′) or (Σ, ϕ⇒ c = c′) where ϕ 6≡ ⊥ and c and c′ are distinct
constants, or if Γjk contains (Σ,¬(c = c′)) or (Σ, ϕ ⇒ ¬(c = c′)) where ϕ 6≡ ⊥ and c and
c′ are identical constants, then create node Γjk+1 = Γjk ∪ {(Σ,⊥)}.

• rule ⇒ ∧: If Γjk contains (Σ, ϕ ⇒ Φ ∧ Φ′), then create node Γjk+1 = Γjk ∪ {(Σ, ϕ ⇒
Φ), (Σ, ϕ⇒ Φ′))}.

• rule δ ⇒: If Γjk contains (Σ, ϕ ⇒ Φ) where Φ is a disjunction of literals, then create
node Γjk+1 = Γjk ∪ {(Σ, δ1 ⇒ Φ), (Σ, δ2 ⇒ Φ), . . . , (Σ, δn ⇒ Φ)}, where cpt(ϕ) =

{δ1, δ2, . . . , δn}.

• rule⇒ ∨: If Γjk contains (Σ, ϕ ⇒ Φ ∨ Φ′) where ϕ is definitive, then create node Γjk+1 =

Γjk ∪ {(Σ, (ϕ⇒ Φ) ∨ (ϕ⇒ Φ′))}.

• rule Ξ: If Γjk contains (Σ, Jα+ ςKΨ) then: if Γjk contains (Σ′,Ψ′) such that Σ′ = Σ
α,ς−→ e,

then create node Γjk+1 = Γjk ∪ {(Σ
′,Ψ)}, else create node Γjk+1 = Γjk ∪ {(Σ

α,ς−→ e′,Ψ)},

THE STOCHASTIC DECISION LOGIC 128

where e′ is a fresh integer.

• rule ¬Ξ: If Γjk contains (Σ,¬Jα+ ςKΨ), then create node Γjk+1 = Γjk∪{(Σ,¬Cont(α, ς)∨
Jα+ ςK¬Ψ)}.

• rule ¬B: If Γjk contains (Σ,¬Bϕ ./ q), then

– if ./ is <, create node Γjk+1 = Γjk ∪ {(Σ,Bϕ ≥ q)}.

– if ./ is ≤, create node Γjk+1 = Γjk ∪ {(Σ,Bϕ > q)}.

– if ./ is =, create node Γjk+1 = Γjk ∪ {(Σ,Bϕ < q ∨Bϕ > q)}.

– if ./ is ≥, create node Γjk+1 = Γjk ∪ {(Σ,Bϕ < q)}.

– if ./ is >, create node Γjk+1 = Γjk ∪ {(Σ,Bϕ ≤ q)}.

• rule ¬U: If Γjk contains (Σ,¬UΛ ./ q), then

– if ./ is <, create node Γjk+1 = Γjk ∪ {(Σ,UΛ ≥ q)}.

– if ./ is ≤, create node Γjk+1 = Γjk ∪ {(Σ,UΛ > q)}.

– if ./ is =, create node Γjk+1 = Γjk ∪ {(Σ,UΛ < q ∨UΛ > q)}.

– if ./ is ≥, create node Γjk+1 = Γjk ∪ {(Σ,UΛ < q)}.

– if ./ is >, create node Γjk+1 = Γjk ∪ {(Σ,UΛ ≤ q)}.

7.2.2 The SI Phase

Let SI (Γ) be the system of inequalities generated from the formulae in Γ (explained later).

After the tableau phase is completed, the SI phase begins. Let T be a saturated tree.

For each open leaf node Γjk of T , do the following. If SI (Γjk) is infeasible, then create new
leaf node Γjk+1 = Γjk ∪ {(0,⊥)}.

Definition 7.2.3: A tree is called finished after the SI phase is completed.

Definition 7.2.4: If a tree for ¬Ψ is closed, we write ` Ψ. If there is a finished tree for ¬Ψ with
an open leaf node, we write 6` Ψ.

The generation of SI (Γ) from the formulae in Γ is explained in the rest of this section. All
variables are assumed implicitly non-negative. Let C# = {w1, w2, . . . , wn} be an ordering of the
worlds inC. Let ωek be a variable representing the probability of being in worldwk at activity-point
e (after a number of activity updates). We may denote an activity sequence as Σ

α,ς−→ e to refer to
the last action α, observation ς and activity-point e in the sequence, where Σ may be the empty
sequence. We may also denote an activity sequence as Σe to refer only to the last activity-point in
the sequence; if Σ is the empty sequence, then e is the initial activity-point 0.

THE STOCHASTIC DECISION LOGIC 129

In the next four subsections, we deal with (i) law literals involving dynamic and perception literals,
(ii) activity sequences, (iii) belief literals and (iv) laws involving reward and cost literals, and utility
literals.

Action and Perception Laws

For every formulae of the form (Σ, φ⇒ [α]ϕ ./ q) ∈ Γ and (Σ, φ⇒ ¬[α]ϕ ./ q) ∈ Γ, for every
j such that wj |= φ (where j represents the world in which α is executed),

c1pr
α
j,1 + c2pr

α
j,2 + · · ·+ cnpr

α
j,n ./ q, respectively, c1pr

α
j,1 + c2pr

α
j,2 + · · ·+ cnpr

α
j,n 6./ q

is in SI(Γ), such that ck = 1 if wk |= ϕ, else ck = 0, and the prαj,k are variables. Adding an
equation

prαj,1 + prαj,2 + · · ·+ prαj,n = dprαj,1 + prαj,2 + · · ·+ prαj,ne

for every j such thatwj |= φ, will ensure that either
∑

w′∈W Rα(wj , w
′) = 1 or

∑
w′∈W Rα(wj , w

′) =

0, for every wj ∈ C, as stated in Definition 7.1.2.

Let m = |Ω|. Let Ω# = (ς1, ς2, . . . , ςm) be an ordering of the observations in Ω. With each
observation in ς ∈ Ω#, we associate a variable prςj , where j represents the world in which ς is
perceived. For every formulae of the form (Σ, φ⇒ (ς|α) ./ q) ∈ Γ and (Σ, φ⇒ ¬(ς|α) ./ q) ∈
Γ, for every j such that wj |= φ,

pr
ς|α
j ./ q, respectively, prς|αj 6./ q

is in SI(Γ). Adding an equation

pr
ς1|α
j + pr

ς2|α
j + · · ·+ pr

ςm|α
j = d(prα1,j + prα2,j + · · ·+ prαn,j)/ne

for every j such that wj |= φ, ensures that for all wj ∈ C, if there exists a wi ∈ C such that
Rα(wi, wj) > 0, then

∑
ς∈ΩQα(wj , ς) = 1, else

∑
ς∈ΩQα(wj , ς) = 0, as stated in Defini-

tion 7.1.2.

Belief Update

Let Π(eh, α, ς) be the abbreviation for the term

n∑
j=1

pr
ς|α
j

n∑
i=1

prαi,jω
eh
i ,

which is the probability of reaching the belief-state after performing belief update Jα + ςK at
activity-point eh. And let BT (eh, k, α, ς) be the abbreviation for the term

pr
ς|α
k

∑n
i=1 pr

α
i,kω

eh
i

Π(eh, α, ς)
,

THE STOCHASTIC DECISION LOGIC 130

which is the probability of being in world wk after performing belief update Jα + ςK at activity-
point eh, where n = |C|.

Suppose Σ is 0
α0,ς0−→ e1

α1,ς1−→ e2 · · ·
αz−1,ςz−1−→ ez and Σ 6= 0. For every formulae of the form

(Σ,Ψ) ∈ Γ, the following equations are in SI(Γ).

ω
eh+1

k = BT (eh, k, αh, ςh) (for k = 1, 2, . . . , n and h = 0, 1, . . . , z − 1),

Π(eh, αh, ςh) 6= 0 (for h = 0, 1, . . . , z − 1)

and
ωeh1 + ωeh2 + · · ·+ ωehn = 1 (for h = 0, 1, . . . , z),

where e0 is 0. Observe that the eh are integers and we enforce the constraint that ei < ej iff i < j.

Continuity and Belief Literals

For every formula of the form (Σe,Cont(α, ς)) ∈ Γ or (Σe,¬Cont(α, ς)) ∈ Γ,

Π(e, α, ς) 6= 0, respectively, Π(e, α, ς) = 0

is in SI(Γ).

For every formula of the form (Σe,Bϕ ./ p) ∈ Γ,

c1ω
e
1 + c2ω

e
2 + · · ·+ cnω

e
n ./ p,

is in SI(Γ), where ck = 1 if wk |= ϕ, else ck = 0.

Rewards, Costs and Utilities

For every formula of the form (Σ, φ ⇒ Reward(r)) ∈ Γ and (Σ, φ ⇒ ¬Reward(r)) ∈ Γ, for
every j such that wj |= φ,

Rj = r, respectively, Rj 6= r

is in SI (Γ).

For every formula of the form (Σ, φ ⇒ Cost(α, r)) ∈ Γ and (Σ, φ ⇒ ¬Cost(α, r)) ∈ Γ, for
every j such that wj |= φ,

Cαj = r, respectively, Cαj 6= r

is in SI (Γ).

Let RC (α, e)
def
= ωe1(R1 −Cα1) + ωe2(R2 −Cα2) + · · ·+ ωen(Rn −Cαn). For every formula of the

form (Σe,UJαK ./ q) ∈ Γ,
RC (α, e) ./ q

is in SI (Γ).

To keep track of dependencies between variables in inequalities derived from utility literals of the

THE STOCHASTIC DECISION LOGIC 131

form (Σ,UJαKΛ ./ q), we define a utility tree. A set of utility trees is induced from a set ∆

which is defined as follows (examples follow the formal description). For every formula of the
form (Σe,UJαKΛ ./ q) ∈ Γ, let (e

α,ς−→ eς ,Λ) ∈ ∆, for every ς ∈ Ω, where eς is a fresh integer.
Then, for every (ξ, JαKΛ) ∈ ∆ (where Λ is not empty), for every ς ∈ Ω, if (ξ′,Ψ) ∈ ∆ such that
ξ′ = ξ

α,ς−→ eς
′
, then (ξ′,Λ) ∈ ∆, else (ξ

α,ς−→ eς ,Λ) ∈ ∆, where eς is a fresh integer. This finishes
the definition of ∆.

Suppose Ω = {ς1, ς2} and

(Σ
α′,ς′−→ 13,UJα5K = 88),

(Σ
α′,ς′−→ 13,UJα1KJα2K > 61),

(Σ
α′,ς′−→ 13,UJα1KJα3KJα2K < 62),

(Σ
α′,ς′−→ 13,UJα1KJα4K = 63),

(Σ
α′,ς′−→ 23,UJα1KJα2K ≥ 64) and

(Σ
α′,ς′−→ 23,UJα2KJα1K = 65)

are in some leaf node Γ′. Then (Σ
α′,ς′−→ 13,UJα5K = 88) is not involved in the definition of ∆′,

nevertheless, RC(α5, 13) = 88 is in SI (Γ′).

With respect to the other utility literals,

(13
α1,ς1−→ 24, Jα2K), (13

α1,ς2−→ 25, Jα2K),

(13
α1,ς1−→ 24, Jα3KJα2K), (13

α1,ς2−→ 25, Jα3KJα2K),

(13
α1,ς1−→ 24, Jα4K), (13

α1,ς2−→ 25, Jα4K),

(23
α1,ς1−→ 26, Jα2K), (23

α1,ς2−→ 27, Jα2K),

(23
α2,ς1−→ 28, Jα1K) and (23

α2,ς2−→ 29, Jα1K)

are in ∆′. And due to (13
α1,ς1−→ 24, Jα3KJα2K), (13

α1,ς2−→ 25, Jα3KJα2K) ∈ ∆′, the following are
also in ∆′.

(13
α1,ς1−→ 24

α3,ς1−→ 30, Jα2K),

(13
α1,ς1−→ 24

α3,ς2−→ 31, Jα2K),

(13
α1,ς2−→ 25

α3,ς1−→ 32, Jα2K) and

(13
α1,ς2−→ 25

α3,ς2−→ 33, Jα2K).

Note how an activity-point is represented by the same integer (for instance, 24) if and only if it is
reached via the same sequence of actions and observations (for instance, 13

α1,ς1−→).

The set of utility trees is generated from ∆ as follows. ∆ is partitioned such that (e
α,ς−→ e′,Λ),

(e′′
α′,ς′−→ e′′′,Λ′) ∈ ∆ are in the same partitioning if and only if e = e′′. Each partitioning

represents a unique utility tree with the first activity-point as the root of the tree. For example,
one can generate two utility trees from ∆′; one with root 13 and one with root 23. Each activity

THE STOCHASTIC DECISION LOGIC 132

13

24
α1
, ς1

30α3, ς1

31

α
3 , ς2

25

α
1 , ς2 32α3, ς1

33

α
3 , ς2

23

26

α 1
, ς

1

27α1, ς2

28

α2 , ς1

29

α
2 , ς

2
Fig. 7.1: The two utility trees generated from ∆′.

sequence of the members of ∆ represents a (sub)path starting at the root of its corresponding tree.
Figure 7.1 depicts the two utility trees generated from ∆′.

Before considering the general case, we illustrate the method of generating, from the utility trees
in Figure 7.1, the required inequalities which must be in SI (Γ′).

The formula (Σ
α′,ς′−→ 13,UJα1KJα2K > 61) ∈ Γ′ is represented by

RC (α1, 13) + Π(13, α1, ς1)RC (α2, 24) + Π(13, α1, ς2)RC (α2, 25) > 61

in SI (Γ′). To generate this inequality, the utility tree rooted at 13 is used: See that α1 is executed
at activity-point 13, α2 is executed at activity-point 24 if ς1 is perceived and α2 is executed at
activity-point 25 if ς2 is perceived. Moreover, the latter two rewards must be weighted by the
probabilities of reaching the respective new belief-states/activity-points.

The formula (Σ
α′,ς′−→ 13,UJα1KJα4K = 63) ∈ Γ′ is represented by

RC (α1, 13) + Π(13, α1, ς1)RC (α4, 24) + Π(13, α1, ς2)RC (α4, 25) = 63.

in SI (Γ′). This time, α4 is executed at the activity-points 24 and 25.

Next, the utility tree rooted at 23 is used to find the representation of (Σ
α′,ς′−→ 23,UJα1KJα2K ≥

64) ∈ Γ′. Looking at the utility tree, one can work out that

RC (α1, 23) + Π(23, α1, ς1)RC(α2, 26) + Π(23, α1, ς2)RC (α2, 27) ≥ 64

must be in SI (Γ′).

For (Σ
α′,ς′−→ 23,UJα2KJα1K = 65) ∈ Γ′,

RC (α2, 23) + Π(23, α2, ς1)RC (α1, 28) + Π(23, α1, ς2)RC(α1, 29) ≥ 64

is in SI (Γ′).

Formula
(Σ

α′,ς′−→ 13,UJα1KJα3KJα2K < 62) ∈ Γ′, (7.1)

THE STOCHASTIC DECISION LOGIC 133

e_z

e_{z+1,1}

e_{z+1,n}

e_{z+2,1}

e_{z+2,n²-n+1}

e_{z+2,n}

e_{z+2,n²}

e_{z+y,1}

e_{z+y,n }

a1,s1

a1,sn

a’1,s1

a’1,sn

a’2,sna’2,s1

a’2,sna’2,s1

a2,s1

a2,sn

a2,s1

a2,sn

ay,s1

ay,sn

ay+1,sn

ay+1,s1

y

Fig. 7.2: The general form of a utility tree. The enclosed area indicates the subtree corresponding to the
general utility literal of (7.2). The root of the tree, ez , is situated towards the left of the diagram.

is represented by the following inequality.

RC (α1, 13)

+ Π(13, α1, ς1)

(
RC (α3, 24)

+ Π(24, α3, ς1) RC (α2, 30)

+ Π(24, α3, ς2) RC (α2, 31)

)

+ Π(13, α1, ς2)

(
RC (α3, 25)

+ Π(25, α3, ς1) RC (α2, 32)

+ Π(25, α3, ς2) RC (α2, 33)

) < 62

The size of the utility tree rooted at 13 is due to (7.1). Hence, the whole tree is employed to
generate the inequality.

Figure 7.2 depicts the general form of a utility tree generated from a utility literal with the form

(Σez,UJα1KJα2K · · · JαyK ./ q). (7.2)

In general, for every utility literal of the form (7.2) in leaf node Γ, an inequality of the form shown

THE STOCHASTIC DECISION LOGIC 134

below must be in SI (Γ) and can be generated from a utility tree of the form depicted in Figure 7.2.

RC (α1, ez)

+ Π(ez, α1, ς1)

(
RC (α2, ez+1,1)

+Π(ez+2,1α2, ς1)

(
· · ·

+Π(ez+n,n, α2, ςn)

(
· · ·

+ Π(ez, α1, ςn)

(
RC (α2, ez+1,n)

+Π(ez+2,n2−n+1, α2, ς1)

(
· · ·

+Π(ez+n,n2 , α2, ςn)

(
· · ·

· · ·

+ Π(ez+y−2,1, αy−1, ς1)RC (αy, ez+y−1,1) · · ·
) 

+ Π(ez+y−2,ny−2 , αy−1, ςn)RC (αy, ez+y−1,ny−1) · · ·
) 

./ q

The value to the left of the ./ of this general inequality can be written in a compact form as follows.
We define the value of a sequence Λ of y actions, starting at activity-point ez as

U(Jα1KJα2K · · · JαyK, ez+h−1,x)
def
=

RC (Jα1K, ez+h−1,x) +
∑
ςi∈Ω#

Π(ez+h−1,x, α1, ς)U(Jα2K · · · JαyK, ez+h,i),

U(JαyK, ez+y−1,x)
def
= RC (αy, ez+y−1,x). (7.3)

The inequality which must be in SI (Γ) can thus be written as

U(Jα1KJα2K · · · JαyK, ez,) ./ q,

where ez, = ez (is a dummy value).

Finally (almost), for every activity-point/node e in every utility tree,

ωe1 + · · ·+ ωen = 1 ∈ SI (Γ),

and for every e
α,ς−→ e′ in every utility tree,

Π(e, α, ς) = 0 || Π(e, α, ς) 6= 0, ωe
′

1 = BT (e, 1, α, ς), . . . , ωe
′
n = BT (e, n, α, ς) ∈ SI (Γ) (7.4)

Statement (7.4) needs explaining:

Until now, whenever it was stated that ωe
′
k = BT (e, k, α, ς) ∈ SI (Γ), the equation matched the

occurrence of an update operator Jα+ ςK in a sentence. According to the semantics of Jα+ ςK, the
new belief-state due to performing α and perceiving ς is reachable; that is, Π(e, α, ς) 6= 0, where
e represents the belief-state before the update. Therefore, matching every Jα + ςK with ωe

′
k =

THE STOCHASTIC DECISION LOGIC 135

BT (e, k, α, ς) is appropriate, because the definition of ωe
′
k = BT (e, k, α, ς) implies Π(e, α, ς) 6=

0. But the occurrence of e
α,ς−→ in a utility tree should not necessarily imply the reachability of

a belief-state via α, ς from the belief-state represented by e. Nevertheless, if a new belief-state
is reachable, then that new belief-state needs to be consistent with the rest of the constraints in
the system. Hence, in essence, we are stating that, in the case of utility literals, with respect
to the expected utility of the sequence of actions in the literal, IF Π(e, α, ς) 6= 0 THEN ωe

′
k =

BT (e, k, α, ς) ∈ SI (Γ). Unfortunately, one cannot check Π(e, α, ς) 6= 0 outside the context of
the rest of the system of inequalities. So (7.4) is made part of the system in the form ¬A ∨ B,
where || represents ∨.

Because (7.4) is not an equation or inequality, it requires a special interpretation to determine the
feasibility of the system SI (Γ) in which it appears. Let SI−(Γ) be SI (Γ) without (7.4). Quite
simply, SI (Γ) is feasible if and only if SI−(Γ) ∪ {Π(e, α, ς) = 0} is feasible or SI−(Γ) ∪
{Π(e, α, ς) 6= 0, ωe

′
1 = BT (e, 1, α, ς), . . . , ωe

′
n = BT (e, n, α, ς)} is feasible.

Decidability of Feasibility of Systems of Inequalities

Lemma 7.2.1: Determining whether an SI (as defined in this thesis) is feasible, is decidable.

Proof:
The proof extends the proof of Lemma 6.2.1 with respect to SLAOP. The proof of Lemma 7.2.1 is
in the appendix.

7.3 Properties of the Decision Procedure

All proofs not given here can be found in the appendix Section A.4.

7.3.1 Soundness

Lemma 7.3.1: Let T be a finished tree. For every node Γ in T : If there exists a structure D such
that for all (Σ,Φ) ∈ Γ there exists a belief-state b ∈ P and a world w ∈ C such that Dbw |= Φ,
then the (sub)tree rooted at Γ is open.

Theorem 7.3.1: (Soundness) If ` Ψ then |= Ψ. (Contrapositively, if 6|= Ψ then 6` Ψ.)

7.3.2 Completeness

We start with the description of the construction of an SDL structure, given the leaf node Γ of
some open leaf node of a finished tree.

Definition 7.3.1: A solution for SI(Γ) is a set of values {sαi,j , s
ς|α
j , sRi, sC

α
i , sω

e
i | α ∈ A, ς ∈

Ω, i, j = 1, 2, . . . , |C|, e = 0 or e an integer introduced by rule Ξ to a formula appearing in
Γ} such that the assignments of these values to the variables (as follows) solves every equation
and inequality in SI(Γ) simultaneously: prαi,j ← sαi,j , pr

ς|α
j ← s

ς|α
j , Ri ← sRi, C

α
i ← sCαi and

THE STOCHASTIC DECISION LOGIC 136

ωei ← sωei for all α ∈ A, ς ∈ Ω, i, j ∈ {1, 2, . . . , |C|}, e = 0 and e an integer introduced by rule
Ξ to a formula appearing in Γ}. Let Z(Γ) be the set of solutions for SI(Γ).

D = 〈R,Q,U〉 can be constructed as follows. Let sln be a solution in Z(Γ).

• For every action α ∈ A, the accessibility relation Rα can be constructed as follows. For
i, j = 1, 2, . . . , |C|, let Rα(wi, wj) = sαi,j , where wi, wj ∈ C# and sαi,j ∈ sln .

• For every action α ∈ A, the perceivability relation Qα can be constructed as follows. For
j = 1, 2, . . . , |C|, let Qα(wj , ς) = s

ς|α
j , where wj ∈ C#, ς ∈ Ω and sς|αj ∈ sln .

• For i = 1, 2, . . . , |C|, let Re(wi) = sRi, where wi ∈ C# and sRi ∈ sln . For every action
α ∈ A and i = 1, 2, . . . , |C|, let Coα(wi) = sCαi , where wi ∈ C# and sCαi ∈ sln . Let
U = 〈Re,Co〉 such that Co = {(α,Coα) | α ∈ A}.

Lemma 7.3.2: S is an SDL structure.

Lemma 7.3.3: Let Γ be an open leaf node of a finished tree. We know that Z(Γ) is not empty. If
D is constructed as described above, then for all (Σ,Ψ) ∈ Γ, there exists a b and a w such that
Dbw |= Ψ.

Theorem 7.3.2: (Completeness) If |= Ψ then ` Ψ. (Contrapositively, if 6` Ψ then 6|= Ψ.)

7.3.3 Termination

Definition 7.3.2: Let Ψ′ be a strict sub-part of Ψ and let (Σ,Ψ) ∈ Γ. A tableau rule has the sub-
formula property if and only if the new node(s) Γ′ created by the application of the rule, contains
(Σ′,Ψ′) or (Σ′,¬Ψ′) for some Σ′, where (Σ′,Ψ′) 6∈ Γ, respectively, (Σ′,¬Ψ′) 6∈ Γ.

Lemma 7.3.4: A formula of the form (Σ, ϕ⇒ Φ) can cause only a finite number of tableau rule
applications.

Proof:
Recall that due to a preprocessing step, Φ is in CNF. Let (Σ, ϕ ⇒ Φ1 ∧ Φ2 ∧ · · · ∧ Φm) be in
some node Γ, where Φi (for i = 1, 2, . . . ,m) is a disjunction of literals (i.e., Φ1 ∧ Φ2 ∧ · · · ∧ Φm

is in CNF). After successive applications of rule⇒ ∧, (Σ, ϕ ⇒ Φ1), (Σ, ϕ ⇒ Φ2), . . . , (Σ, ϕ ⇒
Φm) ∈ Γ′, where Γ′ is a descendant of Γ. After successive applications of rule δ ⇒,

(Σ, δ1 ⇒ Φ1), (Σ, δ2 ⇒ Φ1), . . . , (Σ, δn ⇒ Φ1),

(Σ, δ1 ⇒ Φ2), (Σ, δ2 ⇒ Φ2), . . . , (Σ, δn ⇒ Φ2),

...

(Σ, δ1 ⇒ Φm), (Σ, δ2 ⇒ Φm), . . . , (Σ, δn ⇒ Φm) ∈ Γ′′,

where Γ′′ is a descendant of Γ′ and δi ∈ cpt(ϕ). If Φj for some j ∈ {1, 2, . . . ,m} is a literal,
then no tableau rule is applicable to (Σ, δ1 ⇒ Φj), (Σ, δ2 ⇒ Φj), . . . , nor (Σ, δn ⇒ Φj). Else,
(for all Φj which are not literals, j ∈ {1, 2, . . . ,m}), after successive applications of rule ⇒ ∨
and rule ∨, new decendent nodes are created containing formulae of the form (Σ, δ ⇒ Φ), where
δ is definitive and Φ is a literal. No tableau rule is applicable to formulae of the form (Σ, δ ⇒ Φ).

THE STOCHASTIC DECISION LOGIC 137

Clearly, no matter the order in which rules ⇒ ∧, δ ⇒,⇒ ∨ and ∨ are applied, the rules can be
applied only a finite number of times due to (Σ, ϕ⇒ Φ1 ∧ Φ2 ∧ · · · ∧ Φm) ∈ Γ.

Lemma 7.3.5: A tree for any formula Ψ ∈ LSDL becomes saturated. That is, the tableau phase
terminates.

Proof:
We can divide all the tableau rules into three categories: (i) those which add (Σ,⊥) to the new
node, (ii) those with the subformula property and (iii) those from the list 〈⇒ ∧, δ ⇒,⇒ ∨, ¬Ξ,
¬B, ¬U〉. Category-(i) rules never cause rules to become applicable later. As a direct consequence
of the subformula property and sentences being finite, every category-(ii) rule must eventually
become inapplicable.

Rules ¬B and ¬U are applied only once to any formula and never to a formula added to the new
node due to the rule.

Rule¬Ξ adds a formula of the form (Σ,¬Cont(α, ς)∨Jα+ςK¬Ψ) to the new node. After applying
rule ∨, (Σ,¬Cont(α, ς)) causes no rule application and (Σ, Jα+ ςK¬Ψ) is a category-(ii) rule.

Rules⇒ ∧, δ ⇒ and⇒ ∨ are only applied to formulae of the form (Σ, ϕ⇒ Φ). By Lemma 7.3.4,
there will be a finite number of rule applications to formulae of the form (Σ, ϕ⇒ Φ).

Therefore, all rules eventually become inapplicable, and it follows that any tree (for any formula)
would become saturated.

Theorem 7.3.3: The decision procedure for SDL terminates.

Proof:
Due to Lemma 7.3.5, the tableau phase terminates (with a finite number of branches).

In the SI phase: for each open leaf node of a tree for some Ψ ∈ LSDL, the feasibility of an SI is
sought once for Γ, where Γ is the leaf node of the branch. Hence, the feasibility of an SI is sought
a finite number of times in the SI phase.

By Lemma 7.2.1, determining the feasibility of an SI terminates and the SI phase thus terminates.

Corollary 7.3.1: The validity problem for SDL is decidable.

Proof:
Because the procedure is sound and complete, it will be decidable if it always terminates, which,
by Theorem 7.3.3, it does.

7.4 Specifying Domains with SDL

The framework presented here should be viewed as providing guidance; the knowledge engineer
should adapt the framework as necessary for the particular domain being modeled. On the practical
side, in the context of SDL, the domain of interest can be divided into five parts:

THE STOCHASTIC DECISION LOGIC 138

7.4.1 Static Laws

Static laws (denoted as the set SL) have the form φ ⇒ ϕ, where φ and ϕ are propositional
sentences, and φ is the condition under which ϕ is always satisfied. They are the basic laws and
facts of the domain. For instance, “A roof is above a floor”, “A full battery allows me at most four
hours of operation”, “I sink in liquids” and “The charging station is in sector 14”. Such static laws
cannot be explicitly stated in POMDPs; the information must be encoded in each relevant state.

7.4.2 Action Rules

Action rules (denoted as the set AR) must be specified. We identify three kinds of action rules.

The basic kind is the effect axiom. For every action α, effect axioms typically take the form

φ1 ⇒ [α]ϕ11 = p11 ∧ · · · ∧ [α]ϕ1n = p1n

φ2 ⇒ [α]ϕ21 = p21 ∧ · · · ∧ [α]ϕ2n = p2n

...

φj ⇒ [α]ϕj1 = pj1 ∧ · · · ∧ [α]ϕjn = pjn,

where (i) the sum of transition probabilities pi1, . . . , pin of any rule i must lie in the range [0, 1]

(preferably 1), (ii) for every i, for any pair of effects ϕik and ϕik′ , ϕik ∧ϕik′ ≡ ⊥ and (iii) for any
pair of conditions φi and φi′ , φi ∧ φi′ ≡ ⊥.

Allowing the probabilities (mentioned in point (i)) to sum up to less than 1 is a generalization of
the similar constraint for SLAOP specifications of effect axioms. The knowledge engineer must
keep in mind that if the transition probabilities do not sum to 1, the specification is incomplete.
Suppose, for instance, that for rule i, pi1 + · · · + pin < 1. Then one or more transitions from a
φi-world has not been mentioned and some logical inferences will not be possible.

The second kind of action rule is the frame axiom. The knowledge engineer may know that under
certain conditions, an action will not change the truth value of certain fluents. A frame axiom has
the form

φ⇒ (f → [α]f) ∧ (¬f → [α]¬f), (7.5)

where φ is the condition under which the value of fluent f never changes due to the execution of
action α. The benefit of having a frame axiom like (7.5) is that the knowledge engineer need not
mention f anywhere on the RHS of effect axiom

φi ⇒ [α]ϕi1 = pi1 ∧ · · · ∧ [α]ϕin = pin

if φi entails φ. This is only one suggestion to deal with invariance or inertia of fluent values.
The use of invariance predicates, as presented in Chapter 5, constitutes our solution to the frame
problem in our latter three logics.

The third kind of action rule is the inexecutability axiom. We shall assume that the union of effect
and frame axioms is complete, that is, that the knowledge engineer intends that the conditions of
these axioms are the only conditions under which the actions can be executed. Note that [α]> > 0

THE STOCHASTIC DECISION LOGIC 139

implies that α is executable and that ¬([α]> > 0) implies that α is inexecutable. Therefore, if
there is an effect axiom or frame axiom for α with condition φ, then one can assume the presence
of an executability axiom φ⇒ [α]> > 0.

However, we must still specify that an action is inexecutable when none of the effect axiom con-
ditions or frame axiom conditions is met. Hence, the following inexecutability axiom is assumed
present.4

¬(φ1 ∨ · · · ∨ φj ∨ φj+1 ∨ · · · ∨ φj+k)⇒ [α]> = 0

where φ1, . . . , φj are the conditions of the effect axioms for α and φj+1 ∨ · · · ∨ φj+k are the
conditions of the frame axioms for α.

7.4.3 Perception Rules

Perception rules (denoted as the set PR) must be specified. Let E(α) = {ϕ11, ϕ12, . . . , ϕ21, ϕ22,

. . . , ϕjn} be the set of all effects of action α executed under all executable conditions. For every
action α, perception rules typically take the form

φ1 ⇒ (ς11 | α) = p11 ∧ · · · ∧ (ς1m | α) = p1n

φ2 ⇒ (ς21 | α) = p21 ∧ · · · ∧ (ς2m | α) = p2n

...

φk ⇒ (ςk1 | α) = pk1 ∧ · · · ∧ (ςkm | α) = pkm,

where (i) the sum of perception probabilities pi1, . . . , pim of any rule i must lie in the range [0, 1]

(preferably 1), (ii) for any pair of conditions φi and φi′ , φi∧φi′ ≡ ⊥ and (iii) φ1∨φ2∨· · ·∨φk ≡∨
ϕ∈E(α) ϕ.

If the sum of perception probabilities pi1, . . . , pim of any rule i is 1, then any observations not
mentioned in rule i are automatically unperceivable in a φi-world. However, in the case that the
sum is not 1, this deduction about unperceivability cannot be made. Then the knowledge engineer
should keep in mind that a perception rule of the form

φi → · · · ∧ (ς | α) = 0 ∧ · · ·

implies that ς is unperceivable in a φi-world given that the world is reachable via α, and if this
information is available, it should be included.

4 Inexecutability axioms are also called condition closure axioms.

THE STOCHASTIC DECISION LOGIC 140

7.4.4 Utility Rules

Utility rules (denoted as the set UR) must be specified. Utility rules typically take the form

φ1 ⇒ Reward(r1)

φ2 ⇒ Reward(r2)

...

φj ⇒ Reward(rj),

meaning that in all worlds where φi is satisfied, the agent gets ri units of reward. And for every
action α,

φ1 ⇒ Cost(α, r1)

φ2 ⇒ Cost(α, r2)

...

φj ⇒ Cost(α, rj),

meaning that the cost for performing α in a world where φi is satisfied is ri units. The conditions
are disjoint as for action and perception rules.

7.4.5 Initial Belief-states

The agent’s initial belief-state IB must be specified, that is, a specification of the worlds the agent
should believe it is in when it becomes active, and probabilities associated with those worlds. For
instance,

B(f ∧ h) = 0.35 ∧ B(f ∧ ¬h) = 0.35 ∧ B(¬f ∧ h) = 0.2 ∧ B(¬f ∧ ¬h) = 0.1

is a specification of a particular initial belief-state. And

Bf < 0.7 ∧ B(¬f ∧ h) ≤ 0.3 ∧ B(¬f ∧ ¬h) = 0.1

is a specification of a class of initial belief-states, all those satisfying the constraints. In general,
an initial belief-state specification should have the form

Bϕ1 ./ p1 ∧ Bϕ2 ./ p2 ∧ . . . ∧ Bϕn ./ pn,

where (i) ./ ∈ {<,≤,=,≥, >} and (ii) the ϕi are mutually exclusive propositional sentences (i.e.,
for all 1 ≤ i, j ≤ n s.t. i 6= j, ϕi∧ϕj ≡ ⊥). The above may or may not be a full specification. For
a full/complete specification of a particular initial belief-state, a sentence of the following form
can be provided.

Bϕ1 = p1 ∧ Bϕ2 = p2 ∧ . . . ∧ Bϕn = pn,

where (i) the ϕi are mutually exclusive propositional sentences and (ii) p1 + p2 + . . .+ pn = 1.

THE STOCHASTIC DECISION LOGIC 141

The union of SL, AR, PR and UR is referred to as an agent’s background knowledge and is
denoted BK .

In practical terms, the question to be answered in SDL is whether BK |= IB → Θ− holds, where
BK ⊂ LSDL, IB is as described above, and Θ− ∈ L6⇒SDL is some sentence of interest. (Recall that
L 6⇒SDL is the subset of formulae of LSDL excluding formulae containing subformulae of the form
ϕ⇒ Φ.)

7.5 Using Entailment in SDL

To get a better feeling for the expressivity of SDL and its decision procedure, we work out a
few examples. They are all based on the oil-drinking scenario. The set of fluents is F =

{full, holding} abbreviated to f and h. Let w1 |= f ∧ h, w2 |= f ∧ ¬h, w3 |= ¬f ∧ h
and w4 |= ¬f ∧ ¬h. The set of actions is A = {grab, drink, weigh} abbreviated to g, d and w.
The set of observations is Ω = {obsNil, obsLight, obsMedium, obsHeavy} abbreviated to oN ,
oL, oM and oH .

A complete specification of the POMDP model is provided as the basis for the examples in this
section. The background knowledge base BK contains the following laws.

Transitions

• ¬h⇒ [g](f ∧ h) = 0.8 ∧ [g](¬f ∧ h) = 0.1 ∧ [g](¬f ∧ ¬h) = 0.1

• h⇒ [g]> = 0

• h⇒ [d](¬f ∧ h) = 0.95 ∧ [d](¬f ∧ ¬h) = 0.05

• ¬h⇒ [d]> = 0

• f ∧ h⇒ [w](f ∧ h) = 1

• f ∧ ¬h⇒ [w](f ∧ ¬h) = 1

• ¬f ∧ h⇒ [w](¬f ∧ h) = 1

• ¬f ∧ ¬h⇒ [w](¬f ∧ ¬h) = 1

Perceptions

• > ⇒ (oN | g) = 1 ∧ (oN | d) = 1

• f ∧ h⇒ (oL | w) = 0.1 ∧ (oM | w) = 0.2 ∧ (oH | w) = 0.7

• ¬f ∧ h⇒ (oL | w) = 0.5 ∧ (oM | w) = 0.3 ∧ (oH | w) = 0.2

• ¬h⇒ (∀vς)¬(vς = oN)→ (vς | w) = 1
3

THE STOCHASTIC DECISION LOGIC 142

Utility

• f ⇒ Reward(0)

• ¬f ∧ h⇒ Reward(10)

• ¬f ∧ ¬h⇒ Reward(−5)

• > ⇒ (∀vα)(vα = g ∨ vα = d)→ Cost(vα, 1)

• f ⇒ Cost(w, 2)

• ¬f ⇒ Cost(w, 0.8)

First Example

For the first example, we determine whether BK entails

B(f ∧ h) = 0.35 ∧B(f ∧ ¬h) = 0.35 ∧B(¬f ∧ h) = 0.2 ∧B(¬f ∧ ¬h) = 0.1

→ Jg + oNKJw + oMKBh > 0.85.

Notice that the initial belief-state is fully specified.

For the tableau phase, the trunk is thus (0,
∧
κ∈BK κ ∧B(f ∧ h) = 0.35 ∧B(f ∧ ¬h) = 0.35 ∧

B(¬f ∧ h) = 0.2 ∧B(¬f ∧ ¬h) = 0.1 ∧ ¬Jg + oNKJw + oMKBh > 0.85).

Rule ∧ yields

(0, κ), . . . , (0, κ′), (0,B(f ∧ h) = 0.35), (0,B(f ∧ ¬h) = 0.35), (0,B(¬f ∧ h) = 0.2),

(0,B(¬f ∧ ¬h) = 0.1), (0,¬Jg + oNKJw + oMKBh > 0.85) ∈ Γ0
1,

where κ, . . . , κ′ ∈ BK . Rule ¬Ξ yields

(0,¬Cont(g, oN) ∨ Jg + oNK¬Jw + oMKBh > 0.85) ∈ Γ0
2.

Then rule ∨ yields

(0,¬Cont(g, oN)) ∈ Γ1
0 and (0, Jg + oNK¬Jw + oMKBh > 0.85) ∈ Γ0

3.

We shall deal with the subtree rooted at Γ0
3 later.

Note that

(0,¬h⇒ [g](f ∧ h) = 0.8 ∧ [g](¬f ∧ h) = 0.1 ∧ [g](¬f ∧ ¬h) = 0.1) ∈ Γ0
1 ⊂ Γ1

0.

Hence, by rule⇒ ∧,

(0,¬h⇒ [g](f ∧ h) = 0.8), (0,¬h⇒ [g](¬f ∧ h) = 0.1), (0,¬h⇒ [g](¬f ∧¬h) = 0.1) ∈ Γ1
1.

Also note that
(0,> ⇒ (oN | g) = 1 ∧ (oN | d) = 1) ∈ Γ1

1,

THE STOCHASTIC DECISION LOGIC 143

and again by rule⇒ ∧,

(0,> ⇒ (oN | g) = 1), (0,> ⇒ (oN | d) = 1) ∈ Γ1
2.

Assume that the tree saturates and that Γ′ is any open leaf node of the (sub)tree rooted at Γ1
2. Then

in the SI phase, due to (0,¬h ⇒ [g](f ∧ h) = 0.8), (0,> ⇒ (oN | g) = 1), (0,¬h ⇒ (oL |
w) = 1

3), (0,¬h ⇒ (oM | w) = 1
3), (0,¬h ⇒ (oH | w) = 1

3) ∈ Γ′, the following equations are
in SI (Γ′).

prg2,1 = 0.8

prg4,1 = 0.8

prg2,1 + prg2,2 + prg2,3 + prg2,4 = 1

prg4,1 + prg4,2 + prg4,3 + prg4,4 = 1

pr
oN |g
1 = 1

pr
oN |g
2 = 1

pr
oN |g
3 = 1

pr
oN |g
4 = 1

pr
oN |g
1 + pr

oL|g
1 + pr

oM |g
1 + pr

oH|g
1 = 1

pr
oN |g
2 + pr

oL|g
2 + pr

oM |g
2 + pr

oH|g
2 = 1

pr
oN |g
3 + pr

oL|g
3 + pr

oM |g
3 + pr

oH|g
3 = 1

pr
oN |g
4 + pr

oL|g
4 + pr

oM |g
4 + pr

oH|g
4 = 1

pr
oL|w
1 = 0.1

pr
oL|w
3 = 0.5

pr
oM |w
1 = 0.2

pr
oM |w
3 = 0.3

pr
oH|w
1 = 0.7

pr
oH|w
3 = 0.2

THE STOCHASTIC DECISION LOGIC 144

pr
oL|w
2 = 1

3

pr
oL|w
4 = 1

3

pr
oM |w
2 = 1

3

pr
oM |w
4 = 1

3

pr
oH|w
2 = 1

3

pr
oH|w
4 = 1

3

pr
oN |w
1 + pr

oL|w
1 + pr

oM |w
1 + pr

oH|w
1 = 1

pr
oN |w
2 + pr

oL|w
2 + pr

oM |w
2 + pr

oH|w
2 = 1

pr
oN |w
3 + pr

oL|w
3 + pr

oM |w
3 + pr

oH|w
3 = 1

pr
oN |w
4 + pr

oL|w
4 + pr

oM |w
4 + pr

oH|w
4 = 1

Also
ω0

1 + ω0
2 + ω0

3 + ω0
4 = 1 ∈ SI (Γ′).

And due to (0,¬Cont(g, oN)), (0,B(f ∧ h) = 0.35), (0,B(f ∧ ¬h) = 0.35), (0,B(¬f ∧ h) =

0.2), (0,B(¬f ∧ ¬h) = 0.1) ∈ Γ′,

n∑
j=1

pr
oN |g
j

n∑
i=1

prgi,jω
0
i = 0 (7.6)

ω0
1 = 0.35

ω0
2 = 0.35

ω0
3 = 0.2

ω0
4 = 0.1,

respectively, are in SI (Γ′).

Now SI (Γ′) is infeasible: No term in (7.6) may be greater than zero, for example, proN |g1 ×prg2,1×
ω0

2 must equal zero, but proN |g1 = 1 and prg2,1 = 0.8 and ω0
2 = 0.35. Therefore, the subtree rooted

at Γ1
0 is closed.

Coming back to Γ0
3, due to rule Ξ,

(0
g,oN−→ 1,¬Jw + oMKBh > 0.85) ∈ Γ0

4.

Then by the application of rule ¬Ξ and then rule ∨,

(0
g,oN−→ 1,¬Jw + oMK) ∈ Γ2

0 and (0
g,oN−→ 1, Jw + oMK¬Bh > 0.85) ∈ Γ0

6.

The case with the subtree rooted at Γ2
0 is similar to the case above where the subtree is rooted at Γ1

0.

The subtree rooted at Γ2
0 also closes. Rule Ξ applied to (0

g,oN−→ 1, Jw + oMK¬Bh > 0.85) ∈ Γ0
6

THE STOCHASTIC DECISION LOGIC 145

yields

(0
g,oN−→ 1

w,oM−→ 2,¬Bh > 0.85) ∈ Γ0
7

and then rule ¬B yields

(0
g,oN−→ 1

w,oM−→ 2,Bh ≤ 0.85) ∈ Γ0
8.

Still assuming that the tree saturates, and assume that Γ′′ is any open leaf node of the (sub)tree
rooted at Γ0

8. Then in the SI phase, due to (0,B(f∧h) = 0.35), (0,B(f∧¬h) = 0.35), (0,B(¬f∧
h) = 0.2), (0,B(¬f ∧ ¬h) = 0.1), (0

g,oN−→ 1
w,oM−→ 2,Bh ≤ 0.85) ∈ Γ′′, the following equations

are in SI (Γ′′).

ω0
1 = 0.35

ω0
2 = 0.35

ω0
3 = 0.2

ω0
4 = 0.1

ω0
1 + ω0

2 + ω0
3 + ω0

4 = 1

ω2
1 + ω2

3 ≤ 0.85

ω1
1 + ω1

2 + ω1
3 + ω1

4 = 1

ω2
1 + ω2

2 + ω2
3 + ω2

4 = 1

ω1
1 = BT (0, 1, g, oN)

ω1
2 = BT (0, 2, g, oN)

ω1
3 = BT (0, 3, g, oN)

ω1
4 = BT (0, 4, g, oN)

ω2
1 = BT (1, 1, w, oM)

ω2
2 = BT (1, 2, w, oM)

ω2
3 = BT (1, 3, w, oM)

ω2
4 = BT (1, 4, w, oM)

It turns out that ω2
1 is constrained to equal 0.72973 and ω2

3 is constrained to equal 0.12162, and
0.72973 + 0.12162 = 0.85135 > 0.85. Therefore, the subtree rooted at Γ1

0 is closed.

Therefore, the whole tree is closed and the initial entailment query holds.

THE STOCHASTIC DECISION LOGIC 146

Second Example

For this example, the same background knowledge base is used, but the initial belief-state is not
fully specified. We shall determine whether BK entails

Bf = 0.7 ∧B(¬f ∧ h) = 0.2 ∧B(¬f ∧ ¬h) = 0.1

→ Jg + oNKJw + oMKBh > 0.85.

The tree for (0,
∧
κ∈BK κ∧Bf = 0.7∧B(¬f ∧h) = 0.2∧B(¬f ∧¬h) = 0.1∧¬Jg+oNKJw+

oMKBh > 0.85) is very similar to the one generated in the first example. The difference is in the
subtree dealing with the belief literals (the subtree rooted at Γ0

3 in the example above). Assume
that the tree saturates and assume that Γ′′ is any open leaf node of the subtree under consideration.
Now, instead of ω0

1 = 0.35 and ω0
2 = 0.35 in SI (Γ′′), we have ω0

1 +ω0
2 = 0.7 ∈ SI (Γ′′). Observe

that this is not a full specification of the belief-state, because ω0
1 and ω0

2 may take any values in
[0, 1] as long as ω0

1 + ω0
2 = 0.7.

Let the initial belief-state b0 = {(w1, x), (w2, 0.7 − x), (w3, 0.2), (w4, 0.1)}, where x ∈ [0, 0.7].
According to our calculations, the belief-state after the updates Jg + NK and Jw + MK is b2 =

{(w1,
0.128−0.16x
0.179−0.223x), (w2, 0), (w3,

0.024−0.03x
0.179−0.223x), (w4,

0.0267−0.0333
0.179−0.223x)}. The system of inequalities

will enforce b2, that is,

ω2
1 =

0.128− 0.16x

0.179− 0.223x

ω2
2 = 0

ω2
3 =

0.024− 0.03x

0.179− 0.223x

ω2
4 =

0.0267− 0.0333

0.179− 0.223x
,

where x ∈ [0, 0.7] will be enforced by the system. Furthermore, (0
g,oN−→ 1

w,oM−→ 2,Bh ≤ 0.85) ∈
Γ′′ causes ω2

1 + ω2
3 ≤ 0.85 to be in SI (Γ′′). Hence, 0.128−0.16x

0.179−0.223x + 0.024−0.03x
0.179−0.223x must be less than

or equal to 0.85. In other words, it is required that

0.152− 0.19x

0.179− 0.223x
≤ 0.85. (7.7)

But one can determine that there is no value for x ∈ [0, 0.7] which will make (7.7) true. The
system SI (Γ′′) is thus infeasible, the tree closes and the initial entailment query holds.

We draw the reader’s attention to the fact that sensible entailments can be queried, even with a
partially specified initial belief-state.

Third Example

This time we provide a complete specification of the initial belief-state again, as in the first
example, but we under-specify the perception probabilities. Suppose that instead of the law
f ∧ h ⇒ (oL | w) = 0.1 ∧ (oM | w) = 0.2 ∧ (oH | w) = 0.7 ∈ BK , we have only

THE STOCHASTIC DECISION LOGIC 147

f ∧ h⇒ (oH | w) = 0.7 ∈ BK ′. (That is, we modify BK to become BK ′.)

From a system of inequalities generated from the entailment query and modified background
knowledge, one can determine/calculate that the degree of belief in h (holding) after the up-
dates Jg + oNK and Jw + oMK is 0.81x+0.027

0.81x+0.06
, where x ∈ [0, 0.3], is the probability of perceiving

the the oil-can has medium weight at the world where the can is full and the robot is holding it.
One can determine that, 0.81x+0.027

0.81x+0.06
≤ 0.85 when x ≤ 0.1976. The system SI (Γ′′) is thus feasible,

the tree is open and BK ′ does not entail

B(f ∧ h) = 0.35 ∧B(f ∧ ¬h) = 0.35 ∧B(¬f ∧ h) = 0.2 ∧B(¬f ∧ ¬h) = 0.1

→ Jg + oNKJw + oMKBh > 0.85. (7.8)

Now, because x ≤ 0.1976, the system

0.81x+ 0.027

0.81x+ 0.06
≤ 0.85

x ≥ 0.2

x ≤ 0.3

is infeasible. So if BK ′′ is BK ′ with the law f ∧ h⇒ (oM | w) ≥ 0.2 added to it, the tree closes
and BK ′′ entails (7.8). Observe that (7.8) goes from ‘not entailed’ to ‘entailed’ by adding a little
more information; while the POMDP model remains incompletely specified.

Fourth Example

Here we shall determine whether BK entails

B(f ∧ h) = 0.35 ∧B(f ∧ ¬h) = 0.35 ∧B(¬f ∧ h) = 0.2 ∧B(¬f ∧ ¬h) = 0.1

→ Jg + oNKUJdKJdK ≤ 7.

For the tableau phase, the trunk is thus (0,
∧
κ∈BK κ ∧B(f ∧ h) = 0.35 ∧B(f ∧ ¬h) = 0.35 ∧

B(¬f ∧ h) = 0.2 ∧B(¬f ∧ ¬h) = 0.1 ∧ ¬Jg + oNKUJdKJdK ≤ 7).

Rule ∧ yields

(0, κ), . . . , (0, κ′), (0,B(f ∧ h) = 0.35), (0,B(f ∧ ¬h) = 0.35),

(0,B(¬f ∧ h) = 0.2), (0,B(¬f ∧ ¬h) = 0.1), (0,¬Jg + oNKUJdKJdK ≤ 7) ∈ Γ0
1,

where κ, . . . , κ′ ∈ BK . Rule ¬Ξ yields

(0,¬Jg + oNK ∨ Jg + oNK¬UJdKJdK ≤ 7) ∈ Γ0
2.

Then rule ∨ yields

(0,¬Jg + oNK) ∈ Γ1
0) and (0, Jg + oNK¬UJdKJdK ≤ 7) ∈ Γ0

3.

THE STOCHASTIC DECISION LOGIC 148

The subtree rooted at Γ1
0 closes, just like in the first example.

Applying rule Ξ to (0, Jg + oNK¬UJdKJdK ≤ 7) yields

(0
g,oN−→ 1,¬UJdKJdK ≤ 7) ∈ Γ0

3

and rule ¬U yields

(0
g,oN−→ 1,UJdKJdK > 7) ∈ Γ0

4.

The following equations (amongst others) are in SI (Γ′′).

prd1,3 = 0.95

prd3,3 = 0.95

prd1,4 = 0.05

prd3,4 = 0.05

prd2,1 = 0

prd2,2 = 0

prd2,3 = 0

prd2,4 = 0

prd4,1 = 0

prd4,2 = 0

prd4,3 = 0

prd4,4 = 0

pr
oN |d
1 = 1

pr
oN |d
2 = 1

pr
oN |d
3 = 1

pr
oN |d
4 = 1

ω0
1 = 0.35

ω0
2 = 0.35

ω0
3 = 0.2

ω0
4 = 0.1

ω0
1 + ω0

2 + ω0
3 + ω0

4 = 1

ω1
1 + ω1

2 + ω1
3 + ω1

4 = 1

THE STOCHASTIC DECISION LOGIC 149

23

2

d,
oN

3d, oL

4

d, oM

5

d, oH

Fig. 7.3: The utility tree generated from {(1 d,oN−→ 2, JdK), (1 d,oL−→ 3, JdK), (1 d,oM−→ 4, JdK), (1 d,oH−→ 5, JdK)}.

R1 = 0

R2 = 0

R3 = 10

R4 = −5

Cd1 = 1

Cd2 = 1

Cd3 = 1

Cd4 = 1

ω1
1 = BT (0, 1, g,N)

ω1
2 = BT (0, 2, g,N)

ω1
3 = BT (0, 3, g,N)

ω1
4 = BT (0, 4, g,N)

According to the definition of untility trees (cf. § 7.2.2), ∆ = {(1 d,oN−→ 2, JdK), (1
d,oL−→ 3, JdK),

(1
d,oM−→ 4, JdK), (1

d,oH−→ 5, JdK)}. The only utility tree generated from ∆ is shown in Figure 7.3.

The following inequality generated for (0
g,oN−→ 1,UJdKJdK > 7) ∈ Γ′′ using the utility tree is in

SI (Γ′′).

RC(d, 1)

+ Π(1, d, oN)RC(d, 2)

+ Π(1, d, oL)RC(d, 3)

+ Π(1, d, oM)RC(d, 4)

+ Π(1, d, oH)RC(d, 5)

> 7. (7.9)

Also in SI (Γ′′) are

ω2
1 + ω2

2 + ω2
3 + ω2

4 = 1

ω3
1 + ω3

2 + ω3
3 + ω3

4 = 1

THE STOCHASTIC DECISION LOGIC 150

ω4
1 + ω4

2 + ω4
3 + ω4

4 = 1

ω5
1 + ω5

2 + ω5
3 + ω5

4 = 1

Π(1, d, oN) = 0 || Π(1, d, oN) 6= 0, ω2
1 = BT (1, 1, d, oN)

Π(1, d, oN) = 0 || Π(1, d, oN) 6= 0, ω2
2 = BT (1, 2, d, oN)

Π(1, d, oN) = 0 || Π(1, d, oN) 6= 0, ω2
3 = BT (1, 3, d, oN)

Π(1, d, oN) = 0 || Π(1, d, oN) 6= 0, ω2
4 = BT (1, 4, d, oN)

Π(1, d, oL) = 0 || Π(1, d, oL) 6= 0, ω3
1 = BT (1, 1, d, oL)

Π(1, d, oL) = 0 || Π(1, d, oL) 6= 0, ω3
2 = BT (1, 2, d, oL)

Π(1, d, oL) = 0 || Π(1, d, oL) 6= 0, ω3
3 = BT (1, 3, d, oL)

Π(1, d, oL) = 0 || Π(1, d, oL) 6= 0, ω3
4 = BT (1, 4, d, oL)

Π(1, d, oM) = 0 || Π(1, d, oM) 6= 0, ω4
1 = BT (1, 1, d, oM)

Π(1, d, oM) = 0 || Π(1, d, oM) 6= 0, ω4
2 = BT (1, 2, d, oM)

Π(1, d, oM) = 0 || Π(1, d, oM) 6= 0, ω4
3 = BT (1, 3, d, oM)

Π(1, d, oM) = 0 || Π(1, d, oM) 6= 0, ω4
4 = BT (1, 4, d, oM)

Π(1, d, oH) = 0 || Π(1, d, oH) 6= 0, ω5
1 = BT (1, 1, d, oH)

Π(1, d, oH) = 0 || Π(1, d, oH) 6= 0, ω5
2 = BT (1, 2, d, oH)

Π(1, d, oH) = 0 || Π(1, d, oH) 6= 0, ω5
3 = BT (1, 3, d, oH)

Π(1, d, oH) = 0 || Π(1, d, oH) 6= 0, ω5
4 = BT (1, 4, d, oH)

Due to the law > ⇒ (oN | g) = 1 ∧ (oN | d) = 1 ∈ BK , the law literal > ⇒ (oN | d) = 1 is
in Γ′′. Recall that

pr
oN |d
j + pr

oL|d
j + pr

oM |d
j + pr

oH|d
j = dproN |dj + pr

oL|d
j + pr

oM |d
j + pr

oH|d
j e

is in SI (Γ) for each j such that wj |= > (in this case, j = 1, 2, 3, 4). And because proN |dj = 1 ∈
SI (Γ), it follows that proN |dj + pr

L|d
j + pr

oM |d
j + pr

oH|d
j = 1. One can thus deduce that

pr
oL|d
j = pr

oM |d
j = pr

oH|d
j = 0. (7.10)

Recall that Π(e, α, ς, n)
def
=
∑n

j=1 pr
ς|α
j

∑n
i=1 pr

α
i,jω

e
i . Hence, by Equation 7.10, for SI (Γ) to be

feasible, each of Π(1, d, oL, 4)RC(d, 3), Π(1, d, oM, 4)RC(d, 4) and
Π(1, d, oH, 4)RC(d, 5) must be equal to zero. Therefore, by Inequality 7.9, RC(d, 1) +

THE STOCHASTIC DECISION LOGIC 151

Π(1, d,N, 4)RC(d, 2) must be more than 7. That is,

ω1
1(R1 − Cd1) + ω1

2(R2 − Cd2) + ω1
3(R3 − Cd3) + ω1

4(R4 − Cd4) +
n∑
j=1

pr
oN |d
j

n∑
i=1

prdi,jω
1
i

(
ω2

1(R1 − Cd1)+ (7.11)

ω2
2(R2 − Cd2) + ω2

3(R3 − Cd3) + ω2
4(R4 − Cd4)

)
> 7.

We have calculated that for SI (Γ′′) to be feasible, it is required that ω1
1 = 0.81, ω1

2 = 0, ω1
3 =

0.09, ω1
4 = 0.09, ω2

1 = 0, ω2
2 = 0, ω2

3 = 0.95, ω2
4 = 0.05 and

∑n
j=1 pr

N |d
j

∑n
i=1 pr

d
i,jω

1
i = 0.90.

Therefore, (7.11) becomes 6.95455 > 7, which is false. So SI (Γ′′) is infeasible, the tree closes
and the entailment query holds.

Fifth Example

We query whether BK entails

Bf = 0.7 ∧B(¬f ∧ h) = 0.2 ∧B(¬f ∧ ¬h) = 0.1

→ Jg + oNKUJdKJdK ≤ 7.

As in the second example, the initial belief-state is under-specified. The development of the de-
cision proceeds almost exactly as in the previous example. The only difference is that where
ω0

1 = 0.35, ω0
2 = 0.35 ∈ SI (Γ′′), now ω0

1 + ω0
2 = 0.7 ∈ SI (Γ′′). As in the previous exam-

ple, SI (Γ′′) is feasible if and only if (7.11) is true. To evaluate (7.11), one needs the values of
ω1

1, ω
1
2, ω

1
3, ω

1
4, ω

2
1, ω

2
2, ω

2
3, ω

2
4 and

∑n
j=1 pr

oN |d
j

∑n
i=1 pr

d
i,jω

1
i .

Setting the value of ω0
1 to x and ω0

2 to 0.7 − x as before, we have calculated that these values are
constrained to be ω1

1 = 0.64−0.8x
0.8−x , ω1

2 = 0, ω1
3 = 0.08−0.1x

0.8−x , ω1
4 = 0.08−0.1x

0.8−x , ω2
1 = 0, ω2

2 = 0, ω2
3 =

0.684−0.855x
0.72−0.9x , ω2

4 = 0.036−0.045x
0.72−0.9x , and

∑n
j=1 pr

oN |d
j

∑n
i=1 pr

d
i,jω

1
i = 0.72−0.9x

0.8−x . So (7.11) becomes

0.64− 0.8x

0.8− x
(R1 − Cd1) +

0.08− 0.1x

0.8− x
(R3 − Cd3) +

0.08− 0.1x

0.8− x
(R4 − Cd4)

+
0.72− 0.9x

0.8− x

(0.684− 0.855x

0.72− 0.9x
(R3 − Cd3) +

0.036− 0.045x

0.72− 0.9x
(R4 − Cd4)

)
> 7,

which is equivalent to

0.64− 0.8x

0.8− x
(R1 − Cd1) +

0.08− 0.1x

0.8− x
(R3 − Cd3) +

0.08− 0.1x

0.8− x
(R4 − Cd4)

+
0.684− 0.855x

0.8− x
(R3 − Cd3) +

0.036− 0.045x

0.8− x
(R4 − Cd4) > 7,

which is equivalent to

0.64− 0.8x

0.8− x
(−1) +

0.08− 0.1x

0.8− x
(9) +

0.08− 0.1x

0.8− x
(−6)

+
0.684− 0.855x

0.8− x
(9) +

0.036− 0.045x

0.8− x
(−6) > 7,

THE STOCHASTIC DECISION LOGIC 152

which is equivalent to x > 0.8. But we know that x ≤ 0.7.

So SI (Γ′′) is infeasible, the tree closes and the entailment query holds. This example shows that
non-trivial entailments about the utility of sequences of actions can be confirmed, even without
full knowledge about the initial belief-state.

7.6 Concluding Remarks

One advantage of having a logic for specifying POMDPs is that it can be done quite compactly.
However, SDL is not unique in this regard. Although several frameworks have been proposed to
deal with stochastic actions, noisy sensing, degree of belief and/or expected future rewards, not one
of them can specify and reason about all these notions in a unified decidable logic. The Stochastic
Decision Logic (SDL) can deal with all these notions to some degree. In particular, SDL is for
specifying and reasoning about partially observable Markov decision processes (POMDPs). We
discussed the model-theoretic correspondence between POMDPs and SDL and stated a theorem
in this regard.

There is no notion of logical entailment in POMDP theory. Logical entailment can be applied to
SDL sentences and hence to the POMDP models they represent. A major contribution of this work
is that it allows the user to determine whether or not a set of sentences is entailed by an arbitrarily
precise specification of a POMDP model. As far as we know, this is a novel property of SDL.
Moreover, the procedure for deciding entailment is proved sound, complete and terminating. As a
corollary, the entailment question for SDL is decidable.

SDL does not have a 2 ‘necessity operator’. Instead of 2, we use⇒ in SDL. However, none of
the necessity operators in our logics may be nested. If immutable propositions (cf. LAP in § 8.2)
become indispensable, we may then add the 2/3 operator appropriately. Or it might be possible
to simulate the 2/3 operator with quantification—at least to a sufficient degree. Quantifiers are
defined in SDL.

Plans are not considered in LAO, SLAP or SLAOP, and only simple sequences of actions are
considered in SDL. Automatic plan generation is highly desirable in cognitive robotics and for
autonomous systems modeled as POMDPs. In future work, we would like to take SDL as the
basis for developing a language or framework with which plans can be generated, in the fashion
of DTGolog [Boutilier et al., 2000].

The reader may have noticed that the systems of inequalities are often nonlinear. The SI phases of
SLAP and SLAOP involved only linear systems of inequalities, SDL’s SI phase involves systems of
nonlinear inequalities. Amato et al. [2007] solve POMDPs by setting up quadratically constrained
linear programs (QCLPs) and then solving these. Their work is similar to ours in that they also
appeal to a class of nonlinear systems (QCLPs). Their work is different to SDL’s SI phase in that
they seek to optimize planning in a non-logical setting.

The representation language proposed by Wang and Schmolze [2005] is well enough defined that
it could be turned into a logical system. But what they seem to lack with respect to our work is
the ability to make entailment queries, given an arbitrary (lack of) background information about
the domain. Moreover, in their system, lack of probabilistic information is taken to mean uniform

THE STOCHASTIC DECISION LOGIC 153

distribution. In our system, a query might not be entailed by a uniform probability distribution for
missing information, but might be entailed by non-uniform probability distribution. That is, SDL
does not assume a uniform distribution when probabilistic information is lacking. Nevertheless,
assuming uniform distributions when more is unknown may prove computationally faster and
adequate for many domains.

We showed how an agent with belief-states and utilities, living in a stochastic domain and can be
specified in the language of SDL and how POMDP models can be translated into a set of SDL
sentences. Five examples were provided, illustrating the mechanics of the entailment decision
procedure for SDL. Four of the five examples contain some form of incomplete specification. We
showed that the decision procedure is robust enough to deal with these incomplete specifications
and that useful inferences might be made, even when information is lacking. Reasoning about
consequences with incomplete models in POMDP theory is typically not possible.

SDL is a decidable logic in which partially observable Markov decision processes (POMDPs)
can be specified with compact representations, and queries can be posed about (i) the degree
of belief in a propositional sentence after an arbitrary finite number of actions and observations
and (ii) the utility of a finite sequence of actions after a number of actions and observations.
The task of the logic is to check whether a query (stated in the language of the logic) follows
from a knowledge base (KB), which is typically a POMDP model specification (also stated in the
language of the logic). The main contribution of this work is that the POMDP model specification
is allowed to be partial or incomplete with no restriction on the lack of information specified
for the model. The model may even contain information about non-initial beliefs. Essentially,
entailment of arbitrary queries (expressible in the language) can be answered. A sound, complete
and terminating decision procedure was provided in the previous chapter.

8. RELATED WORK

We now discuss some related frameworks and logics in more depth, presented more or less chrono-
logically.

8.1 ALX

Besides the fact that ALX [Huang et al., 1996] has elements of multi-modal propositional logic
and that it is for reasoning about action, what makes it of interest to us is that it includes a notion
of preference and a notion of update. ALX does not deal with sensing, though.

Another aspect of ALX that is of interest here, is that Huang et al. [1996] developed their logic to
deal with incomplete information that an agent may have. Their “point of departure” is the con-
ceptualization of Herbert A. Simon’s bounded rationality: (i) an agent does not know all possible
alternative actions in a given situation, that is, the agent has a limited, finite set of actions it can
choose from, (ii) it does not know the exact outcome of each alternative, and (iii) the agent does
not have a complete preference order on all situations. Besides these three limitations in know-
ledge, ALX also allows an agent to specify its current situation with partial information. That is,
ALX follows the typical approach to specify an agent’s current state when the agent has incom-
plete information φ about its current state: all states entailed by formula φ are states the agent
believes it could be in. Huang et al. [1996] use Kripke’s possible worlds semantics to formalize
these notions.

In ALX, the set of states (possible worlds) the agent thinks it is currently in, is called a situation.
Given two formulae φ and ψ, each representing situations (sets of states), ALX allows one to
express the fact that situation φ is preferred to situation ψ. Huang et al. [1996] also provide a
means for determining the situation where φ will be the case, given ψ is the case. That is, they
provide for epistemic update.

ALXS, an inference system of logical axioms and inference rules for ALX, is given and proved
sound, complete and decidable in the article [Huang et al., 1996].

Here, we want to show an example of a modal action logic that can express preference-driven
practical reasoning. ALX does not involve stochastic notions or quantitative rewards, as does
SDL.

RELATED WORK 155

8.2 The LAP Family

For the foundations of our logics we found inspiration from the Logic of Action and Plans LAP
[Castilho et al., 1999]. Their tableau method was especially useful as a starting point for our
decision procedures. However, LAP deals with uncertainty of action effects nondeterministically
(i.e., only with disjunction); this is a coarse-grained approach to dealing with uncertainty.

LAP is a logic of actions and plans; it is a multi-modal logic, close to but simpler than proposi-
tional dynamic logic (PDL) [Harel et al., 2000]. Castilho et al. [1999] claim that LAP is sufficient
to express most of the problems investigated in the field; it does not deal with sensing, however.
They say the situation calculus is “too rich” for the purpose of reasoning about action and brings
with it the undecidability of first-order logic. Moreover, they argue that situations are first-order
objects in the situation calculus, but situations are not part of natural language. However, this
criticism has been dealt with by the situation calculus based logic ES (see § 8.8).

2 is used to express laws. 2Φ as a law says that Φ holds in any context or world. Such laws
may be about phenomena that never vary, or about actions, for example, to specify when an action
can be executed and what effects an action has. An action effect law that expresses ‘If the gun is
loaded, then after shooting the turkey, it is not alive’ is 2(Loaded→ [shoot]¬Alive).

Castilho et al. [1999] provide a sound and complete Hilbert style axiomatic system for LAP . With
the axiomatics, the following interesting and valid formula can be derived.

2Φ→ [a1][a2] . . . [an]Φ,

for every n ≥ 1. This clarifies the meaning of 2 with respect to actions. 2 can also be employed to
capture, so-called, immutable propositions like 2(¬Alive → 2¬Alive). The diamond operator
3 (dual of 2) is also available in LAP . 3Φ is read, ‘There exists a sequence of actions after
which Φ will be true.’ In this sense, the formula 3Φ marks Φ as a goal, and the sequence of
actions is a plan.

Although laws can be captured with global axioms, eliminating the need for 2 to express laws,
as in our logic LAO, it is not obvious how immutable propositions and goals for planning can
be specified without 2 and 3. The SDL does have a ‘necessity operator’, however, none of the
necessity operators in our logics may be nested.1 If immutable propositions become indispensable,
we may then add the 2/3 operator appropriately. Or it might be possible to simulate the 2/3

operator with quantification—at least to a sufficient degree. Quantifiers are defined in SDL. Plans
are not considered in LAO, SLAP or SLAOP, and only simple sequences of actions are considered
in SDL.

8.3 Modeling Action, Knowledge and Control

Geffner and Wainer [1998] present a “model” for specifying models of action and knowledge
that is simpler than approaches before theirs, yet rigorous and meaningful enough, according to

1 Instead of 2, we use⇒ in SDL.

RELATED WORK 156

them. They mention that their work is an attempt to bridge the gap towards better planning and
autonomous control.

“The language is a simplified first-order typed language that involves constant, function and pred-
icate symbols but does not involve variables and quantification,” [Geffner and Wainer, 1998]. One
of the types is action symbols. Actions can be nondeterministic. It seems that their random sym-
bols do the job of variables in classical first-order logic; the random symbols have denotations that
can change. Other types are fixed symbols and fluent symbols.

Their approach includes a triplet 〈D,A,C〉 which is an action theory. D is a domain theory com-
posed of a set of action rules (alias, effect axioms) and preconditions (the rules and conditions have
the ‘standard’ forms, once one looks past the particular syntax). A is a set of action occurrences
p(t)[i], where p(t) is an atom with p an action symbol and t a list of terms, and i ∈ {0, 1, . . .} is a
time index. C is a typical set of state formulae specifying initial conditions.

Relating to our Stochastic Decision Logic (SDL), they define knowledge in terms of a set Bel of
states: an expression x (symbol, term or formula) is ‘known’ in Bel , if for every state s ∈ Bel ,
the value of x in s is the same, whether true or false. Related to knowledge is observation; if the
value of expression x is unobservable in some state s at time-index i, then x will be unknown in
Bel ′ if s ∈ Bel ′ at time-index i.

Geffner and Wainer [1998] provide a predicate obs(x) “with a special interpretation”. They add
to their action theory a set K of observation rules of the form

B → obs(x), (8.1)

where B is an action formula. The formula in 8.1 can be read, ‘x is observable if the conditions B
are satisfied’. Expressions x in the set O(s, a) are observable in a state s, given an action a:

O(s, a)
def
= {x | B → obs(x) ∈ K and Bs+a = true},

where Bs+a is the denotation of B under the combined mappings of s and a.

“The observations o in the states s after doing a are the mappings that assign to each expression
x ∈ O(s, a) the denotation xo = xs,” [Geffner and Wainer, 1998]. Observations are mappings
in their approach. An analysis of the computational, logical and theoretical ramifications of this
semantics is beyond the scope of this thesis.

Relative to our SLAOP and SDL, the most important deficiency of the framework discussed in
this section ([Geffner and Wainer, 1998]) is that one cannot express and reason about stochastic
actions and observations.

8.4 BHL’s Approach

Bacchus et al. [1999] (BHL) supply a sound theory and specification for reasoning with noisy
sensors and graded belief. They provide a way to ‘carry along’ the graded knowledge of sensor
data—making it possible to change it and reason with it at any time in the future. Their whole

RELATED WORK 157

approach is not formulated as a logic: they use the situation calculus to specify their approach. But
BEL—the agent’s degree of belief in a proposition (see below)—fall outside the logical language.2

Intuitively, their aim is to represent an agent’s uncertainty by having a notion of which config-
uration of situations are currently possible; the possible-worlds framework. Then further, each
possible world is given a likelihood weight. With these notions in place, they show how an agent
can have a belief (a probability) about any sentence in any defined situation. They show that the
way beliefs are updated in their approach is equivalent to the standard Bayesian belief update
formulae.

Bacchus et al. [1999] go beyond the MDP model by providing BEL(φ, s), the agent’s (probabilis-
tic) degree of belief in the formula φ in situation s. It is calculated as the ratio of the sum of those
p(s′, s) where p(s′, s) ∧ φ[s′] is true to: the sum of all the p(s′, s), where p(s′, s) is the relative
weight of the robot’s belief that it is in s′ and s. These relative weights get their initial values from
the robot designer; in the initial situation S0, all situationsK-related to S0 must be given a weight,
where K(s′, s) is the accessibility relation used in BHL’s interpretation of the possible-worlds
framework—when the agent believes it is in s, it also believes it is in s′.

So BEL is defined in terms of p(s′, s). Therefore beliefs are updated whenever p(s′, s) is updated,
which is whenever an action is performed and p’s successor-state axiom is called. Hence, the
agent’s beliefs change whenever it moves or senses.

Furthermore, “A logical consequence [...] is that BEL(φ, s) is a probability distribution over the
situations K-related to s,” [Bacchus et al., 1999, p. 15].

Unfortunately, BEL is not defined as part of the syntax; the knowledge engineer can thus not write
logical sentences involving BEL. And they do not address utilities of actions.

8.5 Imprecise Observations of Mobile Robots Specified by a Modal Logic

De Weerdt et al. [1999] present a modal logic to deal with imprecision in robot actions and sensors.
The language of their logic contains formulae pr(φ) < α, where α ∈ [0, 1], and formulae [a]φ,
where a is an atomic action and φ is a propositional sentence. pr(φ) < α has the meaning,
‘the probability of φ is less than α’ and [a]φ has the meaning ‘φ is true after a was executed’.
De Weerdt et al. [1999] also provide syntax for the compound actions (a1; a2) and (a1 ∪ a2), with
the usual PDL [Harel et al., 2000] interpretations. Finally, DONE(a) and TODO(a) are two special
propositions with intended meanings ‘a has just been done’ and respectively, ‘awill be done next’.

They present a model M = 〈S, π, Pr〉 to represent the beliefs of the robot [De Weerdt et al.,
1999], where S is a set of states, π is a truth assignment to the propositional atoms per state, and
Pr assigns a probability to each state in S. They call the class of all modelsM.

They state: “We view the execution of an action as a transformation of the whole model M to
another modelM′ or even, in the case of non-deterministic action, to a set of models,” [De Weerdt
et al., 1999]. They define an ‘update’ function E : A 7→ 2M 7→ 2M, where A is the set
of compound actions. For instance, when the robot ‘believes’ the singleton model M and a is

2 Another approach to reasoning with actions and degrees of belief in the situation calculus, is of Bacchus et al.
[1994].

RELATED WORK 158

deterministic, then E(a)(M) = M′ = 〈S′, π′, P r′〉. Their semantics involves transitions between
sets of models; transitions must be defined for each atomic action.

A clear description of nondeterminism seems to be missing from their paper. However, to define
the behavior of a nondeterministic action a, De Weerdt et al. [1999] would presumably use decom-
position by specifying a mapping from an to a set of possible outcomes / deterministic actions.

The authors discuss how to capture “imperfect observations” [De Weerdt et al., 1999] by specify-
ing the behavior of an obs(d) action, where d would be some possible value returned by a sensor.
There would then be a specification for the action obs(d) as a nondeterministic choice between
all possible obs(d) in a set of observations D.

They show with some examples how the truth value of a sentence is determined, given the logic’s
semantics. However, they do not provide a proof system—axiomatic or otherwise—to prove state-
ments in their language. Furthermore, no description is given of a systematic formalization of their
intended domains. That is, they do not address domain specification. Also, their paper focuses on
noisy sensing; no attention is given to nondeterminstic actions. All they say is,

we can also specify the effect of a movement. A move action can, just as an obser-
vation, be seen as a non-deterministic choice between several move actions. These
choices represent the uncertainty introduced by the move. [De Weerdt et al., 1999]

And they do not address utilities of actions.

8.6 Using Modal Logic in Mobile Robots

In his Master’s dissertation, Van Diggelen [2002] presents a logic called LProbDL as the basis
for a system to specify the behavior of mobile robots. “In LProbDL the performance of actions
with non-deterministic effects [...] is assumed to be the only cause of uncertainty,” [Van Diggelen,
2002, p. 33]. An agent is assumed to always know in what world it is and observation is always
certain (complete).

Van Diggelen introduces LProbDL in essentially three steps: (1) as a simpler (non-probabilistic)
version of propositional dynamic logic, (2) then extending it with probability theory, and (3) then
adding epistemic notions.

In step (1), a structureM = 〈S, π,R〉 is defined, where

• S is a (non-empty) set of possible states.

• π : S → (P → {0, 1}) is a truth assignment function to the propositional atoms in P per
state.

• R : A → 2S×S is a relation containing the state transition relations per action in A.

He defines the action-indexed box and diamond operators with the usual meanings. He also men-
tions the basic complex actions for PDL, but he modifies these when adding probability, so we
discuss them next.

In step (2), the accessibility relation is changed to R : A → 2S×S×(0,1]. The new third component
of the range of R is the probability with which a world will be accessed. Note that if there is a

RELATED WORK 159

relationship between two worlds, the probability that the successor world will be accessed is never
0. Furthermore, the relation R is restricted to being a tree structure (with a single root). No reason
for this restriction is given. Lastly, the usual constraint is made that the sum of effect probabilities
must sum to 1.

The dynamic box modality is defined as follows.

M, s |= [α]∆prφ iff
(∑
{pr′|(s,t,pr′)∈R(a),M,t|=φ}

pr′
)

∆ pr,

where ∆ = {<,≤, >,≥,=}.

Action sequence (a1; a2) and the if-then-else construct IF are defined, both dealing with proba-
bilistic implications. As an example, [a]≥0.2φ says that ‘execution of a results in a state where φ is
true in at least 20% of the cases’.

“Sensing actions are a special kind of action which take as a general form S(φ), where φ is a
formula stated in propositional logic,” [Van Diggelen, 2002, p. 33]. Sensing actions are allowed
to have (side) effects, but they must be deterministic (which is intuitively reasonable).

Van Diggelen introduces a probabilistic diamond operator separately, with an unconventional (and
in our view, unintuitive) semantic definition. He introduces “unreal” states that are reached (and
are inescapable) when an agent performs an impossible action. Besides the strangeness of un-
real states, a formula like for instance 〈a〉φ=

0.6 is philosophically problematic. Given that [a]φ=
0.6

means ‘φ (necessarily) holds with probability 60%’, 〈a〉φ=
0.6 should read ‘φ possibly holds with

probability 60%’. When a person says the latter sentence, it usually just means ‘φ holds with prob-
ability 60%’. In normal natural language, ‘φ possibly holds with probability 60%’ does not have
a clearly different meaning to ‘φ must hold with probability 60%’. On page 42 of his dissertation,
he writes, “[The agent] has a chance of 0.578 of remaining not shot after performing the RusRoul
action three times [...]” Van Diggelen [2002]. We would capture this formally as

[RusRoul ;RusRoul ;RusRoul]=0.578¬shot ,

but Van Diggelen captures it as

〈RusRoul ;RusRoul ;RusRoul〉=0.578¬shot .

We argue that the notion of ‘probability of possibility’ is unnatural for humans to reason with, and
the knowledge engineer will thus simply never make use of the probabilistic diamond operator.
This is especially due to the non-probabilistic (dynamic) diamond operator being sufficient for a
logic for robotics, as is evident in the semantics and pragmatics of most stochastic action logics.

In step (3), an S5 system of axioms is added to LProbDL to model uncertainty in action outcomes.
Correspondingly, an equivalence relationK is added to the LProbDL, and the associated epistemic
K operator is added to the syntax.

Furthermore, Van Diggelen defines a probabilistic version of the K operator. To define it specifi-

RELATED WORK 160

cally for his logic, he shows how to determine the probability of any state s: StatePr(s). Then

M, s |= K∆
prφ iff

(∑
{t|(s,t)∈K,M,t|=φ}

StatePr(t)
)

∆pr.

8.7 The ICL

Poole started work on a logic based framework for decision-making in uncertain environments
when he extended previous work on Probabilistic Horn Abduction in the 90s. The result is the
Independent Choice Logic (ICL) [Poole, 1998], with acyclic logic programs. The ICLSC uses the
situation calculus as representation language [Poole, 1998]. A few years ago, he wrote a paper
about the current state of the logic [Poole, 2008]. The ICL is not actually a logic; it is a structure
with some components referring to sets of first-order logical formulae of a restricted form and a
probability distribution over them. Although the restrictions are relatively tight, some types of
formulae may still allow variables and quantification, and function symbols.

“The representation in this paper can be seen as a representation for POMDPs,” [Poole, 1998].
Belief-states can be expressed and belief update can be performed (but maintenance of belief-
states is not a necessary component of the system). For certain applications, SLAOP or SDL may
be preferred due to their comparative simplicity. And because their semantics are very close to
that of standard POMDP theory (esp. SDL), they may be easier to understand by people familiar
with POMDPs. Finally, decidability of inferences made in the ICL are, in general, not guaranteed.

Poole mentions that it is argued in the AI community that a logic for knowledge representation
should be at least as expressive as first-order logic [Poole, 1998, § 1.3]. But it is an argument
exactly because there are people working in AI who argue for much simpler logics; providing
only as much expressivity as is required for a particular application area. It seems like the ICL
is intended for more general application than SDL or planned extensions to SDL is; our starting
point is thus a simpler logic for a narrower application area.

The ICL is quite mature and some of its features are not part of SDL. He describes how to model
utility and noisy sensors [Poole, 1998, § 2.6 and § 2.7] and says that the ICLSC can represent
POMDPs using stochastic situation calculus rules to specify the state transition function and the
reward function [Poole, 1998, § 3.2].3 The use of a set of observables is similar to SDL’s set
of observations. Poole shows how the ICL can (i) represent Belief Networks, (ii) be seen as
the procedural interpretation of logic programs and (iii) be used as a reasoning framework for
abduction and logical argumentation.

The base logic of the ICL is first-order, versus propositional modal logic for our work, and the ICL
formalism is unconventional (but not radical). Nevertheless, the application areas of our systems
are the same and both use probability theory and Bayesian decision theory (although SDL still has
a narrower application area).

3 To deal with sensing, the basic theory structure presented below needs to be extended with the observables O,
similar to the choice space C and an observable function that associates choices from C with observations in O.

RELATED WORK 161

8.8 ESP

ESP [Gabaldon and Lakemeyer, 2007] is founded on ES [Levesque and Lakemeyer, 2004], which
is a fragment of the situation calculus (“ESP = ES + uncertainty”). The way they deal with un-
certainty is inspired by Bacchus et al. [1999]’s approach. Every notion of interest is expressible
within the defined language; no second-order logic is needed, which is the case for some parts of
Bacchus et al. [1999]’s approach. An agent’s epistemic state includes sets of probability distri-
butions over both the initial situations and the outcome of stochastic actions after any number of
actions.

It is a ‘situation’ based logic, but does not include situation terms.

In addition, this result allows us to automatically transfer results obtained for ES to
that fragment of the situation calculus, which is expressive enough to formulate basic
action theories, and more. [Lakemeyer and Levesque, 2010, p. 3]

ESP is a modal dialect with object and action sorts, and with universal quantification and equality.
It has fluent and rigid functions and predicates. Fluent predicates include the special predicates
Poss for defining preconditions on action executability and SF for defining whether a sensing
action was successful. Reiter-style successor-state axioms can be expressed in ESP and regression
is defined (via the successor-state axioms).

It has a modal operator Know which allows the logic to distinguish between true sentences, and
sentences ‘known’ (believed) to be true, possibly mistakenly so. Know operates over a subset e
of possible worlds. e ⊆ W is called the epistemic state; e is fixed, that is, it does not change with
execution of actions. ESP goes another step farther by including the notion of only knowing that
has some interesting and desirable properties [Levesque and Lakemeyer, 2004, Lakemeyer and
Levesque, 2010]. A probabilistic version of only-knowing is defined for ESP .

2ϕ is defined and is read, ‘ϕ is true after any sequence of actions’. This operator is mostly used to
state laws that are true at all times. For example, precondition, sensing and successor-state axioms
have the form 2Poss(a) ≡ . . ., 2SF (a) ≡ . . . and 2[a]F ≡ . . ., respectively, where a is an
action and F a fluent predicate. The use of 2 in this manner is identical to its use in LAP .

[a]ϕ is defined to mean ‘after action a, ϕ is true’. But the semantic definition is not the same as
the modal logic operator, because ‘primitive’ actions are deterministic. The modal logic diamond
operator is thus not defined, besides, with Poss available, it needs not be defined. Noise in actions
and observations is formalized as follows in ESP . Predicate Choice(a, n) is added; it is true
just in case n is one of the choices of stochastic action a. In the semantics, λ is a probability
distribution over the outcomes of n—more precisely: “λ(b, z, a, n) = p associates with each
choice n of stochastic action a after any number of actions z starting in b ∈ B a likelihood p,”
[Gabaldon and Lakemeyer, 2007], where B is a finite partitioning of an infinite set of possible
worlds W .

Since every action in ESP is associated with an outcome, [a]α of ES becomes [(a, n)]α, which is
a deterministic action. “We also include a new kind of modal operator JaKα, where a is a stochastic
action. JaKα is intended to mean that α holds after doing a regardless of which choice actually
occurs,” [Gabaldon and Lakemeyer, 2007]. It thus has the usual modal logic reading of traditional

RELATED WORK 162

modal logic’s [a]α.

A belief modal operator HasP(α, p) is also provided, meaning: statement α has probability p
(similar to BEL(φ, s) of Bacchus et al. [1999]). But, unlike BEL(φ, s), HasP(·) has a syntax
and semantics defined in the language of the logic. HasP(·) makes reference to B. And in the
semantics, µ is a probability distribution over B.

With ESP , one can model the dynamics of agents in stochastic domains, including stochastic
sensing. In a sense, ESP is what Bacchus et al. [1999]’s approach would have been if it was all
defined within a single logical language and if it did not mention situations explicitly.

The semantics of SDL is arguably simpler than that of ESP . And to our knowledge, no decidable
version or fragment of the situation calculus has been presented which can model and reason about
POMDPs.

8.9 PDEL

There has been a series of articles on probabilistic dynamic epistemic logic (PDEL) [Kooi, 2003,
Sack, 2009, Van Benthem et al., 2009], which add probabilistic notions to dynamic epistemic logic
(DEL) [Van Ditmarsch et al., 2007].

DEL concerns reasoning about information and how to update new information received. DEL
does not include actions, however, one may view the reception of information as an implicit ‘act’.
Nevertheless, these logics concern the ‘movement’ of information, not physical movement, the
latter being the focus of the other logics reviewed in this chapter and this thesis.

Although DEL is not of particular interest to us, PDEL is, due to its treatment of events, which
can be construed as observations and due to it having a notion of probability.

Van Benthem et al. [2009] mention that they move from traditional epistemic logic which updates
an agent’s knowledge with propositional information, to a logic where knowledge is updated with
event information—an event in their language is not a propositional formula. Traditional epistemic
logic has formulae [ϕ]ψ meaning ‘after knowledge update due to propositional information ϕ, ψ
is true’, whereas their more general epistemic logic includes events and information about events,
instead of ϕ.

The terms event and observation often have the same meaning in probability theory. Observations
in probability theory do not describe a state, but bring in information about natural occurrences.
The authors [Van Benthem et al., 2009] allude that their events are closer to observations than
logical propositions.

Lastly, notice that there is no mention of actions in their logic, although it is a dynamic kind of
logic. Their logic has a dynamical aspect due to the occurrence of (exogenous) events that change
an agent’s informational content. The dynamical aspect of the logics introduced in this thesis is
attributable more to ontic events (viz., physical actions) and, to some degree, to observations too
(except in the case of SLAP, which has no observations).

RELATED WORK 163

8.10 E+

Iocchi et al. [2009] present a logic called E+ for reasoning about agents with sensing, qualitative
nondeterminism and probabilistic uncertainty in action outcomes. The application area is plan
generation for agents with nondeterministic and probabilistic uncertainy. This is our application
area of interest too. One difference of E+ to the logics presented in this thesis, is that E+ is based
on a fragment of the autoepistemic description logic ALCKNF for modeling dynamic systems,
whereas our logics are multi-modal. And E+ considers observations as fluents, whereas our logics
consider observations as explicit object separate from fluents.

The authors show how to find finite horizon conditional plans from an initial state for a goal de-
scription (with “maximal goodness”). They prove the planning algorithm sound, complete and
computable. But they do not address the question of whether an arbitrary sentence in their lan-
guage is entailed by some knowledge base. The SDL decision procedure can determine the truth
of arbitrary entailment queries, including sequences of actions, but complex plans cannot be ex-
pressed in SDL. We now look at E+ in more detail, but we leave out discussions of their work on
planning.

E+ has a finite set of actions and a finite set of fluents. Actions are divided into physical and
sensing actions; they are not overtly identifiable, but are identified through their syntactic use.

They describe the forms of special axioms in their language, a finite set of which, is called an
action description AD.

Their logic also requires an initial state description δI which is a fluent conjunction.

A state of an AD is a fluent conjunction that satisfies all the domain constraint axioms of AD. A
set of states S satisfies a formula φ if and only if every state in S satisfies φ.

An epistemic state (or e-state) S of AD is a nonempty set of states s of AD such
that (i) S satisfies every domain constraint axiom in AD, and (ii) there exists a fluent
conjunction φ such that S is the set of all states s of AD that satisfy φ. [Iocchi et al.,
2009, p. 8]

An initial state description represents an epistemic state, which is a set of possible states of the
world.

An extended action description EAD includes the following axioms: Nondeterministic condi-
tional effect axioms of the form

caused ψ1, . . . , ψn after α when φ,

where ψ1, . . . , ψn and φ are fluent conjunctions, and n ≥ 2, and

caused ψ1 : p1, . . . , ψn : pn after α when φ

is the form of probabilistic conditional effect axioms, where p1, . . . , pn > 0 and p1 + . . .+pn = 1.
“Informally, if the current state of the world satisfies φ, then the successor state after executing α
satisfies ψi with the probability pi, for all i ∈ {1, . . . , n}.”

RELATED WORK 164

In E+, an agent maintains and reasons over e-states. Executability of actions is defined in an e-
state, and transitions between e-states through sensing actions, and deterministic, nondeterministic
and probabilistic physical actions are also defined, all with respect to an EAD.

We shall not give the details of the semantics here. The authors, however, say that the probabilistic
transitions in E+ are similar to those in MDPs and POMDPs. “However, they are between e-states
and thus involve sets of states rather than single states,” [Iocchi et al., 2009, p. 14]. Although
POMDPs deal with noise in sensing, E+ does not. Furthermore, MDPs and POMDPs represent
and reason with rewards of actions, whereas E+ does not consider rewards. Noisy sensing is not
dealt with, that is, sensing actions are deterministic. They mention that although they would like to
be able to represent action rewards and costs as in POMDPs, E+ does not yet provide the facilities.

8.11 Concluding Remarks

Every logic discussed above allows nesting of action modalities or the representation of sequences
of actions. Out of the four logics developed in this thesis, only two allow nesting: The Logic
of Actions and Observations allows nesting of “activity” operators (action-observation pairs) and
the Stochastic Decision Logic allow sequences of “belief update” operators for reasoning about
sequences of actions. Nesting or sequencing is not necessary for the purposes for which the other
two logics, SLAP and SLAOP, were designed.

None of the logics reviewed in this chapter is developed particularly for representing and reason-
ing about stochastic domains as POMDPs. It has been seen that the Stochastic Decision Logic
(Chap. 7) is very close to POMDP theory in its semantics.

9. CONCLUSIONS

The main contribution of this work is the definition of the Stochastic Decision Logic (SDL) and a
decision procedure for determining whether or not a sentence is a semantic consequence of some
background knowledge about a stochastic domain. The SDL was designed in four steps. That is,
three logics were defined, each presenting one or more significant features, with the SDL com-
bining all these features into a unified logic with new significant features. The Logic of Actions
and Observations (LAO) presented observations at the same semantic level as actions, the Spe-
cification Logic of Actions with Probability (SLAP) presented a new way to specify and reason
about stochastic actions, and the Specification Logic of Actions and Observations with Probability
(SLAOP) added to SLAP the ability to specify and reason about stochastic observations (the same
kind as in LAO) and action utility.

Although the SDL is not, strictly speaking, an extension of SLAOP, it takes SLAOP as a foundation
and then adds the ability to express and reason about (uncertain) belief-states and sequences of
actions and observations, and the utility of sequences of actions. What differentiates the SDL from
other logics for reasoning about action and change with uncertainty is that its semantics is very
closely based on partially observable Markov decision processes (POMDPs). A theorem stating
the correspondence between POMDPs and the SDL, in the model-theoretic sense, was proved.

There is no notion of logical entailment in POMDP theory. Logical entailment can be applied to
SDL sentences and hence to the POMDP models they represent. A major contribution of this work
is that it allows the user to determine whether or not a set of sentences is entailed by an arbitrarily
precise specification of a POMDP model. This is a novel property of the SDL. Moreover, the
procedure for deciding entailment is proved sound, complete and terminating. As a corollary, the
entailment question for the SDL is decidable.

Only simple sequences of actions are considered in the SDL; full-scale planning can presently
not be performed. Automatic plan generation is highly desirable in cognitive robotics and for
autonomous systems modeled as POMDPs. In future work, we would like to take the SDL as the
basis for developing a language or framework with which plans can be generated, in the fashion
of DTGolog [Boutilier et al., 2000] and PODTGolog [Rens, 2010]. In other words, we think that
the SDL is a strong basis with which to design a system for logic-based planning with uncertainty.
The uncertainty could lie in the action effects, environment observability or the initial state.

A ‘necessity operator’ (2 or⇒ in SDL) in our logics may not be nested. If immutable proposi-
tions, as in LAP [Castilho et al., 1999] become indispensable, we may then add the 2/3 operator
appropriately. Or it might be possible to simulate the 2/3 operator with quantification—at least
to a sufficient degree.

Whether to assume uniform probability distributions where information is lacking is debatable.

CONCLUSIONS 166

A knowledge engineer might prefer a system to automatically instantiate some standard (non-
uniform) distributions or even other defaults when information is missing. A preliminary investi-
gation was made in this topic in Chapter 5. More research is required here.

Finally, the computational complexity of SDL decision procedure is required. The systems of
equations which must be solved in SLAOP can be effectively translated into elementary algebra in
Tarski’s sense [Tarski, 1957]. The elementary algebra is in EXPONENTIAL SPACE or PARAL-
LEL EXPONENTIAL TIME [Ben-Or et al., 1986]. Given that checking unsatisfiability/validity
of propositional logic is in the class co-NP in the number of atoms [Ben-Ari, 2001], SDL will, at
least, be in PARALLEL EXPONENTIAL TIME in the worst case. Two places where complexity
might explode in SDL is (i) with the obs rule, because it involves the 2 operator, actions, observa-
tions and disjunction, and (ii) with the need to check feasibility of systems of inequalities for every
open leaf node of a saturated tree. We would also like to investigate where the decision procedure
could be optimized.

APPENDIX

A. PROOFS FOR THEOREMS AND LEMMATA

A.1 LAO

Lemma 4.3.1: Let T be a finished tree. For every node Γ = 〈∆,Σ〉 in T : If there exists a structure
S such that for all w ∈ W, S, w |=

∧
κ∈K κ and for every x ∈ Labels(∆), there exists a w′ ∈ W

such that for all (x,Φ) ∈ Γ, S, w′ |= Φ, then the (sub)tree rooted at Γ is open.

Proof:
(by induction on the height of the node Γk)

Base case:

Height h = 0; Γk is a leaf. If there exists a structure S such that for all w ∈ W, S, w |=
∧
κ∈K κ

and for every x ∈ Labels(∆), there exists a w′ ∈W such that for all (x,Φ) ∈ Γk, S, w |= Φ, then
(x′,⊥) 6∈ Γk for all x′. Hence, the sub-tree consisting of Γk is open.

Induction step:

If h > 0, then some rule was applied to create the child(ren) Γk′ = 〈∆k′ ,Σk′〉 of Γk = 〈∆k,Σk〉.
We abbreviate “there exists a structure Sj = 〈W j , Rj , Oj , N j , Qj〉 such that for allw ∈W j , Sj , w |=∧
κ∈K κ and for every x ∈ Labels(∆k), there exists a w′ ∈ W j such that for all (xj ,Φj) ∈ ∆j

Sj , w′ |= Φj” as A(j) and we abbreviate “the (sub)tree rooted at Γj is open” as B(j).

We must show the following for every rule. IF: If A(k′), then B(k′), THEN: If A(k), then B(k),
where Γk′ is a child of Γk created due to the application of the rule. We assume the antecedent
(induction hypothesis): If A(k′), then B(k′). To show the consequent, we must assume A(k) and
show that B(k) follows.

Note that if the (sub)tree rooted at Γk′ is open, then the (sub)tree rooted at Γk is open. That is,
if B(k′) then B(k). So we want to show B(k′). But, by the induction hypothesis, B(k′) follows
from A(k′). Therefore, it will suffice, in each case below, to assume A(k), and prove A(k′).

• rule ⊥:
For the rule to have been applied, (x,Φ), (x,¬Φ) ∈ ∆k, and after its application, ∆k′ =

∆k ∪ {(x,⊥)}. But there exists no structure Sk = 〈W k, Rk〉 such that there exists a
w′ ∈ W k such that Sk, w′ |= Φ and Sk, w′ |= ¬Φ. Hence, assumption A(k) is false; this
rule could not have been applied.

• rule ¬:
For the rule to have been applied, (x,¬¬Φ) ∈ ∆k, and after its application, ∆k′ = ∆k ∪
{(x,Φ)}. By assumption, Sk, w′ |= ¬¬Φ for some w′ ∈ W k. Hence, Sk, wk |= Φ. Thus,
A(k′).

PROOFS FOR THEOREMS AND LEMMATA 169

• rule ∧:
For the rule to have been applied, (x,Φ ∧ Φ′) ∈ ∆k, and after its application, ∆k′ =

∆k ∪ {(x,Φ), (x,Φ′)}. By assumption, Sk, w′ |= Φ ∧ Φ′ for some w′ ∈ W k. Hence,
Sk, w′ |= Φ and Sk, w′ |= Φ′. Thus, A(k′).

• rule ∨:
For the rule to have been applied, (x,Φ ∨ Φ′) ∈ ∆k, and after its application, either ∆k′ =

∆k ∪ {(x,Φ)} or ∆k′′ = ∆k ∪ {(x,Φ′)}. By assumption, Sk, w′ |= Φ ∨ Φ′ for some
w′ ∈ W k. Hence, Sk, w′ |= Φ or Sk, w′ |= Φ′. Thus, A(k′) or A(k′′). Thus, B(k′) or
B(k′′). Therefore, B(k).

• rule =:
For the rule to have been applied, (x, c = c′) ∈ ∆k or (x, c 6= c′) ∈ ∆k. The rule is
only applied when (c = c′), resp., c 6= c′ is unsatisfiable. Therefore, it is not the case that
A(k). But this contradicts our main assumption A(k). Hence, rule = could not have been
applicable to Γk.

• rule 2: For the rule to have been applied, (x, [ς | α]Φ) ∈ ∆k and x α→ x′, ς
α→ x′ ∈ Σk and

after its application, ∆k′ = ∆k ∪ {(x′,Φ)}. By assumption, Sk, w′ |= [ς | α]Φ for some
w′ ∈W k. That is,

for all w′′ ∈W k, if (w′, w′′) ∈ Rα and (ς, w′′) ∈ Qα, then S, w′′ |= Φ. (A.1)

But x α→ x′, ς
α→ x′ ∈ Σk only if rule 3 was applied, that is, only if (x, 〈ς | α〉Φ′′) ∈ ∆k.

By assumption, Sk, w′ |= 〈ς | α〉Φ′′. That is, there exists a w′′ ∈ W k such that (w′, w′′) ∈
Rα, (ς, w′′) ∈ Qα and S, w′′ |= Φ′. Hence, by (A.1), S, w′′ |= Φ. Thus, A(k′).

• rule 3: For the rule to have been applied, (x,¬[ς | α]Φ) ∈ ∆k.

If also (x′,¬Φ) ∈ ∆k for some label x′, then after application of the rule, ∆k′ = ∆k. By
assumption, Sk, w′ |= ¬[ς | α]Φ for some w′ ∈ W k, that is, there exists a w′′ ∈ W k such
that (w′, w′′) ∈ Rα, (ς, w′′) ∈ Qα and S, w′′ |= ¬Φ. Hence, there exists a w′′ ∈ W k such
that S, w′′ |= ¬Φ. Thus, A(k′) holds trivially.

Else (if (x′,¬Φ) 6∈ ∆k for some label x′), then after application of the rule, ∆k′ =

∆k ∪ {(x′,¬Φ), (x′,
∧
κ∈K κ)}, where x′ is a fresh integer. By assumption, for all w ∈

W k, Sk, w |=
∧
κ∈K κ. Also by assumption, Sk, w′ |= ¬[ς | α]Φ for some w′ ∈ W k, that

is, there exists aw′′ ∈W k such that (w′, w′′) ∈ Rα, (ς, w′′) ∈ Qα and S, w′′ |= ¬Φ. Hence,
for all w ∈ W k, Sk, w |=

∧
κ∈K κ and there exists a w′′ ∈ W k such that S, w′′ |= ¬Φ.

Thus, A(k′).

Theorem 4.3.1: (Soundness) If K `LAO Φ then K |=G Φ.

Proof:
K |=G Φ

⇐⇒ for all S, if S |=
∧
κ∈K κ, then S |= Φ

⇐⇒ for all S, if for all w ∈W, S, w |=
∧
κ∈K κ, then for all w′ ∈W, S, w′ |= Φ

⇐⇒ not exists S : not [if for all w ∈W, S, w |=
∧
κ∈K κ, then for all w′ ∈W, S, w′ |= Φ]

PROOFS FOR THEOREMS AND LEMMATA 170

⇐⇒ not exists S : [for all w ∈W, S, w |=
∧
κ∈K κ and not for all w′ ∈W, S, w′ |= Φ]

⇐⇒ not exists S : [for all w ∈W, S, w |=
∧
κ∈K κ and exists w′ ∈W, S, w′ 6|= Φ].

Let ψ = ¬Φ. Then soundness can also be stated as, ‘If the tree for
∧
κ∈K κ ∧ ψ closes, then there

does not exist an S such that for all w ∈W, S, w |=
∧
κ∈K κ and there exists a w′ ∈W such that

S, w′ |= ψ.’ Contrapositively, ‘If there exists an S such that for all w ∈ W, S, w |=
∧
κ∈K κ and

there exists a w′ ∈ W such that S, w′ |= ψ, then the tree for
∧
κ∈K κ ∧ ψ is open.’ Lemma 4.3.1

proves this.

Next, we show that steps 3 and 5 of the decision procedure are sound.

Step 3 says, ‘For each open leaf node Γ = 〈∆,Σ〉: for every label x ∈ Labels(∆), if wx and wx′
are fully specified and wx = wx′ where x 6= x′, then replace all x and x′ in ∆ by the same fresh
integer x′′.’

The labels of labeled formulae keep track of which sentences should hold in the same world. That
is, if (x,Φ), (x,Φ′) ∈ ∆, then Φ and Φ′ must both be satisfied at some world w associated with
label x. Therefore, if it is known that two labels x, x′ ∈ Labels(∆), where x 6= x′, represent the
same world w, then all the formulae associated with w due to being labeled by x or x′, should be
given the same label, say, x′′. This is a sound procedure.

Step 5 says, for each open leaf node Γ = 〈∆,Σ〉: (i) If for every label x ∈ Labels(∆), wx is
fully specified, then the tree is open, stop. Else continue. (ii) For every label x ∈ Labels(∆), if
neither (x, f) ∈ ∆ nor (x,¬f) ∈ ∆ for some f ∈ F , then create children Γ′ and Γ′′ of Γ, where
Γ′ = 〈∆ ∪ {(x, f)},Σ〉 and Γ′′ = 〈∆ ∪ {(x,¬f)},Σ〉.

(i) When this point in the procedure is reached, the tree is open. Hence, to state that it is open is
sound. (ii) The effect of this point is equivalent to assuming (x, f ∨ ¬f) ∈ ∆ and then applying
rule ∨ to it. Assuming that (x, f ∨ ¬f) ∈ ∆ is always sound. The reason for not including
this point as a tableau rule is because it would cause the tableau method to become much more
computationally expensive (even though optimization of the decision procedure is not our aim).

The following corollary is a consequence of the special case when k = 0 of Γk mentioned in the
proof of Lemma 4.3.1. For every finished tree of a sentence Φ, if there exists a structure S and a
w ∈W of S such that S, w |= Φ, then the tree is open.

Lemma 4.3.3: Let Γ be an open leaf node of a finished tree. For all x ∈ Labels(∆), if (x,Φ) ∈ ∆,
then S, wx |= Φ.

Proof:
(by induction on the structure of Φ)

Let Θ be a subformula of Φ.

Base case:

• Θ is a literal. By construction, wx |= Θ. Hence S, wx |= Φ.

• Θ is c = c′. Because (x,⊥) 6∈ ∆, rule = was not applied. Hence, c is identical to c′, and
S, wx |= c = c′.

PROOFS FOR THEOREMS AND LEMMATA 171

• Θ is ¬(c = c′). Because (x,⊥) 6∈ ∆, rule = was not applied. Hence, c is not identical to c′,
and S, wx |= ¬(c = c′).

Induction step:

• Θ is ¬¬Φ. By rule ¬, (x,Φ) ∈ ∆. By induction hypothesis, S, wx |= Φ. By the definition
of ¬, S, wx |= ¬¬Φ.

• Θ is Φ ∧ Φ′. By rule ∧, (x,Φ), (x,Φ′) ∈ ∆. By induction hypothesis, S, wx |= Φ and
S, wx |= Φ′. By the definition of ∧, S, wx |= Φ ∧ Φ′.

• Θ is ¬(Φ ∧ Φ′). By rule ∨, (x,¬Φ) ∈ ∆ or (x,¬Φ′) ∈ ∆. By induction hypothesis,
S, wx |= Φ or S, wx |= Φ′. By the definition of ∨, S, wx |= Φ ∨ Φ′.

• Θ is [ς | α]Φ. By rule 2, whenever x α→ x′, ς
α→ x′ ∈ Σj

k, then (x′,Φ) ∈ ∆. By
construction, (wx, wx′) ∈ Rα iff x α→ x′ ∈ Σ, and (ς, wx) ∈ Qα iff ς α→ x ∈ Σ. And by
induction hypothesis, S, wx′ |= Φ. Hence, for all w′, if (wx, w

′) ∈ Rα and (ς, w′) ∈ Qα,
then S, w′ |= Φ. Thus, by definition of [ς | α]Φ, S, wx |= [ς | α]Φ.

• Θ is ¬[ς | α]Φ.

If (x′,¬Φ) ∈ ∆ for some label x′, then, by rule 3, x α→ x′, ς
α→ x′ ∈ Σ. By construction,

(wx, wx′) ∈ Rα iff x α→ x′ ∈ Σ, and (ς, wx) ∈ Qα iff ς α→ x ∈ Σ. And by induction
hypothesis, S, wx′ |= ¬Φ. Hence, wx′ and ς exist such that (wx, wx′) ∈ Rα, (ς, wx′) ∈ Qα
and S, wx′ |= ¬Φ. Thus, by definition of [ς | α]Φ, S, wx |= ¬[ς | α]Φ.

If (x′,¬Φ) 6∈ ∆ for some label x′, then, by rule 3, (x′,¬Φ), (x′,
∧
κ∈K κ) ∈ ∆ with

x
α→ x′, ς

α→ x′ ∈ Σ where x′ is a fresh integer. By construction, (wx, wx′) ∈ Rα iff
x

α→ x′ ∈ Σ, and (ς, wx) ∈ Qα iff ς α→ x ∈ Σ. And by induction hypothesis, S, wx′ |= ¬Φ.
Hence, wx′ and ς exist such that (wx, wx′) ∈ Rα, (ς, wx′) ∈ Qα and S, wx′ |= ¬Φ. Thus,
by definition of [ς | α]Φ, S, wx |= ¬[ς | α]Φ.

Theorem 4.3.2: (Completeness) If K |=G Φ then K `LAO Φ.

Proof:
We know that K |=G Φ if and only if there does not exists an S such that [for all w ∈W, S, w |=∧
κ∈K κ and exists w′ ∈W, S, w′ 6|= Φ].

Let ψ = ¬Φ. Then completeness can also be stated as, ‘If there does not exist an S such that for
all w ∈ W, S, w |=

∧
κ∈K κ and there exists a w′ ∈ W such that S, w′ |= ψ, then the tree for∧

κ∈K κ ∧ ψ closes.’ Contrapositively, ‘If the tree for
∧
κ∈K κ ∧ ψ is open, then there exists an S

such that for all w ∈W, S, w |=
∧
κ∈K κ and there exists a w′ ∈W such that S, w′ |= ψ.’

It thus suffices to construct from an open leaf node of a finished tree for
∧
κ∈K κ ∧ ψ, a LAO

structure S = 〈W,R,O,N,Q〉 such that for all w ∈ W, S, w |=
∧
κ∈K κ and there exists a

w′ ∈W such that S, w′ |= ψ.

Assume Γ = 〈∆,Σ〉 is an open leaf node of a finished tree for
∧
κ∈K κ ∧ ψ. Then due to

rule ∧, (0,
∧
κ∈K κ), (0, ψ) ∈ ∆, and due to rule 3, (x,

∧
κ∈K κ) ∈ ∆ for all x ∈ Labels(∆)

(note that new labels can only be introduced through rule 3). By construction, W = {wx |

PROOFS FOR THEOREMS AND LEMMATA 172

for each label x ∈ Labels(∆)}. By Lemmata 4.3.2 and 4.3.3, there exists a structure S such that
for all x ∈ Labels(∆), for all (x,Φ) ∈ ∆, there exists a w ∈ W such that S, w |= Φ. Hence, for
all w ∈ W, S, w |=

∧
κ∈K κ. Therefore, the following corollary can be stated. The theorem is

a direct consequence of the following corollary. If there is a finished open tree for
∧
κ∈K κ ∧ ψ,

then there exists a LAO structure S such that for all w ∈ W, S, w |=
∧
κ∈K κ and there exists a

w′ ∈W such that S, w′ |= ψ.

A.2 SLAP

Lemma 5.3.1: Let T be a finished tree. For every node Γ in T : If there exists a structure S such
that for all (x,Φ) ∈ Γ there exists a w ∈ W such that S, w |= Φ, then the (sub)tree rooted at Γ is
open.

Proof:
(by induction on the height of the node Γk)

Base case:

Height h = 0; Γk is a leaf. If there exists a structure S such that for all (x,Φ) ∈ Γk there exists a
w ∈ W such that S, w |= Φ, then (x′,⊥) 6∈ Γk for all x′. Hence, the sub-tree consisting of Γk is
open.

Induction step:

If h > 0, then some rule was applied to create the child(ren) Γk′ of Γk. We abbreviate “there
exists a structure Sj = 〈W j , Rj〉 such that for all (xj ,Φj) ∈ Γj there exists a wj ∈W j such that
Sj , wj |= Φj” as A(j) and we abbreviate “the (sub)tree rooted at Γj is open” as B(j).

We must show the following for every rule/phase. IF: If A(k′), then B(k′), THEN: If A(k),
then B(k). We assume the antecedent (induction hypothesis): If A(k′), then B(k′). To show the
consequent, we must assume A(k) and show that B(k) follows.

Note that if the (sub)tree rooted at Γk′ is open, then the (sub)tree rooted at Γk is open. That is,
if B(k′) then B(k). So we want to show B(k′). But, by the induction hypothesis, B(k′) follows
from A(k′). Therefore, it will suffice, in each case below, to assume A(k), and prove A(k′).

• rule ⊥:
For the rule to have been applied, {(x,Ψ), (x,¬Ψ)} ⊆ Γk, and after its application, Γk′ =

Γk ∪ {(x,⊥)}. But there exists no structure Sk = 〈W k, Rk〉 such that there exists a wk ∈
W k such that Sk, wk |= Ψ and Sk, wk |= ¬Ψ. Hence, assumption A(k) is false and this
rule could not have been applied.

• rule ¬:
For the rule to have been applied, (x,¬¬Ψ) ∈ Γk, and after its application, Γk′ = Γk ∪
{(x,Ψ)}. By assumption, Sk, wk |= ¬¬Ψ. Hence, Sk, wk |= Ψ. Thus, A(k′).

• rule ∧:
For the rule to have been applied, (x,Ψ ∧ Ψ′) ∈ Γk, and after its application, Γk′ = Γk ∪

PROOFS FOR THEOREMS AND LEMMATA 173

{(x,Ψ), (x,Ψ′)}. By assumption, Sk, wk |= Ψ∧Ψ′. Hence, Sk, wk |= Ψ and Sk, wk |= Ψ′.
Thus, A(k′).

• rule ∨:
For the rule to have been applied, (x,Ψ ∨ Ψ′) ∈ Γk, and after its application, either Γk′ =

Γk ∪ {(x,Ψ)} or Γk′′ = Γk ∪ {(x,Ψ′)}. By assumption, Sk, wk |= Ψ ∨ Ψ′. Hence,
Sk, wk |= Ψ or Sk, wk |= Ψ′. Thus, A(k′) or A(k′′). Thus, B(k′) or B(k′′). Therefore,
B(k).

• rule 3ϕ:
For the rule to have been applied, (0,¬[α]0ϕ) ∈ Γk or (0, [α]qϕ) ∈ Γk for q > 0, and after
its application, Γk′ = Γk ∪ {(x, ϕ)} where x is a fresh integer.

By assumption, there exists a w ∈ W such that S, w |= ¬[α]0ϕ or S, w |= [α]qϕ. Then
by definition of 〈α〉, there exists a w′′ ∈ W such that (w,w′′, pr) ∈ Rα for pr > 0 and
S, w′′ |= ϕ. Hence, for all (x,Φ′) ∈ Γk′ there exists a w′ ∈W such that S, w′ |= Φ′. Thus,
A(k′).

• rule 2:
For the rule to have been applied, {(0,2Φ), (x,Φ′′)} ⊆ Γk for some x ≥ 0, and after its
application, Γk′ = Γk ∪ {(x,Φ)}.

By assumption, there exist w,w′ ∈ W such that S, w |= 2Φ and S, w′ |= Φ′′. Then by
definition of 2, for all w′′ ∈ W,S, w′′ |= Φ. That is, there exists a w′′ ∈ W such that
S, w′′ |= Φ. Hence, for all (x,Φ′) ∈ Γk′ there exists a w′′′ ∈ W such that S, w′′′ |= Φ′.
Thus, A(k′).

• In the SLI phase, the ‘check’ is: If Z(F (Γk, α, x)) = ∅ for some action α ∈ A and some
label x ∈ X(Γ), then create new leaf node Γk′ = Γk ∪ {(x,⊥)}.

Recall that F (Γ, α, x)
def
= {[α]qϕ | (x, [α]qϕ) ∈ Γ} ∪ {¬[α]qϕ | (x,¬[α]qϕ) ∈ Γ}.

By assumption, for all actions α ∈ A, all labels x ∈ X(Γ) and all δ ∈ F (Γk, α, x), there
exists a w ∈ W such that S, w |= δ. Let α be an arbitrary action and x an arbitrary label in
X(Γ), and let

R(α, x)# = {[α]q1ϕ1, [α]q2ϕ2, . . . , [α]qgϕg,¬[α]qg+1ϕg+1,¬[α]qg+2ϕg+2, . . ., ¬[α]qg+hϕg+h}

be an ordered set of the dynamic literals in F (Γk, α, x). Thus, there exists an Rα such that
for w fixed, ∑

(w,w′,pr)∈Rα,S,w′|=ϕ1

pr = q1 and

∑
(w,w′,pr)∈Rα,S,w′|=ϕ2

pr = q2 and

...∑
(w,w′,pr)∈Rα,S,w′|=ϕg+h

pr 6= qg+h

such that
∑

(w,w′,pr)∈Rα pr = 1 or
∑

(w,w′,pr)∈Rα pr = 0, for pr ∈ Q[0,1]. Let sj = prj

PROOFS FOR THEOREMS AND LEMMATA 174

for (w,wj , prj) ∈ Rα, where wj ∈ W (Γ)#. Then (s1, s2, . . ., sn) is a solution to the
SLI generated from R(α, x)# (or F (Γ, α, x)). Hence, Z(F (Γk, α, x)) 6= ∅. Therefore, no
child is created for Γk and trivially, for all (x,Φ′) ∈ Γk′ there exists a w ∈ W such that
S, w |= Φ′. Thus, A(k′).

Theorem 5.3.1: (Soundness) If ` Ψ then |= Ψ. (Contrapositively, if 6|= Ψ then 6` Ψ.)

Proof:
Let ψ = ¬Ψ. Then 6` Ψ if and only if the tree for ψ is open. And

6|= Ψ ⇐⇒ not (∀S) S |= Ψ

⇐⇒ not (∀S, w) S, w |= Ψ

⇐⇒ (∃S, w) S, w |= ψ.

For the soundness proof, it thus suffices to show that if there exists a structure S and w in it such
that S, w |= ψ, then the tree rooted at Γ0

0 = {(0, ψ)} is open.

The following corollary is a consequent of the special case when k = 0 of Γk mentioned in the
proof of Lemma 5.3.1. For every finished tree of a sentence Ψ, if there exists a structure S and a
w ∈W of S such that S, w |= Ψ, then the tree is open.

It is known that the first-order theory of rational numbers (linear arithmetic; without multiplica-
tion) is decidable; the Fourier-Motzkin method [Motzkin, 1936] and Dines’ paper [Dines, 1919],
for example, are proofs of this, and Ferrante and Rackoff [1975]’s method is a more efficient (al-
most polynomial) variant. Any system of equations and disequalities as they appear in this work,
can easily be stated as an applicable first-order theory (see [Kroening and Strichman, 2008], e.g.,
and the appendix). In other words, there is a reliable means of determining whether there exists
at least one solution to an SLI. Therefore, given the corollary to Lemma 5.3.1 stated above, every
execution of a rule or procedure in the decision procedure is sound.

Lemma 5.3.3: Let Γ be the leaf node of a finished tree, where (0,2Φ) ∈ Γ, for some 2Φ ∈
LSLAP . For every label x ∈ X(Γ), there exists a term (Φ1 ∧ Φ2 ∧ · · · ∧ Φm) of Φ such that
(x,Φ1), (x,Φ2), . . ., (x,Φm) ∈ Γ.

Proof:
Let Φ := t1 ∨ t2 ∨ · · · ∨ tz . Let the labels mentioned in Γ (i.e., X(Γ)) be {0, 1, 2, . . . , x′}. Rule
2 is applied to (0,2Φ) for every label (0, 1, 2, . . . , x′). Hence, due to multiple applications of
rule 2, the following labeled formulae are in Γ: (0, t1 ∨ t2 ∨ · · · ∨ tz), (1, t1 ∨ t2 ∨ · · · ∨ tz),
(2, t1 ∨ t2 ∨ · · · ∨ tz), . . . (x′, t1 ∨ t2 ∨ · · · ∨ tz). And due to multiple applications of rule ∨, one
of the following sets is a subset of Γ.

• {(0, t1), (1, t1), (2, t1), . . . , (x′, t1)},

• {(0, t1), (1, t1), (2, t1), . . . , (x′, t2)},
...

• {(0, t1), (1, t1), (2, t1), . . . , (x′, tz)},

PROOFS FOR THEOREMS AND LEMMATA 175

• {(0, t2), (1, t1), (2, t1), . . . , (x′, t1)},

• {(0, t2), (1, t1), (2, t1), . . . , (x′, t2)},
...

• {(0, t2), (1, t1), (2, t1), . . . , (x′, tz)},
...

• {(0, tz), (1, tz), (2, tz), . . . , (x′, tz)}.

Now choose any one of these sets τ . For every label x ∈ {0, 1, 2, . . . , x′}, (x, tk) ∈ τ ⊂ Γ for
some term tk := Φk1 ∧ Φk2 ∧ · · · ∧ Φkmk of Φ. Therefore, due to successive applications of rule
∧, (x,Φk1), (x,Φk2), . . ., (x,Φkmk) ∈ Γ, for every label x ∈ X(Γ).

Lemma 5.3.4: If Γ is the leaf node of an open branch of a finished tree, then there exists a struc-
ture S such that for all (x,Ψ) ∈ Γ, S, w |= Ψ for some w ∈W (Γ, x).

Proof:
(by induction on the structure of a formula)

Let S be constructed as described above.

The induction step will work as follows. Let γ′ ⊆ Γ be added to Γ due to some rule applied to
γ ⊆ Γ. Thus, we need to prove that IF for all (x′,Ψ′) ∈ γ′, S, w′ |= Ψ′ for some w′ ∈ W (Γ, x′),
THEN for all (x,Ψ) ∈ γ, S, w |= Ψ for some w ∈W (Γ, x).

We assume the antecedent (induction hypothesis).

Base case:

• Ψ is a propositional literal. Then S, w |= Ψ for some w ∈ W (Γ, x), by definition of
W (Γ, x).

• Ψ is [α]qϕ. In the construction of S, a solution in Z(F (Γ, α, x)) is utilized for some w ∈
W (Γ, x). Then as a direct consequence of the construction of S , S, w |= [α]qϕ for some
w ∈W (Γ, x).

• Ψ is ¬[α]qϕ. In the construction of S, a solution in Z(F (Γ, α, x)) is utilized for some
w ∈ W (Γ, x). Then as a direct consequence of the construction of S , S, w |= ¬[α]qϕ for
some w ∈W (Γ, x).

Induction step:

• Ψ is ¬¬ψ. By rule ¬, (x, ψ) ∈ Γ. By induction hypothesis, S, w |= ψ. By the definition of
¬, S, w |= ¬¬ψ.

• Ψ is ψ ∧ ψ′. By rule ∧, (x, ψ), (x, ψ′) ∈ Γ. By induction hypothesis, S, w |= ψ and
S, w |= ψ′. By the definition of ∧, S, w |= ψ ∧ ψ′.

• Ψ is ¬(ψ ∧ ψ′). By rule ∨, (x,¬ψ) ∈ Γ or (x,¬ψ′) ∈ Γ. By induction hypothesis,
S, w |= ¬ψ or S, w |= ¬ψ′. By the definition of ∨, S, w |= ¬(ψ ∧ ψ′).

PROOFS FOR THEOREMS AND LEMMATA 176

• Ψ is 2Φ. Let X(Γ) = {0, 1, 2, . . . , x′}. Due to successive application of rule 2, (0,Φ),
(1,Φ), . . ., (x′,Φ) ∈ Γ. Then, by induction hypothesis, S, w0 |= Φ for some w0 ∈W (Γ, 0)

and S, w1 |= Φ for some w1 ∈W (Γ, 1) and · · · and S, wx′ |= Φ for some wx′ ∈W (Γ, x′).

We need to show that S, w |= 2Φ for some w ∈ W (Γ, 0), that is, that for all w′ ∈ W (Γ),
S, w′ |= Φ. This will be the case if: For every w′ ∈ W (Γ), there exists a term t :=

Φ1 ∧ Φ2 ∧ · · · ∧ Φm of Φ such that S, w′ |= t. Note that for wi, wj ∈W (Γ), if wi 6= wj , it
is sufficient that there exist terms ti and tj of Φ such that S, wi |= ti and S, wj |= tj , even
if ti 6= tj .

By Lemma 5.3.3, for every label x ∈ X(Γ), there exists a term t := Φ1 ∧Φ2 ∧ · · · ∧Φm of
Φ such that (x,Φ1), (x,Φ2), . . ., (x,Φm) ∈ Γ.

Then we define the set

L(t) := {Φi | Φi is a propositional literal conjunct of t}

and the set
∆(t) := {Φi | Φi is a dynamic literal conjunct of t}.

Note that t ≡
∧
`∈L(t) ` ∧

∧
δ∈∆(t) δ.

Let ` ∈ L(t). Then by induction hypothesis, S, w′′ |= ` for some w′′ ∈ W (Γ, x). Note
that if S, w′′ |= ` for some w′′ ∈ W (Γ), then w′′ ∈ W (Γ, x). And if w′′ |= ` for some
w′′ ∈W (Γ, x), then w∗ |= ` for all w∗ ∈W (Γ, x). Thus,

S, w∗ |=
∧

`∈L(t)

` (for all w∗ ∈W (Γ, x)).

Hence, by definition of W (Γ),

S, w′ |=
∧

`∈L(t)

` (for all w′ ∈W (Γ)). (A.2)

Let δ ∈ ∆(t). Then by induction hypothesis, S, w′′ |= δ for some w′′ ∈ W (Γ, x). Recall
that we defined X(Γ)# to be some sequence of labels (x1, x2, . . . , xn) such that w1 ∈
W (Γ, x1), w2 ∈ W (Γ, x2), . . ., wn ∈ W (Γ, xn), where (w1, w2, . . . , wn) = W (Γ)#. By
construction and definition of X(Γ)#, there is a label xi ∈ X(Γ)# such that a solution in
Z(F (Γ, α, xi))} is used in the construction of S, for every wi ∈W (Γ)#. Let wi be w′′ and
xi be x.

Therefore, by (A.2) and the above argument for dynamic literals,

S, w′ |= t (for all w′ ∈W (Γ)).

PROOFS FOR THEOREMS AND LEMMATA 177

Theorem 5.3.2: (Completeness) If |= Ψ then ` Ψ. (Contrapositively, if 6` Ψ then 6|= Ψ.)

Proof:
Let ψ = ¬Ψ. Then 6` Ψ means that there is an open branch of a finished tree for ψ. And

6|= Ψ ⇐⇒ (∃S) S 6|= Ψ

⇐⇒ (∃S, w) S, w 6|= Ψ

⇐⇒ (∃S, w) S, w |= ψ.

For the completeness proof, it thus suffices to construct for some open branch of a finished tree for
ψ ∈ LSLAP , an SLAP structure S = 〈W,R〉 in which there is a world w ∈ W such that ψ is true
in S at w.

The following corollary holds. By Lemmata 5.3.2 and 5.3.4, given the leaf node Γ of an open
branch of a finished tree, there exists a structure S such that for all (x,Φ) ∈ Γ, for all w ∈
W (Γ, x), S, w |= Φ. But (0, ψ) ∈ Γ. Thus, if there is a finished open tableau for ψ, then ψ is
satisfiable.

Besides the references mentioned at the end of Section 5.3.1, Käufl [1988] says that the Inf-
Sup-Method developed by Bledsoe [1975] and refined by Shostak [1977] “is a complete decision
procedure for systems of linear inequalities over the rational numbers.” The theorem follows
directly from the corollary and the fact that there exist complete methods for determining the
feasibility of SLIs as they appear in this work.

More on the decidability of the SLI phase (for SLAP): Let

a1x1 + · · ·+ anxn ./ b

be a constraint, where ./ ∈ {=,≤, <}, the ai and b are rational constants and the xi are rational
variables. The conjunction of such constraints is a quantifier-free fragment of the theory of rational
linear arithmetic. We call the fragment TQ.

In terms of first-order logic, given some α and label x, we define the formula A(α, x) ∈ TQ as

c1,1pr1 + c1,2pr2 + · · ·+ c1,nprn = q1 ∧
c2,1pr1 + c2,2pr2 + · · ·+ c2,nprn = q2 ∧

...
ch,1pr1 + ch,2pr2 + · · ·+ ch,nprn = qh ∧

ch+1,1pr1 + ch+1,2pr2 + · · ·+ ch+1,nprn 6= qh+1 ∧
ch+2,1pr1 + ch+2,2pr2 + · · ·+ ch+2,nprn 6= qh+2 ∧

...
ch+k,1pr1 + ch+k,2pr2 + · · ·+ ch+k,nprn 6= qh+k ∧

pr1 + pr2 + · · ·+ prn = q∗,

(A.3)

where each of the first h + k conjuncts ((in)equalities) represents an element in F (Γ, α, x) and
in the last conjunct, q∗ = 0 or q∗ = 1. Due to q∗ having two possible values, A(α, x) actually
represents two systems or elements of TQ. Let all the equations (excluding disequations) be re-

PROOFS FOR THEOREMS AND LEMMATA 178

presented by the system Cpr = q of linear equations, where C is an (h + 1) × n matrix, pr is
an n-dimensional vector and q is an (h+ 1)-dimensional vector. Formula A(α, x) (system (A.3))
can then be written as

Cpr = q ∧
k∧
i=1

n∑
j=1

ci,jpri,j 6= qi. (A.4)

Remark A.2.1: A disequation a1x1 + · · ·+ anxn 6= b is equisatisfiable with

(a1x1 + · · ·+ anxn < b) ∨ (−a1x1 − · · · − anxn < −b). (A.5)

But formula (A.5) is not in TQ, although each of the two disjuncts is. By remark A.2.1, sys-
tem (A.4) is satisfiable if and only if either

Cpr = q ∧
k∧
i=2

n∑
j=1

ci,jpri,j 6= qi ∧
n∑
j=1

c1,jpr1,j < q1

is satisfiable or if

Cpr = q ∧
k∧
i=2

n∑
j=1

ci,jpri,j 6= qi ∧
n∑
j=1

c1,jpr1,j > q1

is satisfiable. Following this reasoning, A(α, x) can be transformed into 2k disequation-free
systems B1, B2, . . . , B2k ∈ T−Q such that A(α, x) is satisfiable if and only if at least one of
B1, B2, . . . , B2k is satisfiable. That is, A(α, x) is satisfiable if and only if general simplex re-
turns “satisfiable” for at least one of B1, B2, . . . , B2k .

In fact, formulae in TQ are not yet in the correct form to be taken as input to general simplex.
Kroening and Strichman [2008] show how any formula in TQ can be transformed into the so-called
‘general form’ required by general simplex. We refer the reader to their book for details.

General simplex allows one to set a lower bound li and an upper bound ui for each variable xi,
such that li ≤ xi ≤ ui. For our problem, we set, li = 0 and ui = 1, for i = 1, . . . , n (where
xi = pri).

LetB(Γ, α, x) := {B1, B2, . . . , B2k} be induced fromA(α, x) for some node Γ. ThenB(Γ, α, x)

is feasible if and only if the SLI generated from F (Γ, α, x) (cf. p. 103) is feasible.

A.3 SLAOP

Lemma 6.2.1: Determining whether an SI (as defined in this thesis) is feasible, is decidable.

Proof:
Tarski [1957] defines the first-order logic theory of elementary (real number) algebra as having
an infinite number of variables (representing elements of R), algebraic constants 1, 0, -1, two
algebraic operation signs + (addition) and · (multiplication), two algebraic relation symbols =

(equals) and > (greater than), (logical) sentential connectives ∼ (negation), ∧ (conjunction), ∨

PROOFS FOR THEOREMS AND LEMMATA 179

(disjunction), the existential quantifier ∃, and a set of axioms defining the theory. “If ξ is any
variable, then (∃ξ) is called a quantifier expression.1 The expression (∃ξ) is to be read “there
exists a ξ such that .”

For every SI (as defined in §6.2.2), the question of whether it has a solution can be represented in
the language of first-order elementary algebra as follows.

(∃prα1)(∃prα2) · · · (∃prαn)(∃prς1)(∃prς2) · · · (∃prςm)

c1,1 · prα1 + c1,2 · prα2 + · · ·+ c1,n · prαn = qα1 ∧
c2,1 · prα1 + c2,2 · prα2 + · · ·+ c2,n · prαn = qα2 ∧
...

cg,1 · prα1 + cg,2 · prα2 + · · ·+ cg,n · prαn = qαg ∧
∼ (cg+1,1 · prα1 + cg+1,2 · prα2 + · · ·+ cg+1,n · prαn = qαg+1) ∧
∼ (cg+2,1 · prα1 + cg+2,2 · prα2 + · · ·+ cg+2,n · prαn = qαg+2) ∧

...

∼ (cg+h,1 · prα1 + cg+h,2 · prα2 + · · ·+ cg+h,n · prαn = qαg+h) ∧
(prα1 + prα2 + · · ·+ prαn = 1 ∨ prα1 + prα2 + · · ·+ prαn = 0) ∧
prσ1 = qς1 ∧
prσ2 = qς2 ∧
...

prσt = qςt ∧
∼ (prσt+1 = qςt+1) ∧
∼ (prσt+2 = qςt+2) ∧

...

∼ (prσt+v = qςt+v) ∧
(prς1 + prς2 + · · ·+ prςm = 1 ∨ prς1 + prς2 + · · ·+ prςm = 0)

such that (algebraic constant) ci,k = 1 or 0 as described in §6.2.2, the bracketed subformulae are
present only if the corresponding (dis)equations are present in (6.2), and the prαk , the prσj and the
prςj are the variables.

Tarski [1957] provided a finite method which can always decide whether a sentence in the elemen-
tary algebra is in the theory. Hence, feasibility of SIs is decidable.

Lemma 6.3.1: Let Γ be the leaf node of a saturated tree. Suppose there exists a structure S =

〈W,R,O,N,Q,U〉 such that W = W (Γ), and for all (x, δω) ∈ Γ, where δω is a dynamic or
perception literal involving α, there exists a w ∈W (Γ) such that S, w |= δω. Then there exists an
LA ∈ SoLA(Γ) such that for all w ∈ W (Γ), Z(F (Γ, α,LA, w)) 6= ∅ and Z(G(Γ, α,LA, w)) 6=
∅.

1 He actually uses the symbol E for existential quantification.

PROOFS FOR THEOREMS AND LEMMATA 180

Proof:
We prove the contrapositive of the lemma. Assume that for all LA ∈ SoLA(Γ), there exists a
w ∈W (Γ) such that Z(FG(Γ, α,LA, w)) = ∅.

Let LA be an arbitrary label assignment in SoLA(Γ). Let W (Γ)# = (w1, w2, . . . , wn) be an
ordering of the worlds in W (Γ), where n = |W (Γ)|. Let Ω# = (ς1, ς2, . . . , ςm) be an ordering of
the observations in Ω, where m = |Ω|. Let W = W (Γ). Let w be an arbitrary world in W and let
α be an arbitrary action in A.

Let {[α]qα1 ϕ
α
1 , [α]qα2 ϕ

α
2 , . . ., [α]qαg ϕ

α
g , ¬[α]qαg+1

ϕαg+1, ¬[α]qαg+2
ϕαg+2, . . ., ¬[α]qαg+hϕ

α
g+h} be an

ordered set of the dynamic literals in F (Γ, α,LA, w).

Let {(ς1 | α : q1), . . . , (ςt | α : qt),¬(ςt+1 | α : qt+1), . . . ,¬(ςt+v | α : qt+v)} be an ordered set
of the perception literals in G(Γ, α,LA, w).

If Z(F (Γ, α,LA, wk) = ∅, there is no solution (sα1 , s
α
2 , . . . , s

α
n) for which

n∑
i=1

Rα(wk,wi)=s
α
i

S,wi|=ϕα1

sαi = qα1 and

n∑
i=1

Rα(wk,wi)=s
α
i

S,wi|=ϕα2

sαi = qα2 and

...
n∑
i=1

Rα(wk,wi)=s
α
i

S,wi|=ϕαg+h

sαi 6= qαg+h

such that
∑

w′∈W Rα(wk, w
′) = 1 or

∑
w′∈W Rα(wk, w

′) = 0.

If Z(G(Γ, α,LA, wk) = ∅, there is no solution (sα1 , s
α
2 , . . . , s

α
n) for which

Qα(wk, N(σ1)) = sσ1 and

Qα(wk, N(σ2)) = sσ2 and
...

Qα(wk, N(σt+v)) = sσt+v,

where sσ1 , s
σ
2 , . . . , s

σ
t+v ∈ {sς1, sς2, . . . , s

ς
m} and such that ifRα(w,w′) > 0, then

∑
o∈OQα(w′, o) =

1 (due to tableau rule obs), else if Rα(w,w′) = 0, then either
∑

o∈OQα(w′, o) = 1 or∑
o∈OQα(w′, o) = 0.

Thus, there is no way to assign transition and perception probabilities such that Rα and Qα con-
form to the definition of a SLAOP structure. That is, there is no SLAOP structure S such that for
all (x, δω) ∈ Γ there exists a w ∈W such that S, w |= δω. Hence, the lemma holds.

PROOFS FOR THEOREMS AND LEMMATA 181

Lemma 6.3.2: Let T be a finished tree. For every node Γ in T : If there exists a structure S such
that for all (x,Φ) ∈ Γ there exists a w ∈ W such that S, w |= Φ, then the (sub)tree rooted at Γ is
open.

Proof:
(by induction on the height of the node Γk)

Base case:

Height h = 0; Γk is a leaf. If there exists a structure S such that for all (x,Φ) ∈ Γk there exists a
w ∈ W such that S, w |= Φ, then (x′,⊥) 6∈ Γk for all x′. Hence, the sub-tree consisting of Γk is
open.

Induction step:

If h > 0, then some rule was applied to create the child(ren) Γk′ of Γk. We abbreviate “there exists
a structure Sj = 〈W j , Rj , Oj , N j , Qj , U j〉 such that for all (xj ,Φj) ∈ Γj there exists a wj ∈W j

such that Sj , wj |= Φj” as A(j) and we abbreviate “the (sub)tree rooted at Γj is open” as B(j).

We must show the following for every rule/phase. IF: If A(k′), then B(k′), THEN: If A(k),
then B(k). We assume the antecedent (induction hypothesis): If A(k′), then B(k′). To show the
consequent, we must assume A(k) and show that B(k) follows.

Note that if the (sub)tree rooted at Γk′ is open, then the (sub)tree rooted at Γk is open. That is,
if B(k′) then B(k). So we want to show B(k′). But, by the induction hypothesis, B(k′) follows
from A(k′). Therefore, it will suffice, in each case below, to assume A(k), and prove A(k′).

• rule =:
For the rule to have been applied, (x, (c = c′)) ∈ Γk or (x,¬(c = c′)) ∈ Γk. The rule is only
applied when (c = c′), resp., ¬(c = c′) is unsatisfiable. Therefore, Γk is unsatisfiable. But
this contradicts our main assumption A(k). Hence, rule = could not have been applicable
to Γk.

• rule ⊥:
For the rule to have been applied, {(x,Ψ), (x,¬Ψ)} ⊆ Γk, and after its application, Γk′ =

Γk ∪ {(x,⊥)}. But there exists no structure Sk = 〈W k, Rk〉 such that there exists a wk ∈
W k such that Sk, wk |= Ψ and Sk, wk |= ¬Ψ. Hence, assumption A(k) is false and this
rule could not have been applied.

• rule ¬:
For the rule to have been applied, (x,¬¬Ψ) ∈ Γk, and after its application, Γk′ = Γk ∪
{(x,Ψ)}. By assumption, Sk, wk |= ¬¬Ψ. Hence, Sk, wk |= Ψ. Thus, A(k′).

• rule ∧:
For the rule to have been applied, (x,Ψ ∧ Ψ′) ∈ Γk, and after its application, Γk′ = Γk ∪
{(x,Ψ), (x,Ψ′)}. By assumption, Sk, wk |= Ψ∧Ψ′. Hence, Sk, wk |= Ψ and Sk, wk |= Ψ′.
Thus, A(k′).

• rule ∨:
For the rule to have been applied, (x,Ψ ∨ Ψ′) ∈ Γk, and after its application, either Γk′ =

Γk ∪ {(x,Ψ)} or Γk′′ = Γk ∪ {(x,Ψ′)}. By assumption, Sk, wk |= Ψ ∨ Ψ′. Hence,

PROOFS FOR THEOREMS AND LEMMATA 182

Sk, wk |= Ψ or Sk, wk |= Ψ′. Thus, A(k′) or A(k′′). Thus, B(k′) or B(k′′). Therefore,
B(k).

• rule 3ϕ:
For the rule to have been applied, (0,¬[α]0ϕ) ∈ Γk or (0, [α]qϕ) ∈ Γk for q > 0, and after
its application, Γk′ = Γk ∪ {(x, ϕ)} where x is a fresh integer.

By assumption, there exists a w ∈ W such that S, w |= ¬[α]0ϕ or S, w |= [α]qϕ. Then
by definition of 〈α〉, there exists a w′′ ∈ W such that (w,w′′, pr) ∈ Rα for pr > 0 and
S, w′′ |= ϕ. Hence, for all (x,Φ′) ∈ Γk′ there exists a w′ ∈W such that S, w′ |= Φ′. Thus,
A(k′).

• rule obs:
For the rule to have been applied, (x,¬[α]0ϕ) ∈ Γk or (x, [α]qϕ) ∈ Γk for q > 0 and
some x, and after its application, Γk′ = Γk ∪ {(0,2(δ1 → (∃vς)¬(vς | α : 0)) ∨ 2(δ2 →
(∃vς)¬(vς | α : 0)) ∨ · · · ∨2(δn → (∃vς)¬(vς | α : 0)))}, where δi ∈ cpt(ϕ).

By assumption, there exists a w ∈ W such that S, w |= ¬[α]0ϕ or S, w |= [α]qϕ. That is,
there exists a w′′ ∈W such that Rα(w,w′′) > 0 and S, w′′ |= ϕ.

By definition of a SLAOP structure, for all w−, w+ ∈ W : if Rα(w−, w+) > 0, then∑
o∈O, Qα(w+, o) = 1. Thus, there exists a w′′ ∈ W such that

∑
o∈OQα(w′′, o) = 1,

where S, w′′ |= ϕ. This implies that there exists a w′′ ∈ W such that w′′ |= ϕ and there
exists at least one observation ς ∈ Ω such that it is not the case that Qα(w′′, N(ς)) = 0.
Hence, for all w′ ∈ W if S, w′ |= δ1 or S, w′ |= δ2 or . . . or S, w′ |= δn, then (∃vς)¬(vς |
α : 0), where δi ∈ cpt(ϕ). Therefore, there exists a w ∈ W such that S, w |= 2(δ1 →
(∃vς)¬(vς | α : 0)) ∨ 2(δ2 → (∃vς)¬(vς | α : 0)) ∨ · · · ∨ 2(δn → (∃vς)¬(vς | α : 0)).
Thus, A(k′).

• rule 2:
For the rule to have been applied, {(0,2Φ), (x,Φ′′)} ⊆ Γk for some x ≥ 0, and after its
application, Γk′ = Γk ∪ {(x,Φ)}.

By assumption, there exist w,w′ ∈ W such that S, w |= 2Φ and S, w′ |= Φ′′. Then by
definition of 2, for all w′′ ∈ W,S, w′′ |= Φ. That is, there exists a w′′ ∈ W such that
S, w′′ |= Φ. Hence, for all (x,Φ′) ∈ Γk′ there exists a w′′′ ∈ W such that S, w′′′ |= Φ′.
Thus, A(k′).

• rule 3:
For the rule to have been applied, (0,¬2Φ) ∈ Γk, and after its application, Γk′ = Γk ∪
{(x,¬Φ)} where x is a fresh integer.

By assumption, there exists aw ∈W such that S, w |= ¬2Φ. Then by definition of 2, there
exists a w′ ∈W such that S, w′ 6|= Φ. That is, there exists a w′ ∈W such that S, w′ |= ¬Φ.
Hence, for all (x,Φ′) ∈ Γk′ there exists a w ∈W such that S, w |= Φ′. Thus, A(k′).

• Label Assignment Phase:
If it can be shown that there exists an LA ∈ SoLA(Γk) such that

1. for no w ∈W (Γk), E(Γk,LA, w) contains

PROOFS FOR THEOREMS AND LEMMATA 183

– Reward(r) and Reward(r′) such that r 6= r′, or

– Reward(r) and ¬Reward(r), or

– Cost(α, c) and Cost(α, c′) (same action α) such that c 6= c′, or

– Cost(α, c) and ¬Cost(α, c) (same action α);

2. for all α ∈ A and all w ∈W (Γk), Z(F (Γk, α,LA, w)) 6= ∅ and
Z(G(Γk, α,LA, w)) 6= ∅,

then no child is created for Γk and trivially, for all (x,Φ′) ∈ Γk′ there exists a w ∈ W such
that S, w |= Φ′.

Let LA be a member of SoLA(Γk). By assumption, there exists a structure S = 〈W, R,
O, N, Q, U〉 such that for all (x,Φ) ∈ Γk there exists a w ∈ W such that S, w |= Φ.
The label assignment phase occurs only when Γk is the leaf node of a saturated tree. Thus,
w ∈W (Γk, x). Each of the three cases is considered separately.

(1) For all (x,Φ) ∈ Γk, either x:w ∈ LA or x:w 6∈ LA. If x:w ∈ LA, then by the
assumption, the first case must be true. If x:w 6∈ LA, then Φ 6∈ E(Γk,LA, w), and the first
case is trivially true.

(2) By assumption, there exists a structure S = 〈W,R,O,N,Q,U〉 such that for all (x, δω) ∈
Γk, where δω is a dynamic or perception literal involving α, there exists a w ∈W such that
S, w |= δω.

Due to w ∈W (Γk, x), if w ∈W , then w ∈W (Γk). That is, W ⊆W (Γk). Thus, a SLAOP
structure S ′ = 〈W (Γk), R

′, O,N,Q′, U〉 can be constructed as follows. For all α ∈ A,
for all w,w′ ∈ W (Γk), if Rα(w,w′) = pr, let R′α(w,w′) = pr, else let R′α(w,w′) = 0.
Hence, for all (x, δ) ∈ Γk there exists a w ∈ W (Γk) such that S ′, w |= δ, where δ is a
dynamic literal involving α. And for all α ∈ A, for all o ∈ O, for all w′ ∈ W (Γk), if
Qα(w′, o) = pr, let Q′α(w′, o) = pr, else let Q′α(w′, o) = 0. Hence, for all (x′, ω) ∈ Γk
there exists a w′ ∈ W (Γk) such that S ′, w′ |= ω, where ω is a perception literal involving
α.

Then, by Lemma 6.3.1, there exists an LA ∈ SoLA(Γk) such that for all w ∈ W (Γk) and
α ∈ A, Z(F (Γk, α,LA, w)) 6= ∅ and Z(G(Γk, α,LA, w)) 6= ∅.

Moreover, the systems of inequalities (SIs), as used in this chapter, can be described in
the language of first-order logic elementary real number theory [Tarski, 1957, Seidenberg,
1954, Collins, 1975] (cf. Lem. 6.2.1). There exist sound methods for determining whether
an SI is feasible [Tarski, 1957, Seidenberg, 1954, Collins, 1975]. In other words, there is a
reliable means of determining whether there exists at least one solution to an SI. Action α
is arbitrary; the second case is true.

PROOFS FOR THEOREMS AND LEMMATA 184

Theorem 6.3.1: (Soundness) If ` Ψ then |= Ψ. (Contrapositively, if 6|= Ψ then 6` Ψ.)

Proof:
Let ψ = ¬Ψ. Then 6` Ψ if and only if the tree for ψ is open. And

6|= Ψ ⇐⇒ not (∀S) S |= Ψ

⇐⇒ not (∀S, w) S, w |= Ψ

⇐⇒ (∃S, w) S, w |= ψ.

For the soundness proof, it thus suffices to show that if there exists a structure S and w in it such
that S, w |= ψ, then the tree rooted at Γ0

0 = {(0, ψ)} is open.

The following corollary is a consequent of the special case when k = 0 of Γk mentioned in the
proof of Lemma 6.3.2. For every finished tree of a sentence Ψ, if there exists a structure S and a
w ∈W of S such that S, w |= Ψ, then the tree is open.

It is known that the first-order theory of rational numbers (linear arithmetic; without multiplica-
tion) is decidable; the Fourier-Motzkin method [Motzkin, 1936] and Dines’ paper [Dines, 1919],
for example, are proofs of this, and Ferrante and Rackoff [1975]’s method is a more efficient (al-
most polynomial) variant. Any system of equations and disequalities as they appear in this work,
can easily be stated as an applicable first-order theory (see [Kroening and Strichman, 2008], e.g.,
and the appendix). In other words, there is a reliable means of determining whether there exists
at least one solution to an SLI. Therefore, given the corollary to Lemma 6.3.2 stated above, every
execution of a rule or procedure in the decision procedure is sound.

Lemma 6.3.3: S is a SLAOP structure.

Proof:
The components of the structure are well-formed:

• W = W (Γ) =
⋃
x≥0{w ∈ C | w |= ` for all (x, `) ∈ Γ where ` is a propositional literal}.

That is, W = {w ∈ C | for all x,w |= ` for all (x, `) ∈ Γ where ` is a propositional literal}.
Thus, forW to be empty, it must be the case that for allw ∈ C, there exists some (x, `) ∈ Γ,
for which w 6|= `. But this is a contradiction. Hence, W is not empty.

• Due to Γ being open (and by rule SI), we know that for all α ∈ A and all w ∈ W (Γ), there
exists a solution in Z(F (Γ, α,LA, w)).

By construction, R maps each action α ∈ A to Rα such that Rα is a relation in (W ×W)×
[0, 1]. Moreover, by the nature of the SI generated from F (Γ, α,LA, w), Rα is a (total)
function Rα : (W ×W) 7→ [0, 1].

And by construction, the fact that pr1 +pr2 + · · ·+prn = 1 or pr1 +pr2 + · · ·+prn = 0 is
an equation in any SI generated, either

∑
w′∈W Rα(w,w′) = 1 or

∑
w′∈W Rα(w,w′) = 0,

for every w ∈W .

• Assuming Ω is non-empty, O will be non-empty.

• By construction, N : Ω 7→ O is a bijection.

• Due to Γ being open (and by rule SI), we know that for all α ∈ A and all w ∈ W (Γ), there

PROOFS FOR THEOREMS AND LEMMATA 185

exists a solution in Z(G(Γ, α,LA, w)).

By construction, Q maps each action α ∈ A to Qα such that Qα is a relation in (W ×O)×
[0, 1].

Moreover, by the nature of the SI generated from G(Γ, α,LA, w), Qα is a (total) function
Qα : (W ×O) 7→ [0, 1].

And by construction, the fact that in any SI generated, there is an equation prς1 +prς2 + · · ·+
prςm = dprς1 + prς2 + · · · + prςme and the fact that dprς1 + prς2 + · · · + prςme equals 0 or
1, it must be the case that

∑
o∈OQα(w, o) equals 0 or 1. Furthermore, due to tableau rule

obs, if there exists a w′ such that Rα(w′, w) > 0, then Qα(w, o) > 0, which implies that
dprς1 + prς2 + · · ·+ prςme = 1, which implies that: For all w,w′ ∈W : if Rα(w′, w) > 0 for
some w′, then

∑
o∈OQα, (w, o) = 1.

• By construction, U = 〈Re,Co〉, where Re : W 7→ R and Co is a mapping from A to
a function Coα : C 7→ R. Suppose x:w, x′:w ∈ LA where x 6= x′. If (x,Reward(r)),
(x′,Reward(r′)) ∈ Γ such that r 6= r′, then by construction Re(w) = r = r′ which
is impossible. But if (x,Reward(r)), (x′,Reward(r′)) were in Γ, then LA would have
caused Reward(r) and Reward(r′) to be inE(Γ,LA, w) and the branch would have closed.
So either (i) x:w, x′:w ∈ LA but Reward(r) and Reward(r′) are not both in Γ, or (ii)
(x,Reward(r)), (x′,Reward(r′)) ∈ Γ but x:w and x′:w are not both in LA, or (iii) x:w

and x′:w are not both in LA and Reward(r) and Reward(r′) are not both in Γ.

Lemma 6.3.5: Let Γ be the leaf node of an open branch of a finished tree. We know that there
exists a label assignment LA ∈ SoLA(Γ) such that Z(F (Γ, α,LA, w)) and Z(G(Γ, α,LA, w))

are not empty, for all w ∈ W (Γ) and all α ∈ A. If S is constructed as described above, then for
all (x,Ψ) ∈ Γ, S, w |= Ψ for x:w ∈ LA.

Proof:
The proof will be by induction on the structure of a formula.

The induction step will work as follows. Let γ′ ⊆ Γ be added to Γ due to some rule applied to
γ ⊆ Γ. Thus, we need to prove that IF for all (x′,Ψ′) ∈ γ′, S, w′ |= Ψ′ for x′:w′ ∈ LA, THEN
for all (x,Ψ) ∈ γ, S, w |= Ψ for x:w ∈ LA.

We assume the antecedent (induction hypothesis).

Base case:

• Ψ is a propositional literal. By definition, S, w′ |= Ψ for all w′ ∈ W (Γ, x). But if x:w ∈
LA, then w ∈W (Γ, x). Thus S, w |= Ψ.

• Ψ is c = c′. Because (x,⊥) 6∈ Γ for some label x, rule = was not applied. Hence, c is
identical to c′, and S, w |= c = c′.

• Ψ is ¬(c = c′). Because (x,⊥) 6∈ Γ for some label x, rule = was not applied. Hence, c is
not identical to c′, and S, w |= ¬(c = c′).

PROOFS FOR THEOREMS AND LEMMATA 186

• Ψ is Reward(r). By construction, (w, r) ∈ Re for (x,Reward(r)) ∈ Γ and x:w ∈ LA.
Hence, S, w |= Reward(r).

• Ψ is ¬Reward(r). By construction, (w, r) 6∈ Re. Hence, S, w |= ¬Reward(r).

• Ψ is Cost(α, c). By construction, (w, c) ∈ Coα for (x,Cost(α, c)) ∈ Γ and x:w ∈ LA.
Hence, S, w |= Cost(α, c).

• Ψ is ¬Cost(α, c). By construction, (w, c) 6∈ Coα. Hence, S, w |= ¬Cost(α, c).

• Ψ is [α]qϕ. Then as a direct consequence of the construction of S, S, w |= [α]qϕ.

• Ψ is ¬[α]qϕ. Then as a direct consequence of the construction of S, S, w |= ¬[α]qϕ.

• Ψ is (ς | α : q). Then as a direct consequence of the construction of S, S, w |= (ς | α : q).

• Ψ is ¬(ς | α : q). Then as a direct consequence of the construction of S, S, w |=
¬(ς | α : q).

Induction step:

• Ψ is ¬¬ψ. By rule ¬, (x, ψ) ∈ Γ. By induction hypothesis, S, w |= ψ for x:w ∈ LA. By
the definition of ¬, S, w |= ¬¬ψ.

• Ψ is ψ ∧ ψ′. By rule ∧, (x, ψ), (x, ψ′) ∈ Γ. By induction hypothesis, S, w |= ψ and
S, w |= ψ′ for x:w ∈ LA. By the definition of ∧, S, w |= ψ ∧ ψ′.

• Ψ is ¬(ψ ∧ ψ′). By rule ∨, (x,¬ψ) ∈ Γ or (x,¬ψ′) ∈ Γ for x:w ∈ LA. By induction
hypothesis, S, w |= ¬ψ or S, w |= ¬ψ′. By the definition of ∨, S, w |= ¬(ψ ∧ ψ′).

• Ψ is 2Φ. Let X(Γ) = {0, 1, 2, . . . , x′}. Due to successive applications of rule 2, (0,Φ),
(1,Φ), . . ., (x′,Φ) ∈ Γ. Then, by induction hypothesis, S, w0 |= Φ for 0:w0 ∈ LA and
S, w1 |= Φ for 1:w1 ∈ LA and · · · and S, wx′ |= Φ for x′:wx′ ∈ LA.

We need to show that S, w |= 2Φ for 0:w0 ∈ LA, that is, that for all w′ ∈ W (Γ), S, w′ |=
Φ. This will be the case if: For everyw′ ∈W (Γ), there exists a term t := Φ1∧Φ2∧· · ·∧Φm

of Φ such that S, w′ |= t. Note that for wi, wj ∈W (Γ), if wi 6= wj , it is sufficient that there
exist terms ti and tj of Φ such that S, wi |= ti and S, wj |= tj , even if ti 6= tj .

By Lemma 6.3.4, for every label x ∈ X(Γ), there exists a term t := Φ1 ∧Φ2 ∧ · · · ∧Φm of
Φ such that (x,Φ1), (x,Φ2), . . ., (x,Φm) ∈ Γ.

Then we define the set

L(t) := {Φi | Φi is a propositional literal conjunct of t},

the set
ERC (t) := {Φi | Φi is an erc literal conjunct of t}

the set
∆(t) := {Φi | Φi is a dynamic literal conjunct of t}

and the set
Ω(t) := {Φi | Φi is a or perception literal conjunct of t}.

PROOFS FOR THEOREMS AND LEMMATA 187

Note that t ≡
∧
`∈L(t) ` ∧

∧
ρ∈ERC (t) ρ ∧

∧
δω∈∆Ω(t) δω.

Let ` ∈ L(t). Then by induction hypothesis, S, w′′ |= ` for x:w′′ ∈ LA. Note that ifw′′ |= `

for some w′′ ∈W (Γ, x), then w∗ |= ` for all w∗ ∈W (Γ, x). Thus,

S, w∗ |=
∧

`∈L(t)

` (for all w∗ ∈W (Γ, x)),

and by definition of W (Γ),

S, w′ |=
∧

`∈L(t)

` (for all w′ ∈W (Γ)). (A.6)

Let ρ ∈ ERC (t). Then by induction hypothesis, S, w′′ |= ρ for x:w′′ ∈ LA. If ρ is (b = b′)

or ¬(b = b′), then
S, w′′′ |= ρ (for all w′′′ ∈W (Γ)). (A.7)

By construction (see base case), for all w′ ∈W (Γ),

S, w′ |=
∧

ρ∈E(Γ,LA,w)

ρ (A.8)

and
S, w′ |=

∧
δ∈F (Γ,LA,w)

δ. (A.9)

and
S, w′ |=

∧
ω∈G(Γ,LA,w)

ω. (A.10)

By (A.7), (A.8) and Lemma 6.3.4, for all w′ ∈W (Γ),

S, w′ |=
∧

ρ∈ERC (t)

ρ.

By (A.9) and Lemma 6.3.4, for all w′ ∈W (Γ),

S, w′ |=
∧

δ∈∆(t)

δ.

By (A.10) and Lemma 6.3.4, for all w′ ∈W (Γ),

S, w′ |=
∧

ω∈Ω(t)

ω.

PROOFS FOR THEOREMS AND LEMMATA 188

Hence, for all w′ ∈W (Γ), there exists a x ∈ X(Γ) such that

S, w′ |=
m∧
i=1

(x,Φi)∈Γ

Φi,

(where
∧m

i=1
(x,Φi)∈Γ

Φi is a term of Φ) which implies that for all w′ ∈W (Γ),

S, w′ |= Φ,

which concludes the proof.

• Ψ is ¬2Φ. By rule 3, (x′,¬Φ) ∈ Γ for some x′ > x. By induction hypothesis, S, w′ |= ¬Φ

for x′:w′ ∈ LA. That is, it is not the case that for all w′′ ∈ W (Γ),S, w′′ |= Φ. Hence,
S, w 6|= 2Φ, if and only if S, w |= ¬2Φ.

Theorem 6.3.2: (Completeness) If |= Ψ then ` Ψ. (Contrapositively, if 6` Ψ then 6|= Ψ.)

Proof:
Let ψ = ¬Ψ. Then 6` Ψ means that there is an open branch of a finished tree for ψ. And

6|= Ψ ⇐⇒ (∃S) S 6|= Ψ

⇐⇒ (∃S, w) S, w 6|= Ψ

⇐⇒ (∃S, w) S, w |= ψ.

For the completeness proof, it thus suffices to construct for some open branch of a finished tree for
ψ ∈ LSLAOP , a SLAOP structure S = 〈W,R,O,N,Q,U〉 in which there is a world w ∈W in S
such that ψ is satisfied in S at w.

By Lemmata 6.3.3 and 6.3.5, given the leaf node Γ of an open branch of a finished tree, there
exists a structure S such that for all (x,Ψ) ∈ Γ, S, w |= Ψ for x:w ∈ LA. But (0, ψ) ∈ Γ. Thus,
if there is a finished open tableau for ψ, then ψ is satisfiable. The theorem follows directly.

A.4 SDL

Lemma 7.3.1: Let T be a finished tree. For every node Γ in T : If there exists a structure D such
that for all (Σ,Φ) ∈ Γ there exists a belief-state b ∈ P and a world w ∈ C such that Dbw |= Φ,
then the (sub)tree rooted at Γ is open.

Proof:
The proof will be by induction on the height of the node Γk.

Base case:

Height h = 0; Γk is a leaf. If there exists a structure D such that for all (Σ,Φ) ∈ Γk there exists a
b and a w such that Dbw |= Φ, then (Σ′,⊥) 6∈ Γk for all Σ′. Hence, the sub-tree consisting of Γk
is open.

PROOFS FOR THEOREMS AND LEMMATA 189

Induction step:

If h > 0, then some rule was applied to create the child(ren) Γk′ of Γk. We abbreviate “there exists
a structure Dj = 〈Rj , Qj , U j〉 such that for all (Σj ,Φj) ∈ Γj there exists a bj and a wj such that
Djbjwj |= Φj” as A(j) and we abbreviate “the (sub)tree rooted at Γj is open” as B(j).

We must show the following for every rule/phase. IF: If A(k′), then B(k′), THEN: If A(k), then
B(k), where Γk′ was created due to the application of some tableau rule or the SI phase to Γk. We
assume the antecedent (induction hypothesis): If A(k′), then B(k′). To show the consequent, we
must assume A(k) and show that B(k) follows.

Note that if the (sub)tree rooted at Γk′ is open, then the (sub)tree rooted at Γk is open. That is,
if B(k′) then B(k). So we want to show B(k′). But, by the induction hypothesis, B(k′) follows
from A(k′). Therefore, it will suffice, in each case below, to assume A(k), and prove A(k′).

• rule ¬:
For the rule to have been applied, (Σ,Ψ) ∈ Γk such that Ψ has a double negation somewhere
in it, and after its application, Γk′ = Γk∪{(Σ,Ψ′)}, where Ψ′ is Ψ with the double negation
removed. By assumption, Dkbkwk |= Ψ. Hence, Dkbkwk |= Ψ′. Thus, A(k′).

• rule ∧:
For the rule to have been applied, (Σ,Ψ ∧ Ψ′) ∈ Γk, and after its application, Γk′ =

Γk ∪ {(Σ,Ψ), (Σ,Ψ′)}. By assumption, Dkbkwk |= Ψ ∧ Ψ′. Hence, Dkbkwk |= Ψ and
Dkbkwk |= Ψ′. Thus, A(k′).

• rule ∨:
For the rule to have been applied, (Σ,Ψ ∨ Ψ′) ∈ Γk, and after its application, either Γk′ =

Γk ∪ {(Σ,Ψ)} or Γk′′ = Γk ∪ {(Σ,Ψ′)}. By assumption, Dkbkwk |= Ψ ∨ Ψ′. Hence,
Dkbkwk |= Ψ or Dkbkwk |= Ψ′. Thus, A(k′) or A(k′′). Thus, B(k′) or B(k′′). Therefore,
B(k).

• rule =:
For the rule to have been applied, (Σ, c = c′) ∈ Γk or (Σ,¬(c = c′)) ∈ Γk. The rule is only
applied when (c = c′), resp., ¬(c = c′) is unsatisfiable. Therefore, Γk is unsatisfiable. But
this contradicts our main assumption A(k). Hence, rule = could not have been applicable
to Γk.

• rule⇒ ∧:
For the rule to have been applied, (Σ, ϕ ⇒ Φ ∧ Φ′) ∈ Γk, and after its application, Γk′ =

Γk ∪ {(Σ, (ϕ ⇒ Φ) ∧ (ϕ ⇒ Φ′))}. By assumption, Dkbkwk |= ϕ ⇒ Φ ∧ Φ′. Hence,
Dkbkwk |= ϕ⇒ Φ and Dkbkwk |= ϕ⇒ Φ′. Thus, A(k′).

• rule δ ⇒:
For the rule to have been applied, (Σ, ϕ ⇒ Φ) ∈ Γk where Φ is a disjunction of literals,
and after its application, Γk′ = Γk ∪ {(Σ, δ1 ⇒ Φ), (Σ, δ2 ⇒ Φ), . . . , (Σ, δn ⇒ Φ)},
where δi ∈ cpt(ϕ). By assumption, Dkbkwk |= ϕ ⇒ Φ. Hence, Dkbkwk |= δ1 ⇒ Φ and
Dkbkwk |= δ2 ⇒ Φ and . . . and Dkbkwk |= δn ⇒ Φ. Thus, A(k′).

• rule⇒ ∨:
For the rule to have been applied, (Σ, ϕ⇒ Φ∨Φ′) ∈ Γk where ϕ is definitive, and after its

PROOFS FOR THEOREMS AND LEMMATA 190

application, Γk′ = Γk ∪ {(Σ, (ϕ ⇒ Φ) ∨ (ϕ ⇒ Φ′))}. By assumption, Dkbkwk |= ϕ ⇒
Φ ∨ Φ′. That is, for all w ∈ C, Dkbkw 6|= ϕ or Dkbkw |= Φ ∨ Φ′. Let w′ |= ϕ. Then,
because ϕ is definitive, for all w ∈ C such that w 6= w′, Dkbkw 6|= ϕ. And necessarily,
Dkbkw′ |= Φ ∨ Φ′, that is, Dkbkw′ |= Φ or Dkbkw′ |= Φ′. Hence, for all w′′ ∈ C,
Dkbkw′′ 6|= ϕ or Dkbkw′′ |= Φ, or for all w′′ ∈ C, Dkbkw′′ 6|= ϕ or Dkbkw′′ |= Φ′.
Therefore, Dkbkw |= ϕ ⇒ Φ or Dkbkw |= ϕ ⇒ Φ′, which implies that Dkbkw |= (ϕ ⇒
Φ) ∨ (ϕ⇒ Φ′). Thus, A(k′).

• rule Ξ:
For the rule to have been applied, (Σ, Jα + ςKΨ) ∈ Γk. And if Γk contains (Σ′,Ψ′) such
that Σ′ = Σ

α,ς−→ e, then Γk′ = Γk ∪ {(Σ′,Ψ)}, else Γk′ = Γk ∪ {(Σ
α,ς−→ e′,Ψ)},

where e′ is a fresh integer. By assumption, Dkbkwk |= Jα + ςKΨ. Hence, PNB (α, ς, b) 6=
0 and Dkb′wk |= Ψ, where b′ = BU(α, ς, bk). Thus, A(k′).

• rule ¬Ξ:
For the rule to have been applied, (Σ,¬Jα + ςKΨ) ∈ Γk, and after its application, Γk′ =

Γk∪{(Σ,¬Cont(α, ς)∨Jα+ςK¬Ψ)}. By assumption,Dkbkwk |= ¬Jα+ςKΨ. Then by defi-
nition, it is not the case that PNB (α, ς, b) 6= 0 and Dkb′wk |= Ψ, where b′ = BU(α, ς, bk).
That is, either PNB (α, ς, bk) = 0 or Dkb′wk |= ¬Ψ, where b′ = BU(α, ς, bk). That is, ei-
therDkbkwk |= ¬Cont(α, ς) orDkbkwk |= Jα+ςK¬Ψ. Hence,Dkbkwk |= ¬Cont(α, ς)∨
Jα+ ςK¬Ψ. Thus, A(k′).

• rules ¬B and ¬U:
In these cases, the assumption of A(k) leads directly to A(k′).

• the SI phase:
A(k) is assumed. And Γk is an open leaf node of a finished and saturated tree. Let SI(Γk)

be the system of inequalities generated from the formulae in Γk according to the instructions
for the SI phase. We must show that SI(Γk) is feasible; then Γk will remain a leaf node
(without the labeled formula (0,⊥)), and A(k′) will be trivially true.

It can be seen from § 7.2.2 that the generation of equations and inequalities from law literals
in Γk are direct translations of the semantic definitions of the respective formulae. The
directness of their translations is, in part, due to law literals being independent of activity
sequences. Given that A(k), the subsystem of inequalities generated from only the law
literals must be feasible.

It may however not be clear how inequalities generated from continuity, belief and utility
literals in Γk affect the feasibility of the whole system SI(Γk). We analyse this issue next.
The inequalities generated from these three kinds of literals are also direct translations of
their semantic definitions, except that the variables representing the probabilities of worlds
at particular belief-states are carefully chosen: ‘World-probability variable’ ωek represents
the probability of world wk ∈ C# at activity-point e. An activity sequence

0
α0,ς0−→ e1

α1,ς1−→ e2 · · · ei
αi,ςi−→ · · · αz−1,ςz−1−→ ez

represents the sequence of update operators in a sentence of the form

Jα0, ς0KJα1, ς1K · · · Jαi, ςiK · · · Jαz−1, ςz−1KΨ,

PROOFS FOR THEOREMS AND LEMMATA 191

where ei is the activity-point representing the belief-state bei reached after updating belief-
state b0 with α0 and ς0 to obtain be1 , then updating be1 with α1 and ς1 to obtain be2 , then
updating be2 with . . . to obtain bei . The inequalities are generated in such a way that ωeik
represents bei(wk).

For instance, if (Σ,¬Cont(α, ς)), (Σ α,ς−→ ez,Ψ) ∈ Γk, then SI(Γk) should be infeasible.
This is because (Σ

α,ς−→ ez,Ψ) ∈ Γk due to (Σ, Jα + ςKΨ) ∈ Γk, which implies that the
belief-state obtained after updating the previous belief-state with α and ς (i.e., the belief-
state represented by ez) is reachable, but (Σ,¬Cont(α, ς)) ∈ Γk implies that the belief-state
represented by ez is not reachable.

For SI(Γk) to be infeasible due to this contradiction, requires that the equations generated
from the two formulae both refer to the same variables ωezk for k = 1, 2, . . . , n. Then

n∑
j=1

pr
ς|α
j

n∑
i=1

prαi,jω
ez
i = 0 (A.11)

is generated for (Σ,¬Cont(α, ς)) and

ωez1 + ωez2 + · · ·+ ωezn = 1 (A.12)

and

ωezk =
pr
ς|α
k

∑n
i=1 pr

α
i,kω

ez−1

i∑n
j=1 pr

ς|α
j

∑n
i=1 pr

α
i,jω

ez−1

i

, for k = 1, 2, . . . , n (A.13)

and
n∑
j=1

pr
ς|α
j

n∑
i=1

prαi,jω
ez−1

i 6= 0

are generated for (Σ
α,ς−→ ez,Ψ). By (A.12), there exists a variable ωezk > 0. By (A.13),

whenever ωezk > 0, then prς|αk > 0 and for some i ∈ {1, 2, . . . , n}, prαi,k > 0 and ωez−1

i > 0.

There exists a term pr
ς|α
k × prαi,k × ωezk of (A.11) which is greater than zero, which is a

contradiction, because then
∑n

j=1 pr
ς|α
j

∑n
i=1 pr

α
i,jω

ez
i 6= 0.

During the generation of activity sequences in rule Ξ, fresh integers are used only when
another labeled formula with the same sequence does not exist, else the existing activity-
point/integer is used. Rule Ξ is repeated here for convenience: If Γjk contains (Σ, Jα+ ςKΨ)

then: if Γjk contains (Σ′,Ψ′) such that Σ′ = Σ
α,ς−→ e, then create node Γjk+1 = Γjk ∪

{(Σ′,Ψ)}, else create node Γjk+1 = Γjk ∪ {(Σ
α,ς−→ e′,Ψ)}, where e′ is a fresh integer.

‘World-probability variables’ are consistently named according to activity-points in the ge-
neration of SI(Γk). In this way, as in the example above, a chain of constraints is set up
such that if SI(Γk) is infeasible, then the conjunction of formulae involved in the generation
of SI(Γk) is unsatisfiable. In other words, if the conjunction of formulae involved in the
generation of SI(Γk) is satisfiable, then SI(Γk) is feasible.

In general, SI(Γk) is infeasible if and only if there is no solution (assignment of values
to variables) such that all equations and inequalities in the system are simultaneously true.
Assume SI(Γk) is infeasible. Then there exists at least one equation or inequality that

PROOFS FOR THEOREMS AND LEMMATA 192

is false. All the kinds of equations and inequalities that can possibly appear in SI(Γk)

are considered in the list below. We now show for each case that if the corresponding
equation/inequality is false, then the conjunction of formulae involved in the generation
of SI(Γk) is unsatisfiable. This would contradict the assumption that the conjunction of
formulae involved in the generation of SI(Γk) is satisfiable. That is, the primary assumption
A(k) would be false, which cannot be. Hence, the secondary assumption that SI(Γk) is
infeasible would have to be false. Therefore, SI(Γk) would be feasible, which is what we
want to show.

1. c1pr
α
j,1 + c2pr

α
j,2 + · · · + cnpr

α
j,n ./ q such that ck = 1 if wk |= ϕ, else ck = 0—

for a formula (Σ, φ ⇒ [α]ϕ ./ q) ∈ Γ, for every j such that wj |= φ. Simply, if
c1pr

α
j,1 + c2pr

α
j,2 + · · · + cnpr

α
j,n ./ q is false, then by the definition of [α]ϕ ./ q,

φ⇒ [α]ϕ ./ q is unsatisfiable.

2. c1pr
α
j,1 + c2pr

α
j,2 + · · · + cnpr

α
j,n 6./ q such that ck = 1 if wk |= ϕ, else ck = 0—for

a formula (Σ, φ⇒ ¬[α]ϕ ./ q) ∈ Γ, for every j such that wj |= φ. Symmetrically to
the case above, φ⇒ ¬[α]ϕ ./ q is unsatisfiable.

3. prαj,1 + prαj,2 + · · · + prαj,n = dprαj,1 + prαj,2 + · · · + prαj,ne—for a formulae (Σ, φ ⇒
[α]ϕ ./ q) ∈ Γ or (Σ, φ ⇒ ¬[α]ϕ ./ q) ∈ Γ, for some j such that wj |= φ. Now,
prαj,1 + prαj,2 + · · ·+ prαj,n = dprαj,1 + prαj,2 + · · ·+ prαj,ne being false will ensure that
neither

∑
w′∈W Rα(wj , w

′) = 1 nor
∑

w′∈W Rα(wj , w
′) = 0. However, as stated

in Definition 7.1.2, either
∑

w′∈W Rα(wj , w
′) = 1 or

∑
w′∈W Rα(wj , w

′) = 0 for
every wj ∈ C. Thus, no SDL structure exists which can satisfy φ ⇒ [α]ϕ ./ q or
φ⇒ ¬[α]ϕ ./ q.

4. prς|αj ./ q—for a formula (Σ, φ ⇒ (ς|α) ./ q) ∈ Γ, for some j such that wj |= φ. If

pr
ς|α
j ./ q is false, then by definition of (ς|α) ./ q, φ⇒ (ς|α) ./ q is unsatisfiable.

5. prς|αj 6./ q—for a formula (Σ, φ ⇒ ¬(ς|α) ./ q) ∈ Γ, for some j such that wj |= φ.
Symmetrically to the case above, φ⇒ ¬(ς|α) ./ q is unsatisfiable.

6. prς1|αj + pr
ς2|α
j + · · · + pr

ςm|α
j = d(prα1,j + prα2,j + · · · + prαn,j)/ne—for a for-

mula (Σ, φ ⇒ (ς|α) ./ q) ∈ Γ or (Σ, φ ⇒ ¬(ς|α) ./ q) ∈ Γ, for some j such
that wj |= φ. Now, prς1|αj + pr

ς2|α
j + · · · + pr

ςm|α
j = d(prα1,j + prα2,j + · · · +

prαn,j)/ne being false will ensure that whenever there exists a wi ∈ C such that
Rα(wi, wj) > 0, then

∑
ς∈ΩQα(wj , ς) 6= 1, and whenever there exists a wi ∈ C

such that Rα(wi, wj) = 0, then
∑

ς∈ΩQα(wj , ς) 6= 0. However, as stated in Defini-
tion 7.1.2, if there exists a wi ∈ C such thatRα(wi, wj) > 0, then

∑
ς∈ΩQα(wj , ς) =

1, else
∑

ς∈ΩQα(wj , ς) = 0 for every wj ∈ C. Thus, no SDL structure exists which
can satisfy φ⇒ (ς|α) ./ q or φ⇒ ¬(ς|α) ./ q.

7. For every (Σ,Ψ) ∈ Γ, the following equations are in SI(Γ).

ω
eh+1

k = BT (eh, k, αh, ςh) (for k = 1, 2, . . . , n and h = 0, 1, . . . , z − 1), (A.14)

Π(eh, αh, ςh) 6= 0 (for h = 0, 1, . . . , z − 1) and (A.15)

ωeh1 + ωeh2 + · · ·+ ωehn = 1 (for h = 0, 1, . . . , z), (A.16)

PROOFS FOR THEOREMS AND LEMMATA 193

where Σ is 0
α0,ς0−→ e1

α1,ς1−→ e2 · · ·
αz−1,ςz−1−→ ez , Σ 6= 0 and e0 is 0.

Note that if (Σ,Ψ) ∈ Γ, then (0
α0,ς0−→ e1

α1,ς1−→ e2 · · ·
αi−1,ςi−1−→ ei, Jαi + ςiKΨ′) must be

in Γ, for some 0 < i < z. And by the semantics, Dbw |= Jαi + ςiKΨ′ if and only if

PNB (αi, ςi, b) 6= 0 and Db′w |= Ψ′, where b′ = BU(αi, ςi, b).

If any one of (A.14), (A.15) or (A.16) cannot be made true, then all of them cannot
simultaneously be true. Now assume that ωei+1

k 6= BT (ei, k, αi, ςi) for some k ∈
{1, 2, . . . , n} and some i ∈ {0, 1, . . . , z − 1}, or Π(ei, αi, ςi) = 0 for some i ∈ {0, 1,
. . ., z − 1}, or ωei+1

1 + ω
ei+1

2 + · · ·+ ω
ei+1
n 6= 1 for some i ∈ {0, 1, . . ., z}. Then,

respectively,

bi+1(wk) 6= b′(wk), where b′ = BU(αi, ςi, b), i.e., bi+1 6= b′,

or
PNB (αi, ςi, b) = 0,

or
n∑
j=1

bi+1(wj) 6= 1,

where bi+1 = {(w1, ω
ei+1

1), (w2, ω
ei+1

2), . . . , (wn, ω
ei+1
n)}. In any case, Jαi + ςiKΨ′ is

unsatisfiable.

8. Π(e, α, ς) 6= 0—for a formula (Σe,Cont(α, ς)) ∈ Γ. If Π(e, α, ς) = 0, then by
definition of Cont(α, ς), there exists no D, b = {(w1, ω

e
1), (w2, ω

e
2), . . ., (wn, ω

e
n)}

and w ∈ C for which Dbw |= Cont(α, ς).

9. Π(e, α, ς) = 0—for a formula (Σe,¬Cont(α, ς)) ∈ Γ. If Π(e, α, ς) 6= 0, then by
definition of Cont(α, ς), there exists no D such that Π(e, α, ς) 6= 0, b = {(w1, ω

e
1),

(w2, ω
e
2), . . ., (wn, ω

e
n)} and w ∈ C for which Dbw 6|= Cont(α, ς).

10. c1ω
e
1 + c2ω

e
2 + · · ·+ cnω

e
n ./ q, where ck = 1 if wk |= ϕ, else ck = 0—for a formula

(Σe,Bϕ ./ q) ∈ Γ. c1ω
e
1+c2ω

e
2+· · ·+cnωen ./ q is false iff

∑
wk∈C, wk|=ϕ b(wk) 6./ q,

where b = {(w1, ω
e
1), (w2, ω

e
2), . . ., (wn, ω

e
n)} iff Dbw |= Bϕ 6./ q iff Bϕ ./ q is

unsatisfiable when c1ω
e
1 + c2ω

e
2 + · · ·+ cnω

e
n 6./ q.

11. Rj = r—for a formula (Σ, φ ⇒ Reward(r)) ∈ Γ, for some j such that wj |= φ.
If Rj = r must be false, then it is not the case that for all w′ ∈ C, Dbw′ 6|= φ or
Dbw′ |= Reward(r). Therefore, in this case, φ⇒ Reward(r) is unsatisfiable.

12. Rj 6= r—for a formula (Σ, φ ⇒ ¬Reward(r)) ∈ Γ, for some j such that wj |= φ.
If Rj 6= r must be false, then it is not the case that for all w′ ∈ C, Dbw′ 6|= φ or
Dbw′ |= ¬Reward(r). Therefore, in this case, φ⇒ ¬Reward(r) is unsatisfiable.

13. Cαj = r—for a formula (Σ, φ ⇒ Cost(α, r)) ∈ Γ, for some j such that wj |= φ.
If Cαj = r must be false, then it is not the case that for all w′ ∈ C, Dbw′ 6|= φ or
Dbw′ |= Cost(α, r). Therefore, in this case, φ⇒ Cost(α, r) is unsatisfiable.

PROOFS FOR THEOREMS AND LEMMATA 194

14. Cαj 6= r—for a formula (Σ, φ ⇒ ¬Cost(α, r)) ∈ Γ, for some j such that wj |= φ.
If Cαj 6= r must be false, then it is not the case that for all w′ ∈ C, Dbw′ 6|= φ or
Dbw′ |= ¬Cost(α, r). Therefore, in this case, φ⇒ ¬Cost(α, r) is unsatisfiable.

15. ωe1(R1−Cα1) +ωe2(R2−Cα2) + · · ·+ωen(Rn−Cαn) ./ q (abbreviated as RC(α, e) ./

q)—for a formula (Σe,UJαK ./ q) ∈ Γ. If RC(α, e) ./ q must be false, then by defi-
nition, UJαK ./ q is unsatisfiable at b, where b = {(w1, ω

e
1), (w2, ω

e
2), . . . , (wn, ω

e
n)}.

16. U(Jα1KJα2K · · · JαyK, ez,) ./ q—for a utility literal of the form (Σez,UJα1K Jα2K · · ·
JαyK ./ q) for y ≥ 2. Let e be an arbitrary activity-point representing belief-state
b = {(w1, ω

e
1), (w2, ω

e
2), . . ., (wn, ω

e
n)}. Then by the generation of SI(Γ) and by the

definition of a structure D,

RC(α, b) = RC(α, e), (A.17)

PNB (α, ς, b) = Π(e, α, ς) and (A.18)

b′(wk) = sωe
′
k = BT (e, k, α, ς), where b′ = BU(α, ς, b). (A.19)

Hence, due to equalities (A.17), (A.18) and (A.19),

RC(α1, ez,) +
∑
ςi∈Ω#

Π(ez, , α1, ςi)U(Λ, ez+1,i) =

RC(α1, ez,) +
∑
ςi∈Ω#

U(Λ,ez+1,i)=r

Π(ez, , α1, ςi) · r =

RC(α1, b
z) +

∑
ς∈Ω

b′=BU(α1,ς,b)
Db′w|=UΛ=r

PNB (α1, ς, b
z) · r ./ q, (A.20)

where bz = {(w1, ω
ez
1), (w2, ω

ez
2), . . . , (wn, ω

ez
n)} and Λ is Jα2K · · · JαyK. Therefore,

if U(Jα1KΛ, ez,) ./ q must be false, Dbzw |= UJα1KΛ ./ q must be false (for all w;
such that D satisfies equalities (A.17), (A.18) and (A.19)).

17. ωei1 + · · ·+ωein = 1—for some activity-point/node ei in some utility tree. If ωei1 + · · ·+
ωein = 1 must be false, then Inequality (A.20) is undefined, where bi = {(w1, ω

ei
1),

(w2, ω
ei
2), . . . , (wn, ω

ei
n)}, bi+1 = {(w1, ω

ei+1

1), (w2, ω
ei+1

2), . . ., (wn, ω
ei+1
n)} and

bi+1 = BU(αi, ς, b
i). Therefore,

UJα1KΛ ./ q cannot be satisfied.

18. Assume

Π(e, α, ς) = 0 || Π(e, α, ς) 6= 0, ωe
′

1 = BT (e, 1, α, ς), . . . , ωe
′
n = BT (e, n, α, ς)

(A.21)
is in SI (Γ) for some e

α,ς−→ e′ in some utility tree. Recall that (A.21) is in SI (Γ) due
to UJα1KΛ ./ q being in Γ.

Let SI−(Γ) be SI (Γ) without (A.21). Recall that SI (Γ) is feasible if and only if
SI−(Γ)∪{Π(e, α, ς) = 0} is feasible or SI−(Γ)∪{Π(e, α, ς) 6= 0, ωe

′
1 =BT (e, 1, α, ς),

PROOFS FOR THEOREMS AND LEMMATA 195

. . ., ωe
′
n = BT (e, n, α, ς)} is feasible. Thus, if SI (Γ) is infeasible due to (A.21), then

(i) SI−(Γ) ∪ {Π(e, α, ς) = 0} must be infeasible and (ii) SI−(Γ) ∪ {Π(e, α, ς) 6= 0,
ωe
′

1 = BT (e, 1, α, ς), . . ., ωe
′
n = BT (e, n, α, ς)} must be infeasible. We assume

Π(e, α, ς) = 0 must be false in case (i). Therefore, in case (ii), Π(e, α, ς) 6= 0 must be
true and at least one of the equations ωe

′
1 = BT (e, 1, α, ς), . . ., ωe

′
n = BT (e, n, α, ς)

must be false.

Suppose it is ωe
′
k = BT (e, k, α, ς) which is false for some k ∈ {1, 2, . . . , n}. Then

b′(wk) 6= BT (e, k, α, ς), where b′ = {(w1, ω
e′
1), . . ., (wk, ω

e′
k), . . ., (wn, ω

e′
n)}. This

implies that b′ 6= BU(α, ς, b), where b = {(w1, ω
e
1), (w2, ω

e
2), . . ., (wn, ω

e
n)}. But

the semantic definition of UJα1KΛ ./ r requires that b′ = BU(α, ς, b) is always true.
Hence, UJα1KΛ ./ r cannot be satisfied.

Theorem 7.3.1: (Soundness) If ` Ψ then |= Ψ. (Contrapositively, if 6|= Ψ then 6` Ψ.)

Proof:
Let ψ = ¬Ψ. Then 6` Ψ if and only if the tree for ψ is open. And

6|= Ψ ⇐⇒ not (∀D) D |= Ψ

⇐⇒ not (∀D, b) Db |= Ψ

⇐⇒ not (∀D, b, w) Dbw |= Ψ

⇐⇒ (∃D, b, w) Dbw |= ψ.

For the soundness proof, it thus suffices to show that if there exists a structure D, a belief-state b
and a world w such that Dbw |= ψ, then the tree rooted at Γ0

0 = {(0, ψ)} is open. But this is a
corollary of Lemma 7.3.1.

Lemma 7.3.2: S is an SDL structure.

Proof:
The components of the structure are well-formed:

• Due to Γ being open (and by the SI phase), we know that SI(Γ) is feasible and hence, there
exists a solution in Z(Γ).

By construction, R maps each action α ∈ A to Rα such that Rα is a relation in (C ×
C) × [0, 1]. Moreover, by the nature of the SI generated from Γ, Rα is a (total) function
Rα : (C × C) 7→ [0, 1].

And by construction, the fact that

prαj,1 + prαj,2 + · · ·+ prαj,n = dprαj,1 + prαj,2 + · · ·+ prαj,ne

is an equation in any SI generated, means that either
∑

w′∈W Rα(wj , w
′) = 1 or∑

w′∈W Rα(wj , w
′) = 0, for every wj ∈ C.

• Due to Γ being open (and by the SI phase), we know that SI(Γ) is feasible and hence, there
exists a solution in Z(Γ).

PROOFS FOR THEOREMS AND LEMMATA 196

By construction, Q maps each action α ∈ A to Qα such that Qα is a relation in (C × Ω)×
[0, 1].

Moreover, by the nature of the SI generated from Γ,Qα is a (total) functionQα : (C×Ω) 7→
[0, 1].

And by construction, the fact that in any SI generated, there is an equation

pr
ς1|α
j + pr

ς2|α
j + · · ·+ pr

ςm|α
j = d(prα1,j + prα2,j + · · ·+ prαn,j)/ne

for all wj ∈ C, if there exists a wi ∈ C such that Rα(wi, wj) > 0, then∑
ς∈ΩQα(wj , ς) = 1, else

∑
ς∈ΩQα(wj , ς) = 0.

• By construction, U = 〈Re,Co〉, where Re : C 7→ R and Co is a mapping from A to a
function Coα : C 7→ R, for each α ∈ A.

Lemma 7.3.3: Let Γ be an open leaf node of a finished tree. We know that Z(Γ) is not empty. If
D is constructed as described above, then for all (Σ,Ψ) ∈ Γ, there exists a b and a w such that
Dbw |= Ψ.

Proof:
The proof will be by induction on the structure of a formula.

The induction step will work as follows. Let γ′ ⊆ Γ be added to Γ due to some rule applied to
γ ⊆ Γ. Thus, we need to prove that IF for all (Σ′,Ψ′) ∈ γ′, there exists a b′ and a w′ such that
Db′w′ |= Ψ′, THEN for all (Σ,Ψ) ∈ γ, there exists a b and a w such that Dbw |= Ψ.

We assume the antecedent (induction hypothesis).

Base case:

• Ψ is c = c′. Because (Σ,⊥) 6∈ Γ for some Σ, rule = was not applied. Hence, c is identical
to c′, and Dbw |= c = c′ (for all b and w).

• Ψ is ¬(c = c′). Because (Σ,⊥) 6∈ Γ for some Σ, rule = was not applied. Hence, c is not
identical to c′, and S, w |= ¬(c = c′) (for all b and w).

• Ψ is Cont(α, ς) (i.e., (Σe,Cont(α, ς)) ∈ Γ). Due to the SI phase,

Π(e, α, ς, n) 6= 0, ωe1 + ωe2 + · · ·+ ωen = 1 ∈ SI(Γ).

By construction, this implies that

n∑
j=1

s
ς|α
j

n∑
i=1

sαi,jsω
e
i 6= 0 and sωe1 + sωe2 + · · ·+ sωen = 1.

iff
n∑

j=1, wj∈C#

Qα(ς, wj)
n∑

i=1, wi∈C#

Rα(wi, wj)b
e(wi) 6= 0,

PROOFS FOR THEOREMS AND LEMMATA 197

where
be = {(w1, sω

e
1), (w2, sω

e
2), . . . , (wn, sω

e
n)}

iff
PNB (α, ς, be) 6= 0

iff
Dbew |= Cont(α, ς).

• Ψ is ¬Cont(α, ς) (i.e., (Σe,¬Cont(α, ς)) ∈ Γ). Due to the SI phase,

Π(e, α, ς, n) = 0 and sωe1 + sωe2 + · · ·+ sωen = 1 ∈ SI(Γ).

By construction, this implies that

n∑
j=1

s
ς|α
j

n∑
i=1

sαi,jsω
e
i = 0 and sωe1 + sωe2 + · · ·+ sωen = 1.

iff
n∑

j=1, wj∈C#

Qα(ς, wj)
n∑

i=1, wi∈C#

Rα(wi, wj)b
e(wi) = 0,

where
be = {(w1, sω

e
1), (w2, sω

e
2), . . . , (wn, sω

e
n)}

iff
PNB (α, ς, be) = 0

iff
Dbew |= ¬Cont(α, ς).

• Ψ is Bϕ ./ q (i.e., (Σe,Bϕ ./ q) ∈ Γ). Due to the SI phase,

c1ω
e
1 + c2ω

e
2 + · · ·+ cnω

e
n ./ q,

and
ωe1 + ωe2 + · · ·+ ωen = 1,

where ck = 1 if wk |= ϕ, else ck = 0.

By construction, this implies that

n∑
k=1, wk∈C#, wk|=ϕ

be(wk) ./ q,

where
be = {(w1, sω

e
1), (w2, sω

e
2), . . . , (wn, sω

e
n)}

iff
Dbew |= Bϕ ./ q.

PROOFS FOR THEOREMS AND LEMMATA 198

• Ψ is UΛ ./ q (i.e., (Σez,UΛ ./ q) ∈ Γ). When Λ is JαK, RC(α, ez) ./ q ∈ SI(Γ). That
is, by construction,

sωez1 (sR1 − sCα1) + sωez2 (sR2 − sCα2) + · · ·+ sωezn (sRn − sCαn) ./ q,

where sωezk , sRk, sC
α
k ∈ sln , for k = 1, 2, . . . , n. Let bz = {(w1, sω

ez
1), (w2, sω

ez
2), . . .,

(wn, sω
ez
n)}. Then,

n∑
k=1,wk∈C#

(
Re(wk)− Coα(wk)

)
bz(wk) ./ q

iff
Dbzw |= UJαK ./ q.

Dealing with (Σez,UJα1KJα2K · · · JαyK ./ q) ∈ Γ, for y ≥ 2 is more complicated: The
inequality added to SI(Γ) is

U(Jα1KJα2K · · · JαyK, ez,) ./ q, (cf. Eq. (7.3), § 7.2.2)

where ez, = ez . That is,

RC(α1, ez,) +
∑
ςi∈Ω#

Π(ez, , α1, ςi)U(Λ, ez+1,i) ./ q,

where
U(JαyK, ez+y−1,x) = RC(αy, ez+y−1,x)

and Λ is Jα2K · · · JαyK.

Let e be an arbitrary activity-point representing belief-state b = {(w1, sω
e
1), (w2, sω

e
2), . . .,

(wn, sω
e
n)}. Then by the generation of SI(Γ) and by construction of D,

RC(α, b) = RC(α, e), (A.22)

PNB (α, ς, b) = Π(e, α, ς) and (A.23)

b′(wk) = sωe
′
k = BT (e, k, α, ς), where b′ = BU(α, ς, b). (A.24)

PROOFS FOR THEOREMS AND LEMMATA 199

Hence, due to equalities (A.22), (A.23) and (A.24),

RC(α1, ez,) +
∑
ςi∈Ω#

Π(ez, , α1, ςi)U(Λ, ez+1,i)

= RC(α1, ez,) +
∑
ςi∈Ω#

U(Λ,ez+1,i)=r

Π(ez, , α1, ςi) · r

= RC(α1, b
z) +

∑
ς∈Ω

b′=BU(α1,ς,b)
Db′w|=UΛ=r

PNB (α1, ς, b
z) · r

./ q,

where bz = {(w1, sω
ez
1), (w2, sω

ez
2), . . . , (wn, sω

ez
n)}. Therefore,

Dbzw |= UJα1KΛ ./ q (for all w).

• Ψ is ϕ ⇒ c = c′. Because (Σ,⊥) 6∈ Γ for some Σ, rule = was not applied. Hence, c is
identical to c′, and Dbw |= c = c′ (for all b and w). Therefore, Dbw |= ϕ⇒ c = c′ (for all
b and w).

• Ψ is ϕ ⇒ ¬(c = c′). Because (Σ,⊥) 6∈ Γ for some Σ, rule = was not applied. Hence, c is
not identical to c′, and S, w |= ¬(c = c′) (for all b and w). Therefore, Dbw |= ϕ⇒ ¬(c =

c′) (for all b and w).

• Ψ is ϕ ⇒ Reward(r). By construction, (w, r) ∈ Re where w |= ϕ. Hence, whenever
Dbw |= ϕ, Dbw |= Reward(r) (for all b). That is, Dbw′ |= ϕ⇒ Reward(r) (for all b and
w′).

• Ψ is ϕ ⇒ ¬Reward(r). By construction, (w, r) 6∈ Re where w |= ϕ. Hence, whenever
Dbw |= ϕ, Dbw |= ¬Reward(r) (for every b). That is, Dbw′ |= ϕ ⇒ ¬Reward(r) (for
all b and w′).

• Ψ is ϕ ⇒ Cost(α, r). By construction, (w, r) ∈ Coα where w |= ϕ. Hence, whenever
Dbw |= ϕ, Dbw |= Cost(α, r) (for all b). That is, Dbw′ |= ϕ ⇒ Cost(α, r) (for all b and
w′).

• Ψ is ϕ ⇒ ¬Cost(α, r). By construction, (w, r) 6∈ Coα where w |= ϕ. Hence, whenever
Dbw |= ϕ, Dbw |= ¬Cost(α, r) (for all b). That is, Dbw′ |= ϕ ⇒ ¬Cost(α, r) (for all b
and w′).

• Ψ is φ⇒ [α]ϕ ./ q. By construction,

c1s
α
j,1 + c2s

α
j,2 + · · ·+ cns

α
j,n ./ q,

where wj |= φ, and ck = 1 if wk |= ϕ, else ck = 0, and the sαj,k are in sln ∈ Z(Γ). Then
as a direct consequence of the construction of D, whenever Dbwj |= φ, Dbwj |= [α]ϕ ./ q

(for all b and wj ∈ C). That is, Dbw′ |= φ⇒ [α]ϕ ./ q (for all b and w′).

PROOFS FOR THEOREMS AND LEMMATA 200

• Ψ is φ⇒ ¬[α]ϕ ./ q. By construction,

c1s
α
j,1 + c2s

α
j,2 + · · ·+ cns

α
j,n 6./ q,

where wj |= φ, and ck = 1 if wk |= ϕ, else ck = 0, and the sαj,k are in sln ∈ Z(Γ). Then as
a direct consequence of the construction of D, whenever Dbwj |= φ, Dbwj |= ¬[α]ϕ ./ q

(for all b and wj ∈ C). That is, Dbw′ |= φ⇒ ¬[α]ϕ ./ q (for all b and w′).

• Ψ is φ⇒ (ς|α) ./ q. By construction,

s
ς|α
j ./ q,

where wj |= φ and sς|αj is in sln ∈ Z(Γ). Then as a direct consequence of the construction
of D, whenever Dbwj |= φ, Dbwj |= (ς|α) ./ q (for all b and wj ∈ C). That is, Dbw′ |=
φ⇒ (ς|α) ./ q (for all b and w′).

• Ψ is φ⇒ ¬(ς|α) ./ q. By construction,

s
ς|α
j 6./ q,

where wj |= φ and sς|αj is in sln ∈ Z(Γ). Then as a direct consequence of the construction
of D, whenever Dbwj |= φ, Dbwj |= ¬(ς|α) ./ q (for all b and wj ∈ C). That is,
Dbw′ |= φ⇒ ¬(ς|α) ./ q (for all b and w′).

Induction step:

• Ψ contains a double negation ¬¬. By rule ¬, (Σ,Ψ′) ∈ Γ, where Ψ′ is Ψ with the ¬¬
removed. By induction hypothesis, Db′w′ |= Ψ′ for some b′ and w′. By the definition of ¬,
Db′w′ |= Ψ.

• Ψ is ψ ∧ ψ′. By rule ∧, (Σ, ψ), (Σ, ψ′) ∈ Γ. By induction hypothesis, Db′w′ |= ψ and
Db′w′ |= ψ′ for some b′ and w′. By the definition of ∧, Db′w′ |= ψ ∧ ψ′.

• Ψ is ¬(ψ ∧ ψ′). By rule ∨, (Σ,¬ψ) ∈ Γ or (Σ,¬ψ′) ∈ Γ. By induction hypothesis,
Db′w′ |= ¬ψ or Db′w′ |= ¬ψ′. By the definition of ∨, Db′w′ |= ¬(ψ ∧ ψ′).

• Ψ is ψ ∨ ψ′. By rule ∨, (Σ,¬ψ) ∈ Γ or (Σ,¬ψ′) ∈ Γ. By induction hypothesis, Db′w′ |=
¬ψ or Db′w′ |= ¬ψ′. By the definition of ∨, Db′w′ |= ¬(ψ ∧ ψ′).

• Ψ is ¬Bϕ ./ q (i.e., (Σ,¬Bϕ ./ q) ∈ Γ). By rule ¬B, (Σ,Bϕ 6./ q) ∈ Γ.2 By induction
hypothesis, Db′w′ |= Bϕ 6./ q. Therefore, Db′w′ |= ¬Bϕ ./ q.

• Ψ is ¬UΛ ./ q (i.e., (Σ,¬UΛ ./ q) ∈ Γ). (This case is similar to the case when Ψ is
¬Bϕ ./ q.) By rule ¬U, (Σ,UΛ 6./ q) ∈ Γ. By induction hypothesis, Db′w′ |= UΛ 6./ q.
Therefore, Db′w′ |= ¬UΛ ./ q.

• Ψ is ϕ⇒ Ψ′, where Ψ′ is not a literal. Due to the preprocessing step, Ψ′ is in CNF. ϕ⇒ Ψ′

can be in one of four forms: (i) ϕ is not definitive and Ψ′ has the form ψ ∧ ψ′, (ii) ϕ is not
2 For conciseness, we abuse notation with 6./. In the case of ./ being =, Γ contains either (Σ,Bϕ < q) or (Σ,Bϕ >

q). By induction hypothesis, Db′w′ |= Bϕ < q, respectively, Db′w′ |= Bϕ < q, which implied Db′w′ 6|= Bϕ = q.

PROOFS FOR THEOREMS AND LEMMATA 201

definitive and Ψ′ has the form ψ ∨ψ′, (iii) ϕ is definitive and Ψ′ has the form ψ ∧ψ′, (iv) ϕ
is definitive and Ψ′ has the form ψ ∨ ψ′.

(i) By rule ⇒ ∧, (Σ, ϕ ⇒ ψ ∧ ϕ ⇒ ψ′) ∈ Γ. By induction hypothesis, Db′w′ |=
ϕ ⇒ ψ ∧ ϕ ⇒ ψ′, which logically implies Db′w′ |= ϕ ⇒ ψ ∧ ψ′, which implies
Db′w′ |= ϕ⇒ Ψ.

(ii) By rule δ ⇒, (Σ, (δ1 ⇒ Φ′) ∧ (δ2 ⇒ Φ′) ∧ · · · ∧ (δn ⇒ Φ′))}, where δi ∈ cpt(ϕ).
By induction hypothesis, Db′w′ |= (δ1 ⇒ Φ′) ∧ (δ2 ⇒ Φ′) ∧ · · · ∧ (δn ⇒ Φ′), which
logically implies Db′w′ |= ϕ⇒ Ψ′.

(iii) By rule ⇒ ∧, (Σ, ϕ ⇒ ψ ∧ ϕ ⇒ ψ′) ∈ Γ. By induction hypothesis, Db′w′ |=
ϕ ⇒ ψ ∧ ϕ ⇒ ψ′, which logically implies Db′w′ |= ϕ ⇒ ψ ∧ ψ′, which implies
Db′w′ |= ϕ⇒ Ψ.

(iv) By rule ⇒ ∨, (Σ, ϕ ⇒ ψ ∨ ϕ ⇒ ψ′) ∈ Γ. By induction hypothesis, Db′w′ |=
ϕ ⇒ ψ ∨ ϕ ⇒ ψ′, which logically implies Db′w′ |= ϕ ⇒ ψ ∨ ψ′, which implies
Db′w′ |= ϕ⇒ Ψ.

• Ψ is Jα + ςKΨ′ (i.e., (Σe, Jα + ςKΨ′) ∈ Γ). By rule Ξ, (Σe
α,ς−→ e′,Ψ′) ∈ Γ. By induction

hypothesis, Db′w′ |= Ψ′. By the SI phase, the following are in SI(Γ).

ωe
′
k = BT (e, k, α, ς, n) (for k = 1, 2, . . . , n),

Π(e, α, ς, n) 6= 0

ωe1 + ωe2 + · · ·+ ωen = 1

and
ωe
′

1 + ωe
′

2 + · · ·+ ωe
′
n = 1.

Hence, by construction,

sωe
′
k =

s
ς|α
k

∑n
i=1 s

α
i,ksω

e
i∑n

j=1 s
ς|α
j

∑n
i=1 s

α
i,jsω

e
i

(for k = 1, 2, . . . , n), (A.25)

n∑
j=1

s
ς|α
j

n∑
i=1

sαi,jsω
e
i 6= 0 (A.26)

sωe1 + sωe2 + · · ·+ sωen = 1

and
sωe

′
1 + sωe

′
2 + · · ·+ sωe

′
n = 1.

Let b = {(w1, sω
e
1), (w2, sω

e
2), . . . , (wn, sω

e
n)} and let b′ = {(w1, sω

e′
1), (w2, sω

e′
2), . . . ,

(wn, sω
e′
n)}. Then by the set of Equations A.25, it must be that b′ = BU(α, ς, b). Further,

Equation A.26 implies PNB (α, ς, b) 6= 0. Therefore,

PNB (α, ς, b) 6= 0 and Db′w′ |= Ψ, where b′ = BU(α, ς, b)

PROOFS FOR THEOREMS AND LEMMATA 202

iff
Dbw |= Jα+ ςKΨ (for all w).

• Ψ is ¬Jα+ςKΨ′. By rule ¬Ξ, (Σ,¬Cont(α, ς)∨Jα+ςK¬Ψ′) ∈ Γ. By induction hypothesis,
Db′w′ |= ¬Cont(α, ς)∨Jα+ςK¬Ψ′, that is,Db′w′ |= ¬Cont(α, ς) orDb′w′ |= Jα+ςK¬Ψ′.
Next, we show that both these cases lead to Db′w′ |= ¬Jα+ ςKΨ′.

By definition,

Dbw |= Jα+ ςKΨ ⇐⇒ PNB (α, ς, b) 6= 0 and Db′′w |= Ψ, where b′′ = BU(α, ς, b).

Hence, if Db′w′ |= ¬Cont(α, ς), then PNB (α, ς, b′) = 0, implying Db′w′ 6|= Jα + ςKΨ′.
And Db′w′ |= Jα + ςK¬Ψ′ implies PNB (α, ς, b′) 6= 0 and Db′′w′ |= ¬Ψ′, where b′′ =

BU(α, ς, b′), which implies Db′w′ 6|= Jα+ ςKΨ′.

Theorem 7.3.2: (Completeness) If |= Ψ then ` Ψ. (Contrapositively, if 6` Ψ then 6|= Ψ.)

Proof:
Let ψ = ¬Ψ. Then 6` Ψ means that there is an open leaf node of a finished tree for ψ. And

6|= Ψ ⇐⇒ (∃D) D 6|= Ψ

⇐⇒ (∃D, b) Db 6|= Ψ

⇐⇒ (∃D, b, w) Dbw 6|= Ψ

⇐⇒ (∃D, b, w) Dbw |= ψ.

For the completeness proof, it thus suffices to construct for some open leaf node of a finished tree
for ψ ∈ LSDL, an SDL structure D = 〈R,Q,U〉 such that there is a belief-state b and a world
w ∈ C such that ψ is satisfied in D at b at w.

By Lemmata 7.3.2 and 7.3.3, given an open leaf node Γ of a finished tree, there exists a structure
D, belief-state b and world w such that for all (Σ,Ψ) ∈ Γ, Dbw |= Ψ. But (0, ψ) ∈ Γ. Thus, if
there is a finished open tableau for ψ, then ψ is satisfiable. The theorem follows directly.

On the decidability of feasibility of systems of inequalities (for SDL)

Lemma A.4.1: Determining whether an SI (as defined in this thesis) is feasible, is decidable.

Proof:
Tarski [1957] defines the first-order logic theory of elementary (real number) algebra as having
an infinite number of variables (representing elements of R), algebraic constants 1, 0, -1, two
algebraic operation signs + (addition) and · (multiplication), two algebraic relation symbols =

(equals) and > (greater than), (logical) sentential connectives ∼ (negation), ∧ (conjunction), ∨
(disjunction), the existential quantifier ∃, and a set of axioms defining the theory. “If ξ is any
variable, then (∃ξ) is called a quantifier expression.3 The expression (∃ξ) is to be read “there
exists a ξ such that .”

3 He actually uses the symbol E for existential quantification.

PROOFS FOR THEOREMS AND LEMMATA 203

We show that every equation, disequation and inequality (or (in)equality for short) to be included
in a system of inequlities as described in Section 7.2.2, can be represented in the language of
first-order elementary algebra (FOEA).

First, assuming A and B are in the language of FOEA, note that any (in)equality of the form

A < B,A ≤ B,A = B,A ≥ B or A > B

is true if and only if, respectively, the FOEA sentence

B > A,∼ (A > B), A = B,∼ (B > A) or A > B

is true. And any (in)equality of the form

A 6./ B

is true if and only if the FOEA sentence

∼ (A ./′ B)

is true, where A ./′ B is the FOEA sentence corresponding to the (in)equality A ./ B. (In the
rest of this section, we denote the FOEA sentence corresponding to the (in)equality A ./ B as
A ./′ B.)

Now it is easy to see that (in)equalities of the forms

c1pr
α
j,1 + c2pr

α
j,2 + · · ·+ cnpr

α
j,n ./ q,

c1pr
α
j,1 + c2pr

α
j,2 + · · ·+ cnpr

α
j,n 6./ q,

pr
ς|α
j ./ q,

pr
ς|α
j 6./ q

have corresponding FOEA sentence representations

(∃prαj,1)(∃prαj,2) · · · (∃prαj,n)c1 · prαj,1 + c2 · prαj,2 + · · ·+ cn · prαj,n ./′ q,
(∃prαj,1)(∃prαj,2) · · · (∃prαj,n) ∼ (c1 · prαj,1 + c2 · prαj,2 + · · ·+ cn · prαj,n ./′ q),

(∃prς|αj)pr
ς|α
j ./′ q,

(∃prς|αj) ∼ (pr
ς|α
j ./′ q),

where ck is the constant 1 or 0, and the prαj,k and prς|αj are variables.

Equation
prαj,1 + prαj,2 + · · ·+ prαj,n = dprαj,1 + prαj,2 + · · ·+ prαj,ne

has the corresponding FOEA sentence representation

(∃prαj,1)(∃prαj,2) · · · (∃prαj,n)(prαj,1 + prαj,2 + · · ·+ prαj,n = 1 ∨ prαj,1 + prαj,2 + · · ·+ prαj,n = 0)

PROOFS FOR THEOREMS AND LEMMATA 204

and equation

pr
ς1|α
j + pr

ς2|α
j + · · ·+ pr

ςm|α
j = d(prα1,j + prα2,j + · · ·+ prαn,j)/ne

has the corresponding FOEA sentence representation

(∃prα1,j)(∃prα2,j) · · · (∃prαn,j)(∃pr
ς1|α
j)(∃prς2|αj) · · · (∃prςm|αj)

(∼ (prα1,j + prα2,j + · · ·+ prαn,j > 0) ∨ prς1|αj + pr
ς2|α
j + · · ·+ pr

ςm|α
j = 1) ∧

(∼ (prα1,j + prα2,j + · · ·+ prαn,j = 0) ∨ prς1|αj + pr
ς2|α
j + · · ·+ pr

ςm|α
j = 0).

It can also be seen that any equation

n∑
j=1

pr
ς|α
j

n∑
i=1

prαi,jω
eh
i = 0

has the corresponding FOEA sentence representation

(∃prς|α1)(∃prς|α2) · · · (∃prς|αn)(∃prα1,1)(∃prα1,2) · · · (∃prαn,n)
n∑
j=1

pr
ς|α
j · (pr

α
1,j · ω

eh
1 + prα2,j · ω

eh
2 + · · ·+ prαn,j · ωehn) = 0,

where the summation symbol
∑n

j=1 in the FOEA sentence is the obvious abbreviation.

And using the summation symbol to its full, it can also be seen that any equation

ω
eh+1

k =
pr
ς|α
k

∑n
i=1 pr

α
i,kω

eh
i∑n

j=1 pr
ς|α
j

∑n
i=1 pr

α
i,jω

eh
i

has the corresponding FOEA sentence representation

(∃prς|α1)(∃prς|α2) · · · (∃prς|αn)(∃prα1,1)(∃prα1,2) · · · (∃prαn,n)

ω
eh+1

k ·
n∑
j=1

pr
ς|α
j ·

n∑
i=1

prαi,j · ω
eh
i = pr

ς|α
k ·

n∑
i=1

prαi,k · ω
eh
i

where A ·
∑n

j=1Bj means A ·B1 + . . .+A ·Bn.

For any (in)equality not given a FOEA sentence representation above, it should be easy for the
reader to derive the FOEA sentence representation.

Tarski provided a finite method which can always decide whether a sentence in the elementary
algebra is in the theory [Tarski, 1957]. Hence, feasibility of SIs is decidable.

BIBLIOGRAPHY

C. Amato, D. Bernstein, and S. Zilberstein. Solving POMDPs using quadratically constrained
linear programs. In Ramon Lopez de Mantaras, editor, Proceedings of the Twentieth Interna-
tional Joint Conference on Artificial Intelligence (IJCAI-07), pages 2418–2424, Menlo Park,
CA, January 2007. AAAI Press.

K. Aström. Optimal control of Markov decision processes with incomplete state estimation. Jour-
nal of Mathematical Analysis and Applications, 10:174–205, 1965.

F. Bacchus. Representing and Reasoning with Uncertain Knowledge. MIT Press, Cambridge,
MA, 1990.

F. Bacchus, A. Grove, J. Halper, and D. Koller. Forming beliefs about a changing world. In
Proceedings of the Twelfth National Conference on Artificial Intelligence, AAAI-94, pages 222–
229, 1994.

F. Bacchus, J. Halpern, and H. Levesque. Reasoning about noisy sensors and effectors in the
situation calculus. Artificial Intelligence, 111(1–2):171–208, 1999.

J. Barwise and J. Etchemendy. The Language of First-Order Logic. Center for the Study of
Language and Information, Stanford, USA, 1992.

R. Bellman. A markov decision process. Journal of Mathematics and Mechanics, 6:679–684,
1957.

M. Ben-Ari. Mathematical Logic for Computer Science. Springer Verlag, London, 2nd edition,
2001.

M. Ben-Ari. Mathematical Logic for Computer Science. Springer Verlag, London Berlin Heidel-
berg, 3rd edition, 2012.

M. Ben-Or, D. Kozen, and J.Reif. The complexity of elementary algebra and geometry. Journal
of Computr and Systems Sciences, 32(2):251–264, 1986.

P. Blackburn, M. De Rijke, and Y. Venema. Modal Logic. Cambridge University Press, Cambridge,
UK, 2001.

P. Blackburn, J. Van Benthem, and F. Wolter, editors. Handbook of Modal Logic, volume 3 of
Studies in Logic and Practical Reasoning. Elsevier, Amsterdam, The Netherlands / Oxford,
UK, 2007.

W. Bledsoe. A new method for proving certain Presburger formulas. In Proceedings of the Fourth
International Joint Conference on Artificial Intelligence, volume 1 of IJCAI’75, pages 15–21,

BIBLIOGRAPHY 206

San Francisco, CA, USA, 1975. Morgan Kaufmann Publishers Inc. URL http://dl.acm.

org/citation.cfm?id=1624626.1624629.

C. Boutilier and D. Poole. Computing optimal policies for partially observable decision processes
using compact representations. In Proceedings of the Thirteenth National Conference on Artifi-
cial Intelligence (AAAI-96), pages 1168–1175, Menlo Park, CA, 1996. AAAI Press.

C. Boutilier, T. Dean, and S. Hanks. Decision-theoretic planning: Structural assumptions and
computational leverage. Journal of Artificial Intelligence Research (JAIR), 11:1–94, 1999.

C. Boutilier, R. Reiter, M. Soutchanski, and S. Thrun. Decision-theoretic, high-level agent pro-
gramming in the situation calculus. In Proceedings of the Seventeenth National Conference on
Artificial Intelligence (AAAI-00) and of the Twelfth Conference on Innovative Applications of
Artificial Intelligence (IAAI-00), pages 355–362. AAAI Press, Menlo Park, CA, 2000. ISBN
0-262-51112-6.

R. Brachman and H. Levesque. Knowledge representation and reasoning. Morgan Kaufmann,
San Fransisco, CA, 2nd edition, 2004.

G. Brewka. Nonmonotonic Reasoning: Logical Foundations of Commonsense (Cambridge Tracts
in Theoretical Computer Science). Cambridge University Press, reissue edition, 2012.

A. Cassandra, L. Kaelbling, and M. Littman. Acting optimally in partially observable stochastic
domains. Technical Report CS-94-20, Brown Universiteit Leuven, Department of Computer
Science, Providence, Rhode Island 02912, 1994.

M. Castilho, O. Gasquet, and A. Herzig. Formalizing action and change in modal logic I: The
frame problem. Journal of Logic and Computation, 9(5):701–735, 1999.

A. Chagrov and M. Zakharyaschev. Modal Logic (Oxford Logic Guides, Vol. 35). Oxford Univer-
sity Press, Oxford, England, 1997.

B. Chellas. Modal Logic: an introduction. Cambridge University Press, Cambridge, MA, 1980.

G. Collins. Quantifier elimination for real closed fields by cylindrical algebraic decomposition. In
The Second GI Conference on Automata Theory and Formal Languages, pages 515–532, 1975.

G. Dantzig. Linear Programming and Extensions. Princeton University Press, 1963 & 1998.

A. Darwiche. Bayesian Networks. In B. Porter F. Van Harmelen, V. Lifshitz, editor, The Handbook
of Knowledge Representation, pages 467–510. Elsevier Science, 2008.

G. De Giacomo and M. Lenzerini. PDL-based framework for reasoning about actions. In Topics
in Artificial Intelligence, (Proceedings of IA*AI’95), volume 992 of Lecture Notes in Computer
Science, pages 103–114. Springer Verlag, 1996.

M. De Weerdt, F. De Boer, W. Van der Hoek, and J.-J. Meyer. Imprecise observations of mo-
bile robots specified by a modal logic. In Proceedings of the Fifth Annual Conference of the
Advanced School for Computing and Imaging (ASCI-99), pages 184–190, 1999.

L. Dines. Systems of linear inequalities. The Annals of Mathematics, 20(3):191–199, 1919. ISSN
0003486X.

BIBLIOGRAPHY 207

R. Fagin and J. Halpern. Reasoning about knowledge and probability. Journal of the ACM, 41(2):
340–367, 1994.

R. Fagin, J. Halpern, and N. Megiddo. A logic for reasoning about probabilities. Information and
Computation, 87:78–128, 1990.

J. Ferrante and C. Rackoff. A decision procedure for the first order theory of real addition with or-
der. SIAM Journal of Computation, 4(1):69–76, 1975. doi: http://dx.doi.org/10.1137/0204006.

D. Fierens, H. Blockeel, M. Bruynooghe, and J. Ramon. Logical bayesian networks and their
relation to other probabilistic logical models. In S. Kramer and B. Pfahringer, editors, ILP
2005, volume 3625 of LNAI, pages 121–135, Heidelberg/Berlin, 2005. Springer Verlag.

M. Fitting. Introduction. In M. D’ Agostino, D. Gabbay, R. Hähnle, and J. Posegga, editors, Hand-
book of Tableau Methods, pages 1–44. Kluwer Academic Publishers, Dordrecht, The Nether-
lands, 1999.

A. Gabaldon and G. Lakemeyer. ESP: A logic of only-knowing, noisy sensing and acting. In
Proceedings of the Twenty-second National Conference on Artificial Intelligence (AAAI-07),
pages 974–979. AAAI Press, 2007.

P. Gärdenfors. Knowledge in Flux: Modeling the Dynamics of Epistemic States. MIT Press,
Massachusetts/England, 1988.

S. Gass. Linear programming : methods and applications. Dover Publications, fifth edition, 2010.

H. Geffner and B. Bonet. Solving large POMDPs using real time dynamic programming. In In
Working Notes of AAAI Fall Symposium on POMDPs, 1998.

H. Geffner and J. Wainer. Modeling action, knowledge and control. In Proceedings of the Euro-
pean Conference on Artificial Intelligence (ECAI-98), pages 532–536, 1998.

R. Goré. Tableau methods for modal and temporal logics. In M. D’ Agostino, D. Gabbay,
R. Hähnle, and J. Posegga, editors, Handbook of Tableau Methods, pages 297–396. Kluwer
Academic Publishers, Dordrecht, The Netherlands, 1999.

A. Grove, J. Halpern, and D. Koller. Random worlds and maximum entropy. Journal of Artificial
Intelligence Research (JAIR), 2:33–88, 1994.

J. Halpern. Reasoning about Uncertainty. The MIT Press, Cambridge, MA, 2003.

D. Harel, D. Kozen, and J. Tiuryn. Dynamic Logic. MIT Press, Cambridge, MA, 2000.

J. Hintikka. Knowledge and belief. Cornell University Press, Ithaca, NY, 2nd edition, 1962.

R. Howard. Dynamic Programming and Markov Processes. MIT Press, Cambridge, MA, 1960.

Z. Huang, M. Masuch, and L. Pólos. ALX, an action logic for agents with bounded rationality.
Artificial Intelligence, 82:75–127, 1996.

G. Hughes and M. Cresswell. A New Introduction to Modal Logic. Routledge, New York, NY,
1996.

BIBLIOGRAPHY 208

L. Iocchi, T. Lukasiewicz, D. Nardi, and R. Rosati. Reasoning about actions with sensing under
qualitative and probabilistic uncertainty. ACM Transactions on Computational Logic, 10(1):
5:1–5:41, 2009.

M. Jaeger. A logic for default reasoning about probabilities. In Proceedings of the Tenth In-
ternational Conference on Uncertainty in Artificial Intelligence, UAI’94, pages 352–359, San
Francisco, CA, USA, 1994. Morgan Kaufmann Publishers Inc. ISBN 1-55860-332-8. URL
http://dl.acm.org/citation.cfm?id=2074394.2074439.

E. Jaynes. Where do we stand on maximum entropy? In The Maximum Entropy Formalism, pages
15–118. MIT Press, 1978.

L. Kaelbling, M. Littman, and A. Cassandra. Planning and acting in partially observable stochastic
domains. Artificial Intelligence, 101(1–2):99–134, 1998.

T. Käufl. Reasoning about systems of linear inequalities. In E. Lusk and R. Overbeek, editors,
Proceedings of the Ninth International Conference on Automated Deduction, volume 310 of
LNCS, pages 563–572. Springer Verlag, 1988. ISBN 3-540-19343-X.

G. Kern-Isberner, editor. Conditionals in Nonmonotonic Reasoning and Belief Revision: Consid-
ering Conditionals as Agents. Number 2087 in Lecture Notes in Computer Science. Springer
Verlag, Berlin/Heidelberg, 2001. ISBN 3-540-42367-2.

S. Koenig. Agent-centered search. Artificial Intelligence Magazine, 22:109–131, 2001. ISSN
0738-4602. URL http://dl.acm.org/citation.cfm?id=567363.567371.

B. Kooi. Probabilistic dynamic epistemic logic. Journal of Logic, Language and Information, 12
(4):381–408, 2003.

R. Kowalski. Computational Logic and Human Thinking. Cambridge University Press, The Ed-
inburgh Building, Cambridge, UK, 2011.

R. Kowalski and M. Sergot. A logic-based calculus of events. New Generation Computing, 4:
67–95, 1986.

S. Kripke. A completeness theorem in modal logic. Journal of Symbolic Logic, 24(1):1–14, 1959.

D. Kroening and O. Strichman. Decision Procedures: An Algorithmic Point of View. Texts in
Theoretical Computer Science. Springer Verlag, 2008. ISBN 978-3-540-74104-6.

G. Lakemeyer and H. Levesque. A semantic characterization of a useful fragment of the situation
calculus with knowledge. In Special issue in honor of John McCarthy, Artificial Intelligence.
Elsevier, 2010.

H. Levesque and G. Lakemeyer. Situations, si! Situation terms no! In Proceedings of the Con-
ference on Principles of Knowledge Representation and Reasoning (KR-04), pages 516–526.
AAAI Press, 2004.

H. Levesque and G. Lakemeyer. Cognitive Robotics. In B. Porter F. Van Harmelen, V. Lifshitz,
editor, The Handbook of Knowledge Representation, pages 869–886. Elsevier Science, 2008.

BIBLIOGRAPHY 209

H. Levesque and F. Pirri, editors. Logical Foundations for Cognitive Agents: Contributions in
Honor of Ray Reiter. Springer Verlag, 1999.

H. Levesque, R. Reiter, Y. Lespérance, F. Lin, and R. Scherl. GOLOG: A logic programming
language for dynamic domains. Journal of Logic Programming, 31(1–3):59–84, 1997.

W. Lovejoy. A survey of algorithmic methods for partially observed Markov decision processes.
Annals of Operations Research, 28:47–66, 1991.

J. McCarthy. Situations, actions and causal laws. Technical report, Stanford University, 1963.

J. McCarthy and P. Hayes. Some philosophical problems from the standpoint of artificial intelli-
gence. Machine Intelligence, 4:463–502, 1969.

J.-J. Meyer. Dynamic logic for reasoning about actions and agents. In Jack Minker, editor,
Logic-based artificial intelligence, pages 281–311. Kluwer Academic Publishers, Norwell, MA,
USA, 2000. ISBN 0-7923-7224-7. URL http://dl.acm.org/citation.cfm?id=

566344.566365.

G. Monahan. A survey of partially observable Markov decision processes: Theory, models, and
algorithms. Management Science, 28(1):1–16, 1982.

T. Motzkin. Beiträge zur Theorie der linearen Ungleichungen. PhD thesis, Universitat Zurich,
1936.

K. Murty. Linear programming. John Wiley and sons, revised edition, 1983.

N. Nilsson. Probabilistic logic. Artificial Intelligence, 28:71–87, 1986.

J. Pineau. Tractable Planning Under Uncertainty: Exploiting Structure. PhD thesis, Robotics
Institute, Carnegie Mellon University, 2004.

J. Pineau, G. Gordon, and S. Thrun. Point-based value iteration: An anytime algorithm for
POMDPs. In Proceedings of the International Joint Conference on Artificial Intelligence (IJ-
CAI), pages 1025–1032, August 2003.

D. Poole. Decision theory, the situation calculus and conditional plans. Linköping Electronic
Articles in Computer and Information Science, 8(3), 1998.

D. Poole. The independent choice logic and beyond. In L. De Raedt, P. Frasconi, K. Kersting, and
S. Muggleton, editors, Probabilistic Inductive Logic Programming: Theory and Application,
volume 4911 of Lecture Notes in Artificial Intelligence, pages 222–243. Springer Verlag, 2008.

D. Poole and A. Mackworth. Artificial Intelligence: Foundations of Computational Agents. Cam-
bridge University Press, New York, USA, 2010.

S. Popkorn. First Steps in Modal Logic. Cambridge University Press, 1994.

H. Prendinger and G. Schurz. Reasoning about action and change: A dynamic logic approach.
Journal of Logic, Language and Information, 5(2):209–245, 1996.

M. Puterman. Markov Decision Processes: Discrete Dynamic Programming. Wiley, New York,
NY, 1994.

BIBLIOGRAPHY 210

R. Reiter. The frame problem in the situation calculus: A simple solution (sometimes) and a
completeness result for goal regression. In V. Lifschitz, editor, Artificial intelligence and math-
ematical theory of computation: papers in honor of John McCarthy, pages 359–380. Academic
Press Professional, Inc., San Diego, CA, USA, 1991.

R. Reiter. Knowledge in action: logical foundations for specifying and implementing dynamical
systems. MIT Press, Massachusetts/England, 2001.

G. Rens. A belief-desire-intention architecture with a logic-based planner for agents in stochastic
domains. Master’s thesis, School of Computing, University of South Africa, 2010.

G. Rens, I. Varzinczak, T. Meyer, and A. Ferrein. A logic for reasoning about actions and explicit
observations. In Jiuyong Li, editor, AI 2010: Advances in Artificial Intelligence: Proceed-
ings of the Twenty-third Australasian Joint Conference, volume 6464 of LNAI, pages 395–404,
Berlin/Heidelberg, December 2010. Springer Verlag. ISBN 978-3-642-17431-5.

G. Rens, G. Lakemeyer, and T. Meyer. A logic for specifying agent actions and ob-
servations with probability. In K. Kersting and M. Toussaint, editors, Proceedings of
the Sixth Starting AI Researchers’ Symposium (STAIRS 2012), volume 241 of Fron-
tiers in Artificial Intelligence and Applications, pages 252–263. IOS Press, 2012. url:
http://www.booksonline.iospress.nl/Content/View.aspx?piid=31509.

G. Rens, T. Meyer, and G. Lakemeyer. On the logical specification of probabilistic transition
models. In Proceedings of the Eleventh International Symposium on Logical Formalizations
of Commonsense Reasoning (COMMONSENSE 2013), University of Technology, Sydney, May
2013. UTSe Press. URL http://www.commonsense2013.cs.ucy.ac.cy/docs/

commonsense2013_submission_9.pdf.

G. Rens, T. Meyer, and G. Lakemeyer. SLAP: Specification logic of actions with probability.
Journal of Applied Logic, 12(2):128–150, 2014a. ISSN 1570-8683.

G. Rens, T. Meyer, and G. Lakemeyer. A logic for specifying stochastic actions and observations.
In C. Beierle and C. Meghini, editors, Proceedings of the Eighth International Symposium on
Foundations of Information and Knowledge Systems (FoIKS), Lecture Notes in Computer Sci-
ence, pages 305–323. Springer-Verlag, 2014b.

S. Ross, J. Pineau, S. Paquet, and B. Chaib-draa. Online planning algorithms for POMDPs. Jour-
nal of Artificial Intelligence Research (JAIR), 32:663–704, 2008. doi: http://dx.doi.org/10.1613/
jair.2567.

S. Russell and P. Norvig. Artificial intelligence: A Modern Approach. Prentice Hall, New Jersey,
2nd edition, 2003.

J. Sack. Extending probabilistic dynamic epistemic logic. Synthese, 169:124–257, 2009.

S. Sanner and K. Kersting. Symbolic dynamic programming for first-order POMDPs. In Pro-
ceedings of the Twenty-fourth National Conference on Artificial Intelligence (AAAI-10), pages
1140–1146. AAAI Press, 2010.

A. Seidenberg. A new decision method for elementary algebra. Annals of Mathematics, 60:365–
374, 1954.

BIBLIOGRAPHY 211

A. Shirazi and E. Amir. Probabilistic modal logic. In Proceedings of the Twenty-second National
Conference on Artificial Intelligence (AAAI-07), pages 489–494. AAAI Press, 2007.

R. Shostak. On the SUP-INF method for proving Presburger formulas. Journal of the ACM, 24
(4):529–543, October 1977. ISSN 0004-5411. doi: http://doi.acm.org/10.1145/322033.322034.

R. Smallwood and E. Sondik. The optimal control of partially observable Markov processes over
a finite horizon. Operations Research, 21:1071–1088, 1973.

T. Smith and R. Simmons. Point-based POMDP algorithms: Improved analysis and implemen-
tation. In Proceedings of the Twenty-first Conference on Uncertainty in Artificial Intelligence
(UAI-05), pages 542–549. AUAI Press, 2005.

A. Tarski. A decision method for elementary algebra and geometry. Technical report, The RAND
Corporation, Santa Monica, Calif., 1957.

S. Thiébaux, J. Hertzberg, W. Schoaff, and M. Schneider. A stochastic model of actions and plans
for anytime planning under uncertainty. International Journal of Intelligent Systems, 10(2):
155–183, 1995.

M. Thielscher. From situation calculus to fluent calculus: State update axioms as a solution to the
inferential frame problem. Artificial Intelligence, 111(1–2):277–299, 1999.

S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics. MIT Press, Massachusetts/England,
2005.

J. Van Benthem, J. Gerbrandy, and B. Kooi. Dynamic update with probabilities. Studia Logica,
93(1):67–96, 2009.

J. Van Diggelen. Using modal logic in mobile robots. Master’s thesis, Cognitive Artificial Intelli-
gence, Utrecht University, 2002.

H. Van Ditmarsch, W. Van der Hoek, and B. Kooi. Dynamic Epistemic Logic. Springer Verlag,
Dordrecht, The Netherlands, 2007.

Y. Virin, G. Shani, S. Shimony, and R. Brafman. Scaling up: Solving pomdps through value based
clustering. In Proceedings of the Twenty-second AAAI Conference on Artificial Intelligence
(AAAI-07), pages 1290–1295, Menlo Park, CA, July 2007. AAAI Press.

C. Wang and J. Schmolze. Planning with POMDPs using a compact, logic-based representation.
In Proceedings of the Seventeenth IEEE International Conference on Tools with Artificial Intel-
ligence (ICTAI-05), pages 523–530, Los Alamitos, CA, USA, 2005. IEEE Computer Society.

