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Abstract

The main goal of this thesis is to show how the use of quantum states of light in bio-
sensing with surface plasmon resonance (SPR) gives an enhancement over using classical
states. SPR is a highly sensitive technique for monitoring changes in the optical prop-
erties of a substance in the immediate vicinity of a sensor surface, which makes it very
useful in biosensing and surface science research. We focus primarily on a bio-sensing
SPR setup known as the Kretschmann configuration in which surface plasmons are ex-
cited using a bulk prism and a gold coated microscope slide. The excitation is performed
by means of an evanescent field arising from total internal reflection from the backside
of the sensor surface.

We show theoretically that using quantum states of light such as the Fock state, two-
mode squeezed vacuum and two-mode squeezed displaced state improves the precision
in the estimation of kinetic parameters measured from the sensorgrams produced by the
Kretschmann configuration. Quantum states of light allow us to measure the parameters
more accurately in comparison to the use of classical states of light. We look at a theoret-
ical application of quantum bio-sensing in an immobilized Bovine serum albumin (BSA)
interaction with anti-BSA, a binding reaction between a phosphate-buffered saline (PBS)
solution that contains Bovine carbonic anhydrase and its inhibitor benzene-sulfonamide,
and a HIV case study. In our HIV case study we look at the binding reaction between a
variant of HIV-1 protease and nelfinavir which is an inhibitor.

The thesis also looks at an experimental implementation of the Kretschmann configura-
tion with light from a single-photon source and shows an enhancement in sensitivity. We
use the spontaneous parametric down conversion process to generate our single photons
which we use to study the binding kinetics of BSA on a gold slide. This experiment is
done with the anticipation that it will be extended in future to a drug kinetics study
with HIV protease as we look at drug development.
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Chapter 1

Introduction and overview

Over the past few years there has been a rapid increase in the number of viral strains springing
up around the world [1]. These viral strains are rapidly evolving, which leads to epidemics and
pandemics. This has made the need for accurate diagnostics to be greater than ever. Along with
accurate diagnostics, quick development of treatment has also become vital to halt the progressive
march of associated diseases. Optical bio-sensors such as those based on surface plasmon resonance
(SPR) have emerged in recent times as the most reliable diagnostic devices owing to their portability,
reproducibility, sensitivity and specificity [1]. SPR allows us to analyse the kinetics of bio-molecular
interactions in a label-free manner. It measures binding constants, association and dissociation
rate constants and stoichiometry for bio-molecular binding interaction kinetics. The practical ap-
plications of SPR analyses include kinetic analysis, equilibrium analysis and concentration analysis,
which are vital for the diagnosis of different stages of a disease such as the EpsteinBarr virus [2].
The diagnosis of different stages of a disease is done through the detection of antibodies interacting
with different antigens (molecular structures on the surface of the virus) present on the virus, i.e.,
different antibodies are produced by the body to combat different stages of the virus development
[2].

SPR technologies have also been used in food monitoring, this includes the detection of antibiotics
in milk samples (using a portable six-channel SPR sensor) [3] and mycotoxin patulin (immuno-
chemical SPR) [4]. SPR was also utilized to monitor the binding kinetics of a dengue antibody with
corresponding dengue antigen in a real-time manner [5]. SPR technologies have been used in such a
wide range of applications that the importance of SPR is not in question. We have seen applications
ranging from the detection and quantification of Enterovirus 71 [6], membrane interaction studies
for virus detection [13] and vaccine design [15]. SPR technology has surpassed the conventional virus
detection methods in its utility, particularly in medical diagnostics and healthcare [15].

While Rufus Ritchie predicted the existence of surface plasmons in 1957 [17], the physical phe-
nomenon of SPR was first observed in 1902 by R. M. Wood at Johns Hopkins University. He
observed that if he shone polarised light onto a metal-backed diffraction grating, a pattern of un-
usual dark and light bands appeared in the reflected light [23]. A few years later, Lord Rayleigh in
1907 developed the first theoretical treatment of this observation of an esoteric optical phenomenon.
In 1968 Otto showed that SPR can be excited by using attenuated total internal reflection [8],
Kretschman and Raether obtained the same results from a different configuration of attenuated to-
tal internal reflection [9, 10]. In 1983 B. Liedberg demonstrated that SPR can be used for biosensing
[74]. It has since become a very powerful label-free tool to study the interactions between target
and bio-recognition molecules. In the early 1990s SPR became the underlying technology in affinity
biosensors for bio-molecular interaction analysis (BIA), which studies the functional properties of
biomolecules [26].

SPR involves the excitation (coherent oscillation) of conduction electrons in a metal at the interface
between the metal and a dielectric medium [25]. This excitation is induced using an electromagnetic
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wave, typically using laser light in the visible spectrum. This phenomenon gives rise to surface
plasmons which are plane waves with a highly confined nano-scale optical field that can be harnessed
and used for sensing purposes [25]. In practice, SPR can be used to develop highly sensitive bio-
sensors [73]. Such bio-sensors are used in biology and medicine tests as they can be used to detect
cancer cells, viruses and DNA material amongst many other organisms. SPR-based bio-sensors have
already been commercialized since the 1990s, and represent a billion dollar industry worldwide, with
companies such as BIACORE and Dynamic Biosensors. Bio-sensors from these companies work with
lasers which produce coherent states of light, coherent light gives us the lower bound of sensitivity in
classical metrology known as the standard quantum limit (SQL). Methods from theory in metrology
gives us theoretical ways/models to quantify and study the sensitivity limitations of our SPR bio-
sensors. In this thesis we will study the transition from the classical regime to the quantum, hence
we require some understanding of quantum metrology in order to understand the limitations of our
bio-sensor when quantum resources are used.

Quantum metrology is defined as the use of quantum theory to make high resolution and sensitive
measurements of physical parameters [18]. Quantum metrology is an extension of classical metrol-
ogy, meaning classical metrology is a subset of quantum metrology (a more fundamental theory).
Quantum metrology extends classical metrology by exploiting quantum phenomena such as quantum
entanglement and quantum squeezing. A central study of quantum metrology is how the precision,
i.e., the variance of the parameter estimate, scales with the number of particles (in the case of optical
bio-sensors this would be the number of photons passing through the system). Here interferometers
can be used to implement general sensing models. The limit of precision or resolution in classical
interferometers is well known and is called the shot-noise limit (another name for the standard quan-
tum limit), quantum mechanical systems have been shown to be able to go beyond the shot-noise
limit of precision, even setting a new limit known as the Heisenberg limit. Quantum metrology has
many potential applications in practice such as the detection of gravitational waves with projects
such as LIGO [24], Where high precision distance measurements must be made of two widely sepa-
rated masses. Other possible applications include sensing in biological and biochemical experiments
[30]. This will be the focus of this thesis, in particular we will look at quantum plasmonic based
sensors, i.e., a sensor which requires the quantum excitation of surface plasmons to work. The topic
of surface plasmons will be discussed further in the second chapter of the thesis.

An important parameter used to characterize a sensors performance is its limit of detection (LOD),
which can be calculated by taking into account the noise in the transduction signal, ∆s, i.e., the
minimum resolvable signal: LOD = ∆s/S, where S is the sensitivity [35]. Hence one can improve the
LOD by increasing the sensitivity or reducing the noise level. While there are obviously many other
things that can be done to improve the sensitivity of SPR-based bio-sensors, the ultimate limitation
is the intrinsic statistical nature of the classical light used, this leads to a shot-noise for ∆s [42].
Studies have shown that by using quantum states of light one can reduce the noise, ∆s, and thereby
improve the LOD of plasmonic sensors and go beyond the shot-noise limit [35, 36, 38, 39].

The sensitivity of a sensor is defined as

Sy =

∣∣∣∣dy

dx

∣∣∣∣ , (1.1)

where x is a parameter to be estimated on the measurement of some quantity y. Precision in the
estimate of x is defined as

∆x =

∣∣∣∣dy

dx

∣∣∣∣−1

∆y. (1.2)

This project is aimed at harnessing the power of quantum states of light and to try and reduce the
noise in the transduction signal ∆y of modern bio-sensors beyond the classical limit known as the
shot-noise limit imposed by classical metrology [28] and hence improve the precision in ∆x. The aim
is to design a quantum SPR-based bio-sensor model that can be used for sensing biological systems,
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such as viruses and bacteria. This will be accompanied with a laboratory experiment in which we
build a SPR setup and a single photon source setup to do sensing. The sensor works as follows, we
have a sample material, also known as an analyte (it could be a virus, a protein or any molecule
in general) which we allow to bind to another agent in solution, also know as a ligand. When the
binding occurs, the refractive index of the bound solution (ligand-analyte complex) will be different
from that of the ligand. The SPR sensor is great at tracking this change in refractive index and we
can use it to monitor the binding and unbinding action of the analyte and ligand. In particular, we
are interested in kinetic models in SPR, that is, we will plot sensorgrams (plots which show a change
in some response unit as a function of time as the refractive index of the sample we are investigating
changes). By using quantum states of light we will be able to lower the noise in the measurement
of data in the system and hence have more accurate data measurements. We will discuss kinetics
in the SPR chapter, but in general these studies are useful for understanding drug interactions with
bacteria or viruses etc.

The quantum part of our research is in the later sections of the thesis, i.e., when we look at the
measurement of binding kinetics using quantum plasmonic resonance sensing. We are interested in
intensity-based measurements in our setup. The goal is to show that by using quantum states of
light the measurement noise in our sensorgram data will be lower than with coherent light, in which
case we can resolve the kinetic parameters better with quantum states.

1.1 Overview of the thesis

This thesis is aimed at studying the field of quantum sensing, in particular quantum plasmonic
sensing and metrology. This thesis looks at a theoretical description of quantum sensing and goes
on to describe an experiment designed to do quantum sensing using single photons. Chapter 2 takes
an in-depth look at quantum sensing by starting with a description of how classical sensing is done.

Outline of the thesis

In chapter 2 we justify the use of quantum resources in biological sensing projects and motivate for
the use of quantum sensing.

Section 2.1 gives an introduction and in depth discussion of classical SPR and how it is used in
bio-sensing.

In section 2.2 we introduce estimation theory, which is vital when looking at metrology. We look at
a derivation the classical and quantum Fisher information equations.

Section 2.3 gives a brief description of the different states of light we look at in this thesis, i.e., both
quantum states and the classical coherent state.

Section 2.4 goes into detail about single-photon sources. This is important when considering the
experimental implementation of the quantum SPR setup with single photons.

Section 2.5 looks at intensity-based quantum plasmonic sensing.

Chapter 3 looks at new work: a theoretical analysis of SPR sensing using quantum states and
parameter estimation from sensorgrams.

Chapter 4 looks at an application of quantum bio-sensing in an HIV study.

Chapter 5 looks at an experimental implementation of quantum sensing.

Chapter 6 gives the conclusion and a look at possible future work in this area of research.
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How to read this thesis

The work in this thesis spans two separate fields of study, i.e., quantum meteorology and plasmonics.
It is a combination of a theoretical study and an experimental study. On the theoretical end, we
focus primarily on formulating general sensing models and using techniques in metrology to study
the sensitivity of these models, which is an important quantifiable property. The models we use
are representative of real experimental setups and hence at times there can be a blurring of the
distinction between a simulation of the model and a real experiment, however we try to distinguish
between the two. From the experimental end we set up a plasmonic sensor which uses a configuration
known as the Kretschmann configuration to excite surface plasmons and a single photon source with
the intent of making a comparison of the precision achieved when using single photons versus classical
coherent light.

So when reading the thesis please note that chapter 2 is about surface plasmons and their excitation.
It is more important for the experimental side of things, but is also relevant for the theoretical work
because our models are representative of the setup we describe in this chapter, especially when we
start looking at the chapter on kinetics. It is also relevant for the theoretical work we do. Section 2.2
on the estimation theory is more important for the theoretical work because it gives a background
of metrology. It helps us understand some fundamental ideas of metrology and how we find the
bounds on precision of our models from metrology. Section 2.4 gives an in depth analysis of our
single-photon source. It is important for the experimental component of our study. Section 2.3 looks
at giving a brief description of the different states of light we used in the theoretical portion of the
thesis and chapter 3 introduces and describes intensity based quantum plasmonic sensing, where
we introduce our reflectivity based model for generating sensorgrams, this is new work. Chapter 4
looks at an application of our model to an HIV case study, also new work. In chapter 5 we look
at experimental work done, where we used single photons from an SPDC source to do plasmonic
sensing and the estimation of kinetic parameters which has not been done before. Chapter 6 is the
conclusion chapter.
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Chapter 2

Plasmonic sensing and quantum
metrology

In this chapter we will motivate for the use of a quantum approach to sensing. We will look at the
limitations of using classical states, i.e., the shot noise limit boundaries and how they are overcome by
considering quantum states of light. We will also look at limitations in sensing in biology, limitations
which can be overcome by using quantum mechanical systems and other limitations which can also
be overcome by quantum mechanics.

The primary objective for researchers in quantum sensing and metrology is to surpass the standard
quantum limit and ideally attain the Heisenberg-limited bounds to precision. Quantum correlated
light can be used to suppress quantum shot noise in interferometric measurements brought about by
coherent states, and thus enhance precision in measurements [41]. Quantum sensing and metrology
are mature applications of quantum technologies as interferometers, atomic clocks, magnetometers,
gyroscopes and accelerometers already operate at the standard quantum limit. In theory a researcher
could enhance their measurements by increasing optical power in an optical setup. However the
reason enhancement of precision in measurements remains a primary focus in metrology, is because
there are situations where precision cannot be improved simply by increasing optical power, due, for
example, to power constraints introduced by optical damage or quantum measurement back-action
[51].

Metrology is defined as the science of measurement. This includes the study of both experimental
and theoretical tools used to measure uncertainty in measurements. Metrology has applications in
medical and health sciences. From a medical or health perspective the sensitivity, precision and
specificity of our sensing devices needs to be very high. A device with a high sensitivity is good for
screening, i.e., taking general people in a population to see if they have a certain disease [63]. Highly
sensitive tests have fewer false negatives and highly specific tests have fewer false positives. A good
diagnostic tool should have both high sensitivity and specificity [63].

2.0.1 Scaling and the effect of noise

A central question of quantum metrology is how the precision scales, i.e., how the variance of the
parameter estimation, scales with the number of particles. In answering this question we begin
by considering a general two-mode sensing model like the one shown in Figure 2.1. Most optical
sensing setups only require a single mode, but they can easily be adapted into two-mode sensing
setups. The reason we are interested in a two-mode setup is because a reference signal can be used
to remove common noise between the signal and reference modes. This is the case for both the
classical and quantum regimes. The model in Figure 2.1 can be adapted for both intensity sensing
or phase sensing.
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Figure 2.1: Model for general two-mode sensing setup. The brown box represents an intermediate
process which depends on the type of sensing being done, e.g., it could be a phase shifter if we are
doing phase sensing or transmissive device if we are doing intensity sensing.

In this section we will take a look at phase sensing, this is important because phase sensing helps
us understand how we reach the noise limits which we have been mentioning so far, i.e., the shot
noise limit otherwise known as the standard quantum limit and the Heisenberg limit. We can use
the model in Figure 2.1 as a guide in implementing different sensing setups. For instance, this type
of Mach-Zehnder setup (such as the one in Figure 2.2) can be used to implement a phase sensing
experiment where mode a is one of the paths and mode b represents another path. By putting some
material in path b which alters the phase, we can essentially, ‘sense’ its presence. We can detect
light from both modes and take an intensity difference measurement to measure this phase shift φ.

Classical interferometers cannot overcome the shot-noise limit. The limit on the precision of the
phase estimation of the phase φ, assuming there is no systematic noise in the system, is given by
∆φ = 1√

N
[18] where N is the mean photon number of the state. Shot noise is a type of noise which

can be modelled by a Poisson process. The coherent state described later in section 2.3 allows us to
reach this limit of measurement or resolution. This is considered as the limit that a classical state
can reach. In Appendix A, we have shown a calculation which shows that indeed the coherent state
does reach this limit of resolution. The reasons behind this being the limit can be understood by
having an understanding of the Fisher information discussed in section 2.2.

By using non-classical states such as the NOON state [19], we can reach the limit of precision
achievable using quantum states, i.e., ∆φ = 1

N . This is called the Heisenberg limit. We have shown
a calculation in the Appendix A which shows that using NOON states we can indeed achieve the
Heisenberg limit of precision assuming no systematic noise in the system.

It is clear that the using quantum mechanical systems we can better resolve phase shifts in experi-
ments for fixed N. We will show the same for intensity sensing in this thesis. Effectively the ability
to resolve sharper changes in these phase or intensity allows us to sense or detect the presence of the
thing we want to sense or even changes in its properties. In the later chapters we will look at the shot
noise in a two-mode intensity sensing setup, we will calculate the precision in an intensity-difference
measurement, 〈∆M̂〉 for the Fock and Coherent input states.
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Figure 2.2: Mach-Zehnder setup showing how we can physically implement a two-mode sensing
setup. By taking an intensity-difference measurement between detectors a and b we can perform
phase sensing. The dotted box around the lasers shows where the region which can be considered
as the input preparation region. The dotted box around the phase shifter shows where the region
which can be considered as the intermediate process region. The dotted box around the detectors
shows where the region which can be considered as the measurement region.

2.0.2 Quantum metrology and its application to biology

Quantum metrology offers a route to overcoming the precision benchmark for optical bio-sensors
set in classical physics [28]. Quantum metrology is becoming particularly relevant in biology where
the limitations on resolution factors imposed in classical physics limit the use of optical bio-sensors
[28]. Quantum mechanics has already seen other important applications in biology, such as position
emission tomography (PET) with entangled photons [29], magnetic resonance imaging (MRI) using
nuclear magnetic resonance [14], and bio-magnetic imaging with superconducting quantum inter-
ference devices (SQUIDs) [11]. The ability to engineer coherence and correlations at the quantum
level allows us to demonstrate quantum-enhanced plasmonic sensing [19, 30], resolution, reduction
in technical noise, immunity to imaging artefacts and characterization of the biological response to
light at the single-photon level.

Above the ability to engineer coherence is the development of new quantum measurements for
improved multi-photon spectroscopy, magnetic imaging and sensing. All this has contributed to
a wide-spread interest in cross-disciplinary research in both biology and quantum metrology. All
measurement processes are governed by the laws of quantum mechanics which imposes constraints
on the precision with which measurements can be made.

Biological system measurements come with many challenges which are linked to measurement pre-
cision as well as other physical challenges such as the effects of light on the biological system, en-
vironmental fluctuations and growth in complexity and dynamics of the system in question. Many
measurements in biological systems are currently limited by the achievable precision, e.g., single-
molecule sensing [28], as well as biological mass measurements.

The precision for some bio-systems has become saturated and their resolution is limited by external
factors. For example, in distinguishing between healthy and cancerous cells, measurements are
limited by cell-to-cell variations rather than instrument sensitivity [28]. Thermal fluctuations also
affect sensitivity measurements because they introduce stochastic motion to small particles. The
ideas in sensing can also be extended to image resolution in biology. The diffraction limit of visible
light also restricts us from resolving images of the biological samples, as demonstrated in Figure 2.3.
All this warrants the use of quantum mechanical systems. We will come back to quantum metrology
in section 2.2.
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Figure 2.3: Length scales in biology. The diffraction limit of visible light restricts far-field imaging
resolution to around 200 nm, which is the approximate scale of organelles. Single proteins or other
biomolecules are not typically observable with a light microscope and super-resolution techniques
are required to study their function and structure. Taken from Ref. [12].

2.1 Surface plasmon resonance

Surface plasmons are surface electromagnetic waves whose propagation is confined to a metaldielec-
tric interface, as shown in Figure 2.4. These surface plasmons can be excited by a electromagnetic
wave. This phenomenon is called SPR. Looking at Figure 2.4 we can see that to excite SPR we
need a source of electromagnetic radiation (laser source) which emits the wave, the electromagnetic
wave hits the metal plate at different angles. In practice (lab experiments) we calibrate our setup
to the point where we have total internal reflection. This is because we excite surface plasmons
over the range of angles where we have total internal reflection in our system. This means that we
need to find the critical angle of our system and scan over the range in which we have total internal
reflection. It is important to note that our setup has a detector which measures the intensity of the
reflected light, this can be a CCD camera or any other detector.

When SPR occurs, the intensity of the reflected electromagnetic wave in Figure 2.4 decreases sharply
as a function of the incident angle, this is referred to as an SPR dip. In general it looks like the plot
in Figure 2.5.

It should be noted that the SPR setup above is also sensitive to changes in the refractive index of the
dielectric medium, n2, meaning if we fix the incident angle to an angle above the critical angle we
can change the refractive index of the dielectric medium and also observe an SPR dip, as shown in
Figure 2.6. This is a very useful property which we will use when we start looking at kinetics, where
we are interested in mixing substances like protein or viruses with other solutions. Due to the mixing
when the refractive index of the solutions change, our setup can measure changes in the reflectivity,
R, to give us a profile of the kinetics of the mixing. Clearly the reflectivity is a function of both
the incident angle and the refractive index, and to access it as a function of one of the parameters
requires that we fix the other parameter. We may however be interested in seeing a profile in which
both the angle and refractive index are changing which leads us to the three dimensional plot shown
in Figure 2.7.

A few key points to note when exciting SPR include the fact that, it only works for thin enough
metal films (the thickness of the metal has to be determined and depends on the metal) and it only
works for a specific polarisation of light. When we get to the Kretschmann configuration some of
these ideas will be repeated but will be more specific.
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Figure 2.4: Exciting surface plasmons. The surface plasmon is on the surface of the metals plate.

Figure 2.5: SPR dip with resonance angle. R is the reflected intensity at fixed refractive index of
the dielectric materials n1 = 1.5 and n2 = 1.39.

Figure 2.6: SPR dip with refractive index of the dielectric material. R is the reflected intensity at
fixed incident angle θ = 73◦ and n1 = 1.5.
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Figure 2.7: SPR dip with refractive index of both the dielectric material and incident angle. The
refractive index n1 = 1.5.
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2.1.1 Evanescent waves

In this section we want to discuss evanescent waves. They are important in the discussion of SPR
and this section gives intuition into what evanescent waves are and how they come about as well as
why they are relevant for SPR. We begin by building the intuition around the phenomenon known
as total internal reflection then lead on to building an intuition about evanescent waves.

We begin by assuming that we have a plane wave incident on some interface at an angle, θi, as
shown in the ray diagram in Figure 2.8. We see that a portion of the wave will be transmitted at
an angle, θt, and a portion will be reflected back at an angle, θr.

Considering Maxwell’s equations and applying general boundary conditions for electromagnetic ra-
diation we can derive a formula to describe the relationship between the angles of incidence, θi, and
transmission, θt, and the indices of refraction of the regions we find them in, n1 and n2, respectively.
This mathematical relationship is commonly referred to as Snell’s law. The relationship is used in
reference to light or other waves passing through a boundary between two different isotropic media
and is useful in giving us a picture of how changing the incidence angle can result in us getting total
internal reflection.

Mathematically Snell’s law is expressed as follows

n1sin(θi) = n2sin(θt). (2.1)

At first glance it may seem that one can generate solutions for any possible combination of, n1, n2,
sin(θi), and sin(θt). Intuitively this would suggest that for any angle of incidence we allow we expect
that there is a measurable angle of transmission. However we start to run into problems when we
try to solve for a general θt, i.e., we rewrite Eq. (2.1) above as

θt = arcsin((n1/n2)sin(θi)). (2.2)

We see that if (n1/n2)sin(θi) > 1, then we have a problem because we cannot get a real solution for,
θt. This is mathematically equivalent to sin(θi) >

n2

n1
.

The incident angle such that, θ = arcsin(n2/n1), is known as the critical angle and is usually written
as, θc. At and above the critical angle we no longer get a solution for the transmitted angle, or we
have angle of refraction of 90-degrees. The interpretation of this phenomenon is usually that there
is no longer a transmitted wave and we get what is know as total internal reflection, i.e., all the
incident light is reflected back into the region with refractive index, n1. This however is not the
complete story and this leads us to a phenomenon known as evanescent waves.

Consider the electric field of the incident electromagnetic wave propagating in Figure 2.8. If we
consider the Figure to be an XY plane then we can represent the electric field of the transmitted
beam as Eq. (2.3) (we are not interested in the incident and reflected beams). This is known as the
planar travelling wave solution of the wave equation, with a harmonic time dependence,

E = E0ei(k·x−ωt). (2.3)

The field propagates in the x and y direction and is constant in the z component hence we have

E = E0ei(kxx+kyy−ωt). (2.4)

Here ω is the temporal angular frequency of the wave and E0 is an amplitude. The magnitude of
the wave vector for the transmitted beam is given as

|k| = n2ω

c
. (2.5)

Due to boundary conditions the wave vector can be expressed as
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Figure 2.8: Ray diagram showing that a portion of the wave will be transmitted at an angle, θt, and
a portion will be reflected back at an angle, θr.

k =
n2ω

c
cos(θt)x̂ +

n2ω

c
sin(θt)ŷ. (2.6)

Substituting the x and y components of k in Eq. (2.4) we get

E = E0(ei
n2ω
c cos(θt)x × ei

n2ω
c sin(θt)y × e−iωt). (2.7)

When we consider the condition for total internal reflection, i.e., n1

n2
sin(θt) > 1 the term with sin(θt),

i.e., n2ω
c sin(θt)y is always real because sin(θt) = n1

n2
sin(θi), which is real. We however do not have

such a general expression for cos(θt), but we know that cos2(θt) + sin2(θt) = 1 from which it follows
that cos(θt) =

√
1− sin2(θt). Hence, if we set the condition that sin2(θt) > 1 ( θi > θc) then we see

that cos(θt) becomes an imaginary number.

We can express, cos(θt) as some arbitrary imaginary number for this total internal reflection con-
dition, i.e., cos(θt) = iε. Hence we have that our electric field, E, can be generalized as E =
E0e−iωtein2

ω
c sin(θt)ye−n2

ω
c εx. If we take the real part of the electric field to get the physical field here

we get Re(E) = E0cos(n2
ω
c sin(θty − ωt))e−n2

ω
c εx. Peatross and Ware detail this in chapter 3.5 of

their book [44]. Physically there is no reason why such an electrical field would not exist, it is a
real electrical field in the x direction. Specifically it is plane wave in the y direction modulated by
some exponential decay. We thus have a wave in the transmitted region that is oriented along the
boundary and gets rapidly weaker as we get further and further from the boundary. Such a wave
is called an evanescent wave and is difficult to detect because it falls off after a few wavelengths.
Evanescent waves are accessible for use in practice. For instance we can detect them by inducing
frustrated total internal reflection as shown in the Figure 2.9. Figure 2.9 is not an exact represen-
tation of the process, for instance the incident and reflection angles are somewhat off, but is aimed
at pointing out the principle ideas behind frustrated total internal reflection.

So we have the incident region with refractive index n1 on either side and n2 in the middle. We
then consider a plane wave from the left and assume most of it is reflected back (i.e., we are above
the critical angle). This means that in our n2 region we will have an evanescent wave which decays
exponentially. If the other boundary, i.e., the other n1 region is close enough the real wave will come
out on the other side( i.e., coupled off in this region). This is what we call frustrated total internal
reflection.
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Figure 2.9: Frustrated total internal reflection.

2.1.2 Evanescent waves and surface plasmons

In this section we will look at a more formal description of excitation of the evanescent waves and
exciting a surface plasmon by looking at a derivation from Ref. [22]. We can use Maxwells equations
to derive the classical field expressions for surface plasmons supported by a single interface. Starting
with the wave equation shown below

∇2E− ε

c2

∂2E

∂2t
= 0. (2.8)

Here, E is the electric field, c is the speed of light and ε is the dielectric function of the material
where we find the electric field. Assuming a harmonic time dependence of our electric field, we can
write our electric vector field as E(r, t) = E(r)e−iωt. If we substitute the harmonic time electric
field expression into the wave equation above we get

∇2E− k2
0εE = 0. (2.9)

Here, k0 is the free-space propagation constant, k0 = ω
c . The above equation is called the Helmholtz

equation. When considering a two-dimensional two-layer geometry in which each layer is an infinite
half-space, as shown in Figure 2.10, the surface waves propagate along the y-direction and are
constant in the x-direction, hence we can write out our electric field expression as E(r) = E(z)eikyy.
ky is the wave vector component parallel to the interface. If we substitute this into the Helmholtz
equation we get the following

∂2E(z)

∂z2
+ (k2

0ε− k2
y)E(z) = 0. (2.10)

For the magnetic field H(z), we have

∂2H(z)

∂z2
+ (k2

0ε− k2
y)H(z) = 0. (2.11)

Using Maxwells curl equations we can solve the above two Eqs. (2.10) and (2.11) to get the field
amplitudes and the propagation constant ky as shown below,

∇×E(r,t) = −µ0
∂H(r, t)

∂t
, (2.12)
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Figure 2.10: A two-layer geometry for a surface plasmon field. The region z < 0 is metallic with
complex dielectric function ε(ω). The dielectric region (z > 0) is air with ε = 1. The interface
between the regions is z = 0.

∇×H(r, t) = ε0ε
∂E(r, t)

∂t
, (2.13)

where ε0 and µ0 are the free-space permittivity and permeability respectively. ∇ is given as ∇ =
ikyŷ + ∂

∂z ẑ, ∂
∂x = 0 and ∂

∂t = −iω. This gives

∂Ey

∂z
− ikyEz = −iωµ0Hx, (2.14)

∂Ex

∂z
= −iωµ0Hy, (2.15)

ikyEx = iωµ0Hz, (2.16)

∂Hy

∂z
− ikyHz = iωεε0Ex, (2.17)

∂Hx

∂z
= iωεε0Ey, (2.18)

ikyHx = iωεε0Ez. (2.19)

We need to satisfy the condition that the electric and magnetic vectors reside in orthogonal planes.
This can be achieved in two distinct ways. We thus define two-modes, a transverse-magnetic (TM)
and transverse-electric (TE) mode where, the TM mode satisfies the condition that Hy = Hz = Ex = 0.
For TM modes we can use Eqs. (2.14)-(2.19) to calculate, Ey and Ez and we use Eq. (2.11) to cal-
culate Hy.

Ey = − i

ωε0ε

∂Hx

∂z
, (2.20)

Ez = − ky

ωε0ε
Hx, (2.21)

∂2Hx

∂z2
+ (k2

0ε− k2
y)Hx = 0. (2.22)

These Eqs.(2.20)-(2.22) are solved separately because the value of ε varies in different materials, e.g.,
air or the prism. The ε for air is almost one at standard temperature and pressure and is one in a
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vacuum. For metals this is more complicated because ε depends of the wavelength of the light which
is being used to probe, i.e., ε = ε(ω). For metals ε(ω) is a complex number with a negative real part
describing the optical response of the material, and an imaginary part describing absorptive loss. It
can be measured experimentally or estimated theoretically using the Drude Model [54],

ε(ω) = 1 +
ωp

2

ω + iγpω
, (2.23)

where ωp is the plasma frequency and γp is the electron collision frequency.

To solve Eq. (2.22) we make the substitution below

kj = k2
y − k2

0ε, (2.24)

where kj is the wave vector component perpendicular to the interface with j = 1 for the metal region
and j = 2 for the air region. The solution of the differential equation is of the form eikyye±kjz. This
is the form of evanescent surface waves where we have +k1 for the metal region and −k2 for the air
region. For the magnetic field we have

Hx(y, z) = αje
ikyye−kzz, (2.25)

where αj is an amplitude and kz = (−1)jkj . Substituting values for the magnetic field into Eqs.(2.20)
and (2.21) gives us the values for the electric fields given as

Ey(y, z) = iαj
kz

ωε0εj
eikyye−kzz, (2.26)

Ez(y, z) = −αj
ky

ωε0εj
eikyye−kzz. (2.27)

The electric field vector in each of the layers is given as

E(r, t) = iαj
kz

iωε0εj
eikyye−kzz(ŷ +

iky

kz
ẑ)e−iωt. (2.28)

By enforcing continuity of Hx and εiEz at z = 0 it follows that

Hx1 = Hx2, (2.29)

which implies
α1 = α2. (2.30)

We also have

Ey1 = Ey2, (2.31)

which implies

k2

k1
= −ε2

ε1
. (2.32)

Using this last equation with Eq. (2.24), we arrive at the dispersion relation given below as

ky = k0

√
ε1ε2
ε1 + ε2

= k0

√
ε(ω)

ε(ω) + 1
. (2.33)
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Figure 2.11: Figure showing propagation relations in different media. The h in the subscript of the
wave number k stands for high index medium. This Figure was taken from Ref. [79].

2.1.3 Coupling strategies and sensing techniques

The surface plasmon is a charge density oscillation that occurs at the interface of two media with
dielectric constants of opposite signs, such as a metal and a dielectric [74]. The existence of this
surface plasmons is dictated by the electromagnetic properties of the metal. Typically gold or silver
are used to excite surface plasmons for the reason that their electromagnetic properties are more
suitable when giving a visible response.

The propagation dispersion relation is useful for describing plasmon excitation and propagation. It
gives us a picture of whether not SPR can occur. We can look at different propagation relations in
different media to have a better understanding of SPR in the Krestchamnn configuration. Figure
2.11 gives us a picture of propagation relations in different media.

The problem in Figure 2.11 is that the surface plasmon modes for an air-metal interface lie below
the light line in air and hence there cannot be coupling since surface plasmon modes cannot couple
to the far field and vice versa (reciprocity theorem). A trick to use to resolve this problem (excite
modes below the light line) is to introduce a high-index medium (for example a prism). In Figure
2.11 we see how it is that surface plasmons at a metal/glass interface can not be excited by light in
the glass. Surface plasmons at a metal-dielectric interface can only be excited when the excitation
condition is satisfied, i.e., the mode matching condition k‖SiO2

= k‖sp for a specific incidence angle
called the resonance angle θ. Figure 2.12 shows this as a crossing point between the dispersion
curves, where light in the glass leaks through to air on the other side of a thin metal layer and a
surface plasmon at the metal/air interface can be excited by the evanescent field.

We require techniques such as the ones mentioned above to excite surface plasmons, this is because
of the momentum mismatch which arises due to the fact that kSPP > k0. The key challenge today in
SPR nano-sensor development lies in providing robust integrated SPR sensors that are increasingly
more sensitive [43]. In general there are four basic methods to excite the surface plasmon: prism
coupling, waveguide coupling, fibre optic coupling and grating coupling. Though prism coupling is
the most convenient SPR configuration and generally has the best sensing LOD, the prism itself is
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Figure 2.12: Figure showing propagation relations in a Kretschmann prism setup and why surface
plasmons at the metal-glass interface cannot be excited. Surface plasmons are excited at the metal-
air interface by making use of a SiO2 prism. We can see this from the meeting of the blue dispersion
line from the prism with the red dispersion curve of the surface plasmon in the air/metal interface.
Surface plasmons at the metal/glass interface can not be excited, i.e., the green curve. This figure
was taken from Ref. [79].

quite bulky and rather difficult to integrate with other optical and electrical components. Waveguide
coupling offers a good alternative to the prism as the waveguide is robust and easy to integrate with
other optical and electrical components. However small the sensing LOD offered by these different
methods is, they also come with two fundamental restrictions that limit their applications. The first
is that the evanescent field in SPR structures only penetrates into the surrounding medium for about
100 nm. This makes it very difficult to detect large target molecules like cells and bacteria [43]. The
second problem is that there is only one surface plasmon to detect the refractive index (RI) change,
hence it is impossible to differentiate the surface RI change and the bulk solution RI change. Models
have been proposed to overcome this problem which enable the sensor to be able to differentiate the
background RI change and surface bound RI change [57], and have a longer penetration length in
the surrounding medium.

There are four main SPR sensing techniques which have been reported, i.e., intensity, wavelength,
angle, and phase interrogations. In this thesis we will focus on two: intensity and phase sensing, as
they are the two main techniques used in the quantum regime [69]. When we consider phase sensing
we will stick to theoretical results in this thesis, however for intensity sensing we will look at both
theory and experimental work with the Kretschmann configuration. In the intensity interrogation
SPR at fixed incident angle, the shift of the SPR dip is translated into the change of reflectivity in
the linear region of the SPR angular or spectral response curve [40]. There are various implementa-
tions of SPR sensing which can be used for intensity sensing where the shift of the SPR dip can be
monitored by measuring the change of reflectivity in the linear region of the SPR angular or spec-
tral response curve. Developments in nanostructure engineering, nanotechnology have also made
plasmonic nanoparticle-based SPR sensing possible [40]. Setups have beeen developed which allow
for quantum plasmonic phase sensing to be done [7]. In such setups, the changes in the refractive
index are picked up in the phase of the optical signal rather than the transmission amplitude. Due
to their ability to perform sensing below the diffraction limit, nanowires can be used as the sensing
medium in the quantum phase sensing setup [38].

2.1.4 SPR experimental setup

The SPR experiment using the Kretschmann configuration can be implemented in the lab using op-
tical elements that can be mounted on common optical tables. The equipment we use was purchased
from Thorlabs. For the classical part, our setup includes a 785nm wavelength semiconductor diode
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un-polarised monochromatic laser light source with 50 mW average power. When we implement the
quantum version of the setup we replace the laser with a single-photon source which is described
in detail in section 2.4. We use a microscope objective (×20) with a calibrated aperture to act as
a beam expander which enlarges the laser beam and produces a collimated beam. Light from the
microscope objective goes to a half wave plate used to maximize the intensity of the out-coming
beam and then through polarizing beam-splitter (PBS) which transmits horizontally (p) polarised
light and reflects out the vertical (s) polarised light, followed by a half-wave plate which we can use
to rotate the polarisation to s or p polarization, as shown in Figure 2.13.

Mirrors guide the beam towards a high-index equilateral prism (n = 1.601). We put SPR glass slides
(gold coated slides of thickness 50nm) on top of the prism. We put index matching liquid between
the surface of the prism and the gold slide to keep the refractive index relatively constant so that
there is no extra layer between the gold slide and the prism. Using gold slides over depositing a
thin film of gold on the surface of the prism has the advantage that it allows us to use optimised
gold thin films (thickness of the gold thin film is critical as it dictates the amount of coupling that
occurs) and allows one to replace the gold surface when it is damaged. Automated rotation stages
are used for adjusting the incident angle θext.

The reflected beam is collected with a CCD detector for the classical case and single-photon detectors
for the quantum case and the intensity data is stored on a computer system. The image below shows
how the components in the setup were arranged. The physical setup which we pass our signal through
is known as the Kretschmann configuration and the setup is shown in Figure 2.13.

Figure 2.13: The experimental setup used for SPR. 785nm laser light is sent through two half wave
plates and a PBS before hitting the prism with the gold slide exciting the surface plasmons in the
metal-air interface. The light reflected from the prism is collected into a CCD detector.

2.1.5 SPR in biology

SPR-based biosensors have been used with considerable success in a wide range of fields, from
fundamental biological studies to clinical diagnosis applications [34, 88]. In SPR biosensing, the
adsorption by a targeted analyte is measured by tracking the change in the response unit (intensity,
resonance angle, etc.) due to coupling of incident light to the propagating surface plasmon.

We have established in the previous section that when we fix the refractive index and change the
resonance angle then we can see a resonance dip profile, as in Figure (2.4). When we change the
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refractive index of the sample the dip position shifts either left or right depending on the change in
refractive index of the dielectric medium above our metal plate. Figure 2.14 shows this shift.

In the SPR dip total internal reflection is attenuated when the light surface plasmon coupling
conditions have been satisfied. This an effect called attenuated total internal reflection (ATR). We
see the normalized reflectance drop down from near-unity to zero. We can certify that the incident
light is converted into a surface plasmon mode. By solving Maxwells equations for the three-layer
system we obtain the reflection coefficient written mathematically as

rsp =
ei2k2zdr23 + r12

ei2k2zdr23r12 + 1
. (2.34)

Where

rlm =

klz

εl
− kmz

εm
klz

εl
+ kmz

εm

. (2.35)

Here l,m ∈ {1, 2, 3}, klz =
√
εlk2

0 + k2
Y and k2

Y = εlk
2
0sin2θin, k0 = ω

c . εl is the respective permittiv-
ity, and d is the thickness of the metal layer.

Figure 2.14: Shift in the angular position of the dip due to changing refractive index of the dielectric
on top of the gold surface. At a refractive index of 1.39 we have the orange resonance curve but as
the refractive index changes to 1.4 the dip shifts to the right and aligns with the red curve.

In kinetics studies researchers look at this angular shift as a function of time. This leads us to
sensorgram plots of angular shifts vs time which are very important in sensing experiments because
they allow us to determine parameters, known as binding constant in kinetics binding experiments.
We will take a more detailed look at these in the next section.

2.1.6 SPR in drug kinetics

SPR is a technique that can be used for measuring bio-molecular interactions in real time in a
label-free environment. A wide range of interactions can be investigated using SPR, i.e., protein-
protein interactions, DNA-DNA interactions, lipid-protein interactions as well as interactions be-
tween biomolecules and non-biological materials. In the SPR setup one of the interactants is immo-
bilized whilst the other, which is passed over the immobilized one, is allowed to free flow in solution.

Association and dissociation constants, ka and kd, respectively are measured and we can see the
association and dissociation behaviour on a sensorgram display. SPR is used to analyze bio-molecular
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interactions and this analysis is quite useful in the following ways: (1) Identifying the binding of
interactants to each other, (2) Determining the affinity of the interactions of the interactants, (3)
Measuring ka and kd, which are useful in helping us determine the association and dissociation rates,
and (4) Calculation of the concentration of one of the interactants.

2.1.7 Interaction kinetics

Interaction kinetics refers to the binding and unbinding processes of ligands [64]. These interaction
kinetics are divided into 3 phases, i.e., association, steady state, dissociation. Association refers to
the binding of the ligand to its receptor, the steady state is the phase where equilibrium is reached
as the amount of molecules binding equals the amount which is unbinding and dissociation is the
breaking of bonds between the molecules.

Figure 2.15: The three phases of interaction kinetics. The response unit is a generalization which
can refer to a change in the resonance angle, the intensity or refractive index depending on what
you are measuring.

When dissociation is very slow it takes a long time before the receptor-ligand complex can be
broken apart, therefore a low pH or high salt is injected to break the interaction. This is known as
regeneration.

The receptor-ligand complex concentration at any time in the system is, ka[L][R]. Where ka is the
association constant measured in [M−1s−1] (per molar per second), and is determined by collision
rates between ligand and receptor molecules. At, t = 0, the ligand concentration can be taken as
[L0] and the receptor concentration is taken as [R0]. As the concentration of the receptor-ligand
complex increases, the concentration of the ligands and receptor molecules decreases. At, t ≥ 0, we
have that the concentration of the ligands [L] = [L0] − [C] and the concentration of the receptors
[R] = [R0]− [C].

Alternatively we can also look at backward reactions in the equilibrium state. A decrease in the
concentration of the complex is directly proportional to the complex concentration, C, and the rate is
given by Ckd where kd is the dissociation constant rate measured in [s−1] (per second). Dissociation
is a first-order reaction.

The law of mass interaction or action states that the rate of a reaction is dependent on the con-
centration of reagents. This implies that the increasing rate and the decreasing rate of complex
formation and destruction at equilibrium should be the same, i.e., ka[L][R] = kd[C]. It follows that
we can obtain the dissociation equilibrium constant of the ligand-receptor interaction given by the
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ratio kd

ka
= kD = [L][R]

[C] . The unit is the molar. The reciprocal of kD, i.e., 1
kD

= kA is called the affin-

ity of the ligand-receptor interaction with a unit of per molar [M−1]. A method/technique known
as equilibrium dialysis can be used to measure affinities of L-R interactions. Equilibrium dialysis is
a procedure where two solutions are separated by a semi-permeable membrane, allowing sufficient
time to pass, the concentration of diffusible substances will be equal on both sides of the membrane.
The initial concentrations of the two reactants are [L0] and [R0] respectively in a bio-sensor cham-

Figure 2.16: The figure shows the use of equilibrium dialysis technique to measure the affinity of a
ligandreceptor interaction with a semi-permeable membrane shown by the dashed line in the middle
of a water chamber. An important assumption is that the association and dissociation rates are of
the same order of magnitude. Figure is taken from Ref. [64].

ber. The complex concentration changes with time before the reactions reach equilibrium and its
evolution is given by

d[C]

dt
= ka[R][L]− kd[C] (2.36)

= ka([R0]− [C])([L0]− [C])− kd[C]. (2.37)

The reaction of the ligand-receptor is a second-order reaction. To solve the equation we use the
pseudo-first-order approximation. We do this by supplying the ligand concentration to the bio-
sensor chamber in great excess to the receptor concentration, which implies that [L0] >> [R0],
hence the amount of ligand used in the binding interactions is negligible compared to the initial
ligand concentration, i.e., [L0]− [C] ≈ [L0]. It follows that

d[C]

dt
= ka([R0]− [C])([L0])− kd[C]. (2.38)

The solution of the above pseudo-first-order equation is given as

[C] =
[L0][R0]

[L0] + kd

ka

(1− e(ka[L0]+kd)t). (2.39)

At time t = τ , the complex concentration in the chamber would be increased to [Cτ ]. At this point
in a SPR experiment this would be the time when the chamber is then washed by a buffer, e.g.,
water. The decreasing rate of the complex can be expressed as

d[C]

dt
= −kd[C]. (2.40)

From the solution, we see the complex concentration decreases exponentially with time from the
start of the elution process t = τ . This is because the concentration of [L] goes to zero with the
introduction of the buffer. To get a full view of the the rather complicated process which is happening
here we refer to Figure 2.17.

From Figure 2.17 we can see clearly that when we push in the buffer we get a resonance dip. After
we do that we allow the analyte to flow through and what we observe is that the resonance dip
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Figure 2.17: The three phases of interaction kinetics. The response unit is a generalization which
can refer to a change in the resonance angle, the intensity or refractive index depending on what
you are measuring. Figures were taken from [48].

shifts on the reflectance vs incident angle plot. Correspondingly we can keep track of this shift over
time and plot a sensorgram which measures the angular shift vs time. From the mathematical model
which follows next we will see that by fitting this sensorgram we will be able to extract the important
binding parameters discussed in the section above. In the experiment we set/fix our angle in a region
around the dip, the most sensitive region is to the left side of the dip and measure the reflectance
change. Either the angle change ∆θ or reflectance change ∆R can be used in the sensorgram. We
will show how they are related in chapter 4.

If we follow the calculations in the paper by Xiao [64], we can formulate a mathematical model
which gives the sensorgram for angular shift vs time. This mathematical model is very useful for
theoretical simulations and helps us get an understanding of the binding kinetics which occur. The
model is

∆θ =

{
A∞(1− e−kst) if 0 ≤ t < τ

Aτe−kd(t−τ). if t ≥ τ

where ∆θ is a change in the resonance angle, t is time, A∞ and Aτ are functions of the concentrations
of the sample, ks, is an observable rate constant, and ks = ka[L0] + kd. We plot the change in the
resonance angle ∆θ as a function of time to get the sensorgram from which we extract the association
and dissociation parameters.
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2.2 Introduction to estimation theory

The chief aim in metrology is to study the fundamental limits to precision when estimating a pa-
rameter. The Cramér-Rao bound quantifies the optimal precision achievable with any measurement
by giving a lower bound on the variance of an unbiased estimator of a deterministic parameter.
The Cramér-Rao bound states that the Fisher information gives a limit on the precision (also called
standard deviation or uncertainty, ∆φ) with which a general parameter, φ, may be determined. The
Cramér-Rao bound is written mathematically as shown below,

∆φ ≥ 1√
F
. (2.42)

Where F is the Fisher information and φ is the parameter being estimated.

In physics, i.e., both classical and quantum physics, many quantities which may be of interest are not
directly accessible. This may either be in principle or due to experimental impediments. An example
would be when we look at quantum mechanical systems where we are interested in measuring the
entanglement and purity of the system, which are non-linear functions of the density matrix [27].
These quantities thus in principle do not correspond to a quantum observable. In such cases we can
resort to indirect measurements inferring the value of the quantity of interest, i.e., through inspecting
a set of data coming from the measurement of a different observable, or a set of observables [27].
Since we are not directly measuring, the indirect measurements we take are approximate or estimated
values of the actual value. This leads us to the study of estimation theory.

Estimation theory is at the heart of quantum and classical metrology. Mathematical statisticians
and physicists alike have long been interested in the problem of estimating values of parameters
from observables which depend on these parameters. Estimation theory is described or defined as
a branch of mathematical statistics which deals with measuring the precision with which we can
estimate the values of parameters of a dataset which depends on these parameters. In general these
parameters are assumed to be random variables.

2.2.1 Classical parameter estimation

In classical measurement systems, we use the probability distribution of measurement outcomes to
define the the Fisher information whereas for quantum measurement processes, the quantum Fisher
information is determined by the quantum state of the probe and the measurement.

2.2.2 Deriving the Cramér Rao bound

In this section we will derive the classical Cramer-Rao bound, that is an inequality which expresses
a lower bound on the variance of unbiased estimators of a deterministic parameter. The derivation
in this section follows Ref. [65]. The derivation may not be immediately obvious at first but the
procedure follows rather trivial steps and should be easy to follow. Say we wish to approximate a
parameter, θ, of some observable, Ō. Assuming that we know the probability distribution function
p(Ō, θ) which relates these two quantities we can make the following mathematical statement∫ ∞

−∞
p(Ō, θ)dŌ = 1. (2.43)

We can differentiate Eq. (2.43) above with respect to θ to get∫ ∞
−∞

∂

∂θ
p(Ō, θ)dŌ =

∂

∂θ
1 = 0. (2.44)

It follows that, ∫ ∞
−∞

∂

∂θ
p(Ō, θ)dŌ = 0. (2.45)
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We can rewrite the above expression as∫ ∞
−∞

1

p(Ō, θ)
(
∂

∂θ
p(Ō, θ))p(Ō, θ)dŌ = 0. (2.46)

The expression in the first part of the equation can be rewritten as

1

p(Ō, θ)
(
∂

∂θ
p(Ō, θ)) =

∂

∂θ
ln(p(Ō, θ)), (2.47)

where ln is the natural logarithm. ∂
∂θ ln(p(Ō, θ)) is called the score and is labelled in some texts as

Iθ. Hence we can rewrite Eq. (2.47) as∫ ∞
−∞

∂

∂θ
ln(p(Ō, θ))p(Ō, θ)dŌ = 0. (2.48)

We can go a step further and multiply both sides of the equation by θ, as shown below

θ ×
∫ ∞
−∞

∂

∂θ
ln(p(Ō, θ))p(Ō, θ)dŌ = θ × 0. (2.49)

It follows easily that, ∫ ∞
−∞

θ
∂

∂θ
ln(p(Ō, θ))p(Ō, θ)dŌ = 0. (2.50)

The expression for the expected value of an unbiased estimator, θ̂, for the parameter, θ, is given by

E[θ̂] = θ. (2.51)

It follows that, ∫ ∞
−∞

θ̂p(Ō, θ)dŌ = θ. (2.52)

Differentiating both sides with respect to θ we get

∂

∂θ

∫ ∞
−∞

θ̂p(Ō, θ)dŌ =
∂

∂θ
θ. (2.53)

It follows that ∫ ∞
−∞

θ̂
∂

∂θ
p(Ō, θ)dŌ = 1. (2.54)

We then divide and multiply by p(Ō, θ) to get∫ ∞
−∞

θ̂
1

p(Ō, θ)

∂

∂θ
(p(Ō, θ))p(Ō, θ)dŌ = 1, (2.55)

where

1

p(Ō, θ)

∂

∂θ
p(Ō, θ) =

∂

∂θ
ln(p(Ō, θ)). (2.56)

So it follows that ∫ ∞
−∞

θ̂
∂

∂θ
ln(p(Ō, θ))p(Ō, θ)dŌ = 1. (2.57)

Subtracting the left-hand side of Eq. (2.50) from Eq. (2.57) we get
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∫ ∞
−∞

θ̂
∂

∂θ
ln(p(Ō, θ))(p(Ō, θ)dŌ−

∫ ∞
−∞

θ
∂

∂θ
ln(p(Ō, θ))p(Ō, θ)dŌ. (2.58)

This equals ∫ ∞
−∞

(θ̂ − θ) ∂
∂θ

ln(p(Ō, θ))p(Ō, θ)dŌ = 1− 0 = 1, (2.59)

(θ̂ − θ) can be considered as an estimation error. The above expression can be rewritten as

E[(θ̂ − θ) ∂
∂θ

ln(p(Ō, θ)] = 1. (2.60)

Using the Cauchy-Schwartz inequality for random variables X and Y given by

E[X2]E[Y 2] ≥ E2[XY ], (2.61)

in Eq. (2.60) above, with X = θ̂ − θ and Y = ∂
∂θ ln(p(Ō, θ)), we can write the expression as

E[(θ̂ − θ)
2
]E[(

∂

∂θ
ln(p(Ō, θ)))2] ≥ E2[(θ̂ − θ) ∂

∂θ
ln(p(Ō, θ)]), (2.62)

but we know that

E2[(θ̂ − θ) ∂
∂θ

ln(p(Ō, θ))] = 12 = 1, (2.63)

so

E[(θ̂ − θ)2]E[(
∂

∂θ
ln(p(Ō, θ)))2] ≥ 1. (2.64)

It follows that

E[(θ̂ − θ)2] ≥ 1

E[( ∂∂θ ln(p(Ō, θ)))2]
, (2.65)

where E[(θ̂ − θ)2] is the variance of the estimator assuming it is unbiased and E[( ∂∂θ ln(p(Ō, θ)))2]
is called the Fisher information or the score of the parameter θ. The Fisher information of the
parameter θ can be written as F(θ).

E[(θ̂ − θ) ≥ 1

F(θ)2
]. (2.66)

This calculation was for the classical case, to convert it to the quantum regime we replace the
probability p(Ō, θ) with the density operator ρθ and the integral

∫∞
−∞ can be replaced by the Trace

operator, Tr, and the score or Fisher information with the quantum score, Lθ.

2.2.3 Quantum parameter estimation

We will now go from the classical Fisher information result to the quantum Fisher information result.
We start by describing the analogy between the classical measurement systems and quantum mea-
surement processes. In the classical setup we have the probability density function, p(Ō, θ), which
is analogous to the density operator, ρθ, in the quantum setup. Similarly, the integral operation,∫∞
−∞, is analogous to taking the Trace, Tr, in the quantum picture and the score, Iθ, defined above

in the classical picture is replaced by a quantum analogue called the quantum score, Lθ. So moving
from the classical Fisher information to the quantum picture involves just performing the mentioned
substitutions or replacements and that is what we do in the section below.
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2.2.4 Quantum Fisher information

In this section we will follow calculations in [28]. The classical Fisher information, F(θ), is given as

E[(
∂

∂θ
ln(p(Ō, θ))2] =

∫ ∞
−∞

(
∂

∂θ
ln(p(Ō, θ))2p(Ō, θ)dŌ. (2.67)

This will now be changed to

F(θ) = Tr(LθLθ
†ρθ). (2.68)

The classical Fisher information expression can be reduced as shown below∫ ∞
−∞

(
∂

∂θ
ln(p(Ō, θ)))2p(Ō, θ)dŌ = 4

∫ ∞
−∞

(
∂

∂θ
(
√

p(Ō, θ))2p(Ō, θ)dŌ. (2.69)

In the quantum picture this is written as

F(θ) = 4Tr((
∂

∂θ
(ρθ

1
2

))2), (2.70)

When the output state is a unitarily transformed pure state, i.e., a state defined as |φ′θ〉 = Uθ |φ〉
and whose derivative is given by |φθ〉 = ∂

∂θUθ |φ〉 the Fisher information is given by

F(θ) = 4(|〈φ′θ|φ′θ〉| − |〈φ′θ|φθ〉|2). (2.71)

In phase sensing Uθ = ein̂θ, hence the derivative

|φ′θ〉 =
∂

∂θ
Uθ |φ〉 = in̂Uθ |φ〉 , (2.72)

in̂Uθ |φ〉 = in̂ |φθ〉 . (2.73)

Using the definition of the Fisher information above we see that

|〈φ′θ|φ′θ〉| = 〈φθ|n̂2|φθ〉 = 〈n̂2〉, (2.74)

|〈φ′θ|φθ〉| = −i〈φθ|n̂|φθ〉 = −i〈n̂〉. (2.75)

Hence, the Fisher information here becomes

F = 4(〈n̂2〉 − 〈n̂〉2) = 4V(n̂). (2.76)

The phase shift operator, Uθ, preserves photon number and hence we can evaluate the Fisher infor-
mation for either the input state or the final state. This shows that fundamentally the sensitivity
of a phase measurement on a pure quantum state depends solely on the photon number variance of
the state in the signal arm of the interferometer. Of course this is only true in the case where we
do not consider technical limitations such as the efficiency of our optical setup and photon number
resolving detectors.

2.2.5 Quantum Fisher information example calculation

NOON state example

We will give an example in this section before we go into the details of the quantum description of
light. A N00N state is written as follows

|ψN00N〉 =
1√
2

(|N〉1 |0〉2 + |0〉1 |N〉2). (2.77)
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The N00N state is defined as a quantum-mechanical many-body entangled state which represents a
superposition of N particles in mode 1 with zero particles in mode 2 and vice versa . The first step
in the calculation is

〈ψN00N| n̂1 |ψN00N〉 = (
1√
2

(〈N|1 〈0|2 + 〈0|1 〈N|2))n̂1(
1√
2

(|N〉1 |0〉2 + |0〉1 |N〉2)). (2.78)

Where n̂1 = â†1â1 and 〈N|1 â
†
1â1 |N〉1 = N, which gives

(
1√
2

(〈N|1 〈0|2 + 〈0|1 〈N|2))n̂1(
1√
2

(|N〉1 |0〉2 + |0〉1 |N〉2)) =
N

2
. (2.79)

Similarly,

〈ψN00N| n̂2
1 |ψN00N〉 = (

1√
2

(〈N|1 〈0|2 + 〈0|1 〈N|2))n̂2
1(

1√
2

(|N〉1 |0〉2 + |0〉1 |N〉2)) =
N2

2
. (2.80)

We then have,
F = 4(〈ψN00N| n̂2

1 |ψN00N〉 − | 〈ψN00N| n̂1 |ψN00N〉 |2), (2.81)

thus
F = N2. (2.82)

From Eq. (2.65)

∆θ ≥ 1√
F
. (2.83)

For the N00N state this is

∆θ = E[(θ̂ − θ) 1
2 ]2 ≥ 1

N
. (2.84)

The standard deviation bound (precision) is smaller than for the classical case [18],

∆θcl = E[(θ̂ − θ) 1
2 ]2 ≥ 1√

N
. (2.85)

2.3 Quantum description of light

Quantum mechanics offers a number fascinating experimental results which are not very intuitive.
There are mathematical models which have been developed over the years to explain the phenomena
of quantum mechanics. We need to look at the different quantum mechanical models for light in
order to be able to understand the various experimental results and techniques which have been
established. We can review the types of predictions one can make about experimental outcomes of
quantum mechanical systems from the mathematics of the quantum models [75].

Looking at classical mechanics, we find that an observable quantity is represented by a variable, x,
for example where x may for instance represent the position of a particle. In the classical regime x
is just a number which may vary as a function of time and/or other parameters. The outcome of an
experiment which measures/obtains the position will just be a numerical value of x.

This is not particularly true for quantum mechanical systems as we generally do not get unique
results but rather we get a range of results which occur with some probability. This means that we
will measure certain values of x and these values lie within some probabilistic distribution curve.
This means that there is a probability associated with the measurement of any one possible outcome.
A consequence of this is that it becomes insufficient to present a single unique solution to describe
all the possible outcomes of a particular quantum mechanical experiment. Ultimately we have to
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represent variables as operators in quantum mechanics, for instance the position variable in the
classical regime becomes a position operator.

States in quantum mechanics are written as |x〉 and they contain the information about all the
possible outcomes. Operators which represent an observable quantity in quantum mechanics have
eigenstates associated with them whose eigenvalues represent the spectrum of possible results that
a measurement of this observable can obtain. Generally we find that most systems are simply
in statistical mixtures of various quantum states, which themselves are superposition of various
eigenstates of some observable. In the rare case where the system is actually in an eigenstate of the
observable we can measure a definite result.

In quantum theory we typically want to make predictions about the results of large ensembles of
measurements and because we usually have large ensembles of quantum mechanical systems we often
want to make predictions which are statistical in nature. For instance, we predict the average values
of measurements performed on large ensembles of systems all prepared in the same state |σ〉 of the
observable, represented by the operator x̂. We can do this by taking the expectation value of the
observables operator

〈x̂〉 = 〈σ| x̂ |σ〉 . (2.86)

Higher order moments can be investigated as well. We can look at x̂2 which leads to the variance
of the system, defined mathematically as

〈4x̂2〉 = 〈x̂2〉 − 〈x̂〉2. (2.87)

Classically non-zero variance (noise) is associated with imperfect preparation of the system. In the
quantum regime ideally prepared systems will exhibit non-zero variance due to the probabilistic
nature of the theory. This variance (non-zero fluctuations) is referred to as quantum noise. In
quantum theory the characteristics of a system with respect to a particular observable are typically
characterizable by the expectation values of all the moments of the observable’s operator however, as
most cases of interest exhibit Gaussian statistics, the system is completely (sufficiently) characterized
by just the first and second order moments.

If we have a classical system characterized by the canonically conjugate variables x and p we can
quantize the system using the canonical quantization procedure first pioneered by the mathematician
and physicist Paul Dirac. In the procedure it sufficient to quantize the classical system by replacing
x and p with the operators x̂ and p̂ in the Hamiltonian and replacing the classical Poisson bracket
with the commutation relation

[x̂, p̂] = x̂p̂− p̂x̂ = i~. (2.88)

2.3.1 Quantum states of light

Number or Fock states

This section follows calculations in Ref. [46]. The Hamiltonian for a single mode of the radiation
field in terms of the number operator can be expressed as

Ĥ = hν(n̂ +
1

2
). (2.89)

The eigenvalues are hν(n + 1
2 ) and the corresponding eigenstates can be represented as |n〉. These

states are known as the number or Fock states and are eigenstates of the number operator n̂, i.e.,

n̂ |n〉 = â†â |n〉 = n |n〉 . (2.90)

â†â is the photon number operator meaning it counts the number of photons in the state |n〉. The
operators â† and â are raising and lowering operators on the series of equally spaced eigenstates,
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which generate new states as follows: â |n〉 =
√

n |n− 1〉 so that â lowers the energy eigenstate and
â† raises it according to â† |n〉 =

√
n + 1 |n + 1〉.

We can generate all possible number states starting with the ground state |0〉 by a successive applica-

tion of the creation operator â†, |n〉 = (â†)n√
n!
|0〉 where

√
n! is a normalization factor. The state |n〉 is

called the n-photon state where n corresponds to the eigenvalue of the corresponding photon number
operator. All states are orthogonal and complete. Since the photon number is exactly defined we
measure/calculate the variance (V) to be zero

Vn = 〈4n̂2〉 = 〈n| 4 n̂2 |n〉 = 〈n| n̂n̂ |n〉 − 〈n| n̂ |n〉2 = 0. (2.91)

The contrast between the classical and quantum descriptions of light can be highlighted by comparing
the average value of the quadrature amplitudes for classical light and light in a number state. In the
classical description of light an arbitrary quadrature amplitude, Xφ, can be described as a function
of the phase angle, φ, according to

Xφ = cosφX1 + sinφX2, (2.92)

where X1 and X2 are the quadratures of Xφ. In the quantum regime we replace the quadrature
variables with quadrature operators, we find the average value of the quadrature amplitude for
light in a particular quantum state by taking the expectation value over the state of interest. The
expectation value is taken as

〈X̂φ〉 = 〈n| X̂φ |n〉 = 0, (2.93)

where X̂1 = 1
2 (â + â†) and X̂2 = 1

2i (â − â†). X̂1 and X̂2 are the real and imaginary parts of
the annihilation operator. The result above is because of the orthogonality of the number states
which ensures that all terms like 〈n| â |n〉 and 〈n| â† |n〉 are zero. We see that for the number state
the average value is always zero irrespective/independent of the quadrature angle whereas in the
classical regime we see that the quadrature amplitude oscillates as a function of the quadrature angle
φ. These are clearly two very different descriptions of light. The vacuum state |0〉 (n=0) plays a
very important role in quantum optical experiments and number states (n > 0) are a rather exotic
resource as they are dissimilar to coherent states.

Coherent states

Incoherent light refers to light with many frequencies and waves out of phase, e.g., multi-mode
thermal states whereas, coherent light refers to light with a small bandwidth of frequencies whose
waves are all in phase. One chief disadvantage of the number states is that they are impractical

for the description of real laser beams [46], this is primarily because they do not represent a well
defined phase. A coherent state |α〉 is a state which has a well defined phase and such states are
the closest quantum approximation to the field generated by a laser. Looking at an idealized way
to produce light in the classical regime we start from an initial state with zero energy in the electric
and magnetic fields and then the electric field is displaced by some means to some non-zero value
given by a parameter α, where α > 0. The now displaced electric field in turn displaces the magnetic
field resulting in a propagating light field. If we stick to the same line of thought however in the

quantum regime this time we can think of ways to displace the vacuum state to some non-zero value
in the hope of producing an oscillating field. However seeing that the vacuum state has zero energy
we expect uniquely quantum features. A displacement operator, D̂, is defined such that it has the
effect of displacing the vacuum state by an amount α which is comparable to the complex classical
amplitude.

|α〉 = D̂(α) |0〉. (2.94)

The |α〉 state is called the coherent state. The operator D̂(α) is defined as D̂(α) = e(αâ†−α?â).
Some properties of the displacement operator are considered here as they prove to be useful in later
calculations.
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Property (1)

D̂(α)
†

= D̂(α)
−1

= D̂(−α), (2.95)

Property (2)

D̂(α)
†
â†D̂(α) = â† + α, (2.96)

Property (3)

D̂(α)
†
âD̂(α) = â + α. (2.97)

Coherent states are normalized to one
〈α|α〉 = 1. (2.98)

This is due to the unitary nature of the displacement operator, another interesting feature of coherent
states is that they are eigenstates of the annihilation operator â,

D̂(α)
†
â |α〉 = D̂(α)

†
âD̂(α) |0〉 = (â + α) |0〉 = α |0〉. (2.99)

Multiplying both sides with the operator D̂ results in the eigenvalue condition

â |α〉 = α |α〉 . (2.100)

In a coherent state the expectation values for the quadrature amplitude operator are similar to
classical variables. This is under the condition that we identify the displacement α with the classical
complex amplitude with the average value of the field oscillating as a function of quadrature angle
i.e,

〈X̂φ〉α = cosφX1 + sinφX2. (2.101)

The expectation value of photon numbers in the coherent state is also similar to that of the classical
regime,

〈â†â〉α = |α|2. (2.102)

The average values of the observables in the classical field are quite similar to those of coherent
states. The chief difference between the number state which contains a finite amount of energy and
coherent states is that coherent states do not contain a definite number of photons. This stems from
the fact that a coherent state |α〉 is made up of a superposition of number states. We see this in
from the equation below

|α〉 =

∞∑
n=0

|n〉 〈α|n〉, (2.103)

where

〈α|n〉 =
αn

√
n!

e−
1
2 |α|

2

. (2.104)

Two different coherent states are not orthogonal to each other

|〈α1|α2〉|2 = |〈0|D̂(α1)
†
D̂(α2)|0〉|2 = |e− 1

2 (|α1|2+|α2|2)+α1
∗α2 |2, (2.105)

then
|e− 1

2 (|α1|2+|α2|2)+α∗1α2 |2 = e−|α1−α2|2 . (2.106)

Any two states with vastly different photon numbers will be approximately orthogonal as |α1 −
α2| >> 1. Thus coherent states form a basis which is over complete, however they can be used as a
basis on which any state |ψ〉 can be expanded. The properties of coherent states are similar to those
of classical coherent light and coherent states offer the closest quantum mechanical approximation
of classical coherent light (laser light). Laser light can often be well approximated by a coherent
state as is true of the statement that laser light can be approximated as idealized classical coherent
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light in certain situations, for instance when a quantum mechanical description is needed. Coherent
states are stable in regard to dissipation meaning a coherent state is transformed into another
coherent state when attenuated. This means that the properties of the laser light remain similar
after attenuation. Coherent states are extensively used in the modelling of laser-based experiments.
In the lab (experimentally) we need two parameters to distinguish different states of light, that is
the intensity and the phase, and since α is a complex number we find that its range of values and
consequently the range of values of the coherent states require a two dimensional representation. The
intensity has a simple quantum mechanical equivalent which is the number operator. The phase does
not have a quantum mechanical equivalent and hence phase operators can only be approximated in
a complex manner through a limit of a series of operators. Since the quadrature amplitude operators
X̂1 and X̂2 are well behaved they lead to a pair of Hermitian operators that describe the field.

Squeezed state

For quantum states the Heisenberg uncertainty principle for the quadrature operator is ∆X1
2∆X2

2 ≥
1
16 , where ∆X1

2 and ∆X2
2 are quadratures variances, ∆Xi

2 = 〈∆Xi
2〉. Single-mode squeezed states

are single mode states which saturate this inequality [33]. The noise in either one of the quadratures
can be made smaller than in the other in squeezed states, therefore in general ∆X1

2 6= ∆X2
2. A

single-mode displaced squeezed vacuum state is represented mathematically as

|α, r〉 = D̂(α)Ŝ(r) |0〉, (2.107)

where Ŝ(r) = e
1
2 (r∗â2−râ†2). The Ŝ(r) operator is called the squeezing operator and r = |r|eiθ is a

complex number where |r| and θ are called the squeezing factor and the squeezing angle respectively.

Classical electrodynamics cannot fully describe features of squeezed states in general because squeezed
states cannot be described as mixtures of coherent states, thus they are ’non-classical’. Nevertheless,
squeezed states can be prepared relatively easily by using non-linear optical elements in the process
of parametric down conversion [46]. Squeezed vacuum states possess vanishing mean values of their
quadratures which makes them relevant for metrology. They are defined as

|r〉 = Ŝ(r) |0〉. (2.108)

The squeezed vacuum state has an average number of photons 〈n̂〉 = sinh(2r), so despite their name,
squeezed vacuum states contain photons, potentially a lot of them. We can express squeezed vacuum
states in their Fock basis as shown below.

|r〉 =
1√

cosh(|r|)

∞∑
n=0

Hn(0)√
n!

(
tanh(|r|)

2
)
n
2 einθ2 |n〉 , (2.109)

where Hn(0) denotes values of the n-th Hermite polynomial at x = 0. For odd n, Hn(x) is antisym-
metric and thus Hn(0)= 0. This implies that squeezed vacuum states are superpositions of Fock
states with only even photon numbers.

We can extend our study of squeezed states to the two-mode setup. We will begin by considering the
two-mode squeezed vacuum (TMSV) state. Mathematically the state is generated from the vacuum
by the two-mode squeezing operation shown below,

|ξ〉2 = Ŝ2(ξ) |0, 0〉, (2.110)

where Ŝ2(ξ) = e(ξ∗âb̂−ξâ†b̂†). The Ŝ2(ξ) operator is called the two-mode squeezing operator and
ξ = |ξ|eiθ is a complex number where |ξ| and θ are called the squeezing factor and the squeezing
angle respectively.
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It is worth noting the two-mode squeezed vacuum state is not a product of squeezed states in modes
a and b, but rather it is correlated between the two modes. It is a superposition of terms with the
same number of photons in both modes. We can see this more clearly by looking at the Fock basis,

|ξ〉2 =
1

cosh(|ξ|)

∞∑
n=0

(−1)neinθtanhn|ξ| |n, n〉 . (2.111)

Various non-linear processes, such as three- and four-wave mixing can be used to generate TMSV
states in a laboratory [46]. An alternative way to generate TMSV states is to mix two single-mode
squeezed vacuum states with opposite squeezing angles on a 50/50 beam-splitter [46].

When we are interested in sensors operating in the high-intensity regime we can extend our study
of squeezed states to the two-mode squeezed displaced (TMSD) state. This state is produced by
performing the two-mode squeezing operation on a vacuum state in one mode and coherent state in
the other mode. The intensity of the coherent state can be very high. The TMSD state is defined
mathematically as

|TMSD〉 = Ŝ2(χ) |0〉a |α〉b . (2.112)

Appendix A shows a calculation of the sensing precision in a two-mode setup when using a TMSD
state as input. TMSD states can be generated via a four-wave mixing process in a double-lambda
configuration provided by a 85Rb vapor cell [72].

Mixed states

The Fock states and coherent states are pure field states. In general we can have mixed states, which
are defined to be field states that are in an incoherent mixture of different pure states. Typically we
represent mixed states by a density operator, ρ which can be written as ρ = a |σ1〉 〈σ1|+a2 |σ2〉 〈σ2|+
... which represents a mixture of the states |σ1〉 , |σ2〉 , |σ3〉 , ... and so forth, with probability weights
given by a1, a2, a3, ... . An important thing to note is the fact that mixed states and superpositions of
states are really different things. A mixed quantum state can be described as one which corresponds
to a probabilistic mixture of pure states. Take for example the superposition state |φ〉 = 1√

2
(|x〉+|y〉).

The density operator of this state is written as ρ = |φ〉 〈φ| and includes cross terms also.

The coherent, Fock, TMSV and TMSD states will all be used in this study in chapter 3. In chapter
5, the experimental part, we will consider single photons (n=1 Fock states).

2.4 Spontaneous parametric down conversion

This physical phenomenon of spontaneous parametric down conversion (SPDC) gives the most ef-
ficient way to produce single-photons and quantum correlations between optical fields. It was dis-
covered at the end of the sixties [70]. The development of new kinds of laser systems and photon
detectors allows SPDC to be used in advanced quantum technologies, such as quantum key distri-
bution [52], quantum computing [52], tailoring of quantum states [108112], quantum imaging [15,
113] and quantum sensing [114].

Advances in quantum optics techniques for conducting experiments using single photons have stim-
ulated much interest in the studies of the fundamentals of quantum mechanics which form the basis
for applications such as quantum sensing, quantum computation and quantum cryptography [51].
At the heart of these experiments is the production of single photons. These single photons exhibit
quantum mechanical properties which are used to encode information in a manner which does not
have a classical equivalent.

One of the features provided by single photons is entanglement, a property that allows for the
quantum states of any two or more single photons to be connected in such a manner that measuring
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Figure 2.18: Setup of the single-photon source. A and B are the two modes.

the state of one of the single photons automatically defines the state of the other, even though
neither particle is in its own well defined state before measurement [49]. Entanglement is a uniquely
quantum mechanical resource (i.e., non-classical) that plays a key role in ensuring a speed up in
computation and security in cryptography which is not achievable classically. Entanglement is a key
resource for producing proof of principle experiments and it is important that we generate the single
photons which can exhibit this feature.

SPDC is a reliable though probabilistic means of producing single photons [47]. The process begins
with an intense pump laser beam which is sent towards a non-linear crystal or a non-linear optical
medium such as KH2PO4 [52]. When the pump laser is incident on the crystal or medium there is a
probability that two lower frequency photons (a correlated photon-pair) will be produced from the
single pump photon.

2.4.1 Experimental setup for SPDC

The layout for a type 1 SPDC single-photon source used in chapter 5 shown in Figure 2.18. A 405
nm wavelength laser beam is sent towards a 3 mm thick β-BaB2O4 (BBO) crystal. The 405 nm
wavelength beam is guided by some mirrors towards the crystal, and this is called the pump beam.
When the pump beam hits the BBO crystal it undergoes SPDC, in which it breaks down into two
beams of higher wavelength, i.e., 810 nm each. These are called the signal and idler. It must be
noted that only a small percentage of pump photons undergo SPDC in the BBO crystal to produce
the idler and signal photon pairs in the output beams.

The photon pairs come out at an angle of three degrees. The lenses after the crystal on both of the
down-conversion arms are there to collimate the idler and signal beams, they also improve collection
by the fibre-couplers, which consist of a 20x microscope objective and an XYZ-translation stage.

Interference filters (800±20) nm are placed before the fibre couplers. These are used to clean up
the beam and ensure we collect specific photon wavelengths. The fibre couplers are connected to
single photon detectors which measure coincidence counts. The coincidence rate is the number
of detections in arms A and B collectively that occur within eight nanoseconds (this is a chosen
coincidence window, it can be changed in general). The count rate is monitored and displayed on a
LABVIEW program.
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2.4.2 Polarisation in non-linear optical materials

This section follows calculations from [59]. In order to understand how single photons are generated
using SPDC we need to understand the non-linear response of materials to an applied electric field.
If we let an electromagnetic field propagate through a dielectric material or medium, the electric field
will behave in such a way that it redistributes the charges of the medium. The electric field acts on
each individual particle within the medium that is, electrons, atoms or molecules. The displacement
of charges is such that the positive charges lie in the direction of the electromagnetic field whereas
the negative charges lie in the opposite direction of the field. This causes the material to become
polarised in charge. If a weak electromagnetic field (small electric field amplitude) is introduced
then the relationship between the polarisation, P, and the incident field E is approximately linear

P ≈ ε0χE. (2.113)

Where χ is the linear susceptibility and ε0 is the permittivity in free space. If we assume the electric
fields and polarisation to be scalar quantities we can neglect the tensor nature of the polarisation.
The linear susceptibility is a measure of how readily or easily the dielectric medium polarizes in
response to the presence of an electromagnetic field. Lasers have a large electric field amplitude out-
put and the experiments of interest in this paper are laser based and hence the above approximation
though very useful in linear optics will not apply here. In this case higher order contributions of
the electric field become significant and the following non-linear response of the material to the field
becomes significant

P = ε0[χ(1)E + χ(2)E2 + χ(3)E3 + . . . ]. (2.114)

Where χ(m) for m > 0 are the susceptibilities for order m. If m=1 then χ(1) = χ. The susceptibilities
typically have small values. The dielectric material which is often used in quantum optics is a crystal,
for example the BBO crystal. Only crystalline materials with the anisotropic (non-centrosymmetric
property) give a non-zero square term in the polarisation expansion, that is χ(2) 6= 0. All crystalline
materials give a non-zero cubic susceptibility tensor, that is χ(3) 6= 0. It is the case that χ(1)

determines the index of refraction and describes the linear reaction of crystals (refraction, dispersion).
χ(1) is also known as the linear polarisability. χ(2) determines non-linear effects such as three-wave
mixing and χ(3) describes the tripling of the light frequency and hyper-parametric scattering.

2.4.3 Second-order non-linear processes

We now look at the second term in Eq. (2.114), which is called the second-order non-linear response
of a dielectric material. The equation is given by

P(2) = ε0χ
(2)E · E. (2.115)

There are three waves present, that is a response wave characterized by P and two pump E waves
which is why the second-order non-linear processes are referred to as three-wave mixing processes.
There are four possible three-wave mixing processes which can be obtained from this non-linearity
[61].

An electric field made of two pump fields oscillating at angular frequencies, ω1, and, ω2, can be
described by

E(r, t) =
1

2
(E1e

i(k1r−w1t) + E2e
i(k2r−w2t) + c.c), (2.116)

where E1 and E2 are the amplitudes of the first and second electric fields respectively and c.c is the
complex conjugate incident on the medium. If we substitute the above equation into the non-linear
polarisation, Eq. (2.115), we get

P(2) = ε0χ
(2)E2,
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Figure 2.19: Second-order non-linear processes. When an electromagnetic field interacts with a
non-linear medium having a non-linear susceptibility χ2, the resulting electromagnetic field contains
second harmonics (2ω1, 2ω2), sum-frequency (ω1+ω2) and difference-frequency (ω1−ω2) components
[66].

=
1

2
ε0χ

2[|E1|2 + |E2|2] +
1

4
ε0χ

2[(E1
2ei(2k1r−2w1t) + E2

2ei(2k2r−2w2t)

+2E1E2e
i((k1+k2)r−(w1+w2)t) + 2E1E2

?ei((k1−k2)r−(w1−w2)t) + c.c]. (2.117)

In the above mathematical description the first two terms [|E1|2 + |E2|2] correspond to optical rec-
tification (a non-linear process where an optical field generates a quasi-DC non-linear polarisation).
The second two terms in the equation represent second-harmonic generation. Each of the two in-
coming pump fields produce a second-harmonic field with half the wavelength of the pump field.

As is shown by the fifth term, the pump beam also generates a field oscillating at a frequency which
is the sum of the original two frequencies. This process is known as sum-frequency generation. The
last term is called difference-frequency generation because it is a generated field with a frequency
which is a difference of the pump field frequencies. All terms are shown in Figure 2.19. Typically
no more than one of the frequency components will be present with any appreciable intensity in
the produced field [100]. This is because each term in Eq. (2.115) has it’s own phase-matching
conditions and it is unlikely that more than one is satisfied for a given frequency component of the
polarization.

The process of difference-frequency generation has many of its practical applications in the amplifi-
cation of signals. For example, in optical parametric amplification a laser with frequency ωp is used
to pump a non-linear crystal. We find that the second harmonic term can generate its own second
harmonic which consequently will be the fourth harmonic of the pump field, however only one of
these can be possible when using a second-order medium, which one is determined by phase-matching
conditions. Processes violating the conditions will be suppressed.

In this thesis the process which is of interest is SPDC. It can be described as a reverse process
to sum-frequency generation and occurs when the pump field oscillating at angular frequency ωp

35



Figure 2.20: Spontaneous parametric down-conversion. A pump photon with frequency ωp propagat-
ing towards a non-linear crystal is spontaneously down-converted into two photons with frequencies
ωs and ωi [66].

generates two optical fields such that ω1 +ω2 = ωp. At the single-photon level this allows a photon of
frequency ωp from a pump beam incident on an anisotropic crystal to be converted into a correlated
photon-pair at lower frequencies.

2.4.4 SPDC fundamentals

SPDC can be defined as a non-linear optical process by which a photon of frequency ωp from a
pump beam is converted into a correlated photon pair (correlated in time of emission, frequency
and momentum) which are at lower frequencies [62]. The pump field is incident on a non-linear
(as shown in Figure 2.20) crystal and though most of the photons from the pump field go through
the crystal, occasionally (probabilistically) interactions between the pump field and molecules in the
crystal result in the pump photon being broken into a correlated photon pair. The two photons
are called the signal and idler and they have wave vectors ks and ki, and frequencies ωs and ωi,
respectively.

The photon pairs produced are orthogonally polarised to the pump polarisation. The direction of
the down-converted photons can be controlled by adjusting the angle between the pump photons
and the optics axis of the crystal. The principles of the SPDC process can be understood by energy
and momentum conservation.

Figure 2.21: Energy and momentum diagrams of a single SPDC process. The process conserves
energy and momentum, which implies that the frequencies of the photons satisfy ωs + ωi = ωp and
their wave vectors ks + ki = kp [66].

The condition ωs + ωi = ωp is known as the frequency-matching condition and ks + ki = kp is
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known as the phase-matching condition, as shown in Figure 2.21. SPDC is stimulated by vacuum
fluctuations which results in the spontaneous conversion of an single photon into two. The incident
energy is all transferred to the generated photons and none to the molecules of the crystal, meaning
the crystal is left unchanged and hence the process is parametric. The process is called a down-
conversion process because the generated photons have a lower energy than the incident photon.

2.4.5 Choosing an appropriate crystal for SPDC

The frequency-matching and phase-matching conditions are quite useful in that they help us in
selecting the correct crystal to produce SPDC [78]. Following the argument below we can see why
this is the case. The wave vector ki and ks can be expressed as

kj =
nj(ωj)ωjsj

c
. (2.118)

Where sj is a unit vector in the kj direction, c is the speed of light and nj(wj) is the refractive index
of the material which has a dependence on wj . We can thus rewrite the phase matching condition
as

np(ωp)ωpsp = ns(ωs)ωsss + ni(ωi)ωisi. (2.119)

If the down-conversion is degenerate then we have that ωs = ωi = ωp/2 (satisfies the frequency-
matching condition). The minimal magnitude of |ks| + |ki| can still satisfy the phase-matching
conditions in the case when the pump beam and the down-converted fields are collinear, meaning
that the unit vectors all point in the same direction. Thus the above equation reduces to

np(ωp)ωp = ns(
ωp
2

)
ωp
2

+ ni(
ωp
2

)
ωp
2
. (2.120)

In order for the equation to be satisfied the target modes and the refractive indices for the pump
need to be the same. This means that ni = ns = np. In general this condition would be true for an
isotropic crystal, where we can set ni = ns = np =n and hence the above equation reduces to

n(ωp) = n(
ωp
2

). (2.121)

Unfortunately, since the refractive index, n, for many dielectric materials decreases as the pump
frequency increases we find that both frequency-matching and phase-matching conditions cannot be
satisfied at the same time in an isotropic medium [78].

Fortunately, this can be resolved by using an anisotropic birefringent crystal. In the crystal, photons
with different polarisations carry different refractive indices and such a crystal allows the pump beam
and at least one of the down-converted light beams to have opposite polarisations. This is because
it has two different refractive indices, no, and, ne, one for the ordinarily, (o), and the other for
extraordinarily,(e), polarised light respectively.

One example of a birefringent crystal is the uniaxial crystal (one with a single axis of symmetry
known as the optical axis), which responds to light polarised parallel to the optic axis known as
the e-ray or the extraordinary ray. A uniaxial crystal is called a negative uniaxial crystal if, ne
< no. Therefore the o-ray undergoes a constant larger refractive index and the e-ray experiences
a refractive index which depends on the direction of propagation. We can thus mix waves in the
anisotropic material in such a way as to satisfy the phase-matching conditions. This means that
the extraordinary refractive index, ne, for a pump beam with a wavelength of 405nm is equal to the
ordinary refractive index, no, for the degenerate down-converted beams at a wavelength of 810nm.
That is,

ne(ωp) = no(
ωp
2

). (2.122)
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Figure 2.22: SPDC Type-I: Degenerate, idler and signal cone are identical and overlap.

Thus a pump beam which is parallel polarised to the optical axis cannot ’down convert’ into a
mode co-propagating with the pump beam, however one with an orthogonal polarisation can. Thus
it follows that the ideal crystal to induce SPDC is a negative uni-axial, anisotropic birefringent
crystal, for example a BBO crystal.

2.4.6 Phase matching

There are two types of phase matching used in a uni-axial crystal, that is Type-1 and Type-2 phase
matching. In Type-1 phase matching, the down-converted beams have the same polarisation which
is orthogonal to the pump beam. For example an ordinary, (o), polarised pump photon can create
an extraordinary, (e), polarised photon. Type-1 phase matching is the one used in chapter 5 and
can be summarized as

e→ oo, (2.123)

or

o→ ee. (2.124)

Because the down-converted photons emerge in different directions, the possible directions of the
photon pair forms a set of concentric cones. The size of the cones depends on the opening angles
which depend on the frequency of light, so the cones can be represented using different colors [81].
By changing the angle of the pump beam allows us to change the size emission cone. The phase
matching condition implies that the conjugate photons must emerge on opposite sides of the concen-
tric cone. There are infinitely many ways to chose the signal and idler photons, however by selecting
a frequency for either of the photons we restrain the frequency of the conjugate photon to only two
possibilities [99]. In the degenerate case (ωi = ωs) the cones overlap and collapse into a single cone
in which the signal and idler photons can be found on opposite sides of the same beam, as shown in
Figure 2.22.

2.5 Quantum plasmonic sensing

SPR sensors are used for studying binding kinetics between bio-molecular species. Plasmonic
nanosensors have become a powerful tool for bio-sensing applications [73, 84]. This is because they
are able to overcome the limitations of conventional optical sensors in terms of sensitivity, flexibility
and photo-stability [48]. As the field has grown new detection schemes have been developed and are
being incorporated into a wide variety of biological and medical applications. The key driving force
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behind research in plasmonic nano-sensors is the improvement of precision measurements. Some of
the strategies which are being considered in the improvement of precision include sensing based on
target-induced local refractive index changes, colorimetric sensing based on localised SPR sensing,
and coupling and amplification of sensitivity detection based on nanoparticle growth [48].

While SPR-based plasmonic nanosensors are available commercially, the SPR instrumentation in
use today is limited by the precision they can achieve when measuring the reflectivity of light from
the sensor. Such limitations lead to problems in applications, for example, in studying the drug
kinematics for drugs used to treat various HIV-1 virus mutations it is important that the precision
be higher than currently available in commercially available SPR-based nanosensors [48]. In order
to overcome this, researchers need to look deeper into the physics of the sensor and consider more
fundamental resources of optics, i.e., quantum mechanical resources [28].

The limitations of currently available SPR-based nano-sensors can be overcome by the study of the
quantum nature of light. In particular, the preparation of light in squeezed states that make use of
the uncertainty principle can enhance the precision [35, 36], as well as entangled multi-photon states
[39, 38]. The potential enhancement in the sensing performance of plasmonic devices using quantum
optical resources has been inspired by recent efforts to show that both quantum and plasmonic
resonance features can be combined to give many beneficial properties [39, 38].

The central aim of this chapter is to investigate intensity based plasmonic sensing. We will look at
quantum optical resources and find out how they can be used to enhance the precision of plasmonic
SPR-based bio-sensors. In chapter 4, emphasis will be on investigating the applications of these
bio-sensing devices in the characterization of reaction kinetics.

2.5.1 Classical intensity based sensing

Here we will calculate the intensity measurement, 〈M̂〉, for a pair of coherent states. This serves
as a classical benchmark. In the next section we will formulate a general expression for 〈M̂〉 which
is useful for calculating the intensity measurement of other quantum states, such as the Twin Fock
and product squeezed states, amongst others. We start with the input states |α〉1 |α〉2, where N=

Figure 2.23: Theoretical model for two-mode plasmonic intensity sensing.

|α|2, and consider the setup shown in Figure 2.23. After the states go through the beam splitters
which models the loss in each mode (η1 in mode 1 and η2 in mode 2) we get
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|α〉1 |α〉2
loss−−→

∣∣∣η 1
2
1 α
〉

3

∣∣∣(1− η1)
1
2 iα
〉

4

∣∣∣η 1
2
2 α
〉

5

∣∣∣(1− η2)
1
2 iα
〉

6
. (2.125)

As mode 5 passes through the prism of an SPR sensor the state amplitude is scaled by a factor of
r, which is called the reflectivity of the sensor (r= rsp) from Eq. (2.34). The state becomes∣∣∣η 1

2
1 α
〉

3

∣∣∣(1− η1)
1
2 iα
〉

4

∣∣∣rη 1
2
2 α
〉

5

∣∣∣(1− η2)
1
2 iα
〉

6
. (2.126)

The measurement is the observable, M̂ = â†5â5 − â†3â3, which represents an intensity difference mea-

surement between the output modes 3 and 5. The next step is therefore to calculate 〈â†3â3〉 as

〈â†3â3〉 = Tr3456{â†3â3 ⊗ 1456ρ}, (2.127)

=
〈
η
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3

〈
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〈
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∣∣∣
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〈
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1
2 iα
〉

6
.

This reduces to
〈â†3â3〉 = η1|α|2. (2.128)

The next step is to calculate 〈â†5â5〉. It follows a similar process to the calculation of 〈â†3â3〉 and it
gives

〈â†5â5〉 = |r|2η2|α|2. (2.129)

The next step is to calculate M̂ as

〈M̂〉 = 〈â†5â5〉 − 〈â†3â3〉 = |r|2η2|α|2 − η1|α|2 = (|r|2η2 − η1)N. (2.130)

In order to calculate the precision of the measurement of M̂ we need to calculate the standard
deviation (uncertainty) 〈∆M̂〉. The next step is therefore to calculate 〈M̂2〉 as

〈M̂2〉 = 〈(â†5â5 − â†3â3)2〉. (2.131)

This expands to

〈M̂2〉 = 〈â†5(â†5â5)â5〉+ 〈â†5â5〉 − 2〈â†3â3â†5â5〉+ 〈â†3(â†3â3)â3〉+ 〈â†3â3〉. (2.132)

So it follows that

〈M̂2〉 =
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η
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∣∣∣
3

〈
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,

= (η2|r|2|α|2)2 + η2|r|2|α|2 − 2η1η2|α|4|r|2 + (η1|α|2)2 + η1|α|2. (2.133)

The next step is to calculate 〈∆M̂〉 =

√
〈M̂2〉 − 〈M̂〉

2
as

〈∆M̂〉 = [(η2|r|2|α|2)2 +η2|r|2|α|2−2η1η2|α|4|r|2 +(η1|α|2)2 +η1|α|2−((|r|2η2−η1)|α|2)2]
1
2 . (2.134)

This reduces to

〈∆M̂〉 = |α|
√
η2|r|2 + η1 =

√
N
√
η2|r|2 + η1. (2.135)
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2.5.2 Quantum intensity-based plasmonic sensing

Using the model in Figure 2.23 we can formulate a general expression for the uncertainty in the
measurement for different states. To calculate this general expression we start with the expression,

〈∆M̂〉 =

√
〈M̂2〉 − 〈M̂〉

2
, which in the Schrödinger picture (where operators are fixed and states

evolve) reduces to

〈∆M̂〉 = [〈ψout| (â†(â†â)â + â†â− 2b̂†b̂â†â + b̂†(b̂†b̂)b̂ + b̂†b̂) |ψout〉 − 〈ψout| (â†â− b̂†b̂) |ψout〉2]
1
2 .

(2.136)

Here â and â† correspond to the operators for the bottom mode in Figure 2.23 and b̂ and b̂† are for
the top mode. We calculate each individual component of the above expression and write them out
one-by-one. The first one is

〈â†(â†â)â〉 = 〈ψout| â†(â†â)â |ψout〉 . (2.137)

We substitute |ψout〉 = Û |ψin〉, where Û is a unitary operator and get the Heisenberg picture
expectation value

〈â†(â†â)â〉 = 〈ψin| Û†â†ÛÛ†â†ÛÛ†âÛÛ†âÛ |ψin〉 . (2.138)

We have that U†âU = âout, and similarly for â†, leading to

〈â†(â†â)â〉 = 〈ψin| â†out(â
†
outâout)âout |ψin〉 , (2.139)

where âout = rηaâin + f̂a. f̂a term is a noise term. It follows that

〈â†(â†â)â〉 = |r|4η4
a(〈ψin| â†in(â†inâin)âin |ψin〉). (2.140)

The expectation value of terms involving f̂ is zero as the noise bath starts in the vacuum, this can
be shown in another calculation, see Appendix H. Next we will calculate 〈â†â〉 given by

〈â†â〉 = 〈ψout| â†â |ψout〉 . (2.141)

It follows that

〈â†â〉 = 〈ψin| Û†â†ÛÛ†âÛ |ψin〉 , (2.142)

which gives

〈â†â〉 = 〈ψin| â†outâout |ψin〉 , (2.143)

= |r|2η2
a(〈ψin| â†inâin |ψin〉). (2.144)

As before the noise terms f̂a cancel out. The next step is to calculate 〈b̂†(b̂†b̂)b̂〉 and 〈b̂†b̂〉. This
follows the exact same process as the calculations for 〈â†(â†â)â〉 and 〈â†â〉 above with the exception

that b̂out = ηbb̂in + f̂b, which gives

〈b̂†(b̂†b̂)b̂〉 = η4
b (〈ψin| b̂†in(b̂†inb̂in)b̂in |ψin〉). (2.145)

Next we have
〈b̂†b̂〉 = η2

b (〈ψin| b̂†inb̂in |ψin〉). (2.146)

We then calculate the cross term 〈â†â〉〈b̂†b̂〉,

〈â†â〉〈b̂†b̂〉 = |r|2η2
aη

2
b (〈ψin| â†inâin |ψin〉)(〈ψin| b̂†inb̂in |ψin〉). (2.147)

Next, we calculate 〈â†â− b̂†b̂〉2

〈â†â− b̂†b̂〉2 = (|r|2η2
a 〈ψin| â†inâin |ψin〉 − η2

b 〈ψin| b̂†inb̂in |ψin〉)2, (2.148)
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= |r|4η4
a 〈ψin| â†inâin |ψin〉2 + η4

b 〈ψin| b̂†inb̂in |ψin〉2

− 2|r|2η2
aη

2
b 〈ψin| â†inâin |ψin〉 〈ψin| b̂†inb̂in |ψin〉 .

We then add everything together to get 〈∆M̂〉

〈∆M̂〉 = [|r|4η4
a 〈ψin| â†in(â†inâin)âin |ψin〉+ |r|2η2

a 〈ψin| â†inâin |ψin〉+ η4
b 〈ψin| b̂†in(b̂†inb̂in)b̂in |ψin〉+

η2
b 〈ψin| b̂†inb̂in |ψin〉+ 2|r|2η2

aη
2
b 〈ψin| â†inâin |ψin〉 〈ψin| b̂†inb̂in |ψin〉 − (|r|4η4

a 〈ψin| â†inâin |ψin〉2

+ η4
b 〈ψin| b̂†inb̂in |ψin〉2 − 2|r|2η2

aη
2
b 〈ψin| â†inâin |ψin〉 〈ψin| b̂†inb̂in |ψin〉)]

1
2 .

The above is the general expression for 〈∆M̂〉 in two-mode quantum intensity based plasmonic
sensing [38]. We will now show examples of the application of the general formula in calculating
〈∆M̂〉 for a two-mode coherent state and two-mode Fock state.

2.5.3 Quantum case with two-mode Fock state

When the input is a two-mode Fock state, i.e., |N〉a |N〉b, we have that

〈∆M̂〉Fock = [|r|4η4
a 〈N|a 〈N|b â†in(â†inâin)âin |N〉a |N〉b + |r|2η2

a 〈N|a 〈N|b â†inâin |N〉a |N〉b
+ η4

b 〈N|a 〈N|b
ˆ

b†in(b̂†inb̂in)b̂in |N〉a |N〉b + η2
b (〈N|a 〈N|b b̂†inb̂in |N〉a |N〉b)+

2|r|2η2
aη

2
b 〈N|a 〈N|b â†inâin |N〉a |Nb〉 〈N|a 〈N|b b̂†inb̂in |N〉a |N〉b − (|r|4η4

a 〈N|a 〈N|b â†inâin |N〉a |N〉
2
b

+ η4
b 〈N|a 〈N|b b̂†inb̂in |N〉a |N〉

2
b − 2|r|2η2

aη
2
b 〈Na| 〈Nb| â†inâin |Na〉 |N〉b 〈N|a 〈N|b b̂†inb̂in |N〉a |N〉b)]

1
2 .

This simplifies to

〈∆M̂〉Fock = [|r|4η4
aN(N− 1) + |r|2η2

aN + η4
bN(N− 1) + η2

bN− |r|4η4
aN2 − η4

aN2]
1
2 . (2.149)

It follows that

〈∆M̂〉Fock = N
1
2 [−|r|4η4

a + |r|2η2
a − η4

b + η2
b]

1
2 . (2.150)

2.5.4 Classical case with two-mode coherent state

When the input is a two-mode coherent state, i.e., |α〉a |α〉b, we have that

〈∆M̂〉Coherent = [|r|4η4
a(〈α|a 〈α|b â†in(â†inâin)âin |α〉a |α〉b) + |r|2η2

a 〈α|a 〈α|b â†inâin |α〉a |α〉b
+ η4

b 〈α|a 〈α|b b̂†in(b̂†inb̂in)b̂in |α〉a |α〉b + η2
b 〈α|a 〈α|b b̂†inb̂in |α〉a |α〉b +

2|r|2η2
aη

2
b 〈α|a 〈α|b â†inâin |α〉a |αb〉 〈α|a 〈α|b b̂†inb̂in |α〉a |α〉b − (|r|4η4

a 〈α|a 〈α|b â†inâin |α〉a |α〉
2
b

+ η4
b 〈α|a 〈α|b b̂†inb̂in |α〉a |α〉

2
b − 2|r|2η2

aη
2
b 〈αa| 〈αb| â†inâin |αa〉 |α〉b 〈α|a 〈α|b b̂†inb̂in |α〉a |α〉b)]

1
2 .

This simplifies to

〈∆M̂〉Coherent = [|r|4η4
a |α|4 + |r|2η2

a |α|2 + η4
b|α|4 + η2

b|α|2 − |r|4η4
a |α|4 − η4

a |α|4]
1
2 . (2.151)

It follows that

〈∆M̂〉Coherent = [|α|2|r|2η2
a + |α|2η2

b]
1
2 . (2.152)

〈∆M̂〉 values for coherent and Fock states are shown in Figure 2.24. We can see that the measurement
uncertainty 〈∆M̂〉 of the Fock state goes below the standard quantum limit (coherent state bound).
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(a) (b)

Figure 2.24: Comparing 〈∆M̂coherent〉 with 〈∆M̂fock〉. (a) The case where the refractive index of
the analyte being sensed is fixed and we change the resonance angle. The refractive index of the
analyte is 1.39. (b) The case where the resonance angle of the analyte being sensed is fixed and
we change the refractive index. The resonance angle is 73◦. The red line is the Fock state and the
black line is the coherent state. These plots assume that there is no system loss in the setup, i.e.,
ηa = ηb = 1. The photon number N=|α|2=10.

This is the same as the result from the previous calculation of 〈∆M̂〉Coherent with η
1
2
1 = ηa and

η
1
2
2 = ηb. We can calculate 〈∆M〉 for other states, such as the NOON, Fock, product-squeezed,

two-mode squeezed vacuum and two-mode squeezed displaced state.

We can take a step forward and take a ratio, R, which compares the noise of the classical to
quantum case and can be thought of as the ratio of the enhancement in the precision. R is defined

as R = 〈∆M̂〉Coherent

〈∆M̂〉Fock
. It follows that

R =
〈∆M̂〉Coherent

〈∆M̂〉Fock

=
[|α|2|r|2η2

a + |α|2η2
b]

1
2

N
1
2 [−|r|4η4

a + |r|2η2
a − η4

b + η2
b]

1
2

. (2.153)

We have that |α|2 = N, so the above equation reduces to

R =
〈∆M̂〉Coherent

〈∆M̂〉Fock

=
[|r|2η2

a + η2
b]

1
2

[−|r|4η4
a + |r|2η2

a − η4
b + η2

b]
1
2

. (2.154)

By setting, ηa = ηb = η, we can reduce the expression even further and have

R =
〈∆M̂〉Coherent

〈∆M̂〉Fock

=
[|r|2 + 1]

1
2

[−|r|4η2 + |r|2 − η2 + |r|2 + 1]
1
2

. (2.155)

The enhancement ratio R is plotted in Figure 2.25 for varying resonance angle and refractive index.
At specific points we can see that the enhancement ratio R is maximized. This is the region of
the dip. In this region the measured uncertainty of the Fock state is minimized against that of the
coherent state. Experimentally this is the region where we want to take measurements.
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(a) (b)

Figure 2.25: Enhancement ratio R. (a) The case where the refractive index of the analyte being
sensed is fixed and we change the resonance angle. The refractive index is 1.39 (b) The case where
the resonance angle of the analyte being sensed is fixed and we change the refractive index. The
resonance angle is 73◦. These plots assume that there is no system loss in the setup, i.e., ηa = ηb = 1.
The photon number N=|α|2=10.
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Chapter 3

Measurement of binding kinetics
using quantum plasmonic sensing

The common approach in taking measurements in drug kinetics is to measure the resonant angle
shift as a function of time, as given in Eq. (2.41). We call this the angle model. In this chapter we
want to construct an equation which models the intensity change (reflectance) as a function of time
and we call this the R model. The reason for using the R model is that the precision measurement
〈M̂〉 is a function of the intensity and so in the R model we can actually see the impact of using
quantum states.

We construct the R model by making use of the mathematical representation of the angle model.
The refractive index is changing with time so we construct an equation of the refractive index of the
analyte as a function of time using the angle model. Once we have our time dependent refractive
index equation we can substitute it into Eq. (2.34) and this gives us a mathematical expression for
our R model. The calculation which follows shows how we got the refractive index as a function of
time.

We start with the expression, θ(t) = θ(0) + ∆θ(t), where θ(t) is the resonance angle in radians at
any time, t, and ∆θ(t) is a shift in that angle due to a change in refractive index of the sample.
From Chapter 2 we already know that

∆θ(t) =

{
A∞(1− e−kst) if 0 ≤ t < τ,

Aτe−kd(t−τ) if t ≥ τ .

Here A∞ and Aτ are functions of the concentrations of the sample, ks is an observable rate constant
and kd is the dissociation constant. τ is the time in seconds over which binding occurs. The values
of these parameters are easily found from a study using the angle model. Our aim is to translate
this to the R model. From Eq. (2.33) we have that when the exciting field is on resonance with the
surface plasmon the following relation holds

θ(t) = sin−1(

√
n2

2(t)n2
g

n1

√
n2

2(t) + n2
g

). (3.2)

Where n2
g = εg is the refractive index of the gold layer on which the analyte is placed, n2

2(t) = ε2 is
the refractive index of the analyte and n2

1 is the refractive index of the prism. At t=0, for theoretical
purposes n2

2 can be set to an arbitrary refractive index which we can write as n2
2(0). The arbitrary

value corresponds to the refractive index of the analyte before the binding reactions occur (essentially
the buffer solution). So we have that
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sin−1(

√
n2

2(t)n2
g

n1

√
n2

2(t) + n2
g

) = sin−1(

√
n2

2(0)n2
g

n1

√
n2

2(0) + n2
g

) +

{
A∞(1− e−kst) if 0 ≤ t < τ,

Aτe−kd(t−τ) if t ≥ τ .

We can set the left hand side as A(t) to give

A(t) = sin−1(

√
n2

2(0)n2
g

n1

√
n2

2(0) + n2
g

) +

{
A∞(1− e−kst) if 0 ≤ t < τ,

Aτe−kd(t−τ) if t ≥ τ .

Thus

sin(A) =

√
n2

2(t)n2
g

n1

√
n2

2(t) + n2
g

, (3.5)

hence

sin2(A) =
n2

2(t)n2
g

n1
2(n2

2(t) + n2
g)
. (3.6)

Simplifying further we arrive to an expression for the refractive index of the analyte as a function
of time written as

n2
2(t) =

n2
1n2

gsin2(A)

ng
2 − n2

1sin2(A)
, (3.7)

with ng
2 → Re[n2

g], where Re[n2
g] is used as an approximation. We then substitute this refractive

index value into the reflectance function Eq. (2.34) and thus we have the reflectance as a function
of time, or R model. We plot this as shown in Figure 3.1.

Figure 3.1: Reflectance as a function of time sensorgram for a binding reaction whose refractive
index goes from 1.3352 to 1.3458. This is an ideal case where we have just extracted the kinetic
parameters and used them to generate our model. In this model we used, ks = 10.5193× 10−3s−1,
kd = 7.85× 10−3s−1, τ = 1100s, A∞ = 2.63928◦, Aτ = 2.6393◦, θ(0) = 71.0966◦.

We would like our R model to be consistent with the ∆θ model for a given study and so we need to
check if the response of R to n(t) is linear. This is because if the response of R with respect to n(t)
in the R model is different to the response of ∆θ with respect to n(t) (which is linear) that will lead
to different binding rates being extracted. As a result the R model (from the extracted n(t) model)
will not fit an exponential model as well as the one we initially set for ∆θ (for which the ∆θ model
from the extracted n(t) model matches reasonably well).
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By plotting the relationship between the reflectivity and n(t) as shown in Figure 3.2, as n(t) is linearly
varied we found that the response in the R model was not linear, so we obtained a calibration factor
which we used to linearise the response of R. This calibration factor would be measured in an
experiment in a control study. Once we had linearised our R plots we used our modified R model
to do our simulations with the confidence that the kinetic parameters will be identical to those of
the kinetic model.

Figure 3.2: The blue line represents the non-linear response of an example R model, the orange line
is the linear response. The corresponding sensorgrams (cf.Fig 3.1) are slightly distorted with respect
to each other.

In order for our model to be representative of a real experiment we need to add measurement noise
which arises as a result of the measurement process. The noise is also state dependent and we have
calculated it previously as 〈∆M̂〉 for the setup shown in Figure 2.23. For example, if the input signal
is a two-mode Fock state then we add Gaussian noise with 〈∆M̂Fock〉 of the two-mode Fock state
as the standard deviation of the noise. We also did this for the TMSV, TMSD and coherent states.
After adding the noise we use a Newton-Gauss non-linear algorithm to fit the noisy sensorgrams so
that we can extract kinetic parameters .

Even though the noise of a state like the Fock state is not Gaussian (it is binomial), the use of
Gaussian noise is justified as we are using the sample mean as an estimator. Each point in the
sensorgram corresponds to fluctuations of the sample mean (where a sample/point is made up of
ν measured values) which follows a Gaussian distribution regardless of the underlying probability
distribution for a state according to the central limit theorem. This assumes that the ν measurements
can be made within a short enough time with respect to the time-scale of the sensorgram changes.
Figure 3.3 shows a sensorgram with the noise added to an ideal sensorgram curve for a Fock state.

In order to get accurate statistics we ran Monte Carlo simulations of the noisy sensorgrams, this
is done m times. All these sensorgrams can be obtained in an experiment in one full sweep of the
sensorgram if the probing occurs fast enough for the sensorgram dynamics to be roughly constant,
otherwise repeated runs would be required. For each of the m sensorgrams we fit the model and
extracted out ks and kd from which we calculated ka. From this we calculated the averages of the
m sets of parameters which we extract. In this sense the parameter m plays the role of a set in the
same way ν does for a set of measurements at a point in time of the sensorgram.

We were also interested in establishing a distribution profile of these parameter values so we repeated
the described sequence p times. The value of p was established by looking at how the standard
deviation in the ks and kd parameters fluctuates. We took a p-value where the standard deviation
fluctuations are relatively stable. We set p as 1500, to stabilize the standard deviation fluctuations
which can affect the repeatability of the results, as shown in Figure 3.4.
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Figure 3.3: Plot of sensorgram with noise added to it. After we add noise to our ideal case it

generally looks like this. The upper and lower dashed lines represent ± 〈∆M̂〉√
ν

. The middle dashed

line is 〈∆M̂〉 for ν →∞. In the plot here we used photon number N= 5, ηa = 0.8 and ηb = 0.8.

(a) ks (b) kd

Figure 3.4: Standard deviation vs p values for ks and kd. The plots are for a coherent state, m=10
and ν = 100.

In the next section we will show results for different estimations to the real value of the parameters
and the errors in the measurement of these values. We also show the enhancement in the precision
that the different quantum states have over the classical coherent state. At first we considered the
case in which we have no loss in the probe mode (a=2) and reference mode (b=1) according to
Figure 2.23, i.e. ηa and ηb are both equal to 1. We also considered a case which optimised the
response of the TMSV and TMSD states, i.e., ηb was set to be equal to ηaR. Then we consider the
case where there is loss, i.e., ηa and ηb are both 0.8. In this case we consider only the coherent state
and two-mode Fock state which outperforms the TMSV and TMSD states. We look at cases where
m=10 and p=1500 and m=50 and p=1500 and also the expected enhancement that occurs when
m changes. Enhancement is a measure of the ratio of the standard deviation for the classical state
versus the standard deviation of the respective quantum state in question, i.e., TMSV, TMSD and
two-mode Fock state.

3.1 Large sensorgram deviation

In this section we model a sensorgram with parameters extracted from an experiment by Kausaite
et al. [20]. In the experiment they measured the real-time SPR curve showing immobilized BSA
interaction with anti-BSA present in a sample, as shown in Figure 3.5. Using an ESPIRIT commer-
cial sensor they extracted the following parameters, ka = 9.36× 103M−1s−1, kd = 7.85× 10−3s−1
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Figure 3.5: The angle model from Ref. [20].

and L0 = 274× 10−9M. Using these parameters we constructed an ideal case R model of the exper-
iment and then added measurement noise. Having added the noise from the different states we use
as input, we run Monte Carlo simulations as described previously. We then extracted parameters
from each of the simulations run using a non-linear Newton-Gauss fit. We took statistics of the
parameters to see the range of the fluctuations which arise in them due to the measurement noise.
This section is titled, “Large sensorgram deviation” because in this experiment [20], the change
in the refractive index and consequently the change in the reflectivity over time is relatively large.
There are experiments where the change is extremely small [21] and we will consider this in the
next section. From Ref. [97] we know that the TMSV and TMSD states do not give as good an
enhancement as the two-mode Fock state when we consider loss and that is why we do not include
them in the cases where we have loss i.e. ηa = ηb = 0.8. The R model used is shown in Figure 3.6.

Figure 3.6: The R model for the angle model in Ref. [20].

In the figures in this section we look at estimations of the values of kd, ks, ka for the different input
states, i.e., Fock (Red), coherent (Black), TMSV (Green) and TMSD (Blue). We show results for
different estimations to the real value of the parameters and the errors in the measurement of these
values. We also show the enhancement that the different quantum states have over the classical
coherent state. All the error plots that follow should be interpreted as showing the uncertainty for
the kinetic value for a given set of m sensorgrams, each made of ν measurements of 〈M̂〉 for each
point in time. In other words, if m sensorgrams are taken then the value of the extracted kinetic
value could lie anywhere within the error bar. The mean after many repetitions would then give the
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point shown. Therefore a smaller error bar is advantageous when estimating a kinetic parameter
when the number of measurements is limited for instance due to time constraints.

Standard two-mode case

In this standard case we consider both modes in Figure 2.23 and no loss, i.e., ηa= ηb=1. In Figure
3.7 we show the dependence of ν for m=10 and in Figure 3.8 we show the dependence of ν for m=50
highlighting that increasing m improves the precision of the estimation of the kinetic parameters.
The dotted lines in the top row (of the figures) are the actual kinetic values and in the bottom
row they represent the expected enhancement obtained from the value of R at the midpoint of the
sensorgram curve. Setting the noise to the standard two-mode case we see that the TMSV and
TMSD states perform worse than the coherent state even as ν increases. The Fock state performs
better than the coherent state.

(a) (b) (c)

(d) (e) (f)

Figure 3.7: Two-mode standard results, ν dependence, with p=1500, photon number=10 and m=10
(no loss, i.e. ηa = ηb = 1).

In Figure 3.9 we show the dependence of the precision on the photon number N. There is a photon
number dependence for the enhancement of the TMSV state which explains the decline in the
enhancement we see in Figure 3.9. As the photon number increases the enhancement gets worse for
the TMSV state.
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(a) (b) (c)

(d) (e) (f)

Figure 3.8: Two-mode standard results, ν dependence, with p=1500, photon number=10 and m=50
(no loss, i.e. ηa = ηb = 1).

(a) (b) (c)

(d) (e) (f)

Figure 3.9: Two-mode standard results, photon number dependence, m=10, p=1500, ν = 100 (no
loss, i.e. ηa = ηb = 1).

Lossy standard two-mode case

In the lossy standard case we consider both modes in Figure 2.23 and loss, i.e., ηa= ηb=0.8. In
Figure 3.10 we show the dependence of ν for m=10 and in Figure 3.11 we show the dependence of
ν for m=50 highlighting that increasing m improves the precision of the estimation of the kinetic
parameters. The dotted lines in the top row (of the figures) are the actual kinetic values and in the
bottom row they represent the expected enhancement obtained from the value of R at the midpoint
of the sensorgram curve. Here we only look at the two-mode Fock state and the coherent state.
Setting the noise to the lossy standard two-mode case we see that the Fock state performs better
than the coherent state even as ν increases.

In Figure 3.12 we show the dependence of the precision on the photon number N in the case when we
have loss in our setup. Even when we include loss we find that the two-mode Fock state out-performs
the coherent state for both the photon number and ν dependence.
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(a) (b) (c)

(d) (e) (f)

Figure 3.10: Two-mode standard results, ν dependence, with p=1500, photon number=10 and m=10
(loss, i.e. ηa = ηb = 0.8).

(a) (b) (c)

(d) (e) (f)

Figure 3.11: Two-mode standard results, ν dependence, with p=1500, photon number=10 and m=50
( loss, i.e. ηa = ηb = 0.8).
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(a) (b) (c)

(d) (e) (f)

Figure 3.12: Two-mode standard results, photon number dependence, m=10, p=1500, ν = 100 (loss,
i.e. ηa = ηb = 0.8).
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3.1.1 Optimized two-mode case

In the standard optimized case we consider both modes in Figure 2.23 where we set loss values
which improve the enhancement of the TMSD and TSMV to give better parameter precision than
the coherent state, i.e., ηa=1 and ηb=ηaR where the midpoint of the R value is used. R is therefore
fixed. In Figure 3.13 we show the dependence of ν for m=10. We no longer look at the case for
m=50 because we have already established that it is consistent with the theory for the standard
two-mode case. The dotted lines in the top row (of the figures) are the actual kinetic values and
in the bottom row they represent the expected enhancement obtained from the value of R at the
midpoint of the sensorgram curve. Setting the noise to the optimized case improves the enhancement
of the TMSV and TMSD states to a point in which they perform better than the coherent state.
The enhancement in all four states is very close but not exactly the same. The enhancement in the
Fock state is reduced somewhat but the Fock state still gives the better enhancement overall.

In Figure 3.14 we show the dependence of the precision on the photon number N for the optimized
two-mode case. A clear decrease in the enhancement of the TMSV state is visible and this is because
the TMSV enhancement is dependent on the photon number. We study this in more detail in section
3.1.3, where we investigate enhancement changes with photon number.

(a) (b) (c)

(d) (e) (f)

Figure 3.13: Two-mode standard results optimized, ν dependence, with p=1500, photon number=10
and m=10 (Optimized loss, i.e. ηa = 1 and ηb = Rηa).
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(a) (b) (c)

(d) (e) (f)

Figure 3.14: Two-mode standard results optimized, photon number dependence, with p=1500, ν =
100 and m=10 (Optimized loss, i.e. ηa = 1 and ηb = Rηa).

Lossy optimized two-mode case

In the lossy two-mode optimised case we consider both modes in Figure 2.23 and loss, i.e., ηa=0.8
and ηb=0.8R. In Figure 3.15 we show the dependence on ν for m=10. When we set the noise to
the lossy two-mode optimised case we find that the Fock state performs better than the coherent
state. The precision improves with increasing ν. The enhancement remains constant throughout for
all the kinetic parameters.

In Figure 3.16 we show the dependence on photon number for m=10. When we set the noise to
the lossy two-mode optimised case we find that the Fock state performs better than the coherent
state. The precision improves with increasing photon number. The enhancement remains constant
throughout for all the kinetic parameters.

(a) (b) (c)

(d) (e) (f)

Figure 3.15: Two-mode standard results optimized, ν dependence, with p=1500, photon number=10
and m=10 (Optimized loss, i.e. ηa = 0.8 and ηb = Rηa).
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(a) (b) (c)

(d) (e) (f)

Figure 3.16: Optimized two-mode results, photon number dependence, with p=1500, ν = 100 and
m=10 (Optimized loss, i.e. ηa = 0.8 and ηb = Rηa).

3.1.2 Single-mode

In the single-mode case we consider both modes in Figure 2.23 and no loss, i.e., ηa=1 and ηb=0
(which makes the model effectively a single mode). In Figure 3.17 we show the dependence of ν.
When we set the noise to the single-mode case we find that the Fock state performs better than
the coherent state. The precision improves with increasing ν. The enhancement remains constant
throughout for all the kinetic parameters.

In Figure 3.18 we show the parameter dependence on the photon number for m=10. When we set
the noise to the single-mode optimised case we find that the Fock state performs better than the
coherent state. The precision improves with increasing photon number. The enhancement remains
constant throughout for all the kinetic parameters.

(a) (b) (c)

(d) (e) (f)

Figure 3.17: Single-mode results, ν dependence, with p=1500, photon number=10 and m=10 (No
loss, i.e. ηa = 1 and ηb = 0).
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(a) (b) (c)

(d) (e) (f)

Figure 3.18: Single-mode results, photon number dependence, with p=1500, ν = 100 and m=10 (No
loss, i.e. ηa = 1 and ηb = 0).

Lossy single-mode

In the lossy single-mode case we consider both modes in Figure 2.23 and loss, i.e., ηa=0.8 and ηb=0.
When we set the noise to the lossy single-mode case we find that the Fock state performs better than
the coherent state. The precision improves with increasing ν. The enhancement remains constant
throughout for all the kinetic parameters.

In Figure 3.19 we show the dependence on ν for m=10 and in Figure 3.20 we show the dependence
on photon number for m=10. When we set the noise to the lossy single-mode case we find that the
Fock state performs better than the coherent state. The precision improves with increasing photon
number. The enhancement remains constant throughout for all the kinetic parameters.

(a) (b) (c)

(d) (e) (f)

Figure 3.19: Single-mode results, ν dependence, with p=1500, photon number=10 and m=10 (loss,
i.e. ηa = 0.8 and ηb = 0).
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(a) (b) (c)

(d) (e) (f)

Figure 3.20: Single-mode results, photon number dependence, with p=1500, ν = 100 and m=10
(loss, i.e. ηa = 0.8 and ηb = 0).

3.1.3 Enhancement with changing R value

We were interested to know how much of an impact changing the R value has on the enhancement
we see when using quantum states of light. We did this for all states, i.e. the classical, Fock, TMSV
and TMSD states for the case where we do not have loss and for the case where we do have loss. The
plots are shown in the figures below. The non-shaded region is the region in which the sensorgram
varies with R. The mid-point (dashed grey vertical line) is the value used in the enhancement plots
earlier as the average enhancement for a given state. In this section we investigate the dependence
of the enhancement in the different states to changes in the photon number and changes in ν. In
the previous section we suspected that the enhancement in the TMSV state has a photon number
dependence in which as the photon number increases the enhancement goes to zero rapidly away
from the sensorgram midpoint of R on either side. We don’t consider the single mode case here
because the enhancement of the Fock state is the same as in the two-mode optimized case. In
Figures 3.21 and 3.22 we see that the enhancement improves as the R value goes towards 1. The
no loss case shows greater improvement in enhancement for higher R values than the loss case.
In general the Fock state gives the best enhancement but it seems sensitive to the R value, the
enhancement declines for the middle R values and then goes up as R approaches 1.

We also look at the enhancement with changing R as we change the photon number in Figure 3.23
for the standard two-mode case and in Figure 3.24 for the two-mode optimized case. For the two-
mode optimized case the enhancement reaches its maximum at the middle R values. It seems the
enhancement is also sensitive to changes in the R values. Whilst the enhancement is unaffected by a
change in the photon number for all the other states the TMSV state is very sensitive to the change.
The enhancement seems to drop as the photon number goes up.
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(a) No loss, i.e. ηa = ηb = 1 (b) Loss, i.e. ηa = ηb = 0.8

Figure 3.21: Enhancement with changing R value, m=10, p=1500, ν = 100 and photon number=10.

(a) No loss, i.e. ηa = 1 and ηb = ηaR (b) Loss, i.e. ηa = 0.8 and ηb = ηaR

Figure 3.22: Enhancement with changing R value, m=10, p=1500, ν = 100 and photon number=10.

(a) 10 photons (b) 100 photons

(c) 1000 photons (d) 10000 photons

Figure 3.23: Enhancement with changing R value, m=10, p=1500, ν = 100. This is for the standard
two-mode.
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(a) 10 photons (b) 100 photons

(c) 1000 photons (d) 10000 photons

Figure 3.24: Enhancement with changing R value, m=10, p=1500, ν = 100. This is for the optimized
two-mode.

60



Conclusion

We can see that loss affects the enhancement in the precision, once we include loss the enhancement
goes down. We can also see that for the standard two-mode case and the optimized case the
enhancement in the TMSV state depends on photon number which explains why the precision of
parameter estimation gets worse as we increase the photon number.

3.1.4 M-enhancement

We were also interested to know how much of an impact changing the m value has. We compared
the precision of the m=10 and m=50 cases for ν and photon number varying as an example. The
expected enhancement is the square root of (50/10), which is approximately equal to 2.236. This is
because for a set of m sensorgrams we expect the noise to be proportional to 1√

m
. We did this for

all states, i.e. the classical, Fock, TMSV and TMSD states for the standard two-mode case where
we do not have loss and all the parameters. We did not take measurements of m=50 for the states
in the other cases, as we expect that the ratio will be consistent with the expected enhancement
as it is for the no loss case we examined here and it would have been redundant to measure the
M-enhancement. The coherent state is the benchmark classical state and normally the enhancement
is not plotted as it is equal to 1, but here we are comparing m’s so we include the coherent state as
enhancement changes with m. Now m=10 is the benchmark for enhancement. Figure 3.25 shows the
enhancement of the kd parameter for all the states when m=50 which is relatively constant. Figure
3.26 shows the enhancement of the ks parameter for all the states when m=50 which is relatively
constant and Figure 3.27 shows the enhancement of the ka parameter for all the states when m=50
which is relatively constant.

(a) Coherent state (b) Fock state

(c) TMSD (d) TMSV

Figure 3.25: m-Enhancements for the kd parameter, ηa = ηb = 1, p=1500 and photon number=10.
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(a) Coherent state (b) Fock state

(c) TMSD (d) TMSV

Figure 3.26: m-Enhancements for the ks parameter, ηa = ηb = 1, p=1500 and photon number=10.

(a) Coherent state (b) Fock state

(c) TMSD (d) TMSV

Figure 3.27: m-Enhancements for the ka parameter, ηa = ηb = 1, p=1500 and photon number=10.

3.1.5 Conclusion

The two-mode standard case gives the best precision for the two-mode Fock state, the two mode
optimized case improves the TMSV and TMSD, but it unfortunately reduces the two-mode Fock
state. The single mode offers a similar enhancement to the optimized case but it is more practical
for experiments as only one mode is required.

3.2 Small sensorgram deviation

We were interested to see how much of an effect using quantum states has in reducing the noise
levels when we have very small changes in the refractive index. We are interested because in some
experiments the changes in the refractive index are too small to be investigated using classical states
and we are interested to see if such a case can be studied better with quantum states. When we
looked at the real-time SPR curve showing immobilized BSA interaction with anti-BSA present in
the sample in the previous section, we can see that the change in the refractive index was rather
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significant.

Having established the performance of the different states for the sensorgram from the Kausite et al.
paper [20] we were interested to see if the general results would hold true if we considered a system
in which the refractive index change was very small. We were interested to know if there would
be any change in performance. This led us to the paper by Lahiri et al. [21], where we consider
the sensorgram for binding of immobilized bovine carbonic anhydrase II and its inhibitor benzene
sulfonamide in PBS solution. We took the values of ka = 0.0038, kd = 0.015 and L0 = 2.1 for our
ideal model from the study. Looking at the change of refractive index curve we see that the change
is very small, in a range from 1.3300 to 1.3303. Figure 3.28 shows the R model. The signal change
here was very small. We had to increase ν from 100 to 100000 as the noise was otherwise to much
due to the small signal change. As a result we focused only on changing the photon number in this
section since we cannot really do a direct comparison when we are looking at the ν values. We only
looked at the two-mode Fock state and the two-mode Coherent states as it is clear that the TMSD
and TMSV states only work better than classical states when we use the optimised two-mode noise
conditions and the enhancement in precision is similar to the Fock state in that case.

Figure 3.28: The R model for the angle model in Ref. [21].

Standard two-mode case

In this standard case we consider both modes in Figure 2.23 and no loss, i.e., ηa= ηb=1. In Figure
3.29 we show the dependence of parameter precision on photon number. In Figure 3.30 we included
loss hence we had ηa= ηb=0.8. The dotted lines in the top row (of the figures) are the actual kinetic
values and in the bottom row they represent the expected enhancement obtained from the value
of R at the midpoint of the sensorgram curve. When we set the noise to the standard two-mode
case we find that the Fock state performs better than the coherent state. The precision improves
with increasing photon number. The enhancement remains constant throughout for all the kinetic
parameters. This holds for with and without loss.
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(a) (b) (c)

(d) (e) (f)

Figure 3.29: Two-mode standard results, photon number dependence, m=10, p=1500, ν = 100000
(no loss, i.e. ηa = ηb = 1).

(a) (b) (c)

(d) (e) (f)

Figure 3.30: Two-mode standard results, photon number dependence, m=10, p=1500, ν = 100000
(loss, i.e. ηa = ηb = 0.8).

Optimized two-mode case

In this standard case we consider both modes in Figure 2.23 and no loss, i.e., ηa= 1 and ηb=R. R is
fixed. In Figure 3.31 we show the dependence of parameter precision on photon number. In Figure
3.32 we included loss hence, we had ηa=0.8 and ηb=0.8R. When we set the noise to the optimized
two-mode case we find that the Fock state performs better than the coherent state. The precision
improves with increasing photon number. The enhancement remains constant throughout for all the
kinetic parameters. This holds for with and without loss.
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(a) (b) (c)

(d) (e) (f)

Figure 3.31: Two-mode standard results, photon number dependence, m=10, p=1500, ν = 100000
(Optimized loss, i.e. ηa = 1 and ηb = ηaR).

(a) (b) (c)

(d) (e) (f)

Figure 3.32: Two-mode standard results, photon number dependence, m=10, p=1500, ν = 100000
(Optimized loss, i.e. ηa = 0.8 and ηb = ηaR).

Single-mode case

In this standard case we consider both modes in Figure 2.23 and no loss in mode a, i.e., ηa= 1 and
ηb=0. In Figure 3.33 we show the dependence of parameter precision on photon number. In Figure
3.34 we included loss hence we had ηa=0.8 and ηb=0. When we set the noise to the single-mode
case we find that the Fock state performs better than the coherent state. The precision improves
with increasing photon number. The enhancement remains constant throughout for all the kinetic
parameters. This holds for with and without loss.
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(a) (b) (c)

(d) (e) (f)

Figure 3.33: Single-mode standard results, photon number dependence, m=10, p=1500, ν = 100000
(loss, i.e. ηa = 1 and ηb = 0).

(a) (b) (c)

(d) (e) (f)

Figure 3.34: Single-mode standard results, photon number dependence, m=10, p=1500, ν = 100000
(loss, i.e. ηa = 0.8 and ηb = 0).

Conclusion

The Fock state gives better precision and enhancement in all the cases, especially in the standard
two-mode case. The single mode offers a similar enhancement to the optimized case but it is more
practical for experiments as only one mode is required. Experimentally relevant m, p and ν values
are described in chapter 5. However the values chosen here are roughly in the range of experimental
feasibility. Values for ηa are also in the experimental range, i.e., 0 → 0.8.
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Chapter 4

Application of quantum plasmonic
sensing to HIV case study

The kinetics of the interaction between drug-resistant variants of HIV-1 protease and clinically used
inhibitors are of particular interest in HIV studies [95]. An enzyme inhibitor is a molecule that
binds to an enzyme and decreases its activity. HIV-1 protease is a retroviral aspartyl protease
(retropepsin), an enzyme involved with peptide bond hydrolysis in retroviruses, that is essential
for the life-cycle of HIV, the retrovirus that causes AIDS [37]. The HIV-1 protease variant is
immobilized on a biosensor chip and the association and dissociation rate constants for interactions
with inhibitors are determined. The kinetic parameters are important because they can be used in
inhibitor design. Changes in the kinetic parameters reflect a change in the drug resistance capacity
of the HIV-1 protease. Due to the importance of HIV drug studies we decided to use the kinetics as
a test case for showing the benefits of a quantum approach.

In this section we made a model for R for a scenario involving HIV. We used values from the
experiment by Shuman et al. [95], where we chose nelfinavir as the inhibitor and the wild-type
enzyme for the reaction. We had to use a low concentration to be consistent with [95]. A low
concentration meant that there was a smaller R change, even more so than that studied for the
paper by Lahiri et al in chapter 3.

The following parameters were used: ka = 3.79× 105 M−1s−1, kd = 5.65× 10−4 s−1 and L0 = 80× 10−9

M. We will show plots of the results for the parameter vs photon-number and for the case of the
parameter vs ν. The R model is shown in Figure 4.1. Figure 4.2 is a picture of the HIV-1 protease
structure in a complex with an inhibitor.

Figure 4.1: The R model for the angle model in Ref. [95].
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Figure 4.2: Structural model of the HIV-1 protease structure in a complex with an inhibitor taken
from Ref. [16].

4.0.1 Standard two-mode case

In the standard case we consider both modes in Figure 2.23 and no loss, i.e., ηa= ηb=1. In Figure
4.3 we show the dependence of ν for m=10 and in Figure 4.4 we show the dependence on photon
number. The dotted lines in the top row (of the figures) are the actual kinetic values and in the
bottom row they represent the expected enhancement obtained from the value of R at the midpoint
of the sensorgram curve. When we set the noise to the standard two-mode case we find that the
Fock state performs better than the coherent state. The precision improves with increasing ν and
photon number. The enhancement remains constant throughout for all the kinetic parameters.

(a) (b) (c)

(d) (e) (f)

Figure 4.3: Two-mode standard results, ν dependence, m=10, p=1500, photon-number=5000 (no
loss, i.e., ηa = ηb = 1).
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(a) (b) (c)

(d) (e) (f)

Figure 4.4: Two-mode standard results, photon number dependence, m=10, p=1500, ν = 106 (no
loss, i.e., ηa = ηb = 1).

Lossy standard two-mode case

In the lossy standard case we consider both modes in Figure 2.23 and loss, i.e., ηa= ηb=0.8. In
Figure 4.5 we show the dependence of ν for m=10 and in Figure 4.6 we show the dependence on
photon number. The dotted lines in the top row (of the figures) are the actual kinetic values and
in the bottom row they represent the expected enhancement obtained from the value of R at the
midpoint of the sensorgram curve. When we set the noise to the lossy standard two-mode case
we find that the Fock state performs better than the coherent state. The precision improves with
increasing ν and photon number. The enhancement remains constant throughout for all the kinetic
parameters.

(a) (b) (c)

(d) (e) (f)

Figure 4.5: Balanced two-mode standard results, ν dependence, m=10, p=1500, photon-
number=5000 ( loss, i.e., ηa = ηb = 0.8).
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(a) (b) (c)

(d) (e) (f)

Figure 4.6: Two-mode standard results, photon number dependence, m=10, p=1500, ν = 106 (loss,
i.e., ηa = ηb = 0.8).

4.0.2 Optimized two-mode case

In this optimized case we consider both modes in Figure 2.23 and no loss, i.e., ηa=1 and ηb=R. In
Figure(4.7) we show the dependence of ν for m=10 and in Figure 4.8 we show the dependence on
photon number. The dotted lines in the top row (of the figures) are the actual kinetic values and
in the bottom row they represent the expected enhancement obtained from the value of R at the
midpoint of the sensorgram curve. When we set the noise to the optimized two-mode case we find
that the Fock state performs better than the coherent state. The precision improves with increasing
ν and photon number. The enhancement remains constant throughout for all the kinetic parameters.

(a) (b) (c)

(d) (e) (f)

Figure 4.7: Optimized two-mode standard results, ν dependence, m=10, p=1500, photon-
number=5000 (loss, i.e., ηa = 1 and ηb = R).
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(a) (b) (c)

(d) (e) (f)

Figure 4.8: Optimized two-mode standard results, photon number dependence, m=10, p=1500,
ν = 106 (no loss, i.e., ηa and ηb = R).

Lossy optimized two-mode case

In the optimized case we consider both modes in Figure 2.23 and loss, i.e., ηa=0.8 and ηb=0.8R.
In Figure 4.9 we show the dependence of ν for m=10 and in Figure 4.10 we show the dependence
on photon number. The dotted lines in the top row (of the figures) are the actual kinetic values
and in the bottom row they represent the expected enhancement obtained from the value of R at
the midpoint of the sensorgram curve. When we set the noise to the lossy optimized two-mode case
we find that the Fock state performs better than the coherent state. The precision improves with
increasing ν and photon number. The enhancement remains constant throughout for all the kinetic
parameters.

(a) (b) (c)

(d) (e) (f)

Figure 4.9: Optimized two-mode results, ν dependence, m=10, p=1500, photon-number=5000 (loss,
i.e., ηa = 0.8 and ηb = 0.8R).

71



(a) (b) (c)

(d) (e) (f)

Figure 4.10: Optimized two-mode standard results, photon number dependence, m=10, p=1500,
ν = 106 (loss, i.e., ηa = and ηb = 0.8R).

4.0.3 Single-mode case

In the single-mode case we consider both modes in Figure 2.23 and no loss, i.e., ηa=1 and ηb=0. In
Figure 4.11 we show the dependence of ν for m=10 and in Figure 4.12 we show the dependence on
photon number. The dotted lines in the top row (of the figures) are the actual kinetic values and
in the bottom row they represent the expected enhancement obtained from the value of R at the
midpoint of the sensorgram curve. When we set the noise to the single-mode case we find that the
Fock state performs better than the coherent state. The precision improves with increasing ν and
photon number. The enhancement remains constant throughout for all the kinetic parameters.

(a) (b) (c)

(d) (e) (f)

Figure 4.11: Single-mode standard results, ν dependence, m=10, p=1500, photon-number=5000 (no
loss, i.e., ηa = 1 and ηb = 0).
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(a) (b) (c)

(d) (e) (f)

Figure 4.12: Single-mode standard results, photon number dependence, m=10, p=1500, ν = 106 (no
loss, i.e., ηa = 1 and ηb = 0).

Lossy single-mode case

In the single-mode case we consider both modes in Figure 2.23 and loss, i.e., ηa=0.8 and ηb=0. In
Figure 4.13 we show the dependence of ν for m=10 and in Figure 4.14 we show the dependence on
photon number. The dotted lines in the top row (of the figures) are the actual kinetic values and
in the bottom row they represent the expected enhancement obtained from the value of R at the
midpoint of the sensorgram curve. When we set the noise to the lossy single-mode case we find that
the Fock state performs better than the coherent state. The precision improves with increasing ν
and photon number. The enhancement remains constant throughout for all the kinetic parameters.

(a) (b) (c)

(d) (e) (f)

Figure 4.13: Single-mode results, ν dependence, m=10, p=1500, photon-number=5000 (loss, i.e.,
ηa = 0.8 and ηb = 0).
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(a) (b) (c)

(d) (e) (f)

Figure 4.14: Single-mode results, photon number dependence, m=10, p=1500, ν = 106 (loss, i.e.,
ηa = 0.8 and ηb = 0).

4.0.4 Conclusion

The Fock state gives better precision and enhancement in all the cases, especially in the standard
two-mode case. The single mode offers a similar enhancement to the optimized case but it is more
practical for experiments as only one mode is required.
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Chapter 5

Experimental quantum plasmonic
sensing

5.1 Plasmonic sensing with single photons from SPDC source

In this section we look at a way of implementing a quantum plasmonic sensing experiment, i.e.,
using quantum states of light in our SPR sensing setup. This is done by combining setups which we
have discussed in previous chapters, i.e., the SPR and SPDC setups, as shown in Figure 5.1. Even
though it might seem like we need a large number of photons when we want to compare the noise
reduction to that with a coherent beam with many photons, the use of single photons is sufficient
to demonstrate that a relative enhancement is obtainable [30].

Figure 5.1: Experimental implementation of plasmonic sensing with single photons from a SPDC
source.

In Figure 5.1 we measure coincidences and singles counts for the idler (top) and signal (bottom)
arms. Out of ν single photons sent to the SPR setup (heralded by a detection in the top arm), we
measure the number, Nt, of transmitted single photons. We used a 6 seconds averaging of our data
with ν =150 in our analysis.

Due to the maximum transmission of the SPR setup of around 10% (as a result of losses from
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mirrors, the prism, the fibre couplers and other components) the coincidence count was low and 6
seconds gave enough data to provide statistically relevant results. A larger average/integration time
is not suitable due to the time scale on which the sensorgram changed and a need to get enough
points on the sensorgram. This time scale can be seen in Figure 5.2 (a) for the singles. Increasing
the pump power unfortunately increases the pump based noise in the singles and coincidences and
is not desirable.

We repeat the independent and identical sampling of ν trials, µ times during the 6 seconds (µ =
2× 103), which is checked to be large enough to calculate a steady standard deviation 〈∆N̂〉, which
is the noise in the average over µ repeated measurements. We use these statistical quantities to
quantify the uncertainty in measurements. We count how many of the transmitted photons are
found in the signal mode (given a photon was detected in the idler mode within 4ns), yielding the
transmission of set i, T(i) = Nt(i)/ν. The total expected mean is given by 〈Ttotal〉 =

∑µ
i=1

1
µT(i).

We calculated the uncertainty, 〈∆Ttotal〉, using

〈∆Ttotal〉 =

√√√√ 1

µ

µ∑
i=1

(T(i)− 〈Ttotal〉)2. (5.1)

The theoretical model for the ideal case for quantum single-photon and classical (mean photon
number at 1) states are given as [30]

〈∆Tclasssical〉 =

√
〈Ttotal〉

ν
, (5.2)

and

〈∆Tquantum〉 =

√
〈Ttotal〉(1− 〈Ttotal〉)

ν
. (5.3)

The above quantum plasmonic sensor aims to estimate the observable rate constant ks for the binding
reaction between BSA and the gold surface in our plasmonic setup. We covered the surface of the
gold with water first to establish a baseline for our reaction. We then added 2 percent BSA onto
the surface of the gold and measured the change in the number of transmitted photons in the signal
mode over time to get our sensorgram. As the refractive index on top of the gold surface changes, the
number of transmitted photons in the signal mode changes whilst the idler mode remains constant
as shown in Figure 5.2.

(a) (b)

Figure 5.2: Plots (a) and (b) show how the counts change with time in the signal mode as the
refractive index changes and how they are constant in the idler mode.

We collected the data for Nt(i) as it changed with time using a Picoquant Timeharp 260 PICO. We
used these values to calculate 〈Ttotal〉 and 〈∆Ttotal〉, as shown in Figure 5.3.

76



(a) (b)

Figure 5.3: Plots (a) and (b) show the relationship between T and ∆ T, the orange line represents
the region for quantum states and the blue line shows the region for classical states. The blue points
in (a) are the data points we measured in our experiment. (b) Zoom in shows them more clearly for
us to see the points.

Using these values we plotted a sensorgram of 〈Ttotal〉 vs time with 〈∆Ttotal〉 being used as the
uncertainty in each measurement, as shown in Figure 5.4. We also look at error plots for the
quantum experimental data and for the classical simulation data in Figure 5.5.

(a) (b)

Figure 5.4: Plots (a) and (b) show the sensorgram as T changes with time. (b) shows how the
uncertainty in T changes for the predicted classical case (blue line) and for the quantum case we
measured (orange line).
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(a) (b)

(c) (d)

Figure 5.5: (a) Error-plot for quantum experimental data. (b) Error plot for classical simulated
data. (c) shows these plots side by side, where a small reduction in the error can be seen for the
quantum case over time. (d) shows how R changes at each point in time over the duration of the
experiment, the grey shaded region represents the classical area and anything above represents the
quantum area, the dotted blue line shows a general trend.

We the use a Gauss-Newton non-linear fit as shown in Figure 5.6 to extract the ks parameter using
the model T = a + b(1− e−ks(t−ton))S(t− ton) where, S(t− ton) is the unit step function and ton is
the start time for the dynamics. To do this we made a list of sets with m sensorgrams per set and p
sets from our experimental data (as in the theory study) by a bootstrap sampling of the data. Each
study individual sensorgram in a set of m is too noisy on its own so we averaged over m sensorgrams
in a set before doing the fit, this gave an m dependence to the kinetic parameter ks in addition to
the ν dependence it already had. According to the ergodic principle, assuming each point in the
sensorgram experiences stationary noise, we will get the same result if we average m sensorgrams
then do the fit or do the fit on each of the m sensorgrams and then average the fit parameters (as
in the theory study). We used an m value of 60 and a p value of 15 000 in this work, which gave a

reasonable statistical stability. R=
〈∆M̂quantum〉
〈∆M̂coherent〉

.
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(a) (b)

(c)

Figure 5.6: (a) Sensorgram fit using Gauss-Newton non-linear fit. (b) A histogram of the ks value
extracted from the fit using quantum data. (c) A histogram of the ks value extracted from the fit
using simulated classical data.

From the quantum case we extracted ks = 0.04841s−1 with ∆ks = 0.00612s−1. Using Eq. (5.2) we
also simulated a classical version of the sensorgram we extracted. We fit this noisy sensogram in the
same way as the quantum case and extracted the parameter ks and found that the standard deviation
of the parameter was larger as expected. From the classical case we extracted ks = 0.04855s−1 with
∆ks = 0.00652s−1. Comparing the classical simulation and the quantum experiment parameters we
look at a box-and-whisker plot shown in Figure 5.7.

(a) (b)

Figure 5.7: (a) Box-and-whisker plot for comparison of quantum experiment and classical simulation.
The box plot shows us the shape of the distribution of the parameter ks, its central value, and its
variability. (b) A plot showing ks values and ∆ks for the quantum and classical data.

Taking a ratio of the variance of the classical simulation data and the quantum experiment data
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we find that there is a 13 percent enhancement in the variance and a 6 percent enhancement in the
standard deviation ratio for the estimation of ks. The quantum state gives slightly better precision.
This is quite small because our T is small due to losses in the setup, i.e., it runs between 5-10
percent. Better enhancement could be achieved by reducing losses.

The results of this experiment have shown a small improvement in the precision of the estimation of
the kinetic parameter ks when using the quantum approach compared to the classical approach. In
order to go forward and use the setup to improve the precision in measuring drug kinetics of HIV,
two major advancements are required. The first is to reduce the overall losses in the setup so that
the range of T is increased. As seen in Figure 5.3(a), the improvement in the precision ∆T gets
better as T increases. The second advancement is the rate of single photons probing the SPR setup.
As seen in Chapter 4, values of ν ∼ 106 and N ∼ 103 are required due to the small reflectivity change
of the SPR sensor. While it is the case that N ∼ 103 can be achieved by considering single photons
as opposed to N = 1000 number states due to all photons being non-interacting, the problem is that
it means νN trials (heralding photons) are required for each of the µ sets within the averaging time
of a point on the sensorgram, of say 6 seconds.

This evaluates to µνN
6 ∼ 1011 photons per second. Regardless of what source may produce such a

high rate of photons, current single photon detectors are limited to ≈ 107 detections per second.
Thus at present the use of single photons for HIV drug kinetics sensing is unfortunately out of
technological reach. Alternative approaches may consider the use of squeezed states, such as TMSD
states, which have a higher intensity (larger N) and do not require single-photon detection.

Figure 5.8 is a picture of our actual setup in the quantum optics lab at Stellenbosch University.

Figure 5.8: Picture of the plasmonic sensing setup and the SPDC single photon source.
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Chapter 6

Conclusion

The aim of this thesis was to understand and explore further the use of quantum mechanical systems
in metrology and sensing, specifically biochemical sensing. We considered a theoretical implemen-
tation of a general intensity-sensing setup and showed that Fock states, which are quantum states
of light, allow us to perform measurements with less noise in the measurement. They have a higher
detection limit than the classical coherent state. We then showed that when we use these states in an
SPR experiment we can extract better estimations of the kinetic parameters from our sensorgrams.
Whilst some work has previously been done on quantum plasmonic bio-sensing [30, 35, 36, 38, 39, 97]
the novelty in the work proposed in this thesis is that it focuses on kinetics in the Kretschmann
configuration using intensity as the sensor signal. In this thesis we looked at the coherent state as
the limit of precision in the classical regime, therefore in chapters 3 and 4 when we mention classical
states we are really talking about the coherent state. The coherent state allows us to reach the
standard quantum limit and therefore it makes sense to make comparisons with it when looking at
quantum states. We were interested in understanding how much of an enhancement in precision we
would get if we used quantum states compared to the coherent state.

The thesis began by introducing some basic ideas which are important in order to understand the
new work which was introduced in chapter 3 of this thesis. Chapter one gave a overview of research
in plasmonics. We gave a historical perspective of how research has developed over the past 50 years
in the area of plasmonics, specifically in SPR research. We also looked at how applications have
been developed in plasmonics, for example with companies like Biacore which have commercialised
SPR technologies. SPR is a mature technology and has been shown to be useful in many areas of
research.

Chapter 2 was a literature review chapter which looked into plasmonics and metrology and how
these two subjects can come together as one and how they become useful for applications in research
and industrial technology. We looked at some theory work connected to exciting surface plasmons
and how these excited surface plasmons lead themselves to applications in biology and drug kinetics.
In chapter 2 we also looked at different states of light and how using quantum states of light allows
us to break the shot noise limit set in classical metrology. We also looked at estimation theory,
which is an important topic in metrology. We also looked at exciting single photons using SPDC.
Lastly we looked at two mode plasmonic sensing, both classical and quantum.

Chapter 3 introduced new work in the field, conducted during the course of my PhD. It was shown
that for a two-mode system the Fock state measured data gives the best estimations of parameters,
even though it gets worse when we try to optimize for the other quantum states. When we optimize,
the TMSV and TMSD give better results than the coherent states, and we observe some enhance-
ment. For the single mode case only the Fock state gave an enhancement in both the Kausaite and
Lahiri studies. However we found that in general for cases when our R value is high, the TMSV
and TMSD states can also give a better enhancement than the coherent states. However, the sensi-
tivity of the sensor is not as good here and so this range does not provide an overall enhancement
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compared to the optimal classical case. So quantum states do in general provide an enhancement
in comparison to the coherent state, but we have to be mindful of a situation where some quantum
states will not be as useful, such as the particular scenario we considered.

Chapter 4 looked at an application of this work in studying HIV. We looked at showing what happens
when a small refractive index change occurs during binding and unbinding of an inhibitor in HIV. In
chapter 4 the main conclusion is that the Fock state gives better precision and enhancement in all
the cases, especially in the standard two-mode case. The single mode offers a similar enhancement
to the optimized case but it is more practical for experiments as only one mode is required. In
chapter 4 we wanted to see if the Fock state would still perform better than the coherent state given
that the refractive index change is smaller. We find that the Fock state outperforms the coherent
state. This is a particular case of interest due to the prevalence of the HIV virus in Africa. The
theoretical work here is important because it opens the way for future experimental work in HIV
drug kinetics using quantum biosensors.

Chapter 5 looked at experimental work which we did, where we used single photons from an SPDC
source to excite SPR. We generated a sensorgram from the binding reaction between BSA and our
gold surface and measured the kinetic constant ks. We found an small enhancement in the precision
of the parameter. Although we only observed a small enhancement (due to the low efficiency of
our setup), it is sufficient as a proof of concept. We managed to show that using quantum states
do give a parameter precision enhancement over classical states. These results lay the foundation
for future experimental work. We were only able to get the binding part of our sensorgram due
to complications with our fluidics setup, which controls the inflow and outflow of our BSA sample.
We struggled with blockages in our setup which we hope to resolve. We also experienced delays in
our experimental work due to the closure of our labs during the lock-down period as a result of the
Covid-19 pandemic.

The use of quantum states of light was intensively investigated in this thesis with the aim of improving
the precision, performance, and limit of detection of SPR biosensors. We showed theoretically that
indeed we can achieve an enhancement. Experimentally we showed proof of concept and with better
efficiency in our single-photon source we can get a higher precision. There is much promise in this
field of research and much to be done before we can fully benefit from the quantum technologies
we are developing here. In our future work we will look at signal-to-noise ratios when we use the
different quantum states and quantum imaging.
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Appendix A

Calculations for phase
measurements using NOON and
coherent states

We begin our quantum treatment of phase sensing by considering interferometry with N00N states.

A.1 Phase measurements using NOON states

Figure A.1: Theoretical model for two-mode phase sensing using NOON states.

The setup shown above shows the steps in measuring the uncertainity (precision) in the phase added
to a NOON state. The first step is to pass the state through a phase shifter to add the phase,

|N〉1 |0〉2 + |0〉1 |N〉2√
2

PS−−→
|N〉1 |0〉2 + eiφN |0〉1 |N〉2√

2
. (A.1)

Where N is the number of photons in a particular mode, PS, stands for phase shifter and φ is the
phase. In the Heisenberg picture, the above N00N state can be expressed as shown below,

|N〉1 |0〉2 + eiφN |0〉1 |N〉2√
2

=
(a†1)N |0〉1 |0〉2 + eiφN(a†2)N |0〉1 |0〉2√

2N!
, (A.2)
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where
â†1 = η1

1
2 â†3 + i(1− η1)

1
2 â†4 (A.3)

and
â†2 = η2

1
2 â†5 + i(1− η2)

1
2 â†6. (A.4)

Substituting the above equations into Eq. (A.2) we get

(η1
1
2 â†3 + i(1− η1)

1
2 â†4)N |0〉3 |0〉4 |0〉5 |0〉6 + eiφN(η

1
2
2 â†5 + i(1− η2)

1
2 â†6)N |0〉3 |0〉4 |0〉5 |0〉6√

2N!
. (A.5)

We want to resolve each part of the sum individually so we label the two parts of the equation part
1 and part 2,

Part1 =
(η1

1
2 â†3 + i(1− η1)

1
2 â†4)N |0〉3 |0〉4 |0〉5 |0〉6√
2N!

. (A.6)

Using the binomial theorem we can rewrite the above expression, part 1 can be written as (x + y)N =∑N
k=0)

(
N
k

)
xN−kyk

Part1 =
1√
2N!

N∑
k=0

(
N

k

)
(η1

1
2 â†3)

N−k
(i(1− η1)

1
2 â†4)k |0〉3 |0〉4 |0〉5 |0〉6 , (A.7)

=
1√
2N!

N∑
k=0

(
N

k

)
η1

N−k
2 (â†3)N−kik(1− η1)

k
2 (â†4)k |0〉3 |0〉4 |0〉5 |0〉6 , (A.8)

Part2 =
eiNφ

√
2N!

N∑
k=0

(
N

k

)
η2

N−k
2 (â†5)N−kik(1− η2)

k
2 (â†6)k |0〉3 |0〉4 |0〉5 |0〉6 . (A.9)

The measurement operator Â is defined as

ÂNOON = |N〉3 |0〉5 〈0|3 〈N|5 + |0〉3 |N〉5 〈N|3 〈0|5 , (A.10)

〈ÂNOON〉 = 〈0|3 〈0|4 〈0|5 〈0|6 (
1√
2N!

N∑
k=0

(
N

k

)
η1

N−k
2 (â3)N−k(−1k)ik(1− η1)

k
2 (â4)k+

e−iNφ

√
2N!

N∑
k=0

(
N

k

)
η2

N−k
2 (â5)N−k(−1k)ik(1− η2)

k
2 (â6)k)(|N〉3 |0〉5 〈0|3 〈N|5 + |0〉3 |N〉5 〈N|3 〈0|5)

(
1√
2N!

N∑
k=0

(
N

k

)
η1

N−k
2 (â†3)N−kik(1− η1)

k
2 (â†4)k +

eiNφ

√
2N!

N∑
k=0

(
N

k

)
η2

N−k
2 (â†5)N−kik(1− η2)

k
2 (â†6)k)

|0〉3 |0〉4 |0〉5 |0〉6 .

The above expression can be simplified to the expression below, the reduction in the expression is
due to the fact that there are specific states that remain, i.e., the ‘N’ photon and the ‘0’ photon
state when we take the measurement whereas the rest vanish. We thus have

〈ÂNOON〉 =
1

2
(

(
N

0

)
η1

N
2 〈N|3 〈0|4 〈0|5 〈0|6 + e−iNφ

(
N

0

)
η2

N
2 〈0|3 〈0|4 〈N|5 〈0|6)

(|N〉3 |0〉5 〈0|3 〈N|5 + |0〉3 |N〉5 〈0|3 〈0|5)(

(
N

0

)
η1

N
2 |N〉3 |0〉4 |0〉5 |0〉6 + eiNφ

(
N

0

)
η2

N
2 |0〉3 |0〉4 |N〉5 |0〉6).

This simplifies to

84



〈ÂNOON〉 =
η1

N
2 η

N
2

2 eiNφ + η1
N
2 η2

N
2 e−iNφ

2
, (A.11)

which simplifies to

〈ÂNOON〉 = (η1η2)
N
2 cos(Nφ). (A.12)

The next step is to calculate 〈Â2
NOON〉

〈Â2
NOON〉 = |N〉3 |0〉5 〈N|3 〈0|5 + |0〉3 |N〉5 〈0|3 〈N|5 (A.13)

〈Â2
NOON〉 = 〈0|3 〈0|4 〈0|5 〈0|6 (

1√
2N!

N∑
k=0

(
N

k

)
η1

N−k
2 (â3)N−k(−1k)ik(1− η1)

k
2 (â4)k+

e−iNφ

√
2N!

N∑
k=0

(
N

k

)
η2

N−k
2 (â5)N−k(−1k)ik(1− η2)

k
2 (|N〉3 |0〉5 〈N|3 〈0|5 + |0〉3 |N〉5 〈0|3 〈N|5)

(
1√
2N!

N∑
k=0

(
N

k

)
η1

N−k
2 (â†3)N−kik(1− η1)

k
2 (â†4)k +

eiNφ

√
2N!

N∑
k=0

(
N

k

)
η2

N−k
2 (â†5)N−kik(1− η2)

k
2 (â†6)k)

|0〉3 |0〉4 |0〉5 |0〉6 .

The surviving terms are

〈Â2
NOON〉 =

1

2
(

(
N

0

)
η1

N
2 〈N|3 〈0|4 〈0|5 〈0|6 + e−iNφ

(
N

0

)
η2

N
2 〈0|3 〈0|4 〈N|5 〈0|6)

(|N〉3 |0〉5 〈N|3 〈0|5 + |0〉3 |N〉5 〈0|3 〈N|5)(

(
N

0

)
η1

N
2 |N〉3 |0〉4 |0〉5 |0〉6 + eiNφ

(
N

0

)
η2

N
2

|0〉3 |0〉4 |N〉5 |0〉6).

From which it follows

〈Â2
NOON〉 =

η1
N + η2

N

2
. (A.14)

The next step is to calculate 〈∆ÂNOON〉, which is defined as

〈∆ÂNOON〉 =

√
〈Â2

NOON〉 − 〈ÂNOON〉
2
, (A.15)

〈∆ÂNOON〉 =

√
η1

N + η2
N

2
− (η1η2)Ncos2(Nφ). (A.16)

It follows that

∆φ = 〈∆ÂNOON〉|
∂〈∆ÂNOON〉

∂φ
|−1 =

√
η1N+η2N

2 − (η1η2)Ncos2(Nφ)

N(η1η2)
N
2 |sin(Nφ)|

. (A.17)

The above is a general solution, however we can start to make assumptions to see the effect they
have. If we assume one mode has more loss than the other we can set η1 = η and η2 = 1, from which
it follows that

∆φ =

√
(η)N+1

2 − (η)Ncos2(Nφ)

N(η)
N
2 |sin(Nφ)|

. (A.18)
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We can find the minimum possible value for ∆φ by setting Nφ = π
2 . This leads to [85]

∆φmin =

√
(1 + η−N)/2

N
. (A.19)

If instead we had set η1 = η2 = η then

∆φmin =
1

η
N
2 N

. (A.20)

A.1.1 Optimizing the quantum case

In this case we start with a N00N state with unbalanced weights, i.e.,

√
aN |N〉1 |0〉2 +

√
a0 |0〉1 |N〉2 . (A.21)

Where a0 =
η

N
2
2

η
N
2
1 +η

N
2
2

and aN = 1− a0. The calculation follows the procedure of the balanced N00N

state so to avoid repetition we skip to the expectation value of A, i.e., 〈Â〉,

〈Â〉 = 2
√

a0
√

aNη
N
2

1 η
N
2

2 cosNφ. (A.22)

Similarly the calculation for 〈Â2〉, follows as for the balanced weights case so we skip straight to the
solution given below

〈Â2〉 = a0η
N
1 + aNη

N
2 . (A.23)

The next step is to calculate 〈∆ÂNOON〉 which is defined as

〈∆ÂNOON〉 =

√
〈Â2

NOON〉 − 〈ÂNOON〉
2
. (A.24)

〈∆ÂNOON〉 =

√
a0ηN

1 + aNηN
2 − (2

√
a0
√

aNη
N
2

1 η
N
2

2 cosNφ)2, (A.25)

which gives

∆φ =

√
a0ηN

1 + aNηN
2 − (2

√
a0
√

aNη
N
2

1 η
N
2

2 cosNφ)2

2N
√

a0
√

aNη
N
2

1 η
N
2

2 sinNφ
. (A.26)

We can simplify further by substituting a0 and aN above and setting φ = π
2 from which we get

∆φ =

√
η

N
2
2

η
N
2
1 +η

N
2
2

ηN
1 +

η
N
2
1

η
N
2
1 +η

N
2
2

ηN
2

2N

√
η

N
2
2

η
N
2
1 +η

N
2
2

√
η

N
2
1

η
N
2
1 +η

N
2
2

η
N
2

1 η
N
2

2

. (A.27)

This can be reduced to

∆φ =
η

N
2

1 + η
N
2

2

2N(η1η2)
N
2

. (A.28)

If we consider loss in one arm thus set η1 = 1 and η1 = η. It follows that

∆φmin =
1 + η

N
2

2Nη
N
2

, (A.29)

which reduces to
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∆φmin =
1 + η−

N
2

2N
. (A.30)

The is the optimised result found in Demkowicz-Dobrzanski et al. [85].

A.2 Phase measurements using coherent states

Figure A.2: Theoretical model for two-mode phase sensing using coherent states.

We start with the input states
∣∣∣ α√

2

〉
1

and
∣∣∣ iα√

2

〉
2
. The first input mode goes through a phase

shifter, PS1, to give ∣∣∣∣ α√2

〉
1

∣∣∣∣ iα√
2

〉
2

PS1−−→
∣∣∣∣eiφα√

2

〉
1

∣∣∣∣ iα√
2

〉
2

. (A.31)

For easier reading we relabel |α′〉 =
∣∣∣ eiφα√

2

〉
1

and |α′′〉 =
∣∣∣ iα√

2

〉
2
. The beam splitters after the phase

shifter model loss in system and hence we introduce loss modes as shown below

|α′〉1 =
∣∣∣η 1

2
1 α
′
〉

3

∣∣∣(1− η1)
1
2 iα′

〉
4
, (A.32)

and
|α′′〉2 =

∣∣∣η 1
2
2 α
′′
〉

5

∣∣∣(1− η2)
1
2 iα′′

〉
6
. (A.33)

It follows that

|α′〉1 |α
′′〉2

loss−−→
∣∣∣η 1

2
1 α
′
〉

3

∣∣∣(1− η1)
1
2 iα′

〉
4

∣∣∣η 1
2
2 α
′′
〉

5

∣∣∣(1− η2)
1
2 iα′′

〉
6

(A.34)

Substituting back α′ = eiφα√
2

and α′′ = iα√
2

it follows that the output is∣∣∣∣η 1
2
1

eiφα√
2

〉
3

∣∣∣∣(1− η1)
1
2 i

eiφα√
2

〉
4

∣∣∣∣η 1
2
2

iα√
2

〉
5

∣∣∣∣(1− η2)
1
2 i

iα√
2

〉
6

. (A.35)

Applying a beam splitter to the above state we get

BS−−→

∣∣∣∣∣∣
(η

1
2
1 eiφ α√

2
− η

1
2
2
α√
2
)

√
2

〉
3

∣∣∣∣(1− η1)
1
2 i

eφα√
2

〉
4

∣∣∣∣∣∣
(η

1
2
1 ieiφ α√

2
+ η

1
2
2
αi√

2
)

√
2

〉
5

∣∣∣∣(1− η2)
1
2 i

iα√
2

〉
6

. (A.36)
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The next step is to calculate, 〈n̂3〉, which we do as shown below

〈n̂3〉 = Tr3456(n̂3 ⊗ 1456ρ), (A.37)

which is equivalent to
〈n̂3〉 = 〈ψout| n̂3 ⊗ 1456 |ψout〉 . (A.38)

We then have

〈n̂3〉 =

〈
(η

1
2
1 eiφ α√

2
− η

1
2
2
α√
2
)

√
2

∣∣∣∣∣∣ â†3â3

∣∣∣∣∣∣
(η

1
2
1 eiφ α√

2
− η

1
2
2
α√
2
)

√
2

〉
3

〈
(1− η1)

1
2 i

eφα√
2

∣∣∣∣1 ∣∣∣∣(1− η1)
1
2 i

eφα√
2

〉
4〈

(η
1
2
1 ieiφ α√

2
+ η

1
2
2
αi√

2
)

√
2

∣∣∣∣∣∣1
∣∣∣∣∣∣
(η

1
2
1 ieiφ α√

2
+ η

1
2
2
αi√

2
)

√
2

〉
5

〈
(1− η2)

1
2 i

iα√
2

∣∣∣∣1 ∣∣∣∣(1− η2)
1
2 i

iα√
2

〉
6

.

This reduces to

〈n̂3〉 =
|α|2

4
(η1 + η2 − 2η

1
2
1 η

1
2
2 cosφ). (A.39)

Calculating, 〈n̂5〉, follows a similar procedure, so we will just skip to final result

〈n̂5〉 =
|α|2

4
(η1 + η2 + 2η

1
2
1 η

1
2
2 cosφ). (A.40)

Calculating, 〈M̂〉 = 〈n̂5〉 − 〈n̂3〉, we get

〈n̂5〉 − 〈n̂3〉 =
|α|2

4
(η1 + η2 + 2η

1
2
1 η

1
2
2 cosφ)− |α

2|
4

(η1 + η2 − 2η
1
2
1 η

1
2
2 cosφ). (A.41)

= |α|2η
1
2
1 η

1
2
2 cosφ. (A.42)

Next we calculate, 〈M̂〉
2

〈M̂〉
2

= (|α|2η
1
2
1 η

1
2
2 cosφ)2. (A.43)

Next we calculate, 〈M̂2〉 = 〈(â†5â5 − â†3â3)2〉

〈M̂2〉 = (
|α|
2

)
4

16|α|2η
1
2
1 η

1
2
2 cos2φ) + 2(

|α|
2

)
2

(η1 + η2). (A.44)

Then we calculate, 〈∆M̂〉 =

√
〈M̂2〉 − 〈M̂〉2. This reduces to

〈∆M̂〉 =

√
(
|α|
2

)
4

16|α|2η
1
2
1 η

1
2
2 cos2φ)− (|α|2η

1
2
1 η

1
2
2 cosφ)2 + 2(

|α|
2

)
2

(η1 + η2). (A.45)

=

√
1

2
|α|2(η1 + η2). (A.46)

Next we calculate, ∂〈M̂〉
∂φ ,

∂〈M̂〉
∂φ

= |α|2(η1η2)
1
2 sinφ. (A.47)

Then we calculate ∆φ = 〈∆M̂〉
| ∂〈M̂〉∂φ |

for φ = π
2
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∆φ =
〈∆M̂〉

|∂〈M̂〉∂φ |
=

√
1
2 |α|2(η1 + η2)

|α|2(η1η2)
1
2

. (A.48)

When, η1 = η2 = 1, i.e., there is no loss then ∆φ = 1√
N

. We can find the minimum possible value

for, ∆φ, by setting φ = π
2 and this gives us

∆φmin =

√
1
2 (η1 + η2)

|α|η1
1
2 η2

1
2

. (A.49)

We can optimize the classical case to get a better result of ∆φ as shown in the next section.

A.2.1 Optimizing the classical case

Starting of with the general expression for ∆φ in the classical case

∆φ =
(
√
|α|2

2 (η1 + η2)

|α|2η1
1
2 η2

1
2 |sinφ|

. (A.50)

We can substitute, η1 = k1T and η2 = k2(1− T), where, T, is a weighting on the beam splitter in
mode 1 and k1, k2 are rational numbers. Substituting these into ∆φ, we get

∆φmin =

√
1
2 (k1T + k2(1− T))

|α|k
1
2
1 T

1
2

k
1
2
2 (1− T)

1
2

. (A.51)

We go on to make another substitution T =
√

k2√
k2+
√

k1

∆φmin =

√
1
2 (k1

√
k2√

k2+
√

k1
+ k2(1−

√
k2√

k2+
√

k1
))

|α|k
1
2
1

√
k2√

k2+
√

k1

1
2

k
1
2
2 (1−

√
k2√

k2+
√

k1
)

1
2

. (A.52)

The above expression can be simplified to

∆φmin =

√
k2 +

√
k1

2
√

Nk1k2

. (A.53)

This is the optimal state in Demkowicz-Dobrzanski et al. [85]. If we consider loss in one arm then
we have, k1 = 1, k2 = η, it follows that

∆φmin =

√
1 +
√
η

2
√

Nη
. (A.54)
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Appendix B

Calculation of the precision for a
two-mode squeezed displaced
vacuum state

Figure B.1: Theoretical model for 2 mode intensity sensing.

The two-mode squeezed displaced state (TMSD) is defined as |TMSD〉 = Ŝ12(χ) |0〉1 |α〉2, where

Ŝ12(χ) = e(χ∗â1â2−χâ†1â†2) with χ = |χ|eiθ. The goal of this section is to calculate the term 〈∆M̂〉
which from the general form derived in section 2.5.2 equals

[〈(â†1â1)2〉+ 〈(â†2â2)2〉 − 2〈â†1â1â†2â2〉 − (〈â†2â2〉 − 〈â†1â1〉)2]
1
2 , (B.1)

when ηa = ηb = |r|2 = 1. We start off by calculating, 〈â†1â1〉, which is given by

〈â†1â1〉 = 〈0|2 〈α|1 Ŝ†â†1â1Ŝ |α〉1 |0〉2 (B.2)

= 〈0|2 〈α|1 Ŝ†â†1ŜŜ†â1Ŝ |α〉1 |0〉2 . (B.3)

90



We have that Ŝ†â†1Ŝ = cosh(|χ|)â†1 + â2sinh(|χ|)e−iθ and Ŝ†â1Ŝ = cosh(|χ|)â1 + â†2sinh(|χ|)eiθ. So we
substitute these in the equation above to get

= 〈0|2 〈α|1 (cosh(|χ|)â†1 + â2sinh(|χ|)e−iθ)(cosh(|χ|)â1 + â†2sinh(|χ|)eiθ) |α〉1 |0〉2 . (B.4)

A lot of mixed terms come out but they all vanish. the terms which remain are

= cosh2(|χ|) 〈0|2 〈α|1 â†1â1 |α〉1 |0〉2 + sinh2(|χ|) 〈0|2 〈α|1 â2â†2 |α〉1 |0〉2 . (B.5)

We can apply normal ordering to the second term to get

sinh2(|χ|) 〈0|2 〈α|1 â2â†2 |α〉1 |0〉2 = sinh2(|χ|) 〈0|2 〈α|1 (â†2â2 + 1) |α〉1 |0〉2 . (B.6)

The final result is

〈â†1â1〉 = cosh2(|χ|)|α|2 + sinh2(|χ|) . (B.7)

The next step is to calculate, 〈â†2â2〉, which is given by

= 〈0|2 〈α|1 Ŝ†â†2ŜŜ†â2Ŝ |α〉1 |0〉2 . (B.8)

We have that Ŝ†â†2Ŝ = cosh(|χ|)â†2 + â1sinh(|χ|)e−iθ and Ŝ†â2Ŝ = cosh(|χ|)â2 + â†1sinh(|χ|)eiθ. So we
substitute these in the equation above to get

= 〈0|2 〈α|1 (cosh(|χ|)â†2 + â1sinh(|χ|)e−iθ)(cosh(|χ|)â2 + â†1sinh(|χ|)eiθ) |α〉1 |0〉2 . (B.9)

A lot of mixed terms come out but they all vanish. The terms which remain are

= cosh2(|χ|) 〈0|2 〈α|1 â†2â2 |α〉1 |0〉2 + sinh2(|χ|) 〈0|2 〈α|1 â1â†1 |α〉1 |0〉2 . (B.10)

We can apply normal ordering to the second term and get

sinh2(|χ|) 〈0|2 〈α|1 â1â†1 |α〉1 |0〉2 = sinh2(|χ|) 〈0|2 〈α|1 (â†1â1 + 1) |α〉1 |0〉2 . (B.11)

The final result is

〈â†2â2〉 = sinh2(|χ|)|α|2 + sinh2(|χ|) . (B.12)

The resulting equation for 〈M̂〉 = 〈â†2â2〉 − 〈â†1â1〉 when we include the loss terms η1 and η2 is

〈M̂〉 = |r|2η2
2〈â
†
2â2〉 − η2

1〈â
†
1â1〉

〈â†2â2〉 − 〈â†1â1〉 = |r|2η2
2(sinh2(|χ|)|α|2 + sinh2(|χ|))− η2

1(cosh2(|χ|)|α|2 + sinh2(|χ|)). (B.13)

The next step is to calculate 〈(â†1â1)2〉 = 〈â†1â1â†1â1〉. With normal ordering this becomes 〈(â†1â1)2〉 =

〈â†1â†1â1â1 + â†1â1〉. We will start off by calculating, 〈â†1â†1â1â1〉, which is

〈â†1â†1â1â1〉 = 〈[cosh(|χ|)â†1 + â2sinh(|χ|)e−iθ]× [cosh(|χ|)â†1 + â2sinh(|χ|)e−iθ]

× [cosh(|χ|)â1 + â†2sinh(|χ|)eiθ]× [cosh(|χ|)â1 + â†2sinh(|χ|)eiθ]〉.
The calculation is rather long, with the final result for the calculation is given below

〈â†1â†1â1â1〉 = cosh4(|χ|)|α|4 + 4|α|2sinh2(|χ|)cosh2(|χ|) + 2sinh4(|χ|) (B.14)

We do a similar thing to calculate 〈(â†2â2)2〉 = 〈â†2â2â†2â2〉. With normal ordering this becomes

〈(â†2â2)2〉 = 〈â†2â†2â2â2 + â†2â2〉. We will start off by calculating, 〈â†2â†2â2â2〉, which is
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〈â†2â†2â2â2〉 = 〈[cosh(|χ|)â†2 + â1sinh(|χ|)e−iθ]× [cosh(|χ|)â†2 + â1sinh(|χ|)e−iθ]

× [cosh(|χ|)â2 + â†1sinh(|χ|)eiθ]× [cosh(|χ|)â2 + â†1sinh(|χ|)eiθ]〉.

The calculation is rather long, with the final result for the calculation given below

〈â†2â†2â2â2〉 = sinh4(|χ|)|α|4 + 4|α|2sinh4(|χ|) + 2sinh4(|χ|) . (B.15)

The next step is to calculate 〈â†1â1â†2â2〉. We can rewrite the expression as

〈â†1â1â†2â2〉 = 〈Ŝ†â†1ŜŜ†â1ŜŜ†â†2ŜŜ†â2Ŝ〉. (B.16)

It follows that

〈â†1â1â†2â2〉 = 〈[cosh(|χ|)â†1 + â2sinh(|χ|)e−iθ]× [cosh(|χ|)â1 + â†2sinh(|χ|)eiθ]

× [cosh(|χ|)â†2 + â1sinh(|χ|)e−iθ]× [cosh(|χ|)â2 + â†1sinh(|χ|)eiθ]〉.

The calculation is rather long, with the result given below

〈â†1â1â†2â2〉 = cosh2(|χ|)sinh2(|χ|)(|α|4 + |α|2 + 2|α|+ 1) + sinh4(|χ|)(|α|2 + 1). (B.17)

The next step is to calculate 〈∆M̂〉 by combining the terms as shown here

〈∆M̂〉 = [〈(â†1â1)2〉+ 〈(â†2â2)2〉 − 2〈â†1â1â†2â2〉 − (〈â†2â2〉 − 〈â†1â1〉2)]
1
2 . (B.18)

When we include the loss terms see section 2.25

〈∆M̂〉 = [|r|4η4
1(cosh4(|χ|)|α|4 + 4|α|2sinh2(|χ|)cosh2(|χ|) + 2sinh4(|χ|)) + r2η2

1(cosh2(|χ|)|α|2 + sinh2(|χ|))
+ η4

2(sinh4(|χ|)|α|4 + 4|α|2sinh4(|χ|) + 2sinh4(|χ|)) + η2
2(sinh2(|χ|)|α|2 + sinh2(|χ|))

− 2|r|2η2
1η

2
2(cosh2(|χ|)sinh2(|χ|)(|α|4 + |α|2 + 2|α|+ 1) + sinh4(|χ|)(|α|2 + 1))

− [η2
2(sinh2(|χ|)|α|2 + sinh2(|χ|))− |r|2η2

1(cosh2(|χ|)|α|2 + sinh2(|χ|))]2]
1
2 .

This simplifies to

〈∆M̂〉 = [2|r|4η4
1cosh2(|χ|)sinh2(|χ|)|α|2 + |r|4η4

1sinh4(|χ|)
+ |r|2η2

1(cosh2(|χ|)|α|2 + sinh2(|χ|)) + 2η4
2sinh4(|χ|)|α|2 + η4

2sinh4(|χ|)

+ η2
2(sinh2(|χ|)|α|2 + sinh2(|χ|))− 4|r|2η2

1η
2
2 |α|2cosh2(|χ|)sinh2(|χ|)− 2r2η2

1η
2
2cosh2(|χ|)sinh2(|χ|)] 1

2 .

By substituting, sinh2(|χ|) = G, cosh2(|χ|) = G − 1, |r|2 = T, η1 = η
1
2
a and η2 = η

1
2

b we get the
result.

〈∆M̂〉TMSD = [2T2G(G− 1)η2
a |α|2 + T2Gη2

a(G− 1)2 + Tηa(G|α|2 + (G− 1)) + 2η2
b

(G− 1)2|α|2 + η2
b(G− 1)2 + ηb((G− 1)|α|2 + (G− 1))− 4TηaηbG(G− 1)|α|2

− 2TηaηbG(G− 1)]
1
2 .
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Appendix C

Two-dimensional and
three-dimensional plots in
quantum surface plasmon sensing

In SPR sensing the measured reflectivity, R, is a function of the incident angle, θ, as well as a
function of the changing refractive index, n, on the surface of the gold. We can thus construct a
three-dimensional model to show how R would vary with changes in both θ and n, as shown in
Figure C.1. The plots used here are from a sensing setup inwhich the laser light had a wavelength
of 810nm and the gold on the slide was 50nm thick and we made it using Eq. (2.34).

Figure C.1: SPR dip with refractive index of both the dielectric material and incident angle.

When we fix the incident angle θ and change the refractive index then we have the two dimensional
representation shown in Figure C.2. We can also fix the refractive index and change the incident
angle θ, then we will have the two-dimensional representation shown in Figure C.3. We have already
seen this previously, but a clarification can be useful. We are also interested in the derivative of the
reflectivity with respect to the incident angle and with respect to the refractive index. These are
important in calculating the sensitivity of the setup. The sensitivity with respect to n is shown in
Figure C.4.

We can make a three-dimensional plot for the derivative of the reflectivity R as well, since R depends
on θ and n. The three-dimensional plot is shown in Figure C.5.

In order to compare the performance of the different types of SPR sensors, we define a general
formula for the sensitivity of the sensor in response to changes in the refractive index of the sensitive
layer, ∆n, as
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Figure C.2: SPR dip with changing refractive index of the dielectric material and incident angle
fixed.

Figure C.3: SPR dip with fixed refractive index of the dielectric material and incident angle changing.

∆S =
∆Q

∆n
. (C.1)

Here Q can be any of the quantities (λspr,Θspr,Rspr, φspr).

In Figure C.6 and C.7 we look at the inflection point ninf
analyte, which is a point at which the sensitivity

is maximized. It is presented against an incidence angle in a range from 65.5◦ to 83.5◦ . Furthermore,
the estimation precisions for the product coherent, twin Fock, and TMSV states are calculated at
the inflection point given according to θ in Figure C.6. This follows from work done in Ref. [30].
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Figure C.4: Derivative of reflectivity, R, with respect to refractive index.

Figure C.5: Three-dimensional plot for the derivative of the reflectivity, R.

Figure C.6: Inflection point at which the sensitivity is maximized for different states.
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Figure C.7: Inflection point at which the estimate precision is minimized for different states.
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Appendix D

General formula for the noise
reduction in a two-mode system

We are often interested in measuring the classicality or non-classicality of a state and the answer
to this often comes from looking at photon statistics. A factor called the Mandel Q parameter [71],
can be used to measure the non-classicality of a state. Another factor called the Fano factor, F, can
also be used to achieve the same purpose. The Fano factor can be written out mathematically as,

F = 〈∆n̂2〉
〈n̂〉 and the Mandel Q parameter is defined as

Q =
〈∆n̂2〉 − 〈n̂〉
〈n̂〉

= F− 1. (D.1)

The value of the Fano factor F = 1 or Q = 0 establishes a bound between classical and non-classical
photon statistics. For classical states the value of F is lower bounded by unity, i.e., if F ≥ 1,then
we classify our state as being a classical state. Non-classical states can have F values in the range
0 ≤ F < 1, this corresponds to Q values in the range −1 ≤ Q < 0. Losses in the detection process,
i.e., including both losses in the optical path and the detector quantum efficiency, affect the statistics
of a state and cause a deterioration in the F value as shown below

Fdet = ηF + 1− η. (D.2)

Where η represents optical losses. It follows that in the presence of losses the lower bound for a
non-classical state is Fdet = 1− η.

We can look at two-mode non-classical statistics. The degree of correlation between two-modes can
be quantified and their non-classical features can therefore be quantified. We do this by defining the
noise reduction factor (NRF), σ, is defined mathematically as

σ =
〈[∆(n̂1 − n̂2)]2〉
〈n̂1 + n̂2〉

=
〈∆n̂2

1〉+ 〈∆n̂2
2〉 − 2〈∆n̂2

1∆n̂2
2〉

〈n̂1 + n̂2〉
. (D.3)

This is a ratio between the variance of the difference in the number of photons and the noise of two
coherent states of equivalent energies [32]. The shot-noise level is given by the sum of the shot noise
of the two-modes, 〈n̂1 + n̂2〉. Non-classical bipartite states can have σ values in the range 0 ≤ σ < 1
and classical bipartite states have, σ ≥ 1.

Here we will look at some general notation used in the calculations to follow and let n̂a → n̂ain
and

n̂b → n̂bin , we then have

〈∆n̂2
ain
〉 = 〈â†ââ†â〉 − 〈â†â〉2, (D.4)

and
〈∆n̂2

bin
〉 = 〈b̂†b̂b̂†b̂〉 − 〈b̂†b̂〉2, (D.5)
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and
〈∆n̂2

ain
∆n̂2

bin
〉 = 〈â†âb̂†b̂〉 − 〈â†â〉〈b̂†b̂〉. (D.6)

It follows that for a two-mode state with N photons on average in each mode we have

〈n̂ain
〉 = 〈n̂bin

〉 = N, (D.7)

and
〈∆n̂2

ain
〉 = (Q + 1)〈n̂ain

〉 = (Q + 1)N, (D.8)

and
〈[∆(n̂ain

− n̂bin
)]2〉 = (〈n̂bin

〉+ 〈n̂bin
〉)σ = 2Nσ. (D.9)

Using Eqs.(D.6-D.8) above we can write the general equation for 〈∆M̂〉, in terms of the Mandel
factor Q and the noise reduction factor σ. The equation to write is

〈∆M̂〉 = [|r|4η4
a 〈ψin| â†in(â†inâin)âin |ψin〉+ |r|2η2

a 〈ψin| â†inâin |ψin〉+ η4
b 〈ψin| b̂†in(b̂†inb̂in)b̂in |ψin〉+

η2
b 〈ψin| b̂†inb̂in |ψin〉+ 2|r|2η2

aη
2
b 〈ψin| â†inâin |ψin〉 〈ψin| b̂†inb̂in |ψin〉 − (|r|4η4

a 〈ψin| â†inâin |ψin〉2

+ η4
b 〈ψin| b̂†inb̂in |ψin〉2 − 2|r|2η2

aη
2
b 〈ψin| â†inâin |ψin〉 〈ψin| b̂†inb̂in |ψin〉)]

1
2 ,

which reduces to

〈∆M̂〉 = [η4
b (〈ψin|∆n̂2

bin
|ψin〉)2 + η2

b (1− η2
b )(〈ψin| n̂bin

|ψin〉) + |r|4η4
a(〈ψin|∆n̂ain

|ψin〉)2

+ |r|2η2
a(1− |r|2η2

a)(〈ψin| n̂ain |ψin〉) + |r|2η2
aη

2
b ((〈ψin|∆(n̂bin − n̂ain) |ψin〉)2)

− |r|2η2
aη

2
b (〈ψin|∆n̂ain

|ψin〉)2)− |r|2η2
aη

2
b (〈ψin|∆n̂bin

|ψin〉)2)]
1
2 .

Substituting the above expressions we get

〈∆M̂〉 = [η4
b (Q + 1)N + (η2

b − η4
b )N + |r|4η4

a(Q + 1)N + (|r|2η2
a − |r|4η4

a)N + 2|r|2η2
aη

2
bσ − 2|r|2η2

aη
2
bQ + 1)N]

1
2 .

(D.10)
This reduces to

〈∆M̂〉 = N
1
2 [(η2

b − |r|2η2
a)2Q + 2|r|2η2

aη
2
bσ + η2

b + |r|2η2
a(1− 2η2

b )]
1
2 . (D.11)
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Appendix E

Noise ratio (Noise reduction
factor)

Here we show the ratio
〈∆M̂quantum〉
〈∆M̂classical〉

varies with changing |r|2 values. We begin by replacing |r|2 with

T for simplicity and write out the ratios,

〈∆M̂Fock〉
〈∆M̂coherent〉

=
−T2ηa

2 + Tηa + ηb − ηb2

Tηa + ηb
. (E.1)

〈∆M̂TMSV〉
〈∆M̂coherent〉

=
(T2ηa

2 + ηb
2 − 2Tηaηb)(G|α|2 +G− 1) + ηb + Tηa(1− 2ηb)

Tηa + ηb
. (E.2)

〈∆M̂TMSD〉
〈∆M̂coherent〉

= (2T2ηa
2G(G− 1)|α|2 + T2ηa

2(G− 1)2 + Tηa(G|α|2 +G− 1)+

2ηb
2(G− 1)2|α|2 + ηb

2(G− 1)2 + ηb((G− 1)|α|2 +G− 1)− 4TηaηbG(G− 1)|α|2−
2TηaηbG(G− 1))/(Tηa + ηb).

〈∆M̂Product−squeezed〉
〈∆M̂coherent〉

=
(ηb − Tηa)(G|α|2 +G) + 2Tηaηb(G|α|2 +G) + ηb + Tηa(1− 2ηb)

Tηb + ηb
. (E.3)

〈∆M̂NOON〉
〈∆M̂coherent〉

=
(ηb − Tηa)(G|α|2 +G− 1) + 4Tηaηb(G|α|2 +G− 1) + ηb + Tηa(1− 2ηb))

Tηa + ηb
. (E.4)

Where G is the gain, and ηa and ηb are measures of loss in arms a and b of the two-mode setup.
We set G = 4.5 and plot in Figures(E.1-E.3) these relationships for different values of loss, i.e., ηa
and ηb values.
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(a) Legend (b) No loss, i.e., ηa = ηb = 1 (c) No Loss, i.e., ηa = ηb = 1

Figure E.1: Plot (a) shows the legend for the different states. Plots (b) and (c) show how the ratios
for the different states vary with changing T values. Plot (b) shows the general behaviour whilst (c)
shows the region where the quantum states beat the coherent state, i.e., the ratio values < 1.

(a) loss, i.e., ηa = ηb = 0.8 (b) Loss, i.e., ηa = ηb = 0.8

Figure E.2: Plots (a) and (b) show how the ratios for the different states vary with changing T
values. Plot (a) shows the general behavior whilst (b) shows the region where the quantum states
beat the coherent state, i.e., the ratio values < 1.

(a) loss, i.e., ηa = ηb = 0.2 (b) Loss, i.e., ηa = ηb = 0.2

Figure E.3: Plots (a) and (b) show how the ratios for the different states vary with changing T
values. Plot (a) shows the general behavior whilst (b) shows the region where the quantum states
beat the coherent state, i.e., the ratio values < 1.

100



Appendix F

Inferring a parameter from a
quantum observable

If we wish to approximate a parameter, θ, of some observable, O, we can construct an estimate of
this parameter, say, θ̃, which is built on a single outcome and thus corresponds to a function of the
random variable, O : θ̃(O). If we assume that O fluctuates in a region around its mean, such that
∆O << 1, then we can locally Taylor expand θ̃ to the first order around 〈O〉 [53]

θ̃(O) = θ̃(〈O〉) +
∂θ̃

∂O
(O− 〈O〉) + ... (F.1)

If we truncate Eq. (F.1) to the first-order term, we can rearrange terms such that we have θ̃(O)−
θ̃(〈O〉) = ∆θ̃ and we already have O − 〈O〉 = ∆O. By making these substitutions into Eq. (F.1)
we obtain the error-propagation formula shown below

∆θ̃ =
∆O

| ∂θ∂O |
. (F.2)

The above equation is called the error-propagation formula and it quanties the fluctuations of our
parameter estimate, θ̃(O), around the true value of the parameter, θ. It quantifies the noise or
uncertainty in the measured parameters which arises due to the stochasticity of the observable
measurement.
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Appendix G

From the Heisenburg picture to
the Schrdinger picture

In the Schrdinger picture, the states change and the operators remain the same

|ψ(t)〉 = Û |ψ(0)〉 . (G.1)

where |ψ(0)〉 is the input state and |ψ(t)〉 is the output state. Hence the operator Ô(t) = Ô(0) = Ô.

In the Heisenberg picture the opposite is true, the states remain the same and whilst the operators
change

|ψ(t)〉 = |ψ(0)〉 = |ψ〉 . (G.2)

where |ψ(0)〉 is the input state and |ψ(t)〉 is the output state. Hence the operator Ô(t) = Û†Ô(0)Û.
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Appendix H

Calculating 〈â†outâout〉 used in the

general formula for 〈∆M̂〉

We start with
â†out = rηaâ†in + f̂†a . (H.1)

Then
âout = |rηaâin + f̂a. (H.2)

It follows that

â†outâout = (rηaâ†in + f̂†a)(rηaâin + f̂a). (H.3)

â†outâout = |r|2η2
a â†inâin + rηaâ†in f̂a + rηaâin f̂†a + f̂†a f̂a. (H.4)

Next we will calculate

â†outâ
†
outâoutâout = (rηaâ†in + f̂†a)(|r|2η2

a â†inâin + |r|ηaâ†in f̂a + rηaâin f̂†a + f̂†a f̂a)(rηaâin + f̂a). (H.5)

This expands to

â†outâ
†
outâoutâout = |r|4η4

a â†inâ†inâinâin + |r|3η3
a â†inâ†in f̂aâin + |r|3η3

a â†in f̂†a âin

+ âin|r|2η2
a â†in

ˆ
f†a f̂aâin + |r|3η3

a f̂†a â†inâinâin + |r|2η2
a f̂†a â†in f̂aâin + |r|2η2

a f̂†a f̂aâinâin + rηa
ˆ
f†a

ˆ
f†a f̂aâin + |r|3η3

a f̂†a f̂†a âin f̂a

+ |r|2η2
a â†inâ†in f̂a f̂a + |r|2η2

a â†inâ†in f̂a f̂a + |r|ηa f̂†a f̂†a â†in f̂a + |r|2η2
a f̂†a â†inâin f̂a + |r|ηa f̂†a âin f̂a f̂a + |r|ηa f̂†a f̂†a âin f̂a + f̂†a f̂†a f̂a f̂a.

The calculation of, b̂†out, follows the exact same procedure.
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Appendix I

Beamsplitter and phaseshifter

I.1 Action of the beam splitter

Figure I.1: Model of beamsplitter action.

It is important that we consider the action of a 50:50 beamsplitter as shown in figure I.1. If we
consider a 50:50 beam splitter, with input beams given by operators â and b̂ and output beams
given by â′ and b̂′, then the action of the beam splitter can described by the transformation below

â =
1√
2

(â′ + ib̂′) and b̂ =
1√
2

(b̂′ + iâ′). (I.1)

We can verify that the proper commutation relations are satisfied for these transformed operators,
a necessary requirement for the preservation of unitarity across the beam splitter.

I.1.1 The action of a beam splitter on coherent states

|α〉a |β〉b
BS−−→

∣∣∣∣ 1√
2

(α+ iβ)

〉
a′

∣∣∣∣ 1√
2

(β + iα)

〉
b′
. (I.2)

The photon number is preserved. Below is a proof for Eq. I.2,
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|α〉a |β〉b = D̂a(α)D̂b(β) |0〉a |0〉b , (I.3)

where D̂ is the displacement operator, D̂a(α) = exp[αâ† − α∗â]. Substituting this form of the
equation into Eq. I.3 above and performing some algebraic calculations we get the equation below

D̂a(α)D̂b(β) |0〉a |0〉b = D̂a(
1√
2

(α+ iβ))D̂b(
1√
2

(β + iα)) |0〉a′ |0〉b′ . (I.4)

It follows from the above relation that

|α〉a |β〉b
BS−−→ D̂a(

1√
2

(α+ iβ))D̂b(
1√
2

(β + iα)) |0〉a′ |0〉b′ . (I.5)

We find that

D̂a(
1√
2

(α+ iβ))D̂b(
1√
2

(β + iα)) |0〉a′ |0〉b′ =

∣∣∣∣ 1√
2

(α+ iβ)

〉
a′

∣∣∣∣ 1√
2

(β + iα)

〉
b′
. (I.6)

hence we have derived Eq. I.2.

I.1.2 Phase shifter on coherent states

A phase shifter implements the following unitary operation onto the states

ÛPS = exp[iψn̂b], (I.7)

where n̂b is a photon number operator

ÛPS

∣∣∣∣ α√2

〉
a

∣∣∣∣i α√2

〉
b

=

∣∣∣∣ α√2

〉
a′

∣∣∣∣iαeiψ

√
2

〉
b′
. (I.8)
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Appendix J

Abbreviations

Bovine serum albumin (BSA)
Phosphate-buffered saline (PBS)
Limit of detection (LOD)
Standard quantum limit (SQL)
Surface plasmon resonance (SPR)
Spontaneous parametric down conversion (SPDC)
Two-mode squeezed vacuum (TMSV)
Two-mode squeezed displaced (TMSD)
β-Barium Borate (BBO)
Interference filter (IF)
Fibre Coupler (FC)
Half wave plate (HWP)
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