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Abstract  

Research has established that understanding the functions of proof in mathematics and 

argumentation ability provide learners with a firm foundation for constructing proofs. Yet, little is 

known about the extent to which learners appreciate the functions of proof and whether an 

association between functional understanding of proof and argumentation ability exists. Guided 

by van Hiele’s and Toulmin’s theories, this study utilised a sequential explanatory design to 

randomly select three schools from a cluster grouping of ten Dinaledi high schools in the Pinetown 

district. Three survey questionnaires, Learners’ Functional Understanding of Proof (LFUP), self-

efficacy scale, and Argumentation Framework for Euclidean Geometry (AFEG), were 

administered to a sample of 135 Grade 11 learners to measure their understanding of the functions 

of proof and argumentation ability, and to explore the relationship between argumentation ability 

and functional understanding of proof. Then, Presh N (pseudonym)—a female learner who 

obtained the highest LFUP score despite attending a historically under-resourced township 

school—was purposively selected from the larger sample. In addition to her responses on the 

questionnaires, a semistructured interview, and a standard proof-related task served as data sources 

to explain the origins of her functional understanding of proof. Statistical analyses were conducted 

on data obtained from questionnaires while pattern matching method was used to analyse the 

interview data. The analyses revealed that learners held hybrid functional understanding of proof, 

the quality of their argumentation was poor, the relationship between functional understanding of 

proof and argumentation ability was weak and statistically significant, and the collectivist culture 

and the teacher were the two factors which largely accounted for Presh N’s informed beliefs about 

the functions of proof. In addition, although she constructed a deductive proof, she did not perform 

the inductive segment prior to formally proving the proposition. The recommendation that 

Euclidean geometry curriculum needs to be revamped for the purpose of making functional 

understanding of proof and argumentation explicit and assessable content has implications for two 

constituencies. Instructional practices in high schools and methods modules at higher education 

institutions need to include these exploratory activities (functional understanding of proof and 

argumentation) prior to engaging in the final step of formal proof construction. Future research 

initiatives need to blend close-ended items with open-ended questions to enhance insights into 

learners’ functional understanding of proof. This study not only provides high school teachers and 

researchers with a single, reliable tool to assess functional understanding of proof but also proposes 

a model for studying factors affecting functional understanding of proof. Overall, the results of 

this study are offered as a contribution to the field’s growing understanding of learners’ activities 

prior to constructing proofs.  
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Chapter 1  

Introduction to the study 

To a very large extent, it seems that the absence, presence, or level of an individual’s functional 

understanding determines that individual’s motivation to study and learn mathematics. Without 

functional understanding, mathematics simply degenerates into a useless, meaningless and arbitrary 

subject, demotivating the learner from attempting to learn and explore it. The adequate development 

of functional understanding is therefore an important criterion for evaluating any teaching approach. 

(de Villiers, 1994, p. 11) 

1.0 Introduction to the problem 

The purpose of this study was to explore Grade 11 learners’ functional understanding of proof and 

how this understanding related to their argumentation (reasoning and sense making1) ability with 

a view to identify the factors contributing to functional understanding of proof. The definition of 

proof as an argument that one makes to justify a claim and to convince oneself and others of the 

claim’s veracity (Stylianou, Blanton, & Rotou, 2015) underscores the view that understanding the 

functions of proof in mathematics and argumentation ability provide learners with a firm 

foundation for constructing proofs (Bieda, 2010; Stylianou et al., 2015). In addition, Mariotti 

(2001) shows that proof is more “accessible” to learners if an argumentation activity is developed 

in the construction of a conjecture.  

Attempts to teach proof to high school learners (frequently during short periods of time) 

have been unsuccessful (Clements & Battista, 1992; Hadas, Hershkowitz, & Schwarz, 2000; 

Pedemonte, 2007). Given that the ‘failure to teach proofs seems to be universal’ (Hadas, 

Hershkowitz, & Schwarz, 2000, p. 128), functional understanding of proof and argumentation, 

activities Edwards (1997) refers to as the “territory before proof”, need to be part of the 

                                                 
1 The NCTM (2009) foregrounds reasoning and sense making in the learning of high school mathematics and 

broadly defines “reasoning” as involving the drawing of logical conclusions based on evidence or stated 

assumptions, and “sense making” as the development of understanding of a situation, context, or concept by 

connecting it with existing knowledge or previous experience (p. 5). 



Introduction to the study Introduction to the problem 

 

                                                                                                                                              
2 

mathematical activities that precede and support the development of proofs. Along this line, 

Marrades and Gutiérrez (2000) argue that it is vitally important for both teachers and researchers 

in the area of proof to know learners’ conceptions of functions of mathematical proof in order to 

understand their attempts to solve proof problems. 

The construction of proofs has always been regarded as a defining activity within the 

mathematics discipline (de Villiers & Heideman, 2014; Lockhart, 2002; Watson, 2008). Also, as 

Conner, Singletary, Smith, Wagner, and Francisco (2014) put it, ‘[a]rgumentation, as a precursor 

to proof, is fundamental to the establishment of mathematical knowledge’ (p. 403). Yet, 

inconsistent with the practices of research mathematicians2, the focus of high school mathematics 

has often been on form and established results to pass examinations over the activities that are a 

precursor to the construction of proofs, for example, understanding the functions of proof and 

argumentation. Perhaps more importantly, unless learners understand the purpose in studying 

proofs beyond the goal of preparing for the next mathematics class or test, they are likely to ask 

the age-old question, “Why do we need to learn this?”  

The general motivation for this study came from the need to measure learners’ 

understanding of the functions of proof in mathematics3 since lack thereof contributes to 

difficulties with learning proofs meaningfully (for example, de Villiers, 1990, Healy & Hoyles, 

1998). According to the van Hiele (1986) theory, discussed in some detail in Chapter 3, functional 

understanding of proof is one of the aspects that determine learners’ ability to construct a deductive 

proof. Mathematical proof performs various functions in mathematics including verification, 

explanation, communication, discovery, systematisation, and intellectual challenge for the author 

of the proof. Although these functions are enshrined in the South African policy document, 

                                                 
2 As Beckmann (2011) puts it, by “mathematicians” is meant individuals in mathematics departments at universities 

who teach mathematics courses and/or have done research in mathematics. She points out that this descriptions 

should be viewed as an approximate. However, it must be noted that this definition excludes users of mathematics, 

such as engineers or physicists, interested in mathematical results but not in the way they are obtained. 
3 Since the phrase “functional understanding of proof in mathematics” needed to be frequently used, it is shortened 

to “functional understanding of proof”, “functions of proof in mathematics” or sometimes “functional 

understanding” for brevity. 
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Curriculum and Policy Statement (CAPS) (Department of Basic Education [DBE], 2011), 

learners’ knowledge of these functions is not explicitly assessed and thus not measured.  

Rather, it is seemingly assumed that doing proof translates into developing understanding 

about its functions, an assumption that tends to distort the nature of mathematics. The term 

“knowledge” is used so frequent in this study such that it is justifiable to define it. Brook and 

Stainton’s (2001) definition of knowledge as a mathematical statement held as true by the 

mathematics community4 was adopted in this study on the basis that it is plausible, commonly 

used, and provided by philosophers (Ball, Hoyles, Jahnke, & Movshovitz-Hadar, 2002). 

The present study investigated learners’ functional understanding of deductive proof 

through validation of the current version of the learners’ functional understanding of proof 

(hereafter referred to as LFUP) scale on the first five functions. The relationship between 

functional understanding and argumentation was also investigated following Conner’s (2007) who 

suggestion that a relationship between these two constructs exists. Hanna et al.  (2009) view proof, 

argumentation, and justification as parts of a continuum rather than as distinct notions. It is for this 

reason that I partly drew on the literature related to all three concepts. Further, I explain the reasons 

why the single learner, Presh N (pseudonym) held informed beliefs about the functions of proof 

in mathematics. Beliefs were classified as informed if they were consistent with those held by the 

mathematics community.  

The investigation reported in this study involved three randomly chosen schools that were 

part of the Dinaledi Project in the province of KwaZulu-Natal’s Pinetown district. Data collection 

for this study took place in September 2017, a time of the year by which Grade 11 learners were 

supposedly familiar with the functions of proof and could formulate conjectures and subsequently 

construct proofs on their own. Briefly, in 2001, the Department of Basic Education (DBE) 

                                                 
4 The term “mathematics community” is used to refer to mathematicians, mathematics educators (individuals who 

teach mathematics, mathematics methods course, supervise or coordinate mathematics teaching, and conduct 

research in mathematics education), and mathematics teachers (individuals who teach within preprimary through 

Grade 12 (Beckmann, 2011). 
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launched the National Strategy for Mathematics, Science and Technology Education in which 

learners from 102 historically disadvantaged schools across South Africa were selected for 

improving mathematics, science and technology (MST) performance.  

It is my contention that the scarcity of research in the area of functions of proof (de Villiers, 

1990) is a consequence of the conflation of proof with its functions in instructional practices. Bartlo 

(2013) shares this assumption as she points out that the ‘vast majority of research on the topic 

implicitly assumes that proof promotes the learning of mathematics without any need for 

elaboration’ (p. 69). Conflation here refers to these two constructs being assumed to mean the same 

thing and therefore used interchangeably. Further validation the LFUP scale was helpful in making 

a clear distinction between constructing proofs and appreciating its functions.  

Throughout this study, the term “learning” is used in a broad sense to encompass not only 

cognitive but also affective (attitudes and beliefs) notions of learners’ mathematical experience 

(Stylianides & Stylianides, 2018). From a cognitive perspective, the term denotes the social 

process of appreciating the centrality of proof in mathematics and knowing how to make 

mathematically acceptable claims and justify them rather than to mean providing answers designed 

to reflect rehearsed application of procedures and algorithms only. This definition is consistent 

with Vygotsky’s (1978) sociocultural theory of learning that considers learning as involving 

scaffolding of a learner by “more knowledgeable others” such as a teachers, parents, older siblings 

or even peers. This learning theory is compatible with the van Hiele theory of geometric 

understanding which stresses that each level of thought has its own language and its own 

interpretation of the same term.  

Thus, learners need to clarify and reorganise their ideas using language appropriate for that 

level (Mason, 1998). However, as already mentioned, inseparable from the cognitive aspect of 

learning is attitude. For Plotnik (1996), attitude is ‘any belief or opinion that includes a positive or 

negative evaluation of some target (object, person, or event) and that predisposes us to act in a 

certain way towards the target’ (p. 540). In this study “value” and “attitude” are treated as distinct 
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terms. In the words of Rokeach (1973), the difference between the two is that, whereas the former 

refers to ‘a single belief of a very specific kind’, the latter refers to ‘an organization of several 

beliefs around a specific object or situation’ (p. 18). The meaning of “beliefs” is described in detail 

in Chapter 2 where it is treated in conjunction with “knowledge” and “understanding”.  

It is on the basis of these definitions that searching for a proof is viewed as a social activity 

involving arguments in the construction and communication of mathematical knowledge; an 

activity that may lead to discovery of new results thus enabling the systematisation of 

mathematical propositions5. Put differently, argumentation ability and functional understanding of 

proof serve as a learner’s window into how mathematical knowledge is constructed. According to 

McMillan and Schumacher (2010), the term “ability” is used interchangeably with “intelligence” 

and “aptitude”. Depending on the purpose of the definition, mathematical ability is classified as 

either cognitive or pragmatic (Karsenty, 2014). From a cognitive perspective, O'Donoghue (2009) 

defines mathematical ability as the capacity to obtain, process, and retain mathematical 

information. According to Koshy, Ernest, and Casey (2009), mathematical ability refers to 

learners’ capacity to learn and master new mathematical ideas and skill. In this study, ability is 

viewed from the perspective of pragmatic as referring to learners’ capacity to perform 

mathematical argumentation and to effectively solve given mathematical problems (Karsenty, 

2014).  

In addition, like Dweck (2014), I used this term (that is, ability) to dispel the myths of a 

fixed mindset, meaning the belief that success in mathematics is instantaneous and that the basic 

qualities like smartness and talent are innate traits. From the point of view of a fixed mindset, 

Dweck (2014) goes on to assert that individuals with a fixed mindset have the tendency to devalue 

effort and as a consequence plateau early. As I saw this definition, this mindset is compatible with 

an external view of mathematics. I support the idea of a growth mindset which is premised on the 

                                                 
5 I prefer to make a distinction between “proposition” and “statement”. By proposition and statements here I 

respectively mean a conjecture whose actual proof is under construction and an axiom, definition, concept or 

theorem used in the construction of a proof (a meaningful proposition). 
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notion that ability and talent are malleable and therefore could be developed through dedication 

and personal effort or hard work. One other positive element of the growth mindset is that it 

promotes an intellectual culture and a resilience that is essential for proving6 and other problem 

solving activities (Blackwell, Trzesniewski, & Dweck, 2007). 

It is my premise that focusing on understanding of proof functions harnesses, in Moore’s 

(1994) terms, the typically abrupt introduction to the proof activity for learners. More importantly, 

it provides learners with a window into the practices of mathematicians. Therefore, functional 

understanding of proof and argumentation ability are both important aspects of proof competence. 

De Villiers (1990) argues that learners who understood the functions of proof in mathematics tend 

to be motivated to do proof meaningfully rather than view proof as just another ritual to be 

undertaken without meaning. According to Schunk, Pintrich, and Meece (2008) motivation refers 

to the process whereby goal-directed activity is instigated and sustained. They further point out 

that motivation is perennially important because it involves goals that provide impetus for and 

direction to action. As already pointed out, meaningful engagement with proof means that the 

learning of the proof concept makes sense to learners in such a way that they understand 

mathematics as a discipline for which proof is central. In this study, as in Usiskin’s (2015), I view 

a concept as an entity that could be analysed in terms of its associated skills, properties, functions, 

representations and history.  

Returning to the concept of proof, Mejía-Ramos and Inglis  (2011) lament the fact that 

school teachers emphasise proof writing prior to ensuring that learners held appropriate 

understanding of the functions of proof in mathematics. My contention is that functional 

understanding of proof helps learners to gain an appreciation of subtleties of the practices and 

arguments employed in the building of mathematical knowledge which in turn motivates learners 

to do proof meaningfully thus improving their participation and performance in mathematics. Put 

                                                 
6  Like A.J. Stylianides (2007), I use the term “proving” to describe the activity associated the search for a proof. 
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more concisely, functional understanding of proof gives learners access to the practices of 

mathematicians as explained in the next chapter.  

By meaningful here I meant that the learning of the proof concept in ways that make sense 

to learners and help them develop an understanding of  mathematics as a discipline for which proof 

is not only useful but also central. Extensive years of teaching proof to high school learners suggest 

that learners see little or no value in doing proof. The investigation on functional understanding of 

proof in the selected high school classrooms was conducted with this concern in mind.  

In most high school mathematics classrooms, emphasis is placed on the verification 

function of proof by using several cases (Herbst, Miyakawa, & Chazan, 2012; Mudaly, 2007). Yet 

the South African curriculum as presented in Curriculum and Assessment Statement (CAPS) 

insisted that ‘[i]t must be explained that a single counterexample can disprove a conjecture, but 

numerous specific examples supporting a conjecture do not constitute a general proof’ 

(Department of Basic Education [DBE], 2011, p. 25). This instruction is directed at teachers. In 

my experience as both a mathematics teacher and a member of the communities of the 

mathematical practice in school clusters in various provinces in South Africa, I often withheld the 

some of the contents of the CAPS document from the learners, especially nonexaminable aspects 

of the curriculum. I believe that this approach resonates with many other mathematics teachers. 

For instance, asking a high school mathematics teacher this question, “Are your learners conscious 

of the Goals, Specific Aims, and Skills stipulated in CAPS?” would draw an emphatic “No” as an 

answer.  

If this belief were correct, helping learners to gain access to the contents of the CAPS 

document for the further education and training (FET) phase (grades 10–12) may be an important 

initial step in enabling them to seek adherence to its stipulations and principles. Put slightly 

differently, learners need access to the CAPS document not only to check that the content is 

adhered to but also to monitor adherence to its Specific Aims and Skills. Briefly, the CAPS 

document specified the content area and its accompanying concepts and skills from Grade 10 to 
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12. In addition, each content area is broken down into several topics: algebra, financial 

mathematics, trigonometry, probability and statistics, differential calculus, analytical and 

Euclidean geometries.  

The present study focused on Euclidean geometry and measurement in general, and the 

concepts of proof and argumentation in particular because my observation of the CAPS curriculum 

was similar to Wu’s (1996) conclusion that ‘outside of geometry there are essentially no proofs’ 

(p. 228). Research studies have shown that proof is a notoriously difficult concept for learners to 

learn (de Villiers, 2012; Hanna, et al., 2009; Mudaly, 2007). I posit that one way of making sense 

of why most learners find doing proof difficult is to capture, with the intention to examine factors 

affecting the understanding of functions of a mathematical proof. Prior to ending this chapter, it is 

important to revisit the concept “proof”. 

In our daily lives we frequently encounter or use the term “proof”. Although 

mathematicians are accustomed to think of “proof” as an unambiguous term (Epstein & Levy, 

1995), it has a multiplicity of meanings to the extent that its meaning is still unclear in school 

mathematics (A. J. Stylianides, 2007). Along this line, Cabassut, Conner, Ersoz, Furinghetti, 

Jahnke, and Morselli (2012) point out that whereas mathematicians are convinced that, in practice, 

they know precisely what a proof is, there exist no easy explanations of what proof is that teachers 

could provide to their learners. The multiple definitions of proof contribute to the difficulty that 

learners experience in their learning of the concept. According to a widely disseminated definition 

of proof provided by the Principles and Standards for School Mathematics (National Council of 

Teachers of Mathematics [NCTM], 2000), proof pertains to the process in which conclusions are 

derived from axioms in a finite sequence of logical steps.  

Further, Tall (1989) points out that the term “proof” means many different things to 

learners such that interpretation of its meaning may be different from that of the teacher, just as 

one teacher’s interpretation may differ from another’s. However, since the term “proof” has been 

used differently in many situations, in an academic discipline like mathematics education its exact 
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meaning would seem to be important (Reid & Knipping, 2010). Similarly, Epp (2003) points out 

that mathematical language is required to be unambiguous. CadwalladerOlsker (2011) avers that 

this difficulty is further compounded by the fact that proof performs several different functions in 

mathematics and may be written for a specific audience. By way of example, he suggests that a 

proof written in a research article to verify a theorem is likely to be very different from that written 

to explain the essential ideas to learners. 

In this study, a proof is also viewed as an argument based on accepted truths for or against 

a mathematical claim (conjecture). The term argument is used to denote a connected sequence of 

statements generated from the axiomatic method. The term “axiomatic method” means a method 

of organising a theory (theorem) by beginning ‘with the list of undefinable terms and unprovable 

axioms, including those terms from which the statements of the theory (theorems) should be 

deduced according to the rules of formal logic’ (Demidov, 1980, p. 215). In keeping with de 

Villiers’ (2012) caution, I did not define proof in terms of its verification or any of its multiple 

functions, to avoid elevating a particular function as more important than the others. For instance, 

Griffiths’ (2000) idea of proof as ‘a formal and logical line of reasoning that begins with a set of 

axioms and moves through logical steps to a conclusion’ (p. 2) reflects the systematisation function 

of proof as it mentions that proof begins with assumptions and logically connecting them to reach 

a conclusion. 

Clearly, the question “What is a mathematical proof?” is difficult to answer despite the 

extensive literature on proof. However, A.J. Stylianides (2007) provides an apt definition of proof, 

emphasising argumentation: 

Proof is a mathematical argument, a connected sequence of assertions against a mathematical claim, 

with the following characteristics: 

1. It uses statements accepted by the classroom community (set of accepted arguments) that are 

true and available without further justification;  

2. It employs forms of reasoning (modes of argumentation) that are valid known to, or within the 

conceptual reach of, the classroom community;  
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3. It is communicated with forms of expression (modes of argument representation) that are 

appropriate and known to, or within the conceptual reach of, the room community. (p. 291) 

Having defined proof in this manner, learners’ understanding of the functions of proof was 

understood at three broad and distinct levels: naïve; hybrid; and informed. That is, learners who 

understood that proof has no functions other than verification were classified as holding “naïve” 

views about its functions while those who understand the other functions that proof performs in 

mathematics were labelled as holding “informed” views and thus assumed as being able to prove 

propositions. The intermediate level at which the understanding of the functions of proof included 

both naïve and informed understanding of the functions of proof was labelled as “hybrid”. The 

next section provides evidence from the literature and experience showing that the problem exists 

and its relevance. In doing so, I also include the philosophical rationale for utilising a mixed 

methods study. 

1.1 Background 

In this section I provide a precursor to the literature review by contextualising the study in the 

literature on functions of proof and argumentation. Though philosophers and the mathematics 

community including mathematicians and mathematics education researchers continue debating 

the functions that proof perform in mathematics, recent studies have indicated the existence of 

consensus on the fundamental functions of proof (Bartlo, 2013; CadwalladerOlsker, 2011; de 

Villiers, 1990; Herbst, Miyakawa, & Chazan, 2012; Knuth, 2002; Reid & Knipping, 2010). Hence, 

in this thesis I decided to focus on five functions of proof: verification, explanation, 

communication, discovery, and systematisation. 

As far as I could ascertain, apart from Healy and Hoyles (1998), performing Google and 

Google Scholar searches with key search terms such as “functions of proof”, “role of proof” or 

“purpose of proof”, no articles reporting empirical studies on learners’ functional understanding 

of proof in literature were located. It was precisely this gap that my study attempted to fill. The 

ultimate goal of this study  was to contribute to the field’s growing understanding of the activities 
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that learners need to engage in to prepare for proof construction: functional understanding of proof 

and argumentation. The implication that emerged from this study was that curriculum designers 

and teachers have a responsibility to ensuring that learners hold appropriate functional 

understanding of Euclidean proof and can make engage in argumentation. It must be mentioned 

that I am not claiming that the functional understanding of proof and argumentation are the only 

factors affecting learners’ performance in geometry education; indeed, there are indeed a plethora 

of other factors that account for learners’ difficulty with proof. This study focused on only 

functional understanding and argumentation. 

The reasons for investigating learners’ functional understanding of proof in relation to 

argumentation within the context of Euclidean geometry is twofold. First, it is in Euclidean 

geometry where learners first encounter formal proof in the mathematics curriculum. As far back 

as four decades, Moise (1975) notes that Euclidean geometry component of school mathematics 

‘seems to be the only mathematical subject that young students can understand and work with in 

approximately the same way as a mathematician’ (p. 477). To this day, the Moise’s point has not 

changed in (at least) South African curriculum contexts. In recent times, support for Moise’s point 

can be found in Tall, Yevdokimov, Koichu, and Whiteley’s (2011) assertion that mathematicians 

often consider the study of Euclidean geometry in school as providing a necessary basis for the 

formal notion of proof.  

Second, Euclidean geometry is tied to an interpretation within physical space which makes 

it easier to understand for learners, since it is less abstract than other fields (Grigoriadou, 2012). 

This statement found support in Wu (1996) who says that ‘in learning to prove something for the 

first time, most people find it easier to look at a picture than to close their eyes and think abstractly’ 

(p. 228). Further, functional understanding of proof is important to investigate as it is among other 

Specific Aims advocated by the South African Department of Basic Education (DBE). There is 

likely to be no disagreement that this aim, which professed the learning of proofs with a good 

understanding of why they are important (as stipulated in CAPS), is based on the notions of the 

van Hiele (1986) theory of geometric thinking. As already mentioned, part of the theory proposes 
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a sequence of stages (level) from the recognition of figures to their description and categorisation, 

to definitions which furnish the basis for logical deductions, and constructions leading to 

understanding the functions of axioms, and doing deductive argument (proof). 

In order to further elucidate the context to this study, it is necessary to briefly relate the 

definition of mathematical proof to argumentation. As already mentioned, view proof as a product 

of an argumentation process in which a learner demonstrates their geometric maturity using a finite 

sequence of axioms to reach a conclusion. The conclusion states that the proposition has been 

found to be true. I regard argumentation as an aspect of proof against the background that the first 

step in proof followed from the given aspects which in argumentation terms constitutes data. 

Support for this stance about argumentation as a subset of proof is found in Schoenfeld’s (1988) 

definition of proof as ‘a coherent chain of argumentation in which one or more conclusions are 

deduced, in accord with certain well-specified rules of deduction from two sets of givens’ (p. 157). 

By "givens" he refers to the premises or axioms from which deductive arguments proceeded. 

As Lakatos (1991) emphasises, the fact that even the axioms on which proofs are based 

continue to be open to revision by the mathematics community strengthens the interaction between 

proof and argumentation. The reason why I make this statement is that, for Toulmin (2003), 

argumentation entails transforming a statement into one that is mutually acceptable following a 

particular argument pattern. This definition parallels that of Balacheff (1988), who views proof as 

‘an explanation of a specific form, organized as a succession of statements following specified 

rules’ (p. 148).  

1.1.1 Statement of the problem 

In all educational research, proof has been found to be a notoriously difficult concept for learners 

to learn (de Villiers, 1998). Almost three decades ago, de Villiers (1990) suggested that learners’ 

lack of an appreciation of the functions of proof – considered as central in motivating learners to 

view proof as a meaningful activity – has long been identified as the primary source of their 

difficulty with proof. Similarly, more than a decade later, an investigation spanning over five 
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countries at different levels of schooling, Ball, Hoyles, Jahnke, and Movshovitz-Hadar (2002) 

found that learners’ difficulty with proof stemmed at least partly from a lack of more refined 

understanding of the functions of proof in mathematics. The common characteristic of both 

lamentations is that learning proof without regard to its functions is unfruitful. 

Yet scant attention has been given to the extent to which learners appreciated the functions 

of proof, not even in Euclidean geometry; despite the fact that learning about the functions of proof 

not only motivates learners to do proof meaningfully, but also helps them to understand how 

mathematical knowledge develops. Functional understanding of proof is foregrounded by the 

Specific Aims in the CAPS perhaps on the realisation that other attempts to resolve the problem 

distorted learners’ understanding of the nature of mathematics. According to the curriculum as 

described in the CAPS document, learning ‘proofs without a good understanding of why they are 

important will leave learners ill-equipped to use their knowledge in later life’ (Department of Basic 

Education [DBE], 2011, p. 8). However, an examination of the CAPS seemed to suggest that little 

or no instructional time is devoted to functional understanding of proof in mathematics. In this 

regard, Segal (2000) makes an interesting observation, no less apt today than when it was written:  

It is not clear that there ever is a golden age in which the majority of schoolchildren about to enter 

higher education understood the role of (especially deductive) proofs. (p. 196) 

Personal experience gained from teaching and learning mathematics suggests that lack of 

appreciation of the functions that proof performs in mathematics invokes rote learning as learners 

see no value in doing proof. Learning proof this way seems to generate in learners negative 

attitudes towards mathematics. Aaron (2011) cautions us by pointing out that '[a]s long as students 

believe that mathematical proof is irrelevant they will not move from an empirical view of proof 

to a more advanced view of proof’ (p. 40). The potential for functional understanding of proof to 

improve the proving of propositions received a boost by the validation of the LFUP survey 

instrument designed to measure learners’ functional understanding of proof. An instrument is a 

tool designed for measuring, observing, or documenting quantitative data (Creswell, 2012). 
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This study is important because learning of mathematics cannot be separated from the need 

to hold informed functional understanding of its intrinsic means for validation, proof (Balacheff, 

2010). For instance, learners, like mathematicians, need to gain insight into why a proposition is 

true. However, if learners are oblivious to the other functions of proof, it is in part not difficult to 

see why learner performance in Euclidean proof is poor. In addition, without empirical inquiry 

into learners’ functional understanding of proof, it is difficult to make meaningful 

recommendations to policymakers and curriculum implementation monitors.  

Gaining insights into the character of learners’ functional understanding of proof and the 

factors contributing to learners’ persistent belief that empirical arguments (proof by cases) are 

mathematical proof could encourage further studies by mathematics education researchers.  In 

addition, the insights gained may inform the judgements and decisions of policymakers and 

curriculum monitors interested in better understanding why learners’ performance in Euclidean 

geometry is poor. More specifically, understanding the impact of collectivist culture provided 

insights into how future studies may be undertaken to support and thus improve learners’ 

participation in mathematics generally and performance in Euclidean geometry specifically. My 

contention is that, to motivate learners to do proof meaningfully, it is necessary to capture their 

functional understanding of proof. The remedy for this problem lay, at least in part, with 

instructional practices; assessment of functions of proof to be given prominence as they portray 

the nature of mathematics and the how mathematical knowledge develops. Altogether, the case 

advanced in this study reflected a desire to make classroom practice akin to that of mathematicians. 

As suggested by Driver, Newton, and Osborne (2000), argumentation theory provides a 

theoretical basis for developing tools to analyse and improve argumentative discourse, either in 

speech or in writing. Specifically, the CAPS curriculum emphasised the need for learners to be 

exposed to mathematical experiences that gave them many opportunities to develop their 
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mathematical reasoning8. One way in which learners could meet this need is through 

argumentation which allows them to externalise their thinking (Erduran, Simon, & Osborne, 

2004). However, the potential of Toulmin’s (2003) argument pattern (TAP) as a tool to measure 

the quality of arguments in the mathematics classroom has been a neglected component of 

argumentation discourse analysis (Erduran et al., 2004). In addition, to date, I am not aware of 

empirical investigations involving Toulmin’s model with high school learners from a South 

African perspective. Apart from attempting to fill this gap, this study contributes to the building 

of empirical support for the model as it provides quantitative perspectives by measuring the quality 

of written argumentation in mathematics classrooms.  

1.1.2 Overview of the study design 

A mixed methods sequential explanatory study is undertaken to obtain answers to the four research 

questions. The design is sequential in the sense that the quantitative phase follows the qualitative 

phase for both data collection and analysis. That is, the quantitative phase laid the foundation for 

identifying the appropriate participant and questions for the qualitative phase of the study. The 

design is explanatory in that it prioritises quantitative data collection so as to explain the 

quantitative results. Since the purpose of this study was to quantitatively explore learners’ 

functional understanding of proof with a view to craft a research question to qualitatively explain 

why Presh N’s understanding of the functions of proof was informed, the quantitative phase was 

prioritised. This study mixing both quantitative and qualitative data within a single study for the 

purpose of gaining a better understanding of the research problem (Ivankova, Creswell, & Sheldon, 

2006). Specifically, the case study phase provided more insight when explaining why she held 

informed beliefs about the functions of proof in mathematics than a larger sample may afford. The 

integration of the quantitative and qualitative phases took place at the intermediate stage and the 

                                                 
8 Hanna (2014) takes reasoning to mean broadly ‘the common human ability to make inferences, deductive or 

otherwise’ (p. 405). In this study, I took mathematical reasoning to be the broader term that encompassed both 

argumentation and proof because both processes entail establishing the “truth” of a proposition. 
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study design stage. Integration refers to the point in the process of research procedures at which 

quantitative and qualitative data are brought together (Creswell, Fetters, & Ivankova, 2004). 

I adopted Ivankova et al.’s (2006) model to graphically show the connecting points 

between the quantitative and qualitative phases and to specify the place in the research process 

where the integration of the findings of both quantitative and qualitative phases occurred. The 

rationale for choosing this design was that I wanted to collect participants’ ideas, as wide as 

possible, about learners’ understanding of the functions of proof in mathematics and their 

argumentation ability and subsequently conduct an interview to provide in-depth explanation of 

the reasons why Presh N held the beliefs she held about the functions of proof. The explanations 

were characterised as “in-depth” because, as McMillan and Schumacher (2010) argues, 

participant’s responses were probed. Undertaking a large scale investigation was also intended to 

provide policymakers with insight from which to base their policies.  

1.2 Significance of the study 

Proof has been widely studied but little attention has not only been paid to documenting learners' 

understanding of the functions of proof in mathematics but also to the examination of the 

relationship between functional understanding of proof and argumentation ability. There is likely 

to be no contestation to the view that no single explanation accounts for the low scholastic 

achievement in Euclidean geometry. That view notwithstanding, little systematic9 investigation of 

school and curriculum factors and the role they might play in shaping learners' understanding of 

and competencies in mathematical proof have been conducted (Healy & Hoyles, 2000).  

The present study is intended to serve as an attempt to fill this void by building on the work 

of de Villiers (1990) who asserts that most learners’ problems with Euclidean geometry often lie 

with learners’ naïve understanding of the functions of proof in mathematics. Capturing 

understanding of proof from the perspectives of its functions in Euclidean geometry, aligned with 

                                                 
9 By systematic is meant “planned, ordered and public” investigation, following rules agreed upon by members of 

the qualitative research community (Shank, 2002). 
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argumentation ability, and the factors affecting learners’ belief about the function of proof, is 

significant for a plethora of reasons. The three major contributions of this research are its 

methodology, the baseline quantitative data gathered on LFUP, and the proposed model for 

understanding factors influencing learners’ functional understanding of proof. 

1.2.1 Methodological significance 

The vast majority of research has focused on designing intervention programmes (following 

learners over time and devoting extensive time to data collection) to teach proof relying either on 

pre-test-post-test designs or qualitative measures thus introducing strong evaluator bias. 

Specifically, the original development of research methods and instruments is subject to sample 

size and sampling bias. For instance, the sample size required to provide reliable data is often not 

statistically determined. In addition, the post-test is usually completed by participants who are still 

enthusiastic about the experiment and the opportunity to learn somewhat differently; the realities 

of the environment have not dampened their enthusiasm. Nonetheless, as already mentioned, proof 

cannot be taught.  

The present study advances the argument that only normed and validated methods can 

provide a scientific basis for addressing the problem from the perspective of focusing on the 

activities prior to formal proof construction. Hence, the sample for the quantitative phase of this 

study was randomly selected and the results factor analysed. In addition, rather than focus on one 

of the two major research paradigms traditionally used in education—positivist paradigm and the 

constructivist paradigm (McMillan & Schumacher, 2010)—this the study employed a mixed 

methods design because it was the best way to answer the research questions. A discussion on 

these paradigms is beyond the scope of this study save to say that they confine the researcher to a 

particular set of data collection methods or data analysis strategies associated with either of the 

traditional paradigms (Creswell & Plano Clark, 2011). 
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1.2.2 Significance in high school Euclidean geometry education 

The significance of this study generally lies on the premise that research studies and international 

assessment bodies often rank Euclidean proof as one of the most difficult topics to teach and learn 

in mathematics. Thompson, Senk, and Johnson (2012) argue that some of the most persistent 

proof-related difficulties identified among learners in secondary school and university are a 

consequence of the confusion about the functions of proof in mathematics. This study will provide 

clarity by making available an instrument designed with this confusion in mind. First, to date, save 

for Shongwe and Mudaly’s (2017) work, no existing studies have validated the LFUP instrument 

for measuring learners’ functional understanding of proof. In addition, very little (if any) research 

has been done to characterise learners’ functional understanding of proof in Africa, not to mention 

in South Africa. This instrument is intended to enhance the knowledge base, classroom practice of 

proof education in the mathematics classroom, and inform research in the area of proof functions. 

Put another way, this study sought to contribute to a broader knowledge base around understanding 

difficulties in the learning of proof in Euclidean geometry from the perspectives of activities prior 

to construction of proof.  

Second, this study is one of the few to examine learners’ functional understanding of 

Euclidean proof and the factors that shape this understanding. In particular, it serves as a response 

to the recommendations of Mariotti (2006) that better insight can be gained from investigating the 

sources of understanding of proof that are inconsistent with those held by contemporary 

mathematicians. Usiskin (1980) points out that proofs in Euclidean geometry are different from 

proofs in other branches of mathematics. The LFUP instrument will be useful in high school 

mathematics classes as a tool from which instruction in Euclidean proof can be planned given that 

is has been validated and its reliability established. Reliability means that scores from an 

instrument are stable (be nearly the same when researchers administer the instrument multiple 

times at different times) and consistent (when an individual responds to certain items one way, the 

individual should consistently respond to closely related items in the same way (Creswell, 2012). 

Validity is the development of sound evidence to demonstrate that the interpretation of scores 
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about the construct that the instrument is supposed to measure matches their use in, for example, 

statistical analysis to determine if factor structure or scales relate to theory, correlations, and so on 

(American Educational Research Association/American Psychological Association/National 

Council on Measurement in Education [AERA/APA/NCME], 2014; Messick, 1980). As 

Thorndike (2005) points out, this definition shifts the traditional focus on the three-fold types of 

validity, namely, construct, criterion-referenced, and content validity, to the “evidence” and “use” 

of the instrument. 

1.2.3 Significance in mathematics education monitoring 

The Department of Basic Education established the Dinaledi School Project in 2001 for the 

purpose of raising previously disadvantaged high school learners’ participation and performance 

in mathematics and science (Department of Basic Education [DBE], 2009). Part of the budget in 

the department provides these schools with resources (for example, textbooks and laboratories). 

The ultimate intention is to improve mathematics and science results and thus increase the 

availability of key skills required in the economy (Department of Basic Education [DBE], 2009).  

In monitoring the performance of these schools, the education officials take note research 

studies that focus on these schools (Department of Basic Education [DBE], 2009). The fact that 

this study made findings relating to SA#3 (as mentioned in the next section) in the CAPS document 

should draw the officials’ attention as to whether the stipulations of this aim were achieved. It is 

reasonable to believe that these officials will have access to this finding given that one of the 

conditions of approval of this study is that upon its completion, a brief summary of the findings, 

recommendations, or this thesis in its entirety must be submitted their research office. 

1.3 Geometry in South African high schools  

The importance of Euclidean geometry education as an integral component of mathematics 

curriculum was confirmed when it was made compulsory once again in South African high schools 

in 2011 (Bleeker, Stols, & Van Putten, 2013; Department of Basic Education [DBE], 2011). This 
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reintroduction of proof into the CAPS mathematics curriculum reflected the notion that there is an 

appreciation of proof as the basis of mathematical knowledge. This notion finds support in Hersh’s 

(1997) claim that proof is an essential tool for promoting mathematical understanding. However, 

for many learners, proof is just a ritual without meaning (Ball, Hoyles, Jahnke, & Movshovitz-

Hadar, 2002). This perspective is reinforced when learners are required to write proofs according 

to a certain scheme or solely with symbols. 

In South Africa, as in most countries, the geometry curriculum includes Euclidean proof 

and analytical geometry. Whereas Euclidean geometry focuses on space and shape using a system 

of logical deductions, analytical geometry focuses on space and shape using algebra and a 

Cartesian coordinate system (Department of Basic Education [DBE], 2011; Uploaders, 2013). In 

this study geometry has been taken to be the mathematics of shape and space, which traditionally 

incorporates but is not limited to Euclidean geometry. This study focused exclusively on Euclidean 

geometry on the basis that learner performance in this area has been consistently poor compared 

to the other geometries just mentioned. 

In the South African high school education system, Euclidean geometry is the place where 

learners should engage in formal deductive reasoning as they do proofs. As previously mentioned, 

functional understanding of proof, one of the Specific Aims advocated in CAPS for mathematics, 

is based on van Hiele’s (1986) broad theory of geometric thinking. Specifically, Euclidean proof 

(formal deduction) starts in Grade 10. In this grade, learners are expected to investigate, make 

conjectures, and prove the properties of the sides, angles, diagonals and areas of quadrilaterals; 

namely, kite, parallelogram, rectangle, rhombus, square, and trapezium (Department of Basic 

Education [DBE], 2011). In addition, they are required not only to know that a single 

counterexample can disprove a conjecture, but also that numerous specific examples supporting a 

conjecture do not constitute a general proof. Accordingly, very few will contest the notion that 

Grade 10 instruction is assumed to have had an impact on learners’ functional understanding of 

proof in mathematics. Hence, this study investigated this understanding in Grade 11 learners.  
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However, the weakness in CAPS is that there appears to be a lack of explicit content on 

the functions of proof as well as the historical aspects of proof. As I argued earlier, it is precisely 

this absence of instruction on functional understanding of proof that seem to inhibit learners’ 

ability to construct proofs. By making the functions explicit, the intended curriculum can be 

realised. Support for this insistence arose out of Idris’ (2006) assertion that since functional 

understanding of proof is a largely conventional concept, its learning cannot take place without 

explicit instruction. Needless to say, this is not a suggestion that ability to prove is secondary but 

an attempt to underscore functional understanding as a prerequisite aspect of constructing 

Euclidean proof.  

In primary schools, informal deductive elements are underscored while the formal 

deductive aspect is delayed until the FET phase. However, the Principles and Standards for School 

Mathematics (National Council of Teachers of Mathematics [NCTM], 2000) not only underscores 

inductive proof, it also emphasises the didactic value of deductive proof by noting that all learners 

must be provided with the opportunity to ‘recognize reasoning and proof as fundamental aspects 

of mathematics; make and investigate mathematical conjectures; develop and evaluate 

mathematical arguments and proofs; select and use various types of reasoning and methods of 

proof’ (p. 56). 

Accordingly, Magajna (2011) asserts that the two systems of reasoning in (school) 

geometry – one based on empirical observation (informal proof) and the other based on deduction 

(formal proof) – are essential and mutually support each other. In addition, empirical evidence 

merely gives a sense that something ought to be true (Sundström, 2003). Empirical evidence refers 

to the testing of a conjecture using numbers after gaining conviction and confidence about the truth 

of the conjecture (Hanna, 1995). Reference to truth in this project implies contingent truth rather 

than absolute or infallible truth given that proving is a human activity and humans are prone to 

making mistakes despite the best efforts to avoid them. However, the problem with viewing proof 

as a means to make a convincing argument is essentially a return to its everyday usage which 

engenders semantic contamination (Reid & Knipping, 2010). 
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Herbst (2002) argues that proof is valuable in mathematics education not only as an 

opportunity for learners to engage in a process of mathematical reasoning, but more importantly, 

as a necessary aspect of knowledge construction. This new curriculum at FET phase advocated for 

teaching that involves not only the “how” of mathematics, but also the “why.” For learners, CAPS 

discouraged the learning of procedures and proofs without a good understanding of why they were 

important as lack of understanding left them ill-equipped to use their knowledge in later life 

(Department of Basic Education [DBE], 2011). Reintroducing Euclidean geometry as a 

compulsory component of mathematics in 2011 seemed to suggest that curriculum designers 

acknowledged that Euclidean deserves a place in the high school curriculum. According to Adler 

(2010), this reintroduction was a response to an outcry at universities about the widening gap 

between school mathematics and tertiary education with a mathematical content. In my view, this 

development is clear departure from previous perspectives which can reasonably be attributed in 

large part, to the realisation that: 

An informed view of the role of proof in mathematics leads one to the conclusion that proof should 

be part of any mathematics curriculum that attempts to reflect mathematics itself. (Hanna, 1995, p. 

42) 

As Jahnke (2010) points out, the importance attached to proof in the curriculum arose from the 

perspective that its functions provide a more comprehensive image of the nature of mathematics. 

Hence, I contend that the pressure on schools to improve pass rates in mathematics examinations 

encourages the pursuit of rote acquisition of mathematical knowledge thus distorting the nature of 

mathematics and also undermining some of the Specific Aims in the CAPS document. The 

Department of Basic Education (DBE) identified eight Specific Aims:  

SA♯1: To develop fluency in computation skills without relying on the usage of calculators. 

SA♯2: Mathematical modeling is an important focal point of the curriculum. Real life problems should be incorporated 

into all sections whenever appropriate. Examples used should be realistic and not contrived. Contextual problems 

should include issues relating to health, social, economic, cultural, scientific, political and environmental issues 

whenever possible. 
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SA♯3: To provide the opportunity to develop in learners the ability to be methodical, to generalize, make conjectures 

and try to justify or prove them. 

SA♯4: To be able to understand and work with number system. 

SA♯5: To show Mathematics as a human creation by including the history of Mathematics. 

SA♯6: To promote accessibility of Mathematical content to all learners. It could be achieved by catering for learners 

with different needs. 

SA♯7: To develop problem-solving and cognitive skills. Teaching should not be limited to “how” but should rather 

feature the “when” and “why” of problem types. Learning procedures and proofs without a good understanding of 

why they are important will leave learners ill-equipped to use their knowledge in later life. 

SA♯8: To prepare the learners for further education and training as well as the world of work. 

While these are all important aims, only (italised) three of them were relevant for this study; SA♯3, 

SA#5, and SA♯7. These three aims seem to reflect an internal view of mathematics which 

emphasises that the processes of mathematics are fallible. In SA♯3, conjecturing and generalising 

are stressed before engagement in formal proof. In SA#5, the internal view of mathematics is 

underscored. Functional understanding is the focus of SA♯7, which also stresses the explanatory 

function of proof in mathematics. Taking SA#7 into account and the fact that a third of the Grade 

12 (sometimes loosely known as “matric”) second paper examination consisted of Euclidean 

geometry, making it the component with the highest weighting in the overall assessment of this 

paper, I think it is reasonable to conclude that the curriculum planners placed value on holding 

informed functional understanding of proof in mathematics.  

Although others may disagree, my opinion is that the South African curriculum assumes 

that by placing emphasis on making learners understand why a mathematical proposition is true or 

by merely doing proofs learners will come to understand the functions of proof in mathematics. 

However, learners’ performance in proof is not only evidence that this assumption is 

unsubstantiated but also a reflection of defective Euclidean geometry instruction. Hence, it would 
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be sensible for future research to examine both preservice and practicing mathematics teachers’ 

perspectives of the functions of proof in mathematics. 

While I believe that making Euclidean proof compulsory again is indicative of a 

willingness by curriculum planners to embrace the functions that proof performs in CAPS 

mathematics, of concern is the absence of an explicit mentioning of the functional dimensions of 

proof. This absence can also be detected in the school textbooks that the education authorities 

recommended for enacting the mathematics curriculum. 

1.4 An overview of the theories in this study 

The purpose of this brief review of literature was to build the foundation for presenting the research 

questions by situating the problem in the theories against which the results of the study were 

interpreted and discussed. The findings of this study were examined through the lenses of van 

Hiele’s (1986) and Toulmin’s (2003) theories. The van Hiele (1986) theory is the most 

comprehensive theory concerning geometry learning and encompasses concepts of functional 

understanding of proof while the de Villiers (1990) model, adopted as an organising framework 

for measuring learners’ functional understanding of proof, elaborates on the theory. Husband and 

wife team of Pierre van Hiele and Dina van Hiele-Geldof observed their learners struggling with 

proof. Their analysis points to lack of appropriate instructional activities to develop geometric 

maturity based on levels of thinking as learners progress from merely recognising a figure to being 

able to construct a deductive proof. In addition, given that determining van Hiele levels is a 

difficult task in that a learner can have different van Hiele levels for different geometric concepts 

(Mayberry, 1981), I chose to limit the focus of this study to one aspect of Level 4; functional 

understanding of proof. But, it should be remembered that in terms of the theory this level builds 

on the previous levels.  

The concept of argumentation by Toulmin (2003) is of primary importance in so far as 

investigating the relationship between learners’ functional understanding of proof and their ability 

to argue mathematically. However, as already mentioned, it is also important in understanding 
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what proof means. For Toulmin, argumentation entails transforming an open statement into one 

that is mutually acceptable through a “layout of an argument” model. This model consists of six 

elements: claim, data, warrant, backings, qualifiers, and rebuttals. In Toulmin’s (2003) 

terminology, I showed how the data (assumptions in the proof) and the warrant (reasons) should 

be used to justify a claim (conclusion) in written argumentation. In particular, I was interested in 

characterising the quality of learners’ written arguments in which they substantiated their claims 

using data. 

1.5 Aims and research questions 

Effective attempts aimed at developing learners’ informed understanding of the functions of proof 

in mathematics in learners require a clearer picture of the current status of learners’ understanding 

of these functions and their argumentation ability. With this background in mind, the aim of this 

study was to obtain answers to the general question, “How can learners do proof meaningfully?” 

Specifically, four aims were identified. First to primarily investigate with a view to characterise 

Grade 11 learners’ functional understanding of proof in mathematics. The corresponding research 

question was: What functional understanding of proof do Grade 11 learners hold? A secondary 

aim of this study was to investigate how these learners’ functional understanding of proof were 

related to their argumentation ability. The research question was, How is the relationship (if any) 

between learners’ quality of arguments and their functional understanding of proof? Both these 

questions required quantitative approach to answer them.  

Worth mentioning is that, given the nature of sequential explanatory designs, the results of 

the quantitative phase were used to craft questions for this qualitative phase of the study to explain 

and thus enrich the quantitative phase. To explain the factors that influence informed beliefs of the 

functions of proof. The research question was, Why does Presh N hold informed beliefs about the 

functions of proof? An interest in the overall picture of the findings relating to the nature of 

interaction among the three central constructs in this study provoked the last research question, 
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“How is the interaction among the three constructs (that is, functional understanding of proof, 

argumentation ability, and factors influencing functional understanding?”  

1.6 Delimitation of the study 

The scope of the investigation in this study was deliberately narrowed because it is practically 

impossible to study everything in a single study at once, a phenomenon which Merriam (2009) 

refers to as delimitation. Specifically, these parameters included, for example, the phenomenon of 

learners’ functional understanding of proof I chose to study, the theoretical frameworks through 

which I interpreted the results, the research design adopted, the sizes of both quantitative and 

qualitative phase samples, the geographic location of the research sites, characteristics of the 

population selected, and the independent variables manipulated in the quantitative phase of the 

study. Throughout the methods chapter, I provided rationale for almost every choice I made in 

establishing the parameters. 

1.7 Researcher positionality 

The positionality that researchers bring to their work, and the personal experiences through which 

that positionality is shaped, may influence what researchers bring to research encounters, their 

choice of processes, and their interpretation of outcomes. (Foote & Bartell, 2011, p. 46) 

As is the case with all researchers, my life experiences informed various aspects of this study. In 

this subsection I provided insights into the paradigm (worldview), hypotheses derived from my 

experiences with the concept of proof. All these aspects influenced the research process (for 

example, research questions, sample, methods, interpretations, and so on). For instance, though 

some township schools tend to achieve 100% pass rate in their Grade 12 examinations, the quality 

of these passes tend to be weaker than those in previously white schools with similar pass rate. 

Hence I chose to compare the quality of learners’ functional understanding of proof and 

argumentation between fee-paying as well as no-fee high schools with a focus on mathematics and 

science (that is, Dinaledi schools). 
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In this study, the pragmatic paradigm was suitable to serve as a framework with which to 

describe how this study unfolded. I adopted this paradigm informed by my belief in using “what 

works” to find answers to research questions. Pragmatism is defined as a paradigm that 

encompasses both quantitative and qualitative research methods (Johnson & Onwuegbuzie, 2004). 

However, Creswell and Plano-Clark (2011) use the term “worldview” in this regard. Teddlie and 

Tashakkori (2010) define a paradigm as ‘a worldview together with the philosophical assumptions 

associated with that point of view’ (p. 84). Further, for Teddlie and Tashakkori (2010), 

pragmatism means typically a worldview associated with mixed methods research as it embraces 

features associated with both postpositivism and constructivism worldviews and rejects ‘the 

dogmatic either-or choice between constructivism and postpositivism and the search for practical 

answers to questions that intrigue the investigator’ (p. 86).  

For the pragmatic paradigm, the view is that the research problem, rather than loyalty to 

any research paradigm, determine the data collection and analysis methods that are most likely to 

provide answers to the research questions. In a nutshell, pragmatism as a paradigmatic framework 

directed the research efforts in this project. In this respect, the use of mixed methods design was 

not merely a matter of combining qualitative and quantitative methodologies together, but arose 

from the need for pragmatic response to the research questions at hand. Put another way, my choice 

of research questions, data collection and analysis methods, and interpretation of findings reflected 

the underlying pragmatic view of the world.  

Consistent with this paradigm, a mixed methods sequential explanatory research design 

was employed in this study. That is, a quantitative method, which took priority in this study, was 

followed by a qualitative method as a means to understand why Presh N tended to hold informed 

beliefs about the functions of proof. I agree with Clough and Nutbrown (2012) when they make 

this observation: 

Since research is carried out by people, it is inevitable that the standpoint of the researcher is a fundamental 

platform on which enquiry is developed. All social science research is saturated (however disguised) with 

positionality. (p. 10) 
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Given the philosophical differences in the structure and knowledge confirmation between 

quantitative and qualitative approaches (Foss & Ellefsen, 2002), in the next section I provide a 

personal background for the reader to understand how my experiences with the mathematics 

discipline might have influenced the results in the qualitative segment of this study. Put another 

way, it is necessary to disclose to my background to the reader to facilitate their evaluation of the 

findings of this study. 

1.7.1 Early beginnings 

I was born in Esilobela township, Carolina, in the Mpumalanga province, but spent my childhood 

in the Dundonald village situated a few kilometres from the Eswatini border. By township is meant 

a historically disadvantaged area characterised by, for example, poverty, high crime, antisocial 

behaviour, shortage of classroom resources that facilitate learning of mathematics, for example, 

dynamic geometry software (DGS)11, recreational facilities, and community libraries. After 

finishing high school in the mid-eighties I received a bursary to study for an integrated teachers’ 

degree with a pure mathematics major and was the first member of my family to attend university. 

My parents (mother: self-employed; father has since passed on: underground mine worker) 

separated when I was very young.  

Together with my stepbrother and mother who sold mostly second hand clothing items and 

worked the soil, we lived in a mud house. Compared to my privileged white counterparts, our 

house had no electricity nor flushing toilets. We relied on public transport as we had no car and 

attended under-resourced primary and high schools; reflecting realities of apartheid South Africa 

characterised by an inequitable social and political system. In general, I come from a less 

privileged background which informs my strong commitment to social justice. 

                                                 
11 The phrase “dynamic geometry” was originally invented and trademarked by publishers, Key Curriculum Press, to 

describe the Geometer’s Sketchpad (Jackiw, 2001). 
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1.7.2 Interest in mathematics 

I was particularly fascinated by mathematics and enjoyed some admiration from friends who I 

assisted with homework and preparation for examinations. Hence I chose to major in mathematics 

for my undergraduate degree and particularly enjoyed teaching Euclidean geometry at numerous 

high schools in the early nineties.  

I returned to university in 2010 and obtained an MSc in science education three years later 

and began teaching Physical Sciences in high schools. Currently, I am a mathematics education 

lecturer at a public university in South Africa and a proponent and advocate of assuring redress of 

the past imbalances in the allocation of resources that facilitate mathematics learning and teaching. 

This fascination with proof may have influenced my thinking about the functions of proof in 

mathematics as well as the interpretation of the qualitative data with undue bias. 

1.8 Organisation of the thesis 

In the process of doing this study, I submitted three manuscripts, which are in part based on this 

thesis to peer-reviewed journals. This was done for two reasons. One was to ensure dissemination 

of empirical research results arising from this study. Two was to meet the requirement of the 

School of Humanities at the University of KwaZulu-Natal which stipulated that submission of this 

thesis must be accompanied by at least one published journal article. The next subsection provides 

a summary of the focus of the chapters which constitute this thesis. 

1.8.1 Chapter 1: Introduction to the study 

This introductory chapter broadly encapsulates the notions of functional understanding of proof 

and argumentation within the context of the South African high school geometry curriculum 

against the backdrop of reported poor performance of learners in relation to proof. In addition, the 

discrepancy between actual classroom practice and professed SA in CAPS is underscored. The 

significance of the study is described within these contexts. The chapter also provides the aims 

and the resulting research questions that underpin the study. The theoretical bases (van Hiele’s and 
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Toulmin’s theories) of this study are then contextualised after which an overview of the research 

design is explicated. Finally, the delimitations of the study and my positionality as a researcher are 

described. 

1.8.2 Chapter 2: The review of literature  

This chapter critically examines literature on the concepts underlying this study and reports on the 

results of research pertinent to this study: proof functions in mathematics, argumentation, and the 

factors influencing informed beliefs about the functions proof. The purpose of critically examining 

and reporting on previous studies is to build the foundation for the present study and thus connect 

its problem, purpose, and discussions to previous studies. This chapter explores and discusses 

major concepts and ideas providing conceptual frameworks some of which are permeated by 

historical and philosophical analyses. The major terms that built the conceptual framework for data 

analysis purposes include; understanding what mathematics is; functions of proof; mathematical 

understanding; and, argumentation. The measures for assessing functional understanding of proof 

– based on previous literature on learner difficulties with proof and its functions, and my own 

classroom experiences – are discussed.  

1.8.3 Chapter 3: The theoretical framework 

This chapter presents a brief description of the historical development of the two theories 

underpinning this study through which data analyses and interpretation of results were undertaken. 

One is the van Hiele (1986) theory of geometric thinking whose central idea is that learning 

geometry takes place in discrete levels of thinking and that progress to the next level is a function 

of instruction. The theory has played a major role in understanding learners’ difficulty with 

geometry. De Villiers’ (1990) model provides the concepts for investigating learners’ functional 

understanding of proof in mathematics. Two is Toulmin’s (2003) argument pattern (TAP) scheme 

which was developed for the purpose of explaining how argumentation takes place in the natural 

contexts of everyday life, especially in law. He suggests that arguments can be understood using 

six components comprising: claims, data, warrants, backings, qualifiers, and rebuttals. In talking 
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about learning, I draw on the sociocultural theory on the basis that I view mathematics as a human 

activity in which all learners can participate. Having interrogated these two theories, I construct a 

conceptual framework to understand the relationships among the concepts. 

1.8.4 Chapter 4: Research methodology  

First, an overview of methodology and instruments utilised in previous studies on learners’ 

functional understanding of proof is undertaken. A methodological framework that graphically 

describes the research design is provided. Next, I argue why it is helpful to make a distinction 

between methods and methodology, terms often treated as synonyms. Then, I provide the rationale 

for using a mixed-methods sequential explanatory design. Next, instrumentation, data collection 

measures and procedures as well as analysis procedures are described and justified. Final, issues 

of rigour are discussed. For the quantitative phase, the data collection instruments, for example, 

the LFUP and the Argumentation Framework in Euclidean Geometry (AFEG) questionnaires 

employed to capture and characterise learners’ functional understanding of proof and their 

argumentation ability are also discussed.  

Given that the LFUP instrument was already established, its reliability and validity 

evidence is stipulated. For the qualitative phase, sample task-based questions from the Interview 

Schedule which were meant to elicit Presh N’s beliefs influencing her understanding of the 

functions of proof in mathematics are provided. The results (analysis, interpretation, and 

discussed) of this study are presented in independent chapters (5, 6, and 7) using the research 

questions as an organizing framework. The areas in which the methods were combined are 

identified and justified. Then, rigour and limitations of the design is discussed. 

1.8.5 Chapter 5: Functional understanding of proof in mathematics 

The LFUP questionnaire results are analysed (presented and interpreted) to answer the first 

research question, What functional understanding of proof do Grade 11 learners hold? This 

question sought to understand whether learners held naïve (empiricist), hybrid or informed 
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understanding of the functions of proof in mathematics (verification, explanation, communication, 

discovery, and systematisation). The SPSS v.24 (2017) software is used to analyse the data. I use 

descriptive statistics to report on patterns in participants’ responses and multivariate techniques to 

identify factors accounting for variability in LFUP scores and how these vary across participating 

schools. The results show that learners’ functional understanding of proof are of a hybrid nature 

and inconsistent with those espoused in CAPS and held by contemporary mathematicians. 

1.8.6 Chapter 6: The relationship between functional understanding of proof and 

argumentation ability 

This chapter describes the results of the nature of the relationship between learners’ functional 

understanding of proof and their ability to argue, to answer the second quantitative research 

question; How is the relationship between learners’ functional understanding and argumentation 

ability? To this end, statistical techniques are used to describe this relationship. Specifically, SPSS 

v.24 (2017) is used to analyse the data. The results show that a weak, positive and significant 

correlation exists between the two constructs. Using Toulmin’s theory, the results show that 

learners’ argumentation ability was poor. In addition, multiple regression analysis indicates that 

the verification function accounts for the largest variability in learners’ functional understanding 

of proof.  

1.8.7 Chapter 7: Beliefs about the functions of proof: The case of Presh N 

The purpose of this chapter is to answer the third and third research question, Why does Presh N 

hold informed beliefs about the functions of proof? The participant (Presh N) is purposively 

sampled which means that she is selected on the basis that she is an information-rich individual 

for the most effective use of resources (Patton, 2002). The van Hiele theory is used to examine the 

findings after the results were analysed with the aid of ATLAS.ti and STATA, a framework for 

understanding the factors (deductive arguments, semantic contamination, collectivist culture, 

empirical arguments, teacher, and textbook) influencing understanding of the functions of proof is 

suggested.  
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1.8.8 Chapter 8: Exploring the interaction among the three constructs 

The purpose of this chapter is to answer the fourth and final research question, “What is the nature 

of the interaction among the three constructs (that is, functional understanding of proof, 

argumentation ability, and factors influencing functional understanding?” This chapter integrates 

the results of the quantitative and qualitative phases to discuss the outcomes of the entire study. 

As indicated at the beginning of this study, both quantitative and qualitative research questions 

were posed to better understand Grade 11 learners’ functional understanding of proof, their 

argumentation ability, and the factors affecting functional understanding of proof in mathematics. 

This chapter combines the results from both phases of the study to develop a more robust and 

meaningful picture of the research problem. 

1.8.9 Conclusions 

This final chapter concludes the study. In the discussion section, both quantitative and qualitative 

results were described simultaneously, having kept them independent in previous sections. The 

two phases are independent in that quantitative and qualitative research questions, data collection, 

and data analysis are separated for each phase. I take into account results of past empirical 

investigations in literature concerning learners' functional understanding of proof, argumentation 

ability, and reasons behind Presh N’s informed beliefs about the functions of proof. In the 

conclusions sections, I consider the overall investigation including the three unique contributions 

this study makes. One is that this study used a mixed methods design in which participating schools 

were randomly selected to improve the trustworthiness of the results. Two is that I validated a new 

measurement scale (LFUP) that allows teachers to gain insights into their learners’ understanding 

of the functions of proof and thus tailor instruction on the meaningful construction of proof. Three 

is that factors influencing beliefs about the functions of proof were investigated culminating in a 

suggested model for describing learners’ understanding of the functions of proof. In the 

conclusions section, I provide an overview of the study in relation to the research questions, 

describe findings and their implications, make recommendations and suggestions that other 
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researchers can consider, acknowledge several limitations, and reflect on the research project as a 

whole.  

1.9 Chapter summary 

A brief review of the literature suggested that learners were inclined to hold naïve functional 

understanding of proof and argue poorly on account of believing that verification is the only 

function of proof in mathematics. The central argument that ran through this study was that the 

functional understanding of proof held by learners may not only be distorted and inconsistent with 

Specific Aims in CAPS and those of the mathematics community, they may also, unfortunately, 

inhibit learner achievement in Euclidean geometry. An appreciation of the functions of proof 

convey to learners other important pieces of mathematical knowledge and thus give them a broader 

picture of the mathematics as a tapestry in which all the concepts and skills are logically 

interwoven to form a coherent whole. Put another way, holding appropriate understanding of the 

functions of proof can engender learners’ understanding and appreciation of what mathematics 

entails. Having introduced the study by contextualising the problem, provided the rationale, and 

pointed out that the results presented in this study are offered as a contribution to the field’s 

growing understanding of the activities that precede the construction of proof (learners’ functional 

understanding of proof and argumentation in mathematics), I now turn attention to the theoretical 

bases on which I summarise, critique, and relate other primary studies to the present study.
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Chapter 2  

The review of literature 

A proof demonstrates that a mathematical assertion is true, assuming certain axioms. Yet, mathematicians look 

beyond establishing truth to seek insight into why; proofs can have explanatory power ... Through the process 

of proof, mathematicians may discover new results. Proofs communicate mathematical knowledge and situate 

that knowledge systematically within a framework. (Zaslavsky, Nickerson, Stylianides, Kidron, & Winicki-

Landman, 2012, p. 216) 

2.0 Introduction 

The aim of this chapter is to conduct a critical summary review of related literature based on three 

aspects: previous research findings on the research problem in this study; gaining insight into 

existing knowledge and identification of gaps thereof; and, identifying possible weaknesses in the 

methodologies of some studies related to functional understanding of proof as well as 

argumentation. This is done while taking into account two theories underpinning this study: van 

Hiele theory of geometric thinking and Toulmin’s argument theory. The term “theory” denotes a 

set of assumptions or propositions, together with relevant concepts used to explain and predict 

behaviour and possible relationships between such variables in a systematic way (Kowalski & 

Westen, 2011). Prior to conducting the review of literature, a discussion of the major terms and 

concepts permeating this study are discussed. 

2.1 Defining mathematics 

I approached the  definition of mathematics from two perspectives: school mathematics and 

mathematical practice by mathematicians. Whereas a mathematician formulates conjectures and 

develops proofs thereof, this is not the encompassing aim of school mathematics as it offers 

learners prepackaged content with techniques to be transmitted to learners and regurgitated in tests 

and examinations (Lockhart, 2002). As Stahl, Çakir, Weimar, Weusijana, and Ou (2010) claim, 

missing the intellectual mathematical experience may limit learners’ lifelong interest in science, 

engineering, and technology. In his critique of the state of school mathematics as a subject that 
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stunts learners’ natural curiosity and love of pattern making, Lockhart (2002) draws attention to 

the importance of exploration that leads to conjectures and eventual proofs of propositions 

(process) rather than the meanginless memorisation of proofs (products) prevalent in school 

mathematics by claiming that: 

If you deny students the opportunity to engage in this activity— to pose their own problems, make their own 

conjectures and discoveries, to be wrong, to be creatively frustrated, to have an inspiration, and to cobble 

together their own explanations and proofs— you deny them mathematics itself. (p. 5) 

In critising high school geometry, which he views as an instrument of the devil, Lockhart (2002) 

argues that forcing learners to use the rigid two-column proof format in laying out their proofs not 

only destroys the very essence of what geometric proofs should be but also undermines learners’ 

intuition. For instance, as Lakatos (1991) points out, school mathematics presents theorems by 

beginning with axioms, lemmas and/or definitions to the conclusion while mathematicians begin 

with conjectures and construct their proofs as means of analysing the conjecture. Lockhart (2002) 

further points out that mathematicians enjoy thinking about the simplest possible things, and the 

simplest possible things are in fact imaginary. Watson (2008) provides a succinct characterisation 

of the practicies of research mathematicians: 

‘Doing mathematics’ is predominantly about empirical exploration, logical deduction, seeking variance 

and invariance, selecting or devising representations, exemplification, observing extreme cases, 

conjecturing, seeking relationships, verification, reification, formalisation, locating isomorphisms, 

reflecting on answers as raw material for further conjecture, comparing argumentations for accuracy, 

validity, insight, efficiency and power. It is also about reworking to find errors in technical accuracy, 

and errors in argument, and looking actively for counterexamples and refutations. Mathematics is about 

creating methods of problem-presentation and solution for particular purposes, tinkering between 

physical situations and their models, and it also involves proving theorems. (p. 4) 

The Principles and Standards for School Mathematics (National Council of Teachers of 

Mathematics, 2000) recommends that mathematics education for all learners needs ‘to recognize 

reasoning and proof as fundamental aspects of mathematics, make and investigate mathematical 

conjectures, develop and evaluate mathematical arguments and proofs, and select and use various 
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types of reasoning and methods of proof’ (p. 56). Similarly, in the CAPS document mathematics 

is defined as ‘a human activity that involves observing, representing and investigating patterns and 

qualitative relationships in physical and social phenomena and between mathematical objects 

themselves’ (Department of Basic Education [DBE], 2011, p. 8). As already mentioned in the 

previous chapter, viewing mathematics this way is consistent with the sociocultural theory of 

learning for which learning is a social process in which learners contribute ideas and critique them. 

However, most learners in South African mathematics classrooms struggle to achieve the practices 

embodied in both definitions. My contention is that the emphasis on examinations permeating the 

education system mitigate against the operational definition (that is, the LFUP scale). In addition, 

the arguably unintended consequence of participation in this system is that it shapes in learners the 

development of a distorted image of mathematics. A synthesis of the definitions provided here 

suggests that for this study, mathematics is seen as human activity concerned with providing proof 

for the simplest things we observe. 

2.2 Understanding in mathematics 

The term “understanding” has been invoked several times in the previous sections. I now 

summarise and make explicit what understanding is and why it is an important concept from the 

perspective of mathematics. I do so because the term is at the heart of this investigation.  Very few 

will contest the assertion that one of the most important goals of mathematics instruction is that 

learners should have an “understanding” of the concepts of mathematics. However, various 

meanings have been ascribed to “understanding” to the extent that defining it is not an easy task.  

Some studies use “understanding” with the implicit assumption that there is universal 

agreement about its meaning. To complicate matters further, Machaba (2016) uses understanding 

and knowledge interchangeably. In spite of all these difficulties, an explicit attempt to define 

understanding is made by Sierpinska (1990) who proposes that understanding be regarded as ‘an 

act, but an act involved in a process of interpretation, this interpretation being a developing 

dialectic between more and more elaborate guesses and validations of these guesses’ (p. 26). This 

understanding is ‘acquired through years of watching, listening, and practicing’ (Lampert, 1990, 
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p. 31). The sense I made out of these definitions was that what one thought is “understanding” 

could in fact turn out to be a myth or a misconception. 

To alleviate the multiple meanings ascribed to understanding, Holt (1966) developed a list 

of seven nonlinear but inexhaustive senses in which the term could be used in education. He 

suggests that understanding takes place when a learner can do some, at least, of the following about 

a concept or idea: state it in his or her own words; give examples thereof; recognise it in various 

guises and circumstances; make connections between it and other facts or ideas; make use of it in 

various ways; foresee some of its consequences; and state its opposite or converse. However, 

although the description of features of “understanding” is helpful, the concern with viewing 

understanding this way is that it does not distinguish between the different types of understanding. 

I categorised “understanding” into “fundamental” to denote the type of mathematical 

understanding that is central to arguments permeating this study and “supplementary” to denote 

the type of mathematical understanding that enhances thinking about “understanding”.  

2.2.1 Fundamental perspectives on types understanding 

As already alluded to, mathematics education research has shown that most learners have serious 

difficulties with constructing proofs. Attempts to tackle this problem have focused on the widely 

known and useful distinction between the different types of understanding in mathematics; namely, 

instrumental, relational, logical, and functional (de Villiers, 1994). Skemp (1976) initially 

theorised the concept of understanding as either instrumental or relational.  

Instrumental understanding refers to the learner’s ability to correctly and efficiently 

manipulate mathematical content by using rules without knowing why these rules work. This 

understanding is sometimes referred to as computational knowledge, computational skill, 

computational ability, procedural skill or procedural knowledge (Idris, 2006). In this type of 

understanding, a learner tends to memorise owing to the isolated nature of many rules. By way of 

example, instrumental understanding applies to the rule that “we flip and multiply when we divide 

fractions”. Skemp (1976) provides empirical evidence that material learnt relationally is, in a 
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month, remembered seven times better than that which is learnt instrumentally. He adds that 

without understanding, a learner is mentally lost, anxious, and frustrated in mathematics.  

Relational understanding refers to learner’s ability to deduce relationships between content 

and the underlying logic upon which these relationships are based. According to Idris (2006), 

relational understanding is used interchangeably with conceptual understanding or conceptual 

knowledge to denote not only knowing facts, rules and procedures, but also knowing why general 

principles and a network of ideas in mathematics work. According to Schäfer (2010), conceptual 

understanding relates to acquisition of knowledge that not only revolves around isolated facts but 

includes an understanding of the different contexts that frame and inform these facts and an 

understanding of why a particular mathematical idea is important. With this type of understanding, 

a learner would be able to adjust when a new and different task is introduced. For example, 

understanding that “the sum of interior angles of a triangle is 1800”, will be useful in proving 

deductively (informally) that “the angles of a quadrilateral sum up to 3600”.  

Although relational understanding provides learners with a broader perspective of the 

mathematics discipline, the abstract nature of the subject requires further descriptions that go 

beyond making informal deductions (Idris, 2006). Skemp (1987) improved his theory by including 

“logical understanding” to instrumental and relational understanding. In mathematics, logical 

understanding involves a learner’s ability to use an appropriate method to perform a task, knowing 

why the method works, and having mastery of the rhetorical demands of school mathematics in 

the appropriate context (Tirosh, 1999). By rhetorical demands is meant knowing how 

mathematical ideas are expressed or written and judged within the mathematics community. In 

other words, a learner has logical understanding if they are able not only to convince themselves, 

but being able to convince others when asked to reflect on the logic of the steps in working out a 

solution to a mathematical exercise or problem.  

Resnick and Ford (1981) question the usefulness of Skemp’s (1976) dichotomy between 

instrumental and relational understanding. They point out that, for example, having instrumental 

understanding without attending to the relational, logical, or functional aspects is 
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counterproductive. I concur with the sentiment in that strict adherence to one theoretical 

perspective at the expense of others is undesirable in mathematics education. However, as far as I 

could ascertain, there is no record of Skemp having advocated for this approach. I choose to read 

Piaget’s (1978) argument that instrumental understanding is not understanding at all charitably. 

Personal experience suggests that instrumental understanding can be useful in building a 

foundation for relational understanding. If this is taken to be true, instrumental understanding does 

not seem inferior to relational and logical understanding. However, de Villiers (1994) points out 

that mathematical understanding cannot be described through these three perspectives of 

understanding only. 

De Villiers (1990) identifies functional understanding to address the affect aspect which is 

embedded in doing mathematics. For this study it means understanding the role, function, purpose 

or value of proof in mathematics. He concludes that on the basis of extensive interviews with 

learners, most of their difficulty with proof seems not to lie so much with poor instrumental 

proficiency nor inadequate relational understanding as in poor functional understanding of proof 

(de Villiers, 1994).  

2.2.2 Supplementary perspectives on types of understanding 

Acknowledging the value of Skemp’s (1976) theory, Byers and Herscvics (1977) suggest an 

extension of understanding that includes “formal understanding” which relates to a learner’s ability 

to express mathematics in conventional forms of notation, and “intuitive understanding” which 

relates to a learner’s perception of a problem with little thought of the solution process. Bell, 

O'Brien, and Shiu (1980) provide examples of intuitive understanding. In this respect, rather than 

using a linear sequence of steps in solving 3𝑥 + 2 = 8, a learner spots that 8 is the same as 6 + 2 

and hence 3𝑥 must equal 6 and so 𝑥 is in fact 2.  

While agreeing with Skemp’s dichotomy on mathematical understanding of instrumental 

and relational understanding, Usiskin (2015) sees understanding of mathematical concepts in five 

independent and nonsequential (that is, can be learned in isolation from each other and in no 
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particular order) types which he calls dimensions of understanding: skill-algorithm understanding, 

property-proof understanding, use-application understanding, representation-metaphor 

understanding, and history-culture understanding. A closer analysis of these forms of 

understanding revealed that they are an expansion of Skemp’s (1976) model that focused on 

understanding with respect to mathematical concepts only.  

He describes skill-algorithm understanding as involving not only mastery of skill to obtain 

the right answer but also choosing a particular algorithm to obtain the right answer because it is 

more efficient than others. He suggests that being able to identify the mathematical properties that 

underlie why a certain method worked in obtaining the correct answer resembled property-proof 

understanding. As for the use-application dimension, he argues that this relates to individuals who 

know the uses of algorithms and the mathematical properties associated with a concept.  He labels 

the ability to represent a concept in some way (for example, using manipulatives, pictorial 

representation or metaphor) representation-metaphor understanding.  

In concluding his dimensions of understanding, he convincingly argues that understanding 

the cultural history of mathematical concepts is very important. For instance, he points out that 

some mathematical symbols are not the same everywhere; in some places, the fraction a/b is 

represented by a:b, while in other places the symbol a:b represents a ratio that is mathematically 

not identical to a fraction. However, Usiskin’s (2015) types of mathematical understanding are 

only limited to mathematical concepts; the problem is that learners may still see no value in 

learning these concepts.  

A little further on Resnick and Ford (1981) emphasise that memorisation of certain facts 

and procedures is important not so much as an end in itself but as a way to extend the capacity of 

the working memory by developing automaticity of response and thus free up time to focus on 

understanding mathematical ideas. While I agree with their view, such a discussion is beyond the 

scope of this study. That notwithstanding, I am mindful of Tall’s (1978) suggestion that any useful 

classification of mathematical understanding must exhibits the reality that understanding is a 

dynamic process in the sense that understanding may take place for one week, forgetting and 
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remembering the next. Before turning attention to research studies on the functions of proof, it is 

important to define what is meant by the term “reality”. Like Berger (1991), I view “'reality” to be 

a quality appertaining to phenomena that we recognise as being independent of our own volition; 

things we cannot “wish away”. 

2.2.3 Conflation of understanding, knowledge, and belief in mathematics education 

Various definitions have been ascribed to “understanding”, “knowledge”, and “beliefs”. Pajares 

(1992) labels beliefs as a messy construct that travels under alias such as conceptions, perceptions, 

or understanding. Consistent with a dynamic view of mathematics, knowledge is viewed as 

contestable facts that are commonly shared among the mathematics community. Mathematical 

knowledge is indeed contestable given the discovery of non-Euclidean geometries which shattered 

the view that mathematics provides absolute certainty (Greiffenhagen & Sharrock, 2011). In 

contrast, beliefs are subsets of knowledge which are consciously held with varying degrees of 

importance and for which no social consensus regarding their validity is required (Philipp, 2007). 

In other words, beliefs are ideas, views, assumptions, understanding, conceptions or perceptions, 

attached to mathematics, proof, and its functions, taken as true by the individual, and not readily 

amenable to, in Popper’s (1988) term, falsification12.  

In this study, I make explicit the meaning of these terms consistent with Lloyd’s (2002) 

line of argument to ease communication. Similar to Knuth (2002), she defines understanding as 

one’s general mental structure encompassing beliefs and knowledge. Beliefs are defined as 

understanding that are experiential or fantasy in origin and thus disputable while knowledge is 

defined as understanding which are compatible with consensually held information within the 

mathematical community. However, beliefs are crucial in that they are thought to influence the 

application of knowledge in the classroom (Leder, Pehkonen, & Törner, 2002). Therefore, 

learners’ understanding of proof is a manifestation of their experiences with proof instruction, 

                                                 
12 The act of deliberately seeking counter-examples to disconfirm a theorem thereby strengthening its truth if it 

survives such act (Cohen, Manion, & Morrison, 2011). 
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other social interactions in their environment including simply their own fantasy about proof. In 

this study, I also used the terms beliefs, understanding, and views interchangeably.  

The investigation in this study was meant to determine learners’ understanding of the 

functions of proof which, unlike knowledge, is subject to corrections if inconsistent with accepted 

mathematical interpretation. Thus, viewing understanding as an ideal to be attained by learners, a 

model that precisely defines understanding is necessary. De Villiers’  (1994) model provides an 

ideal definition of understanding by taking into account the depth of understanding a learner has 

experienced. For this reason, I focused only on learners’ attainment of functional understanding of 

proof. 

2.2.4 Learners’ understanding of the verification function of proof 

[h]aving verified the theorem in several particular cases, we gathered strong inductive evidence for 

it the inductive phase overcame our initial suspicion and gave us a strong confidence in the theorem. 

Without such confidence we would have scarcely found the courage to undertake the proof which 

did not look at all a routine job. When you have satisfied yourself that the theorem is true, you start 

proving it. (Polya, 1954, pp. 83-84) 

Euclidean geometry is the place for learners to “see” the functions of proof in mathematics.  

However, of all the five functions of proof invoked in this study, studies have shown that the 

verification function is persistently pervasive. Learners are under the misapprehension that making 

empirical arguments is justification (proof) for the truth of a proposition; hence, as already pointed 

out, this function occupies a low status and therefore regarded as being naïve among the functions 

of proof. But, why is this belief resistant? This is the question that will be answered shortly. 

Kunimune, Fujita, and Jones (2010) suggest instructional practices to make learners understand: 

the generality and universality of proof, the roles of figures, and the difference between formal 

proof and experimental verification. By constructing formal proofs, learners come to understand 

that the conjectures that they have found to be true in one context are always true. Thus, they will 

need to understand that proof is required to achieve generality of mathematics propositions. 
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Indeed, very few will contest that Michael de Villiers has made an outstanding contribution 

in the field of Euclidean proof. In his book in which he introduces a DGS, Rethinking Proof with 

the Geometer's Sketchpad, he briefly describes activities wherein learners make and verify 

conjectures using sketches and engage in activities that reflect the various functions of proof at the 

van Hiele levels lower than 3 (known as informal deduction). However, a serious shortcoming of 

the van Hiele theory is that it introduces only one function of proof, systematisation, at Level 3. 

Mudaly’s (1999) finding that functions such as verification, explanation, and discovery can be 

meaningful give support to this criticism. This is why de Villiers (2012) argues that it is 

far more meaningful to introduce proof within a dynamic  geometry context, not as a means to 

verify, but rather  as a  means to explain, systematise, and discover prior to engaging in formal 

proof.  

However, the potential risk associated with dynamic geometry is that both learners 

continue not see deductive proof as the ultimate means of verification (de Villiers, 2006) that 

provides assurance that there cannot be counter examples to refute a conjecture. Further, Laborde 

(2000) argues that the opportunity offered by DGS to “see” properties of geometric figures ‘so 

easily might reduce or even kill any need for proof and thus any learning of how to develop a 

proof’ (p. 151). This is in contrast to Chazan’s (1993) finding that even extensive use of DGS or 

measuremnt of examples in geometry classes would not hinder learners' appreciation of 

mathematical proof. My view is that empiricist (proving propositions by providing specific 

examples) behaviour persists because of learners’ inability to distinguish between inductive and 

deductive arguments. More broadly, I argue that this behaviour is symptomatic of a lack of 

functional understanding of proof in mathematics.  

Learners are definitely not alone in relying on verificstion. Weber and Mejia-Ramos (2011) 

point out that the learners’ tendency of verifying theorems with examples is akin to how 

mathematicians gain full confidence that a proof is completely correct. That is, mathematicians do 

not solely gain confidence by inspecting the logic of the proof line-by-line; they use examples to 

increase their conviction in, or understanding of, a proof. Weber and Mejia-Ramos (2011) further 
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caution that learners should be aware of the limitations of empirical reasoning and the generality 

of a deductive proof. It is my view that the behaviour of both mathematicians and learners towards 

the use of proof as a means to verify the truth of a conjecture is a natural everyday way of gaining 

evidence by observation. 

2.3 Connecting proof with argumentation 

The reason for talking about functions of proof alongside argumentation stemmed from A.J. 

Stylianides’ (2007) definition of proof as a mathematical argument, a connected sequence of 

assertions against a mathematical claim. This definition underscores the fact that in the 

construction of a formal proof involves both inductive proof and deductive proof. Support for this 

view s found in Harel and Sowder (1998) who use “proof” to characterise not only deductive 

proofs but also empirical proofs. Also, in the CAPS document, the definition of mathematics as a 

social activity in which conjecturing is foregrounded, underscores the notion of argumentation. 

Further, the communicative function of proof suggests that argumentation is an integral part of 

proof. In addition, in light of the “didactic contract” of the teacher, proving is a collective process 

in which the teacher guides their learners in the establishment of the truth of a conjecture; learners 

and teacher evaluating and critiquing each other’s ideas. Brousseau (1997) coined the term 

“didactic contract” to refer to the teacher’s routine instructional obligation. Further support for the 

link between proof and argumentation is found in Reid and Knipping’s (2010) assertion that when 

mathematics is expressed in a social context it becomes a method of arguing. Thus, proof cannot 

not be seen as being separate from argumentation. 

Hersh (2009) announces that ‘[i]n fact, “proof” is just “reasoning,” but careful, critical 

reasoning looking closely for gaps and exceptions’ (p. 19). Harel and Sowder (2007) seem to use 

“proof” in the same sense when they assert that ‘the term proof often connotes the relatively precise 

argumentation given by mathematicians’ (p. 807).  Harel and Sowder’s view supports Doeuk’s 

(2009) idea that argumentation and proof have many aspects in common in the sense that the 

former is often useful to the process of proving. Hence, Pedemonte (2007) considers proof to be a 

specialised form of argumentation. Hersh’s (1993) philosophical work on proof, for whom a proof 
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is an argument, argues that ‘[i]n mathematical practice, in the real life of living mathematicians, 

proof is just a convincing argument, as judged by qualified judges’ (p. 389).  

Lakatos (1991) asserts that a proof follows a zig-zag path beginning with conjecturing then 

proceeding to refutations (counterexamples) of premises to reach a conclusion which may itself be 

subject to revision based on the strength of its premises. Certainly, revision does not take place in 

a vacuum; it invites argumentation. Hersh’s (1993) conceptualisation of proof provides an 

overarching perspective; one from the common mathematical practice and the other from 

mathematical logic and philosophy of mathematics. From a “working” meaning, proof is a 

deductive argument (Figure 2—1) that convinces qualified judges while from the “logic” meaning, 

proof is a sequence of transformations of formal sentences, carried out according to the rules of 

the predicate calculus. This “logic” definition is adopted in this study on the basis that it is not only 

consistent with shared understanding and practices in contemporary mathematics but also 

consistent with what constitutes a mathematical proof at high school geometry level. However, 

school mathematics curriculum does not always reflect the importance of the relationship between 

functional understanding of proof and argumentation.  

 

Figure 2—1. An example of a deductive (logical) argument 

Deductive reasoning process 

Axioms 

Conclusion:  

a + b + c = 180
0
 

for any triangle 

Axiom 1: 

(Previously proven 

conjecture)  

d + a + e = 1800 (d, a, & 

e are on a straight line) 

Axiom 2: 

(Property of 

parallel lines)  

d = b and e = c 

(alternating interior 

angles are equal) 

Axiom 3: 

(Postulate) 

Substitution of equal 

values 

 



The review of literature Mathematical inquiry: Experimentation and conjecturing 

 

                                                                                                                                              
47 

Kirschner, Shum, and Carr’s (2012) definition of argumentation as ‘discourse for persuasion, 

logical proof, and evidence-based belief, and more generally, discussion in which disagreements 

and reasoning are presented’ (p. 2), is problematic. The issue for me lies with their use of “logical 

proof” in defining argumentation. Toulmin’s (2003) reason for theorising about argument is 

precisely on the basis that logical proof provides limited scope for assessing the effectiveness of 

an argument generally in everyday discourse and most particularly in law. For instance, an 

argument could emerge from a mere observation of several cases of a phenomenon and be 

concluded without requiring the development of a deductive argument. In contrast, as here 

conceived, a logical proof is based on rules of logic and axioms leading to a true conclusion that 

applies to all cases of the mathematical objects under investigation; observed or abstracted.  

Another way of making this point is to say that relating abstract mathematical objects to 

rhetorical argumentation, here construed as the process of engaging in domain-specific arguments, 

is not part of formal logic. In making informal logic a distinct concept from formal deductive logic, 

Johnson and Blair (2000) define informal logic as a branch of logic with a focus on developing 

nonformal procedures for the analysis of argumentation in both everyday discourse and domain-

specific arguments. In more specific terms, van Eemeren and Grootendorst (2004) see Toulmin's 

(2003) theory of argumentation as primarily a rhetorical expansion of the syllogism (deductive 

reasoning) whereas Toulmin (2003) himself emphasises that his theory on argumentation is an 

effort to make logic ‘less of a priori subject than it has recently been … more empirical’ (pp. 236-

237). 

2.4 Mathematical inquiry: Experimentation and conjecturing 

In this study, mathematical inquiry is defined as an instructional strategy of teaching and learning 

of mathematical objects through “problems”. One important aspect in which mathematical inquiry 

classrooms differ from conventional classrooms is in the treatment of “problems”. The 

nonhomogeneous nature of schools notwithstanding, instructional practices in most mathematics 

classrooms are plagued with structured problems, questions and activities that take only a few 

minutes to respectively answer. Makar (2014) points out that such instructional practices contrast 

https://www.thoughtco.com/rhetoric-definition-1692058
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sharply with mathematical inquiries which often involve problems that could take days or even 

weeks to solve and whose solutions often contain a number of ambiguities.  

Various meanings are ascribed to the term “problem”. Some people use it to define 

mathematics while others use it to refer to routine exercises designed to yield mastery of procedural 

skills. According to the American policy document Principles and Standards for School 

Mathematics, a problem requires engagement in an activity ‘for which the solution method is not 

known in advance’ (National Council of Teachers of Mathematics [NCTM], 2000, p. 52). Here, I 

adopted Makar’s (2014) definition of a problem in the context of mathematics. She claims that in 

the context of mathematical inquiry a “problem” does not refer to the task as in a textbook, but 

rather to the larger contextual issue to which there is no readily available procedure for finding the 

solution. But, what is important in inquiry is that the solution to the problem needs to be strongly 

underpinned by mathematics. In other words, problems in mathematical inquiry require 

mathematisation, that is, application of mathematics to an authentic and illstructured contextual 

problem.  

According to Makar (2014), mathematical inquiry is a process of solving illstructured 

problems – that is, problems whose solutions were typically not “right” or “wrong” but require the 

learner to justify their conclusion, including the process used to reach it – that significantly relies 

on mathematics in the solution process. However, most problems in school mathematics are well 

structured in that they are clearly defined and learners enter the solution process with a limited 

number of pathways to reach a successful solution. This process involves connecting all four of 

these elements, purpose-question-evidence-conclusion (Makar, 2014).  

Mathematical inquiry, which is very different from discovery learning where learners are 

expected to “discover” the mathematics they need and the teacher provides little input during 

investigation, requires high quality scaffolding and expertise from the teacher in knowing how to 

balance when to step in and when to allow learners to wrestle with challenging ideas. Judging by 

the features of mathematical inquiry, argumentation aligns closely with mathematical inquiry 

(Hunter, 2006; Makar, 2014). In this study, the learning activities in which learners conduct 
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investigations, make conjectures, perform measurements and constructions in authentic everyday 

problems that can be mathematised constitute mathematical inquiry. Makar (2014) points out that 

in mathematical inquiry, learners are provided with multiple opportunities to use their contextual 

understanding in building mathematical concepts and structures that underpin the problem and 

create a need for learning mathematics. Seen in this light, mathematical inquiry need not to be seen 

as a learning and teaching approach geared towards fulfilling a utilitarian perspective of 

mathematics but as using real-world problems as a context to the application of mathematical 

concepts. 

In respect of the distinction between proof and proving, the former is an object, a product, 

and the latter the activity associated the search for a proof (A.J. Stylianides, 2007). However, it is 

important to mention that proving may involve arguments which ultimately do not lead to proof 

as defined in the foregone subsection. Also, when referring to nonproof or the colloquial sense of 

proof, I used the term “empirical argument” to refer to inductive proof or proof by examples or 

rather put the word proof in inverted commas to refer to its nontechnical meaning. Ideally, proof 

as a product begins with experimentation involving construction, measurement and observation. 

This experimentation can either be done by hand or with the aid of DGS. Experimentation is 

closely associated with, in Felbrich, Kaiser, and Schmotz’s (2012) terms, an individualistic culture 

where the individual participates in the generation of mathematical ideas rather than merely fitting 

in what authority transmitted. For an elaborated description of the different cultural notions, the 

reader is referred to Hofstede (1986).  

However, experimentation is a result of investigations triggered by the need to prove the 

truth of a conjecture. Flowing from experimentation is inductive reasoning, usually resulting into 

some unproved generalisation, a conjecture. On the one hand, a conjecture is a mathematical 

proposition whose veracity has not been established yet. On the other hand, a generalisation is a 

proposition that has been accepted as true by a social group (Reid, 2002). This distinction 

notwithstanding, I used “generalisation” to refer to a conjecture whose truth arose from 

observation or experimentation with a few or selected cases forming a pattern but lacked a 
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deductive proof to work for all cases exhaustively. The impression I gathered from making a 

generalisation, as a product that reveals a pattern of mathematical objects was that it is crucial for 

proof construction. For instance, in an examination of the mathematical practice, Lakatos (1976) 

points out that conjecturing precedes a proof. Personal experience suggests that such a practice is 

foreign to school mathematics classrooms where the proving environment begins with the use of 

axioms and definitions.  

According to the CAPS document, it is statutory that investigations be an integral part of 

instructional practices in mathematics classrooms. The emphasis on investigations reflects two 

important notions; conjecturing and proving:  

Investigations are set to develop the skills of systematic investigation into special cases with a view 

to observing general trends, making conjectures and proving them. (Department of Basic Education 

[DBE], 2011, p. 51) 

The emphasis on these activities is a direct reflection of clear evidence that the South African 

school mathematics curriculum is preparing learners for future success. The emphasis on these 

activities is a direct reflection of clear evidence that the South African school mathematics 

curriculum is preparing learners for future success. The focus on investigations further 

substantiated my claim that the South African society and education system embraced a collectivist 

culture where lack of success is attributed to a lack of effort on the part of the individual learner. 

Also, that learners were encouraged to engage in investigations of mathematical objects on their 

own reflected a mathematics curriculum that promoted a dynamic view of mathematics.  

On the basis of the arguments invoked so far, I am inclined to assume that conjecturing 

from the given diagram implied ability to engage in proof activity. Further, the view that for 

learners to do proof with understanding, effort must be devoted to ensuring that they develop 

appropriate understanding of the significance of proof was justified. I further argued that an 

understanding of the functions of proof facilitated the understanding of the coherent nature of 

mathematical knowledge. Hence, an informed understanding of the significance of proof must 
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include a consideration of proof in each of these five functions it performs in mathematics (Knuth, 

2002).  

This probably prompted Balacheff (1991) to suggest that there is a long distance between 

these functions of proof and their manifestation in school mathematical practices. In particular, 

most challenging is finding more effective ways of using proof for explanatory purposes (Hanna, 

2000). However, this need not to be construed as seeing the explanatory function of proof as more 

important than the others. Hence, I used de Villiers’ (1990) multidimensional framework to 

organise the discussion of the literature on the functions of proof in mathematics. It is in this 

framework that investigations and conjecturing, enshrined in the CAPS, aligned well with 

mathematical inquiry which in turn aligned with argumentation. I now turn to defining what I 

meant by the term “argumentation” in this study. 

2.5 The notion of argumentation  

The skill of developing a logical argument in a geometric setting can focus on a diagram with certain 

given information. The students are asked to arrive at a conclusion based on the given information. 

(Hoffer, 1981) 

Part of our daily routine as humans involves engaging in arguments and argumentation in attempts 

to clarify or challenge the rationality of propositions, actions or claims during debate, dialogue, 

conversation or persuasion. Although in mathematics education there is no shared definition for 

argumentation (Pedemonte, 2007), for the purpose of this study and in order to place the critical 

discussion on argumentation in context, it is imperative that I define what I mean by 

argumentation. But, first, perhaps van Eemeren, Grootendorst, Johnson, Plantin, and Willard’s 

(2013) provide a comprehensive definition of argumentation that did not rely on formal logic (use 

of premises accepted as true to start an argument as in, for example, Euclidean proof). They define 

argumentation as:   

a verbal and social activity of reason aimed at increasing (or decreasing) the acceptability of a 

controversial standpoint for the listener or reader to by putting forward a constellation of 
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propositions intended to justify (or refute) the standpoint before a rational judge. (van Eemeren et 

al., p. 5) 

According to them, a rational judge is an authority – which could be an existent person or an 

abstract ideal – to which the assessment of an argument is entrusted. This definition is found not 

only to be compatible with the practice of mathematicians but also with the CAPS guidelines on 

handling prescribed tasks. In the latter, emphasis is placed on ensuring that the mathematicians’ 

practices were reflected in high school mathematics as well. That is, learners themselves needed 

to engage in a line-by-line explanation of the proof and in that process invite argumentation from 

their peers. Thus, argumentation is indeed an integral part of proving in mathematics.  

That notwithstanding, I saw argumentation as the process of linking evidence (information, 

ground, or datum observed from diagram) to claim (answer to a question in Euclidean proof) where 

the statements which connected evidence to claims were referred to as the warrants (reasons). My 

understanding of argumentation is informed by that of Toulmin (2003) who describes it as a 

process in which substantiated (warranted) claim are made on the basis of data. Typical 

argumentation in everyday sense involves interactions wherein participants rely on oral or written 

information to make (1) claims and support them with (2) evidence, both of which can be rebutted 

(Berland & Reiser, 2008; Toulmin, 2003). So I saw an argument in this thesis, unlike in logic 

which is a deductive process involving two or more premises resulting in a conclusion, as 

constituted by data, claim, warrant, and a rebuttal to evaluate the strength of a claim. Thus, in this 

sense, a logical conclusion is a result of two or more claims. Figures 2—1 and 2—2 illustrate the 

similarities between deductive proof and argumentation where D = data, C = claim, W = warrant, 

and R = rebuttal. 

I agree with Osborne, Erduran, and Simon’s (2004) distinction between “argument” and 

“argumentation”. An argument is regarded as a referent to the claim, data, warrants and backings 

that form the content of an argument and argumentation is viewed as a referent to the process of 

arguing.  I argue that since mathematics is viewed as a human activity whose proofs (results) 

require communication (interactions) among members of the mathematics community, arguments 
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are an integral part of the subject. Figure 2—2 shows how the diagram is used as an argumentation 

prompt (instrument), that is, to make learners engage in written argumentation. 

 

Figure 2—2. An example of an argument in Toulmin’s (2003) sense 

Argumentation as a social activity is evident in a discourse between two or more interlocutors as 

they defended their claims and made counterclaims when doing proof. Thus, argumentation in 

mathematics lessons has become a means to better understand proving processes in class (Reid & 

Knipping, 2010). Drawing on Lakatos’ (1991) perspectives, proof is defined as a product of a 

process that entails the use of arguments to formulate conjectures that are consistent with evidence 

whose validity is agreed upon by the mathematics community at a given time. Also, Menezes, 

Viseu, and Martins (2015) define mathematical proof as a process of argumentation. These 

perspectives of proof as a particular kind of argument presupposes a relationship between 

argumentation and proof  (Conner, 2007). For instance, Knipping (2003) define argumentation as 

‘a sequence of utterances in which a claim is put forward and reasons are brought forth with the 

aim to rationally support this claim’ (p. 34).  

Further, Aberdein (2012) characterises mathematical proof as an argument. In support of 

this standpoint, Boero, Garuti, and Mariotti (1996) argue that embedded in the proving process is 

some continuity – labelled as cognitive unity – which takes place between the construction of a 

conjecture and the construction of the proof. Before turning to the next section in which I explore 

Argument Example  

C: My statement is that 

… 

ê = ĉ 

W: My reason is that … Alternating interior 

angles 

R: Arguments against 

my idea might be that … 

But, the lines DE and BC 

are not marked as parallel 
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functional understanding of proof in mathematics, it is important to end this section by providing 

a definition of cognitive unity as seen by Boero, Garuti, Mariotti (1996): 

During the production of the conjecture, the student progressively works out his/her statement through an 

intensive argumentative activity functionally intermingled with the justification of the plausibility of his/her 

choices. During the subsequent statement proving stage, the student links up with this process in a coherent 

way, organising some of the justifications (‘arguments’) produced during the construction of the statement 

according to a logical chain. (p. 113) 

In the classroom, the pursuit of cognitive unity helps learners to connect the two fundamental 

aspects of reasoning, argumentation and mathematical proof, at the same time. It is precisely for 

this reason that I claim that argumentation cannot be more than a benefit for the task of constructing 

a proof. 

2.6 Studies on functional understanding of proof 

As already alluded to, mathematics education research has shown that most learners have serious 

difficulties with constructing proofs. Harel and Sowder (1998) locate the cause of learners’ 

difficulty in the logical aspect of proof construction. Thompson, Senk, and Johnson (2012) argue 

that some of the most persistent proof-related difficulties identified among learners in secondary 

school and university are a consequence of the confusion about the functions of proof in 

mathematics. The motivation to conduct this study emanated partly from the premise that to 

construct proofs in geometry all five functions need to be understood by learners (de Villiers, 1990; 

Grigoriadou, 2012; Knuth, 2002). Numerous studies show that even South Africa's top 

mathematics learners perform poorly, on average, compared to their peers in both Africa and the 

rest of the world (Moloi & Chetty, 2010; Reddy, 2006; Schollar, 2008; Soudien, 2007) 

notwithstanding the substantial investments in education over the past two decades (Moloi & 

Chetty, 2010; Reddy, et al., 2012; Taylor, Van der Berg, & Mabogoane, 2013).  

Very few can readily disagree with the contention that no single explanation accounts for 

the low scholastic achievement in Euclidean geometry. However, there is scarcity of empirical 

evidence on the influence of learners’ views on functional understanding of proof. Through this 
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literature review, I extended the existing knowledge on the relationship between functional 

understanding of proof and argumentation ability. For instance, Knipping (2003) recommends that 

it would be interesting if the relationship between functions of proof and argumentation structures 

were examined. 

The present study is aimed at advancing research on proof by arguing for the need to 

capture learners' functional understanding of proof in mathematics as a precursor to doing 

deductive proof. Most research studies have focused on proof and proving as content of the 

curriculum to be learnt and taught. For instance, Knuth (2002) investigated teachers’ conceptions 

of proof, Wu (2006) and Chin and Lin (2009) focused on learning how to read and write proofs, 

Hanna and Barbreau (2008) investigated ways to learn proof, and Harel and Sowder  (2007) 

investigated the teaching of proof. A relatively small number of studies has discussed the functions 

of proof in mathematics (for example, de Villiers, 1990), Bell, 1976, & Hanna, 2000). Almedia 

(2000) captured functional understanding of proof through a survey; but, only that of university 

students. Chin and Lin (2009) conducted an investigation in which they were interested in 

comparing the performance of Taiwanese learners against United Kingdom (UK) learners in 

Grades 7–9 proof content.  

In contrast, Alibert and Thomas (1991) discusses the relationship between functional 

understanding of proof largely from a theoretical basis rather than conducting a systematic 

investigation. They believe that learners’ distorted understanding of the functions of proof is a 

direct consequence of instruction that presents proof as a finished product; an approach that 

deprives learners of opportunities to be partners in mathematical knowledge construction. In this 

study, the definition of the term “instruction” is compatible with that of Cohen, Raudenbush, and 

Ball (2003) who used it to define the interactions among teacher-learners-content in classroom 

environments. 

As far as I could ascertain, only Healy and Hoyles (1998) attempts to capture learners’ 

functional understanding of proof. They conducted a nationwide (England and Wales) survey of 

2 459 Grade 10 learners’ functional understanding of proof in mathematics and how those learners 



The review of literature Studies on argumentation 

 

                                                                                                                                              
56 

constructed logical arguments (proof) in algebra and geometry. In particular, they used an open-

ended survey questionnaire on which learners were to write about everything they knew of proof 

and its functions in mathematics. Further, they investigated the influence of statutory instruction 

on the nature of proof following suggestions that such instruction could contribute to deeper 

understanding of the notion of proof itself and thus improve its didactic treatment in the classroom. 

They found that the function of proof as a means to verify was prevalent. Hanna (1995) posit that 

learning about the functions of proof in mathematics is of primary importance to mathematicians. 

In the same vein, I contend that the value of understanding the functions of proof in mathematics 

needs to be reflected in the mathematics classroom itself. 

However, because of limited resources, this study only investigated functional 

understanding of proof and the factors that accounted for the understanding from the perspectives 

of learners only. In addition, this research project focused on exploring learners’ functional 

understanding of proof in mathematics and, unlike Healy and Hoyles (1998), not on examining 

learners’ competence in distinguishing between deductive and empirical arguments. This must not 

to be construed as suggesting that such exploration of learners’ competence is immaterial. In 

addition, whilst I acknowledge the influence of a complex set of challenges inherent in geometry 

education (for example, language of instruction, resources, class sizes, quality of teacher, and so 

on), I argue that insight into learners’ functional understanding of proof has the potential to 

significantly improve learning of proof. As already alluded to, I take the view that it is improper 

to expect learners to develop mathematicians’ understanding of the functions of proof unless 

explicit instruction is directed at providing them with opportunities and experiences that reflect 

mathematicians’ practices.  

2.7 Studies on argumentation 

I begin this section by touching on two prominent theories on argumentation. Perelman and 

Olbrechts-Tyteca (1982) and Toulmin (2003) are the most influential theorists on argumentation. 

Perelman Olbrechts-Tyteca (1982) tries to find a description of techniques of argumentation used 

by people to obtain the approval of others for their opinions. Toulmin (2003), the other influential 
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writer, developed his theory (starting in 1950’s) in order to explain how argumentation occurs in 

the natural process of an everyday argument. He calls his theory “the uses of argument”. Ribeiro 

(2012) points out that Toulmin’s model focuses precisely on studying the structure of arguments. 

In contrast, Perelman and Olbrechts-Tyteca’s (1982) model does not seem to give rise to a structure 

that demonstrates how the components of an argument are related; in fact, they see argumentation 

as a process opposed to mathematical proof. Of course, as discussed earlier, I see proof and 

argumentation as inseparable.  

As Aberdein (2005) points out, Toulmin’s The Uses of Argument is arguably the single 

most influential work in modern argumentation theory. Toulmin’s (2003) model explains how the 

six components of an argument link and also how the argument structure can be employed to 

analyse arguments. For these reasons, Toulmin’s scheme was useful in determining learners’ 

competence in generating arguments to support claims in this study. Further, Toulmin’s (2003) 

theory focuses on argumentation wherein the conclusion, belief or claim is produced by reasoning 

(justification) as the starting point for the construction of arguments. Hence, its account of 

argumentation has been found to be insightful on the basis that he focuses on the rhetoric of 

mathematical practice, arguments (Shapin, 2002). In addition, Toulmin’s (2003) layout is intended 

to encompass all forms of argument, mathematics included (Aberdein, 2005).  Taking this brief 

analysis into account, a “Why?” question calls upon the interlocutor to justify their position which 

in turn transforms a mere statement into an argument. 

Using Toulmin’ (2003) argument structure (TAP), Pedemonte (2007) not only describes a 

proof through argumentation, she also shows that argumentation is useful in the production of a 

conjecture. Hence, Lakatos (1991) views proof and conjecturing as inseparable. I could only 

concur with him for the simple reason that conjecturing is an activity undertaken to arrive at a 

mathematical proof whose validity would eventually be subjected to scrutiny through engaging in 

the process of argumentation. More specifically, following an analysis of mathematical proofs, 

Aberdein (2012) concludes that proofs consists of a number of argument structures rather than a 

single argument structure. In this study, I only focused on requiring participants to make single 
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arguments which by definition, only comprised a claim, data, warrant and a rebuttal, for the 

purpose of gaining insight into learners’ ability to construct an argument. 

 According to Mariotti (2006) the learner must make sense of this difference between 

argumentation and proof, without rejecting one for the other. In her characterisation of proof and 

argumentation, like Pedemonte (2007), she argues that proof is a special case of argumentation, 

and I agree. She further points out that argumentation, the process of supporting the truth of a 

particular proposition, introduces learners to the practices of the mathematics discipline.  

Some research studies showed that cognitive unity exists between the construction of a 

conjecture and the construction of a mathematical proof (Boero et al., 1996). In addition, recent 

researchers suggests that the major goal of teaching mathematics is to develop learners’ abilities 

to establish and defend their own positions while respecting the positions of others (Idris, 2006). 

Understanding of the functions of proof were found to correlate with the ability to engage in 

argumentation or proof construction task (Clark & Sampson, 2008; Conner, 2007; Hanna, 2000). 

For this study, argumentation reflected the communication function of proof in mathematics. 

Although current research in mathematics education does not offer much insight into the 

relationship between proof and argumentation, both processes are characterised by being 

conducted when someone wants to convince (oneself or others) about the truth of a proposition 

(Pedemonte, 2007). Thus, I viewed proving as an activity that begins with the construction of an 

argument which is accomplished through argumentation. In this case, Toulmin’s model is seen as 

a powerful tool to characterise the two types of arguments discussed in this study: empirical 

(informal) and deductive (formal) arguments.  

In mathematics education, Krummheuer (1995) started the trend of using Toulmin’s 

scheme of conclusion, data, warrant, and backing by analysing and documenting how learning 

progresses in a classroom. However, he employed a reduced version of the original scheme, 

omitting the use of the rebuttals and qualifiers and his study focused on primary mathematics 

(grade 2). Pedemonte (2007) investigated the structural differences between proof and 

argumentation. The study took place when 102 high school learners in France and Italy began to 
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learn proof. The learners had prior experience of proof as a means to systematise and knew the 

theorems necessary to solve the proposed problems. She found that open problems which ask for 

a conjecture appear to be extremely effective for introducing the learning of proof and that 

argumentation activities seem to favour the construction of a proofs.  

In a comparative study on proving processes in French and German lessons on the theorem 

of Pythagorean, carried out by Knipping (2003), it was found that proving discourses allow for 

reflection on underlying functions of proving in class. Conner (2008) study examined the 

argumentation in one preservice teacher’s high school geometry classes and suggested a possible 

relationship between the observed argumentation and the preservice teacher’s understanding of 

proof. She conducted two semi-structured to infer the teacher’s understanding of the concept of 

proof from her responses. Using Toulmin’s scheme, she found that there were difference in the 

order in which components of an argument were presented. She also found that the teacher’s 

understanding of the functions of proof—as, for example, a means to explain why a statement were 

true—influenced the support for argumentation in her classroom. 

2.8 Perspectives on school type and gender 

The exploration in this study involved participants who attended differently resourced schools 

specifically based on their location and were of at least two genders, male and female. According 

to Lee and Zuze (2011), the level of school resources make more of a difference in economically 

developing countries like South Africa than in economically developed countries. A longitudinal 

study by Healy and Hoyles (1998) found that gender was significantly associated with learners’ 

competence in the construction of proofs. Therefore, the role of school resources and gender on 

proof functions were reviewed here on the basis that some of the findings could be explained from 

these perspectives. 

2.8.1 School resources 

South Africa is a country wracked by rampant inequalities in economic circumstances and 

educational provision that has resulted in an education system characterised by two different 
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school resource levels (Bertram & Hugo, 2008; Soudien, 2007). In the context of public schools, 

a minority of resourced and successful schools are found in established urban, middle class areas 

(Brodie, 2006). In contrast, about 85% of under-resourced schools (Bloch, 2009; Grant, 2014) 

whose performance was abysmal, are found in townships, rural communities, informal settlement 

areas of either tin shanties erected by the people themselves or small brick houses, and on farms 

(Bloch, 2009; Lubben, Sadeck, Scholtz, & Braund, 2010). 

Reddy, Prinsloo, Visser, Arends, Winnaar, Rogers, and Mthethwa (2012) point out that 

where a school is located can have a substantial impact on whether its learners typically are from 

economically and educationally advantaged home backgrounds and thus able to provide access to 

important additional resources such as libraries, media centres, or museums.  More important for 

this study, Reddy et al. (2012) found that those schools with resources specifically aimed at 

supporting mathematics instruction such as providing specialised teachers, computer software, 

library materials, audiovisual resources, and calculators, tend to perform better. 

Very little has changed in terms of resources even under the new democratically elected 

government, especially in previously disadvantaged schools. This evidence suggests that the 

promise of equal distribution of resources is yet to materialise (Sedibe, 2011). In this study, I 

limited school resources to specifically learning and teaching support material (LTSM), 

particularly DGS which tend to be useful in demonstrating the verification and discovery functions 

of proof (de Villiers & Heideman, 2014). The DGS has the drag mode that makes it possible for 

the learner to continuously experiment by varying geometric configurations so as to quickly and 

easily investigate the veracity of particular conjectures (de Villiers, 1998). I expect no argument 

from any sensible person contesting that such software is rarely found in previously disadvantaged 

townships schools. Thus, it is in this context that in this study previously disadvantaged schools 

were viewed as under-resourced and the others as resourced. 

Accordingly, given real differences in schools’ resource levels (Soudien, 2007), there is a 

significant difference in argumentation quality between learners in resourced and under-resourced 

schools (Lubben et al., 2010). This disparity in Euclidean geometry educational experiences 
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contributed to gaps in learner achievement. Where resources are not equally distributed the 

inevitable consequence is inequitable access to mathematical knowledge and this did not 

contribute to the attempts to arrest the notoriously persistent trends of poor learner performance in 

Euclidean geometry. Thus, assessment on resources showed that learners in under-resourced 

schools tend to perform poorly notwithstanding attempts by policymakers to redress the conditions 

under which achievement gaps grew. 

2.8.2 Fee-paying and no-fee-paying schools and mathematical proof 

South Africa's public schools were previously divided into five categories called "quintiles", 

according to their poverty rankings based on the assumption that schools in wealthier communities 

were better able to raise funds and therefore required less financial support from government. 

According to the South African Government News Agency (2016), the Department of Basic 

Education (DBE) planned to introduce a two-category system which classified schools as either 

no-fee paying or fee-paying effectively scrapping the system that divided schools into quintiles. 

The introduction of the new system is necessary owing to the fact that the quintile system has 

become difficult to implement as it is based on many different criteria and that in some areas, the 

question is whether parents could afford to pay or not (South African Governmemt News Agency, 

2016).  

On the basis of this background, the study investigated functional understanding of proof 

and argumentation ability in public high schools in and around Durban that were resourced as well 

as those that were under-resourced. Lubben et al. (2010) refers to a “resourced school” as a school 

with: up to standard sports fields for a variety of extra mural activities; equipped laboratories; 

Western European cultural practices; learners’ first language coincides with the teaching and 

learning language; and, a range of LTSM including a library and internet access. In addition, these 

schools have the wherewithal to employ and pay, from their coffers, additional teachers (over and 

above those paid by the government) and thus reduce learner-teacher ratio.  

In contrast, the term “under-resourced” school refers to a school that lacks sports fields for 

a variety of extramural activities, equipped laboratories, library or internet access, is characterised 
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by indigenous cultural practices such as emphasis on respect for the elders and teachers, has large 

class sizes, and has learners whose mother tongue differed from the medium of instruction. The 

lack of sporting facilities makes learners turn their playgrounds into rudimentary sports field 

(Kane-Berman, 2017). I see the former as a referent to “fee-paying” school. The latter, in contrast, 

is seen as a referent to a “non-fee paying” school. The no-fee policy is a national poverty ranking 

system which divided all schools into quintiles status in an effort to redistribute resources and 

improve access to quality education for learners from poor socioeconomic backgrounds. A fee-

paying school is a school which charges fees to parents of its learners. 

2.8.3 Gender and mathematical proof 

Gender is important to consider as a characteristic because, as Hofstede (1986) points out, within 

certain cultures there is a higher degree of differentiation and inequity between genders than others. 

The differences among the genders are found in schools; microcosm of society. In simple terms, 

the differences in gender performance in functional uderstanding of proof and argumentation 

ability may be assumed to be driven by cultural factors (for example, gender roles). Support for 

this approach is found in Willingham and Cole’s (1997) argument that ‘young women [scored] 

higher than young men on domestic, artistic, writing, social service, and office service vocational 

interests and young men [scored] higher than young women on business, law, politics, 

mathematics, science, agriculture, athletics, and mechanical interests’ (p. 178). Geary (1998) 

presents evidence to support the assertion that on average, it appears that women tend to be more 

interested in careers that involve organic matters, for example, biology and medicine as opposed 

to men who tend to be more inorganic matters, for example, physics and engineering. In the words 

of Geary (1999), 

[s]exual selection (male–male competition in particular) has resulted in a greater elaboration of 

the cognitive and brain systems that support navigation in physical space in men than in women. 

One feature of these systems is an intuitive understanding of Euclidean geometry. (p. 272) 

Interesting arguments have been made on this issue of gender differences in which there seems to 

be empirical support for the notion that the mathematical domain of Euclidean geometry seems to 
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favour male learners than female learners. In addition, Healy and Hoyles (2000) found that the 

gender differences in the belief that empirical arguments were proof existed also among learners 

in algebra. The source of this gender difference is assumed to be social and occupational interests.  

2.9 Chapter summary 

This chapter provided a critical engagement with the mathematics education research literature by 

situating this study in terms of previous studies and ideas in literature related to the functions that 

proof performed in mathematics and argumentation. The case of functional understanding of proof 

in mathematics and argumentation as essential precursors for motivating learners to construct 

proof was made. Such understanding includes viewing proof as a means to verify, explain, 

communicate, discover, and systematise. The interaction of functions of proof and argumentation 

was discussed by showing that like functional understanding, argumentation is key in doing proof 

successfully. Literature reviewed here pointed to the fact that school resources and gender 

differences may influence learners’ functional understanding of proof as well as argumentation 

ability. In the next chapter, I show how I critically engaged with the relevant theories and concepts 

selected to investigate functional understanding of proof, argumentation, and factors influencing 

beliefs about the functions of proof.
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Chapter 3  

The theoretical frameworks 

In simple terms, a theoretical framework involves the presentation of a specific theory, such as 

systems theory or self-efficacy, and empirical and conceptual work about that theory … a case is 

built for the importance of the study through a presentation and critique of the concepts, terms, 

definitions, models, and theories found in a literature base. (Rocco & Plakhotnik, 2009, pp. 125-

126) 

3.0 Introduction 

In the previous chapter I critically examined previous studies and ideas on the functions of proof 

and argumentation to build the foundation for the theoretical framework with a view to establish 

the relationships among the various concepts in each one of the two theories underpinning this 

study. In this chapter, the axiomatic system is briefly discussed. Then, the van Hiele (1986) theory 

which emphasises the hierarchical nature of geometric thinking as well as Toulmin’s (2003) theory 

which provides a layout of how an argument is structured are critiqued. For both theories, 

argumentation is an overarching theme; proof is viewed as a specialised form of argumentation. 

Next a description of the functions of proof is provided followed by an interrogation of the beliefs 

about the functions of proof (which encompass constructs such as semantic contamination, 

collectivist culture, empirical arguments, teacher, and textbook). The remainder of this chapter 

describes the conceptual framework from which the research questions guiding this study are 

presented. 

3.1 Axiomatic geometry in a nutshell 

In this section the essential aspects of the axiomatic system with reference to geometry are 

summarised. The geometry branch of mathematics which Euclid organised into an axiomatic 

deductive system to study shapes on planes (flat surfaces) is called Euclidean geometry in his 

honour. Prior to Euclid, geometry was empirical in the sense that it had to do with measurements 

and constructions given that perception of the world was based on sensorial experiences. 
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Specifically, answers to practical problems were arrived at by inductive reasoning; a process that 

involves making generalisations (conjectures) from recognition of patterns as a consequence of 

observations. However, inductive reasoning is at the heart of science and at the beginning of 

mathematics (Serra, 1997).  

Euclid pioneered the teaching and learning of Euclidean geometry without measurements 

and constructions (the use protractor, divider, pair of compasses or ruler). Simply put, he was 

interested in the establishment of the generality of mathematical propositions rather than their 

verification by sensorial experiences. To that end, he began his study by establishing 10 axioms 

using the three undefined building blocks of geometry; point, line, segment. These were left 

undefined because an attempt to define them required the use of words or phrases that themselves 

needed definition or further clarification. In other words, they are a set of basic assumptions about 

the primitive objects of mathematics – like points, straight lines, segments, and planes – accepted 

as truths without proof because they are obvious. These objects are considered primitive in the 

sense that they cannot be described in terms of simpler concepts. Or better still, these axioms are 

called postulates because they are self-evident truths that cannot be deduced from others (Serra, 

1997).  

Euclid’s theory is based on 5 axioms, 5 postulates, and 23 definitions. He called the axioms 

peculiar to geometry “postulates” and those common in both geometry and other domains 

“common notions” which included concepts such as the transitive, addition, and subtraction 

properties of equality, the reflexive property; and the notion that the whole is greater than the part. 

Briefly, nowadays, Euclid’s “common notions” and “postulates”, are both called “axioms” (Reid 

& Knipping, 2010). Euclid’s book, Elements, is a structured presentation of the mathematics of 

that time. The special historical character of Euclid’s definitions is not relevant to the present 

discussion, so I leave them apart and focus on axioms. The axioms in Figure 3—1 below are stated 

in modern terms to facilitate understanding.
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Axioms 

Common notions Postulates 

1. Things which are equal to the same thing are also 

equal to each other: 

                  If a = b 𝑎𝑛𝑑 𝑏 = 𝑐, 𝑡ℎ𝑒𝑛 𝑎 = 𝑐. 

2. If equals are added to equals, the results are equal:  

𝐼𝑓 𝑎1 = 𝑎2 𝑎𝑛𝑑 𝑏1 = 𝑏2, 𝑡ℎ𝑒𝑛 𝑎1 + 𝑏1 = 𝑎2 + 𝑏2.  

3. If equals are subtracted from equals, the remainders 

are equal. 

4. Things that coincide with each other are equal to each 

other, i.e., if a figure (angle or segment) can be moved 

to fit exactly on top of the other, then it means they 

are equal, in terms of size. 

5. The whole is greater than the part 

6. A straight line can be drawn 

between any two points. 

7. Any straight line can be 

extended indefinitely in a 

straight line. 

8. A circle can be constructed 

when a point for its centre and a 

distance for its radius are given. 

9. All right angles are congruent 

(equal). 

10. Given a point not on a given 

line, there exists a unique line 

through that point parallel to the 

given line. 

Figure 3—1. The ten Euclid’s postulates on which every other proposition is based. 

In an attempt to reduce semantic errors and thus ensure that the reader understood his work, he 

provided 23 definitions of common words, including defining a point as “that which has no 

dimension”, line as “that which has one dimension”, and plane as “that which has two dimensions”, 

and so on. These three terms and postulates laid a foundation for a systematic study of geometry. 

Thus, all proofs of theorems in geometry are based on these axioms. A theorem is defined as a 

conjecture whose veracity has already been established by a deductive proof. 

3.2 The theories underpinning this study 

According to Giancoli (2005), theory is a set of concepts offered to explain and order an observed 

phenomenon. Fox and Bayat (2007) define theory as ‘a set of interrelated propositions, concepts 

and definitions that present a systematic point of view of specifying relationships between 

variables with a view to predicting and explaining phenomena’ (p. 29). Although a theory in the 

scientific sense is different from a model, in this study the two terms are used interchangeably. 
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Briefly, the function of theory in this study is to identify the starting point of the research problem 

and provide the foundation for the conceptual framework and thus establish the focus of the study 

to make trustworthy findings. 

3.2.1 Van Hiele theory of geometric thinking 

The van Hiele theory originated from companion dissertations (that is, they worked in a similar 

area of geometry research but focusing on its different aspects) which were completed 

simultaneously at the University of Utrecht, The Netherlands, in 1957. Pierre van Hiele devoted 

his lifetime clarifying, amending, and advancing the theory after Dina died shortly after completing 

her dissertation. Their work has come to be known as the van Hiele theory, and has helped shape 

and direct much of the research investigations associated with geometry around the world.  

The roots of their theory are found in the theories of Piaget (1978). However, since the van 

Hiele dissertations and early articles were in Dutch, their findings were not widely disseminated 

outside Holland until a paper presented in 1957 by Pierre van Hiele to the mathematics education 

conference brought the theory to the attention of the mathematics education community. The 

Soviet Union (Russia) educators and psychologists found the paper to be of particular interest and 

undertook major revisions of their geometry curriculum based on this theory.  

Contrary to the claims of Piaget, Inhelder, and Szeminska’s (1960) theory, the van Hiele 

theory suggests that learners progress through levels on the basis of their experiences rather than 

age, and as such it is imperative that teachers provided experiences and tasks so that learners could 

develop along this continuum (level 1 to level 4) (Breyfogle & Lynch, 2010). Further, though 

Piaget et al.’s (1960) theory attempts to explain why learners find geometry difficult, what sets the 

van Hiele theory apart is its strength in the suggestion of phases of alleviating the problem. Piaget 

et al.’s (1960) do not go that far. The second strength of the van Hiele theory is that, unlike Piaget 

el al’s theory which applies to several areas of mathematics, it was developed specifically for 

geometry. 
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The work of the van Hieles has been presented in Fuys, Geddes, and Tischler’s (1984) 

English Translation of Selected Writings of Dina van Hiele-Geldof and Pierre M. van Hiele as part 

of the research project investigating the van Hiele theory on how people learn geometry. They and 

subsequent researchers have demonstrated that the van Hiele theory can help improve geometric 

understanding (Vojkuvkova, 2012; Pusey, 2003) and as such ‘has become the most influential 

factor in the American geometry curriculum’ (Van de Walle, Karp, & Bay-Williams, 2010, p. 

309), including studies from a South African perspective (for example, Atebe & Schäfer, 2011; de 

Villiers & Dhlamini, 2013; Luneta, 2015; Siyepu & Mtonjeni, 2014; van der Sandt, 2007; van 

Niekerk, 2010). That is, the van Hiele has had tremendous influence on geometry education reform 

in the last half of the twentieth century (Ndlovu, 2013).  

The van Hiele theory of learning geometry and de Villiers’ (1990) model for the functions 

of proof influenced my thinking about of the functions of proof in mathematics. The discussion of 

the theory is modelled around the van Hiele theory’s three aspects: characteristics of the levels; 

properties of the levels; and phases describing steps to help learners progress from one level to the 

next. This study is confined to the first two aspects; a discussion of the third aspect is beyond the 

framework of the present study. One remark is worth making, nonetheless. For learners to make 

progress from one level to the next, the learning process should move through five phases which 

are not strictly sequential: information, guided orientation, explicitation, free orientation, and 

integration.  

3.2.1.1 General characteristics of the van Hiele theory 

The general characteristics of the van Hiele theory are that it is sequential and each level builds on 

the thinking strategies developed in the previous one. The levels are hierarchical in that 

advancement to the next level is a function of mastering the thinking strategies of the preceding 

level(s). Ideas and concepts that are only implied at one level become the objects of study at 

another level and so become explicit. Each level has its own language and symbols. Therefore, 

learners working at different levels cannot understand each other’s explanations even though they 

may be describing the same shape or idea. Also important is that teaching needs to match learners’ 

thinking and language. So, if the learner were at different levels, learning cannot take place and as 



The theoretical frameworks The theories underpinning this study 

 

                                                                                                                                              
69 

a consequence, progress would be stunted. As already mentioned, progress from one level to the 

next is more dependent on and can be accelerated by instruction and experiences than age.  

3.2.1.2 The five levels of the van Hiele theory  

Pierre van Hiele, reporting on the studies that he together with his wife conducted, identified five 

levels through which learners develop their thinking in geometry. Although originally the van 

Hieles numbered the levels from 0 to 4, I adopted the American numbering scheme and labelled 

the levels from 1 to 5. Here I took the liberty to provide an overview of the Levels in the van Hiele 

(1986, pp. 39-47) theory. In this study, I focused on both general and behavioural terms of the 

levels but described Level 4 in some detail as it pertained more to this study.  

The theory describes the basic Level 1 (visualisation/recognition) as one in which learners 

recognise shapes on the basis of their physical global, holistic characteristics, like size or position, 

and therefore formulate their ideas based on visual perception (Usiskin, 1982). At this level, 

learners need to learn the vocabulary of geometric shapes by comparing the shapes to known 

prototypes to be able to identify, reproduce, and name a shape as a whole, but not in any orientation 

(Feza & Webb, 2005). At Level 2 (analysis/description), learners describe the properties of 

geometric shapes through investigations and practical methods and acquire the appropriate 

technical terms to make generalisations for classes of figures. Level 3 (informal 

deduction/ordering) entails learners making sense of definitions although these may be expressed 

in minimum terms (Lim, 1992). For example, they begin to understand what is meant by the term 

“proof” in mathematical sense. They also understand the interrelationships between the properties 

of shapes and see that new results can be obtained by making short chains of deductive arguments 

based on properties learned from concrete experiences but they may not be able to derive such 

proofs themselves (Senk, 1989). It is important that at this stage (Level 3) learners are provided 

with the opportunities to explore, feel and see, build, take shapes apart, and make observations 

about shapes they created with drawings, models, and computers (Van de Walle, Karp, & Bay-

Williams, 2007). These activities involve constructing, visualising, comparing, transforming, and 

classifying geometric figures.  
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Level 4 entails understanding of the functions of proof, definitions, axioms, and theorems 

and making longer chains of deductive arguments (proof) (de Villiers, 1997). The thinking is 

concerned with logical deduction of new results from axioms, definitions, with theorems and their 

converses, and the necessary and sufficient conditions in proofs (Crowley, 1987). For instance, on 

the strength of knowing that, “given parallel lines cut by a transversal, alternate angles are equal 

and that angles on a straight line are supplementary”, a learner can deduce that the interior angles 

of a triangle are supplementary. As already mentioned, this study was designed to focus on the 

deductive level which requires learners to be able understand and use the ideas of the Euclidean 

geometry system. More particularly important, the focus was on one aspect of Level 4 where 

learners are supposed to understand and hold appropriate understanding of the functions of proof 

in mathematics. As a consequence, this project sought to explore and understand whether Grade 

11 learners’ level of geometric thought through measurement of their understanding of the 

functions of proof. Generally, the van Hiele theory is premised on the understanding that 

successful construction of proof depends on experiences in thinking at lower levels and specifically 

an appreciation of its functions in mathematics.  

In Level 5 (abstract/rigour), the highest level of the van Hiele theory of development, 

learners manipulate geometric axioms, definitions, and theorems to compare and establish non-

Euclidean geometries. As the label of the level suggests, non-Euclidean geometry is less intuitive 

and the Euclidean system of axioms that high school learners are accustomed to, are modified. It 

is worth noting that the first four Levels are the ones mostly pertaining to school geometry and 

Level 5 is meant for tertiary level geometry courses. Non-Euclidean geometries can also be 

identified in examples like spherical, elliptical, and hyperbolic geometries.  More recently, there 

has been growing interest in transformation, fractal, turtle, analytical and vector geometries. 

3.2.1.3 Critics of the van Hiele theory  

I have cited the main ideas emphasised in the theory and illustrated how the main aspects of the 

theory is related to the research problem. Though I gave an exposition of the theory, to offer a 

balanced argument, I introduce into the discussion the main proponents and critics of the theory. 

On the one hand, the van Hiele theory is regarded as one of the best framework known for teaching 
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and learning geometry to date (Wu & Ma, 2006). Whilst van Hiele's model of geometric thinking 

is of undoubted value in geometric education, I was mindful that there have been some criticism 

associated with the application of some of its notions of levels and its hierarchical aspect. On the 

other hand, some studies that have raised questions about some of the characteristics of the theory. 

For instance, Burger and Shaughnessy (1986) argue that the theory fails to detect the discontinuity 

between levels and found instead that the levels were dynamic and of a ‘more continuous in nature 

than their discrete description would lead one to believe’ (p. 45).  

Although agreeing with the assertion of the van Hieles that each level has its own language, 

the study by Fuys, Geddes, and Tischer (1988) also found that learners’ progress was marked by 

oscillation between levels in different geometric content. Also, Gutierrez, Jaime and Fortuny 

(1991) found that students can develop more than one level at the same time. As Pegg and Davey 

(1998) argue, van Hiele’s broad propositions ‘are not as black and white as they are often portrayed 

to be’ (p. 114). Regarding the levels even van Hiele (1986) himself expresses doubt about the 

existence or testability of levels higher than the fourth and considered them as of no practical value. 

I concur with Clements and Battista (1992) suggestion that a pre-recognition level at the lower end 

of the levels (Level 0) needs to be added to accommodate learners who cannot even identify 

shapes. Mason (1998) points out that although in terms of the van Hiele theory, a learner cannot 

achieve one level of understanding without having mastered all the previous levels, research 

studies in the US and other countries have found that the levels are not sequential as claimed; some 

mathematically talented learners appear to skip levels, suggesting that they may have developed 

logical reasoning skills in ways other than through geometry instruction. 

For this study, the only drawback related to the learning phases which are meant to move 

a learner from one level to the next in the van Hiele theory. Although appreciation of the 

systematisation function of proof is supposed to be achieved at Level 3 (informal 

deduction/ordering), the need to develop an understanding of the functions of proof is only 

explicitly introduced at Level 4. I am inclined to suggest that within Level 4, two sublevels, 

“Functional understanding of proof” as well as “Argumentation” be introduced prior to 

construction of proof. This view is consistent with de Villiers and Njisane’s (1987) suggestion that 
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the theory needs refinement with regard to the levels at which deduction takes place. In addition, 

empirical research suggests that functions such as explanation, discovery, and verification can be 

meaningful to learners at Levels 1 and 2 when introduced gradually. For example, de Villiers 

(1996) points out that the function of communication pervades geometry education. De Villiers 

(2004) argues that a prolonged delay renders later introduction of proof as a meaningful activity 

even more difficult and may also make learners become accustomed to seeing proof as just a means 

to verify. Despite the criticisms of the theory, it is nonetheless supported by other experts in 

geometry education as key in understanding learner thinking. 

3.2.2 Toulmin’s argumentation theory 

For many pupils, proof is just a ritual without meaning. This view is reinforced if they are required 

to write proofs according to a certain pattern or solely with symbols. Much mathematics teaching in 

the early grades focuses on arithmetic concepts, calculations, and algorithms, and, then, as they enter 

secondary school, pupils are suddenly required to understand and write proofs, mostly in geometry. 

Substantial empirical evidence shows that this curricular pattern is true in many countries. Needed 

is a culture of argumentation in the mathematics classroom from the primary grades up all the way 

through college. (Ball, Hoyles, Jahnke, & Movshovitz-Hadar, 2002, p. 907) 

Prior to an in-depth explication of Toulmin's theory, I would like to raise and answer one question, 

which I reckon needs to be taken into account whenever Toulmin’s theory is evoked in this thesis: 

“What is the whole point about argumentation in mathematics?” Perhaps I need to be first clear 

about what argumentation itself means. Van Eemeren and Grootendors (2004) provide a definition 

that is consistent with a classroom environments envisaged in most mathematics curriculum 

reform statements:  

Argumentation is a verbal, social, and rational activity aimed at convincing a reasonable critic of the 

acceptability of a standpoint by putting forward a constellation of propositions justifying or refuting the 

proposition expressed in the standpoint. (p. 1) 

Further, argumentation theory is the study of arguments that promote informal logic and thus 

resists deductive logic which is concerned with validity and proof (Aberdein, 2009). In this study, 

in a word, argumentation is defined as the textual use of one or more elements of TAP and this 
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definition was operationalised as learners linked evidence (given information from diagram) to 

claim (an assertion in Euclidean geometry) where the statements which connected evidence to 

claims were referred to as the grounds (axioms, definitions, or theorems).  

Schwarz, Hershkowitz, and Prusak (2010) articulate the distinction between argumentation 

and explanation by stating that ‘[t]hese two definitions also demarcate argumentative from 

explanatory activities: in explanatory activities, ideas are clarified, explained, but not put into 

questions’ (p. 116). Returning to the question posed earlier, the answer is that argumentation not 

only helps in the learning of mathematics content, but also provides learners with a window into 

the practices of mathematicians and by extension into the nature of mathematics.  For instance, 

mathematical practices and content are experienced as learners make their thinking available to 

others for scrutiny, comparing, and contrasting each other’s ideas.  

When thinking about argumentation, I drew on Toulmin’s (2003) theory. In 1958 he 

referred to his theory as “The Uses of Argument”. Toulmin developed this theory for the purpose 

of explaining how argumentation takes place in the natural contexts of everyday life and for proofs 

in mathematics (Aberdein, 2009; Knipping, 2003). Worthy to note is that the model can be used 

for both developing a theoretical perspective on argument and analysing of argumentation process 

in classrooms (Simon, 2008). Specifically to note for this section of the study, ‘[t]he dominant 

theoretical framework that has been applied to argumentation by educational researchers has been 

a philosophic model developed by Stephen Toulmin’ (Nussbaum, 2011, p. 85). Toulmin (2003) 

suggests that arguments can be understood using six components comprising: claims, data, 

warrants which linked data to backings, qualifiers, and rebuttals. This model is still influential in 

the field of mathematics education (for example, Conner, 2008; Giaquinto, 2005; Krummheuer, 

1995; Lampert, Rittenhouse, & Crumbaugh, 1996; Mariotti 2006; NCTM, 2000; Pedemonte, 

2007). 

Pedemonte (2007) uses TAP as a tool to compare the structures of argumentation and proof 

and concludes that 'argumentation activity might favour the construction of a proof' (p. 25). 

However, this need not be construed as suggesting that argumentation can only be associated with 
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proof. The very fact that mathematics is a human activity, it follows that its claims are open to 

refutations as shown in some of its algebraic generalisations which had survived hundreds of years 

eventually turning out to be false (de Villiers, 1998). Notably, it is through argumentation within 

the mathematical community that mathematics often progresses.  

Argumentation theory has attracted attention from philosophers, logicians, linguists, law, 

education, psychology, sociology, political science, and many others (van Eemeren, Grootendorst, 

Johnson, Plantin, & Willard, 2013). This theory is grounded in conversational, interpersonal 

communication, but also applies to both group and written communication. In the context of 

mathematics lessons, the use of TAP has mainly concentrated on the individual learner (for 

example, Inglis & Mejia-Ramos, 2009; Knipping, 2003; Krummheuer, 1995; Pedemonte, 2007). 

For the present purpose, the assessment of learners’ written argumentation was performed from 

the perspectives of TAP. The argumentation theory involves arguments that resist deductive 

formalisation thus emphasising jurisprudential over mathematical approaches to reasoning (van 

Eemeren, Grootendorst, Johnson, Plantin, & Willard, 2013). In argumentation, interlocutors make 

claims (conclusions to be evaluated) and defended them, whereas in logic the focus is on 

conclusions derived from premises. Hence argumentation is also often equated with informal logic. 

 According to Abdullah and Mohamed (2008), learners’ inability to argue make it difficult 

for them to achieve higher levels of geometric thinking as proposed by the van Hiele model. In 

addition, argumentation need not be viewed as low level when compared to formal reasoning; they 

simply represent different tools for appraising human arguments (Aberdein, 2009). As  Hanna 

(2007) suggests, it is widely argued that argumentation and proof need to be central to the practice 

of learning school mathematics. I was interested in investigating the relationship between learners’ 

functional understanding of proof and their argumentation ability in written form as they make 

mathematically acceptable rather than logical arguments or everyday talk. 

Very few will readily contest the notion that argumentation is a central element in learning 

to construct proofs. In fact, the centrality of argumentation is exemplified by the communication 

function of proof which involves the construction of an argument to justify one’s claim to the 
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mathematics community using data (evidence). It is through argumentation that controversies 

resulting from refutations of mathematical propositions or proofs are resolved. More 

fundamentally, argumentation is a practice that is at the heart of the development of the 

mathematics discipline. Thus, another answer to the question posed earlier in the section can be 

summarised by pointing out that although proof is what sets mathematics apart from other sciences, 

the sense making activities that pave the way for the construction of a deductive proof entail 

argumentation. In the next section, I describe the constituent components of TAP. Next, I first 

critiqued the six elements in Toulmin’s (2003) argument structure, then consider the criticism 

levelled against his theory. 

3.2.2.1 The six constituent components of Toulmin’s argument pattern 

Toulmin’s argument pattern is a model that decomposes an argument into six  constitutive 

elements and describes the relationships between them: claim, data, warrant, backing, rebuttals, 

and qualifiers. The elements are further categorised into two triads. The first triad, deemed 

necessary to make a good argument, comprises claims, data, and warrants. As an example of a 

mathematical argumentation, Figure 3—2 describes an argument relating for the proposition that 

“The sum of the interior angles of a triangle equals 1800”.  

 

Figure 3—2. The diagram used to make a claim of an argument 

The adequacy of Toulmin’s model for Euclidean geometry is depicted in Figure 3—3; an 

illustration of elements of an argument and their relationships in a Euclidean geometry context. In 



The theoretical frameworks The theories underpinning this study 

 

                                                                                                                                              
76 

trying to argue their case, a learner’s argument structure could take the following form. They make 

a claim (assertion or conclusion) that “angle b = angle d”. In this case, a claim is regarded as the 

point an arguer wants an interlocutor to accept. Asked “How do they know that?”, they respond 

by saying that they observed the given data (Figure 3—2 and its labels) and saw that parallel lines 

were cut by a transversal.  

When the arguer began to link the claim with data and mention the theorem that “If parallel 

lines were cut by a transversal, then alternating angles were equal”, that showed that the data 

warranted their claim. In other words, the learner warranted their claim by coordinating evidence 

(data) with their claim. Thus, the warrant performed a linking function and is typically implicit 

and therefore often left unstated; hence the dotted ellipse in Figure 3—3. The warrant needs to be 

a universal proposition and therefore shared among members of the field of Euclidean geometry. 

When a warrant is unstated, it is the interlocutor’s responsibility to recognise the underlying 

reasoning that led to the claim in light of the data on which the claim is based. In general terms, 

both the arguer and the interlocutor were engaged in an argumentation process that used 

perspectives of a mathematics community to which they both belonged. The claims, data, and 

warrant constitute a primary or basic argument.  

Toulmin (2003) adds three more elements of an argument to supplement the primary 

elements constitute the second triad: backings, rebuttals, and qualifiers. In an argument, the level 

of confidence with which the claim is made can be indicated; using terms such as “probably”, 

“possibly”, “I think” or “perhaps”. Also, when the claim is challenged, a warrant, which is the 

logical connection between the data and the claim, is provided to support it and thus strengthen its 

validity. In an attempt to provide additional information to support the warrant, a backing is 

provided. Toulmin (2003) defines backings as the ‘other assurances, without which the warrants 

themselves would possess neither authority nor currency’ (p. 96). Put another way, a backing is 

used to justify why the warrant is a rational assumption.  

In this example (Figure 3—3), to support the warrant and answer the question “How do 

you know that your reason is correct?” The learner could defend the warrant by appealing to a 
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proposition that is commonly shared by indicating that, “The theorem states that alternating angles 

are equal”. Then, the backing is a statement derived by appealing to an axiom, definition, principle, 

or theorem to support the warrant. However, the claim or warrant could be challenged by a 

statement that showed exceptional circumstances under which it may not hold, and this sort of 

statement is referred to as a rebuttal. For example, the warrant provided by the learner could be 

challenged to show exceptional circumstances under which it did not hold true: “Does your reason 

that alternating angles are equal work on a sphere?” Then, the response from the learner may be 

that “My reason applies to plane geometry only”.  

Rebuttals are necessary to include because they make an argument more nuanced and 

complete as they demonstrate that the arguer took opposition to his or her claim (or warrant) into 

account. In addition, rebuttals force the arguer to think beyond their claim as they anticipate 

potential challenges to their claim or ground. Toulmin (2003) points out that rebuttals not only 

challenge claims but also warrants by showing exceptional circumstances under which the 

warranted conclusions were incorrect, in which case the warrants has to be set aside. It is therefore 

incumbent upon the arguer to anticipate any challenge to the generality of their statements, that is, 

to leave very little room for a statement that may collapse the structure of their argument.  

The elements of Toulmin’s (2003) scheme considered in this study are set out and put to 

use in Figure 3—3. Altogether, the structure of the argument presented here can be summarised as 

follows: (1) Given that BC is parallel to DE (D), and since parallel lines cut by a transversal make 

alternating angles equal (W), so (Q), angle b is equal to angle d (C) on account of the theorem 

stating that “If two parallel lines are intersected by a transversal, then alternate interior angles 

are equal” (B) unless the surface is hyperbolic or spherical (R). Essentially, these are the elements 

of Toulmin’s model that rationally stand against scrutiny. 
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Figure 3—3. An argument in Toulmin’s structure (Adapted from Toulmin, 2003, p. 97) 

Notwithstanding that qualifiers, backings, and rebuttals are used less often in analysis of 

argumentation in mathematics education (Inglis, Mejia-Ramos, & Simpson, 2007), only rebuttals 

in this triad were considered and thus formed part of the analysis process in this study. Returning 

to the decision to exclude qualifiers, data, and warrants, and include rebuttals, I provide three 

reasons. First, from a cognitive perspective, unlike counterclaims that introduce new ideas rather 

than challenge a warranted claim, rebuttals provide learners with opportunities to refine their ideas. 

Second, argumentations with rebuttals are of better quality than those without given that a rebuttal 

makes a substantive challenge to the warrant as it refutes its applicability (Osborne et al., 2004). 

Therefore, challenging a warranted claim engenders learners to consider alternate frameworks that 

can be construed as undermining their thoughts; this improves the quality of their argument. That 

is, I included rebuttals as part of argumentation because they provide ground for deciding whether 

an argumentation is of low or high quality.  

Data/Evidence Claim/Conclusion 

Rebuttal 

Warrant (Reason) 

Given that BC is parallel to 

DE 

Unless lines lie on 

a spherical surface 

So, angle b is equal 

to angle d 

Since the parallel lines are cut by a 

transversal, then alternating angles 

are equal 

Definition/Axiom/Theorem 

On account of the theorem that 

states that alternating angles are 

equal.  
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The third reason is informed by practical circumstances as they obtained in classroom 

practice. I did not distinguish among data, warrants, and backings since I would have been naïve 

to expect learners to begin their claims with adverbs as qualifiers, assumed to be a learner’s 

commitment based on the strength of evidence at their disposal such as “probably”, “possibly” or 

“perhaps”, without having received explicit scaffolding on mathematical argumentation. 

Scaffolding takes place when the teacher guides the learner in extending their knowledge through 

a series of small steps which they would not be independently capable of undertaking on their own 

(Cakir, 2008). 

As Young-Loveridge, Taylor, and Hawera (2005) argue, learners struggle to appreciate the 

value of reasoning and attending to the ideas of others. Hence, Mason (1996) emphasises the need 

to provide suitable instruction as a means to support learners in the acquisition of mathematical 

knowledge and practices characteristic of the mathematics community. That notwithstanding, I 

acknowledge the value of these adverbs; they reflect the tentative nature of all knowledge, 

including mathematical knowledge. As already mentioned, mathematics is a human activity and 

humans are fallible and that arguments are about uncertainty.  

Perhaps more importantly, like Osborne et al. (2004), I found that grouping all data, 

warrants, and backings as grounds circumvents the difficulty for learners to distinguish among 

these three elements since they were unlikely to have received instruction on argumentation as a 

learning strategy. As a consequence, I adapted Toulmin’s (2003) argument structure (Figure 3—

4) to understand and analyse the quality of learners’ argumentation. 
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Figure 3—4. Toulmin’s adapted model for written argumentation 

As Forman, Larreamendy-Joerns, Stein, and Brown (1998) point out, learners see no value in 

argumentation since for them there is only one correct solution strategy to every problem which 

the teacher can or should provide in mathematics (this phenomenon is depicted in Figure 3—5). 

In addition, they also point out that learners hold norms about school mathematics learning which 

contradict those practiced by mathematicians (for example, expecting that speed and accuracy are 

more important than relational understanding). Further, Osborne et al. (2004) argue that 

argumentation is a complex task and therefore learners need guidance and support to construct an 

effective argument. The situation often gets more complicated because, as Driver et al. (2000) 

point out, teachers lack the pedagogical skills in organising argumentative discourse within the 

classroom.  

In summary, Toulmin and others treat argumentation in such detail that the only significant 

modification I could make was to see data, warrants, and backings as “grounds” to circumvent the 

difficulty in differentiating among them in learners’ written argumentation. I believe that Toulmin 

offers a helpful framework that directs attention to the application of key aspects of argumentation 

Ground 

 Rebuttal 

Claim 

 Given that BC is 

parallel to DE 

 Since the parallel lines 

are cut by a 

transversal, then 

alternating angles are 

equal 

 On account of the 

theorem that states 

that alternating angles 

are equal.  

Unless lines lie on 

a spherical surface 

Angle b is equal to 

angle d 



The theoretical frameworks The theories underpinning this study 

 

                                                                                                                                              
81 

(that is, informal logic). I drew on Toulmin’s theory as a means to focus attention on exploring 

learners’ argumentation in response to a specific mathematical task. Learners’ written 

argumentation were mapped onto the adapted Toulmin’s argument structure, that is to say the TAP 

model. In this study, I was only interested in characterising learners’ argument rather than 

requiring them to engage in constructing proofs. 

3.2.2.2 Difficulties in the application of Toulmin’s framework 

Although Toulmin’s argument structure has been widely used in educational research on 

argumentation (Nussbaum, 2008), it is not allowed to pass without critics. Most studies challenged 

the applicability of Toulmin’s model to real-life arguments, mainly on the basis of the ambiguity 

surrounding the various elements in his argument structure. For instance, Erduran et al. (2004) 

investigated the application of TAP as a tool for tracing the quantity and quality of argumentation 

in some topics in science classrooms. They found ambiguity in the characterisation of data, 

warrants, and backings. I concur and decided to rather consider all reasons (data, warrants, and 

backings) given in the AFEG instrument as grounds. 

Simosi (2003) argues that this criticism is unfair in the sense that when developing his 

framework, Toulmin was interested in legal argumentation and, consequently, in the different sorts 

of propositions uttered in the course of a law case. Freeman’s (1991) critique of Toulmin’s theory 

relates to the data-warrant-backing distinction; that is, challenging the utility of the scheme. In an 

attempt to overcome the problem raised by Freeman (1991), Osborne et al.’s (2004) strategy was 

to collapse Toulmin’s (2003) data, warrants, and backings into a single category which they termed 

“grounds”. For this study, this is a fair criticism as I am not aware of any deliberate instruction on 

argumentation that attempted to make learners aware of the differences among these three 

elements. However, Freeman (1991) also contests the inclusion of rebuttals as elements of an 

argument.  It is unclear how else could the force of an argument be strengthened if conditions of 

exceptions were not appreciated.  

Another issue is the insistence by researchers on the presence of not only evidence (data) 

but also rebuttals in argumentation. This idea is rooted in Pollock’s (1987) notion of defeasibility. 
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Defeasibility refers to the insistence that, for an argument to be of high quality, it must not only 

consist of warranted claims, but must also include rebuttals to show that the argument is successful 

in withstanding new evidence brought against its warranted claims. However, as found in Clark 

and Sampson (2008), the problem is that even an integrated argument accommodating multiple 

rebuttals may have failed to consider some important constraints. In attempting to address this 

problem, Clark and Sampson (2008) constructed a definition of rebuttals as statements introducing 

conditions of exception that not only applied to claims, but also to warranted claims. Nonetheless, 

Toulmin, Rieke, and Janik (1997) regard such criticisms of the theory as an effective way of 

improving it as they express their views thus:  

Those ideas surviving this critical assessment will be good as scientific ideas. If enough reasons and 

solid arguments prove their value in a clear fashion, this will mean that their scientific basis is also 

coherent. When the critical assessment fulfills both requirements we can be satisfied: practical 

argumentation has demonstrated the rational basis of these new ideas. (p. 232) 

In light of the difficulties experienced when attempting to differentiate among the various elements 

of an argument, I used this model as a means of analysing written argumentation. I believe that 

this approach surpassed the concern just raised in the following way.  

First, I provided a frame within which arguments could be made. Second, I grouped data, 

warrants, and qualifiers into “grounds” in order to resolve the grammatical conflict inherent in the 

tool. This stance of omitting some elements is in line with Toulmin’s (2003) notion that every 

argument occurs in a context which has its own norms for argumentation. In this study rebuttals 

were included because they were critical in distinguishing an argument as being either of low or 

high quality. Rebuttals in this study were generated by the learners themselves through pre-

empting the challenges against the claim or ground; that is, taking other conflicting viewpoints 

into account. Taken as a whole, in spite of the criticisms of TAP, I found the scheme useful by 

focusing on making it functional in the context of mathematics. In this study I used it with minimal 

adaptation. The complexity of TAP notwithstanding, attention turns to the exploration of probably 

another complex matter: learners’ functional understanding of proof. 
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3.3 Learners’ functional understanding of proof 

Proof is an important part of mathematics itself, of course, and so we must discuss with our students 

the function of proof in mathematics, pointing out both its importance and its limitations. (Hanna, 

2000, p. 5) 

The concept of proof has proven to be one of the most difficult learning thresholds for high school 

learners of mathematics. Easdown (2012) suggests that this difficulty manifests itself in three 

ways: appreciating why proofs are important; the tension between verification and understanding; 

and, proof construction. The present study, which draws on the work of de Villiers (1990) in 

relation to the functions of proof, investigated the first aspect: learners’ appreciation of the 

functions of proof. This focus on learners’ functional understanding of proof was also informed 

by my personal experience, from having taught high school learners and preservice high school 

teachers for a number of years.  

Often, the terms “role”, “function” or “purpose” are conflated in mathematics education 

literature. For instance, Hanna (2000), seems to use the term “role” when referring to proof in the 

classroom and “function” for the mathematical practice as opposed to “purpose”. 

CadwalladerOlsker (2011) uses “roles” and “purpose” while de Villiers (1990; 1994; 2004) uses 

the phrase “role and function” and “purpose” interchangeably. When referring to a specific article, 

an attempt will be made to use the term used by the author(s) of the article cited. In this study, the 

term “function” is used to include the phrase “roles and purposes” or the term “role”. Apart from 

the debate over this conflation of terms and phrases, one thing is clear: de Villiers’ (1990) list 

encompasses most of the functions of proof listed by various authors (for example, Bieda, 2010; 

Hanna, 1995). Like de Villiers (1990), this study framed functional understanding of proof in the 

classroom within the context of the mathematics scholarship.  

De Villiers’ (1990) work provided ground for assessing learners’ functional understanding 

of proof in Grade 11 as he argues that lack of understanding of the functions of proof in 

mathematics impairs learner motivation to seek a proof. He exemplifies this point by reminding 

us that throughout their schooling years, learners become part of several different mathematics 
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communities and gain a variety of experiences. He points out that in that time, they may have been 

exposed to and participated in mathematical reasoning involving either informal or formal proving 

processes. But, he further points out, it is also in that time that they develop a wide variety of 

understanding about the functions of proof in mathematics, including taking empirical arguments 

as proof.  

Claiming no ranking by importance, I provide an outline of the five dimensions from which 

the functions of proof in mathematics can be approached. There are theoretical and practical 

reasons for approaching functional understanding of proof as a multidimensional construct. On the 

theoretical side, functional understanding of proof is an attitudinal construct and therefore cannot 

be measured by considering a single dimension as this, in Kern, Waters, Adler, and White’s (2015) 

words, obscures ‘potentially valuable information’ (p. 263). For instance, the generally 

nonhomogeneous nature of schools suggests that there is potential variability of the scores on the 

different dimension based on a school’s resources. On the practical side, a multidimensional 

approach could isolate schools in terms of the various dimensions to provide teachers and 

departmental officials in charge of curriculum monitoring with specific information. This 

information could then be used to take practical steps to address those aspects of functional 

understanding of proof that required attention or strengthening. The next section discusses the five 

dimensions that entail the functions of proof organised through de Villiers’ (1990) 

multidimensional model. These perspectives were used to gain insights into learners’ 

understanding of the various functions of proof which in turn provided a lens for understanding 

learners’ difficulties with proof. 

3.3.1 Proof as a means to verify the truth of a proposition 

A proof can be viewed as a tool to establish certainty of a conjecture, that is, verifying (making 

sure) that a conjecture is true for all cases. In validating the correctness of a mathematical 

proposition or simply verification, all that is required is to logically connect axioms to arrive at a 

conclusion regardless of its form or aesthetic appeal (Hanna, 2007). Verification denotes the 

removal of uncertainty by seeking, in the vocabulary of Harel and Sowder (1998), to “convince” 
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or “persuade” someone or oneself about the validity of a conjecture. Harel (2013) takes this idea 

of certainty further and claims that the ‘need for certainty is the natural human desire to know 

whether a conjecture is true—whether it is a fact’ (p. 124). Schoenfeld (1994) describes the benefit 

of reaching certainty so eloquently thus: 

One of the glorious things about proof is that it yields certainty: When you have a proof of something 

you know it has to be true, and why. That feeling of certainty is really powerful, for patterns and 

trends can be deceptive. All mathematicians have their favorite examples of patterns that look like 

they ought to hold but fail, or of conjectures that are true for the first N tries but then fail. (p. 26) 

This function of proof is most familiar to research mathematicians but regrettably missed by 

learners as they often complain that it is pointless to prove theorems that “everybody knows" or 

that have already been proven by other people in the past; a proposition is not a true until it is 

verified to be so by the construction of a proof (CadwalladerOlsker, 2011). In school mathematics, 

verification is associated with providing examples as proof that a conjecture is true; nothing more. 

However, empiricism is only an important process in merely gaining conviction to seek a proof 

rather than a proving process itself. Empiricism is defined as making an assertion about the truth 

of a conjecture after verifying several cases (Balacheff, 1988). Therefore, empiricism is defeasible; 

there are historical examples where counterexamples overturned earlier generalisations. This 

approach reflects an appreciation of the fact that empiricism and quasi-empirical investigations are 

unsafe; therefore, a proof provides what is refutably absolute guarantee (de Villiers, 1998).  

Another traditional approach in mathematics classrooms is to use some examples and then 

proceed to introduce deductive proof only as a means to verify that the conjecture being tested 

with examples is true and thus attain conviction. A conjecture is a proposition that is consistent 

with data and has not been proven to be either true or false (Uploaders, 2013). The main point here 

is to note that verification of a mathematical proposition can take two forms: empirical or 

deductive; empirical by selecting a few cases and deductive by logically connecting a set of axioms 

to produce a new result. Lakatos (1991) argues that even though proof is regarded as the ultimate 

authority on the truthfulness of a conjecture, its certainty is vulnerable since the axioms on which 

it is based continue to be open to revision by the mathematics community. The revision may either 
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have been necessitated by a recognition of human error or inconsistencies in an axiomatic system 

(Umland & Sriraman, 2014).  

Mudaly (1999) argues that research has shown that by engaging in appropriate exploratory 

activities using DGS learners can gain conviction. This, that is conviction, is the predominant 

justification method used by learners.  Notably, this function of proof is noble on its own in that 

although the proposition is already undisputed mathematical knowledge, there is value in the 

learner gaining conviction following the same creative path a mathematician would have taken 

when discovering that knowledge for the first time (Bartlo, 2013). 

De Villiers (1990) argues that if learners see proof only as a means “to make sure” through 

their own experimentation then they will have little incentive to generate any kind of logical proof. 

He points out that instead, it is this conviction that propels mathematicians to seek a 

logical explanation in the form of a formal proof to know why a conjecture must be true. This 

suggests that it is this role of proof as a means to explain that can motivate learners to seek to 

generate a proof for a conjecture. Important to consider is that learners need to be aware that the 

proofs they are learning are new to them but consists of results that are known to be true (Hanna, 

1995).  

Indeed, given the scientific nature of mathematical knowledge, for each correct conjecture 

there should be a sequence of logical transformations moving from hypothesis to conclusion (de 

Villiers, 1990). However, Davis and Hersh (1981) characterise this as a naïve view of mathematics 

in light of the fact that proof can be fallible. The history of mathematics is littered with instances 

of “theorems” whose proofs were later found to be false. Hersh’s (1979) position that ‘[w]e do not 

have absolute certainty in mathematics. We may have virtual certainty, just as in other areas of 

life. Mathematicians disagree, make mistakes and correct them’ (p. 43) captures the tentative 

nature of proofs. This problem notwithstanding, formal verifications maintain an important and 

useful function of proof in mathematics (Stylianou et al., 2015). The next section discusses the 

function of proof as a means to understand why mathematical propositions are true. 
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3.3.2 Proof as a means to explain why a proposition is true 

The explanatory function of proof pertains to the provision of insight into why a proposition is 

true. This view is supported by Harel (2013) who reserves the term “explain” for the ‘mental act 

one carries out to understand the cause for a conjecture to be true or false’ (p. 128). According to 

Hanna (2000) for a proof to explain, it needs to make use of well-known and well-understood 

properties of the mathematical objects involved. She suggests that, given that the level of 

conviction is directly related to understanding, viewing a proof as a means to explain why a 

conjecture is true deepens existing conviction. Further, she argues that a quest for explanatory 

power often results in a proof that is economical because it uses only those hypotheses that are 

absolutely necessary. Bell (1976) asserts that the ‘status of a proof would be enhanced if it gives 

insight as to why the proposition is true as opposed to just confirming that it is true’ (p. 6).  

Showing how a proposition coheres and connects with the key properties of the concepts 

involved in the proof provides explanation (Herbst, Miyakawa, & Chazan, 2012). Phrased 

differently, proof becomes an important tool for presenting mathematical knowledge as a 

discipline that comprises connected rather than isolated concepts and procedures. I concur with 

Bartlo’s (2013) assertion that understanding the explanatory function of proof helps learners to see 

the consequences of the concepts. Thus, explanation (or illumination) involves understanding 

results not from operational construction and measurement of a figure (verification), but from the 

previously acquired geometrical knowledge.  

Traditionally, proof in school mathematics is viewed as a formal way of showing the 

validity of theorems rather than a way to facilitate conceptual learning of mathematics (Nyaumwe 

& Buzuzi, 2007). Thus, reading a proof can lead to an understanding of mathematical relationships 

(Hanna, 1995). Mathematicians often value one proof over another on the basis of its explanatory 

power (CadwalladerOlsker, 2011). Explanation seems to be of greater importance than verification 

because when proof is viewed as a means to explain why a proposition is true, substantial 

improvement in learners’ attitude towards proof appears to take place (de Villiers, 1998).  
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Using DGS, inductive reasoning could result in an explanation why a conjecture is true for 

all figures in different orientations (Figure 3—5). Thus, when a conjecture is supported by 

intuition, consideration of more and more examples or DGS, the need to understand why it may 

be true is satisfied by a proof. An example of an inductive argument is provided in the next figure 

in relation to the proposition that “The sum of the angles of any triangle is 180°”. Inductive 

reasoning not only actively helps in involving learners in the build up to a conjecture, it also helps 

in the learning of proof with understanding. Here I am reminded of the ancient Chinese proverb 

that stresses the journey to understanding from behaviourist perspectives: I hear and I forget; I see 

and I remember; I do and I understand. Thus, in addition to creating opportunities for learners to 

physically engage with the objects of mathematics, inductive reasoning also demands mental 

activity to enhance understanding. 

 

Figure 3—5 Inductive reasoning in which a few cases are observed resulting in a 

generalisation 

Working as Euclid did – by deductive reasoning in which a single figure is used – an explanation 

why a conjecture is true for any figure can be produced. That is, a deductive argument which holds 

generally and does not depend on the figure is advanced in order to reject or confirm a conjecture. 

Using appropriate, previously proven truths (axioms), the conclusion constitutes a mathematical 

b 

c 

a 

58
0
 + 58

0
 + 64

0
 =180

0
 

58
0
 

58
0
 

70
0
 

Observations  

71
0
 39

0
 

26
0
 

96
0
 

37
0
 

47
0
 

134
0
 20

0
 

640 

700 + 710 + 390 =1800 

Inductive reasoning process 

20
0
 + 26

0
 + 134

0
 =180

0
 

96
0
 + 37

0
 + 47

0
 =180

0
 

Generalisation 

a + b + c = 1800 

for all triangles 

Conjecture 



The theoretical frameworks Learners’ functional understanding of proof 

 

                                                                                                                                              
89 

proof. In this study, the conjecture for which a deductive proof has been produced is referred to as 

a theorem. Having provided an example of inductive reasoning, it is essential to also exemplify 

deductive reasoning.  

Figure 3—6 is an example of a deductive argument that proves the triangle sum conjecture, 

“The sum of the angles of any triangle on a plane is 180°”. According to Serra (1997), this 

conjecture is believed to have been one of those proved by the Greek mathematician, Thales. The 

proof for this conjecture is made easy by constructing an auxiliary line (an additional line segment 

or line that is required in proving a conjecture) through one vertex, parallel to the opposite side 

using the parallel postulate of geometry (through a point not on a given line, exactly one line is 

parallel to the given line).  

 

Figure 3—6. Deductive reasoning based on a collection of theorems and a postulate to prove 

the triangle sum conjecture. 

Briefly, proof explains how the propositions are related to each other (Hemmi & Löfwall, 2010). 

In addition, explaining why a conjecture is true (proving) generally leads to new discoveries (de 

Villiers, 2002; Hanna, 2000). The next section demonstrates that the social nature of mathematical 

knowledge construction demands that ideas in a proof must be transmitted to an audience. 
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3.3.3 Proof as a means to communicate mathematical knowledge   

Mathematical proof is an essential tool for the communication of mathematical thinking. One way 

of communicating a proof of a conjecture is to write it down for publishing to the wider 

mathematics community. Communication concerns sense making and “transmission” of socially 

constructed knowledge publicly – both in discourse and in writing – that is acceptable to the 

mathematics community. That is, this function relates to the communication of the verified and 

explained mathematical knowledge to others. For instance, although the proof of Fermat’s Last 

Theorem was initially claimed by Andrew Wiles in a lecture in 1993, it eventually was accepted 

only after it was communicated in a paper by Taylor and Wiles (Herbst, Miyakawa, & Chazan, 

2012). This not only demonstrates that proofs are written and read by human beings 

(CadwalladerOlsker, 2011) but also that the communication of a proof to a wider audience 

precedes its acceptance. Thus, a defining characteristic of proof is its public nature. Essentially, 

mathematicians communicate their results through publishing them in mathematical journals; thus, 

making them accessible to the public, including the mathematics community. This social aspect of 

proof facilitates an understanding of what counts as justification in the mathematics community 

and thus communicates the nature of mathematical argument. In other words, proof is a means to 

demonstration the standards (criteria) for communication in mathematics. 

These standards do not only involve whether the argument has been communicated (using 

logical chains of deduction) but also whether learners know how to communicate it (for example, 

essay format or two-column format) (Herbst, Miyakawa, & Chazan, 2012). Accordingly, learners 

ought to be taught the standards of deductive reasoning so that they can tell when a proof has or 

has not been established (Hanna, 2000). Proof is the way mathematical results are communicated 

in the field of mathematics (Bartlo, 2013). Essentially, it is through communication of poofs that 

mathematicians advance human understanding of mathematics (Hanna, 1995). For instance, as 

CadwalladerOlsker (2011) points out, proofs can illustrate a new approach or technique which 

might be just what another mathematician needs to complete their own proof of a different 

theorem. However, it is important to note that literature provides evidence that, as in other areas 

of life, mathematicians disagree, make mistakes, and correct them. Thus, similar to other kinds of 
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knowledge, it is through communication or engagement that mathematical knowledge is found to 

be fallible. Thus, using argumentation, even learners can communicate and debate their ideas about 

relationships by using a proof. In short, proof is useful in the learning of mathematical language, 

particularly when learners discover the objects of mathematics for themselves.  

3.3.4 Proof as a means to discover a reasonable proposition 

It is exciting and enjoyable to explore, investigate and experiment. I believe that this is what teaching 

and learning is all about … What you discover - you own, - no matter how often it has been 

discovered before. When knowledge is discovered in this way, learning becomes enjoyable, 

exciting, painless and above all, meaningful. (Moodley, 2003, p. 128) 

The discovery function of proof relates to the generation of new results (theorems) through proof. 

Similar to Stylianides (2009), the phrase “new results” is used here to refer to the proof knowledge 

that learners add to their existing knowledge base as a result of constructing a proof for themselves. 

Thus, by generation or creation of new mathematics is meant what learners produce as new to 

them but may have been known to the community of mathematics scholarship. The discovery 

aspect within the concept of proof involves making conjectures and attempting to provide 

arguments to justify them. As de Villiers (1997) points out, a proof often leads to new insight 

which in turn leads to the discovery of new or additional properties of mathematical objects. De 

Villiers (1998) goes on to point out that proof may lead to the discovery of counterexamples which, 

as a consequence, necessitates a reconsideration of old proofs and the construction of new ones. 

He shows how identification of a key idea in the proof of the proposition “If you connect the 

midpoints of a kite the resulting shape is a rectangle” led to discovery of new results.  He further 

argues that the identification of the key idea that the proof depends on diagonals being 

perpendicular, results in the realisation that the proposition could then be generalised to any 

quadrilateral with perpendicular diagonals. De Villiers (2012) extends this notion by asserting that 

new branches of mathematics often have been invented by producing a deductive proof for a 

conjecture. Thus, through conjecturing, learners may see and appreciate how new pieces of 

information are logically deduced by proof and thus gain appropriate understanding of the 

discovery function of proof. Therefore, conjecturing is the pathway to discovery.  
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Although it is a rare occurrence, nothing gives greater pleasure to a teacher than when one 

of their learners produces a conjecture of their own. The conjecture need not be entirely original, 

but the excitement created in the classroom when something goes “outside” or “beyond” the 

textbook gives a much more “real” sense of genuine mathematical discovery and invention (de 

Villiers, 2012). For instance, in studying Euler’s rule for polyhedral, Lakatos (cited in Herbst, 

Miyakawa, and Chazan, 2012) illustrates how proving a naïve conjecture can lead to formulation 

of a more precise conjecture and its precise concepts (expressed in the naïve conjecture). However, 

noteworthy is that within mathematics, conjectures continue to be regarded as such, until a 

deductive proof is provided. This tentative nature of propositions should encourage learners to 

seek proofs of conjectures so as to put the status of their truth beyond doubt. Doing so adds to the 

growing volume of mathematical axioms that help to construct new proof by organising these 

already proven mathematical knowledge into a system. 

3.3.5 Proof as a means to systematise mathematical knowledge 

Systematisation of mathematical knowledge involves the organisation of results previously 

thought to be unrelated into a deductive system of axioms, major concepts (definitions) and 

theorems (de Villiers, 1990). In this case, de Villiers’ (1990) central thesis is that proof serves as 

a means of systematisation in the field of mathematics in that it (1) helps with the identification 

and weeding out of logical or mathematical inconsistencies elsewhere in that structure, (2) unifies 

and simplifies mathematical theories, (3) provides a useful global perspective on a topic by 

exposing the underlying axiomatic structure (4) helps application both within and outside 

mathematics, and (5) leads to alternate deductive systems that are more elegant or powerful than 

existing ones. Bartlo (2013) points out that whereas (1), (2), (4), and (5) are addressed in proof 

literature, the concept of “global perspective” (3) may have been underappreciated in literature. 

Knuth (2002) surmises that, based on his experience both as a high school teacher and as a 

teacher educator, many learners view the many theorems that they are asked to prove as essentially 

independent of one another rather than as related by the underlying axiomatic system. In brief, I 

follow Wu’s (1996) explanation that an axiomatic system relates to structure built by ‘starting with 
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undefined terms and simple propositions (axioms), then deducing complex ones step by step with 

the use of logic’ (p. 230). He points out that this is the best system mankind has ever devised to 

ascertain the attainment of truth. This systematisation function is important in that it organises 

individual propositions into a coherent system and exposes the underlying logical relationships 

between these propositions. Thus, previously disparate results are put together into a unified whole 

(Weber, 2010) which may lead to uncovering of arguments that may be fallacious, circular or 

incomplete (de Villiers, 1990). In this case, a proof provides knowledge about how a theorem, 

definition or proposition relates to the rest of the known geometry or mathematics. That is, proof 

exposes the underlying logical relationships between propositions in ways no amount of empirical 

testing could (de Villiers, 2002). Thus, proof serves as a means to organise propositions into a 

deductive system. A classic example of the use of proof for systematisation is Euclid's Elements. 

He collected many theorems which were first proven by earlier Greek mathematicians and 

organised them in such a way that they followed from definitions, axioms, and postulates 

(CadwalladerOlsker, 2011). Proof is therefore an indispensable tool for bringing together various 

known results into a deductive system of axioms. The next section interrogates the key concepts 

framing this study.  

3.4 Factors influencing functional understanding of proof 

In A-level studies proof … means going through a sequence of symbolic manipulations that many 

students find hard to follow, only to arrive at a result which they are quite prepared to accept. Why 

is it necessary to prove something that is known to be true? (Tall, 1989, p. 2) 

Learners’ efforts to construct proof have been characterised as proceeding from empirical 

arguments to deductive arguments (de Villiers & Heideman, 2014). A range of factors influences 

proof construction (Chin & Lin, 2009). Harel and Sowder (2007) provide “comprehensive 

perspectives on proof” in an effort to understand learners’ difficulties with proof and the roots of 

the difficulties.  They outline three categories of factors that influence proof teaching and learning: 

mathematical and historical-epistemological; cognitive; and, instructional-socio-cultural. This 

study investigated the instructional-socio-cultural factor. I separated this factor into instructional 

and sociocultural aspects given that these two factors influence learners’ understanding of proof 
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differently. The crucial point in this study, of course, is to understand and explain why Presh N 

held the beliefs she held about the functions of proof in mathematics.  

Several scholars made their points in this regard. I addressed each of these ideas, namely, 

two-column proof ritual, instruction, teacher, textbook, culture, semantic contamination, empirical 

argument, dynamic geometry software, and language of instruction, in turns. I provided 

suggestions from literature to address some of the identified sources of distorted functional 

understanding of proof. For instance, as described by de Villiers (2004), dynamic geometry 

software could be used to develop learners’ understanding of the functions of proof not merely as 

a means to verify, but also as a means to explain, communicate, discover, and systematise. Thus, 

the availability of dynamic software has given a new impetus for the learning of Euclidean 

geometry.  

Although the factors are certainly not exhaustive, they are important as I hoped that they 

will bring structure in future inquiries on the proof phenomenon. This hope made the identification 

of these factors a key step towards providing insight into the current state of learners’ 

understanding of the functions of proof. In the next section, I provided an overview of what 

research and practice say about potential sources of Presh N’s belief regarding the functions that 

proof performs in mathematics. 

3.4.1 Two-column proof ritual 

Learners tend to be convinced that a proof is true and correct based on its form or appearance 

rather than examining its validity themselves (Harel & Sowder, 2007). That, is, they consider a 

logically correct deductive argument to be a proof if and only if it is in accordance with a specific 

mathematical convention; two-column format. Hence, learners tend to believe that this format for 

geometric proofs is at least as important as its content (Schoenfeld, 1989). Shibli (1932) and Herbst 

(2002) suggest that the 1913 second edition geometry textbook by Arthur Schultze and Frank 

Sevenoak is the first to express proofs in two parallel columns of statements and reasons divided 

by a vertical line. That is, the layout is such that the left hand column consists of statements relating 

to the current proposition, and the right hand column for references to theorems being assumed as 
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already known and established truths (Bell, 1976). Shibli (1932) argues that the two-column 

custom has brought  improvement in the geometry text. He describes it as not only a work of art 

and beauty, but also an excellent instrument of instruction in the mathematics classroom.  

Knuth, Choppin, and Bieda’s (2009) conducted research with 400 learners about their 

understanding of the functions of proof. None of them mentioned that proof is a means to explain. 

In addition, they found that if some given diagram consists of facts that are visually obvious to 

them, learners often see no need to go beyond their observations in proving a proposition as true. 

Hence, de Villiers (1997) proposes that there need to be less focus on this form of proof in 

geometry since this can be done with algebra. This presentation of proof (that is, two-column) 

represents a development in both style and form, from essay type to two-column style. According 

to Herbst (2002), this format enables both teachers and learners to examine each other’s 

explanation of their deductive written work and facilitates the marking and correction of learners’ 

written work and thus bringing stability to the study of geometry in schools. Hence it has remained 

the default mode of proving in textbooks and a customary tool of engaging learners in proving in 

school mathematics (Weiss, Herbst, & Chen, 2009). This format is so prevalent that when proofs 

are written in narrative format – which uses conversational but logical arguments – learners tend 

to be unsure of their validity (McCrone & Martin, 2009).  

However, if emphasis were that classroom activities must be reflective of the practices of 

mathematicians, two column proofs distort mathematics because no mathematician has ever 

worked that way (Lockhart, 2002). Wu (1996) concurs and points out that the format is different 

from how contemporary mathematicians write proof. Most notably, proofs presented in the two-

column format have been found to promote understanding of the function of proof merely as a 

means to verify the truth of an already known proposition (Ersoz, 2009). In addition, Sowder and 

Harel (2003) argue that this format influences the development of authoritarian proof schemes 

wherein a proposition is accepted as true solely on the basis of authority, namely, teacher or 

textbook.  
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Apart from the fact that the format is foreign to the mathematical practice, it has ‘brought 

to the fore the logical aspects of a proof at the expense of the substantive function of proof in 

knowledge construction’ (Herbst, 2002, p. 307). This statement need not be construed as an 

indictment on logic in proof; while proof is central to mathematics, logic is central to deductive 

proof. However, the point is that attention given to the logic of a proof may take away conceptual 

understanding and limit or distort understanding of the construction of knowledge in the 

mathematics discipline. I concur with Schoenfeld’ (1988) view that advocates for flexibility in the 

way a deductive proof can be written given that ‘what matters to the mathematical community is 

the argument's coherence and correctness’ (p. 11).  

Further, Herbst and Brach (2006) found that geometry learners were accustomed to tasks 

that required proving a proposition presented in given-prove format than in proving a general 

proposition such as ‘a line through the midpoints of two sides of a triangle is parallel to the third 

side and half its length’ (p. 84). In my extensive exposure to assessment instruments, I can confirm 

that such tasks are also found in tests and examinations papers in South African high schools (for 

example, Department of Basic Education [DBE], 2015). In these assessments, the given-prove 

format is followed by the two-column format that “guides” learners’ proving activity. In addition, 

from my experience as a Grade 12 Paper 2 (which included geometry proof questions), there is a 

rigid memorandum in terms of which learners’ answers had to be marked. Hence, McCrone and 

Martin (2009) are of the view that geometry learners conceive the function of proof to be the 

application of recently learned theorems rather than a mathematical process for establishing the 

truth of propositions. Thus, the approach to proof as merely involving the absorption  of what the 

teacher required reflects distorted understanding of the functions of proof in mathematics.  

According to Lortie (2002), the reason why two-column proofs are so prevalent is because 

of what he terms “apprenticeship of observation”. Lortie (1975) coined this phrase to refer to the 

phenomenon whereby preservice teachers study for the profession after having spent more than 

twelve years as learners observing and evaluating the practices of their teachers in action. 

Specifically, he points out that the average learner spends 13,000 hours in direct contact with 

classroom teachers by the time he or she finishes high school (Lortie, 2002). Chazan (1993) argues 
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that simply presenting a two-column proof along with a diagram not only obscures the generality 

of the proposition but also gives learners no indication that the argument presented is not an 

argument for a single case. To a limited extent, Wu (1996) provides a reconciliatory argument to 

the use of two-column proof scheme. He attributes the criticism of two-column proof ritual to its 

abuse by previous generations. While seen as giving learners a distorted view of the functions of 

proof, the two-column scheme is an admirable educational tool and he advises that the format is 

only supposed to be used to introduce proof for at most approximately a month. This, he asserts, 

allows learners to make a smooth transition to writing a proof in a narrative format as it happens 

in the mathematical practice. Although I think that this assertion is sensible, it does not seem to 

have been taken serious by curriculum designers and curriculum delivery monitors; not so even by 

the CAPS designers. Next, I turn to instruction factor. 

3.4.2 Instruction 

At this stage, it is sobering to define the term “instruction” as referring to at least three distinct 

categories of activities—what teachers do with the concept of proof, what learners do to learn it, 

and the pedagogical approach that teachers employ to mediate this concept. Although I believe 

that there is no one best teaching method in mathematics, van Hiele (1999) argues that learners’ 

instructional experiences, depending on the instructional method, could either foster or impede the 

development of learners’ geometric thought. Specifically, Atebe and Schäfer (2011) found that 

knowledge transmission methods offers learners scant opportunities to learn geometry.  

Van Putten, Howie, and Stols (2010) undertook a study involving preservice teachers 

enrolled for mathematics methods’ courses at the University of Pretoria, South Africa, who all 

passed Grade 12 mathematics at 50% or more when Euclidean geometry is compulsory in the FET 

phase. These presevice teachers followed a six-month Euclidean geometry module. They found 

that preservice teachers expressed the confusion and frustration arising from being taught by 

teachers, at school level, who did not appear to have either mastered the subject or developed a 

positive attitude towards it. Nonetheless, it is expected that having successfully completed the 

mathematics course they would have attained Level 4 of the van Hiele theory (van Putten, Howie, 

& Stols, 2010). However, despite that this group of preservice teachers studied Euclidean geometry 
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at school, they did not even attain 50% on Level 1 and that attainment of Levels 2 and 3 is even 

rarer in the test results.   

Once in the teaching field setting, very few will contest the conclusion that these teachers 

will either avoid teaching Euclidean proof or encourage memorisation of proofs rather engage 

learners in what Edwards (1997) refers to as “exploring the territory before proof” (that is, 

exploration, conjecturing, and argumentation). Giving learners predetermined propositions to 

prove reinforces the predisposition that the proposition must be true; so they merely need to verify. 

Sadly, this is bound to be of little real interest to the learners – the undesirable consequence of 

such instructional practice is the development of negative attitudes towards Euclidean geometry 

in particular and mathematics in general.   

Generally, presentation of proof to learners as text and diagrams to memorise left them 

incapacitated to appreciate its value in mathematics. This perspective need not be construed as 

proposing that memorisation, achieved through drill and practice, is frowned upon in my view of 

learning. I view memorisation of important concepts of mathematics as a practice that allows 

learners to acquire basic skills that enabled fast, accurate, and effortless processing of information 

which frees up working memory for more complex aspects of proof. In this study, in contrast to 

Western perspectives on learning, memorisation is viewed as the route to understanding. My view 

of learning draws on perspectives of learning from both Western and Asian cultures. This view 

rests on the premise that learning is the acquisition of knowledge through primarily the teacher or 

text and also through learner’s own effort. From this view, learning does not preclude 

memorisation with a view to gain understanding.  

I concur with Tavakol and Dennick (2011) who view memorisation not as an end in itself 

but as a path to understanding. Thus, the memorisation of propositions—not their proofs—is 

helpful because it engenders understanding. It is in this light that I take the position that instruction 

designed in terms of van Hiele’s five sequential phases of learning (inquiry/information, directed 

orientation, explicitation, free orientation, and integration) promote learners’ acquisition of Level 

4 partly through memorisation. The theory suggests that learners have attained Level 4 if they 
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understood the functions of deduction (why proof is important in mathematics) and the roles of 

postulates, and theorems such that proofs could be done meaningfully. 

Van Hiele proposes characteristics of these levels which, like Usiskin (1982), I labelled: 

fixed sequence; adjacency; distinction; separation; and, attainment. The last characteristic 

emanates from van Hiele’s suggestion that cognitive development in geometry can be accelerated 

by instruction. They provide detailed explanations of how instruction can move a learner from one 

level to the next. However, it is not the intent of this study to examine these phases – Hoffer  (1981) 

provides a detailed account. That said, I argue that learners’ understanding of proof must be a 

feature of the information phase because it is in this phase that learners can be acquainted with the 

significance or importance of proof by emphasising its functions in mathematics. Instruction 

designed along such van Hiele lines would not only improve learners' ability to write formal 

deductive proofs but also help to develop learners’ understanding of the function of proof in 

mathematics and thus provide them with insight into the activities of mathematicians. For learners 

to see the functions of proof and to experience the work of mathematicians, they must see how 

mathematicians use proof as a way of thinking, exploring, and of coming to understand 

(Schoenfeld, 1994). 

A controversial issue in the field of mathematics education is whether classroom 

instruction should promote more instrumental (traditional or knowledge transmision method) or 

relational understanding (reform-based methods). It is my view that certain topics in mathematics 

need to be taught more effectively with one method or another – teaching methods were guided by 

context. Put another way, teaching should not be exclusively “instrumental” or “relational”. 

Consistent with this view is the National Mathematics Advisory Panel’s (2008) instruction that the 

widely held belief among teachers in high schools that one method is better than another is not 

supported by research. However, whichever method is used in the classroom, the argument in this 

project is that learners need to be exposed to experiences that help learners to develop appropriate 

conceptions of the functions of proof in mathematics. Thus, I am of the view that teaching for 

functional understanding of proof needs to be an integral part of whichever method of teaching 

Euclidean geometry.  



The theoretical frameworks Factors influencing functional understanding of proof 

 

                                                                                                                                              
100 

In the mathematical practice, proving is a process of learning and discovering new 

mathematics. First, a conjecture would be made based on observation of a number of cases. If 

available, dynamic geometry software could be an aid in hastening conjecturing. Next, an attempt 

would be made to explain the conjecture through proof. But, this is not the end of the story in the 

mathematician’s work on proof. The created proof needs to be communicated to other 

mathematicians before final acceptance of the conjecture as a mathematical truth. For learners to 

experience these functions of proof, they must make and test their own conjectures. Of course, the 

created conjectures and proofs would not necessarily be new mathematics; but, to the learners they 

would be. 

3.4.3 Teacher 

Research studies have shown that the failure to teach proof to learners appears to be universal 

(Balacheff, 1991; Chazan, 1993). An investigation by Senk (1985) found that only 30% of the 

learners who were taught proof in the US achieved 75% success in proving. However, it was found 

that even these “successful” learners were not always aware of its functions. It is therefore not 

surprising that teachers tend to encourage memorisation of proof. These learners reproduce the 

ready-made proofs because the teacher demands them for passing tests and examinations. Thus, 

rather than introducing learners to the practices of mathematicians and enable learners to 

experience the construction of mathematical knowledge themselves through experimentation, 

measurement, and conjecturing, the teacher reinforces the notion that the sole function of proof is 

verification. So, the teacher has so much power that the other four goals of teaching proof are 

(perhaps) deliberately overlooked. 

The claim that functional understanding of proof is influenced by the status that teachers 

occupied in society can be substantiated by personal experience. Indeed teachers seem to wield 

more power over their learners than parents do. On one particular day, my seven-year old son came 

home from school and changed into her civil clothes as per usual. He is always adamant that his 

shirt should be buttoned up to the last button and would come back home in the same state 

regardless of how hot it has been on any school day. No matter how my wife and I would plead 

with him to at least loosen the collar button, he would not budge. One day he came back with the 
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collar button lose. Enquiring why he answered it is because “Mrs. P Reddy (teacher’s pseudonym) 

asked me to unbutton it”.  

This phenomenon of seeing teachers’ ideas as uncontestable is further depicted in the 

cartoon (Figure 3—7) featuring the eponymous pair of boys Max and Moritz (Busch, 1962). Like 

Coll, France, and Taylor (2005), and Stephenson and Warwick (2002), I view cartoons as visual 

tools which combined exaggeratedly drawn characters with dialogues to either depict 

misconceptions or to stimulate alternative views with minimal use of written language.  

 

Figure 3—7.  Busch’s (1962) cartoon illustrating the power teachers wield in the classroom. 

Although I am also an educator, the fact that he saw me differently (a mere parent) suggested that 

teachers were viewed as experts in various things and thus wielded more power over learners than 

did parents. In fact, Inglis and Mejia-Ramos (2009) point out that appeal to expert opinion is 

prevalent in everyday situations. Further, Harel and Sowder (1998) found that a teacher presents a 

proof to convince learners of the truth of a mathematical proposition rather than allowing learners 

to investigate its truth themselves. They noted during their teaching experiments that most 

learners’ questions were about “how” rather than “why.” Such classrooms deprive learners of the 

insights into understanding that it is not the voice of the teacher that decided on the truth of a 
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mathematical proposition but the mathematics itself. Also, teachers’ choice of task and their 

questions and comments during class affect the development of learners’ functional understanding 

of proof in mathematics (Peressini, Borko, Romagnano, Knuth, & Willis, 2004). Thus, teachers 

have a more central role in shaping learners’ functional understanding of proof than any other 

curriculum material as they assign tasks to learners to fulfill their didactic contract in the classroom 

(Tarr, Chávez, Reys, & Reys, 2006). 

According to CadwalladerOlsker (2011), there are two suggestions as to why learners do 

not question or exhibit curiosity about why a proposition is true. The first suggestion is that learners 

believe that the teacher knew what they were doing. The second suggestion is that learners lack 

the intellectual curiosity about why a proposition is true because the curriculum emphasises the 

truth rather than the reasons for the truth (Harel & Sowder, 1998). In this respect, given learners’ 

lack of experiences with the concept of formal proof in the classroom, reliance on the teacher 

becomes natural. They assume that if a theorem is verified by an authority, there is no value in 

reading and understanding it for themselves. Harel and Sowder (1998) found that the first and most 

common manifestation of this behaviour is when learners insisted on being told the procedure to 

work on a proof rather than participate in its construction. Thus, they saw themselves as mere 

consumers of mathematical knowledge. As a result, they do not believe that they have the ability, 

or right, to prove a conjecture (Plotz, Froneman, & Nieuwoudt, 2012).  

Thus, it is reasonable to suggest that opportunities that enable learners to make 

observations, conjectures, and construct deductive proof are to be encouraged in Euclidean 

geometry classes. Learners needed to become accustomed to the expectation of explaining why an 

observation is true. The function of proof as explanation is supported in the CAPS document which 

advocates that while teachers address the “how” part in proof activities, emphasis must be placed 

on the “why” part, as well. In light of these propositions, making conjectures needs to be the 

essential feature in proving tasks in order to allow learners to experience mathematics like 

mathematicians. 



The theoretical frameworks Factors influencing functional understanding of proof 

 

                                                                                                                                              
103 

3.4.4 Textbook 

The design of the curriculum in any particular country influence and shape learners’ functional 

understanding of proof (Healy & Hoyles, 1999). Learners also experience the curriculum through 

the textbooks. Stylianides (2009) suggests that mathematics textbooks can play an important role 

in providing learners with opportunities to engage in the proof concept. In fact, given that teachers 

were hesitant to create their own teaching materials, the reliance on existing textbooks is pervasive 

in schools (Makgato & Ramaligela, 2012). Yet, little is known about what is in learners’ 

mathematics textbooks in terms of the functions of proof in mathematics (Kajander & Lovric, 

2009). That is, while textbooks enable learners to do proofs, they have not engaged into detail 

about what proof is or about its functions in mathematics. 

In most instances, both the teacher and learner source activities such as exercises, 

assignments, homework, or tests directly from the textbook. Thus, textbooks play a prominent role 

in the development of learners’ functional understanding of proof. However, most textbooks do 

not develop the concept of proof adequately but instead delve into proof from the beginning of the 

deductive proof education. Several new textbooks that proclaim to be CAPS-compliant and 

promoting “discovery”. However, upon closer examination of the tasks in these textbooks, I found 

that they are of the “prove that” type and thus evoked the sense of seeing proof as merely 

verification of the truth of propositions by testing several cases. More specifically, there is little 

evidence to suggest that key curriculum materials such as textbooks reflected the emphasis placed 

on explanatory power of proof in school mathematics. I am of the view that this observation could 

have triggered de Villiers’ (1998) suggestion that the word “explain” rather than “prove” should 

be used to emphasise the explanatory function as the intended function of proof. 

However, an exception is the textbook entitled Everything Mathematics: Grade 11 

(Version 1 CAPS) that seems to create activities that trigger conjecturing in learners to reflect the 

ideals professed in the CAPS. In this textbook, conjecturing is ‘thought of as the mathematicians 

[sic] way of saying “I believe that this is true, but I have no proof yet”’ (Uploaders, 2013, p. 102). 

As already mentioned, conjecturing is ideal as it tends to reveal the functions of proof in 

mathematics as learners verify their claims, explain their ideas, argue (communication and 
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discovery functions), and connect various theorems (systematisation). Nevertheless, in general, 

textbooks seem to promote the verification function of proof by using the verb “prove” rather than 

“explain”, an approach that does not seem to embody one of the Specific Aims advocated in CAPS. 

According to Hadas et al.’s (2000) analysis of teaching materials, these five functions of proof 

highlighted in this study often remain hidden in textbooks. 

In South Africa, the education department planned to achieve "universal coverage", the 

official term for providing a textbook to each learner in every subject so that the intended 

curriculum as specified in the CAPS document could be experienced by learners through the 

recommended textbook (Motshekga, 2015). Thus, the understanding of the functions of proof that 

learners develop are mediated by the textbooks as they study proof, answer geometry homework 

questions or proof projects. Fujita, Jones, and Kunimune (2009) performed an analysis of 

textbooks commonly used for teaching about proof in geometry in Japanese secondary schools. 

They found that though deductive reasoning is prominent, proof and proving omitted to illustrate 

convincingly the difference between inductive arguments and deductive arguments. They also 

argue that an improvement in textbook design needs to involve providing effective instructional 

activities so that learners can gain fuller appreciation of the generality of a proof in mathematics. 

Generality of proof refers to the fact that a proof includes an entire class of mathematical objects 

or situations without exception (Harel & Sowder, 2007; Ottens, Gilbertson, Males, & Clark, 2014).  

To engage in the practice of mathematicians, textbooks need to expose learners to 

opportunities designed to show that, as Lakatos (1991) argues, patterns can forerun the generation 

of conjectures, which in turn can give rise to the development of proofs. Therefore, treating proof 

in school mathematics in isolation from the functions that it perform in mathematics not only leads 

to distorted functional understanding of proof, but also deprives learners the opportunity to 

experience proof like mathematicians. In addition, distorted understanding of the functions of 

proof, once formed, will shape learners’ behaviour in ways that have detrimental consequences in 

subsequent proving effort and performance (Schoenfeld, 1992). Since there is a general 

acknowledgement that textbooks remain a fundamental learning resource for learners, I suggest 

that more attention needs to be paid to the ways in which textbooks present the concept of proof 
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in Euclidean geometry. However, the attainment of this ideal is difficult given that most textbook 

developers write for profit-making purposes rather than for promoting specific pedagogical 

approaches for a given school subject (Stray, 1994). 

3.4.5 Culture in the South African society 

As a human activity, learning mathematics is influenced by the culture of the society in which it 

is practiced. That understanding is influenced by culture in different societies has long been a 

proposition entertained by many social scientists (for example, Hofstede, 1986; Triandis, 1994). 

However, there is no consensus even among social scientists on the meaning of the term culture 

(Felbrich, Kaiser, & Schmotz, 2012). For instance, House, Hanges, Javidan, Dorfman, and Gupta 

(2004) define culture as ‘shared motives, values, beliefs, identities, and interpretations or meanings 

of significant events that result from common experiences of members of collectives that are 

transmitted across generations’ (p. 15). Hofstede (1980) define culture as ‘the collective 

programming of the mind which distinguishes members of one human group from another’ (p. 

25). However, I found Schein’s (2004) definition of culture more comprehensive and relevant for 

this study. He defines culture as: 

A pattern of shared basic assumptions that the group learned as it solved its problems of external adaptation 

and internal integration, that has worked well enough to be considered valid, and, therefore, to be taught to new 

members as the correct way to perceive, think and feel in relation to those problems (p. 17). 

In considering the culture that is prevalent in South Africa, I drew on two of Hofstede’s (1986) 

basic four-dimensional model of cultural differences among societies of over 50 countries: 

collectivism–individualism; power distance; masculinity-femininity; and, uncertainty avoidance. 

Hofstede (2011) defines dimension as ‘an aspect of a culture that can be measured relative to other 

cultures’ (p. 7). For a more complete review of all the dimensions the reader is referred to Hofstede 

(1980). I found his collectivism–individualism and the power distance dimensions with reference 

to teacher-learner interaction useful in explaining how culture affected Presh N’s beliefs about the 

functions of proof in mathematics.  
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On the one hand, an individualistic culture is that characterised by practices that tend to 

view lack of success in mathematics as a consequence of a misfit between learning environment 

and learner; for example, too demanding tasks. In addition, learners from individualistic countries 

tend to conceive of proving as a process that entails engaging in social interactions (for example, 

conjecturing, investigations, measuring or experimentation) in the classroom, and thus taking a 

dynamic view of mathematics (Felbrich, Kaiser, & Schmotz, 2012). The CAPS supports this view 

by discouraging silence in the geometry classrooms. Engaging in argumentation creates 

opportunities for learners to gain an appreciation of the functions of proof. As a consequence, 

learners’ ability to refute a claim on mathematical grounds rather than by appealing to the authority 

of the teacher or the textbook to resolve disagreements at all times, is valued.  

On the other hand, a collectivistic culture is found in societies that attribute failure to 

individual characteristics of the learner; for example, a lack of effort. In collectivist cultures, where 

conformity and obedience to group norms are important attributes, it is believed that a learner’s 

behaviour is a consequence of his or her adherence to group expectations. As a consequence, 

collectivist cultures tends to be less tolerance for deviation from the norm (Lawson, 2015). In 

addition, teachers expect learners to be proficient in the application of rules and formulae in 

assessments such as final examinations, a practice that predisposed them to endorse of a static 

view on mathematics (Felbrich, Kaiser, & Schmotz, 2012). Also, from the perspectives of the 

power distance dimension, in collectivistic cultures, parents teach their children obedience where 

older people are both respected and feared leading to teacher-dominated classrooms (Hofstede, 

2011). 

Hofstede’s (1986) hypothesises that a country’s culture influence the preferred modes of 

learning. Felbrich, Kaiser, and Schmotz (2012) examined the results of primary mathematics 

school teachers in 15 countries to determine their views about the nature of mathematics. This 

investigation included South Africa’s neighbouring country, Botswana, which he classified as a 

collectivistic country. By extension, very few will contest the view that as a Southern African 

country with a relatively large African majority, South Africa is collectivistically oriented in its 

culture. Support for this claim came from the fact that the education system in South Africa places 
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a high premium on examinations. The annual practice of releasing Grade 12 examinations results 

in a ceremonial style followed by the publishing of names of those learners who passed attested to 

my claim. The (perhaps) unintended consequence of this practice is that learners who transgress 

the norm by failing develop feelings of shame, some to the extent of attempting or committing 

suicide. Further, if my reasoning is accepted, learners in the South African education system – as 

pointed out by Felbrich, Kaiser, and Schmotz (2012) – seem to engage in the learning process 

because of an obligation towards their teachers and families who in turn were obliged to grant 

them the necessary support. Having outlined the practices prevalent in the South African education 

system, I think that it is reasonable to suggest that South Africa is an archetype of a country that 

projects a collectivist culture. 

3.4.6 Semantic contamination 

Pimm (1987) introduces the notion of “semantic contamination” to refer to the interference of 

natural language in the learning of mathematics. In this study, I treated the term semantic 

contamination as referring to the notion of associating arguments outside mathematical objects 

with mathematical proof. I think it is reasonable to suggest that most people are familiar with a 

commentary after a football match that could be stated along this line “Christiano Ronaldo has 

proven once again that he is the best footballer in the world by winning the World Player of the 

Year contest”. In this case, the use of “proven” is meant to suggest that he was put on “trial” and 

found to have passed the “test” (Reid & Knipping, 2010).  

Like de Villiers (1998), I equally argue that the different meanings attached to the 

word proof lead to misunderstanding in the mathematics classroom. In everyday life, people think 

of “proof” to be synonymous with conviction. As Gopnik, Glymour, Sobel, Schulz, Kushnir, & 

Danks (2004) note, learners are so adept at proving in nonmathematical contexts, yet they are so 

poor at proving in Euclidean geometry. Bretscher (2003) concurs and eloquently summarises this 

phenomenon clearer as she points out that “proof” in everyday life tends to take the form of 

evidence used to back up a claim. In addition, in an examination of the mathematics classroom 

from a linguistic point of view, Mejía-Ramos and Inglis (2011) found that the technical meaning 
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of the two main linguistic ways of representing the concept of proof, “proof” and “prove” are not 

distinguished from their everyday life use in natural language such as ordinary English; they evoke 

different meanings in different people.  

While acknowledging that proving is a complex and cognitively demanding process, 

Carpenter, Franke, and Levi (2003) argue that semantic contamination is one of the sources of 

naïve (verificationist) understanding of the function of proof. As already stated, in mathematics, 

the term “proof” refers to a product of a sequence of logical arguments resulting from a conjecture. 

Clearly, this technical notion of proof is distinct from its everyday meaning. As a consequence, it 

is reasonable to suggest that one of the reasons learners experience difficulties with the concept of 

proof is that the learner and their teacher could be using the terms “proof” and “prove” from 

different points of view. I share Tall’s (1989) belief that an adequate attention to the concept of 

“mathematical proof” is rarely, if ever, satisfactorily considered in the classroom. In an attempt to 

provide a guidance on this issue, Epp (2003) stresses that mathematical language needs to be 

unambiguous – which in my view is a consequence of the nature of language – with each 

grammatical construct having exactly one meaning. To alleviate the confusion caused by “prove”, 

de Villiers (1998) suggests an interesting introductory statement for the teacher following 

verification process: 

We now know this result to be true from our extensive experimental investigation. Let us however 

now see if we can EXPLAIN WHY it is true in terms of other well-known geometric results, in 

other words, how it is a logical consequence of these other results. (p. 388)  

Clearly, everyday usage of “proof”, “prove”, and “proving” differ considerably from its technical 

meaning in the mathematics community. Thus, there is a need to “sanitise” the meaning of these 

concepts, particularly “proof” to indicate that it refers to deductive arguments, and deductive 

arguments alone. The influence of natural language on the learning of proof underscores the point 

that learning also needs to involve acquisition of the mathematics register to enable learners to 

expand their cognitive model of the everyday life terms that assume different meaning in 

mathematics. 
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3.4.7 Empirical argument 

As mentioned previously, an empirical argument is an argument that purports to show the truth of 

a mathematical claim by considering a few selected cases. Empirical arguments relied on either 

evidence from examples (sometimes just a single case) or direct measurements of quantities and 

numerical computations or perceptions to justify the generality of a proposition (Harel & Sowder, 

2007). Appreciating the functions of proof is made especially more difficult ‘when these proofs 

are of a visually obvious character or can easily be established empirically’ (Gonobolin, 1975, p. 

61). However, it needed to be mentioned that this belief persisted despite Popper’s (1988) attempts 

to demystify it by pointing out that ‘no rule can ever guarantee that a generalisation inferred from 

true observations however repeated is true’ (p. 25).  

I take exception to Harel’s (2013) argument that seems to find fault in his learners when 

they suggest that conviction of the truth of a mathematical proposition is based on empirical 

evidence rather than on deductive proof. Specifically, he claims that ‘students viewed their actions 

of verifying an assertion in a finite number of cases as sufficient for removing their doubts about 

the truth of the assertion’ (p. 125). Considering this claim in light of his other conclusion that ‘[a] 

person is said to have proved an assertion if the person has produced an argument that convinced 

him or her that the assertion is true. Such an argument is called proof’ (p. 124). I am ultimately 

convinced that his argument is false and his learners were correct. In support of my argument, de 

Villiers (1998) concludes that conviction is ‘probably far more frequently a prerequisite for the 

finding of a proof’ (p. 375).  Similarly, Bell (1976) stated that ‘Conviction is normally reached by 

quite other means than that of following a logical proof’ (p. 24). A similar sentiment is echoed by 

Schoenfeld (1994) who points out that mathematicians try to produce a proof of a conjecture to 

show that it works once they suspect that it is true. De Villiers (1998) goes on to clarify why such 

an observation is flawed: 

For what other, weird and obscure reasons, would we then sometimes spend months or years to 

prove certain conjectures, if we weren’t already convinced of their truth? (p. 18)  
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Stylianides (2009) argues that learners’ engagement in empirical arguments is likely to reinforce 

the common conception that an empirical argument can be used to “prove” the generality of a 

proposition. This notion of proof as something constituted by empirical arguments is further 

perpetuated by the fact that ‘all real-life proofs are to some degree informal’ (Hersh, 1993, p. 391). 

According to CadwalladerOlsker (2011), primary school mathematics also contributes to the 

treatment of empirical arguments as proof. She points out that in primary mathematics, the weight 

of several examples might be enough to “prove” that the sum of two even numbers is always even. 

He hypothesises that when these same learners engage in high school geometry, they may try to 

use similar empirical evidence to prove propositions. 

Proof is something quite distinct and as such evidence alone may support a conjecture but 

would not be sufficient to be constitute a proof (Bretscher, 2003). However, learners develop 

conflicting understanding within the sciences. For instance, whereas deductive proof is the focus 

in the mathematics classroom, outside Euclidean proof space, including in the physical and life 

sciences classrooms, learners freely make generalisations based on a limited number of 

experiences. Thus, the inability to understand the epistemological distinction between proving in 

mathematics and proving in science contributes to learners’ weak appreciation of the power of 

deductive proof. Hence, learners often require further empirical evidence even after having proved 

a proposition in Euclidean geometry (Conner & Kittleson, 2009).  

Learners’ empirically-based responses in deductive proof tasks indicate a weakness or lack 

of understanding of the functions of proof in mathematics (Stanovich, 2005). However, Mariotti 

(2006) remarks that an experimental investigation or a task that require learners to prove the 

validity of a given proposition do not seem to be as effective in triggering the production of 

arguments and justifications when compared to the task requiring the production of a conjecture. 

In an attempt to suggest an approach that bridges the gap between empirical arguments and 

deductive arguments, Stylianides (2009) describes how learners could follow a mathematician’s 

practice that culminated in a deductive proof. He suggests an activity that involves exploring 

mathematical relationships to identify and arrange significant facts into meaningful patterns and 

structure, and using these to formulate conjectures. Then, the conjectures are to be tested against 
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new evidence leading to their revision to formulate new conjectures that are consistent with the 

evidence, and providing empirical arguments to verify the viability of the conjectures. However, I 

think that he overlooked the inherent difficulties that arise from implementation of this approach 

in the classroom. From my point of view, there is a hard wall between actual classroom practice 

of mathematics and the practice of mathematicians and to break this wall requires a concerted 

effort from a variety of stakeholders, most of all from politicians. In addition, to produce a 

conjecture is a task that does not fit the didactical contract13 in school mathematics wherein 

propositions are presented and illustrated by the teacher, absorbed and applied afterwards by the 

learner in tests and examinations (Douek, 2009). 

Empirical arguments, frequently the only type of proof comprehensible to learners, may be 

mathematically valid for establishing refutation by counterexample but invalid if few cases were 

used for a proof (Hanna, et al., 2009). Hence, “proof” through providing empirical evidence rather 

than through validation, though prevalent, only limits learners’ understanding of the functions of 

proof to that of verification or justification. The term “validation” is used to refer to the 

construction of reasons to accept a specific proposition, within an accepted framework shaped by 

accepted rules and other previously accepted propositions (Balacheff, 2010).  

That empirical explorations provide limited insights into the functions of proof is based on 

the premise that they provide inconclusive evidence by verifying truth of propositions only for a 

proper subset of all the cases covered by a deductive proof (Stylianides & Stylianides, 2009). That 

is, unlike deductive proof which combines logical propositions, there may be an exception or 

counterexample that negates a conjecture; in actual fact, empirical arguments lead to conjectures 

because it is virtually impossible to consider every case. Having said that, Harel and Sowder 

(1998), Healy and Hoyles (2000), Knuth (2002), and Knuth et al. (2009) demonstrated that naïve 

empiricism is widespread and pervasive way of reasoning among high school learners of 

mathematics. Balacheff (1988) uses the phrase “naïve empiricism” to describe the practice of 

                                                 
13 Brousseau (1997) refers to the teacher’s routine instructional obligation as a didactical contract. 
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asserting the truth of a proposition after verifying several cases; that is, using empirical arguments 

as mathematical proof. 

My own personal experience as a Grade 12 examination marker also attest to this argument. 

I suggest that naïve empiricism is encouraged in examinations. For instance, in the South African 

context, the high school question papers is often sequenced such that immediately after proving a 

theorem, subsequent questions require learners to verify the validity of that theorem empirically 

by considering specific cases. This instance is exemplified in Figure 3—8. The sample question is 

an adjusted version of the National Senior Certificate14 (NSC) examination (mathematics paper 2) 

prepared and written in the February/March supplementary examinations period.  The question 

reflects a practice which is akin to seeking conviction about the truth of a proposition by 

considering particular cases. This practice predominates mathematics classrooms in high schools. 

For instance, Schoenfeld (1989) and Fischbein and Kedem (1982) found that learners tend to seek 

conviction by empirical means although they had just performed a deductive proof of a conjecture. 

This behaviour reflects learners’ failure to appreciate that proof provides a firm intellectual 

foundation which meant that they did not have to appeal to outside experience.   

 

 

 

                                                 
14 In the context of the South African education system, the National Senior Certificate (NSC), commonly referred 

to as “matric”, is a national, standardised examination, which represents the final exit qualification at the end of high 

school (Grade 12). 
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QUESTION 10 

10.1    In the diagram, 0 is the centre of the 

circle and P is a point on the 

circumference of the circle. Arc AB 

subtends ∠AOB at the centre of the 

circle and ∠APB at the circumference 

of the circle. 

10.2 In the diagram, O is the centre of the circle 

and P, Q, S and R are points on the circle. 

PQ = QS and ∠QRS = y. The tangent at P 

meets SQ produced at T. OQ intersects PS 

at A. 

 

Use the diagram to prove the theorem that 

states that ∠AOB = 2∠APB. 

 

10.2.1 Give a reason why ∠P2  = y. 

10.2.2 Prove that PQ bisects ∠TPS . 

10.2.3 Determine ∠POQ in terms of y. 

Figure 3—8. An example of examination questions sequenced to written in the 

February/March supplementary examinations (pp. 12-13) 

This phenomenon can be traced back to instances where learners are generally provided with 

“riders” as extension of classroom instruction to provide practice and thus, at least unwittingly, 

consolidate conviction in the truth of theorems.  Learners need to understand that an empirical 

argument merely confirms the validity of a conjecture and serves as a spark to understanding why 

the conjecture is true. This is not to be construed as an indictment on empiricism; it must be 

stressed that empirical evidence is a necessary but not an altogether sufficient step towards the 



The theoretical frameworks Factors influencing functional understanding of proof 

 

                                                                                                                                              
114 

development of a proof. The point is, one other way in which the seeing proof solely as a means 

to verify develops is through believing that empirical arguments are mathematical proof. 

3.4.8 Dynamic geometry software 

[I]f a student does become convinced … by just observing the computer screen without once 

measuring the angles himself or herself with a protractor, then I would be inclined to cite this as an 

example of a catastrophic failure in our education of the young. (Wu, 1996, p. 230) 

Mathematics is not immune to the effect of rapidly developing technology in society. De Villiers 

(2012) points out that DGS provide a wealth of opportunities to develop learners’ understanding 

of functions of proof other than just the traditional function of verification. He asserts that the most 

powerful ways to promote appropriate functional understanding of proof entails providing learners 

with an environment to make conjectures by themselves and encouraging their systematical 

exploration. Mariotti (2007) concurs. Also, in an attempt to mitigate the effect of empirical 

arguments on proof, Harel and Sowder (2007) point out that learners need to be given opportunities 

to engage in conjecturing. Like Stylianides (2009), they assert that conjectures are important 

because they are propositions that call for further examination, including verification which is a 

precursor to a proof. However, as I indicated earlier, creating such environments in the context of 

an education system that placed a premium on examinations is a challenge that could not be 

addressed unless there is political will to do so. Nonetheless the suggestion of conjecturing 

ventilated here might be useful at a theoretical level.  

De Villiers (2012) and Mariotti (2007) point out that the introduction of technology in the 

form of experimentation with computers and calculators has the potential to promote this ideal 

through infinite inductive trials using DGS. Thus, with the advent of DGS packages, the efforts to 

address the problem of transitioning from empirical experiments to deductive reasoning might be 

enhanced (Harel & Sowder, 2007; Kondratieva, 2011). However, there are various DGS material, 

but only a few can handle proofs: GeoGebra, Cabri Geometer, Cinderella, and Geometrix (the list 

is not exhaustive though). For instance, Narboux (2004) points out that Coq is one DGS found to 

be a proof assistant on the ground that it allows the learner to conjecture using a base of known 

lemmas leading to the development and validation of the proof. A proof assistant refers to a 
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software that can be used by a learner in the classroom to interactively build a formal proof such 

that if it is accepted by the Coq proof assistant, the teacher can have a very high level of confidence 

in the learner’s proof (Narboux, 2004).  

De Villiers (2012) suggests that it is far more meaningful to introduce proof 

within a dynamic geometry context not as a means to verify, but rather  as a  means to explain, 

systematise, and discover before engaging deductive proof. This assertion is supported by Hanna 

(2000) who claims that DGS has the potential to encourage both exploration and proof, because it 

makes hypothesising and testing conjectures easy. However, de Villiers (2012) cautions that while 

DGS is beneficial to proving activities because it provides accuracy, 

immediate visual feedback, and the ability to check many cases in a short space of time, it tends 

to make learners see less need for a deductive proof. Also, Laborde (2000) found that the 

opportunity offered by DGS to “see” properties of geometric figures ‘so easily might reduce or 

even kill any need for proof and thus any learning of how to develop a proof’ (p. 151). Similarly, 

Magajna (2011) argues that although they promote conceptual understanding, DGSs by their 

nature favour the empirical aspect of geometry. With respect to measurement, practices that 

emphasise the importance of quasi-empirical testing, that is, “accurate” construction of some 

examples, fail to motivate learners to search for a proof (de Villiers, 1998). In my view, increasing 

learners’ access to DGS is one aspect that needs attention to assist in the learning of proof.  

Motivated by a desire to create experiences that encourage the discovery of theorems by 

the zig-zag method rather than merely expecting his learners to accept proofs on blind faith and to 

improve learners’ attitude towards mathematics and proof, Hogan (1999) developed a paper-and-

pencil Euclidean geometry unit for deductive reasoning in a Grade 8 classroom. He found that it 

is feasible to create an environment for learners to experience deductive reasoning while following 

the prescribed curriculum. Although the activities could be done in pencil and paper contexts, for 

schools with access to technological equipment such as tablets, laptops, smartboards, and desktop 

computers, Sketchpad could be used to economically make our learners gain insights into the 

nature of mathematics and thus mitigate time constraints embedded in the curriculum. In addition, 

Gillis (2005) found that learners who use DGS made more relevant conjectures, fewer false 
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conjectures, and the level of conviction in their conjectures is higher when compared to those 

working in a static geometry environment. De Villiers (2012) developed and evaluated, by 

analysing actual mathematical practice, Sketchpad activities to assist instruction to focus on the 

functions of proof where the traditional verification function is not always the sole focus of 

Euclidean geometry proof instruction.  

The sentiments by de Villiers (2012) and Magajna (2011) demonstrate that inductive 

arguments (verification using limited cases) have a meaningful role to play in the proving process, 

particularly in formulating conjectures. However, the problem arises when learners use inductive 

arguments as proof of proposition that in fact require deductive arguments. Hence, Stylianides 

(2009) suggests that empirical arguments need to be avoided precisely for this problem. 

Nonetheless, I disagree with Stylianides’ (2009) notion on the basis that the verification function 

of proof has utility if it were used as a precursor to conjecturing. I am mindful of the fact that to 

act on this suggestion is indeed difficult, but at the same time I think that identification of the 

factors influencing learners’ functional understanding of proof is one good step towards a solution. 

3.4.9 Language of instruction different from home language 

Children and adults use language as a means to learn to organise their experiences and thoughts. 

Personal experiences in the mathematics classroom suggests that language is a key factor for 

conceptual understanding of proof and proving. Specifically, in the South African context, Feza 

and Webb (2005) found that language proficiency is a barrier to the attainment of understanding 

geometry in learners whose home language is not English. Schäfer (2010) suggests that a 

mathematics register in the indigenous African languages is needed for effective teaching and 

learning of mathematical concepts to happen. Poor performance of South African learners in the 

Trends in Mathematics and Science Study (TIMMS) is largely ascribed to the problem that the 

majority of African learners in townships and rural schools in socioeconomically and educationally 

disadvantaged areas (over 80% of all learners) study science and mathematics through English 

which is their second or even third or fourth language (Probyn, 2006; Schäfer, 2010). The problem 

is further intensified by the fact that a mathematical register in any of these languages is absent. 
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Hence, none of these languages is used as a language of learning and instruction (LoLT) in 

intermediate, senior, and FET classes.  

A mathematics register entails terms, words or expressions for communicating about 

mathematics. LoLT refers to the language medium wherein learning and teaching including 

assessment take place while indigenous African language refers to the other “official” languages 

namely, IsiNdebele, isiXhosa, Sepedi, Sesotho, Siswati, Tshivenda and Xitsonga. However, two 

other official languages English and Afrikaans are dominant mediums of instruction in the school 

system as a whole (Department of Basic Education [DBE], 2011). They are languages of a small 

but powerful elite section of the population who argue that teaching and learning in English gives 

learners and teachers greater access to scientific and technological knowledge (Halai & Clarkson, 

2016). I am mindful of the fact that this so-called official list is not exhaustive in that it left out 

languages of the other indigenous peoples, the Kois and the Sans. However, the vast majority of 

learners chose to learn in English rather than Afrikaans (which evolved from the Dutch spoken by 

early Cape settlers).  

Returning to the discussion on language influence in learning the functions of proof in 

mathematics, Taylor and von Fintel (2016) point out that the extent to which language factors 

contribute to low scholastic performance is unclear given that language disadvantages were so 

strongly correlated with other confounding factors such as historical disadvantages, deficiencies 

in the curriculum, resources, teaching approaches, socioeconomic status, geography, and the 

quality of both school management and teachers. They asserted that clear empirical evidence about 

the role of second language instruction on learning outcomes is insufficient for African countries 

including South Africa. Also, to assess learners’ difficulties with understanding the functions of 

proof could be semantic rather than conceptual.  

In summary, although in my view developing mathematics registers in indigenous 

languages could go a long way in remedying the problem, I am also mindful of the fact that other 

factors compound the problem further. Therefore, discussion of challenges associated with 

developing mathematical registers in indigenous languages, complexities of learning and teaching 
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mathematics in linguistically diverse classrooms, and the influence of LoLT in understanding of 

proof is beyond the framework of this study and thus are not discussed further here. More 

specifically, on the basis of the contradictory findings highlighted here I decided not to investigate 

with a view to explain language as a factor that accounted for learners’ functional understanding 

of proof. 

3.5 The conceptual framework for this study 

3.5.1 Conceptual framework in a theoretical framework 

In this study, part of the critical engagement of previous literature on functions of proof and the 

concept of argumentation was meant to explore a theoretical framework (the two theories and 

various concepts) in order to develop a conceptual framework. In deciding to present both the 

theoretical and conceptual frameworks for this study, I was guided by Kumar’s (2005) view that a 

conceptual framework stems from a theoretical framework and concentrated, usually, on one 

aspect of that theoretical framework which formed the basis of a research problem. However, 

according to Miles and Huberman (1994), it seems that no consensus exists in literature on the 

difference between a theoretical framework and a conceptual framework (for example, Leshem & 

Trafford, 2007; MacMillan & Schumacher, 2010; Maxwell, 2013; Miles & Huberman, 1994; 

Sinclair, 2007).  

The lack of consensus notwithstanding, Rocco and Plakhotnik (2009) makes a distinction 

between a theoretical framework and conceptual framework and argues that using these terms 

interchangeably in research causes confusion. Imenda (2014) and Miles and Huberman (1994) 

support this stance and venture to make a distinction between these two constructs. Imenda (2014) 

defines a theoretical framework as ‘the application of a theory, or a set of concepts drawn from 

one and the same theory, to offer an explanation of an event, or shed some light on a particular 

phenomenon or research problem’ (p. 189). Miles and Huberman define a conceptual framework 

as a visual or written product, one that ‘explains, either graphically or in narrative form, the main 

things to be studied—the key factors, concepts, or variables – and the presumed relationships 

among them’ (p. 18). Kitchel and Ball (2014) go further to point out that though a conceptual 
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framework or model indicates that a relationship exists, it lacks the rationale behind the 

relationship. In this study, whereas a theoretical framework is overarching and has its genesis in 

theories and constructs that have already been tested and thus generally accepted in literature, a 

conceptual framework emerges from a theoretical framework and is more specific in identifying 

relationships among concepts from the theories already identified in this study.  

However, in view of the design of this study, there is a potential stumbling block suggested 

by Ngulube, Mathipa, and Gumbo (2014). These researchers point out that the use of research 

frameworks is not yet fully developed in mixed methods studies. In contrast, Grant and Osanloo 

(2014) believe that both theoretical and conceptual frameworks can be used in mixed methods 

designs. Taking the latter advice, I went ahead and constructed a conceptual framework on the 

basis of two theoretical frameworks. These frameworks are manifested to some degree in the 

methodology, arguments about what might happen, research questions, data collection and 

analysis, and synthesis of the findings (Bernard, 2013; Silverman, 2013; Royse, 2008).  

3.5.2 Connecting theories, research problem and questions 

Whereas a theoretical framework was used to ground the study in the van Hiele and Toulmin’s 

theories, the purpose of constructing a conceptual framework was to diagrammatically connect the 

relevant concepts guiding this study in the theories and constructs underpinning this study. It is 

worth noting that this conceptual framework which situates the study in relevant literature and 

illustrates the network of relationships among the concepts with a figure, was constructed rather 

than found ready-made in literature waiting to be utilised. I schematically present the 

multidimensional conceptual framework specific to this study in Figure 3—9. For example, the 

thicker arrows represent the notion that the collectivist culture is hypothesised as stronger than the 

textbook or teacher factors at accounting for the reasons why the learner held the beliefs she held 

about the functions of proof. In addition, the conceptual framework addressed both the qualitative 

and quantitative strands of this study and suggested interactions and relationships among the 

variables embedded in the problem investigated in this study.  
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Figure 3—9. The multidimensional framework of this study 

According to Silverman (2013), concepts are essential in a research problem and need to be 

described as clearly specified ideas deriving from a particular theory. Thus, this section focuses on 

demonstrating the connection among the theories and constructs underpinning this study and their 

role in contributing to finding answers to the three problems highlighted in this study. The first 

problem relates to the contention that learners encounter difficulties with proof, yet very little 

insight on their functional understanding of proof has been provided despite acknowledgement in 

literature that this understanding makes the learning of proof a meaningful activity. The second 

problem is that very little is known about whether an association between learners’ argumentation 

quality and functional understanding of proof despite the recognition that argumentation is 

embedded in proof. Third and final is that while knowing learners’ functional understanding of 

proof is important, more important is knowing the factors that either promote or inhibit the 

acquisition of informed functional understanding of proof.  

Guided by the theoretical and empirical literature previously reviewed and the presented 

multidimensional framework of the study, the following main research question has been 
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established to frame the design of the study, data collection, and data analyses: “How can 

meaningful learning of proof construction take place?” This question was broken into four sub-

questions: 

3.5.3 Quantitative phase questions 

3.5.3.1 What functional understanding of proof do Grade 11 learners hold? 

3.5.3.2 How is the relationship (if any) between learners’ quality of argumentation and their 

functional understanding of proof? 

3.5.4 Qualitative phase questions 

3.5.4.1 Why does Presh N hold informed beliefs about the functions of proof? 

3.5.4.2 How is the interaction among the three constructs (that is, functional understanding of 

proof, argumentation ability, and factors influencing functional understanding? 

For the purpose of this study, factors such as two-column proof, ability, proof-type, language, 

teaching methods, and DGS were not part of the investigation; some required examination of 

learners’ written work and others required observation of experimentation and conjecturing, 

aspects that were beyond the scope of this study. Thus, I would have been unreasonable to posit 

that current instructional practices were not advocating the aims in CAPS without empirical 

evidence collected from classroom observations. That said, data were collected and analysed and 

inconsistencies were explained in light of the theoretical framework.  

This study was guided by the view that a theoretical framework dwells on established and 

tested theories that underpin the findings of numerous investigations on how variables in a 

phenomenon are interrelated while a conceptual framework is viewed a model that indicate or 

describe the relationships among specific variables identified in the study. One way of making 

sense of this differences is to consider the scale on which the frameworks differed in this study. 

By way of example, the broader framework that provided direction is the van Hiele theory, learners 

at high schools were expected to understand the functions of proof in mathematics. In brief, 

theoretical perspectives of the theory informed the conceptual framework. Therefore, the 
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conceptual framework contains my idea on how the research problem identified in the theoretical 

framework was explored. This is what differentiates a conceptual framework from a theoretical 

framework. 

3.6 Chapter summary 

The purpose of this chapter was to present the theoretical and conceptual frameworks guiding this 

study. I highlighted how the terms theoretical framework and conceptual framework, used 

interchangeably in some instances, are viewed as different in this study. I showed how the van 

Hiele and Toulmin’s theories together with the relevant concepts underpinning the investigation 

on learners’ functional understanding of proof and argumentation ability in mathematics were 

connected by providing a conceptual framework. Literature reviewed here pointed to the fact that 

a variety of factors may work in tandem to produce a litany of understanding of proof functions. 

The key idea in this chapter was that for learners to begin to improve their performance in 

Euclidean geometry, efforts must not be spared  to capture the concepts that foreground the 

development of proof: functional understanding and argumentation. The next chapter describes 

the research design, methods, and methodology, including the various samples of schools and 

learners and the justification for the instruments used to collect and analyse data.
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Chapter 4  

Research methodology 

4.0 Introduction 

The previous chapter discussed theoretical literature on functions of proof and argumentation and 

presented a conceptual framework to depict the relationships among the different variables 

considered as useful background for the research investigation that is described in the next 

chapters. The purpose of this chapter is describe in detail how the research questions posed in the 

previous chapter and introduced in Chapter 1 was answered. The outline of this chapter is as 

follows: methodological framework, distinction between methods and methodology, 

methodological approaches in previous studies on functional understanding of proof, 

methodological framework, paradigm, design, strategies, sampling procedure, research 

instruments and interview schedule, data collection procedures, data analysis procedures, data 

integration, and rigour and limitations.  

4.1 Methods versus methodology 

Traditionally, there are three research methodologies: quantitative, qualitative, and mixed-methods 

(Cohen, Manion, & Morrison, 2011). In this study I describe the mixed methods as it relates to 

issues of design and strategy used, the research instruments used for sampling the data, procedures 

used to collect data. This also entails probing into how the data collected were analysed to answer 

the research questions. Although oftentimes, the terms method and methodology are used 

interchangeably in literature, I argue that there is value in making clear the distinction between 

these terms. In both terms, the root word is “method” but in methodology, the Greek suffix logos 

is added to mean “reason”. As Clough and Nutbrown (2012) note, the value of not viewing 

methods and methodology as synonyms lies in the fact that one will be able to provide a 

justification to questions such as “Why carry out a questionnaire survey?”, “Why semistructured 

interviews of 1 rather than 200 participants?” than merely list data collection and analysis 
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techniques. According to Clough and Nutbrown (2012), methods are the ingredients of research 

while methodology relates to the theoretical reasons marshaled to justify using a particular recipe.  

According to Guba and Lincoln (1994), methodology is a systematic analysis of methods 

and principles employed to obtain data in order to find answers to a problem. To clarify further, 

methodology involves a consideration of the principles such as ethical issues in data collection and 

analysis methods. However, I endorse the distinction made by Bogdan and Biklen (2007) who 

construe “methodology” as the general logic and theoretical perspective of a study, whereas 

“methods” only refers to specific strategies, procedures, and techniques of analysing and 

interpreting data. In light of this distinction, Long (2014) points out that methodology is a 

significant component of research not only because it embodies philosophical assumptions, but 

also because it guides the selection of research methods. 

In this study, methods are the sampling procedures, data collection and analyses techniques 

such as cluster and purposive sampling, the LFUP and AFEG survey questionnaires, the 

semistructured interview, and the proof-related task. On the other hand, the methodology denotes 

the strategies I used to plan these data collection techniques (methods) in terms of how I combined 

them so as to best attain answers to the research questions. In an admittedly simplistic sense, 

methods are techniques while methodology is the rationale for the choice of these techniques out 

of various others, including mentioning their limitations.  

4.2 Methodological approaches and methods in studies on learners’ functional 

understanding of proof  

In this section I review methodological approaches and instruments used to investigate functional 

understanding of proof in previous studies. In setting the stage, four examples of studies sufficed 

in view of the limited space available for this project. However, each of the contentions provided 

in this section needs not necessarily ‘disregard the fact that research methodologies are merely 

tools that are designed to aid our understanding of the world’ (Onwuegbuzie & Leech, 2005, p. 

377).  
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Earlier studies on functional understanding of proof employed primarily quantitative 

research. One such study was carried out nationwide by Healy and Hoyles (1998). They surveyed 

14-15 year-olds in order to, among other objectives, ascertain these learners’ functional 

understanding of proof, in England and Wales. However, though the study was wide (2 459 

participants), it lacked depth. In my view, this is an example that demonstrates that qualitative or 

quantitative research alone is insufficient to better understand a problem (Creswell, 2013). Hence, 

from a methodological point of view, mixed method research hold the potential for 

methodologically sound investigations of functional understanding of proof. Therefore, there is no 

point in the thinking that ‘[t]he one precludes the other just as surely as belief in a round world 

precludes belief in a flat one’ (Guba, 1987, p. 31).   

Whereas the use of qualitative methods in educational research has been regarded as a 

valuable approach in studying human beings’ behaviour and thinking and the experiences they 

encounter, arguments against the use of quantitative approaches to study human thinking abound 

(McMillan & Schumacher, 2010). One such argument is that findings emanating from these studies 

have not led to significant advances in theoretical and applied knowledge within education because 

statistics cannot explain social behaviour and thinking that must be measured indirectly (Rennie, 

1998). However, the argument that quantitative research cannot explain phenomena is not entirely 

correct.  

As Muijs (2004) points out, a well-designed quantitative study will not only investigate 

what happened but will also provide an explanation of why it happened. For instance, in this study, 

regression analysis whose correlation coefficients were calculated and equated to validity 

coefficients, was not only employed to validate the LFUP instrument but also to explain the 

concept of functions of proof more widely. For this study, learners’ behaviour and thinking were 

measured indirectly because, as Muijs (2004) points out, relatively few phenomena (for example, 

attitudes and beliefs) in education actually occur in quantitative form. Policymakers often require 

data that determines the causes of problems, one of the things quantitative approaches such as 

experimental designs are suitable to determine (McMillan & Schumacher, 2010).  
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One other recent study that utilised quantitative methods to partly investigate change in 

learners’ functional understanding of proof which provided insightful reflections on the proof 

phenomenon was reported by Grigoriadou (2012). In particular, she used an experiment (pre-test-

post-test comparison) to plan an intervention based on the van Hiele test with a sample of 20 

learners in a Greek high school. She found that placing emphasis on making clear to learners the 

distinction between empirical and deductive arguments at the beginning of the lessons cycle, can 

help them to understand better the concept of mathematical proof and to produce proofs. Perhaps 

the most interesting methodological process is found in Atebe (2008). Using both purposive and 

stratified sampling techniques, he undertook a study to explore and explicate the van Hiele levels 

of selected high school learners in Nigerian and South African schools. He used interview method 

to identify the levels of geometric thinking as pen and paper tests cannot provide sufficient 

information about their levels. To conclude this section, apart from Atebe (2008) and Healy and 

Hoyles (1998), it is difficult to locate studies on functional understanding of proof which employed 

an approach other than quantitative or mixed methods research. 

The summary of these studies indicated that both dated and recent research on functional 

understanding of proof seemed to focus more on quantitative than on qualitative methodology. A 

benefit of engaging in quantitative research is that it seems to attract the attention of policymakers 

because of the potential of not only obtaining statistically significant results but also those that are 

of practical significance. This attention may lead to implementation of recommendations emerging 

from these studies. The challenge therefore is on those mathematics education researchers working 

within the qualitative framework to explicate solutions to the issues raised here. The 

methodological position adopted in this study is informed by the belief that research questions 

should determine whether in a single study quantitative and/or qualitative methods are suitable to 

provide an understanding of the world. 

4.3 Methodological framework 

In educational research different methods or sets of methods are utilised to perform specific 

functions at different stages of the process research process (McMillan & Schumacher, 2010). 
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However, finding the appropriate sequence of methods requires delicate design steps; methods are 

combined with each other and designed to perform this function optimally. This overall 

arrangement is referred to as the methodological framework. According to Guba and Lincoln 

(1994), a methodological framework is helpful in sequencing methods. They define a 

methodological framework as a distinctive summary of the approach to the research in such a way 

that the purpose of the research, data collection procedures, data analyses, and the relationships 

between the data can be understood.  

The framework in Figure 4—1 depicts the three constructs on which data were collected; 

learners’ functional understanding of proof, learners’ argumentation ability, and factors affecting 

functional understanding of proof. The overall interest was to explore the interactions among these 

three constructs. Worthy to mention is that the examination of learners’ functional understanding 

of proof, their argumentation ability, as well as the interaction among the three were inherently 

exploratory given that the nature of these three constructs was relatively unknown at the beginning 

of the study. The study was also correlational in its exploration of the relationship between 

learners’ functional understanding of proof and their argumentation ability. 

As already mentioned, the analysis of the interaction of the findings was exploratory 

because the nature of this interaction was unknown at the start of this investigation. Also, the 

analysis of the findings was interpretive given that the purpose of the analysis of this interaction 

was to explore the meaning of the findings (Caracelli & Greene, 1993). Thus, the analysis of the 

interaction of the findings involves making a personal assessment as to a description that fits the 

situation (Creswell, 2014). The personal nature of this assessment means that I brought my own 

perspective to the interpretation of the three findings in this study. Therefore, the interpretation 

that I made of the interaction will most probably differ from the interpretation that the reader makes 

(Creswell, 2014).  

In the exploration of learners’ functional understanding of proof and their argumentation 

ability, the LFUP scale and the AFEG questionnaire were respectively utilised. The factors 
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influencing Presh N’s functional understanding of proof were explored using an Interview 

Schedule and a proof-related task. 

 

Figure 4—1. The methodological framework 

4.4 Research paradigm 

I believe philosophically that the best approach to educational research is a pragmatic one because, 

as Tashakkori and Teddlie (2003) point out, this approach is underpinned by the notion that the 

value of research lies in its effectiveness in finding solutions to research problems utilising 

multiple methods rather than searching for some ”truth”. Specifically, in this mixed methods study, 

the pragmatist paradigm is based on the premise of utilising procedures that “work” (Howe, 1988) 

in finding answers to the research questions. Subscribing to the pragmatic paradigm means that I 

moved between the positivistic and constructivist ways of viewing the world. Pragmatism is 

defined as a ‘deconstructive paradigm that advocates the use of mixed methods in research, 

sidesteps the contentious issues of truth and reality’ (Feilzer, 2010, p. 3). 

Learners’ functional understanding of 

proof 

 LFUP Scale (n=135) 

Learners’ argumentation 

ability  

 AFEG (n=135) 

Factors affecting Presh N’s functional 

understanding of proof 

 Semistructured interview (n=1) 

 Proof-related task (n=1) 
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4.5 Research design 

The present study followed a mixed methods sequential explanatory design in which the 

quantitative phase was used to select the single interview participant, Presh N. In McMillan and 

Schumacher’s (2010) words, ‘[a] research design describes the procedures for conducting the 

study, including when, from whom, and under what conditions the data will be obtained’ (p. 20). 

The main purpose of a research design is to help to avoid instances in which the evidence does not 

address the initial research questions (Yin, 2014). According to Creswell (2014), a design is 

explanatory in the sense that the initial quantitative data results are explained further with the 

qualitative data and sequential in the sense that the initial quantitative phase is followed by the 

qualitative phase. Creswell and Plano Clark (2011) categorise this design as “QUANT-qual” in 

which the quantitative component of a study is not only conducted first but is also dominant while 

the qualitative findings are considered secondary. Various terms are used to refer to this design. 

Creswell (2014) calls it “explanatory sequential design” and Creswell and Plano Clark (2011) refer 

to it as a “two-phase model”. However, whichever term is used, it remains a mixed methods design 

which consists of first collecting and analysing quantitative data and then collecting and analysing 

qualitative data to help explain or elaborate on the quantitative results within a single study. 

In this study I assigned a greater weight to the quantitative component given that the 

priority in this sequential design was to quantitatively explore learners’ functional understanding 

of proof data in order to gain insights into factors that accounted for this understanding (Guba & 

Lincoln, 1989; Tobin & Fraser, 1991). The reason for adopting this approach is that whereas 

quantitative data and the subsequent analyses thereof provide general insight into learners’ 

functional understanding of proof and their argumentation ability, qualitative data and analyses 

thereof refine and explain statistical results by exploring Presh N’s views in more depth to explain 

the factors influencing her beliefs about the functions of proof (Creswell, 2014).  

Thus, in this mixed methods sequential explanatory design, quantitative and data collection 

and analysis (presentation of results, and discussion) were implemented in two distinct phases: 

collecting QUANTITATIVE data first and looking for an extreme case to follow up in qualitative 
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phase (Caracelli & Greene, 1993). The uppercase letters indicate a priority for quantitative data 

(McMillan & Schumacher, 2010). For this study, in the quantitative phase, numeric data was first 

collected and analysed (presented, interpreted, and discussed) and in the qualitative textual data 

was collected and analysed (presented, interpreted, and discussed) to explain the quantitative 

results obtained in the first phase. In short, a sequential explanatory design involves beginning 

with a quantitative design and following with a qualitative design. 

Space precluded a detailed consideration of advantages and disadvantages of mixed 

methods. That notwithstanding, the benefits of using a mixed methods design in this research study 

were worth noting. First is that quantitative survey findings can be followed up and explained by 

conducting semistructured task-based interviews with a subsample of those surveyed to gain an 

understanding of the findings (Doyle, Brady, & Byrne, 2009) obtained in LFUP scale and the 

Argumentation Frame in Euclidean Geometry (AFEG). Second is that mixed methods can help to 

increase confidence in findings and provide more evidence while offsetting possible shortcomings 

from using either a quantitative or qualitative method (Creswell & Plano Clark, 2011). The second 

benefit is that mixed methods research often has greater impact, because figures can be very 

persuasive to policymakers whereas stories are more easily remembered and repeated by them for 

illustrative purposes (Gorard & Taylor, 2004).  

I provide a brief and general review background relating to the field of mixed methods 

research. Creswell (2014) suggests that mixed methods approach can be seen as a new 

methodology originating around the late 1980s and early 1990s based on work from individuals in 

diverse fields such as evaluation, education, management, sociology, and health sciences. Teddlie 

and Tashakkori (2010) chronicle the developments in this field to present a comprehensive 

snapshot covering the past decade. The original value for mixed methods reside in the notion that 

both quantitative and qualitative approaches have inherent bias and weaknesses, and the collection 

of both quantitative and qualitative data neutralises the weaknesses of each form of data (Creswell, 

2014). In an attempt to carve a language unique to the field of mixed methods research, a variety 

of terms are used to refer to this approach. For instance, Teddlie and Tashakkori (2010) suggest 

the terms frequently used to refer to mixed methods research: integrated or integrative, synthesis, 
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quantitative and qualitative methods, multimethod, and mixed methodology. However, there 

seems to be consensus around “mixed methods research” as the de facto term in this field (Teddlie 

& Tashakkori, 2010). 

Drawing on the perspectives of Creswell (2014), generally, a mixed methods approach 

enables researchers to minimise the limitations of both quantitative and qualitative approaches. 

For this study, choosing mixed methods as an approach to research was a useful strategy since it 

provided better insight into the research problem. In addition, though mixed-methods research 

studies are more expensive than a single method approach—in terms of time, money, and energy—

they improve the validity and reliability of the resulting data (Abowitz & Toole, 2010).  

4.6 Survey design and case study design 

The survey study in the quantitative phase was crosssectional rather than longitudinal.  The 

decision to use a cross-sectional design related the fact that the problem was not, for example, 

related to examining the development of the proof concept in Euclidean proof classes in high 

schools over time and devoting extensive time to data collection. Rather, the problem required a 

crosssectional design in which learners’ functional understanding of proof and their argumentation 

ability, and the factors influencing functional understanding were examined at one point in time 

because of time constraints. Thus, I investigated the three variables, that is, functional 

understanding of proof, argumentation ability, and factors accounting for informed beliefs about 

the functions of proof, at a specific point in time (Cooper & Schindler, 2014).  

I also considered data collection procedures which relates to determining whether survey 

data collection needed to be based on questionnaires that were self-administered, mailed or 

electronic and whether the interviews needed to be based on individual, focus group, or telephone. 

In this study, both questionnaires were self-administered because (1) mailing was going to be time 

consuming and (2) electronic administration was going to be hampered by learners’ inequitable 

access to computers or appropriate cellular phones. Individual semistructured interview was 

preferred over focus group interviews or telephone interviews because I was interested in 

investigating the case of Presh N’s beliefs that influenced her understanding of the functions of 
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proof in mathematics in depth utilising multiple sources of data. In addition, individual interview 

provided opportunities to observe nonverbal cues when the participant was responding to questions 

and probes which the other methods may not afford. 

A graphical representation of the mixed methods model adopted in this study is presented 

in Figure 4—2 to facilitate the visualisation of the sequence of data collection, sampling 

techniques, priority of the quantitative phase, and the mixing points of the two approaches in this 

single study (Ivankova et al., 2006). I adopted Ivankova et al.’s (2006) graphical modelling tool 

to: portray the sequence of the research activities, show that the quantitative phase was prioritised 

by capitalising the term “QUANT”, show the connecting points between the two phases, specify 

data collection and analysis procedures, and list expected products from each of the stages of the 

study. For instance, the figure shows that the quantitative and qualitative approaches were mixed 

at the sampling stage as well as at discussion of the results stage of the research process.  
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Phase Procedure Product 

 

 Cluster sampling (n = 135) 

 Crosssectional self-

administered surveys: 

LFUP & AFEG 

 

 Numeric data 

 Data screening (univariate, 

multivariate) 

 Normality, linearity, 

missing data, 

homoscedasticity, 

multivariate outliers 

 Principal Axis Factor 

analysis, frequencies, 

correlations, ANOVA, 

multiple regression (with 

SPSS v.24) 

 

 Factor loadings 

 Descriptive & 

Inferential statistics 

 Comparison of 

groups 

 Purposefully selecting 

1 participant from sample 

based on highest score  

 Case (n =1) 

 

 Developing interview 

questions 

 Interview Schedule 

 Semistructured interview 

 Proof-related task 

 Text (transcript & 

document) 

 Coding and pattern 

matching analysis 

 Cross-thematic analysis & 

Interpretation  (with 

ATLAS.ti v.8) 

 Conceptual 

framework 

 Exploration of the 

intersection between 

quantitative and  

qualitative results 

 Discussion 

 Recommendations 

 Implications 

 Future research 

 

Figure 4—2. A visual model of sequential explanatory design procedures employed in this 

study adapted from Ivankova et al. (2006, p. 16) 
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4.7 Research strategies 

The sequential explanatory method adopted in the present study led to the choice of two strategies: 

survey and a case study. The “why” research question, capturing the interest in explaining the case 

of an individual learner, Presh N, led to the adoption of a case study as another strategy in this 

thesis. This strategy was used to gain deeper insights into the reasons why Presh N held the 

functional understanding of proof she held. Findings made were intended to form the basis for the 

development of a hypothesis that can be tested in future research using other methods. The 

collection and analysis of LFUP data was in part informed by the work of Liang, Chen, Chen, 

Kaya, Adams, Macklin, and Ebenezer’s (2006). They classified preservice teachers’ views on the 

nature of science in the US, China, and Turkey. This classification builds on the current national 

and international science education standards documents and existing literature in science 

education. 

4.8 Instrumentation 

This section describes the data collection measures utilised in this study. The quantitative phase of 

the study involved the use of two survey instruments—LFUP and AFEG—to collect data from 

learners at three schools. The rationale behind the use of surveys is that they are regarded as an 

inexpensive data gathering technique and often the only feasible strategy to reach a large enough 

number of respondents to allow for statistical analysis of data (McMillan & Schumacher, 2010). 

This phase was intended to explore learners’ understanding of the functions of Euclidean proof 

and establish if a relationship exists between this understanding and argumentation ability on a 

larger scale. Thus, self-administered (LFUP) and open-response argumentation (AFEG) 

questionnaires were used because the sample was large. By large in this case is meant that the 

sample size of 135 participants was adequate for performing parametric statistical tests and thus 

ensuring trustworthy findings (Marshall, Cardon, Poddar, & Fontenot, 2013).  

In addition, questionnaires are also low cost and target respondents who can read, write, 

and answer anonymously and confidentially. By anonymity is meant that participants and their 
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schools could not be identified – by myself or any other person – from the information they 

provided while confidentiality means that in situations in which I knew who provided the 

information (for example, in the qualitative phase appertaining the single case study) I was not 

going to make the connection known publicly (Cohen, Manion, & Morrison, 2011). The principal 

means by which anonymity was guaranteed was through the use of codes on the questionnaires for 

identifying participants as well as through the use of password-protected files (Frankfort-Nachmias 

& Nachmias, 1992).   

In the qualitative phase, unlike the quantitative phase whose data collection was limited to 

one source, that is, crosssectional surveys, data collection consisted of two sources, a 

semistructured interview and a proof-related task. The data collection tools were the 

semistructured Interview Schedule and Presh N’s proof-related task. Semistructured interview 

questions, which fall between the completely structured interviews and completely unstructured 

interviews, constituted the Interview Schedule. An interview schedule contains a set of 

predetermined core questions to ensure that the same areas were covered with each participant 

(Ottens, Gilbertson, Males, & Clark, 2014). Standardisation of questions in the form of core 

questions in the Interview Schedule increases the trustworthiness of data (Creswell, 2014).  

A semistructured interview was preferred because it allows adaptation of the formulation 

of the questions and deviation from the predetermined questions, including the terminology and 

rephrasing of questions, to fit the background and educational level of respondent (Creswell, 

2014). Further, the questions are more likely to receive valid answers than when asked face to face 

(McIntyre, 2005). Also, the questions place no limitation on how the respondent answered. In 

addition, a semistructured interview allows participant to delve into detail through probing of 

responses as and when the need for clarification or explanation arises. The provision of detailed 

information and probing allows the drawing of conclusions that are trustworthy. In addition, 

participant can ask for clarification during the interview. However, the interpersonal nature of an 

interview tends to attract socially desirable responses which offer partial and incomplete 

understanding of a participant’s perspectives (Yin, 2014). In this study, this situation was militated 

against by appealing to Presh N to provide honest responses.   



Research methodology Instrumentation 

 

                                                                                                                                              
136 

Respondents in this project included learners whose first language was not English. This 

included learners in township schools who had limited exposure to English outside the classroom 

and yet the language of learning and teaching mathematics remained English. The use of English 

and the absence of a mathematics register in the South African indigenous languages demonstrates 

that language use is inherently political (Setati, 2008). English acquired official recognition in the 

classroom because it is invariably the language of the small but powerful elite section of the 

population as well as being used science and technology (Halai & Clarkson, 2016). Discussion of 

this situation is beyond the scope of this study and thus is not discussed further here.  

However, worth mentioning here is the utility of computer software in the analyses of both 

quantitative and qualitative data. Computer data analysis programs, SPSS and ATLAS.ti, assisted 

in analysing survey and interview data, respectively. Creswell (2014) makes the point that these 

programs do not only help during data analysis but also that they are an efficient means for storing 

and locating qualitative data. 

4.8.1 The Learners’ Functional Understanding of Proof (LFUP) scale 

4.8.1.1 Previous version of the LFUP scale 

Shongwe and Mudaly (2017) undertook a methodological study whose purpose was twofold: to 

develop an objective instrument to measure Grade 11 learners’ functional understanding of proof 

in mathematics. At the time of its development, the instrument was referred to as the Functional 

Understandings of Proof Scale (FUPS). They conducted an exploratory study in two stages: (1) 

theoretical development of subscales and items and (2) field-tested the instrument and determined 

its psychometric properties by randomly surveying two groups of participants: 37 mathematics 

participants and 37 mathematical literacy participants. Mathematical literacy is an FET phase 

subject that applies mathematical concepts to everyday situations; for example, calculating income 

tax transfer fees, legal fees, and bond repayment, reading and interpreting statistics in newspaper 

articles (Clark, 2012). 
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Initially, a 31-item questionnaire was developed. A panel of experts evaluated content 

validity and the known-groups method was adopted to assess construct validity. For reliability, 

internal consistency and item-total correlations were assessed. The instrument received an overall 

reliability coefficient of .886. In the final analysis, the scale consisted of 25 Likert items. Having 

given a background to the previous version of the measurement instrument, I now describe the 

new version (LFUP). In this study it is referred to as learners’ functional understanding of proof 

(LFUP) scale.  

4.8.1.2 The LFUP questionnaire for the present study 

The validation of the LFUP scale in this study was an effort to provide teachers and educators with 

an instrument to measure learners’ functional understanding of proof and thus inform classroom 

practice. A curriculum geared towards reflecting the mathematics discipline needs to incorporate 

the functions of proof in mathematics. As already mentioned, the FET phase mathematics CAPS 

curriculum stipulated Specific Aims, one of which is understanding that the learning of proof 

without grasping why it is important, leaves learners ill-equipped to use their knowledge later in 

their lives. However, effective endeavours aimed at developing learners’ informed views of the 

functions of mathematics require a clearer picture of the current baseline views of these functions: 

verification, explanation, communication, discovery, and systematisation.  

Efforts to evaluate the LFUP scale in this study were guided by the evidence-centred 

assessment design (ECD) framework. This design framework is based on the principles of 

evidentiary reasoning embedded in advances in cognitive psychology on how learners gain and 

use knowledge (Mislevy, Almond, & Lukas, 2003). As Mislevy et al. (2003) put it, ‘designing 

assessment products in such a framework ensures that the way in which evidence is gathered and 

interpreted is consistent with the underlying knowledge and purposes the assessment is intended 

to address’ (p. 2). This is important in order to provide teachers and teacher educators with 

information from which accurate instructional decisions can be taken.  
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In conjunction with Kane’s (2004) work, the Standards for Educational and Psychological 

Testing15 was the basis on which the validity and reliability of the LFUP instrument were framed. 

The standards are intended to promote sound and ethical use of tests and to provide a basis for 

evaluating the quality of testing practices. Hill, Ball, and Schilling (2008) have indeed found the 

standards appropriate and express their belief that for any measurement development effort, data 

obtained from pilot testing of study items must be analysed to assess whether the instrument meets 

several measurement-related criteria for it to yield trustworthy results.  

Following a trawl of the literature around the concept of proof functions, the structure of 

LFUP scale has also been modelled on those that were used by Almedia (2000), Ruthven and Coe 

(1994), and Schoenfeld (1989). These instruments consisted of items that participants typically 

check-marked on Likert scales ranging from “very true” to “not at all true” and from “strongly 

agree” to “strongly disagree”. The questionnaires contained items such as, “Proof is essential in 

pure mathematics” or “The key thing is to get the statements and reasons in proper form”.  

However, some aspects of these questionnaires were found unsuitable for this study for 

two main reasons. The first is that, unlike in this study, the exploration of proof was not limited to 

Euclidean proof only. The second is that in this study the key focus area was on exploring 

functional understanding of Euclidean proof rather than exploring the value of proof in other areas 

of mathematics. Therefore, the questionnaires were not entirely aligned with the objective of this 

study.  

In this study, quantitative data was collected through administration of a five-point Likert 

scale questionnaire (LFUP scale in Appendix B1) for analysis in order to answer research question, 

“What functional understanding of proof do Grade 11 learners hold?” The first section of the 

LFUP questionnaire contains items for gathering demographic data: gender, class name, and home 

language (Table 4—1). Taking into account Kumar’s (2005) guidelines for formulating questions, 

                                                 
15 For a detailed discussion of these standards, the reader is directed to the manual published jointly by the American 

Educational Research Association, the American Psychological Association, and the National Council on 

Measurement in Education (2014). 
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every effort was made to ensure that simple and everyday language in the questionnaire was used 

for two reasons. First, English was not the home language of most of the participants. Second, 

there was no time allocated for explaining the questions to the participants. The purpose of 

collecting demographics was to be able to adequately describe the sample. Ensuring that language 

used was appropriate because misunderstanding of the questions by participants would have 

resulted in irrelevant responses. 

Table 4—1. The structure of LFUP questionnaire 

Category Description Number of 

items 

Demographics Code; Gender; Class; Home Language 4 

Verification function Five-point Likert scale assessing 

understanding of proof as a means to verify 

3 

Explanation function Five-point Likert scale assessing 

understanding of proof as a means to explain 

5 

Communication function Five-point Likert scale assessing 

understanding of proof as a means to 

communicate 

5 

Discovery function Five-point Likert scale assessing 

understanding of proof as a means to 

discover/invent 

5 

Systematisation function Five-point Likert scale assessing 

understanding of proof as a means to 

systematise 

7 

The second section of the LFUP questionnaire has 25 Likert scale items that range from 1 

(“Strongly disagree”) to 5 (“Strongly agree”). The scores on the LFUP scale were treated as 

interval level scale which was amenable to parametric statistical analyses.  There are five 

dimensions (factors) in the LFUP questionnaire, organised as follows: (1) verification; (2) 

explanation; (3) communication; (4) discovery; and (5) systematisation. A sample of the 

explanation function and its associated items is shown in Table 4—2. 



Research methodology Instrumentation 

 

                                                                                                                                              
140 

Table 4—2. An extract showing items of the Explanation scale on the LFUP instrument (n = 

135) 

 Item SD D N A SA 

T4 A proof explains what a maths proposition means. 1 2 3 4 5 

T5 A proof hides how a conclusion that a certain maths 

proposition is true is reached. 

1 2 3 4 5 

T6 Proof shows that maths is made of connected 

concepts and procedures.  

1 2 3 4 5 

T7 When I do a proof, I get a better understanding of 

mathematical thinking. 

1 2 3 4 5 

T8 Proving make me understand how I proceeded from 

the given propositions to the conclusion. 

1 2 3 4 5 

SD = strongly disagree; D = disagree; N = neutral; A = agree; SA = strongly agree 

4.8.2 The AFEG questionnaire 

Very few will contest the suggestion that the lack of deliberate instructional practices that 

explicitly focused on enculturating learners into argumentation is not peculiar to the school 

mathematics curriculum. This suggestion found support in Driver et al.’s (2000) observation that 

‘the major barrier to developing young people’s skills of argumentation in science is the lack of 

an opportunity offered for such activities within current pedagogical practices’ (p. 308). Hence, it 

is reasonable to suggest that argumentation itself needs to be taught explicitly to mathematics 

learners. I chose to conduct this investigation in Euclidean geometry; it is where learners are 

generally inclined to provide grounds for their claims.  

Given that constructing a good argument is not a simple task in the sense that learners 

require guidance and support to appreciate what constitutes an effective argument (Osborne et al., 

2004), I employed Wray and Lewis’ (1997) notion of “writing frames” which are meant to support 

the process of argumentation. They provide vital support and clues as to what is needed in the 

absence of implicit instruction on argumentation as a learning and teaching tool. In this AFEG 

instrument, I was only interested in characterising learners’ claims rather than requiring them to 

engage in constructing a formal proof. It is important to note that Euclidean proofs are constituted 
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by a sequence of logical steps, from the initial premises, through one intermediate result after 

another to the eventual conclusion (Aberdein, 2005). In contrast, argumentation plays the role of 

developing inductive arguments to eventually become convinced enough of the truth of a claim to 

seek its proof.  

However, in the process of making arguments, a short chain of deductive statement can be 

made which according to the van Hiele model, is characterised as informal deduction. In other 

words, as already mentioned, argumentation in this study complements the appreciation of the 

functions of proof to constitute the “territory before proof”. Of course AFEG required participants 

to use premises (previously learnt theorems) to make the claims. But, they could only use a 

maximum of two premises which are insufficient to complete a proof; they do not necessarily 

reach the conclusion. In addition to writing frames, notions of Toulmin’s (2003) helpful framework 

that directs attention to the application of key aspects of argumentation in informal logic, were 

used (Figure 4—3). I thus drew on Toulmin’s theory as a means to develop and adapt theory to 

this geometric task that constituted the AFEG instrument. 

 

Figure 4—3. The TAP adapted for this study 

Claim/Conclusion 

Rebuttal 

Angle b is equal to 

angle d 

Grounds 

 Given that BC is parallel to DE 

 

 Since the parallel lines were cut 

by a transversal, then alternating 

angles were equal 

 

 On account of the theorem the 

theorem says that alternating 

angles are equal. 

 
Unless lines lay on 

a spherical surface 
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The modified TAP includes rebuttals. The rationale for including rebuttals is that the AFEG 

questionnaire required participants to make use of statements which reflect their prior experiences 

and/or statements they guess to be true, but were not really sure. In this regard, asking for a rebuttal 

invites thinking about counterexamples. In addition, that a learner is able to think and argue 

mathematically, a phenomenon Jahnke (2008) refers to as having a “mathematically educated 

mind”, is shown by the presence of a rebuttal in argumentation. Selden and Selden (1998) point 

out that learners quite often fail to see a single counterexample as disproving a conjecture because 

they perceive that counterexample as “the only one that exists”, rather than seeing it as generic. 

Put another way, the formulation of counterexamples helps in challenging learners’ belief that a 

particular counterexample is just an exception to the rule at hand and that no other “pathological” 

cases exist. Therefore, rebuttals not only trigger reorganisation of ideas but also enable learners to 

develop an understanding of the status of counterexamples in the construction of proofs.  

The written argumentation frame (Figure 4—4) is based on making a claim using any two 

premises to show that “the sum of the interior angles of a triangle sum up to 1800”. The diagram 

includes a line drawn from a vertex parallel to the opposite side where a participant has to make a 

claim considering either that (1) corresponding angles or (2) alternate angles of parallel lines. 

Given that this argumentation task was based on Euclidean geometry, data were regarded as claims 

that use elements of the figure. For example, a claim or conclusion such as “angle a = angle b” 

comprises data (a and b) from the figure which is the foundation for the claim, and the geometric 

statement, which together complete a claim. Again, apart from the fact that Euclidean geometry is 

the only context for constructing deductive proof in the CAPS curriculum, I conducted the 

investigations in the context of Euclidean geometry to capitalise on its visual appeal because, as 

Wu (1996) puts it, ‘almost all of its theorems can be pictorially confirmed’ (p. 228). I hope these 

reasons countered any contestation that I tend to perpetuate the compartmentalisation of 

mathematics. 
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My statement is that ……………………………………………………………………… 

……………………………………………………………………………………………… 

My reason is that ………………………………………………………………............. 

……………………………………………………………………………………………… 

Arguments against my idea might be that …………………………………............... 

……………………………………………………………………………………………… 

Figure 4—4.  The argumentation frame in Euclidean geometry 

As can be seen in the figures above, I used Toulmin’s (2003) argument structure and adapted 

Osborne et al.’s (2004) tool to develop an argumentation framework as a data collection 

instrument. In light of the fact that English was the second or third language for most of the 

participants, basic everyday English language was used to create this tool. This approach was also 

used to improve the reliability of findings. Next I turn attention to the qualitative data collection 

tool, the Interview Schedule. 

4.8.3 The Interview Schedule 

The questions in the Interview Schedule was grounded in the literature on functional understanding 

of proof and the factors influencing this understanding. Because the goal of the second, qualitative 

phase was to answer the third research question by explain why Presh N held the beliefs she held 

about the functions of proof, seven semistructured questions in the Interview Schedule explored 

the role of these five factors (semantic contamination, collectivist culture, teacher, textbook, and 

empirical arguments).  

E D 

B C 
b c 

A 
d e a 



Research methodology Instrumentation 

 

                                                                                                                                              
144 

The Interview Schedule was pilot tested on one participant (not Presh N), purposefully 

selected from those who had completed the survey in the first, quantitative phase of the study. On 

the basis of the results obtained from the pilot interview analysis, the order of the Interview 

Schedule questions was slightly revised and additional probing questions were developed. For 

example, the question, “What do you think is your role in the proofs in textbooks?” was regarded 

as too broad and consequently revised to read “If the textbook has verified the truth of a theorem, 

what do you think is your role, next?”  

The schedule comprised the participant’s demographic information, interviewer’s, 

transcriber’s, and data capturer’s names, time, date, and questions and probes. The participant’s 

responses were probed with the aim of encouraging elaboration on her responses so that a better 

understanding of the thinking behind her ideas could be gained and also to seek clarity. These 

questions were organised around the following themes:  

1. Establishing whether Euclidean proof was covered in Grade 11, the second term as scheduled in CAPS. 

2. Obtaining insights into learner’s definition of proof whether it is in terms of a particular role of proof. Also this 

question will elicit the role of semantic contamination. 

3. Understanding learners’ views about whether understanding proof is innate or takes effort and practice. This will 

help see if they resort to memorisation. 

4. Understanding whether the learner appreciate the need to read and understand a theorem for themselves rather 

than rely on the authority of the teacher. 

5. Understanding the extent to which the textbook influences her belief about proving. 

6. Checking if learner conceives of an empirical argument as a means to convince herself that a proposition holds 

true and/or regards deductive arguments as a means to explain and/or communicate to others why the proposition 

is always true.  

7. Eliciting whether the type of proof presented to a learner influences their understanding of the functions of proof. 

8. Determining what the learner attributes lack of success to and how they think proof learning can best take place 

in the classroom to elicit the influence of collectivist culture. 

The semistructured interview also contained task-based interview, a particular form of clinical 

interview, as the secondary data gathering strategy for this study.  According to Maher and Sigley 

(2014), this type of interview can be traced to Piaget in the early 1960s who pioneered clinical 

interviews in his quest to gain deeper understanding of children’s development. I follow the 
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definition of task-based interviews as ‘interviews in which a subject or group of subjects talk while 

working on a mathematical task or set of tasks (Maher & Sigley, 2014, p. 579). To Maher and 

Sigley (2014), task-based interviews make provision for more open-ended questions requiring 

qualitative analysis wherein participants interact not only with the interviewer but also with the 

task environment.  

The choice of the strategy was informed by the suggestion that task-based interviews 

provide the best context for assessing and probing for the roots of participants’ beliefs (Hurst, 

2008). Thus, the interview was designed to elicit participant’s perspectives on the functions of 

proof through integrating ordinary text with a cartoon. The reason for using a cartoon in the 

Interview Schedule was that, as Stephenson and Warwick (2002) point out, they allow for the 

disassociation of the ideas from those of particular participants so that it is not they who may be 

proved to be “wrong” but, the cartoon character.  

The questions that incorporated diagrams (Figure 4—5) were presented on paper for 

respondents to use at any time. A cartoon depicting a learner reaching a conclusion about “the sum 

of angles in a triangle” on the basis of construction and measurement, was used in the Interview 

Schedule. Ibrahim, Buffler, and Lubben (2009) suggest that the use of real-life figures and names 

can lead to prejudice towards the making of a decision. As a consequence, the cartoon was used 

not only because it did not refer to gender, race or culture but also to improve construct validity of 

the responses (Ibrahim et al., 2009). Generous wait time (a definite pause between asking a 

question and requiring answers from respondents) of 5 seconds was allowed.



Research methodology Instrumentation 

 

                                                                                                                                              
146 

 

Main questions Probes (Follow up questions) 

Please, consider the following cartoon and its proposition. 

 

Given that the proposition has 

worked in every case that the 

teacher has tried so far, how 

can we be sure that the method 

always works?  

Why do you think so? 

Figure 4—5. Sample main question and possible probes in the Interview Schedule 

Qualitative data were collected through semistructured task-based interview to understand the 

factors influencing understanding of Euclidean proof in mathematics and thus answer research 

question, Why does Presh N hold informed beliefs about the functions of proof? This interview 

was considered as the best method to gain insights into Presh N’s reasons for holding the 

understanding of functions of proof she did. The questions in the Interview Schedule (Appendix 

B4) were organised according to the theoretical perspectives on factors influencing proof 

understanding. The first question posed was intended to understand whether Presh N has had 

experiences of proof, at all, in the present and previous mathematics classes. Thus, the Interview 

Schedule included questions such as: “Since this term began, have you done a proof?” and “Tell 

me about one theorem you just did in class”. These questions and their accompanying probes were 

important in the context of the South African classroom given findings that teachers tend to leave 

out some topics citing time constraint as a reason (Mji & Makgato, 2006).  

I constructed different 

triangles and measured 

their angles with a 

protractor. This is 

proof that “The sum of 

the angles of a 

triangle sum up to 

1800. 
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Probing as a technique in interviews enables delving more deeply into learners’ hidden 

interpretations of their functional understanding of proof and thus developing deeper insight into 

how and why they conceive of proof as they do. For example, Figure 4—4 is a sample core 

question aimed at elicitation of the effect of empirical argument on functional understanding of 

proof. This question followed the notion that learners inappropriately use 300 + 1500 = 1800 to 

“prove” that the angles on a straight line are supplementary. Also, Kunimune, Fujita, and Jones 

(2009), report that even learners who can construct deductive proof do not understand why such 

proofs are necessary in geometry. It is reasonable to suggest that such learners lack an appreciation 

of the function that proof performs in mathematics.  

Another source of qualitative data that was useful in the analysis stage was field notes. 

These are notes I created during fieldwork to recall and record the behaviours, events, and other 

features to supplement interview data. A better understanding of what is said in an interview comes 

from its context, including a range of cues that are simply not captured on the audiorecorder. In 

addition, the notes were used to reflect on the research settings, difficulties encountered, 

procedures followed, distractions and nonverbal cues during interview, and as a backup in the 

event that recording equipment malfunctioned. The benefit that accrues with keeping field notes 

is that an interrater can use it to understand the coding followed in this study (Saunders, Lewis, & 

Thornhill, 2012). As with interviews, field notes were transcribed for analysis purposes. Further, 

the Interview Schedule consisted of spaces between the questions to write these notes.   

4.8.4 Proof-related task 

The participant was asked to prove the proposition that “the sum of the interior angles of a triangle 

is equal to 180 degrees”. The purpose of examining her proof-related task was twofold: one was 

to further gain insight into the factors affecting her functional understanding of proof. Two was to 

validate the information obtained (1) in the semistructured interview and (2) on the survey 

questionnaires administered during the first, quantitative phase. In particular, as discussed in the 

literature review, this information was important to elicit given that learners tend to memorise 

proofs if they see no use for learning to prove them for themselves.  
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There was no diagram provided and thus she had to construct it from her own experiences. 

However, not providing the diagram alone was insufficient; the proof was expected to not only 

show deductive arguments but also empirical arguments to give an indication that she was asked 

to prove a proposition rather than a theorem as per typical classroom tasks. Thus, the task was an 

opportunity to gain insight into her ability to engage in the “territory before proof” and possibly 

explain whether deductive and/or empirical arguments influence her functional understanding of 

proof.  

4.9 Data collection procedures 

In this section I describe the steps taken to conduct the investigation reported in this study. This 

description includes: how access to the schools was gained, how sampling was carried out, and 

what instructions were given to participants. However, ethical clearance was the first huddle to 

cross to the findings: ethics committees at the University of KwaZulu-Natal (UKZN) and the 

KwaZulu-Natal Department of Education (KZNDoE) needed to be content that the research aims 

and methodologies will be reached through ways that protected the dignity, rights and safety of 

the participants, and that the research design was ethically sound and likely to render meaningful 

results. Perhaps more importantly from my perspective as an early-career researcher is that 

obtaining ethical approval of this study also helped to increase the trustworthiness of the findings. 

This approval is important to note for classroom teachers and mathematics education researchers 

who are likely to make decisions based on the results emanating from this study. 

4.9.1 Ethical clearance and research permission 

The need for ethical approval arises as the result of the fact that the data being sought and the 

means being used to obtain them may be contentious. Aspects of ethics considered in this study 

were anonymity, confidentiality, informed consent, protection from economic harm, and 

reciprocity. This research study sought and obtained clearance from UKZN Humanities and Social 

Sciences Research Ethics Committee and KZNDoE, respectively. Specifically, the initial 

application for ethical clearance was submitted to and approved by the UKZN committee, in 

Protocol Reference number HSS/0437/016M of 9 February 2017 (Appendix A1).   
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Then, this was followed by the permission granted by the KZNDoE, in Ref 2/4/8/1126 of 

14 December 2016 (Appendix A2). These applications were important to do since data collection 

techniques employed in this study had ethical dimensions by virtue of the fact that they involved 

humans and the issuance of the clearance certificates was evidence that the study conformed to 

ethics requirements. Initially, the proposal of this project contained targeted participants, outlined 

data collection procedures, instrumentation, data protection measures, informed consent forms, 

and gatekeepers’ (KZNDoE) research permission letter. These two institutions did not raise any 

ethical issues or risk that could be associated with learners participating in this study. 

However, it is not always easy to ensure confidentiality for the qualitative phase of the 

study especially from those who are familiar with the contexts of Dinaledi schools in which the 

study was conducted (Miles & Huberman, 1994). For example, I needed to identify one learner 

whose functional understanding was extreme; she obtained the highest LFUP score among learners 

holding hybrid beliefs about the functions of proof despite attending a township school. There was 

no way I could not be able to identify her.  

That notwithstanding, every effort was made to ensure confidentiality and protection of the 

identities of the participants by using pseudonyms and withholding any other identifying 

characteristics for the schools and learners in presentations, journal publications and other public 

information dissemination platforms. Confidentiality refers to ensuring that only the researcher 

has access to all data gathered and participants’ names and that participants know in advance to 

whom the data will be divulged (McMillan & Schumacher, 2010). In order to ensure 

confidentiality, I made sure that the data in the computer were password-protected.  

Anonymity refers to the act of keeping individuals nameless in relation to their 

participation in an investigation. I ensured anonymity by using codes so that the names of 

participants and their schools could not be matched to data. For instance, the code S2CAL15 

denoted school (S) number two 2, class (C) A, learner (L) number fifteen (15) in the class register. 

I used the classroom registers and allocated these codes to identify the school and the learners for 

the qualitative phase of the study. Allocating codes on LFUP and AFEG questionnaires assisted in 
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the control and tracking of the questionnaires returned and facilitated the analysis of data. Coding 

questionnaires this way was helpful in that the participant could later be identified for conducting 

semistructured interview in the qualitative phase of the study. The participants were informed that 

the data collected during this study were to be reported on in this thesis and possibly in journal 

articles and conference proceedings on the basis that functional understanding of proof help in 

constructing proof meaningfully and thereby improve learner performance in Euclidean geometry. 

4.9.2 Sampling 

In mixed methods research studies, Bronstein and Kovacs (2013) identify three types of samples: 

single sample where the same sample is utilised for both quantitative and qualitative segments of 

the research; single sample with subset in which data from the quantitative component of the study 

is used to qualitatively investigate another phenomenon; and, more than one sample which 

describes a mixed methods study that uses one sample for a quantitative component and seeks 

additional information from a subset of a different sample. In this sequential explanatory study 

mixed methods, I adopted a single sample with a subset approach in which the single participant 

in the subsequent qualitative component was drawn from the same larger sample after the 

completion of the quantitative phase of the study. Specifically, in line with the logic of sequential 

explanatory designs in which the quantitative component is dominant, after administering surveys 

to one hundred and thirty five (135) learners at selected Dinaledi schools, I invited an extreme case 

(one learner) to participate in a semistructured interview based on the survey results.  

4.9.2.1 Schools 

I selected a sample of Dinaledi schools to administer two survey questionnaires in order to answer 

the first two quantitative research questions. As Wagner, Kawulich, and Garner (2014) suggest, I 

randomly surveyed three schools from a population of ten Dinaledi schools (Motshekga, 2015) in 

the Pinetown school district in KZN, South Africa to accommodate the limited resources available 

for this study. In cluster sampling, convenient and naturally occurring groups are randomly 

selected which is followed by a selection of individuals in the groups (McMillan & Schumacher, 

2010). This sampling method ensured that the fundamental premises of probability sampling, 
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namely, that every of the Dinaledi schools must have an equal chance of being included in the 

sample, was not violated. 

In the pursuit of increasing the participation and performance in Mathematics and Physical 

Sciences of historically disadvantaged learners, the Department of Basic Education (DBE) 

established the Dinaledi School Project, in 2001 (Department of Basic Education [DBE], 2009). 

The initiative involved selecting certain secondary schools for Dinaledi status that demonstrated 

their potential for increasing learner participation and performance in mathematics and science 

(Department of Basic Education [DBE], 2009). These schools were provided with resources (for 

example, textbooks and laboratories) and other related resources to improve the teaching and 

learning of mathematics and science. The ultimate intention was to improve mathematics and 

science results and thus increase the availability of key skills required in the South African 

economy (Department of Basic Education [DBE], 2009). The rationale for selecting Dinaledi 

schools for the investigation was that these schools were monitored by a team that included senior 

education department officials and individuals with an interest in educational research.  

However, only three Dinaledi schools were sampled for the main study and the another one 

accordingly served as a prelude to the main study (Cohen, Manion, & Morrison, 2011). These were 

public schools with two of them located in a township and the other two in a suburban area. On 

the one hand, a township is a residential area previously designated for blacks16 and characterised 

by poor socioeconomic conditions whose schools lack resources (for example, qualified 

mathematics and science teachers, science and computer laboratories, and sports fields). On the 

other hand, a suburban school has adequate facilities, teachers and educational opportunities for 

learners.  

                                                 
16 The use of race as a form of classification and nomenclature in South Africa is still widespread in the academic 

literature with the four largest race groups being Black (African), Indian, Coloured (mixed-race) and White. This 

serves a functional (rather than normative) purpose and any other attempt to refer to these population groups would 

be cumbersome, impractical or inaccurate (Spaull, 2013, p. 437). 
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4.9.2.2 Learners 

Mathematics learners attending in three schools were subsequently sampled. The sample 

comprised a total of 135 culturally and linguistically diverse and inclusive Grade 11 mathematics 

learners (seventy eight female and fifty seven male with an average age of 17.4 years and 17.8 

years, respectively). The ages of this group ranged from 15 to 18 years. Although learners were 

informed of the right of their parents to refuse them participation, all of them participated in the 

study. In each of the three schools, all the learners were studying mathematics, physical sciences, 

life orientation and at least four other subjects, including two compulsory official South African 

languages at first- and second-language level.  

Survey data was collected, presented, analysed, and discussed to inform both sampling and 

the development of the Interview Schedule for the subsequent qualitative phase. The size of the 

sample needed to be large due to the extent of the heterogeneous nature of the population of Grade 

11 learners in Dinaledi schools. That is, a bigger sample was required to draw reasonably accurate 

inferences in light of variation in characteristics of Grade 11 learners in every respect; namely, 

language, resources, and gender. A summary of the participants across the Dinaledi schools is 

shown in Table 4—3. By the time of the research, the sampled learners had finished the prescribed 

Euclidean geometry. 

The choice of a single case was guided by two key considerations: appropriateness and 

adequacy (Morse & Field, 1995). According to Morse and Field (1995), the former implies the 

identification of participants who can best inform the study, and the latter relates to adequate 

sampling of participants so as to address the research questions and develop a full description of 

the phenomenon being studied. Because I was interested in examining a “successful” participant 

where successful meant holding informed functional understanding of proof as judged by their 

high LFUP score, the extreme case sampling strategy was used. The term “case” refers to the single 

participant who took part in the semistructured interview.  
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Table 4—3. Summary of demographic characteristics of the three schools and participants. 

School 

code 

Gender Home Language School 

Location 

 

Total Female 

(54.1%) 

Male 

(45.9%) 

IsiZulu English 

A 22 16 10 28 Suburban  38 

B 29 21 46 4 Township   50 

C 27 20 36 11 Township  47 

In this mixed method design, the qualitative component was subsumed within a primarily 

quantitative project. The qualitative phase of this study relied exclusively on purposive sampling 

because I needed that participant whose information was likely to give deeper insight into the 

factors affecting functional understanding of proof in mathematics. Purposive sampling refers to a 

sampling technique for the identification and selection information-rich individuals for the most 

effective use of resources (Patton, 2002). This sampling design involved the selection of a deviant 

participant for the purpose of learning from an unusual manifestation of functional understanding 

of proof. Following Guest, Greg, Arwen, Johnson, and Laura’s (2006) evidence-based 

recommendations regarding nonprobabilistic sample sizes for interviews, a semistructured task-

based interview was conducted with a single participant, Presh N, judged to be holding an 

informed belief about the functions of proof. The single case study was adopted on the rationale 

that the depth of data collected is more important than recruiting large samples (McMillan & 

Schumacher, 2010). 

4.9.3 Administration of questionnaires 

The principals of the schools received letters of transmittals explaining the purpose of the research 

and requesting their Grade 11 learners taking mathematics to participate voluntarily. 

Accompanying those letters was the permission letter from KZNDoE. Further, participants were 

informed beforehand of the purpose of the research and how the data would be collected and 

protected. Specifically, the participants received three documents. The first was an informed 

consent form which also described the nature of the project as approved by the two institutions 
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already mentioned, assuring them of anonymity and confidentiality. Informed consent was sought 

simultaneously at three points in the study: administration of the two questionnaires; use of the 

audiorecordings; and for other academic purposes including conference presentations. The second 

were the LFUP and AFEG diagnostic tools. The LFUP questionnaire collected demographic 

questions to help respondents get started comfortably while instructions were designed to induce 

motivation for carefully considered responses. Flipping the LFUP questionnaire would take 

participants to the AFEG questionnaire.  

The third was the information sheet which outlined the purpose of the research, the nature 

of participation, and how data might be used. In case the questionnaires or interviews evoked 

emotions, details about relevant counseling services were provided on the information sheet. Also, 

to improve the accuracy of responses, the questionnaire was of adequate length to avoid taxing 

participants’ concentration while ensuring that items were unambiguously phrased.  

In addition, the rows were shaded lightly and alternately to provide a visual cue to help 

participants reliably match each item with its options. As already mentioned, on each 

questionnaire, a code representing the school number, teacher number, and the learner number was 

indicated. Approximately 30 minutes were suggested for the completion of each questionnaire. 

4.9.4 Conducting a semistructured interview 

A single case whose functional understanding of proof in the LFUP questionnaire were 

characterised as “informed” was purposively selected. The reason for interviewing a single case 

was primarily financial: I received no funding beyond those very limited and personally generated 

funds which were exhausted in the quantitative phase of the project. Secondarily, as Yin (2014) 

argues, case studies need not always include direct, detailed observations as a source of evidence. 

In particular, I adopted a single case study to address the research question by providing a detailed 

description of the participant’s experiences gained from her interactions with the notion of proof. 

In addition, thinking of a single case study as analogous to an experiment, Yin (2014) maintains 

that single case studies are relevant for the purpose of analysing cases that may be extreme; in this 

study, Presh N was selected as such a case. According to Nock, Michel, and Photos (2007), single 
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case studies refer to those studies in which the phenomena of interest was studied using a single 

subject who agreed to participate.  

The participant was purposefully selected on the basis of her high LFUP score with the 

main criterion being that she was a deviant case that could provide insight into the reasons why 

she held informed understanding of the functions of proof in mathematics. That is, although it was 

helpful to know the factors influencing learners’ hybrid functional understanding of proof, it was 

indeed more helpful to identify and explain why a learner in a historically disadvantaged school, 

having scored highest, held informed functional understanding of proof. I hoped that this extreme 

case will provide insights into ways to help learners move to informed functional understanding 

of proof despite attending township schools. As already mentioned, township schools were 

characterised by poor provision of quality education. Therefore, I contend that it was in this regard 

that Presh N was an exceptional case. Donaldson, Ching, and Tan (2013) elaborate by mentioning 

that studying exceptions – those cases that beat the odds – can bring hope to apparently hopeless 

situations. This use of a single case in this study also gained significance in light of Feagin, Orum, 

and Sjoberg’s (1991) suggestion that while advocates of multiple case studies argued for 

replication, using more than one case may dilute the importance and meaning that may be derived 

from the single case.  

The purpose of the interview was explained to the learner; to understand the factors 

influencing their functional understanding of proof. The learner was reminded that the interview 

was to be audiorecorded and she was assured of confidentiality and anonymity. The interview took 

place in a classroom after school hours. In an attempt to create a comfortable environment that 

informalised the atmosphere, conversations about the interviewee’s interest in sport, future career 

prospects, favourite music genre and artist, and so on, took place. On the average the interview 

was scheduled to take 30 minutes.  

As already mentioned, a semistructured interview schedule that consisted of two parts was 

designed to explain why Presh N held informed functional understanding of proof. In the first part, 

the purpose of the interview was explained out of respect for the participant, as a way to establish 
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rapport, and focus attention and thus elicit more thoughtful responses. Semistructured questions 

with funneling were derived primarily from literature and personal past experiences with the 

concept of proof. A funneling technique involves initially asking a general question and then 

probing with more specific questions (McMillan & Schumacher, 2010). For example, one of the 

initial questions in the Interview Schedule (2A(i)), “What, in your view, is proof in mathematics?” 

was followed up with a specific question, “Please, can you explain what a theorem is?”  

4.9.5 Proof-related task 

I followed Presh N’s into the first term of her Grade 12 year (2018). I requested her activities book 

to investigate performance in a Euclidean geometry baseline assessment by her teacher. The 

purpose of investigating this work was to triangulate her interview data with documentary and 

survey evidence. Presh N’s written work was produced in response to routine homework 

assignments to be judged right or wrong by teachers. Specifically, learners were asked to prove 

the proposition that “The sum of the interior angles of a triangle sum up to 180 degrees”.  Put 

another way, learners were required to communicate their thinking in written form so that it could 

be evaluated by the teacher. 

Learners’ ability to communicate their mathematical ideas has been the focus of many 

mathematics curriculum worldwide (for example, NCTM, 2000, 2009; Department of Basic 

Education [DBE], 2011). For instance, the South African curriculum (2011) advocated for tasks 

that assessed mathematical processes such as ‘communicating mathematical ideas’ (p. 43) while 

the NCTM (2000) points out that ‘reflection and communication are intertwined processes in 

mathematics (p. 61). Apart from this prof related task being an important source of information of 

learners’ level of achievement, it also presents them with an opportunity to systematise the various 

concepts, axioms, definitions, and theorems into a coherent whole. Seeing mathematics as a 

coherent whole helps learners to appreciate that mathematics is a tapestry in which all the concepts 

and skills are logically interwoven to form a single piece. 

Thus, the proof-related task was for the learner herself and for inspection by others (for 

example, peers, teachers, researchers, education authorities, or parent/guardian) and therefore 
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inherently communicative and social in nature. I did not probe the ideas that went into the task. 

The reason is that learners are not necessarily consistent in their responses to questions requiring 

recall of ideas in interviews (McMillan & Schumacher, 2010).  

4.9.6 Reciprocity  

Research participants sacrifice their time to volunteer ideas about a phenomenon under 

investigation. I thought it was reasonable to reciprocate this generosity. Creswell (2014) affirms 

the need for researcher’s sensitivity to reciprocity or giving back to the participants. He defines 

reciprocity as something that is returned to participants of a study in exchange for the information 

collected from them. However, Creswell and Plano Clark (2011) advise that reciprocity should be 

done within the constraints of research and personal ethics and within the framework of 

maintaining the researcher's role as an investigator. Hammel, Carpenter, and Dyck (2000) point 

out that reciprocity ‘implies give and take, a mutual negotiation of meaning and power in the 

research process’ (p. 116).  

In this study, reciprocity took two forms. First, to express recognition and gratitude to 

participants for volunteering to participate and share their ideas and experiences about the 

functions of proof and argumentation, I provided the principal with a summary of the research 

results to distribute to participants and their respective teachers. Second, in light of limited 

resources, I relied on McMillan and Schumacher’s (2010) point that taking part in a study flatters 

participants because they are able to express themselves in ways ordinary life rarely affords them; 

they have someone capturing their beliefs and listening with interest to their experiences. It is in 

this light that I disagree with Cohen, Manion, and Morrison’s (2011) assertion that those 

participants who agreed to help were doing me a favour.  

To avoid any economic harm or burden on the participants, I reimbursed five (5) of them 

who incurred expenses. For instance, these learners missed their prearranged common transport to 

their respective homes because the questionnaires were administered after school hours. This 

caused their participation to stretch beyond normal hours. In addition, they were provided with 

some refreshments for having given up their time to assist in the study.  
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4.10 Data analysis procedures 

In this study, data analysis entailed separate presentation, interpretation, and discussion of 

quantitative and qualitative results (findings). In particular, the purpose of analysis was to present 

and interpret data (attaching meaning to the data) in order to identify patterns, relationships and 

trends and relate the findings to previous research studies. Marshall and Rossman (1999) define 

data analysis as ‘the process of bringing order, structure and meaning to the mass of collected data’ 

(p. 150). Hitchcock and Hughes (2002) take this notion one step further as they see data analysis 

as the ‘ways in which the researcher moves from a description of what is the case to an explanation 

of why the case is the case’ (p. 295). 

In undertaking the analysis process, it is important to note that there were two stages in the 

design of this study. In the quantitative stage, LFUP questionnaire which consisted of five 

subscales (verification, explanation, communication, discovery, and systematisation) and the 

AFEG questionnaire were administered to Grade 11 learners. This stage formed the spine of this 

research project; the relevance of this study stood and fell on the results of this quantitative phase. 

In line with McMillan and Schumacher’s (2010) suggestion, given the logic of sequential designs, 

it was ‘best to present and interpret results from the first analysis before reporting the second set 

of data’ (p. 406). That is, analysis entailed presentation, interpretation, and discussion of findings 

for each of the four research questions. However, in Chapter 8, the relationship among the three 

results concerning the three constructs (functional understanding, argumentation, and factors 

affecting functional understanding of proof) is explored using an interpretational analysis (Guba 

& Lincoln, 1994).  

Analyses of quantitative data emanating from the administration of the LFUP scale were 

conducted to determine the validity and reliability of the LFUP scale. The quantitative data 

analysis program, SPSS v.24 (2017), was used for analysis of demographic and Likert scale data 

emanating from the first two (quantitative) research questions. Data of items of the five dimensions 

(functions) in the LFUP scale were subjected to principal axial factoring (PAF). In the analysis of 

the Likert items, learners’ understanding of proof was classified as naïve if the average response 
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score was less than 2.5, hybrid if the score was between 2.5 and 3.5 inclusive, and informed if the 

score was greater than 3.5 (Liang, et al., 2009). Although the LFUP instrument was designed to be 

considered as a series of items that when combined measure a learner’s functional understanding 

of proof, I began by determining the mode, median, and frequencies of the individual items that 

make up the scale to obtain a better understanding of the meaning of data (Boone & Boone, 2012). 

Next, I examined the data through both univariate and multivariate statistical methods. 

In the qualitative stage, an interpretative approach was adopted because the aim of the 

research question was to elicit participant’s meanings of their experience with the concept of proof. 

For that reason, I paid particular attention to their utterances, acting, and facial expressions. A 

software program designed primarily for qualitative analysis (data storage, coding, and theme 

development), ATLAS.ti Version 8, was employed after transcription of raw data. The benefit of 

using computer software to code qualitative data is that it (a) reduces analysis time, (b) cut out 

drudgery by facilitating associations and links within data, (c) helps in displaying data more easily 

(Miles & Huberman, 1994), and (d) results in typically more complex and more detailed analysis 

than manual thematic sorting (McMillan & Schumacher, 2010). The combination of manual and 

computer-assisted analysis often leads to greater insight in itself, with just a few clicks (Bazeley, 

2009). Thus, I transcribed audiorecords into text which were reduced, displayed and used to draw 

and verify conclusions (Miles & Huberman, 1994). 

4.10.1 The LFUP questionnaire analysis 

The LFUP questionnaire was designed such that learners’ understanding of the functions of proof 

was represented by numbers for quantitative analysis. Although numbers were assigned to 

learners’ demographic data (for example, gender, home language, and, grade class), they were 

merely labels to indicate the differences between these categories of learners. Thus, they required 

numeric measures of analysis. There exists no consensus amongst scholars as to whether Likert 

data should be analysed with parametric statistics such as the t-test for dependent means or 

nonparametric statistics such as the Wilcoxon Signed Ranks test (Carifio & Perla, 2008). In this 
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study, the Likert scale was as treated as eliciting interval data and therefore amenable to parametric 

statistical measures.  

On the one hand, if the Likert items were treated as individual items, the data were to be 

analysed as ordinal; therefore nonparametric measures applied. On the other hand, when multiple 

Likert items were summed together to describe an attribute (and therefore data considered to be 

measured on interval scale) parametric measures were appropriate. Another reason for using 

parametric statistical measures in the LFUP scale was the assumption that, as in psychology 

research, distributions in education research often approximate a normal curve (Aron, Aron, & 

Coups, 2014). In addition, the sample was regarded as normally distributed because of the large 

number of learners who participated in the investigation. Further, ‘the Likert scale (“strongly 

agree” to “strongly disagree”) illustrates a scale with theoretically equal intervals among 

responses’ (Creswell, 2012, p. 167). 

According to Clason and Dormondy (1994), numbers in Likert scales presumed the 

existence of underlying continuous variables. Thus, the Likert-type interval scales on LFUP were 

treated as ratio scale (Austin, 2007). Thus, the five-point LFUP questionnaire responses with five 

subscales (factors or dimensions) of three to seven items each were be treated as Likert scales 

where: 1=strongly disagree; 2=disagree; 3=undecided; 4=agree; and, 5=strongly agree. The 

“undecided” option was included on the basis that a respondent may truly hold no particular view 

about an item and if this option is absent, they may choose to respond to the question thus 

introducing bias in the data. Positively worded items signified agreement with the mathematical 

community and negatively worded items represented disagreement. Thus, the scoring of the LFUP 

scale was conducted according to the way in which the response reasonably reflected views in the 

mathematical community. Also, two items with “Leave this item blank” were added to the LFUP 

instrument to check on participants’ attentiveness while completing the questionnaire (Schommer-

Aikins, Duell, & Barker, 2003). As already mentioned, LFUP was linked to the five-factor model 

(verification, explanation, communication, discovery, and systematisation) whose items were 

derived from research literature about proof functions.  
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The data were screened to test the presence of outliers and also assessed for linearity, 

normality and homoscedasticity through scatter plot matrix and boxplot. If outliers were found, 

the case(s) associated with them were eliminated if they only accounted for less than 5% of the 

total sample. If elimination were inappropriate, I minimised their effect through data 

transformation techniques such as square root transformation or logarithmic transformation. 

Whether the data approximated a normal distribution was verified by using three tests: skewness 

and kurtosis z-value (ratio with standard error) which must lie between – 1.96 and +1.96 if data 

distribution is normal and also used the Shapiro-Wilk test for p > .05 (Wilson & MacLean, 2011). 

The research by Shongwe and Mudaly (2017) was useful in determining and assessing the 

degree to which the LFUP instrument is unidimensional. Unidimensionality reflects that a scale 

taps a single composite construct (Streiner, 2003). Having obtained a factor structure that 

confirmed homogeneity – the existence of unidimensionality in the sample of items – I then 

proceeded to determine Cronbach’s alpha coefficient. The internal consistency reliability, 

Cronbach alpha, was calculated to determine the degree to which each item on the LFUP scale 

measured the same construct. Alpha is the mean inter-item correlation measuring internal 

reliability; determining how closely related a set of items measure the same construct when they 

are considered as a group. However, since there were five subscales in the LFUP questionnaire, 

the internal consistency was tested on each subscale rather than on the whole instrument only.  

The rationale for determining alpha is that it is the only measure of reliability that can be 

determined with much less effort because it does not require test-retest (Streiner, 2003; Tavakol & 

Dennick, 2011). Test–retest reliability involves the administration of a measure to the same group 

a second time and comparing the two scores (Kline, 2011). In the final analysis, the data were 

subjected to PAF to test the key assumption that there is one unique factor for each item which 

affects that item but does not affect any other items. In the factorial ANOVA where the means of 

three groups of learners (gender and resources), the homogeneity of variances (equal amount of 

variability of the scores of three groups of schools) assumption could not be assumed because the 

p-value associated with Levene’s statistic was lower than .05. However, I proceeded to perform 

independent factorial ANOVA on the groups because it turns out that in practice the test gives 
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almost accurate results even when there are fairly large differences in the population variances, 

particularly when there are equal or near numbers of scores in the groups (Aron et al., 2014, p. 

321). 

4.10.2 The analysis of the AFEG questionnaire 

Current interest in mathematical argumentation underscored the need to develop schemes of 

analysing argumentation in mathematics classrooms (Aberdein, 2009, p. 1). Although several 

frameworks focusing on argumentation have been suggested (Aberdein, 2008; Inglis, Mejia-

Ramos, & Simpson, 2007; Krummheuer, 1995; Pedemonte, 2007; Yackel, 2001; Zohar & Nemet, 

2002), only a few (for example, Kuhn, 1991; Johnson, 1992; Means & Voss, 1996; Zohar & 

Nemet, 2002) focused on characterising the conceptual quality of learners’ argumentation in 

Euclidean geometry. Thus, further research is encouraged in this direction. I chose to focus on 

analysing individual learner’s rather than group’s ability to argue since ultimately individuals will 

leave the group and enter into new situations that require their own reasoning (Greeno, Smith, & 

Moore, 1993). 

 As already mentioned, this study adopted Osborne et al.’s (2004) modified TAP for 

argumentation that considered the “first order elements of an argument”; claims, grounds, and 

rebuttals. The second order elements were the components of grounds: data, warrants and 

backings. However, worth noting is that the analysis of participants’ argumentation ability was 

underpinned by Toulmin’s modified argumentation scheme which was interpret to include both 

informal reasoning and formal proof. Drawing on the ideas of Wray and Lewis (1997), I used a 

“writing frame” (or sentence starters) to provide support and clues for participants to structure a 

written argument in a coherent manner (Osborne et al., 2004). According to Wray and Lewis 

(1998), a writing frame consists of a skeleton outline with different key phrases to scaffold 

learners’ argument so that it is presented as a coherent structure. As pointed out by Osborne et al. 

(2004), the frame contained a set of stems which provided the prompts necessary to initiate the 

construction of a written argument: “My statement is that ... (C)”, “My reason for this claim is that 

... (G)”, and “Arguments against my idea might be that ... (R)”. The analysis of AFEG was 
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conducted by defining quality in terms of a set of 4 levels (0 – 3) of argumentation (Table 4—4). 

Learners’ attempts to construct an argument in Toulmin’s (2003) sense were coded according to 

the criteria described in Table 4—4 and scored on a scale from 0 to 3.  

The analytical framework comprised hierarchical levels in that advancement to the next 

level was seen as having provided arguments of better quality and therefore increasing in 

complexity. As Osborne et al. (2004) point out, an improvement in the level of argumentation is 

judged by the presence of the components of TAP. For instance, a score of 0 indicated that the 

learner demonstrated little knowledge of the subject matter; their claim was labelled as incoherent 

or idiosyncratic, that is, it did not make mathematical sense since ‘a bare conclusion, without any 

data produced in its support, is no argument’ (Toulmin, 2003, p. 98). That is, uncodifiable, 

nonargument or idiosyncratic claims were awarded a zero thus representing a low quality of 

argumentation. 
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Table 4—4 Analytical framework for assessing the quality of argumentation in AFEG 

Argument Example Description  Score (Quality) Level/Code 

My statement is that … None/ AD = 1800 0- No reply/uncodifiable/nonargument 0 (Low) 0 

My statement is that … e = c C (Using data to make a claim) 1 (Low) 1 

My reason is that … Alternating interior angles C+G (Providing reason for claim) 2 (Adequate) 2 

Arguments against my idea 

might be that … 

But, the lines DE and BC are not 

marked as parallel 

C+G+R (Supplying a rebuttal) 3 (High) 3 

C = Claim (assertion or conclusion based on the figure provided); G = Grounds (reasons, or backings used to make a claim); R = Rebuttal (statement that either 

contradicts the data, warrant of an argument) 
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Therefore, claims which did not use data in the diagram were not recognised as meriting any 

significance. However, a score of 1 meant that at least the learner was only able to make a claim, 

without providing the necessary ground for it. This simplest argument was judged to be at Level 1 

(low). Although Osborne et al. (2004) did not use the term “adequate”, I introduced it here to 

distinguish between low and high quality argumentation. In addition, they seemed to acknowledge 

that there is a weak, stronger and strongest argument. As a consequence, an argument was judged 

to be at Level 2 (adequate) if it improved in quality by not only consisting of a claim but also 

ground to support the claim. However, although providing a ground is important as it can invite a 

refutation of a claim, this argument was still considered not to be of high quality.  

In contrast, arguments were deemed to be at Level 3 (high) when they were accompanied 

by rebuttals which sought to expose the limitations of a claim. To place emphasis on the 

importance of rebuttals, Driver et al. (2000) assert that ‘even arguments constructed by an 

individual are put together by thinking of cases that the arguments have to contest’ (p. 291). As 

Osborne et al. (2004) point out, arguments with rebuttals were of better quality since those without 

rebuttals because the latter had potential to continue forever with no evaluation of the quality of 

the substance of the argument. Thus, rebuttals were regarded as an essential element of arguments 

of better quality and demonstrated a higher level argumentation ability. Osborne et al. (2004), 

using TAP, suggest that the quality of arguments is a function of the number of rebuttals to the 

claim made. More importantly, the consideration of rebuttals promotes the learning of content, 

especially the understanding of concepts and principles (Nussbaum, 2008). Thus, by considering 

the three argument elements in Toulmin’s (2003) model, the following three forms of arguments 

were defined in this study: claim only, claim, claim with ground, and claim with ground and 

rebuttal. 
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Apart from nonargumentative statements, the coding scheme was primarily guided by a 

differentiation between claims, data, warrants, and rebuttals. This approach was successful in 

circumventing the ambiguity of some of the elements in TAP. The use of quantittative measures 

to understand argumentation as evidenced in learners’ TAP profiles created an avenue for 

understanding where emphasis was needed to improve the quality of argumentation and by 

extension, learners’ functional understanding of proof. In the next sections, I illustrate how 

semistructured interview data were analysed.   

4.10.3 Pattern-matching analysis 

… while you may commence with either an inductive or deductive approach, in practice your 

research is likely to combine elements of both. (Saunders, Lewis, & Thornhill, 2012, p. 549) 

According to Braun and Clarke (2007), themes within data can be identified in one of two primary 

ways in qualitative data analysis: an inductive approach in which themes are generated from the 

data, and theoretical or deductive approach in which data are collected specifically for the research. 

Thematic analysis is useful at many levels. Pattern-matching (hereinafter referred to as PM) is the 

thematic analytic method chosen on the basis of the notion that ‘researchers cannot free themselves 

of their theoretical and epistemological commitments, and data are not coded in an epistemological 

vacuum’ (Braun & Clarke, 2007, p. 12). In addition, reporting of themes is an aspect of basic 

procedures of several other qualitative methodologies  by novice researchers like myself (Wilson 

& MacLean, 2011). Another benefit of thematic analysis is its flexiblility in the sense that it is not 

tied to specific theories, and is amenable to computerisation (Braun & Clarke, 2007; Cooper & 

Schindler, 2014; McMillan & Schumacher, 2010). 

The essence of this qualitative component of the study is that it downplays statistical 

techniques and their data collecting methods (Silverman, 2013). In addition, I also sought to use 

the deductive qualitative analysis process to, whenever possible, revise existing concepts (factors) 

as a consequence of new dimensions to the phenomenon including those that I did not anticipate. 

More pointedly put, the PM analytic tool was used to pit theoretically-derived pattern against an 

empirically-based pattern in this qualitative segment of the present study (Yin, 2014). A pattern is 
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described as any nonrandom arrangement of objects or entities that are at least potentially 

describable (Trochim, 1989). The arrangement formed a pattern to show the relationship among 

categories (McMillan & Schumacher, 2010).  

According to Saunders, Lewis, and Thornhill (2012), the PM technique involves 

identifying and comparing predicted or hypothesised patterns developed through the conceptual 

framework with the specific field against patterns evident in the data. In PM techniques, the 

patterns discerned in the data may match those that were predicted in the conceptual framework. 

In this case, an explanation would have been found and threats to validity discounted (Yin, 2014). 

In contrast, if the theoretically-based and the empirically-found patterns do not match, alternative 

explanations need to be considered. The hypothesised pattern here was: factors in and out of the 

classroom have an impact on learners’ functional understanding of proof in mathematics. Having 

already developed the conceptual framework in Chapter 3, I was ready to use the framework as a 

tool in analysing semistructured interview data of a participant (n = 1) to answer the qualitative 

research question, Why does Presh N hold informed beliefs about the functions of proof? 

4.10.3.1 Interview data transcription 

The first stage in the qualitative analysis was verbatim transcription of the interview data. During 

the transcription process, which took several weeks to do, I did not only present the verbatim 

statements but also nonverbal and paralinguistic communication. The analysis involved listening 

to the entire audio several times and reading the transcription many times to provide a context for 

the categories specified in the conceptual framework (Cohen, Manion, & Morrison, 2011).  

The transcript consisted of notations that explained the participant’s body language, for 

example, facial expressions, gestures, gazes, sighs, breathing rhythms, voice intonation, and 

pauses. The transcription was more complete if I accounted for these visual cues because, as 

Fielding and Thomas (2008) note, ‘we communicate by body language as well as speech’ (p. 253). 

Furthermore, visual cues were important to note because participant’s responses are more trusted 

if their body language is congruent with their verbal utterances (McMillan & Schumacher, 2010).  
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By drawing upon the Jefferson (2004) system of transcription notation which features 

conventions for intonation, changes in volume, intake and exhalation of breath, pauses and their 

duration, capital letters for volume, I transcribed the interview to a sophisticated level of detail. 

She (Jefferson) argues that if she were asked for the reason for including all the “stuff” in the 

transcript, her interesting response would be, ‘Well, as they say, because it’s there’ (Jefferson, 

2004, p. 15). On a more serious note, as Irvine, Drew, and Sainsbury (2013) aver, using this system 

for the transcription of interview data allows for a close examination of precisely what took place 

– what was said and also the way in which it was said. Appendix C1 is a glossary of the symbols 

used in the transcript for this study (Appendix C2). I used the numbers in each line of the transcript 

to facilitate reference to specific points in the interactive in analyses (Hepburn & Bolden, 2013).  

As I read the transcript, coding and reevaluating the development of the coding scheme, 

coding took place. Specifically, all the textual data in the transcript were entered verbatim into 

ATLAS.ti software for further qualitative data analysis. The decision to incorporate software was 

primarily based on the reason that ATLAS.ti does not merely speed up the process of grouping 

data according to categories and retrieving coded themes (Wong, 2008), it also has an attractive 

search facility that enables interrogation of the data and thus adds rigour to the study (Ozkan, 

2004). In general, integrating computer software in this analysis finds support in Welsh’s (2002) 

assertion that ‘in order to achieve the best results it is important that researchers do not reify either 

electronic or manual methods and instead combine the best features of each’ (p. 9). Thus, the most 

compelling reason for using the software is that it provides a quick and simple way of counting 

who said what and when and in turn, provides a reliable general picture of the data (Wong, 2008). 

The possible drawback, that using computer software for qualitative data analysis may distance 

the researcher from the data (McMillan & Schumacher, 2010; Morrison & Moir, 1998), was 

mitigated by integration of ATLAS.ti with my own analysis.  

While I remained the main tool for analysis, all transcribed data, that is, transcript and field 

notes were converted from word format (.doc extension) into a rich text file format (.rtf extension) 

in order to use ATLAS.ti’s text and visual coding features. Then, I began to attach in vivo codes 

to the text units while placing references into the hierarchical indexing system. The codes are 
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referred to as in vivo codes because they retain the respondents’ words (Noble & Smith, 2014). 

Thus, coding involved identifying a paragraph in the data that exemplified a particular category 

(Wong, 2008). For instance, coding was done through selecting a text about everyday meaning of 

proof and coding it at the node “semantic contamination”. Thus, I ran a text search query to find 

other such references. From the ATLAS.ti perspective, nodes are categories. These ideas are 

represented in Figure 4—6.  

     

Figure 4—6. Flowchart of the basic steps of data analysis, adapted from Wong (2008) 

Research question 

Why does Presh N hold informed beliefs about the functions of 

proof? 

 Data collection 

 Semistructured interview data → transcribes to text 

 Field notes → transferred as text 

Synthesis and making sense of data 

Description of relationship between categories 

Seeking patterns and relationships 

Mapping interpretations of findings 

Working with textual data 

In vivo coding related to the research question 

 

Categorisation (using memoing) 

 

Coding of selected data at categories created 

 

Retrieval of data coded at categories (Creation of Tree Nodes) 

 

Relationship among categories 

(Model) 
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Also, I attached memos to these text segments to record the ideas, insights, interpretations or 

understanding that may arise from the data. Then, I displayed tree nodes to see how the participant 

talked about, for example, “semantic contamination”. Notably, tree nodes are categories organised 

hierarchically into trees. Thus, I used single item search to ensure that every mention of the word 

“textbook”, for example, was coded under the “factors” tree node.  

The final stage involved recording of insights gained into a memo from the display. This 

memo contained my commentary on text from the document to use in the interpretation stage of 

the project. Each node on the tree accommodated similar data and allowed storage of the comments 

I made. Then, I searched the indexing system to retrieve data according to themes identified in 

literature. The text was rechecked for the occurrence of these categories to seek patterns so as to 

determine relationships. I explained the relationships between the categories to seek patterns to 

interpret the data from the standpoint of participant’s perspectives, in their own voice (McMillan 

& Schumacher, 2010). As I transcribed the interview verbatim, I demonstrated that the analysis is 

a nonlinear but recursive process involving a search for themes to categorise. 

4.10.3.2 Analysis of interviews data 

Having adopted pattern-mathing techniques of data analysis, I was in a position to formulate data 

collection questions through my conceptual framework. In other words, the factors in the 

conceptual framework constituted the initial set of predetermined categories from which interview 

questions emerged. I sought meaning of the data by going beyond the face value of participant’s 

utterances in order to uncover and analyse hidden meaning of the text. In this regard, ATLAS.ti 

version 8, a computer software tool for indexing data, aided analysis of interview data. The key 

area in which this software assisted was with regard to being able to visualise complex relations 

between categories.  

Initially, I coded the text by identifying a unit of analysis (for example, word, phrase, 

sentence or a group of sentences) and highlighting within the text interesting or salient features of 

the data without focusing on attempting to answer the research question at this point. The labels 

allocated to the codes described the explicit or surface meaning of the unit of analysis. Consistent 
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with the approach of thematic analysis in which data are coded to fit into a preexisting coding 

frame, the purpose of the qualitative phase was to provide a less detailed  description of the data 

overall, and a more richer analysis of some aspects of the data (Braun & Clarke, 2007). The need 

to provide such a description was driven by what I as researcher and teacher educator have 

experienced as a current gap: the absence of South African learners’ views on functional 

understanding of proof. This purpose was realised through consideration of the frequency of 

occurrence and defining each theme sufficiently so that it is clear what it represents. The existence 

and prevalence of themes is not represented by quantitative methods but by the use of the 

qualitative phrase “Most issues raised by Presh N indicated that …”  

All text in the transcript were coded and collated without trying to answer the research 

question (Kawulich & Holland, 2012). Thus, a long list of the different codes identified across the 

entire dataset was produced. In the end, the result of this coding process was a coding scheme that 

listed all the codes thus identified in this way providing an overall insight into the codes.  For 

instance, the inteview subquestions and probes used to obtain answers to code around in order to 

obtain answers to the overriding research question included “What are the functions you believe 

proof performs in mathematics?”, “Why do you think so?”, respectively.  Finally, I considered 

how these themes interrelated and divided into different levels. A detailed analysis for each 

individual theme was conducted to identify the story that each theme told and how the theme 

related to others in answering the qualitative research question (Braun & Clarke, 2007). In other 

words, this analysis phase essentially involved sorting the different codes into potential themes, 

considering how different codes may combine to form an overarching theme. I selected compelling 

extract examples to demonstrate the prevalence of the themes. 

The coding of participants’ answers to questions “What, in your view, is proof in 

mathematics?” or “Do you think that proving propositions in mathematics is necessary?” involved 

checking whether the responses demonstrated (1) the definition of mathematical proof as a product 

of an argumentation process based on a finite sequence of axioms to reach a conclusion, (2) an 

appreciation of the generality of proof, (3) de Villiers’ (1990) categorisation of the functions of 

proof: truth (verification), explanation, communication, discovery, and systematisation. Further, 
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in response to the question, “How do you learn your theorems?”, the participant may respond, 

“Our teacher starts by giving us the theorem and follows with problems where we apply the 

theorems”. This statement would then be coded and categorised  as “Teacher influence”.  

I performed constant comparison method in which each new piece of data is compared with 

the previously coded ones thus giving rise to new codes if none of the previous ones provided 

adequate description (Kawulich & Holland, 2012).  These codes were kept brief and succinct. The 

next step involved grouping these codes into exhaustive and mutually exclusive categories and 

that their labels not only reflected the purpose of this study but were germane to the research 

question (Cohen, Manion, & Morrison, 2011). These categories were mutually exclusive in that 

no data were assigned to more than one category. An example of the coding and categorising 

process is shown in Figure 4—9.  
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Interview question Aim of interview question Data extract Code Category 

(a) What, in your view, is proof? 

 

To obtain insights into 

whether learner’s definition 

of proof is in terms of a 

particular role of proof; 

verification.  

“It’s like something that 

convinces you hmmm 

[inaudible] yes hmmm. It’s like 

it helps you to see that what you 

are testing is hmmm [hesitation] 

true. (Thandi B07a) 

Proof 

convinces 

Semantic 

contamination 

 

 

 

 

 

 

 

 

 

 

(b) Do you agree with the learner’s thinking that finding the 

same answer after trying many cases proves? 

(c) How can the learner be sure that the statement that “The 

sum of the angles of a triangle sum up to 1800” always 

works? 

To check if learners 

conceive of empirical 

argument as proof.  

  Empirical 

argument 

Figure 4—7. Sample analysis process of semistructured questions in Interview Schedule

I constructed different 

triangles and measured their 

angles with a protractor. 

This is proof that “The sum 

of the angles of a triangle 

sum up to 1800. 
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As the participant noted astutely, “All statements that require proof must be proven in ways that 

show evidence”. Although these descriptions point to a linear analytical process, the analysis 

involved a back-and-forth movement between the whole and parts of the text. Any text that could 

not be categorised with the initial coding scheme was allocated a new code. 

4.10.3.3 Analysis of proof-related task 

I drew on the van Hiele theory of geometric thinking to analyse Presh N’s written homework 

assignment because written work, as is with most work produced by learners, originates from the 

premise that learners possess mathematical skills and knowledge. As already mentioned in Chapter 

3, this theory is underpinned by the assumption that learning geometry takes place in discrete levels 

of thinking and that progress to the next level is a function of instruction rather than age. The 

theory has played a major role in understanding learners’ difficulty with geometry in Russian 

mathematics education. In addition, this theory involved the way in which language is used with 

the underlying assumption that language can give insights into the participant’s knowledge.  

The trustworthiness of the analysis depended on the reliability of the interpretations which 

in turn was dependent on the researcher’s knowledge of mathematics. Although learning 

mathematics entails developing mathematical ways of communicating mathematical knowledge, 

Presh N’s work was not judged in terms of whether it was presented in the two-column scheme of 

narrative form. But, as Morgan (2014) points out, whenever skill and knowledge are assessed in 

mathematics, reliability and validity involved the true and accurate portrayal of learners’ attributes 

(skill and knowledge) embodied in the task given the discipline’s focus on right or wrong answers.  

According to Teledahl (2016), learners experience problems with vocabulary and 

symbolism than they do with mathematical content itself. Therefore I focused on scoring Presh 

N’s mathematical knowledge (with content and technical language as indicators of understanding) 

of definitions, axioms, and theorems in Euclidean geometry as well as her skill to represent this 

knowledge in accurate mathematical notations. I adopted this approach because language and 

content in mathematics are inseparable (Barwell, 2005b).  
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In other words, the analysis was based on the mathematical register and accepted ways of 

proving a proposition. A mathematical register documents a precisely defined mathematical 

vocabulary – possibly more than any other discipline – with not only words that are specific for 

mathematical communication but also everyday words which are taken to mean something specific 

in a mathematical context (Teledahl, 2016, p. 52). In scoring the task, two researchers 

independently analysed the participant’s written task. 

4.11 Connecting the phases and mixing the results 

The mixed-methods sequential explanatory study reported in this study took place in two stages 

(quantitative and qualitative). These phases were connected at the intermediate point and the 

results were integrated at the design point in the research process. The intermediate point in the 

research process is when the results of the data analysis in the first phase of the study inform or 

guide the data collection in the second phase (Ivankova et al., 2006). The quantitative and 

qualitative phases were connected at the intermediate stage while selecting Presh N, the only 

participant for the qualitative case study, from the sample of learners who took part in the survey 

in the first, quantitative phase. This selection was informed by her obtaining the highest LFUP 

score despite attending an under-resourced township school.  

The results of both quantitative and qualitative phases were mixed at the study design point. 

Here, both quantitative and qualitative research questions were used to integrate the results from 

the two phases during the exploration of the relationship among the three constructs (Chapter 8) 

that formed the backbone of this study. These constructs are: functional understanding of proof, 

argumentation, and factors influencing understanding of the functions of proof.  

4.12 Consideration of rigour and limitations 

In Chapter 1, I outlined the experiences, assumptions, and positions I brought into this study so 

that its findings could be viewed with these frameworks in mind. For example, I investigated fee-

paying and no-fee schools against the background that I believe that resources contribute to 

differences in learner success in mathematics in general and in Euclidean geometry in particular. 
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That said, efforts were not spared to ensure that the findings in this study were rooted in evidence 

and ‘worth paying attention to’ (Lincoln & Guba, 1985, p. 290). In the course of the research 

process, I used the terms “reliability” and “validity” to describe attempts to ensure that the results 

in quantitative segment of the study were rigorously achieved. However, in considering the quality 

of the findings of the qualitative segment of the study, I adopted Golafshani’s (2003) approach in 

using the term “trustworthiness” to encompass both quantitative notions of reliability and validity.  

The term “trustworthiness” is used in this context to refer to the conceptual soundness from 

which the value of inferences made in this qualitative segment of the study must be judged 

(Marshall & Rossman, 1995). The reason for this decision is that these two terms, reliability and 

validity, were problematic for qualitative research (Guba & Lincoln, 1994). For instance, Cohen, 

Manion, and Morrison (2011) point out that concerns of replicability or uniformity were 

meaningless given that different researchers studying a single setting may come up with very 

different findings because reality is multilayered from qualitative research perspectives. 

4.12.1 Evaluation of the quality of quantitative findings 

4.12.1.1 Rigour for the LFUP instrument 

The purpose of performing factor analysis was to validate the factor structure that is proposed in 

Shongwe and Mudaly’s (2017) study. When the quality of each of the items for each scale was 

evaluated, the validity and reliability of the instrument were determined. In quantitative research, 

reliability refers to the degree to which an instrument yields consistent findings while validity 

refers to the degree to which an instrument accurately measures what it is intended to measure. 

Reliability of the LFUP scale was determined through measuring internal consistency of subscales 

and the global scale through Cronbach’s alpha.  

However, since “understanding of the functions of proof” is a latent variable and therefore 

not directly observable, the length of the LFUP scale was adequate, and also given the sufficiently 

large sample anticipated in this study, an alpha of .50 or above was tolerated (Kline, 2011). The 

item-total statistics helped in diagnosing if there were problems with the items; for instance, if 



Research methodology Consideration of rigour and limitations 

 

                                                                                                                                              
177 

there is an item that needed to be reverse-coded because it was negative, or deleted to improve 

reliability, or if there is a negative correlation. Also, high positive correlations were an indication 

of reliability of the LFUP questionnaire. By item-total is meant the correlation between each item 

and the overall score of the scale used as an indication of the internal consistency or homogeneity 

of the scale, suggesting how far each item contributes to the overall theme being measured 

(McDowell, 2006). 

If the findings of this research study were to be helpful, determining the reliability and 

validity of the LFUP instrument was needed to demonstrate and communicate the rigour of this 

research process and the trustworthiness of research findings (Roberts, Priest, & Traynor, 2006). 

Validity of the LFUP scale was established through consideration of three fundamental elements: 

content validity, criterion-related validity, and construct validity (Long & Johnson, 2000; 

Saunders, Lewis, & Thornhill, 2012). In addition, face validity of the LFUP scale was also 

established. Whereas face validity refers to the indication whether, at face value, the questionnaire 

appears to be assessing the desired qualities, content validity refers to making a judgement as to 

whether an instrument seems to adequately sample all the relevant or important content or domains 

(McMillan & Schumacher, 2010). Content validity, which refers to whether or not the content of 

the items the LFUP questionnaire is appropriate to measure learners’ functional understanding of 

proof is determined through the use of theory on functional understanding of proof. 

To establish face and validity, the participants were asked to comment on how the 

instrument looked to them. However, it is important to obtain expert comments on content validity. 

To that end, five mathematics teacher educators were asked to judge the content of the instrument. 

Criterion validity which, like content validity, depends on theory (Muijs, 2004), was determined 

by considering argumentation ability as being theoretically related to and a predictor of functional 

understanding of proof. Specifically, participants’ scores on the LFUP questionnaire were 

expected to be related to those they obtained in the AFEG questionnaire. In addition, the theory on 

argumentation led to the expectation that learners whose self-efficacy levels were high would hold 

informed functional understanding of proof than those that struggle to appreciate the functions of 

proof. More than three decades ago, Bandura (1977) theorised that a potent influence on learner 
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behaviour is the beliefs that they hold about their capabilities. Briefly, learners are more likely to 

have an incentive to learn if they believe that they can succeed in performing a task; they make 

effort and persist in the face of difficulties. The scale on self-efficacy (Appendix B2) was important 

in improving the validity of the results.  

In sum, establishing criterion validity required knowledge of theory relating to functional 

understanding of proof so that I could decide which independent variable can be used as a predictor 

variable. To do this, I needed first of all to collect data on those factors (functions of proof) from 

the same respondents to whom the LFUP instrument was administered, and secondly to 

statistically measure relationships among factors using multiple regression, specifically correlation 

coefficients. 

4.12.1.2 Rigour for the AFEG instrument 

The participants were required to complete a written argumentation questionnaire consistent with 

the Principles and Standards for School Mathematics’ (National Council of Teachers of 

Mathematics [NCTM], 2000) call for learners to develop mathematical argument ‘in written forms 

that would be acceptable to professional mathematicians’ (p. 58). The rationale behind the use of 

writing frame was that they seem to help in improving the quality of learners’ arguments as they 

present their responses in a structured written form (Sepeng, 2013). The task was deemed 

appropriate for Grade 11 learners since, at Level 3 of the van Hiele model, they should have begun 

making informal arguments to justify their conclusions.  

A distinguishing feature of this task was that learners had to depend on their observation 

of the data to make a claim; this process reflected the inductive nature of argumentation. Working 

inductively could help learners to appreciate the genesis of the objects of mathematics. It is 

important to note that the examination of learners’ geometric knowledge inherent in the task is 

measured elsewhere (Shongwe, 2019). Osborne’s et al.’s (2004) argumentation frame employed 

in this study has been used in many countries including South Africa (for example, Lubben, 

Sadeck, Scholtz, and Braund, 2010). As a consequence, the AFEG instrument was deemed valid 

and reliable. 
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4.12.2 Evaluation of the quality of naturalistic inquiry findings  

The case study approach adopted for the qualitative phase of this study is regarded as, in Lincoln 

and Guba’s (1985) terms, a naturalistic inquiry on the basis that I sought to explain why Presh N 

held the beliefs she held about functional understanding of proof from the perspectives of the 

participant in her natural setting (the classroom environment where she spent most of her time). 

Irvine, Drew, and Sainsbury (2013) further provide useful insights into how interviewing in natural 

setting helps to avoid loss of nonverbal data. These authors point out that interviewing the 

participant in their natural setting not only facilitates the development and maintenance of a rapport 

but also provides the opportunity to observe cues such as intonations, facial expressions, levels of 

interest and attention, and body language during the interview. These nonverbal cues were noted 

in a reflective journal and used as additional data entered into the interview transcript. 

As a consequence of conducting a case study in its natural setting, this rendered the research 

study not immune to the need to demonstrate and communicate the extent to which research 

findings were trustworthy (Roberts, Priest, & Traynor, 2006). The trustworthiness of qualitative 

findings directly relates to the methodological and analytical processes (Daytner, 2006). The 

following techniques served as safeguards for accomplishing trustworthiness of inferences: cross-

checking in methodological triangulation, maintaining an audit trail, and member checking 

(Bowen, 2009).  

Methodological triangulation, defined as a ‘method of cross-checking data from multiple 

sources to search for regularities in the research data’ (O'Donoghue & Punch, 2003, p. 78) was 

helpful in several ways. For instance, I relied on data gathered through semistructured interview, 

survey data, and document (proof-related) analysis for clues of corroboration and forming themes 

or categories. Further, it is through triangulation that I attempted to reduce the effect of researcher 

bias and misrepresentation of views by participant (Cohen, Manion, & Morrison, 2011; Gunawan, 

2015). In an attempt to further improve the trustworthiness of coding of the data, I used the 

principle of multiple coding in which the entire interview transcript was sent to an independent 

researcher, a fellow doctoral student, to cross check the coding and interpretation of the data to 

overcome researcher bias. The rationale for cross checking was the interest to gain insight into 
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competing interpretations of the data rather than reaching some degree of concordance. Thus, the 

reduction of bias and misrepresentation enhanced the understanding of reasons why Presh N held 

informed beliefs about the functions of proof. However, Patton (2002) cautions that 

inconsistencies arising from triangulation of data need not be seen as weakening the evidence, but 

as an opportunity to uncover deeper insight into the relationship between the data and the 

phenomenon under study.  

The audit trail involved keeping records on research decisions taken in relation to data 

collection (including sampling procedure), recording, and analysis to enable inspection of these 

decisions and/or subsequent findings by others (or “auditors”) (Bowen, 2009). In short, the audit 

trail made the qualitative research process of this study ‘visible for all to see’ (Bowen, 2009, p. 

308). Similar to Guba and Lincoln (1989), I regard member checks as the single most critical 

technique for establishing trustworthiness of findings because the purpose of this qualitative 

segment of the study was to explain the reasons why Presh N held informed functional 

understanding of proof from her own perspectives. Member checking, which entails the review 

and critique of the accuracy of transcript and subsequent interpretations (Lincoln & Guba, 1985), 

took place in two steps.  

Prior to the end of the research process, I provided Presh N with a copy of the interview 

transcript to correct possible errors and provide additional information. Once she was satisfied 

with the edition and subsequent accuracy of contents of the transcript, I then provided her with a 

draft copy of interpretations to reflect on the accuracy thereof. Further, the qualitative thematic 

analytical method adopted in this study, the technical accuracy provided by the audiorecords’ 

verbatim transcription, and applying the rules built into the computerised qualitative data analysis 

software package, ATLAS.ti, added to the findings’ trustworthiness (Roberts, Priest, & Traynor, 

2006).  

As already mentioned, thematic analysis involves the identification of codes, grouping of 

these codes (themes) was done for the purpose of describing and interpreting the relationship 

among categories. ATLAS.ti assisted in the generation of these relationships. The themes 

generated from the data formed part of the conclusions for this study. As already mentioned, 
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ATLAS.ti aided rather than substituted my responsibility to code, describe, and interpret 

relationships among categories. Although the analysis was deductive in that it entailed fitting the 

data into predetermined categories, the participant’s perspectives enabled the weighting of each 

theme. To that end, frequency counts were used to merely to understand which of the factors had 

a stronger influence on learners’ understanding of proof.  

The need to weight themes is motivated by Harel and Sowder’s (1998) major finding that 

learners do not appreciate the functions of proof because instructional practices impose deductive 

proof which is utterly extraneous to the empirical evidence that is used as proof in everyday life. 

Seen in this light, instructional factors seemed to influence learners’ understanding stronger than 

sociocultural factors. The description of the data analysis procedures for the qualitative phase 

should provide the reader with a comprehensive account of the context, participant, and research 

design so that he or she could make their own determinations about whether this work is 

transferable to their context.  

4.12.3 Methodological limitations 

The need to maintain rigour in research is critical. However, this need must be balanced with the 

need to conduct a study in populations where inherent barriers exist relative to key issues (Cohen, 

Manion, & Morrison, 2011). The limitations of a study are the methodological characteristics that 

set constraints on application and interpretation of the utility of its findings (Thomas, Nelson, & 

Silverman, 2005). Consistent with this perspective, the findings of this study were interpreted in 

the context of these limitations: literacy, assessment techniques, and the practical relevance of the 

research questions (Crosby, Salazar, DiClemente, & Lang, 2010).  

The design of this study included schools characterised by disparities in resources. Some 

were categorised as resourced and some under-resourced. Often, under-resourced schools were 

affected by issues such as language proficiency and dysfunctionality which could be obstacles not 

only in trying to achieve rigour but also in constructing a study designed to understand and 

influence classroom practice. Although racial segregation has been abolished for over two decades, 

schools which previously served predominantly white learners under the apartheid system of 
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government remain functional, while those which served predominantly black learners remain 

dysfunctional and often unable to impart the necessary mathematics and literacy skills (Spaull, 

2013).  

By dysfunctional schools is meant schools which are characterised by severe 

underperformance, high grade repetition, high dropout rate, and high teacher absenteeism (Fleisch, 

2008; Taylor, Muller, & Vinjevold, 2003). According to Spaull (2013), whereas many of these 

factors are ascribed to the socioeconomic disadvantage of the learners they serve, there is also an 

undeniable impact of more intangible elements such as ill-discipline, inefficient management, and 

low cognitive demand; all legacies of the apartheid system. In contrast, functional schools are those 

characterised by learning environments which encourage the creation of opportunities for learners 

to investigate, explore, formulate conjectures, and perhaps use DGS available from computer 

laboratories.  

As mentioned in Chapter 3, for most learners, English is a second, third or even fourth 

language. The language competency of the participants was evaluated and found literate to cope 

with the text of the data collection instruments and interview schedule through the use of pilot 

studies for both questionnaires and interview. Second, the study is limited to descriptions of 

functional understanding of proof in relation to argumentation and explanations of the factors 

affecting high school learners’ functional understanding of proof. In this way, one-time surveys 

and a one-time interview with a single participant may not provide a complete picture of Grade 11 

learners’ functional understanding of proof and their argumentation ability. If this investigation 

was designed for resourced, functional schools with learners whose parents are classified as middle 

class, and well-educated, such a study would pose an entirely different set of challenges. 

This study was not affected by attrition, sampling, and sample size because it was 

crosssectional, probabilistic, and met the thresholds for multivariate analysis. The probability 

sampling was used because of its advantage to infer the results of this study to the larger population 

of Dinaledi schools. As already mentioned, it was not the goal of this study to achieve 
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generalisability. Thus, the results were not intended to apply to populations other than the sample 

population.  

Thus, judgement on the utility of the findings in this study must be based on the balance 

between methodological rigour and the inherent limitations imposed by investigating schools with 

varying degrees of disparities. Key for this study is its ability to address gaps in the empirical 

literature; gaps which are valuable for informing Euclidean education policy and classroom 

practice. Most importantly, this study is firmly grounded in its research questions with direct 

relevance to classroom practice.  

4.13 Chapter summary 

In this chapter I distinguished between methods and methodology, reviewed past methodologies 

in relation to functional understanding of proof, provided a methodological framework, described 

the methods and justified the suitability of the mixed-methods sequential explanatory design for 

this study, described the points at which the two phases were connected and the results mixed, and 

considered issues of rigour for this study. The adoption of rigorous approaches in the research 

design of the study were robust efforts aimed at minimising systematic errors and thus produce 

trustworthy knowledge. In the next three chapters I engage in data analyses (presentation and 

interpretations of results, and discussions of findings in relation to previous studies). The focus 

now turns to the quantitative analysis of the LFUP data.
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Chapter 5  

Functional understanding of proof in mathematics 

5.0 Introduction  

In the previous chapter, I framed the study within the mixed-methods sequential explanatory 

design, provided a diagram of the procedures to identify the priority, connection, and mixing of 

phases and results within this single study, and described the rigorous quantitative procedures 

(including the systematic selection of a sample of three Dinaledi schools) and persuasive 

qualitative procedures followed in this study. In this chapter the first research question of the study, 

“What functional understanding of proof do Grade 11 learners hold?” is answered following the 

analysis of survey data obtained from the administration of the 5-point Likert scale to 135 Grade 

11 learners. The focus of the analysis is twofold. First, it is to validate the LFUP instrument as it 

is at its infancy. Second, it is to explore and characterise learners’ functional understanding of 

proof as either “informed”, “hybrid”, or “naïve” and determine which of these factors accounted 

for functional understanding of proof: verification; explanation; communication; discovery, and 

systematisation. 

The participants had studied the concept of proof including construction of proof before 

their functional understanding of proof were the subject of analyses. That is, the LFUP 

questionnaire is employed to measure this understanding to determine if learners were able to 

appreciate functions of proof other than verification. Learners in Grade 11 are not only expected 

to construct proofs but also to understand the functions of proof in mathematics. Therefore, they 

should be at Level 4 of the van Hiele theory. A review of the literature revealed that proof as a 

means to verify mathematical statements is pervasive. 

5.1 Summary of LFUP questionnaire results 

Initially, I needed to employ principal axis factor analysis to empirically examine the five–factor 

LFUP model. In addition, Shongwe and Mudaly (2017) used a t-test to validate the instrument. In 
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this project, the data were submitted to factor analyses techniques. The KMO and Bartlett’s test 

respectively determined that the sample size was adequate for performing factor analyses and that 

there were sufficient items for each factor. Factor analyses results showed that the instrument was 

valid and reliable. The reason for performing factor analyses was that the sample in this study was 

different from that employed in the previous study. Therefore, there was a need to validate the 

LFUP instrument utilising statistical analyses.  

5.2 Preliminary analyses for multivariate statistical tests 

The purpose of conducting preliminary analyses was to screen the data to establish whether the 

requirements and assumptions for conducting multivariate statistical analyses were met. For 

example, the dataset was assessed for missing data, sample size adequacy, linearity, univariate 

outliers, multivariate normality, and collinearity. Although, ideally, multivariate normality is a 

requirement for performing factor analysis, deviations are not usually detrimental to the 

interpretation of the results (Tabachnick & Fidell, 2013). In short, it was necessary to determine 

whether the sample size was sufficiently large for performing factor analysis and that the items 

correlated sufficiently. The items included in the LFUP questionnaire were not only derived from 

theory, literature on the concept of proof (for example, what proof is, why proof is important, 

mathematicians’ practices, and so on), experts in the field, but also from my own hunches about 

the concept of proof gained as a high school mathematics teacher and teacher educator. Thus, I 

needed to verify whether the factors carry some conceptual meaning that could be attached to the 

name that described them. In the next paragraphs, the correlation matrix, communalities, and factor 

loadings results for each dependent variable (function of proof) are analysed. 

The correlation matrix provided the first insight into the appropriateness of the data for 

factor analysis. Initially, the correlation matrix was examined to gain insight into how each of the 

25 items was associated with each of the other 24. In line with Nunnally and Bernstein’s (1994) 

guidelines, correlations were acceptable if they exceeded .30. Some of the correlations were higher 

than ± .60 (Table 5—1). Whereas relatively high correlations indicate that two items are 

associated and will probably be grouped together by the factor analysis, items with low correlations 
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indicate that they will not have high loadings on the same factor. In other words, the correlation 

matrix provides a window into cluster of items that could well be the manifestation of the same 

underlying factor.  

Then, the correlation matrix was further examined for multicollinearity in the items. 

Although the items had to be intercorrelated, the correlations should not be high because 

multicollinearity makes the determination of the unique contribution of the items to a factor 

difficult (Field, 2009). In this study, the value of the determinant of the correlation matrix was 

5.25 × 10−10. According to Field’s (2009) threshold of 1.00 × 10−5, this value is very close to 

zero which suggested that collinearity was high. This high determinant notwithstanding, it was not 

zero which would have suggested that a factor analytic solution cannot be obtained. As a 

consequence, I proceeded with the analysis because of the confidence that none of the items on 

the LFUP scale could be understood as a linear combination of some set of other items. However, 

the final decision of whether or not to continue with the analysis of the results was primarily based 

on the KMO statistic (Mooi, Sarstedt, & Mooi-Reci, 2018). 
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Table 5—1. Correlation matrix of the LFUP scale 

 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22 T23 T24 T25 

T1 1.000                         

T2 .469 1.000                        

T3 .484 .427 1.000                       

T4 .655 .517 .635 1.000                      

T5 .480 .283 .406 .549 1.000                     

T6 .532 .457 .521 .570 .443 1.000                    

T7 .448 .292 .379 .497 .375 .413 1.000                   

T8 .504 .229 .464 .631 .368 .410 .513 1.000                  

T9 .612 .402 .532 .701 .553 .568 .487 .524 1.000                 

T10 .610 .455 .603 .733 .434 .511 .452 .552 .732 1.000                

T11 .489 .397 .453 .547 .331 .453 .343 .354 .454 .563 1.000               

T12 .585 .354 .545 .710 .464 .513 .560 .537 .736 .713 .449 1.000              

T13 .421 .265 .382 .471 .268 .382 .523 .405 .492 .579 .431 .586 1.000             

T14 .605 .413 .562 .689 .454 .578 .428 .575 .670 .763 .609 .714 .595 1.000            

T15 .630 .423 .567 .717 .387 .557 .435 .593 .575 .704 .571 .622 .591 .765 1.000           

T16 .352 .284 .321 .421 .139 .344 .180 .275 .458 .468 .270 .488 .247 .495 .499 1.000          

T17 .435 .189 .313 .399 .264 .305 .428 .377 .398 .503 .445 .432 .651 .428 .554 .160 1.000         

T18 .359 .269 .323 .386 .102 .324 -.022 .214 .306 .534 .385 .376 .307 .544 .518 .514 .265 1.000        

T19 .693 .519 .571 .780 .532 .652 .563 .579 .728 .744 .594 .709 .445 .751 .705 .484 .362 .458 1.000       

T20 .561 .402 .541 .713 .531 .461 .547 .454 .708 .646 .586 .629 .531 .662 .644 .275 .366 .195 .711 1.000      

T21 .559 .400 .526 .657 .428 .445 .347 .433 .555 .677 .520 .471 .442 .612 .635 .212 .426 .382 .648 .616 1.000     

T22 .474 .308 .437 .562 .335 .439 .453 .481 .433 .502 .560 .451 .535 .574 .523 .225 .445 .286 .546 .550 .490 1.000    

T23 .717 .525 .622 .802 .479 .628 .543 .606 .745 .803 .672 .708 .621 .836 .838 .478 .546 .461 .850 .761 .675 .620 1.000   

T24 .509 .414 .501 .539 .516 .492 .470 .335 .624 .573 .539 .569 .440 .544 .406 .262 .262 .215 .571 .601 .388 .434 .570 1.000  

T25 .524 .410 .497 .668 .357 .401 .389 .461 .584 .669 .396 .680 .448 .645 .629 .396 .327 .452 .715 .563 .574 .447 .675 .417 1.000 

Determinant = 5.25E-010                          
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The factorability of the sample was further assessed. The Kaiser-Meyer-Olkin (KMO) measure of 

sample adequacy supported the appropriateness of the sample size for factor analyses. Specifically, 

the KMO measure of sampling adequacy was .944 (Table 5—2) which, according to Mooi, 

Sarstedt, and Mooi-Reci’s (2018) set of distinctively labelled values, was marvelous because it 

was above the threshold level of .50. Put another way, the KMO measure indicated that there were 

sufficient items for each factor. The Bartlett’s test of sphericity was performed to examine the 

hypothesis that the correlation matrix is an identity matrix (where all diagonal values were 1’s and 

all off-diagonal values were 0’s). Bartlett’s test of sphericity was found to be significant, 

suggesting that the relationship among the variables was strong implying that the correlation 

matrix was significantly different from an identity matrix (𝜒2(300) = 2.277 × 103), 𝑝 <

.0001) (Table 5—2). This nonsignificant result suggested that the items were unrelated enough to 

perform meaningful factor analyses. In addition, the sample (n = 135) satisfied Bryant and Yarnold 

(1995) subject-to-variables minimum ratio of 5 participants for each item on the LFUP instrument. 

Table 5—2 Sample adequacy and identity matrix output 

Kaiser-Meyer-Olkin Measure of Sampling Adequacy. .944 

Bartlett's Test of Sphericity Approx. Chi-Square  2.277 × 103 

df 300 

Sig. .000 

In this study, outliers, normality, and linearity were verified through inspecting the normal 

probability plot of the regression standardised residuals as well as the residual scatterplot. For 

instance, in Figure 5—1, the points were close to the line on the plot which suggested that the 

points lay close to the line on the plot and in a reasonably straight line from bottom left to top right. 

This behaviour of the line implied that the range of residuals were close to zero.  
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Figure 5—1 Normal P-P of regression standardised residual 

In the scatterplot, there were scores predicted by the regression equation in standardised form and 

the residuals in standardised form. The scatterplot is used to visualise the strength of an association 

between variables. Here I considered the nondescript cloud of points which showed that most 

scores were concentrated in the centre along the zero point. In other words, the points were found 

to be funnel-shaped rather than curved. If they were curved, it would have suggested nonlinearity. 

Nonetheless, since they were funnel-shaped, the data suggested heteroscedasticity.  Residual refers 

to the difference between an actual score and the score that would be predicted from the regression 

equation (Wilson & MacLean, 2011).  

The scatterplot is also used to detect outliers because their presence can alter the factor 

solution (Tabachnick & Fidell, 2013). According to Cohen, Manion, and Morrison (2011), outliers 

are data values with a standardised residual that lay outside the range of – 3.3 and 3.3. Since no 

such values were found (Figure 5—2), it was clear that the data contained no outliers and this 

suggested once again that there was no deviation from the assumptions and requirements (for 

example, normality, linearity, collinearity, and independence of residuals) of multivariate 
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statistics. In addition, the scatterplot showed that the residuals were approximately rectangularly 

distributed and most of the scores concentrated in the centre, around the zero point. 

 

Figure 5—2. Scatterplot of the standardised residual analysis 

Having conducted the preliminary analyses in which the KMO statistic indicated that there were 

enough items for all the factors, the Bartlett’s test of sphericity showed that the items were 

correlated highly enough to provide a reasonable basis for factor analysis, and the scatterplot 

showed that the assumption of linearity was met, I proceeded to perform the principal axis 

factoring (PAF) method, a type of exploratory factor analysis (EFA). The PAF is a multivariate 

statistical method for identifying structure by determining interrelationships between variables 

(items) to find a smaller number of unifying variables called factors (Mooi, Sarstedt, & Mooi-Reci, 

2018). This most widely used form of analysis (Cohen, Manion, & Morrison, 2011), the PAF, is 

constituted by multiple observable variables (items) with the restriction that each be uncorrelated 

with other components (Briggs & Cheek, 1986). Put slightly more specifically, for the LFUP scale, 

each subscale consisted of items that correlated more highly among themselves than they 
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correlated with items not included in that subscale. In this study, the PAF was used for exploratory 

purposes because the factor structure as proposed in the LFUP scale was hypothetical and therefore 

needed to be tested.  

5.3 Principal Axial Factoring (PAF) analysis 

According to Tredoux, Pretorius, and Steele (2006), factor analysis is a statistical technique ‘used 

to identify relatively small number of factors in order to represent the relationship among sets of 

interrelated variables’ (p. 248). There are two main methods of factor analysis: principal axis factor 

(PAF) analysis and principal component analysis (CPA). One key assumption of PAF is that there 

is one unique factor for each item which affects that item but does not affect any other items (Field, 

2009). 

The PAF is preferred over the CPA because it takes into account the measurement errors 

(the variance not attributable to the factor which an observed variable represents) and thus its 

results are more reliable. In addition, the PAF was more appropriate for this study than PCA in 

that I postulated that there were five factors underlying the items measured (Cohen, Manion, & 

Morrison, 2011). Specifically, it was hypothesised that these five factors underlie learners’ 

functional understanding of proof: verification, explanation, communication, discovery, and 

systematisation (Figure 5—3). I was interested in gaining insight into whether the items that were 

considered as indexing each of the five factors actually do cluster together to describe functional 

understanding of proof in mathematics. Put differently, I wanted to determine empirically whether 

participants’ responses to, for example, the items characterising the verification function (factor), 

were more similar to each other than their responses to the items characterising the explanation 

function (factor). Conducting PAF assisted not only in answering the question “Are there five 

factors underlying the functional understanding of proof items?” but also in giving support for the 

construct validity of the LFUP scale in this sample.  
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Figure 5—3.  The independent variables of the LFUP dataset against the dependent variable. 

Although theories and literature provided some ideas about the structure the data, the analysis was 

exploratory in nature because there were no specific predictions about the magnitude of the 

association of each item to each factor. Noteworthy in this regard is that eigenvalues were not used 

to examine the number of factors to retain for interpretation. The logic behind the application of 

Kaiser’s (1974) eigenvalue threshold of greater than 1 for interpretation of results stems from the 

idea that this point divides the important or “major” factors from the minor or “trivial” factors. 

Unfortunately, this definition of where the drop occurs is rather vague and thus may encourage the 

making of arbitrary decisions. For example, it does not make sense to retain a factor with an 

eigenvalue of 1.01 and then discard a factor with an eigenvalue of .99 (Ledesma & Valero-Mora, 

2007). In addition, the eigenvalue method has a tendency to overestimate the number of factors to 

be retained (Zwick & Velicer, 1986).  

In this study, the alternative criterion was to set a predetermined level of cumulative 

variance and to proceed with the factoring process until Hair, Black, Babin, and Anderson’s (2014) 

minimal threshold value of 60% cumulative variance was reached. As a consequence, applying the 

cumulative variance criterion as shown in Table 5—3, the five-factor solution captured more than 

two thirds (71.83%) of the total variance. More specifically, the verification factor accounted for 

53.27% of the variance, the explanation factor accounted for 6.17%, the communication factor 

accounted for 5.19%, the discovery factor accounted for 3.94%, and the systematisation factor 

accounted for 3.29% of the variance. Important to bear in mind is that the process of deciding on 

Verification Explanation 

Communication Discovery  Systematisation 

Functional 

Understanding 

of Proof Scale 
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the factor structure was driven by a priori theoretical framework which proposed a five-factor 

solution; it overcame some of the deficiencies inherent in thresholds.  

Table 5—3. The ratio of the variance accounted for by each factor to the variations in the 

dataset 

Factor 

Initial Eigenvalues Rotation Sums of Squared Loadings 

Total % of Variance Cumulative % Total % of Variance Cumulative % 

1 13.316 53.266 53.266 4.889 19.557 19.557 

2 1.534 6.136 59.402 3.044 12.177 31.734 

3 1.298 5.191 64.593 2.998 11.990 43.724 

4 .986 3.944 68.537 2.985 11.940 55.665 

5 .823 3.290 71.827 2.299 9.195 64.860 

Extraction Method: Principal Axis Factoring.    

Factor loadings were examined to test the hypothesis that a relationship between items and their 

underlying factors exists. The term “factor loading” refers to the measure of the contribution that 

each item makes to the factor in question thus illustrating the correlations between items and 

factors (Cohen, Manion, & Morrison, 2011). As can be seen in Table 5—4, all factor loadings 

were greater than Stevens’ (1992) threshold of .40. Loadings less than .40 were suppressed to make 

examination of cross-loadings easy. Cross-loading takes place when one item with coefficients 

greater than .40 loads on more than one factor. In particular, the first four items that related to 

verification function of proof loaded onto one factor labelled “verify”. The next five items loaded 

onto the explain factor. The loadings of the items that clustered on the “communicate” factor 

ranged from .478 to .791. Noteworthy is that item T19 (“Proof shows the lack of connections 

between theorems and new results”) loaded highest onto the “discover” factor.

 A continuation of factor loadings is the communality of an item which is defined as the measure 

of the variance in each item accounted for by all other items (Kline, 2011). Put differently, a 

communality is a measure of the extent to which an item correlates with all other items on the 

scale. MacCallum, Widaman, Zhang, and Hong’s (1999) suggestion that for sample sizes between 

100 and 200, the threshold value of communalities is .50 was adopted. The communalities were 

all either at or above .50, further confirming that each item shared some common variance with 
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other items. Given these overall indicators, factor analysis was deemed to be suitable with all 25 

items. In other words, the dataset obtained from the administration of the LFUP questionnaire to 

Grade 11 learners was suitable for multivariate statistical analysis, including the validation of the 

LFUP instrument. 
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Table 5—4.  Factor loadings from principal axis factor analysis with Varimax rotation for a 

5-factor solution for LFUP scale (n =135) 

 Factor loading  

Item Verify Explain Communicate Discover Systematise Communality 

T1 .634         .596 

T2 .616         .499 

T3 .603         .510 

T4   .746       .789 

T5   .501       .480 

T6   .549       .558 

T7   .529       .605 

T8   .596       .585 

T9     .726     .765 

T10     .796     .785 

T11     .478     .602 

T12     .754     .758 

T13     .565     .664 

T14       .752   .801 

T15       .791   .809 

T16       .484   .511 

T17       .363   .601 

T18       .555   .602 

T19         .812 .855 

T20         .730 .763 

T21         .606 .637 

T22         .509 .530 

T23         .846 .904 

T24         .480 .609 

T25         .608 .652 

Eigenvalues 4.89  3.04  3.00 2.99 2.30    

% variance 19.57  12.18  11.99 11.94  9.20    

No. of items 3 5 5 5 7  

Note: Loadings<.40 are omitted to aid interpretation 

These five factors (subscales) accounted for 78.6% of the total variability (in all of the items 

together), and were accepted as summarising the data. The ideal solution is when each item loads 

on (correlated with) only one factor (Kline, 2011). The factors were then rotated to achieve a more 
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interpretable structure. Generally, verimax rotation is preferred over oblique rotation method 

because it makes the interpretation of results easier (Wilson & MacLean, 2011). In this study, the 

verimax orthogonal (uncorrelated) rotation method was performed on the basis of the belief that 

the items were uncorrelated and consequently that the factors were uncorrelated, as well. To gain 

a better indication of which items loaded on the various factors and thus facilitate interpretation of 

results, only factor loadings equal to or greater than ± .40 were interpreted. For example, the items 

that loaded onto factor 1 related to the verification function of proof and were thus labelled as 

“verification”, while those that loaded onto factor 2 related to the explanation function of proof 

and were thus labelled “explanation”, and so on.  

In summary, 25 items were subjected to principal axis factoring to assess the 

dimensionality of the data. These factors were orthogonally rotated using verimax rotation. The 

KMO measure was high and the Bartlett’s test of sphericity reached statistical significance 

indicating the correlations were sufficiently factorable. The five hypothesised factors explained a 

sufficiently large proportion of the variance. This was decided based on cumulative variance and 

the theory underpinning this analysis. The next section examines the validity and reliability of the 

LFUP scale. 

5.4 Psychometric evaluation of the LFUP instrument  

This section is concerned with assessing the validity and reliability of the LFUP instrument. 

Validity of the LFUP scale was established through consideration of two fundamental elements of 

validity: construct and criterion (Long & Johnson, 2000; Saunders, Lewis, & Thornhill, 2012). 

Face and content validity were determined through interviews with panel of experts and 

participants by checking the instrument’s attributes such as; ease of use, clarity, and readability. 

Construct validation of the LFUP instrument was done through factor analysis. As already 

mentioned in the methods and methodology section, the PAF is the standard statistical technique 

for evaluating construct validity. Criterion validity for the LFUP scale was ascertained through 

multiple regression analysis (Miller, Meier, Muehlenkamp, & Weatherly, 2009). Regression 

analysis explains how certain measures predict an outcome of another event by measuring how the 
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predictive variables agree or disagree when they are combined together. Several researchers have 

used standard multiple regression analysis as a method to validate research instruments (Meyer, 

Meyer, Knabb, Connell, & Avery, 2013). 

5.4.1 Reliability of the LFUP instrument 

Although Shongwe and Mudaly (2017) provided evidence that the LFUP instrument is reliable, I 

needed to administer it anew in order to verify their claim with a new sample. The reason for this 

approach flowed out of the fact that ‘a scale that may have excellent reliability with one group may 

have only marginal reliability in another’ (Streiner, 2003, p. 101). In addition, doing so was going 

to further strengthen the validity of the LFUP instrument. The data for each of the five factors were 

analysed for internal consistency using SPSS v.24 (2017). By reliability here I meant the 

consistency with which the LFUP instrument yields almost the same scores every time it is used 

to measure Grade 11 learners’ functional understanding of proof. To exemplify this idea, a 

bathroom scale is reliable if it reads, with an acceptable amount of error, the same mass every time 

I use it under the same health conditions.  

The alpha reliability coefficients of the LFUP scale are shown in Table 5—5. The overall 

alpha coefficient of the 25-item LFUP scale was .961 which, according to Nunnally and Bernstein 

(1994), indicated that the LFUP instrument had a high reliability. A reliability coefficient of .70 

or higher is suggested (Cronbach, Rajaratnam, & Gleser, 2011). For instance, Shinar, Gross, and 

Bronstein, et al. (1987) obtained a Cronbach’s alpha of .98 for 18 patients. Hence scales with 

reliabilities of .90 or above are sufficient for individual applications (Browne & Cudeck, 1992). 

Also, because alpha varies with the number of items in a scale (McDowell, 2006), for this study, 

once validity was achieved (as shown in the next section), this instrument was considered reliable 

(Khalid, 2013). Similar to Shongwe and Mudaly (2017), the factors as well as the items were 

retained for interpretation.  This result showed the validity of their model which in turn improves 

the quality of the LFUP scale. 
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Table 5—5. Internal consistency measure of the LFUP instrument 

Cronbach's Alpha 

Cronbach's Alpha Based on 

Standardised Items No. of Items 

.962 .961 25 

The alpha coefficients for each of the different subscales ranged from .719 – .910, similarly 

indicating a high reliability. Shongwe and Mudaly (2017) reported a Cronbach’s alpha of .87 in 

their research on the LFUP results which indicated adequate reliability. Nunnally and Bernstein 

(1994) suggest .70 as a cutoff such that alpha values below it indicate poor reliability and poor 

predictive validity of an instrument. However, an alpha greater than .90 would indicate item 

redundancy wherein some of the items have been rephrased resulting in asking the same question 

in many different ways (McCrae, Kurtz, & Yamagata, 2011). That said, I posit that the LFUP scale 

achieved a generally acceptable level of internal consistency judging by the Cronbach alpha value 

among the five subscales (Table 5—6). In this study, given that there is no sacred acceptable or 

unacceptable level of alpha, a level as low as .50 may still be useful if a questionnaire is of adequate 

length (in terms of items not cases) and its dimensionality or construct validity is established 

(Schmitt, 1996).  

Table 5—6. Internal consistency results for the 5-factor LFUP instrument 

Factor Item Example α 

Verification T1; T2; T3 Proof makes sure statement is true. .72 

Explanation T4; T5; T6; T7; T18 Proof makes me gain insight into 

mathematical thinking. 

.82 

Communication T9; T10; T11; T12; 

T13 

Proof communicates maths results even 

among learners. 

.87 

Discovery T14;  T215; T16; T17; 

T18 

Analysis of proof may lead to invention 

of new results. 

.81 

Systematisation T19; T20; T21; T22; 

T23; T24; T25 

Proof brings together and connects 

previous maths results. 

.91 

The reliability of the LFUP scale was further assessed by determining the item-total statistics. An 

examination of the item-total correlations (Table 5—7) indicated that all items in each dimension 

contributed to the consistency of scores with item-total correlations higher than .64 thus exceeding 
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the accepted cutoff value of .30. Put another way, these values indicated that each item related to 

the overall scale (Nunnally & Bernstein, 1994). The item-total statistics also lists Cronbach’s alpha 

values when a particular scale item was deleted from the instrument. For example, as the first item 

has a value of r = .960, the Cronbach’s alpha of this scale would change from .962 to .960 if that 

item were removed. Deleting any item would make negligible difference in the Cronbach’s alpha 

value. As a consequence, these items were not removed. The first two columns, “Scale mean if 

item deleted” and “Scale variance if item deleted” were included for consistency of reporting only. 

The third column shows item-total values, indicating the correlation between a particular item and 

the sum of the rest of the items, which shows consistency.  

Thus, item-total correlations here were by far greater than zero and therefore high, thus 

indicating that the each of the items was consistently measuring learners’ functional understanding 

of proof. As a result, no items necessitated a deletion from the scale. All the inter-item correlations 

were within Cohen’s (1988) classification that correlations greater than .50 were large, .30–.50 

moderate, and .10–.29 small. Thus, items for the LFUP questionnaire were not only selected on 

the basis of alpha coefficients, but also on the basis that their item-total and inter-item correlations 

were relatively within respective cutoff values. These two measures (internal consistency and item-

total correlations were used to reach the conclusion that the LFUP was reliable. 
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Table 5—7. LFUP item-total statistics 

Item Scale Mean if 

Item Deleted 

Scale Variance if 

Item Deleted 

Corrected Item-

Total Correlation 

Cronbach's Alpha if 

Item Deleted 

T1 70.4370 510.084 .738 .960 

T2 70.9778 525.992 .525 .962 

T3 70.4000 517.570 .673 .961 

T4 70.6370 498.845 .852 .959 

T5 70.9481 530.139 .550 .962 

T6 70.7556 522.425 .658 .961 

T7 71.9259 530.278 .584 .962 

T8 70.4593 521.011 .630 .961 

T9 70.6074 518.972 .790 .960 

T10 71.1556 502.610 .844 .959 

T11 71.5407 515.205 .659 .961 

T12 70.5481 516.264 .789 .960 

T13 70.8741 526.409 .635 .961 

T14 70.4667 510.221 .844 .959 

T15 71.1333 497.893 .818 .959 

T16 70.4148 543.259 .472 .962 

T17 71.0074 530.918 .531 .962 

T18 70.4370 543.024 .467 .962 

T19 71.0444 498.685 .872 .959 

T20 71.3333 508.388 .776 .960 

T21 70.8593 526.823 .709 .961 

T22 70.8889 526.622 .643 .961 

T23 70.9111 492.753 .927 .958 

T24 71.7111 522.102 .647 .961 

T25 71.3259 509.594 .713 .961 
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5.4.2 Validity of the LFUP instrument 

It is important to note that in the analysis, all the LFUP items were coded so that a higher score 

represented informed functional understanding of proof consistent with those held by 

contemporary mathematicians. In terms of the LFUP instruments, validity refers to the 

appropriateness of conclusions drawn from the use of the LFUP instrument with Grade 11 learners 

at a particular point in time. One way that the validity of this LFUP instrument was demonstrated 

was to show that the AFEG instrument produced results that are similar to it. The argument here 

is that argumentation ability promotes the communication function of proof which may lead to 

discovery of new results enabling the systematisation of statements. 

First, in establishing construct validity, the correlation between two independent 

variables—intended and proxy—is determined. An intended independent variable identifies 

correlations between multiple independent variables. A proxy independent variable is a variable 

used on the basis of the belief that it correlates with the variable of interest. In this study, correlation 

was assumed between holding functional understanding of proof that is consistent with those of 

contemporary mathematicians (proxy independent variable) and getting a high score on the FUPI 

instrument (intended independent variable). Second, the determination of a correlation coefficient 

between an independent (predictor) variable and the dependent (criterion) variable resulted in 

establishing criterion validity of the FUPI instrument.  

In this study, each subscale representing a function of proof in mathematics is an 

independent variable and the total score of the instrument is the dependent variable. Specifically, 

AVC = average of the verification construct; ACE = average of the explanation construct; ACC = 

average of the communication construct; ACD = average of the discovery construct; and, ACV = 

average of the systematisation construct.  The average of the construct with the highest value was 

5. On the other hand, the total score of the LFUP instrument is the dependent (criterion) variable. 

A total score or index is the aggregate score that summarises a learner’s measure of functional 

understanding in a subscale. This score could also be used in other statistical analyses such as 

regression or ANOVA. The sum of construct was based out of a possible total score of 25. The 

correlation coefficient between them is called validity coefficient. Standard multiple regression 
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analysis was used to perform the two validity processes (Table 5—8). All the correlations of five 

subscales with the total score were highly significant at the .01 level. Tabachnick and Fidell (2013) 

suggest that for a variable to be significant it should have a correlation in the range of .30 and .70. 

Table 5—8 Multiple regression showing correlations of LFUP subscales (n=135) 

  ACV ACE ACC ACD ACS Total score 

ACV Pearson Correlation 1      

Sig. (2-tailed)       

ACE Pearson Correlation .589** 1     

Sig. (2-tailed) .000      

ACC Pearson Correlation .595** .842** 1    

Sig. (2-tailed) .000 .000     

ACD Pearson Correlation .439** .639** .785** 1   

Sig. (2-tailed) .000 .000 .000    

ACS Pearson Correlation .614** .874** .914** .741** 1  

Sig. (2-tailed) .000 .000 .000 .000   

Total 

score 

Pearson Correlation .697** .914** .956** .818** .966** 1 

Sig. (2-tailed) .000 .000 .000 .000 .000  

**. Correlation is significant at the 0.01 level (2-

tailed). 

    

In determining criterion validity of the LFUP questionnaire, the extent to which the Likert items 

of the five functions predicted learners’ functional understanding of proof in mathematics was 

assessed. Wilson and MacLean (2011) suggest that correlation coefficients between the predictor 

variables should not be greater than .8; hence, the five independent variables were retained for the 

LFUP instrument.  

Continuing with multiple regression analysis, collinearity diagnostics were performed on 

the five subscales that had significant correlation with the dependent variable (that is, Total Score). 

This was done to check if the subscales (predictor variables) were highly correlated with each other 

(Wilson & MacLean, 2011). This phenomenon is referred to as multicollinearity. In addition, 

multicollinearity made it difficult to identify which of these predictors were important in 

influencing informed understanding of proof. To understand the role of this aspect, tolerance and 
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variance inflation factor (VIF) were determined (Table 5—9). Whereas tolerance is seen as an 

indicator of how much of the variability of the specified dependent variable is not explained by 

the independent variables in the model, VIF is the inverse of the tolerance value.  

According to Muijs (2004) and Pallant (2013), a tolerance value of less than .10 and a VIF 

value above 10 indicates that the correlation of a variable with other variables is high thus 

suggesting the undesirable multicollinearity. On the basis of these suggestions, my model indicated 

an absence of multicollinearity. In this regard, the tolerance values of between .122 and .605 were 

consistent with the multicollinearity results obtained earlier for Pearson’s correlation coefficients 

between these five subscales and the total score. Specifically, these factors correlated significantly 

among themselves as suggested by Tabachnick and Fidell (2013). They suggest that, for a variable 

to be significant, it should have correlations of between .30 and .70. These results were an 

indication that multicollinearity was not detected in the dataset. 

Table 5—9 Collinearity coefficients 

Model 

Unstandardised 

Coefficients 

Standardised 

Coefficients   

Collinearity 

Statistics 

B Std. Error      Beta t      Sig. Tolerance VIF 

1 (Constant) -.315 .495  -.637 .525   

ACV 5.982 .159 .139 37.693 .000 .605 1.653 

ACE 6.020 .162 .227 37.154 .000 .219 4.568 

ACC 6.033 .199 .242 30.379 .000 .129 7.734 

ACD 6.194 .163 .178 37.982 .000 .374 2.676 

ACS 6.775 .169 .329 40.010 .000 .122 8.219 

a. Dependent Variable: Total score       

5.5 Analysis and characterisation of learners’ functional understanding of proof 

I have argued that developing informed beliefs about the functions of proof is important for 

learners to gain insights into the nature of mathematics and how mathematical knowledge is 

developed. The five elements constituting the LFUP instrument were intended to serve as a frame 

of reference on gathering learners’ understanding of the functions of proof; a tool that captures the 
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essence of the central aspect of mathematical knowledge development; proof. To remind the 

reader, the LFUP instrument is the tool to evaluate learners’ functional understanding of proof 

with a focus on de Villiers’ (1990) model of five themes: verification, explanation, 

communication, discovery, and systematisation. Each theme consists of no less than three Likert 

items, involving both the most common narrow (naïve) views and informed views. 

The next section focuses on characterisation of learners’ functional understanding of proof 

as either informed, hybrid, or naïve, and which of these functions accounted for informed 

understanding of the functions of proof. To this end, I used Liang, Chen, Chen, Kaya, Adams, 

Macklin, and Ebenezer’s (2009) scoring system for gaining a fuller understanding of learners’ 

understanding of individual functions of proof. I began by determining the mode, median, and 

frequencies of the individual items that make up the scale to obtain a better understanding of the 

meaning of data and next examined the data through multivariate statistical methods. 

5.5.1 Overall trends in functional understanding of proof among learners 

In the analysis of the Likert items, I was keen to understand the trends within particular groups of 

learners using a scoring system clarified as follows.  I modified Almeida’s (2000) coding 

convention for the LFUP scale overall responses. Learners’ beliefs were classified as unencultured 

if they represented misconceptions about the functions of proof. These uncultured views were 

represented by the ten negatively-phrased items in the LFUP questionnaire. Learners with a poorly 

encultured classification were those who seemed to believe that proof has just one function, most 

probably verification. However, both these beliefs were further classified as naïve. Further, 

learners’ beliefs about the functions of proof were classified as highly encultured if they were 

partially consistent with those held by contemporary mathematicians. Learners whose views 

demonstrated the nature of mathematics as exemplified in almost all five functions of proof were 

deemed to hold extremely encultured beliefs about the functions of proof. However, both highly 

encultured and extremely encultured views were further classified as informed. 

A five-tiered grading scale was used to assess learners’ functional understanding of proof. 

Mean responses were interpreted according to the following categories of views about the 
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functions of proof:  0–<1.5 (unencultured); 1.5–<2.5 (poorly encultured); 2.5–< 3.5 (hybrid); 3.5–

<4.5 (moderately encultured); 4.5–  5 (extremely encultured). The normative map in Table 5—

10 provides a summary of learners’ responses to Likert items from all the three schools.  

It is important to note that understanding of the functions of proof was judged to be hybrid 

if contradictions in the responses on the LFUP questionnaire were evident. These contradictory 

results reflected the fragmented and inconsistent nature of learners’ functional understanding of 

proof and were compatible with a plethora of studies. For instance, Healy and Hoyles (1998) 

conducted a study of mathematics classes in high schools across England and Wales to investigate, 

among other variables, factors shaping learners’ understanding of proof. They sought to explain 

these understanding by reference to a landscape of Level 1 variables (learner factors such as 

individual competency in proof) as well as Level 2 variables (class, school, curriculum such as 

hours dedicated to mathematics per week, and teacher factors), using statistical and interview 

methods. Their findings were that learners’ understanding of proof were shaped by their functional 

understanding, gender, and curriculum as they learned about proving in investigations where they 

informally tested and checked empirical examples.  

According to CadwalladerOlsker (2011), the inconsistency is a function of the 

sociomathematical norm, a term Yackel and Cobb (1996) coined to denote the mathematical 

practices and standards developed by a mathematics community. They point out that these norms 

are generally influenced by the textbook, teacher, beliefs and other subtle factors. The results also 

showed that the majority (45%) of participants’ functional understanding could be described as 

hybrid in the sense that they demonstrated poorly encultured (naïve) beliefs together with highly 

encultured (informed). I think that the fact that, overall, only 15% of the participants responded 

"undecided" to the various items, was a function of the pleas repeatedly made to respondents to 

see their first thoughts as the best. In addition, the “Leave this item blank” phrase added to the 

LFUP instrument helped to check on participants’ attentiveness while completing the 

questionnaire. Therefore, it is reasonable to suggest that the LFUP questionnaire was able to 

capture learners’ ideas about the functions of proof.  
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In the analysis, I found that only 20% of the participants held informed beliefs about the 

functions of proof. However, of these participants, none was found to show extremely encultured 

beliefs about the functions of proof in mathematics. This seemed to suggest that most of the 

learners understood only few functions of proof that were consistent with those held by 

contemporary mathematicians. A closer analysis of the data suggested that these few views were 

in fact those of proof as a means to verify. Put another way, I found that most learners were likely 

to understand the function of proof as that of verifying the truth of a mathematical conjecture 

through providing evidence from several examples.  

Table 5—10. The normative map based on learners’ LFUP mean scores 

Classification 
General 

explanation 

Mean score range 
Count 

f 

(%) 

 

c f 

From To 

Unencultured Naïve 0 <1.5 0 0 0 

Poorly encultured Naïve 1.5 <2.5 47 35 35 

Moderately encultured Hybrid 2.5 <3.5 61 45 80 

Highly encultured Informed 3.5 <4.5 27 20 100 

Extremely encultured Informed 4.5 ≤ 5 0 0 100 

      Total 135 100  

The reason for saying this was found Table 5—11 where most learners showed agreements with 

the items that “A proof is useful in making sure that a mathematical statement is true” (64%) and 

that “Confidence about the truth of a statement motivates me to find its proof” (60%). Therefore, 

overall, informed beliefs about the functions of proof came from the verification function as it had 

the highest percentage among the five themes. These results corresponded with empirical findings 

by Grigoriadou’s (2012) who was able to show that learners generally find it easy to appreciate 

the verification function of proof. She found a negligibly small change in this regard after an 

intervention programme was conducted.  

A similar result was found by Healy and Hoyles (1998). Using an open-ended 

questionnaire, they found that learners made references to verification, explanation, 
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communication and discovery; no mention was made of the systematisation function of proof. In 

addition, they found that only a substantial minority ascribed explanations to a function of proof. 

Consistent with learners whose learning of proof is characterised by memorisation of 

proofs for reproducing them in examinations rather than explorations to produce conjectures, only 

6% of the portion of participants naively disagreed with the notion that the “Proving prevents me 

from possibly inventing things about geometry.” This result was interesting in that it reflected the 

dominance of teacher and textbook as the arbiters of mathematical knowledge. Taking into account 

Usiskin’s (1982) stance that ‘the student at level n satisfies the criterion not only at that level but 

at all preceding levels’ (p. 25), I classified these learners as having not yet mastered Level 4 of the 

Hiele (1986)  theory of geometric thinking. 

One encouragingly notable result was that of the nine items phrased in the naïve beliefs 

sense, only 31% of the participants agreed with them. These statements were, for example, “A 

proof hides how a conclusion that a certain mathematical statement is true is reached”, “Doing a 

proof shows me how maths is made of isolated concepts and procedures”, “Proof restricts the 

learning of argument standards”, and so on. The result showed that the participants appreciated the 

notion of proof as a means to explain, systematise, and communicate mathematical knowledge. 

However, this result was in disagreement with the 6% of the participants who naively disagreed 

with the notion that the “Analysis of proof may lead to invention of new results”
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Table 5—11. Sample of distribution of responses across verification and explanation themes 

(n = 135) 

  Verification  Explanation 
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Strongly disagree  25 30 19  38 6 9 61 9 

Disagree  15 30 15  6 63 48 40 39 

Undecided  9 15 20  11 18 17 20 11 

Agree  49 45 46  47 32 41 9 40 

Strongly agree  37 15 35  33 16 20 5 36 

Total  135 135 135  135 135 135 135 135 

5.5.2 Trends in responses among the five themes across all three schools 

Learners’ beliefs were classified as naïve if none of the responses in each theme (Table 5—12) 

received a score greater than 3 and classified as informed if all responses received a score greater 

than 3 within each theme. The scoring of LFUP responses were done as follows: strongly agree = 

1, agree = 2, not decided = 3, disagree = 4, and strongly disagree = 5. Nine of the negatively 

worded items representing naïve beliefs about the functions of proof were reverse scored. These 

items are: T5, T11, T13, T15, T17, T19, T21, T23, and T25.  

Overall, only 15% of the participants responded "undecided" to this statement, “When I do 

proof, I understand the mathematical thinking”. This level of uncertainty is the highest among all 

of the 25 Likert scale items. This suggested that this item should either be modified or removed in 

future studies.  
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Table 5—12.  Overall LFUP responses by theme 

LFUP subscales (theme) 
Items (total number) Naïve views 

(%) 

Informed views 

(%) 

Verification T1; T2; T3 (3) 2 35 

Explanation T4; T5; T6; T7; T8 (5) 0 40 

Communication T9; T10; T11; T12; T13 (5) 90 0 

Discovery T14;  T15; T16; T17; T18 (5) 5 21 

Systematisation T19; T20; T21; T22; T23; T324; T25 (7) 48 15 

5.5.3 Patterns of the participants’ responses across the schools by theme 

I examined the overall patterns of the learners’ responses among the five themes across all three 

schools. Table 5—13 shows the mean, standard deviation, one-way analysis of variance 

(ANOVA), and post hoc comparisons for the responses by theme and by school. The descriptive 

statistics revealed that the learners across the three schools scored higher in the verification theme 

and lower in the discovery theme. The ANOVA results indicated statistically significant 

differences (p < .005) among the three samples for each LFUP theme. Post hoc multiple 

comparisons (Tukey) were performed to determine statistically significant differences between all 

possible pairs. According to the analysis across all the three schools, School A sample not only 

scored highest on all of the five themes, but also demonstrated more informed views on 

communication, discovery, and systematisation tenets of the LFUP than the School B and School 

C samples. In contrast, School C sample held more naïve to hybrid beliefs about the five tenets of 

proof. In the following subsections I provide an analysis of the patterns for each of the tenets 

(subscales or themes) across the samples in more details. 

5.5.3.1 Verification tenet 

The learners’ total scores in School A on the verification tenet were significantly higher (𝑝 < .05) 

than those of School B and School C, whereas no statistically significant differences were found 

between the School A and School B samples. Generally, most learners in the three samples 

demonstrated naïve beliefs. For instance, an examination of individual items revealed that 64% of 
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all the participants across the three samples agreed that the function of proof in mathematics is to 

make sure that a mathematical statement were true. In other words, they recognised that proof 

created for them the opportunity to use examples as means to gain conviction about the truth of a 

conjecture. However, as Healy and Hoyles (1998) argue, this function of proof has a “low status” 

and is considered as naïve.  

Two reasons led to considering the verification function as naïve. First, verification is 

associated with inductive arguments in the sense that it is used to gain conviction by checking the 

truth of a mathematical statement using several particular cases (Polya, 1954); consideration of 

empirical evidence as mathematical proof. Second, the notion that “proof makes sure” hides the 

fact that, as Lakatos (1991) correctly argues, proof does not guarantee absolute certainty in 

mathematical research. It is for these three reasons that verification is relegated to empirical 

arguments. However, situations which used verification for conviction about the truth of a 

mathematical statement provided the motivation to find a proof (de Villiers, 1998). In essence, any 

statement whose “truth” is generated through such situations has limitations and therefore cannot 

be accepted as proof. 

5.5.3.2 Explanation tenet 

A comparison of the LFUP results showed significant differences among means of the three 

samples. Overall, the mean scores in School A on this tenet were significantly higher (𝑝 < .05) 

than those of School B and School C participants. When individual items were assessed across the 

schools, an overwhelming majority (75%) of the participants disagreed with the belief that doing 

a proof shows how mathematics consists of isolated concepts and procedures. However, the scores 

of School B and School C samples were more widely distributed about the mean than those of 

School A thus implying more varied views about the explanatory function of proof. The overall 

results (approximately 60%) suggested that some learners needed to be convinced themselves by 

obtaining the reasons why a statement is true. 
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5.5.3.3 Communication tenet 

Overall, the mean scores in School A on this tenet were significantly higher than those of School 

B and School C participants. An examination of the participants’ responses across the samples 

appeared to show that they were more likely to believe that proof can be used to debate the 

correctness of mathematical ideas (57%) and that proof encouraged the learning of argument 

standards (62%). However, in a study by Healy and Hoyles (1998), it was found that all the learners 

surveyed had little or no idea of this commutative function of proof in mathematics. I attributed 

the propensity for learners to view proof as a means to transmit mathematical knowledge to the 

design of the LFUP instrument; they may have been steered towards this view by the relevant 

items provided in the LFUP instrument.   
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Table 5—13. Means, standard deviations, and one-way analyses of variance (ANOVA) by theme and by school 

Theme School A (n = 38)  School B (n = 50)  School C (n = 47)  ANOVA  Post hoc 

M SD  M SD  M SD  F(2, 132)  

Verification 3.0000 .36964  2.8900 .52985  2.6277 .58278  6.138*  School B, School C < School A 

Explanation 3.2500 .38114  2.7767 .88102  2.1277 .79720  24.667*  School B, School C < School A 

Communication 3.5044 .43060  2.9033 .83237  2.2199 .89220  29.873*  School B, School C < School A 

Discovery 3.6096 .55653  3.3533 .67397  2.9539 .56327  12.829*  School B, School C < School A 

Systematisation 3.4662 .39674  2.8629 1.06864  1.9453 1.06553  29.165*  School B, School C < School A 

*p<.005
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5.5.3.4 Discovery tenet 

There was a statistically significantly difference among the mean scores of the three samples on 

the discovery tenet. The means of School A were significantly higher (𝑝 < .05) than those of 

School B and School C samples. However, no statistically significant difference was found 

between the School A and School B samples. In general, the percentage of hybrid views on this 

tenet was the highest among the five themes. For instance, respectively 48% and 47% of the 

participants could not decide whether an analysis of proof could lead to invention of new results 

and that proof may reveal completely new areas for investigation scales across the three samples. 

These results were compatible with Healy and Hoyles’ (1998) who found that all the learners 

surveyed had little or no idea of the discovery function of proof in mathematics. I attributed the 

lack of propensity for learners to view proof as a means to discover new mathematical knowledge 

to the lack of instructional practices and experiences with the concept of proof steered towards this 

aspect of proof.    

5.5.3.5 Systematisation tenet 

According to the results from post hoc multiple comparisons, the School C sample scored the 

lowest, while the School A sample scored the highest on the systematisation tenet. An examination 

of the participants’ responses to the individual items revealed that about 66% of the School A 

sample believed that a proof shows that the truth of a theorem is independent of previously proven 

theorems. However, only about 29–36% of School B and School C participants held similar views. 

Further examination of the results revealed that School A participants were less likely to agree that 

proving involved reasoning and argumentation that is different from the rest of mathematics 

(32%), in comparison to School B and School C participants (51–72%). This finding contradicted 

Healy and Hoyles’ (1998) results which indicated that only 1% of learners made reference to proof 

as a means to systematise mathematical knowledge.  
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5.5.4 Variability of learners’ functional understanding of proof 

To refresh the reader’s memory, in Chapter 4, the decision on whether learners hold informed, 

naïve or hybrid beliefs about the functions of proof was a function of the range within which the 

mean score in the LFUP questionnaire fell. By determining the mean score, I wanted to find the 

value that represented all the various scores obtained. The result in Table 5—14 suggests that, on 

average, learners’ functional understanding of proof was characterised as naïve (M = 2.866). In 

terms of the definition of naïve beliefs in this study, this result suggested that Grade 11 learners at 

Dinaledi schools in the Pinetown school district learners held verificationist or empiricist beliefs 

about proof.  

According to van Hiele levels of geometric thinking, these learners were at Level 3 in light 

of the fact that they believed that the sole function of proof is verification of mathematical 

statements. Put slightly particularly, these learners saw reaching a conclusion based on the 

consideration of a few cases of mathematical objects as constituting mathematical proof. The 

Specific Aims served as a signpost to the commitment to ensure that learners gained insights into 

the nature of mathematics by making them understand the functions of proof in mathematics. 

However, this result suggested that there is a discrepancy between what CAPS espoused and the 

actual instructional practices. 

The standard deviation 𝑆𝐷 = .74 suggested that the scores were concentrated about the 

mean because they were spread out, on the average, about .74 above and below the mean. 

However, this result presented a rather bleak picture of functional understanding of proof among 

South African Grade 11 learners in Dinaledi schools; approximately about 86 % of these learners 

believe that proof has functions other than verification. 
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Table 5—14. Descriptive statistical analysis of LFUP scale 

 N Minimum Maximum Sum Mean Std. Deviation 

LFUP score 135 1.74 3.94 386.92 2.8661 .74048 

Valid N (listwise) 135      

Tolerance and variance inflation factor (VIF) of the LFUP data were determined. Whereas 

tolerance is an indicator of how much of the variability of the specified dependent variable is not 

explained by the independent variables in the model, VIF is the inverse of the tolerance value. The 

beta values under Standardised Coefficients (Table 5—15) helped in identifying the extent to 

which knowledge of a particular functions of proof contributed to the holding of informed 

functional understanding of proof. By “standardised” here is meant that the coefficients were 

converted into a standard format thus allowing direct comparison (Wilson & MacLean, 2011). In 

interpreting Cohen’s d, Muijs (2004, p. 194) suggests that values .00 – < .10 indicated a weak 

effect, .10 – < .30 indicated modest effect, .30 – .50 indicated medium effect and those greater 

than .50 represented a strong effect. 

Table 5—15 shows that factor ASC (systematisation) had the largest contribution in 

accounting for the variability of scores in the dependent variable (β = .329), it meant that the 

systematisation function made the strongest modest and unique contribution in explaining learners’ 

functional understanding of proof functions in mathematics. Accordingly, knowing that a proof 

systematises contributes 32.9% to understanding the functions of proof in mathematics. Put 

another way, knowing that proof systematises could be used to predict and thus characterise 

learners’ functional understanding as either naïve or informed. Understanding of proof as means 

to explain and communicate were two other independent variables that made a modest contribution 

of respectively β = .242 and β = .227 in explaining the dependent variable. 

However, the beta value for ASV (verification) was slightly lower indicating that it made 

a less contribution to holding informed views about the functions of proof. Nonetheless, all five 

factors made statistically significant and unique contributions to predicting the character of 
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learners’ functional understanding of proof since their significant values were all less than .000, 

stronger than .001, where the three zeros after the decimal indicate that this p value is never exactly 

zero. However, a p value of this kind is interpreted as less than .001. 

Table 5—15. Standardised coefficients 

Model 

Unstandardised 

Coefficients 

Standardised 

Coefficients   

Collinearity 

Statistics 

B Std. Error      Beta t      Sig. Tolerance VIF 

1 (Constant) -.315 .495  -.637 .525   

ACV 5.982 .159 .139 37.693 .000 .605 1.653 

ACE 6.020 .162 .227 37.154 .000 .219 4.568 

ACC 6.033 .199 .242 30.379 .000 .129 7.734 

ACD 6.194 .163 .178 37.982 .000 .374 2.676 

ACS 6.775 .169 .329 40.010 .000 .122 8.219 

a. Dependent Variable: Total score       

Different learners experience the concept of proof, including understanding why proof is important 

in mathematics, differently. Put another way, the variation in learners’ functional understanding 

of proof partially explains the variation in LFUP scores. The variability in proof experience 

learners’ functional understanding of proof could be explained by scores on the five subscales of 

the FUPI questionnaire. In Table 5—16, the results summarising the model showed that, in both 

R Square and Adjusted R Square values, 99 % of the variance in LFUP scores could be explained 

by considering all the five subscales. This implied that learners’ functional understanding of proof 

could be predicted by their scores on the LFUP questionnaire. This further strengthened the LFUP 

tool’s utility in measuring functional understanding of proof in mathematics.  In this section, 

reference to “model” denotes the way in which my analysis explains the data (Wilson & MacLean, 

2011).  

Table 5—16. Regression output showing model summary 

Model R R Square 

Adjusted R 

Square 

Std. Error of the 

Estimate 

1 .999a .999 .999 .757 

a. Predictors: (Constant), ACS, ACV, ACD, ACE, ACC 
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Although obtaining statistically significant results is unquestionably a noble step towards making 

a contribution to the literature in the mathematics education field, the complete meaning of 

statistical significance has to be kept in perspective (Salkind, 2012). As Cohen, Manion, and 

Morrison (2011) notes, ‘statistical significance is not the same as educational significance’ (p. 

520). Thus, I needed to check if the statistical significance obtained would provide sufficient 

rationale for policymakers to undertake programs aimed at highlighting the importance of 

functional understanding of proof in improving learners’ proof work.  

5.5.5 Comparison based on school and gender 

I was keen to understand the relation of school (at three levels: A versus B versus C) and gender 

(at two levels: male versus female) to functional understanding of proof in the selected Dinaledi 

schools. Put differently, I wanted to see whether my expectation that learners at suburban schools, 

in view of being resourced, held informed understanding of the functions of proof than those in 

township schools. Also, I was eager to see whether female learners held informed functional 

understanding of proof than their male counterparts. Most importantly, I wanted to understand if 

the effect of gender on functional understanding of proof would be different according to school 

location. To this end, a 3 (school) ×2 (gender) between-groups analysis of variance (ANOVA) 

was conducted. The factorial analysis also provided an opportunity to compare the learners’ 

functional understanding of proof per school. 

In this analysis, participants were grouped according to their schools (School A: 38 

learners; School B: 50 learners; and, School C: 47 learners). It must be mentioned that I proceeded 

to perform factorial analysis of the LFUP data with caution as one of the assumptions of ANOVA, 

namely, homogeneity of variances (equal amount of variability of the scores of three groups of 

schools) could not be assumed because the p-value associated with Levene’s statistic (F = 10.71) 

was lower than .05 (Table 5—17) (Wilson & MacLean, 2011). Put another way, given that the 

Levene’s test result provided no support for the assumption that the population variances across 

the three subsamples were the same. Proceeding with this analysis was dependent on the provision 

that the violation of this assumption is reported in the limitations section of the study. However, I 
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proceeded to perform independent factorial ANOVA on the groups because the test tends to give 

almost accurate results, particularly when there are equal or near numbers of scores in the groups 

(Aron et al., 2014, p. 321). 

Table 5—17. Levene’s test for homogeneity of variance across the three schools 

Dependent Variable: LFUP score  

F df1 df2 Sig. 

10.710 5 129 .000 

Tests the null hypothesis that the error variance of the dependent variable is 

equal across groups. 

a. Design: Intercept + School + Gender + School * Gender 

 

In Table 5—18, the means and standard deviation for each factor, marginal means, and the number 

of participants were provided. School A, located in the suburb, with relatively the best facilities 

and educational opportunities for its learners, scored highest (M =3.37). Males in the same school 

again recorded the highest scores in functional understanding of proof (M = 3.40).  

Table 5—18. Mean level of functional understanding of proof by gender and school 

 

 

 

 

 

 

 

As a way to further clarify and elaborate on these results, the scores in Table 5—18 were 

transformed into a bar graph (Figure 5—4). The results showed that learners in suburban schools 

School Gender Mean Std. Deviation n 

School A Female 3.339 .245 18 

Male 3.401 .266 20 

Total 3.372 .257 38 

School B Female 2.876 .731 34 

Male 3.125 .664 16 

Total 2.956 .713 50 

School C Female 2.202 .637 26 

Male 2.559 .789 21 

Total 2.362 .723 47 

Total Female 2.758 .751 78 

Male 3.014 .706 57 

Total 2.866 .740 135 



Functional understanding of proof in 

mathematics 

Analysis and characterisation of learners’ functional 

understanding of proof 

 

                                                                                                                                              
219 

tend to have higher levels of functional understanding of proof than those in township schools. 

Interestingly, the difference was especially large among township schools. After performing an 

analysis of the 2011 TIMMS data, Visser, Juan, and Feza (2015) suggested that it was not only 

socioeconomic factors of schools that impacted learners’ mathematics performance, but also home 

resources such as parents’ level of education. 

 

Figure 5—4. Variation of learners’ gender scores on LFUP across schools 

As can be seen in Table 5—19, the 3×2 analysis of variance (ANOVA) showed a highly 

statistically significant main effect of school on learners’ functional understanding of proof, 

[𝐹(2) = 27.955, 𝑝 < .001, 𝜂𝑝
2 = .302]. Wilson and MacLean (2011) define a main effect as the 

overall effect of an independent variable, ignoring the effect of any other independent variable, on 

the dependent variable. Further analysis showed a statistically significant main effect of gender on 

learners’ functional understanding of proof, [𝐹(1) = 4.134, 𝑝 < .05, 𝜂𝑝
2 = .031]. This meant that 

the fact that a learner were male or female affected their understanding of the functions of proof 

in mathematics. However, this difference in the level of functional understanding of proof among 
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the two groups was small. In addition, there was no statistically significant interaction between 

school×gender, [𝐹(2) = .598, 𝑝 = 552, 𝜂𝑝
2 = .009]. The implication of this result is that school 

type made no difference in learners’ functional understanding of proof for both male and female 

learners.  

In attempting to influence learners’ mathematical performance, policymakers need not only 

know what factors are currently influencing learner performance, they also need to know their 

practical significance in order to effect changes in the curriculum policy (Visser, Juan, & Feza, 

2015). Analysing the results for effect sizes, shown as values of partial eta squared  (𝜂𝑝
2), it was 

found that the effect for gender was very small even though this factor was statistically significant 

thus suggesting that the actual differences in the mean values were very small. Specifically, 

gender’s account for the variability in LFUP scores was negligibly small (3.1 %). 

Table 5—19.  The results of the 2-way ANOVA on LFUP and its factors 

a. Predictors: (Constant), ACS, ACV, ACD, ACE, ACC 

In contrast, school location accounted for about a third; 30 % of the variance in the LFUP scores, 

which, according to Cohen’s (1988) criterion, is of moderate practical significance. A similar 

finding was made by Mbugua, Kibet, Muthaa, and Nkonke (2012) who found that school factors 

such as overcrowding and insufficient teaching materials (associated with township schools in 

South Africa) impacted on learners’ scholastic performance. 

Dependent Variable: LFUP score      

Source 

Type III Sum of 

Squares df Mean Square F Sig. 

Partial Eta 

Squared 

Corrected Model 24.274a 5 4.855 12.729 .000 .330 

Intercept 1080.435 1 1080.435 2.833E3 .000 .956 

School 21.324 2 10.662 27.955 .000 .302 

Gender 1.577 1 1.577 4.134 .044 .031 

School * Gender .456 2 .228 .598 .552 .009 

Error 49.201 129 .381    

Total 1182.408 135     

Corrected Total 73.474 134     
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However, since these were results of Dinaledi schools that were selected by the DBE to 

receive additional equipment and support for effective teaching and learning of mathematics, I 

attributed this effect to a confounding variables; parents’ educational status and their support of 

and involvement in their children’s school matters. Support for this view was found in Desarrollo 

(2007) whose assembled data provided evidence of a positive relation between the degree to which 

family members were actively involved in a child’s education (for example, participating in 

activities meant to enhance learning: reading with the child, encouraging watching television 

channels with educational content, helping with homework, and so on) and scholastic attainment. 

In contrast, some studies found a relatively weak relationship between school resources 

and learner performance (for example, Burtless, 1996; Hanushek, 1997). In spite of the 

contradictory findings in literature analysing relations between school resources and scholastic 

performance, I chose not to include this aspect of research. Doing so was appropriate in that this 

relationship fell outside the scope of this study. Therefore, further research into the relationship 

between school resources and functional understanding of proof while controlling other variables 

such as class size, teacher, learner attitude, family involvement, and so on, within the Dinaledi 

group of schools is needed. 

For the purpose of further clarification, the set of pie charts (Figures 5—5 (a) – (c)) 

displayed the proportion of the variance that was attributed to each effect: school, gender, and 

school*gender interaction. The two significant effects, school and gender, respectively accounted 

for 30% and 3% of the variability in the LFUP scores. As shown in the chart, more than two-thirds 

of the variations in LFUP scores was accounted for by the sum of squares for error (SSE) in each 

case. The sum of squares for error is a measure of the total deviation of the observed values from 

the regression line. Given these SSE values, the model had a large error components and therefore 

poorly predicted the LFUP scores. 
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(a) (b) (c) 

Figure 5—5. Relative effect sizes for the school, gender, and school-by-gender interaction 

The profile plots line graph in Figure 5—6 also illustrated these results. Ignoring the effect of 

gender, the School A line was consistently higher than those of schools B and C. Ignoring the 

effect of school, the male line was consistently higher than the female line. These results suggested 

a main effect of gender and school. The fact that the lines did not touch each other was evidence 

that there was no interaction. However, as literature cited in Chapter 2 suggested, it seemed that 

these results supported Healy and Hoyles’ (1998) findings that gender plays a role in the learning 

of proof.  
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Figure 5—6. Line graph for school type and gender on LFUP scores 

This investigation revealed that the overall mean of School A (M = 3.370) was higher than schools 

B (M = 3.001) and C (M = 2.381) as can be seen in Table 5—20. Therefore, learners in School A 

held, on average, the highest understanding of the functions of proof than those learners in the 

other two schools. This finding is interesting in the sense that School A was located in the suburb 

and as indicated in Chapter 4, was resourced compared to the other two schools which were under-

resourced. It is therefore reasonable to conclude that it seemed that school resources may be related 

to learners’ understanding the functions of proof in mathematics across all genders. Also 

noteworthy was that the overall (marginal) mean for male learners (M = 3.029, SD = .257) was 

higher compared to the mean of their female counterparts thus indicating that male learners seemed 

to hold higher functional understanding of proof than female learners across all schools. 
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Table 5—20. The mean values for of the functions of proof across schools and gender 

Dependent Variable: LFUP score 

    95% Confidence Interval 

  Mean Std. Error Lower Bound Upper Bound 

School A 3.370 .100 3.172 3.569 

 B 3.001 .094 2.815 3.186 

 C 2.381 .091 2.201 2.560 

Gender Female 2.806 .072 2.663 2.949 

 Male 3.029 .082 2.866 3.192 

But, were these differences in the means of the statistically significant? To answer this question, a 

Post-hoc Pairwise Comparison Test for this school factor as the main effect was performed. As 

can be seen in Table 5—21, the Post-hoc comparisons using the Tukey test indicated that the mean 

scores among all three schools differed significantly (p<.001).  

Table 5—21.   Post-hoc Pairwise Comparison 

I was motivated to examine the data for gender differences in functional understanding of proof 

following Forgasız’s (2005) argument that it is significantly important to include gender as a 

variable in research analysis even if it is not the main focus of a study. I hypothesised that there 

(I) School (J) School 

Mean 

Difference (I-

J) Std. Error Sig. 

95% Confidence Interval 

Lower Bound Upper Bound 

School A School B .4160* .13291 .006 .1009 .7312 

School C 1.0102* .13473 .000 .6907 1.3296 

School B School A -.4160* .13291 .006 -.7312 -.1009 

School C .5942* .12547 .000 .2967 .8917 

School C School A -1.0102* .13473 .000 -1.3296 -.6907 

School B -.5942* .12547 .000 -.8917 -.2967 

Based on observed means. 

The error term is Mean Square (Error) = .381. 
   

*. The mean difference is significant at the .05 level.   
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might be surprising results given the ongoing efforts to offset the under-representation of females 

in the mathematics, science, and technology fields. In my view, the gender differences might be 

accounted for by cultural influences rather than they being innate. In a study conducted by 

Blackwell, Trzesniewski, and Dweck (2007), it was found that gender differences in mathematics 

performance only existed among learners who held fixed rather than growth mindset about 

mathematical knowledge. By mindset, according to Dweck (2014), is meant assumptions and 

expectations individuals have for themselves and others that guided their behaviour and influenced 

responses to daily events. 

Research studies on the role of gender in mathematical achievement were varied. Hyde, 

Fennema, and Lamon (1990) found that males and females have different geometrical skills and 

knowledge. In contrast, according to the factorial analysis performed in this study, there was a 

statistically significant difference between male and female learners as also confirmed by the 

consistently small differences in the means. These results were inconsistent with Halat’s (2008) 

who quantitatively investigated gender related differences in the acquisition of the van Hiele levels 

and motivation in learning geometry and found that gender was not a factor in learning geometry. 

In addition, an investigation of gender differences among 145 high school geometry learners by 

Battista (1990) found no significant evidence of gender differences in geometry proof. In light of 

the conflicting research results both from this study and those cited here, little suggests that this 

issue of gender and performance has been laid to rest. 

5.6 Chapter summary 

This chapter validated the five-factor solution of the LFUP questionnaire in order to ascertain its 

suitability to use in characterising Grade 11 learners’ functional understanding of proof in a few 

Dinaledi schools. The psychometric results were that the instrument satisfied the psychometric 

properties with factor analysis providing evidence for the maintenance of the factors as designed. 

As a consequence, survey data on LFUP questionnaires were subjected to variance tests in order 

to characterise learners’ functional understanding as either naïve, hybrid or informed. It was found 

that learners held naïve functional understanding of proof. In addition, school location contributed 
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to functional understanding of proof across gender. In particular, learners in suburban schools 

seemed to hold higher understanding of the functions of proof than learners in township schools. 

Again, gender seemed to contribute to functional understanding of proof; male learners held higher 

understanding of the functions of proof than their female counterparts.  

Overall, these analyses indicated that five distinct factors were underlying learners’ 

responses to the LFUP scale and that these factors were moderately internally consistent. 

Validation of the scale suggested that the original five-factor structure can be retained. The next 

chapter presents results and conducts analyses of the relationship between functional 

understanding of proof in mathematics and argumentation ability.  
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Chapter 6  

The relationship between functional understanding of proof and 

argumentation ability 

6.0 Introduction 

In the previous chapter I presented and analysed learners’ functional understanding of proof in 

mathematics. Apart from finding that the verification function predominated learners’ 

understanding of functions of proof, I also found that generally learners’ beliefs about the functions 

of proof were rather of a naïve nature. These results notwithstanding, mathematicians cannot 

contest the view that doing proof entails making arguments that require justification for each claim 

made. In terms of this view, understanding the function of proof as a means to communicate 

mathematical knowledge and as a means to discover new results involves engaging in 

argumentation. Hence, it is against this background that this chapter reports on the investigation 

of the nature of the relationship between functional understanding of proof and argumentation 

quality. In addition, I deemed it important to understand the relationship between LFUP and 

argumentation ability as determined by the utility of the AFEG questionnaire (Appendix B3) not 

only from theoretical perspectives but also empirically by posing this question, How is the 

relationship (if any) between learners’ quality of arguments and their functional understanding of 

proof? Data analysis was performed with the assistance of three software packages: SPSS, 

ATLAS.ti, and STATA. 

The CAPS advocated for tasks that provide learners with opportunities to investigate, make 

conjectures, and justify or prove them. Yet research in mathematics education (for example, Driver 

et al., 2000) indicates that teachers lack the pedagogical skills in orchestrating argumentative 

discourse within the classroom and therefore by extension, learners faced similar difficulties. 

However, little is known about the learners’ argumentation ability as they engage in proof and 

learning about its functions in mathematics. Perhaps more importantly, the relationship between 

learners’ functional understanding of proof and their ability to argue has not yet been explored. 
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According to Lockhart (2002), geometry provided a rich context for the development of argument, 

including making conjectures and validating them. For this reason, I was interested in determining 

whether learners’ understanding of the functions of proof was associated with their argumentation 

ability. This chapter sought to answer this question by presenting and analysing the questionnaire 

results of selected Dinaledi high participants.  

In Grade 11, learners were expected to accept results established in earlier grades as axioms 

to investigate and prove theorems of the geometry of circles (Department of Basic Education 

[DBE], 2011). However, it is only upon completion of Grade 12 that learners were expected to 

exhibit behaviours that were similar to the van Hiele theory’s Level 4; understanding the functions 

of definitions, axioms, proof and constructing formal proofs.  Alex and Mammen (2014) suggest 

that the CAPS document implied that all learners across the grades in the FET phase were to 

perform fully at Level 4 of the van Hiele theory in Euclidean geometry. From anecdotal evidence, 

I found that at Grade 10 learners merely used theorems not to prove but to solve riders which 

implied that that they were not as yet ready to make conjectures and prove them deductively. 

However, what is clear in the CAPS is that learners taking mathematics at Grade 12 were expected 

to have experienced proof in Grade 11. 

6.1 Summary of the AFEG and LFUP interaction 

Analysis of data on the AFEG questionnaire not only focused on how the learners constructed their 

arguments, but also on whether they made mathematically sound arguments in line with the content 

in CAPS. Learners’ response to the LFUP questionnaire seemed to suggest that the communication 

function of proof weakly contributed to the holding of informed functional understanding of proof. 

Given that there was a significant correlation found between functional understanding of proof and 

argumentation ability, I sought to determine the practical significance of this association as well 

as whether gender was a factor influencing the relationship between functional understanding and 

argumentation ability. To that end, I focused on the effect size and partial correlations. The 

relatively small degree of correlation could not be ignored as paying attention to this relationship 
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in instructional practices may result in practical consequences and bring about the desired change 

in learner performance.  

Second, I considered the Pearson’s product-moment correlation coefficient between 

predictor (independent) variables and criterion (dependent variable). That is, I investigated 

whether a correlation exists between functional understanding of proof and argumentation ability. 

To do this, learners’ scores on the LFUP instrument were correlated with scores on the AFEG 

instrument. A statistically significant relationship was found. Third, I checked for multicollinearity 

to understand whether functional understanding of proof items ar were highly correlated with each 

other with  r =  .80 or higher (Tabachnick & Fidell, 2013). The importance of checking high 

correlations is that it becomes difficult to interpret which of the variables is the most important in 

predicting the dependent variable (Field, 2009). The next section provides a background to the 

scores obtained from the AFEG questionnaire. 

6.2 Qualitative analysis of AFEG scores 

I present two sample learners’ written argumentation frames: Learner A and Learner B. The sample 

frames provide an example of application of the coding system adopted in this study. For instance, 

Learner A’s (Figure 6—1) argumentation was judged to be of low quality given that the statement 

provided by the participant as a rebuttal did not constitute one. Thus, Learner A provided a 

statement that could not be categorised as a condition under which his claim or ground cannot 

hold. He suggested that an argument against his claim that “angle c and e are equal” may be that 

“they might be a third and fourth angle that is equals to the mentioned ones”. This statement seems 

to point to the learners’ inability to understand the question; perhaps another example of language 

interference with learning, a phenomenon common among many in the sample for whom English 

is not their home language (Setati, 2008).  
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Figure 6—1. Learner A’s argument 

In contrast, Learner B’s (Figure 6—2) frame represented a high quality argumentation. In her 

rebuttal, she indicated that the claim would not hold if “DE is not a solid line like BC”. Indeed this 

naïve observation might arise particularly from learners who demonstrated lack of understanding 

that the auxiliary line represents a construction for the purpose of proving. 

 

Figure 6—2. Learner B’s argument 

First, all the participants’ argumentation frameworks were analysed to determine the nature of 

argumentation. To this end, Osborne et al.’s (2004) analytical tool to code participants’ responses 

in the AFEG instrument. In Figure 6—3, a summary of all the coded data as constructed by 135 

participants is provided. The various instances in which elements of TAP were used are indicated 

as C, C+G, and C+CG+R respectively indicating that there was a claim, claim with ground, and 

claim which not only included a ground but a rebuttal as well.  
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Although the data was analysed by two researchers, Cohen’s (1968) kappa coefficient (κ) 

was also used to determine the reliability of the coding scheme. In addition, this coefficient was 

appropriate to use on the basis that I adopted a multicategory rubric comprising an ordinal scale in 

which responses were classified into 1 of 5 types of categories. Cohen’s interrater agreements (κ) 

were calculated for each of the five responses using STATA (a syllabic abbreviation of the words 

statistics and data), a statistical software that enables analysis, management, and graphical 

visualisation of data. The very few unanticipated responses received were fitted into the rubric 

such that the following kappa (κ) coefficients were obtained: content = .95 and argumentation = 

.97. As Altman (1991) suggests, these values indicated very good agreement between raters. The 

salient elements of argumentation were counted and the results are shown in Figure 6—3, 

according to the schools. The notable feature of these data was that rebuttals were few across all 

the schools, thus reinforcing the argument that argumentation needs to be explicitly taught to 

learners.  

           

Figure 6—3. Overall distribution of salient features of argumentation across schools 
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 The analysis of the learners’ writing frames revealed several noteworthy findings. First, the 

majority of arguments emerging from the data was at a low level (70%). Second, though only a 

small minority, 18% of these arguments (claims, claims + grounds) included claims that were 

substantiated. Third, particularly discouraging was that only 2% of arguments developed by 

learners were characterised as being of high quality because they consisted of rebuttals. These 

findings provided deeper insights into learners’ difficulties with constructing and sustaining a 

mathematical argument. The other notable feature of these results was that learners in School A 

provided the least number of arguments developed by its learners that could not be classified.  

6.3 Exploration of a relationship between functional understanding of proof and 

argumentation ability 

6.3.1 Preliminary analysis of AFEG data for multivariate analysis 

In performing multivariate statistical analyses of the data, it was necessary to determine whether 

assumptions inherent in the analyses, such as normality, outliers, homoscedasticity, and linearity, 

were not violated. The relatively normal distribution curve of the histogram (Figure 6—4) 

provided evidence of normality.  
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Figure 6—4. The histogram for homoscedasticity 

The Normal Probability plot (Figure 6—5) provided sufficient evidence of homoscedasticity. For 

instance, the points on the P-P plot were close to the line to show linearity thus suggesting that 

there were no outliers. Therefore, the multivariate statistical assumptions and requirements were 

not violated and thus analysis was performed on the dataset. 



The relationship between functional 

understanding of proof and argumentation 

ability 

Exploration of a relationship between functional understanding 

of proof and argumentation ability 

 

                                                                                                                                              
234 

 

Figure 6—5. The Normal P_P plot for homoscedasticity 

6.3.2 Results of the relationship between functional understanding of proof and 

argumentation ability 

The overall mean score of the AFEG questionnaire showed that learners argued poorly (Table 6—

1). A research study conducted by Means and Voss (1996) found similar results. In fact, their 

results showed that learners did not know how to construct an appropriate argument. A detailed 

presentation and analysis of the AFEG data was done elsewhere (Shongwe, 2019).  

Table 6—1. The means of LFUP and AFEG instruments 

 Mean Std. Deviation n 

LFUP score 2.866 .740 135 

AFEG score 1.415 .900 135 

A correlation can be either positive or negative. The intersection of the row LFUP score and the 

column AFEG score showed that the correlation between functional understanding of proof and 
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argumentation ability was 𝑟 = .225 (Table 6—2). The footnote indicates that the two asteriks after 

.225 shows that the relationship was statistically significant at p < .01. Thus, the results from a 

Pearson-product moment correlation coefficient shows that a statistically significant correlation 

existed between learners’ functional understanding of proof and their argumentation ability (𝑟 =

 .225, 𝑝 <  .01). In this case, the positive correlation indicated that learners who scored above (or 

below) the mean on functional understanding of proof tended to score similarly above (or below) 

the mean on argumentation ability.  These results suggested that those learners who held hybrid 

beliefs tended to have the weakest ability to argue in mathematical proofs and those who held 

informed beliefs tended to have a high quality of argumentation ability. However, a correlation 

coefficient within the range of .20 and .35 showed only very weak relationships (Cohen, Manion, 

& Morrison, 2011) between learners’ functional understanding of proof and their argumentation 

ability although it was statistically significant.  

Table 6—2. The interactions correlation coefficient 

 LFUP score AFEG score 

LFUP score Pearson Correlation 1 .225** 

Sig. (2-tailed)  .009 

N 135 135 

AFEG score Pearson Correlation .225** 1 

Sig. (2-tailed) .009  

N 135 135 
**. Correlation is significant at the 0.01 level (2-tailed). 

For this study, a correlation at this level suggested that learners’ functional understanding of proof 

have limited meaning in predicting argumentation ability. Correlations as weak as this study’s, 

used singly, are of little use for individual learner’s prediction because they yield only a few more 

correct predictions than could be accomplished by guessing (Cohen, Manion, & Morrison, 2011). 

This weak relationship between learners’ functional understanding of proof and their 

argumentation ability could be accounted for by some factors influencing both variables. Learners’ 

response to the LFUP questionnaire seemed to suggest that the communication function of proof 

weakly contributed to the holding of informed functional understanding of proof.  
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However, what was also important after a significant relationship was established was 

estimating the strength of this relationship. In this analysis of results, multiple regression provided 

a description of the understanding of proof variables that can predict participants’ argumentation 

ability. This analysis was necessary to gain insight into which of understanding of the functions of 

proof supported argumentation ability. The model (the way in which the analysis was conducted 

to explain the data) in Table 6—3 provides the R square to indicate how much of the variability in 

argumentation ability is explained by functional understanding of proof.  In this the regression 

model, the adjusted R square value of .063 was reported rather than the Adjusted R square because 

the model considered only one independent variable (LFUP scores).  

The multiple correlation coefficient between argumentation scores and all the functions of 

proof variables combined, R, was computed. Then, the coefficient of determination (R2) which is 

the square of the Pearson product moment correlation coefficient, was used to express the 

proportion of variability in argumentation that can be accounted for by particular understanding of 

proof. According to Muijs’ (2004) criteria, this model is of poor fit as it meant that only as low as 

6.3 % of the variance in the argumentations scores were explained by their functional 

understanding of proof. The closer R2 is to 1, the greater is the proportion of the total variation in 

the argumentation scores that is explained (or accounted for) by learners’ understanding of proof 

functions.  

Table 6—3. A summary of the R, R square and adjusted R square in analysis of LFUP and 

AFEG 

Model R R Square 

Adjusted R 

Square 

Std. Error of 

the Estimate 

Change Statistics 

R Square 

Change F Change df1 df2 

Sig. F 

Change 

1 .252a .063 .056 .87517 .063 9.011 1 133 .003 

a. Predictors: (Constant), T15       
b. Dependent Variable: AFEG score       

It was necessary to determine the effects of the five explanatory factors (independent variables) on 

learners’ argumentation ability (dependent). Multiple regression was run to tease out which of the 
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understanding variables were most closely associated with participants’ argumentation ability. 

Beta weighting (β) in multiple regression was used to predict by how many standard deviation 

units the values of learners’ argumentation ability changed for each unit change in the standard 

deviation of functional understanding of proof. As Cohen, Manion, and Morrison (2011) point out, 

the effect size of the predictor variables is given by the Beta weightings in regression analysis. 

Important to note is that the Beta weightings for the five factors were calculated relative to each 

other rather than independent of each other (Cohen, Manion, & Morrison, 2011). The beta values 

in Table 6—4  provide interesting information about some of these factors with regard to their 

relative effects on argumentation ability.  

First, whereas knowing that proof explains had the strongest positive and statistically 

significant effect on argumentation ability where β = .502 and the level of significance, p = .006, 

knowing both that proof is a means to verify and discover had nonsignificant impact on 

argumentation ability. Second, whereas both knowing that proof is a means to systematise and 

communicate mathematical ideas yielded nonsignificant results, the former had a weakest negative 

effect (β = -.074) and the latter the strongest negative effect (β = – .327). Third, only knowing that 

proof systematises had a statistically nonsignificant result at .174 (p > .005) effect on 

argumentation ability. This made sense in that knowing that proof systematises had little to do 

with argumentation ability. The interesting conclusion here was that only having an understanding 

that proof as a means to explain can be used to predict learners’ argumentation ability. 
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Table 6—4. The beta coefficient in regression analysis 

Model 

Unstandardised Coefficients 

Standardised 

Coefficients 

t Sig. B Std. Error Beta 

1 (Constant) .001 .569  .001 .999 

ACV .140 .182 .083 .770 .443 

ACE .524 .186 .502 2.814 .006 

ACC -.073 .228 -.074 -.318 .751 

ACD .164 .187 .119 .875 .383 

ACS -.266 .195 -.327 -1.368 .174 

a. Dependent Variable: AFEG score    

Attempts to interpret the correlation between functional understanding of proof and argumentation 

ability were hampered by the possible existence of a third variable that may influence the 

relationship between the two variables. I used partial correlations technique to statistically control 

or nullify the effects of gender (Wilson & MacLean, 2011), as the third or secondary variable, on 

the relationship between the primary variables; namely, functional understanding and 

argumentation ability. In other words, I determined the association between the primary variables 

by nullifying the effects of gender and thus assuming that the learners were of the same gender. 

The partialling out of gender was informed by research which suggests, including the findings in 

Chapter 5, that learner performance in mathematics tends to be a function of gender.  

Since the zero-order correlations have already been analysed above, I considered the 

section with the partial correlations in Table 6—5. In the previous section, the significant 

relationship between functional understanding of proof and gender seemed to suggest that gender 

has influence in explaining the understanding-argumentation association. However, the partial 

correlations section shows that controlling for gender further weakens the strength of the 

significant relationship between functional understanding of proof and argumentation ability (r = 

.214, p = .013). Clearly, gender was one secondary variable that seemed to influence the 

relationship between the two primary variables. 
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Table 6—5. Assessing the influence of gender in the primary variables. 

Control Variables LFUP score AFEG score Gender 

-none-a LFUP score Correlation 1.000 .225 .171 

Significance (2-tailed) . .009 .047 

df 0 133 133 

AFEG score Correlation .225 1.000 .089 

Significance (2-tailed) .009 . .302 

df 133 0 133 

Gender Correlation .171 .089 1.000 

Significance (2-tailed) .047 .302 . 

df 133 133 0 

Gender LFUP score Correlation 1.000 .214  

Significance (2-tailed) . .013  

df 0 132  

AFEG score Correlation .214 1.000  

Significance (2-tailed) .013 .  

df 132 0  

a. Cells contain zero-order (Pearson) correlations.   

6.4 Chapter summary 

Preliminary assessment of data from the LFUP and AFEG instruments allowed for conducting 

multivariate data analysis and interpretation. This data were asubmitted to SPSS v.24 (2017) using 

multiple correlation and regression. There was a relatively weak but statistically significant 

association between learners’ functional understanding of proof and their argumentation ability. 

Gender, a secondary variable, was found to influence the relationship between functional 

understanding of proof and argumentation ability. In addition, there was no suggestion of cause-

and-effect from this relationship. Whereas, relative to each other, the explanatory function of proof 

exerted the greatest and statistically significant influence on learners’ argumentation ability, the 

communication function of proof exerted the smallest and statistically insignificant influence on 

argumentation ability. In other words, the explanatory function of proof was found to be the factor 

which best predicted learners’ success in argumentation ability. 

This result was interesting as it suggested that learners appreciate that functional 

understanding of proof creates an opportunity for them to engage in argumentation. But equally, 
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it is valid to argue that being able to engage in argumentation is encouraged by appreciating the 

explanatory function of proof. When “partialling” out was conducted, “gender” was found to be a 

factor that decreased the correlation between functional understanding of proof and argumentation 

ability. I presented, analysed and interpreted the findings by making comparisons between these 

results and various other studies. However, the LFUP questionnaire consisted of closed attitude 

items which restricted participants to certain responses. Thus, I could not detect the reasons why 

they made the choices they made in the LFUP. Therefore, in the next chapter I seek to investigate 

one learner’s sources of the beliefs she held about the functions of proof.  
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Chapter 7  

Beliefs about the functions of proof in mathematics: The 

case of Presh N 

7.0 Introduction  

It has been established in Chapter 5 that Grade 11 learners surveyed in this study hold hybrid 

functional understanding of proof. In the previous chapter a statistically significant but weak 

association between functional understanding of proof and learners’ argumentation ability was 

found. The primary focus of the current chapter is to report on the qualitative phase of this study: 

the case of Presh N (one of the participants in the survey) to explain the reasons why she held 

informed functional understanding of proof in the context of six factors: semantic contamination; 

teacher; collectivist culture; textbook; empirical arguments; and deductive arguments. I present 

and analyse semistructured interview results to explain why Presh N tended to hold informed 

understanding of the functions of proof in mathematics.  

The single most important contribution made by this qualitative segment of the study 

pertains to fact that it presents a model to understand factors influencing functional understanding 

of proof. In addition, the model will stimulate future research and inform practice with regard to 

paying attention to these sources of beliefs about the functions of proof as they may either hinder 

or promote the learning of deductive proof. Important to note is that Presh N’s case was used to 

suggest a model for understanding learners’ beliefs about the functions of proof in mathematics.  

Having obtained the general understanding that most learners hold hybrid beliefs about the 

functions of proof, I proceeded to identify a participant whose LFUP score was the highest in the 

range of moderately encultured group of participants to represent an extreme case. Utilising a 

single case study provided more insight when explaining why she held informed beliefs about the 

functions of proof in mathematics than a larger study may afford. In addition, given that factors 
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influencing learners’ functional understanding of proof are insufficiently understood in research, 

this qualitative phase of the study is uniquely positioned to investigate this phenomenon in depth.  

Conducting an in-depth interview accorded the privilege of getting a glimpse into the 

participant’s experiences in proof education besides being a stranger to her. Presh N was a deviant 

case in the sense that she scored highest (M = 3.94) in the LFUP scale besides attending a township 

school; it was interesting to explain and illuminate the reasons for this deviant score. A 

semistructured interview was not only appropriate for this segment of the study, in light of limited 

time and financial resources, but also because it required adherence to an Interview Schedule. 

There were very few silent moments during the interview, the longest being a gap of 1,700 

milliseconds; however, it seemed that that was one of the moments in which the participant 

reformulated her response. However, Clayman (2002) cautions that any delay such as this ‘may 

be interpreted as the first move toward some form of disagreement/rejection’ (p. 235).  

 As already mentioned, learners’ beliefs about the functions of proof stem from various 

sources one of which is that, in the classroom, the technical meaning of the term “proof” tends to 

be conceived of as similar to meaning it takes in everyday talk; evidence. Put another way, the 

term “proof” is a spontaneous concepts that learners acquire through their interactions within their 

everyday environment which often refers to providing evidence for a claim. More specifically, I 

was interested in understanding the influence of these factors—semantic contamination, teacher, 

textbook, culture, deductive and empirical arguments—on her enacted practice (proving a 

proposition). To this end, I needed to document empirical evidence of her views on the meaning 

of proof in mathematics by asking questions such as, “What does the term proof mean to you?” In 

doing so, I intended to capture, analyse, and interpret the participant’s experiences with the proof 

phenomenon in her proof-related task.  

The rest of the chapter is organised as follows. First, the case is described followed by a 

summary of the results obtained from both interview with Presh N and her proof-related task. 

Then, analyses of her responses obtained from the survey, interview, and proof-related task are 

undertaken. I use her survey data, excerpts from the interview, and perspectives from her proof-
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related task to illustrate the influence of these factors, highlighting the main and minor factors that 

seemed to influence her beliefs about the functions of proof. In other words, Presh N’s responses 

from multiple methods formed the basis of the results of this qualitative phase of the study. The 

analyses end with the presentation of a tentative model for understanding the factors affecting 

functional understanding of proof. The interrelationships among the factors in this model are 

justified by references to existing empirical evidence. The last section is a conclusion summarising 

the chapter.  

7.1 The case 

The employment of statistical analyses in the quantitative segment of this study showed how 

widespread hybrid functional understanding of proof was among learners, how these 

understanding correlated with learners’ argumentation ability, and the variability of the functions 

of proof across the different groups of learners (that is, gender and resourcefulness of schools). 

The only participant in this case study, Presh N was an extreme case in that she obtained the highest 

LFUP score despite attending a township school which was, at the time of the study, historically 

under-resourced. Presh N was a 17-year old female high school learner at the time of the study. 

She spoke IsiZulu and indicated that in her home English was a second language. I adopted a case 

study design to explain the sources of Presh N’s informed functional understanding of proof with 

some degree of thoroughness. Put another way, a case study was preferred as a strategy to provide 

answers to the “why?” question that I posed as the third research question (McMillan & 

Schumacher, 2010; Yin, 2014). Presh N’s beliefs about the functions of proof were influenced by 

her experiences with the concept of proof. The experiences were investigated from these 

perspectives: semantic contamination, teacher, collectivist culture, textbook, empirical arguments, 

and deductive arguments. 

7.2 Summary of interview and proof-related task results 

In this section, I first provide a summary of factors facilitating Presh N’s understanding of the 

functions of proof in mathematics from an analysis of her own voice expressed both orally and 

verbally. To refresh the reader’s memory, Presh N was purposively selected on the basis that she 
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scored highest in the LFUP questionnaire. A pattern-matching analysis of interview transcript 

showed that the “collectivist culture” and “teacher” factors had the greatest influence on her 

functional understanding of proof. The van Hiele theory supported by Edwards’ (1997) notion of 

“territory before proof” were used to analyse Presh N’s written work. Her written response to the 

proof-related task showed that although she achieved Level 4 of the van Hiele theory of geometric 

thinking, her work reflected either a misconception of the term “proposition” or lack of experiences 

with activities on conjecturing which not only involves deductive reasoning but also inductive 

reasoning.  

Although the findings in this qualitative phase were in themselves not generalisable, ‘they 

can easily become such if carried out in some numbers, so that judgements of their typicality can 

justifiably be made’ (Giddens, 1984, p. 328). To understand how typical or atypical Presh N’s 

experiences were, as Fraenkel, Wallen, and Hyun (2012) suggest, replication across individuals 

rather than groups would be needed to make results worthy of generalisation. However, given 

limited time inherent in investigations such as the present, the findings were intended to lay the 

foundation for the formulation of hypotheses in subsequent research that document functional 

understanding of proof in mathematics.  

In any event, the intention in this segment of the treatise is not to generalise the findings 

but to describe and explain the case of a learner found to be the bearer of ideas necessary to 

understand why some learners hold the beliefs they hold about the functions of proof. Thus, this 

phase of the study focused on analysing factors influencing hybrid functional understanding of 

proof from the perspectives of a high school learner. Put another way, in this qualitative component 

of the present study I attempted to recount the case of Presh N, the learner of interest in this study, 

in relation to the factors influencing her understanding of the functions of proof. 

7.3 Analysis of interview data 

Initially, two participants, Linda and Presh N, whose scores were extreme were selected on the 

basis that they respectively obtained the highest and lowest scores among participants found to be 

holding hybrid beliefs in the LFUP results. The participants were read each LFUP statement and 
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their response and were asked to explain why they had given the response they gave. There were 

few instances where it was necessary to clarify or interpret an item. These participants were free 

to change their responses. As a consequence, responses were rescored; and it was found that 

Linda’s new score did not fit the extreme case categorisation as planned. For this reason, he took 

no further part in the study. Hence the sole interviewee was only Presh N.  

The analysis process not only entailed verbatim transcription of interview data but also 

noting nonverbal and paralinguistic communication in field notes in the interview schedule. The 

analysis process involved the use of the two principal modes in ATLAS.ti: data level and 

conceptual level. The data level involved reading the quotations and subsequently assigning codes 

to selected segments, writing memos and comments that contained my interpretations for each 

quotation. Memos and comments are methods used to record one’s ideas and observations about 

codes, and quotations (Friese, 2011). In ATLAS.ti, coding is viewed as the procedure of 

associating code words with quotations. The code may contain more than a single word, but should 

be concise (Friese, 2011). The coding decision was mainly guided by the conceptual framework. 

The conceptual level focused on constructing concepts and theories based on relationships between 

codes, data segments, and memos.  

The benefit of this conceptual process is that it helps to uncover other relations in the data 

that were not previously conceived. Then, codes were assigned to families (categories). 

Groundedness, the number of quotations associated with a code, determine the strength of the 

influence (Friese, 2011). For example, in *Semantic contamination, the number 8 meant that the 

code *Semantic contamination has been used for coding fifteen times. Also, density, the number 

of other codes to which a code is linked, was 2. Analysis began with assigning manually created 

codes to segments and writing memos that contained my comments or thinking about the data 

using ATLAS.ti software. I built networks from the codes I had created which together with 

memos, formed the framework for testing theory. The auto coding facility in ATLAS.ti was used 

to scan the transcript and automatically assign the predetermined codes. The codes were drawn 

from the conceptual framework generated from literature review. The network views facility 
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helped in the conceptualisation of the relationships between codes, segments, and memos with the 

aid of a diagram. 

This analysis process also included the use of excerpts to support interpretation (Cohen, 

Manion, & Morrison, 2011). By interpretation of data is meant identifying its meaning (Brenner, 

Brown, & Canter, 1985). The data presented here were collected through an audiorecording of the 

interview with the participant, Presh N. Then, it was transcribed and analysed through coding and 

interpreting. Data resulting from the interview is labelled as excerpts (the units of analysis for this 

phase of the study) which were associated with the relevant factor influencing Presh N’s informed 

functional understanding of proof. Additional description followed this label to provide more 

information as to what these excerpts represented. Put differently, in the analysis of the results 

(that is, Presh N’s voice), I provided the most compelling evidence through excerpts to support 

the analysis. 

The analysis began with coding of data segments guided by predetermined categories 

derived from hunches and literature. The final step was patterning (finding a relationship among 

categories). Whereas a data segment includes a word, sentence containing a single idea, episode, 

or piece of relevant information, a code is the abstract term (for example, verification, explanation, 

communication, and so on) for describing a segment (McMillan & Schumacher, 2010). Thus, the 

coding process is the analytical translation of responses and participant’s information into 

categories (Miles & Huberman, 1994).  In interpreting the results presented here, I was guided by 

my conceptual and analytical frameworks. As discussed in Chapter 2, the conceptual model 

provides six categories of factors impacting functional understanding of proof. Seeking patterns 

was facilitated by ordering categories into “major” and “minor.” I present excerpts (coded 

segments that consisted of a quotation and a linked code) from interview with Presh N, interspersed 

with my interpretation, to capture the essence of her perspectives. A category was labelled major 

if it had the most “contradicts” and “associated with” relationships. Otherwise, it was a “minor” 

category.  
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I found that Presh N maintained prior empiricist beliefs about the functions of proof despite 

appreciating the generality of a deductive proof. Based on the overall impression gained from 

Presh N’s perspectives, I think that learners can be made to modify their beliefs about the functions 

of proof if they experience cognitive conflict between their beliefs and mathematical knowledge. 

For Presh N and most other learners, theorems are merely mathematical facts to be learned and 

reproduced in tests and examinations. There was evidence that Presh N indeed seemed to hold 

informed views about the functions of proof beyond verification. When asked to mention the 

functions that proof performs in mathematics, she said “When you are proving you... there is a 

communication”. Her view is consistent with Schoenfeld’s (1994) assertion that proof can be seen 

as a way of communicating with others the ideas resulting from sound thinking. By mathematical 

thinking he meant the ability to do or use mathematics. Presh N also regarded proof as making 

sure (except that for her, it meant relying on the authority of textbook or teacher) and making her 

understand mathematical thinking.  

The reason I regarded Presh N as a learner with informed views about the functions of 

proof was that even a mathematician, Schoenfeld (1994), thought of the functions of proof in three 

ways: ensuring certainty (established through verification); a way of communicating ideas with 

others; and a way of coming to understand (explanation). Presh N's textbook, as is the case with 

many others, was designed for practice of techniques within a particular timescale to pass 

examinations rather than to reflect the nature of mathematics. Yet, she expressed views which 

seemed to reflect a conceptualisation of mathematics as a body of knowledge consisting of 

connected collection of ideas consistent with viewing mathematics as a dynamic, growing, and 

changing discipline while at the same time seeing it as  body of knowledge meant to be learnt by 

rote memorisation as transmitted by her teacher. By rote memorisation is meant learning which 

did not make connections with prior knowledge and is soon forgotten once deliberate attempts to 

remember it stopped (Wray & Lewis, 1995). In the next subsections, the results are presented and 

interpreted around the six factors explored in Chapter 2 in this order: semantic contamination; 

teacher; collectivist culture; textbook; empirical arguments; and, deductive arguments.  
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7.3.1 Theme 1: Semantic contamination 

I presented Presh N with a “documentary proof” from the bank. When presented with this letter 

from the bank certifying the veracity of the account holder’s details, Presh N indicated that the 

role of the bank stamp was to verify the details as provided on the “confirmatory letter”. She further 

argued that the stamp as empirical evidence was similar to a proof as understood in the 

mathematical sense thus giving credence to ‘the fact that outside of mathematics, proof can be 

indistinguishable from evidence’ (Healy & Hoyles, 2000, p. 396). Her understanding of proof in 

this case resembled an everyday rather than a mathematical usage of the term “proof” as 

convincing through a logical sequence of finite steps. She reached this conclusion based on the 

fact that both instances arrived at a conclusion through taking some steps: 

This proof I can say they are almost similar because there’s details that aah... the … the client 

or customer that went to … to … to request for…  for the statement can agree to what they see 

on the statement by agreeing that this is their information so when the bank aah place the stamp 

on this statement they … they verified with the customer that this is the is their information and 

the customer agreed and they … they also took steps probably by aah checking the … the clients 

ID number and this is what they came up with so.  Yaah, even though there’s not a lot of 

similarities but they took certain steps to come up with the final aah statement. 

In emphasising her point, she pointed out that “I see the name of the bank, the branch, the date 

and that it’s the proof”. This seemed to be the effect of everyday ways of verifying the 

“truthfulness” of claims. Here proof refers to providing visible evidence to convince someone of 

the correctness of the banking details (Reid & Knipping, 2010). However, she seemed to contradict 

herself in this regard. For instance, when asked “How can the learner be sure that the statement 

that “The sum of the angles of a triangle sum up to 1800” always works?” she responded: 

The learner can use aahmm. can use a theorem that talks about parallel lines and a triangle 

drawn between parallel lines a sketch yah... a learner can use a sketch which has parallel lines 

and in between the parallel lines there’s a triangle and use all the theorems that they have learnt 

to… to work it out and see using the angles of that triangle talk about it using theorem. 
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In the excerpt above, she seemed to indicate that deductive arguments are mathematical proof, yet 

she equated everyday “proving” to using axioms to logically arrive at a conclusion. She held both 

mathematically adequate views as well as those that are inconsistent with those held by the 

mathematics community. These beliefs coexisted in one individual and seemed to be used 

interchangeably. In this case the learner was unable to evoke each belief on the basis of the context. 

Put another way, they were unable to appreciate “proof” as an ambiguous term that the learner 

thought to be consistent with conventional mathematical knowledge. Instructional practices need 

to place emphasis on the difference between the everday use of the term “proof” and its technical 

use in mathematics. The following excerpt seemed to highlight the unhelpful consequence of 

believing that the term can be used unselectively: 

This proof [letter of confirmation] I can say they are almost similar because there’s details that 

aah... the … the client or customer that went to … to… to request for… for the statement can agree 

to what they see on the statement by agreeing that this is their information so when the bank aah 

place the stamp on this statement they … they verified with the customer that this is the is their 

information. 

It is in light of Presh N’s crystalised perspective that I think very few will contest the notion that 

the inability to distinguish “proof” from its everday sense seemed to hinder understanding of proof 

and its functions in the field of mathematics. This perspective could be considered as indicative of 

the lack of mathematical knowledge and therefore it is incumbent upon instruction to create 

opportunities aimed at addressing it. As Lakatos (1991) points out, through conjectures and 

refutations, practices which rely on linguistic knowledge, conventions and rules, mathematical 

knowledge could be developed. So, regardless of the authority, everyday proof does not become 

proof in a mathematical sense.  It is reasonable to suggest that the learner’s simplicstic attitude to 

the term “proof” required deliberate instruction as it is inappropriately dominant. 

She seemed to hold “fixed mindset” notions which, as Boaler (2013) asserts, are not only 

inconsistent with recent research about the plasticity of the brain, but also harmful to all learners. 

However, the results here showed that indeed it is difficult for learners to abandon completely 

notions of empirical evidence being mathematical proof. Heinze and Reiss (2003) conducted an 
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interview study of eleven Grade 8 learners from a sample of 700 learners chosen according to their 

achievement in a written test on geometry items. They found that learners had difficulties to bridge 

the gap between empirical argumentation and deductive argumentation. Chazan (1993) found 

similar views of proof when he interviewed seventeen learner, nine females and eight males that 

lasted for one hour. Similarly, the conclusion I could reach from Presh N’s perspectives was that 

for as long as steps were provided to reach a conclusion, everyday arguments were to be considered 

as similar to mathematical proof. However, those arguments that rely on empirical evidence within 

the realm of mathematics do not constitute mathematical proof. 

7.3.2 Theme 2: Teacher 

Presh N’s thoughts about the fucntions of proof were surprisingly in contrast with research 

findings. She indeed presented a fascinating case. She highlithed the dominant role her teacher 

played in the classroom. Referring to her teacher, when probed about her role in proving, she said 

that  “They’ve been proving for quite some time more than us because are just learning these 

things they’ve been exposed to these problems for a while more than us”. She seemed to set the 

tone of how she perceived her teacher; as a transmitter of unchanging knowledge by suggesting 

that she viewed her role as that of absorbing what the teacher said: 

My role is to … is to go over it again aah maybe try to find out how other learners eeh .... how did 

the other learners find the … the proof, how…  how did they managed to solve it without the teacher 

just basically going through it again and maybe asking maybe more questions from the teacher … 

This modest view is consistent with learners in countries with a collectivist culture. In a collectivist 

culture, the teacher commands a highly respected position; their authority in the classroom is 

seldom challenged.  The teacher, by virtue of their legislated position, dominates classroom spoken 

and written discourse (Morton, 2012; Hayes & Matusov, 2005). Seemingly, she experienced 

limited, if any, opportunities to engage with the proof content. While Presh N was correct in 

profiling the teacher as an expert by virtue of having had more education in mathematics (Lampert, 

1990), she did not paint a picture of a teacher that used this knowledge to enculturate this or her 
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learners into the practices of mathematicians. But, rather, the teacher’s role seemed to be the 

transmitter of mathematical knowledge. 

According to Anderson (1989), teachers who spent more time interacting with learners 

about content create better opportunities for learning. Teachers’ choice of task and their 

accompanying questions and comments during classroom affected the development of learners’ 

functional understanding of proof in mathematics (Peressini, Borko, Romagnano, Knuth, & Willis, 

2004). Presh N’s perspective seemed to suggest that her experiences with proof was characterised 

by the teacher providing answers. That seemed to suggest lack of conjecturing and reliance on 

teacher. Further evidence of the importance accorded to the authority figure, the teacher, Presh N 

argued that she sought thinking strategies about learning to do a proof from her teacher (and peers). 

Hadas and Hershkowitz (1998) suggest that finding surprising results and the impossibility of 

checking al1 cases inductively lead to a need for a deductive proof. Schoenfeld (1994) adds that 

the need for a proof is not only powerful but also necessary because patterns and trends can be 

deceptive. But, in Presh N’s case, the need for proof comes from the teacher whose didactic 

contract is to fulfil the aspirations of a curriculum designed to make learners reproduce rather than 

take the zig-zag path as highlighted by Lakatos (1991).  

It is reasonable to assume that she viewed her teacher as “all-knowing” including knowing 

theories of how learning takes place. This result was consistent with Inglis and Mejia-Ramos’ 

(2009) suggestion that learners perceived learning as a process of transferring information from 

authority figures to them. In response, to succeed in making mathematics classrooms sites of 

conjecturing rather than places of transmission of knowledge, I endorse Cobb and Yackel’s (1996) 

suggestion that reliance on the teacher who learners regard as having privileged access to 

knowledge should be declared unacceptable.  

However, it would be naïve to apportion blame to the teacher. As is the case in South 

African schols, all the Dinaledi schools that participated in this study relied upon the concepts in 

CAPS to pace and structure  studied in each term of the school year. Therefore, teachers themselves 

had little to no authority to change this scheme and by extension, learners cannot deviate from 
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what the teacher has set out to achieve on a particular lesson. As Watson (2008) argues, theories 

from cognitive psychology whose methods of instruction were unhelpful for inducting learners 

into mathematical practices (for example, empirical exploration, conjecturing, refutations, or 

argumentation) since they are less concerned with the practices of mathematics community. She 

further pointed out, these theories are concerned with seeking the fastest and most productive ways 

to teach learners how to find answers to broadly isomorphic problems. A similar perspective is 

echoed by Hersh (1997) who suggests that the school mathematics denied learners opportunities 

to experience the wonders of mathematics by offering them what Boaler (2010) refers to as an 

impoverished version of the subject in which mathematicians engaged.  

Therefore, it is fair to suggest that school mathematics and the mathematics as practiced 

by mathematicians were different for many reasons one of which is that, as Boaler (2010) points 

out, mathematicians work on long and complicated problems that involve combining many 

different areas of mathematics which encouraged persistence. In contrast, she points out that school 

mathematics is filled with hours of “problems” that involved the repetition of isolated procedures 

and rules. 

I share Harel’s (2008) view that the goal of instruction must unequivocally be to gradually 

refine learners’ proving activities towards those practiced by the mathematicians of today. For 

instance, Mudaly (2004) investigated, among other ideas, whether learners developed a better 

understanding of geometric concepts when using Sketchpad. The results showed that South 

African learners were able to discover some geometric facts and ideas through conjecturing and 

refuting their own conjectures with Sketchpad. This finding led to his recommendation, with which 

I concur, the possibility of integrating DGS into the South African mathematics curriculum to 

facilitating the learning of deductive proof. Hence, very few will contest the suggestion that his 

findings demonstrated that despite the constraints imposed by the need to prepare learners for tests 

and examinations, environments in which learners conjecture and refute can be created in our 

mathematics classrooms. 
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While acknowledging that making judgements about educational aims is a difficult task, 

the stance taken here is that the Specific Aims in CAPS are unrealistic in that the concepts it 

embodies were not reliably assessed in examinations. For instance, in the Grade 12 final 

examinations, candidates are required to prove theorems without bothering about the meaning of 

the term proof, at least. They are expected to do proof when they actually do not have the 

appropriate mathematical understanding of the term “proof” let alone appreciating the zig-zag 

between inductive observation and deductive generalisation, and experiencing mathematical work 

that point to the tentative nature of proof and by extension, mathematical knowledge. Small 

wonder that most of them perform poorly in Euclidean geometry than they do in algebra where 

they hardly prove anything. All of these contribute to the understanding of the concept of proof in 

mathematics. However, more specifically, the lack of consensus in mathematics education about 

the meaning of the term “proof” (Balacheff, 2008) does not make the situation better.  

The point I was trying to make here is that instructional practices do not engage in 

functional understanding of proof and that the education officials responsible for curriculum 

delivery were unaware of this problem. The intention of shining the spotlight on functional 

understanding of proof in mathematics forms part of attempts ‘to bring the practice of knowing 

mathematics in school closer to what it means to know mathematics within the discipline’ 

(Lampert, 1990). 

7.3.3 Theme 3: Collectivist culture 

Of all the factors influencing functional understanding of proof, the impact of a collectivist culture 

was strongest. Typical of a collectivist perspective on the world, when asked to explain the reason 

why she was sometimes unable to do proof, she strongly made the point that one has to blame 

themselves for failing to apply rules learnt in class. In this regard, she said: 

Ahh... it might be the language or how the question is put or you didn’t exhaust all your theorems 

or yah all your theorems that you’ve learnt, I just said it is because you are having a problem in 

understanding the statement what it says or you haven’t applied every, you haven’t applied … 
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In her explanation as to how she learnt theorems, she said that “I learn my theorems by obviously 

going through them reading try and understand follow the the … the rules and then apply them in 

a problem.” The tendency to view proof as somebody else’s mathematics is not peculiar to high 

school learners. In Almedia’s (2000) investigation of undergraduate mathematics students, he 

found that they ‘see proofs as something that is an external activity rather than an internal activity 

meant to provide insight and understanding’ (p. 871). In this study, Presh N pointed out that there 

is very little that learners can do since mathematicians provided all proofs and theirs as learners 

was merely to memorise rather than attempt to “invent” theorems: 

I think as students we can .we rely on … on the text books that are written by mathematicians so 

by following their way  of of proving it is almost guaranteed that you are on the right track you 

you don’t just come up with your own. 

However, her beliefs were punctuated with contradictions. Attempts by Presh N to present views 

that were constistent with mathematical knowledge as practiced by the mathematical community 

were undermined by images of this influence. For instance, she mentioned that: 

Math, topics in maths are closely related mmh... Nothing is new you can always relate to the 

previous chapter you did so you can see a pattern forming and you can see lot of relationships 

things that you can compare or say you can use to solve other problems in different topics. I 

mean you can you can you can use aah … ahh...  For example algebra, algebra is not only used 

for aah solving x you can use it in word statements you can use it in in geometry, Euclidean 

geometry so it’s not something new that comes up when you do a different topic it’s a follow up 

or a continuous it’s just that it’s how you use it, it’s how apply it. 

Also, she defined mathematical proof as a process invloving conjecturing through inductive 

reasoning to eventually applying deductive reasoning to complete a proof by saying that “Proof in 

mathematics is about coming up with ideas and developing eeh... Formulas by using things like 

theorems and measurements …” Further, she was presented with a ficticious learner’s working.  

When asked to explain whether she agreed with the learner’s argument that a theorem is 

proven, she articulated the mathematical view of proof by saying that the learner’s view was 

incorrect. This result was contrary to Healy and Hoyles’ (1998), who found that learners still 
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sought more examples to be sure that a statement were true despite having produced its deductive 

proof. 

Not completely because the learner only relied on the protractor to come up with their conclusion 

but aah... his conclusion is not supported by statements or other theorems that were … were that 

they happen to be proven by mathematicians like maybe theorem of Pythagoras or things like that 

he  only relied on the protractor, it’s not proof enough ... 

In contrast, the following statement ssuggetsed that she relied on memorisation rather than the 

conjecturing she indicated above, “I learn my theorems by obviously going through them reading 

try and understand follow the … the … the rules and then apply them in a problem.” Presh N’s 

views mirrored Lampert’s (1990) argument that doing mathematics means following the rules 

provided by the teacher and remembering and applying the rules correctly means knowing maths. 

There was a glaring contradiction between what Presh N expressed as an ideal situation in 

which mathematics was viewed as composed of interrelationships among ideas and the actual 

classroom practice of memorising theorems as prescribed and demonstrated by the teacher. This 

reflects the discrepancy between the Specific Aims in CAPS and the actual learning outcomes. As 

a consequence, academic performance of learners is bound to be affected.  Further, this situation 

reduced the opportunities for learners to experience practices akin to mathematicians and thus 

develop the view that mathematical knowledge is not fixed. 

7.3.4 Theme 4: Textbook 

The effect of the textbook as a source of Presh N’s functional understanding of proof were the next 

prevalent after the collectivist culture. For instance, her response to the question “How does the 

textbook help you to do proof?’, was “Aah the text book eeh it’s got almost all the relevant 

information that I need so that’s how it helps me I get most of the information that I need from the 

text book”. This response seemed to suggest complete reliance on the textbook. However, the 

textbook she was using (that is, Siyavula), as is the case for many other textbooks, merely presented 

proofs without giving its reader opportunities to get some insights into the functions of proof 
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through conjectures. Stylianides (2009) suggests that mathematics textbooks can play an important 

role in providing learners with opportunities to engage in proof. This approach in textbooks seemed 

to promote the verification function of proof and was similar to that in Japan situation and did not 

seem to embody the Specific Aims advocated in CAPS. She also insisted that textbooks were 

reliable sources of mathematical knowledge becaue they were written by mathematicains: 

I think as students we can .we rely on … on the text books that are written by mathematicians so by 

following their way  of … of proving it is almost guaranteed that you are on the right track you … 

you don’t just come up with your own. 

Of concern was her attempt to define a mathematical theorem as something that can be true or 

false when, in Lakatos’ (1991) terms, theorems are seen as not-yet-falsified conjectures. Most 

importantly, I concurred with Hanna (1995) that mathematical proof only provided ‘contingent 

truth, rather than absolute or infallible truth, in the sense that its validity hinges upon other assumed 

mathematical truths’ (pp. 46-47).  She points out that mathematicians, much as they would like to 

avoid errors, were as prone to making them as anyone else, in proof and elsewhere. As emphasised 

by Hofstadter (1997), ‘any redblooded mathematician would scream murder at me for referring to 

a “fact” or “theorem” that I had not proved’ (p. 10). While she emphatically mentioned that she 

goes through the textbook four times a week, it seemed that it was not helpful. In terms of the van 

Hiele levels, she had not mastered the relevant language for deduction as her definition of a 

theorem is different from the textbook which considered a theorem to be a hypothesis (proposition) 

that could be shown to be true by accepted mathematical operations and arguments. What she 

missed was that only once a statement is deductively proven to be true, it is referred to as a theorem. 

Also, whereas the textbook defined a proof as the process of showing a theorem to be correct, for 

Presh N, a piece of paper stamped “proof” on a bank letterhead was similar to a mathematical 

proof.  

Although there was evidence of participant attempting to understand mathematics as 

pattern forming, frequent reliance on textbook tended to limit opportunities for engaging in 

argumentation in proving lessons so that they could support own or critique other’s ideas as they 
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attempted to do proof. Presh N’s beliefs about the functions of proof did not only seem to lack a 

coherent framework, they were also inconsistent with those of contemporary mathematicians. She 

harboured both adequate and inadequate views such as that mathematics is an activity of finding 

and studying patterns and relationships yet indicating that she dependent on the teacher who has 

final authority on mathematics. These findings were consistent with those of Schoenfeld (1989) 

and Hoyles (1997) in showing that learners who were able to do proof held beliefs that empirical 

evidence is mathematical proof.  

7.3.5 Theme 5: Empirical arguments 

The review of literature led me to expect that Presh N was inclined to confuse empirical arguments 

with everyday reasoning (Figure 7—1). I was pleasantly surprised to find that this phenomenon 

was the least prevalent. The finding was surprising in that there was very little that seemed to 

suggest even for one moment that she had a challenge to distriminate between empirical arguments 

and deductive proof.  

 

Figure 7—1 Checking Presh N’s perspectives on influence of empirical arguments 

I constructed different triangles and 

measured their angles with a 

protractor. This is proof that “The 

sum of the angles of a triangle sum 

up to 1800. 
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Her views were reminiscent of Lakatos' (1991) notion of deductively proving as connecting new 

assertions to a set of previously proven theorems. To illustrate this point, when asked to comment 

on whether making an observation of several cases yielded a proof, this is what she said: 

Mmmh...not completely because the learner only relied on the protractor to come up with their 

conclusion but aah... his conclusion is not supported by statements or other theorems that were 

… it’s not proof enough. 

She seemed to understand that, in proving, it is virtually impractical to investigate or exhaustively 

measure all cases to which a statement applies – she demonstrated her appreciation of limitations 

of informal proofs. The response suggests that some learners are aware that checking a few cases 

is not tantamount to proof; they are aware that checking more varied and/or randomly selected 

examples does not constitute a proof. This result seemed to contradict findings that learners had 

difficulty in making a distinction between inductive proof and deductive proof (for example, 

Chazan, 1993; Schoenfeld, 1994). In addition, this result seemed to undermine Van Asch’s (1993) 

attempt to explain why learners seemed to prefer empirical arguments over deductive arguments: 

It is beyond any doubt that the natural way of learning is an inductive way … Examples and counter-

examples play a dominant role in this process … A deductive approach is in fact in conflict with 

this natural course of things. (p. 312)  

Segal’s (2000) agrees with this view thus: 

[E]mpirical proof, rather than deductive, are closer to everyday reasoning, in which, for example, a 

general result may be induced from a set of particular instances or inferred from a set of particular 

instances or inferred from an archetypical specific instance, ignoring any instances which differ too 

greatly from the archetype. (p. 196) 

Presh N’s survey results on the systematisation function were not only interesting but also 

consistent with her interview views on what it meant to perform a deductive proof. In seven items, 

she positively answered five of them (71%). Most notably, she correctly disagreed with the 

statement that “Proving does not require one to decide which axioms may be chosen as true.” 

Generally, most learners struggle to move beyond Level 3 of the van Hiele theory of geometric 
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thinking because they tend to regard empirical arguments as proof even after providing a deductive 

proof. It was interesting to find a learner who could distinguish between informal proof and formal 

proof; this result provided hope that doing deductive proof may not be that daunting a task for 

instruction. That is, learners can be able to appreciate that a deductive proof guarantees safety from 

counterexamples (Chazan, 1993). It is therefore reasonable to suggest that she seemed to have a 

good grasp of the systematisation function of proof.  

7.3.6 Theme 6: Deductive arguments 

Triangulation of data resulted in the emergence of a new factor influencing learners’ functional 

understanding of proof: beliefs about deductive proof. I triangulated Presh N’s data from three 

sources: interview, survey, and proof-related task in search of regularities, clues of corroboration 

in forming themes, and reduce bias and misrepresentation of views by participant. In doing this, I 

was mindful of Patton’s (2002) caution that inconsistencies arising from triangulation of data need 

not be seen as weakening the evidence, but as an opportunity to uncover deeper insight into the 

relationship between the data and the phenomenon under study.  

In the interview session, when probed to explain why she thought that proof is a means to 

verify, this was her response: 

Because when you are proving you ... bringing together the ideas you have or you know about aah.... 

in this case geometry things you’ve learnt from previous grades putting them together things … that 

are relevant to what you are trying to solve … 

This response was contradictory to Chazan’s (1993) finding that learners believe that ‘deductive 

proof is simply evidence’ (p. 362). To the contrary, she showed an appreciation of the fact that a 

deductive ‘proof confers universal validity to a statement’ (Hadas et al., 2000, p. 128). However, 

these views were contradictory to what she espoused earlier in the interview. In one moment she 

seemed to suggest that because in the letter from the bank steps were taken to have “the name of 

the bank, the branch, the date and that it’s the proof”. She indicated that for her, the two are 

“proofs” on the basis that “they also took steps” to reach a conclusion. She seemed to hold a 

misconception about the word “step”. The steps taken in mathematical proof are different in that 
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previously agreed statements were presumed as true by the mathematical community while in 

everyday proof the steps followed were not subjected to consensus and therefore could not be 

regarded as knowledge. Other institutions may decide to follow completely different steps to do 

the “proof” and still insist that they had provided a “proof”. For instance, rather than relying on 

checking the client’s identity (ID) number, biometrics could be used. Thus, the conflation is in the 

word “steps” as used in the mathematical context and everyday life. She also seemed not oblivious 

to the fact that even a single case, rather than a few, provides evidence in everyday life.  

An examination of her responses to the LFUP questionnaire is fascinating to note. She 

strongly disagreed with item T2 of the verification function, “Some maths propositions are true 

even if they have not been verified to be so by proof.” Presh N seemed to lack some understanding 

of the history and development of mathematics. Her expression of disagreement with this item was 

inconsistent with the interview finding that for her, evidence constituted proof. Generally, humans 

believe many phenomena to be true even in the absence of proofs. For example, there is no proof 

that the sun will rise from the east the next day yet we believe it will on the basis of previous 

experiences or evidence. That notwithstanding, it is important to note that this evidence is 

empirical therefore does not constitute a proof in the mathematical sense. Presh N’s response gave 

credence to Lockhart’s (2002) point that mathematics is one of the few school subjects that is 

taught without reference to its history and philosophical underpinnings. 

The history of mathematics has shown that theorems are eventually true on the ground that 

no counterexamples have emerged. For example, Fermat Last Theorem was referred to as a 

theorem long before a proof was found; because no one had found a case that served as a 

counterexample to it, for over three centuries. Another classical example of this phenomenon is 

the Riemann conjecture, which is a statement about a mathematical curiosity known as the 

Riemann zeta function. If proven, this function will be used to predict where each prime number 

will fall on a number line and how many primes exist below a given number. Prime numbers are 

scattered in an inscrutable pattern across the number line. Hundreds of researcher mathematicians 

continue to seek a proof for this conjecture; so far none of these proofs have stood up to scrutiny. 

Once found, the proof of this conjecture will not only illuminate the prime numbers, but will also 

https://www.sciencenews.org/article/creeping-riemann
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confirm many mathematical ideas that have been shown to be correct assuming the Riemann 

conjecture is true (for example, Griffin, Ono, Rolen, & Zagier, 2019). That is, a vast number of 

additional mathematical propositions have been derived from this conjecture because no 

counterexample has been found. 

Therefore, in Bayesian sense, absence of counterexamples and proofs of corollaries to a 

proposition strengthens the truth of a proposition. The Bayesian theory is based on Bayes’ theorem, 

which provides a mathematical way of strengthening a hypothesis given new evidence and other 

rational considerations (Nussbaum, 2011). The following section provides empirical evidence that 

deductive arguments were associated with Presh N’s functional understanding of proof in 

mathematics. This evidence arose from corroboration of interview results with survey and written 

homework assignment findings. This evidence created a complete picture (presented as a proposed 

model) to describe the factors affecting Presh N’s beliefs understanding of the functions of proof.  

The “discovery” of deductive arguments as a factor influencing Presh N’s functional 

understanding of proof prompted the need to provide an updated analysis. The frequency in which 

these factors occurred in the interview with Presh N is shown in Table 7—1. The categorisation 

of the factors affecting Presh N’s understanding of the functions of proof were scrutinised by a 

"debriefer" (a fellow doctoral student) for the purpose of uncovering possible taken-for-granted 

biases, perspectives, and assumptions (Lincoln & Guba, 1985). After discussions with the 

debriefer, consensus on the categorisation is reached. 

In addition, I asked a doctoral researcher at the same institution as I to manually recode 

Presh N’s transcript based on the five predetermined categories: teacher; semantic contamination; 

empirical arguments; deductive arguments; textbook; and collectivist culture. After a discussions 

with the doctoral student, consensus on the categorisation was reached. However, the sixth 

category, “deductive arguments”, was not identified by the student. It is reasonable to deduce that 

the reason for this mismatch is that I primarily employed ATLAS.ti as an analytical tool which, as 

pointed out earlier, has the capacity to unveil hidden themes. At a more practical level, the student 
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did not have access to the other data collecting instruments (for example, survey and written work 

data). 

Table 7—1. Criteria for the categorisation of factors accounting for Presh N’s understanding 

of the functions of proof 

Factor Judgement   Description Frequency 

Instructional 

practices 

Naïve Transmission of facts theorems; valuing of 

right answers over understanding. 

2 

 Hybrid Both memorisation of facts and conjecturing.  0 

 Informed Encouraging conjecturing over 

memorisation. 

0 

Semantic 

contamination 

Naïve Evidence as definitive proof. 1 

 Hybrid Evidence as spontaneous knowledge. 0 

 Informed Evidence is not equivalent to proof. 1 

Empirical-deductive 

arguments 

Naïve Informal proof is proof. 1 

 Hybrid Observation is necessary but insufficient for 

proof. 

0 

 Informed Only deduction provides proof. 1 

Collectivist culture Naïve Memorisation of proof. 3 

 Hybrid Memorisation of axioms to facilitate proof. 0 

 Informed Knowledge of the functions of proof. 4 

Textbook Naïve The textbook provides theorems and their 

proofs. 

2 

 Hybrid Riders in textbook provide the basis for 

construction of proof. 

0 

 Informed Textbook need to cover the idea of proof 

broader by encouraging conjecturing. 

0 

On the basis of the exemplary excerpts presented above, the model depicting the factors 

influencing Presh N’s informed functional understanding of proof is shown in Figure 7—2.  
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Figure 7—2. Preconceived conceptual framework for Presh N 

7.4 Analysis of proof-related task 

The van Hiele’s (1986) theory of geometric thinking was used to understand and characterise 

Presh N’s work. In particular, her work was analysed in terms of Level 3 (informal deduction) and 

4 (formal deduction) of the theory. This approach was informed by the instruction in the task, 

“Prove the proposition that the sum of the interior angles of a triangle is equal to 180 degrees”. 

Working like a mathematician, Presh N should be skeptical about this proposition and try to find 

a counterexample, which will disprove the proposition. It may happen that the proposition is true, 

so it is not obvious in which direction to go. One counterexample is sufficient to conclude that the 

proposition is not true, even though there may be many examples in its favour. The key in this task 

is the value of counterexamples; they would save Presh N time and effort. For instance, for a long 

time mathematicians tried to find a formula that would generate only prime numbers and it was 

believed that numbers of the form 𝐹𝑛 = 22𝑛
+ 1, where 𝑛 is a non-negative integer, are all prime, 

until Euler found a counterexample which showed that for 𝑛 = 5, 𝐹𝑛 is composite. 
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In addition to van Hiele’s theory, to analyse Presh N’s work at Level 3, I also drew on 

Edwards’ (1997) notion of “the territory before proof” to describe the kind of thinking that was 

expected to be in Presh N’s work. Having read the question (“prove a proposition”), the next step 

for her would entail validating the proposition by using inductive reasoning. The inductive 

reasoning stage would involve checking specific cases (that is, engaging in naïve empiricism) to 

see if the conjecture holds true under testing and exploration with counterexamples. This stage was 

to produce mistakes, errors, thrill, joy, even the pain and frustration, all of which would allow her 

to experience the creative side of mathematics and thus demystify the view that mathematics is 

just the manipulation of numbers and equations. More importantly, it is at this inductive reasoning 

stage that one of the persistent misconception in proofs manifests itself as identified by Klymchuk 

(2010), Mason and Klymchuk (2009): learners at times become convinced that a converse of a 

theorem can be used as a counterexample to refute a conjecture.  

Zaslavsky and Ron (1998) also found that many learners were convinced that single 

counterexample is not sufficient to refute a false mathematical generalisation. As Edwards (1997) 

points out, inductive reasoning is a very commonsense and everyday way of thinking. However, 

more than that, it often forms the basis for building a sense of conviction about the truth of a 

conjecture (de Villiers, 1990). Edwards (1997) further argues, the validation of a proposition 

entails using two kinds of reasoning: inductive and deductive reasoning. It is during inductive 

reasoning that verification by using several cases and formulation of considering counter-examples 

to disprove a conjecture takes place. 

For Level 4 analysis, if no counterexamples could be generated by Presh N, then a 

deductive proof would be constructed. A deductive proof needs to be constructed to show why the 

generalisation must hold by utilising previously accepted objects (results) of mathematics such as 

definitions and axioms. According to Level 4 of the van Hiele (1986) theory of geometric thinking, 

an understanding of the functions of proof is partly indicative of a learner’s level of geometric 

maturity. However, their ability to construct a proof in the Euclidean sense using appropriate 

language completed the acquisition of this level. Thus, Presh N’s written work (Figure 7—3) 
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communicated her ideas in the task designed to gauge her competency in proving a proposition 

and systematise the system of axioms.  

In attempting to the task, the participant was not only proving a proposition but also 

revealing her thinking. Mention must be made here that the analysis was based on the proof she 

presented; she was asked to prove a proposition (a conjecture whose actual proof is under 

construction). Her response to the task was a manifestation of the problem she held with the term 

“prove”. This result was consistent with that of Mejía-Ramos and Inglis (2011) who found that the 

technical meanings of the two main linguistic ways of representing the concept of proof, “proof” 

and “prove” are not distinguished from their everyday life use in natural language such as ordinary 

English; they evoke different meanings in different people. In addition, Presh N’s behaviour in 

this task reflected experiences of having been exposed to teaching routine, prevalent in too many 

mathematics classrooms, which focused only on the final, polished mathematical product (proof) 

without showing its evolution. Perhaps the question should have been posed differently and more 

precisely and thus direct Presh N’s attention to the term “proposition”. In this regard, de Villiers 

and Heideman (2014) suggestion was found to be reasonable: 

For example, instead of the usual “Prove that …”it would be pleasing to see the more mathematically 

authentic version: “Explore whether the following conjecture is true or not. If true, prove it. If false, 

produce a counter-example.” (p. 26) 

An analysis of her written work at Level 4 revealed interesting results. She seemed to have partially 

reached Level 4 of the van Hiele theory of geometric thinking in that she deductively proved that 

the proposition is indeed true. She accomplished this task by systematising axioms and all 

previously proven theorems to explain why the proposition is true. According to the proof 

provided, it seemed that she has also mastered the necessary language for Level 4 as suggested by 

the van Hiele theory. For example, she used mathematically appropriate language and symbols in 

her construction of the proof from start to finish; the construction was represented by a broken line 

segment and the proof, although the proof was presented in the dogmatic two-column format.  
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However, her proof resembled a memorised piece of work resulting from drill work or a 

textbook copy in that, rather than beginning some empirical exploration showing how the 

conjecture arose and then seeking counterexamples for a conjecture as mathematicians do, Presh 

N’s work began with axioms and definitions, what Lakatos (1991) refers to as the standard view 

of a proof. Similar to the finding of Stylianou et al. (2015), she displayed a disposition towards 

reasoning in a deductive manner, although her proof was not complete.   

 

Figure 7—3. Presh N’s baseline work on Euclidean geometry 

Although I could hardly find fault with her proof, I questioned its origin. As Lakatos (1991) points 

out, this standard view of proof did not only hide the importance of conjectures and 

counterexamples, but also distorted the discovery and development of mathematical knowledge 
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and an understanding of the functions of proof. As Lockhart (2002) further argues, standard high 

school geometry curriculum slowly and painstakingly deflates in learners ‘any natural curiosity or 

intuition about shapes and their patterns by a systematic indoctrination into the stilted language 

and artificial format of so-called “formal geometric proof” (p. 18). Yet, according to a longitudinal 

study by Healy and Hoyles (1998), learners were able to formulate conjectures if they begin by 

using empirical arguments in which they use particular cases to arrive at a generalisation. However, 

Presh N’s achievement of Level 4 of the van Hiele theory was interpreted as an indication that the 

ability to prove the truth of theorems contributed to holding informed understanding of the 

functions of proof in mathematics.  

This result was the same as for Healy and Hoyles (1998) who found that ‘[m]ost students 

appreciate the generality of a valid proof’ (p. 3). Worthy to note is that the result was similar 

Mason’s (1998) finding that the levels are not sequential as claimed; Presh N seemed to have 

developed logical reasoning skills having skipped informal deduction mastery. This result seems 

to confirm the lack of experiences with inductive arguments and a fuller meaning of genesis of a 

proof. However, this result contradicts van Hiele’s (1986) assertion that ‘the transition from one 

level to the following is not a natural process; it takes place under influence of a teaching-learning 

program’ (p. 50). In the next section, a conceptual framework for thinking about factors 

influencing understanding of the functions of proof is proposed. 

7.5 The proposed model 

The ultimate goal of the analysis was to determine and describe the relationships among categories 

by discovering patterns in the data (McMillan & Schumacher, 2010). The interrelationships among 

the factors in this model were justified by references to existing empirical evidence. It is worth 

mentioning that I found Presh N’s views to be strikingly well thought out; she requested clarity 

when it is necessary and although openly shared some beliefs which ran contrary to some 

commonly accepted notions about the functions of mathematical proof. Analysis of the interview 

transcript gave rise to a free-form model for reporting the findings in the qualitative component of 

the study (Figure 7—4). In the model, developed form the interview quotations and codes 
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(Appendix C3), not all arrows will have the same thickness. Bold arrows such as the one pointing 

from empirical arguments to instructional factors denote the strong influence of one component 

on another. Data which could be coded into more than one category enabled the identification of 

linkages and subsequent networks between categories (Cohen, Manion, & Morrison, 2011). 
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Figure 7—4. The six-theme model on factors shaping functional understanding of proof 
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As already mentioned, prevalence of a theme was determined by a connection between what the 

participant stated as important. Thus, the importance of a category depended on its ability to 

answer the research question. Presh N was invited for member checking of the transcript which 

needed to be subsequently modified after a discussion with them (Yin, 2014). In the write-up stage, 

key excerpts oriented towards the factors that mediate learners’ understanding of proof were 

extracted for each category and described. Also, this stage entailed looking into the memos created 

to check for recorded comments that may evolve into important ideas, reviewing of literature to 

confirm findings, and categorising thus adding to the body of research literature (Corbin & Strauss, 

2014). In the next section of this concluding chapter, I drew conculsions by primarily engaging 

with the research questions and suggesting directions for future research, considering limitations, 

making recommendations, and providing a brief reflection on the thesis project.  

The final version of the model in Figure 7—5 depicts my conception of how the variables 

in the model related to each other. Given that Presh N attended an under-resourced school yet 

showed some glimpses of informed functional understandings of proof, school resources were seen 

as having a little role in the acquisition of informed functional understandings. However, this 

aspect of the model was not directly determined. Hence, a thinnest arrow. In contrast, evidence 

from the interview suggests that the collectivist culture influenced her functional understandings 

the greatest; hence the thicker arrow. The thick arrows suggested that those factors seemed to have 

maximal influence on her appreciation of the functions of proof. 
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Figure 7—5. A theoretical model should linking variables with theory and concepts discussed 

in the literature review 

In summary, after completing both quantitative and quantitative analyses, I provided an integrated 

analyses through contrasting and comparing them. I was able to identify and address the 

dissonances inherent in them. First, that learners could completely fail to make a claim yet others 

produce rebuttals, though interesting, is a demonstration of the fragmented ability to argue. 

Second, that on the one hand there is evidence of relational understanding of the mathematical 

ideas while on the other hand I found treatment of mathematics as a fixed body of knowledge 

showed the incosistency in learners’ functional understanding of proof. That deductive arguments 

impacted learners’ functional understanding of proof not only enriched current theory in the area 

of systematic investigations on factors influencing hybrid beliefs about the functions of proof, but 
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also showed the fluidity of these factors. I noted how a learner can hold conflicting beliefs about 

the functions of proof yet argue in ways that were compatible with mathematical knowledge.  

The relationship between argumentation and functional understanding of proof could only 

be described as weak. However, the relationship between functional understanding of proof and 

factors influencing beliefs about the functions of proof is taken as complex. Similarly, the 

relationship between argumentation ability and factors influencing beliefs about the functions of 

proof is deemed to be complex.  The relationships were judged as complex because they were 

charaterised by a repertoire of contradictory stances. Overall, the results suggested an undesirable 

but coherent behaviour in that in all the three variables, middle ground views dominated. In the 

final analysis, I argued that the pressure to complete the curriculum and subsequent assesments in 

school mathematics not only contributed to undesirably incoherent overall results, but also 

contributed to the distortion of the mathematical practice. However, an investigation of the degree 

to which school mathematics contributed to the undesirably coherent interaction of the variables 

went beyond the scope of this primarily exploratory study. 

7.6 Chapter summary 

The main focus of this chapter was to elicit with a view to explain why Presh N held informed 

beliefs about the functions of proof. The factors influencing beliefs were identified in participant’s 

utterances as represented in excerpts, survey, and task. I matched the themes with excerpts as 

supporting evidence. I found that the primary factors influencing naïve beliefs were: collectivist 

culture and teacher. Also, it emerged that the empirical arguments and the textbook weakly 

influenced functional understanding of proof.  

From analysis of this interview data, three key findings stood out about Presh N’s 

underlying perspectives on factors contributing to her beliefs about the functions of proof. First, 

Presh N’s views rarely navigated between informed and naïve beliefs; her beliefs about the 

functions of proof were generally informed. For some moments she articulated ideas that were 

consistent with mathematical knowledge and for some other moment her beliefs seemed to lean 

on beliefs that were inconsistent with mathematical knowledge. This observation demystified the 
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notion that learners find it difficult to move from inductive proof to deductive proof. Next, 

knowing that inductive arguments are not sufficient for a proof did not immunise learners from 

believing that evidence outside of the mathematics domain is dissimilar to mathematical proof 

despite the fact that both use some steps to arrive at a conclusion. Last, I found that all the factors 

identified in literature and consequently explored in this investigation confirmed theory; they 

seemed to interfere with learners’ ability to understand the functions of proof in mathematics. That 

deductive arguments play a role in functional understanding of proof is a finding that supported 

the hypothesis that a multitude of other factors influence the learning of functions of proof. Thus, 

this case study is valuable in that insight gained from it helped in formulating a hypothesis (that 

is, the model) that can be tested in future research using other methods. 

As mentioned in Chapter 3, although a range of factors affected learners’ functional 

understanding of proof, I concentrated upon the the six themes because of being circumscribed by 

the time constraints imposed on completeing the PhD project. I presented excerpts of the 

participant’s perspectives (oral and written) on her experiences with the proof concept to explain 

statistical results in more depth. I answered both quantitative and qualitative questions by 

collecting and analysing data and interpreting results separately. In the next chapter, I integrate the 

qualitative and quantitative findings into a single discussion in which the interaction among the 

constructs of functional understanding, argumentation, and factors influencing functional 

understanding of proof in mathematics is explored from exploratory and interpretive perspectives. 

These findings are from the two questionnaires, interview, and proof-related task. 
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Chapter 8  

Exploring the interaction among the three constructs 

In the classroom, the teacher and the textbook are the authority, and mathematics is not a subject to 

be created or explored. In school the truth is given in the teacher’s explanations and answer book: 

there is no zig-zag between conjectures and arguments for their validity, and one could hardly 

imagine hearing the words maybe or perhaps in a lesson. (Lampert, 1990, p. 32) 

8.0 Introduction 

In the three preceding chapters I presented, analysed, and discussed results independently using 

the first three research questions as an organising framework. The focus of this chapter is on 

providing an overall picture of the interaction among these three constructs: learners’ functional 

understanding of proof, argumentation ability, and factors influencing functional understanding of 

proof. In short, this chapter integrates the results of the quantitative and qualitative phases to 

provide a discussion of the outcomes of the entire study. The purpose of mixing the results is to 

seek a common point at which the three constructs interacted. Utilising pattern matching technique, 

the following research question was posed, “How is the interaction among the three constructs 

(that is, functional understanding of proof, argumentation ability, and factors influencing 

functional understanding?” As already mentioned, the analysis of the findings is exploratory 

because the nature of this interaction was unknown at the start of this investigation. Also, the 

analysis of the findings was interpretive given that the focus of the analysis of this interaction was 

to make sense of the meaning of the findings. 

8.1 Background to the findings 

The validation of the LFUP instrument facilitated the endeavour to characterise learners’ 

understanding of the functions of proof as either naïve, hybrid or informed. To refresh the reader’s 

memory, in this study, by naïve understanding is meant beliefs about the functions of proof that 

were characterised by misconceptions. In contrast, by informed understanding is meant beliefs 
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about the functions of proof that were consistent with those held by contemporary mathematicians. 

A hybrid understanding related to a mix of naïve and informed understanding.  

The impetus behind the present study was de Villiers’ (1990) insightful link between 

understanding the functions of proof in mathematics and doing proof meaningfully. The validation 

of the LFUP instrument was not only to identify the functions of proof that best predict learners’ 

functional understanding of proof and argumentation ability but also to identify the single case, 

Presh N, for the interview process to explain the genesis of her understanding of the functions of 

proof. The discussion below focuses on the degree to which the research questions that guided this 

study were answered. 

These results reflected Watson’s (2008) lamentation that school mathematics is not a subset 

of the discipline of mathematics. She points out that, among the features that distinguish school 

mathematics from the mathematics as practised by adult experts is that, for the learners, empirical 

arguments are privileged over deductive reasoning; seeing proof as empirical argument lingers as 

a dominant image of the function of proof. The emphasis on the need to ensure that learners’ 

functional understanding of proof are consistent with those of contemporary mathematicians stems 

from Wu’s (2006) assertion that if school mathematics is isolated from mathematics discipline 

then the former will evolve into ‘something that in large part no longer bears any resemblance to 

mathematics’ (p. 1882). Schoenfeld  (1994) and Zaslavsky, Nickerson, Stylianides, Kidron, and 

Winicki-Landman (2012) agree by asserting that proof in school mathematics should be guided by 

its functions in the mathematics discipline itself so that mathematics learners can gain experience 

reasoning in the same way as mathematicians do. I believe that it is approaches like this that 

contribute to the harmonisation of school mathematics and the mathematics practiced by experts 

in the field.  

Although the South African curriculum seeks to promote a “humanist” approach to 

mathematics where both empirical and logical arguments are emphasised, the pressure to finish 

the curriculum within specified time period to write examinations constrains these noble ideals 

which characterise the discipline of mathematics. The lack of efforts to address this dilemma on 

the part of the education authorities is indicative of what Watson (2008) articulate as a moulding 
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of the discipline of mathematics ‘to fit institutional constraints rather than fit the development of 

mathematical ideas’ (p. 6). Thus, the inherent time constraint would see to it that the humanistic 

approach remained just that, and ideal. 

8.2 Discussion 

The analysis of the findings was interpretive given that the purpose of the analysis of this 

interaction was to explore the meaning of the findings (Caracelli & Greene, 1993). Thus, the 

analysis of the findings involved making a personal assessment as to a description that fits the 

situation that capture the major categories of information (Creswell, 2014). The personal nature of 

this assessment means that I brought my own perspectives to my interpretation of the three findings 

in this study. Therefore, the interpretation that I made of these findings will most probably differ 

from the interpretation that the reader makes. That said, it is important to note that the discussion 

was undertaken with respect to two different theoretical frameworks underpinning this study: 

argumentation and van Hiele theories. 

In Chapter 2, I identified a plethora of studies pointing to the prevalence of verification or 

empirical arguments as mathematical proof. However, most of those studies were conducted in 

Western countries. To explain what influenced Presh N’s informed beliefs about the functions of 

proof, I had to first survey to describe learners’ functional understanding of proof in mathematics. 

Research studies identified naïve beliefs about the functions of proof as hindering the 

understanding the functions that proof performs in mathematics and by extension the construction 

of proof meaningfully (CadwalladerOlsker, 2011; de Villiers, 1990; Hanna, 2000; Healy & 

Hoyles, 1999). Although the answers to each of the quantitative and qualitative phases were 

presented and analysed separately, they are integrated in this discussion section. I recap on the 

research problem as captured in the research questions, relate the findings to previous research 

including those that motivated the present study, describe how these findings compare and contrast 

with previous research, and carefully take into account all other possible explanations of the 

results. The exploration of the interaction among three constructs is organised in terms of these 

three research questions: 

 What functional understanding of proof do Grade 11 learners hold? 
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 How is the relationship (if any) between learners’ quality of arguments and functional 

understanding of proof? 

 Why does Presh N hold informed beliefs about the functions of proof?  

8.2.1 Interaction between functional understanding of proof and argumentation 

As the results reported in Chapters 5 and 7 showed, learners held hybrid understanding of the 

functions of proof and that the relationship between learners’ functional understadings of proof 

and their argumentation ability was statistically significant (r =  .225; p < .01). It was interesting 

to find that the explanatory function of proof can be used to predict learners’ functional 

understanding and argumentation ability. These conclusions were apparent from learners’ 

responses in the two self-administered questionnaires. In the interview, reported in the previous 

chapter, it was apparent that the collectivist culture and the teacher profoundly accounted for the 

informed beliefs about the functions of proof in mathematics that Presh N held.  

According to the results in Chapter 5, the percentage of participants who demonstrated 

informed views on all Likert statements within the theme of explanation function theme of was 

zero. About 47% of the participants chose to "agree/strongly agree" with the statement, “A proof 

explains what a maths proposition means”. This lack of understanding of the explanatory function 

of proof was confirmed during the follow-up interview with Presh N.  When asked to state the 

various functions that she thought proof performs in mathematics, she responded, “Proof in 

mathematics is about coming up with ideas and developing formulas by using things like theorems 

and measurements and hhh, Yeah.” She indeed seemed to have an inclination as to the fact that 

mathematical practice is a social endeavour, a discipline whose ideas are argued and developed on 

the social plane.  

Analysis of responses on the LFUP instrument revealed that when all five the functions of 

proof were considered, learners seemed to harbour naïve rather than informed understanding of 

the functions of proof. Similarly, the WAEC (West African Senior Secondary Examinations 

Council) (2003) reports that most learners in high school examination in Nigeria proved that a 

triangle is isosceles by substituting numerical values that two interior angles are equal. Interesting 
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to note is that prior to the report, the council has been recommending the provision of adequate 

teaching and learning materials to ensure qualitative teaching. Also, this finding is consistent with 

studies that have been reported over the past ten years in South Africa and beyond. According to 

Healy and Hoyles’ (1998) findings, learners who subscribed to the pervasive notion that the sole 

function of proof is verification were reliant on memorising proofs. They further found that 

learners with little or no sense of what proof meant were more likely to choose empirical 

arguments. Harel and Sowder (1998) describe such understanding of the function of proof as a 

misconception.  

Learners’ response to the LFUP questionnaire seemed to suggest that the communication 

function of proof weakly contributed to the holding of informed functional understanding of proof. 

This could stem from lack of conjecturing as expressed by Presh N’s views that the learning of 

theorems was dependent on what the teacher told them. This result was not surprising given the 

Shongwe’s (2019) finding that learners argued poorly; communication of mathematical ideas was 

poorly orchestrated by learners. Most probably because of lack of instruction in and experiences 

with argumentation. This probable statement is supported by Means and Voss (1996) whose results 

showed that learners did not know how to construct an appropriate argument. While Presh N 

appreciated the generality of a deductive proof, she also seemed to rely on the authority of her 

teacher and textbook as arbiters of the truth of mathematical knowledge. CadwalladerOlsker 

(2011) attributes contradictions in learners’ approach to proof to the sociomathematical norms. 

The finding that learners seemed to hold hybrid beliefs about the functions of proof is 

consistent with Schommer-Aikins’ (2002) argument that learners’ reliance on teachers and 

textbooks suggested that there is little conjecturing and argumentation in which views were 

compared, contested, and contrasted in mathematics classrooms. Presh N harboured both adequate 

and inadequate views such as that mathematics is a study of patterns yet indicating that she 

dependent on the teacher and textbook as final authority on mathematics. That ‘the teacher and the 

textbook are the authorities and mathematics is not a subject to be created or explored’ (Lampert, 

1990, p. 32) was evident in Presh N’s experiences of mathematics in general and proof in 

particular.  
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The findings by Chazan (1993), Schoenfeld (1989), and Hoyles (1997) that learners are 

unable to appreciate that empirical arguments are structurally distinct from deductive arguments 

and that they seem to prefer empirical arguments over deductive arguments were contradictory to 

my finding. For instance, an interview with Presh N revealed that she understood that proving 

involved using mathematical language to communicate the relationships or patterns. In addition, 

her argumentation in AFEG was found to be of high quality. These two results further give merit 

to the existence of a significant correlation between functional understanding of proof and 

argumentation quality as found in Chapter 7. She demonstrated very little difficulty in 

understanding both the notion of proof as well as understanding what the mathematics discipline 

entailed.  

In addition, Presh N could make this distinction between empirical arguments and proofs 

in mathematics clear. Rather, what clouded her thinking is making a distinction between steps in 

deductive arguments and steps in everyday arguments. It is on the basis of these findings that I 

suggest that the idea of the dichotomy, empirical arguments vs. deductive arguments, needed 

rethinking through further investigations. Consistent with the argument in this study, Chazan 

(1993) found that if instruction highlighted not only differences between measurement of examples 

and deductive proof but also that measurement of examples has limitations as a method for 

verifying the truth of geometrical statements, all learners in the urban areas preferred a deductive 

proof to an argument based on the measurement of examples.  

This study was driven by the contention that functional understanding of proof helps 

learners to gain an appreciation of the subtleties of the practices and arguments employed in the 

building of mathematical knowledge which in turn motivates them to do proof meaningfully. 

However, building mathematical knowledge in this way would require recommitment to the 

Specific Aims enshrined in CAPS and the making of mathematics classrooms sites of 

argumentation and conjecturing to bring to bear the functions of proof in mathematics. Given these 

results, it is reasonable to suggest a discrepancy between the Specific Aims in CAPS and the actual 

learning outcomes about the functions of proof existed. In terms of the van Hiele theory, the results 

suggested that the Grade 11 learners’ geoemtric thinking in these Dinaledi schools were at Level 

3. Also, in terms of TAP scheme, the level of the quality of these learners’ argumentation quality 
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was low.  Further, as part of the discussion here arose from the sociocultural theory of learning, 

the results suggested that Presh N portrayed learning of proof as   absorption of others’ knowledge 

rather than a human activity consistent with the SA of CAPS while professing the opposite. 

8.2.2 Interaction between argumentation and factors affecting functional understanding 

The practice of engaging in argumentation in mathematics is best supported in individualistic 

cultures where, unlike in collectivist cultures, the “why” question coming from a child is not frown 

upon but encouraged. The idea that learners’ understanding of proof can be composed of different 

beliefs existing next to each other can be inferred from past studies. In this study, a mathematical 

statement or simply statement is a sentence in mathematics that consisted of two parts: assumptions 

or givens and then the conclusion. For instance, when a statement is referred to as a theorem it 

implies that its proof exists; until then it remains a conjecture. One can only be convinced of the 

truth of a conjecture.  When asked to explain the meaning of the term theorem, Presh N responded 

that "it is a statement that is true or false”. No evidence indicated that she understood the definition 

of theorem. I was inclined to believe that here was another example in which semantic 

contamination was at play and an opportunity for argumentation to be brought in to resolve the 

contamination.  

However, in my view she could be forgiven for thinking this way in view of Fermat’s Last 

theorem, that no integer 𝑛 > 2 𝑎𝑛𝑑 𝑥, 𝑦, 𝑧 ≠ 0 satisfies the equation 𝑥𝑛 + 𝑦𝑛 = 𝑧𝑛, which 

remained a conjecture but was referred to as a theorem for a little over three centuries. This 

conjecture continued to be referred to as a theorem in the absence of a proof simply on the belief 

that it is susceptible to logical abstraction and more importantly, no counterexamples were found. 

Hence it is reasonable to think of mathematics as developing through faith. Again, it is important 

to provide learners with unambiguous definitions and use of mathematical objects to avoid the 

contamination of these objects with everyday life talk. 

The conclusion I could draw from Presh N’s classroom experiences, is that conjecturing 

opportunities were, if any, limited and therefore learners’ ideas undervalued. Put another way, 

Presh N’s utterances revealed experiences of an authoritative mathematics classroom context 

where learners were traditionally reluctant to share their mathematical ideas and answers were 
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sought either from the teacher of textbook. Thus, memorisation and adherence to rules seemed to 

play a dominant part in her learning experiences. From perspectives of typical instructional 

practices which are characterised by narrow assessment of competency, it is reasonable to suggest 

that her case reflected “successful” instruction. But, when a learner tends to believe everyday 

arguments and mathematical proof are the same on the basis that both require taking of steps to 

reach a conclusion, something has gone very, very wrong.  

Schoenfeld’s (1988) case study findings was that “successful” mathematics instruction can 

foster development of inappropriate perspectives on the nature of mathematics that impeded the 

acquisition and use of other mathematical knowledge. However, Presh N’s high quality of 

argumentation was indicative of the readiness of learners to engage in mathematical practices that 

reflected those practices of adult experts. For instructional practices, emphasis needed to be placed 

on the fact that that both empirical arguments and deductive arguments reach conclusions through 

following some steps, did not make them the same arguments. 

In the South African context, the question is: “How will these Specific Aims and the 

different functions of proof in mathematics be realised in a mathematics curriculum?” In addition, 

an important insight gained is that learners’ ability to understand that empirical proof is not proof 

is not going to surpass the understanding of this idea by the teachers themselves. That is, very few 

will contest the assertion that learners’ beliefs were a reflection of instructional practices. If this 

conclusion is accepted, it is reasonable to suggest that learners are not provided with opportunities 

to develop in the ability to be methodical, to generalise, make conjectures, and try to justify them 

as envisaged in the South African mathematics curriculum.  

Evidence to support this view was found in Presh N who, simply provided a deductive 

proof rather than begin with inductive arguments in which she would: make a generalisation, 

search actively for counterexamples, be wrong, be creatively frustrated, and be sufficiently 

convinced of the truth the proposition to look for its proof. Perhaps it is time that the definition of 

proof is reviewed so that “proof” is used to explicitly characterise not only deductive proofs but 

also empirical proofs. Support for this view is found in Mariotti’s (2001) words in which she says 

that ‘[p]roving consists in providing both logically enchained arguments which are referred to a 
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particular theory, and an argumentation which can remove doubts about the truth of a statement’ 

(p. 30). 

Heinze and Reiss (2003) conducted an interview study which served as a qualitative 

supplement of a large-scale quantitative study on secondary school learners’ methodological 

knowledge involved in constructing proofs. The aim of their research study was to identify both 

cognitive and noncognitive factors which play a role in proof competencies of learners. They found 

that most learners appreciated that empirical arguments do not form a proof. This finding is similar 

to this study’s in which Presh N explicitly made a distinction between these forms of arguments 

in proof. However, Presh N’s results seemed to be one of few exceptional cases judging by the 

LFUP results where learners were found to hold hybrid beliefs about the functions of proof.   

In conclusion, the discussion of the results have generally showed that the curriculum is in 

a dilemma in that not only that learners in Grade 11 argued poorly, but also that a coherent 

understanding of the functions of proof consistent with those held by contemporary 

mathematicians is attainable yet impractical under the current system. Further, as found in this 

study, the explanatory function of proof could be used to develop learners’ low argumentation 

ability. The tension between holding both an internal and external view of mathematics while 

retaining a healthy skepticism for empirical arguments as proof in mathematics reflected the 

complex interplay of attitude towards proof functions, argumentation, and the curriculum. Having 

explored the relationship between argumentation and factors influencing functional understanding 

of proof, I came to the conclusion that this relationship is “complex”. The rationale for this 

judgement emanates from the inconsistences in Presh N’s actual behaviour in a proof-related task 

and her professed beliefs about the functions of proof in mathematics.  

8.2.3 Interaction between factors influencing functional understanding of proof and 

functional understanding of proof 

Results of research studies on the roots of the use of verification by examples as proof have been 

inconsistent. On the one hand, Kunimune, Fujita, and Jones (2010), in various studies they 

undertook in Japan, consistently found that most learners considered experimental verification as 
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equally valid as a formal proof. They point out that even after intensive instruction in how to 

proceed with proofs in geometry, learners persistently believed that experimental verifications 

were enough to demonstrate that geometrical statements were true. They suggested that learners 

need to be shown the limitations of experimental verification and to make deductive proof 

meaningful for them. This suggestion needed some qualification in light of the finding in this 

study. The results were consistent with Schoenfeld (1989) argument that most learners who have 

had a year of high school geometry are "naïve empiricists".  

Despite placing emphasis on proof as verification, explanation and discovery, Grigoriadou 

(2012) found that most of the learners participating in her study did not know what proof is both 

before and after an intervention. In contrast, the interview with Presh N in this study showed that 

even without intervention, it is possible for learners to appreciate the meaning of mathematical 

proof. Healy and Hoyles (1998) finding that learners preferred empirical arguments when they 

focused on convincing themselves of the truth of a statement. In addition to seeing empirical 

arguments as proof, learners seem to see the learning of proof as another practical necessity of 

meeting the teacher’s expectations and passing examinations (Almeida, 2000). Indeed, according 

to the LFUP results, I found that 80% of the participants held naïve beliefs about the functions of 

proof and none was found to show extremely enculturated beliefs about the functions of proof in 

mathematics. This seemed to suggest that most of the learners held few of the views about the 

functions of proof that were consistent with those held by contemporary mathematicians.  

Martin and Harel (1989) point out that learners often find the term proof indistinguishable 

from evidence. In my personal experience, evidence and proof were commonly used 

interchangeably in everyday talk.  Healy and Hoyles (1998) found that, as I have from Presh N’s 

perspectives, learners who seemed to understand the functions of mathematical proof tend to 

struggle to abandon viewing empirical evidence as mathematical proof. My finding not only 

supported this point but also signaled the influence of the individualistic culture on learners’ beliefs 

about the functions of proof. From a legal point of view, evidence is used as an attempt to argue 

that some illegal activity took place.  
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For example, suppose you arrive home and find your safe open and empty while a man 

whose pockets are full of bank notes is standing close to it. The open safe and the notes hanging 

from the pockets of the man are evidence that could be linked in an argument to show that the safe 

was tempered with and notes taken from it are those in his pockets. Here, proof rested on evidence. 

In contrast, speaking formally, as already mentioned in previous chapters, proof as a product is not 

mathematical knowledge derived from evidence gathered through observation of several cases, 

measurement or experience. Put another way, in proving, evidence is worthless as it is virtually 

impractical to investigate or measure all cases to which a statement applies. For example, proof 

for the theorem of Pythagoras can be completed without providing a single measurement of a 

triangle as evidence.  

I concur with Ball et al.’s (2002) suggestion that instructional practices should strive for 

(1) a more refined perception of the functions of proof in mathematics, (2) a deeper understanding 

of the gradual processes and complexities involved in learning to prove, and (3) the development, 

implementation and evaluation of effective teaching strategies using carefully designed learning 

environments that can foster the development of the ability to prove. I personally would like to see 

more attention paid to developing curriculum materials that incorporated functional understanding 

of proof in mathematics as well as argumentation so that learners can gain insights into the nature 

of mathematics. I believe that the nature of mathematics is best reflected in the appreciation of not 

only the empiricist function, but also on a range of others that it performed in mathematics. This 

view found support in Otte’s (1994) observation:  

A proof which does nothing but prove in the sense of mere verification must be unsatisfactory. A proof is also 

expected to generalize, to enrich our intuition, to conquer new objects, on which our mind may subsist. It is 

expected to renew our entire idea of what mathematics is. (p. 310) 

In the final analysis, similar to the previous interaction, it was difficult to characterise the nature 

of the interaction between the factors influencing functional understanding of proof. Hence this 

interaction was described as “complex”. 
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8.2.4 The “grand” interaction 

The quantitative and qualitative results were mixed to more fully answer the research question, 

“How is the interaction among the three constructs (that is, functional understanding of proof, 

argumentation ability, and factors influencing functional understanding?” and ‘develop a more 

robust and meaningful picture of the research problem’ (Ivankova et al., 2006, p. 14). The grand 

(overall) result from mixing qualitative and qualitative findings was the common factor among the 

constructs in this study which could be summarised by the term, undesireable coherence, denoted 

by UC (Figure 8—1). I use this term to suggest that the constructs reflected “mixed” ideas which 

were unhelpful for the learner to develop a view of the mathematical practice.  The description of 

the interaction among the constructs as coherent stemmed from the fact that learners’ functional 

understanding of proof was deemed to be inconsistent (hybrid) with those held by research 

mathematicians, their argumentation quality was fragmented (not high or at least poor, but rather 

than adequate), and the factors accounting for beliefs varied from hypothesised to unexpectedly 

contradictory.  

“Fluid” in this interaction was a term used to suggest that while six of the factors (for 

example, semantic contamination, teacher, collectivist culture, textbook, deductive arguments, and 

emprical arguments) were taken as affecting the development of informed functional 

understanding of proof, one factor (deductive arguments) was associated with the development of 

informed functional understanding of proof. 
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Figure 8—1. The overall description of the interactions between and among the variables 

investigated in the present study 

That the interaction of these three constructs produced undesirably coherent relationship made this 

interaction not only interesting but also significant for practice. Interesting in the sense that 

knowing that a deductive proof is the final arbiter in pursuit of mathematical truths contributes to 

the development of informed functional understanding of proof. Significant in that to date, I am 

not aware of studies that reported on the interaction of these constructs. I found evidence that 

bridged the gap in the existing knowledge about the extent to which learners understood the 

functions of proof in mathematics and in the process validated the LFUP instrument thus 

strengthening its utility in practice and on research platforms. Also, I showed that learners’ 

argumentation ability was associated with functional understanding of proof. In addition, not only 

did I find factors influencing learners’ beliefs about the functions of proof, but also proposed a 

framework for thinking about these factors. In the final analysis, it was established that the point 

at which all the three constructs converged can be described as undesirably coherent (UC). 
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8.3 Chapter summary 

In this chapter, the nature of the interaction between and among learners’ functional understanding 

of proof, argumentation ability, and factors accounting for Presh N’s informed beliefs about the 

functions of proof in mathematics were interrogated. In each of these three constructs, the findings 

were described along a continuum: from naïve to informed functional understanding of proof 

(inconsistent); from low to high quality argumentation (fragmented); and, from beliefs that 

inhibited functional understanding of proof to beliefs that fostered functional understanding of 

proof (fluid). The interaction between functional understanding and argumentation ability was, 

though statistically significant, weak. The interaction between functional understanding and 

factors accounting for beliefs about the functions of proof as well as the interaction between factors 

accounting for beliefs about the functions of proof and argumentation ability were both described 

as complex. The analysis of the findings suggested that the common factor in the interaction could 

be classified as undesirably coherence (UC). This chapter, guided by drawing on the findings 

across quantitative and qualitative results, is the final and important stage in mixed methods 

research (Creswell & Plano Clark, 2011). In particular, this chapter entailed the judgements I made 

about the results/findings (factual information) in relation to the first three research questions.  
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Chapter 9  

Conclusions 

9.0 Introduction 

In this study I planned to explore Grade 11 learners’ functional understanding of proof, explore 

the relationship between functional understanding of proof and their argumentation ability, explain 

the sources of Presh N’s functional understanding of proof in mathematics and explore the 

relationship among three constructs (that is, functional understanding of proof, argumentation, and 

factors influencing functional understanding of proof). To this end, a mixed-methods sequential 

explanatory study was designed. The purpose of this sequential explanatory study was to 

systematically determine the factors affecting functional understanding of proof in mathematics. 

In the quantitative phase of the study, SPSS was used to describe the character of learners’ 

functional understanding of proof in mathematics and explore their argumentation ability. In the 

qualitative phase of the study, ATLAS.ti and STATA were used to facilitate the pattern-matching 

analysis of the interview and proof-related data.  

Quantitative analysis of data showed that learners held hybrid functional understanding of 

proof, argued poorly, the collectivist culture and the teacher impacted the gaining of functional 

understanding of proof, and the interaction among these constructs was described as an undesirable 

coherence (UC). There are three unique contributions that this study makes in the mathematics 

education literature. First, this study used a mixed methods design in which participating schools 

were randomly selected to improve the trustworthiness of the results. Second, this study validated 

a new measurement scale that allows teachers to gain insights into their learners’ understanding of 

the functions of proof to facilitate the construction of proof meaningfully. Third and final, this 

study presented a model to understand factors influencing functional understanding of proof in 

mathematics.  
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In this this concluding chapter, I provide a summarised overview of the major findings of 

this study. Then, I highlight the limitations, recommendations, and implications of this study. I end 

this chapter and the study with reflections on the entire research process undertaken in this study. 

9.1 Overview of findings in relation to research questions 

The purpose of this mixed-methods sequential explanatory study was to identify factors 

contributing to functional understanding of proof by obtaining quantitative results from a survey 

of 135 Grade 11 learners at three Dinaledi schools and then following up with one purposefully 

selected learner to explore those results in more depth through a qualitative case study analysis. 

The research process provided an understanding of the participants’ experiences and views of the 

concept of proof, its functions in particular. The overarching conclusion is that engaging in the 

nature of mathematics is a complex activity requiring time and equipment; resources schools lack 

due to the practices in school mathematics. This conclusion highlighted the dire inconsistency 

between actual classroom practice and the SA of CAPS.  

9.1.1 Research question: What functional understanding of proof do Grade 11 learners 

hold? 

The LFUP survey findings seemed to reasonably provide evidence that learners hold hybrid 

understanding of functions of proof in mathematics. This finding suggests that it is incumbent 

upon the Euclidean geometry teacher to create opportunities that encourage appropriate acquisition 

of functional understanding of proof. Then, principal axis factor analysis resulted in the validation 

of the LFUP questionnaire. This analysis provided strong support for a five factor structure for the 

25-item LFUP scale, which will serve as a valuable tool for both teachers and researchers intending 

to capture and characterise high school learners’ functional understanding of proof in mathematics. 

These five dimensions of learners’ understanding of the function of proof are: verification; 

explanation; communication; discovery; and, systematisation. 
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9.1.2 Research question: How is the relationship (if any) between learners’ quality of 

arguments and functional understanding of proof? 

A correlation between learners’ functional understanding of proof and argumentation ability was 

found; weak but statistically significant. In addition, the explanatory function of proof was found 

to be the factor which best predicted learners’ success in argumentation ability. 

9.1.3 Research question: Why does Presh N hold informed beliefs about the functions of 

proof? 

The study also found that, consistent with previous studies, Presh N’s understanding of the 

functions of proof was not only influenced by the teacher but also the collectivist culture that 

permeate the South African education system and society. These results will help in beginning to 

understand some of the problems that beset Euclidean proof in particular and the education system 

in general. However, I echo Schoenfeld's (1994) view that ‘[p]roof is one of the most 

misunderstood notions of the mathematics curriculum, and I really needed to sort it out. What is 

it, what roles does it play in mathematics and mathematical thinking …?’ (p. 75). 

9.1.4 Research question: “How is the interaction among the three constructs (that is, 

functional understanding of proof, argumentation ability, and factors influencing 

functional understanding?” 

The “grand” interaction among the three constructs underpinning this study was found to be 

undesirably coherent. Other than the relationship between functional understanding of proof and 

argumentation ability, the other two relationships were characterised by inconsistencies which led 

to their description as complex. For instance, Presh N disagreed with a statement that conjectures 

like Riemann’s function—which, once proven, will enable us to count prime numbers—are 

accepted without proof simply because no counterexamples have been found and have been used 

to prove other mathematical ideas. For instance, at one point she appreciated that only deductive 

arguments constituted a mathematical proof. However, her behaviour in a proof-related task 

provided evidence that her understanding of what constitute a theorem and a proposition was 

flawed. 
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9.2 Limitations of the study 

In this subsection I state the limitations of the study, which Merriam (2009) refers to as the factors 

that are beyond the researcher’s control (for example, time and funding constraints) but threatened 

the trustworthiness of the findings of a study. This sequential explanatory study is confronted with 

four shortcomings which necessitated the viewing of its findings with caution. First, although 

learners’ functional understanding of proof is inferred from data collected through Likert scales 

which inherently do not discriminate unduly on the basis of how articulate participants were 

(Wilson & McLean, 1994), I suggest the use of open-ended items requiring qualitative analysis to 

allow probing of responses to provide deeper understanding of the phenomenon (functional 

understanding of proof). Since the LFUP scale is at its infancy stage, further revision will most 

likely take place as it is used with more learners and teachers from other populations.  

Second, although the choice of the research design adopted in this study is within my 

control, the inability to infer causality restricted the conclusions drawn in this study. For example, 

even with the correlational research question investigation the relationship between functional 

understanding of proof and argumentation ability, this is not possible. Third, the findings in this 

study could have limited application for Dinaledi schools with access to DGS which could have 

assisted them in coming to know that, however useful and powerful DGS may be in testing 

conjectures by dragging points, the conclusions so reached do not constitute mathematical proof. 

However, I could not make a conclusive finding about DGSs since they were outside the scope of 

my research problem.  

Fourth and final, although ANOVA works even when the spread of the LFUP scores about 

the mean across the three groups of learners were unequal, the findings emanating from factorial 

analysis were to be treated with caution. This hurdle arose from the fact that the sample sizes of 

the three schools that participated in this study were unequal. Stricter observation of homogeneity 

of variance assumption in the factorial analysis of variance would have made the findings more 

reliable.  

These limitations notwithstanding, this study will serve as a springboard for future research 

on proof, its functions in mathematics, and the factors influencing understanding of the functions 
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that proof performs in mathematics. I believe that the findings provided important insights into 

how understanding the nature of mathematics could improve the meaningful construction of proof 

and learner participation and scholastic achievements in mathematics.  

9.3 Recommendations 

The present study adopted a sequential explanatory design in which, by definition, the primary 

emphasis was on quantitatively exploring the concept of functional understanding of proof. 

Although the semistructured interview provided valuable insights into why Presh N held informed 

beliefs about the functions of proof, making recommendations in this regard is beyond the scope 

of this study save to draw attention to the suggested conceptual framework to study factors 

accounting for beliefs about the functions of proof in future research studies. This study makes the 

following recommendations. 

9.3.1 Recommendations for instructional practices 

If it were accepted that holding informed functional understanding of proof and being able to 

engage in argumentation are two of the ways in which to avoid proof remaining a meaningless 

instructional activity, then there is a need for curriculum monitors as well as beginning, preservice, 

and inservice teachers to deliberately make functions of proof and argumentation in high school 

mathematics themes that are assessed in tests and examinations. Why should assessment tools not 

demand a reflection on the nature of knowledge creation in mathematics? I believe that such tools 

could be appropriate vehicles for improving the perpetually poor image of mathematics in a society 

where a mere mention of Euclidean geometry conjures up images akin to, in Popham’s (1981) 

words, ‘bubonic plague and the abolition of tenure’ (p. 66).  Judging by the short time it took to 

administer and analyse results obtained from LFUP instrument, it is reasonable to propose the use 

of this instrument for gaining insights into learners’ functional understanding of proof prior to 

instruction on proofs. This perspective is reflected in the assertion that ‘[t]o plan their instruction, 

for example, teachers should know about each student's current understanding of what will be 

taught’ (National Research Council [NRC], 1993, p. 82). 
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Grigoriadou’s (2012) investigated how proof was viewed by learners. In her quest to 

improve learners’ appreciation of the concept of mathematical proof and to produce proofs, she 

suggested that instruction needed to focus on making the distinction between inductive and 

deductive reasoning early in the lessons cycle. It is hoped that such modification of instructional 

practices would contribute to the harmonisation of school mathematics and the mathematics as 

practiced by experts in the field and thus (1) provide learners with a window into the nature and 

construction of mathematical knowledge and (2) appropriately reflect mathematical practices. By 

beginning teachers here I meant teachers with less than five years of teaching experience after 

completing the Bachelor of Education (B Ed) degree. 

I believe that the learning and teaching of the functions of proof will be improved only 

when the curriculum monitoring teams took the Specific Aims in CAPS serious by assessing this 

aspect of the curriculum in examinations while monitoring instructional practices in Euclidean 

geometry classes. These results could help policymakers to direct resources to improve 

environments that contributed to learners’ access to opportunities of learning Euclidean geometry 

meaningfully. Although the insights gained about the research problem in this study were 

significant, there were questions that I was keen to gain some understanding as a result of new 

findings that arose in the analysis stage. Thus, this pointed to areas that needed further research. 

The CAPS document is conflicted. On the one hand, it sought to advance the interests of 

the mathematical community. Support for this statement is plentiful in CAPS: the definition of 

mathematics as a human activity places emphasis on learners appreciating the functions of proof; 

emphasis that empirical arguments do not constitute proof; and that Euclidean geometry content 

and assessment take up the largest proportion of the mathematics curriculum, particularly in the 

FET phase; Euclidean geometry content is modelled on the van Hiele theory of geometric thinking 

whose principles stipulated the creation of experiences that promoted learner’s advancement to the 

next higher level, a principle that required time to accomplish. Specifically, implementation and 

monitoring of the first two aspects is sufficient in helping learners to gain insights into the nature 

of mathematics.  
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Yet, on the other hand it stipulates time frames by which mathematics content should have 

been covered which leads to, as Watson (2008) argues, learning of theorems and proofs 

mechanically as question-spotting activity rather than as mathematical inquiry, answers are 

expected to be found and problems to be solved, within the confines of a particular timescale. 

Further evidence of this aspect of the conflict is found in the current examination in Euclidean 

geometry questions where the word “Prove that …” rather than “Is …?” is used. As suggested by 

Furinghetti and Paola (1997), asking learners to “prove” influences them to argumentation rather 

than conjecturing. These practices can be classified as unmathematics as they constraint engaging 

in mathematical practices.  

Empirical evidence in the form of LFUP results showed that learners hold naïve functional 

understanding of proof. In addition, the results suggested a statistically significant association 

between learners’ ability to argue and functional understanding of proof. Shongwe’s (2019) 

finding that learners’ quality of argumentation is low and that Presh N’s sources of mathematical 

ideas emanate from her teacher and textbook reify the dominant influence of a collectivist culture. 

In short, the curriculum is in a dilemma and as such, the recommendation emanating from this 

study is that CAPS requires reexamination of its curricular aims.  

I believe that the general finding in this study is clear: the development of learners’ 

appreciation of the significance of functional understanding of proof and argumentation deserve 

to be given a priority in high school geometry classrooms. I am under no illusion that this is a 

complex task; it calls for devotion on the part of the teacher. Devotion is required since it is 

doubtful if there has been a time when functional understanding of proof has been viewed as a 

measure to capture learners’ interest in proof in the South African classrooms of mathematics. This 

study suggests that qualitative studies are needed to enhance our understanding of the findings as 

obtained in the quantitative phase. Also, I argue that the significance of TAP as an instrument to 

quantitatively measure the quality of argumentation has been understudied in mathematics 

education.  

As anticipated, I found that learners held generally naïve beliefs about the functions of 

proof; that is, there is evidence that most learners viewed the function of proof primarily as 
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systematisation. In addition, I found that their argumentation ability was not only poor, but that 

the relationship between functional understanding of proof and argumentation ability was also 

weak. Both these results were influenced largely by the collectivist culture prevailing in the 

society, that is, depending on the teacher and textbook as sources of knowledge whose authority 

is not to be questioned.  

If learners at the schools such as Dinaledi schools which received vast amount of financial 

support to improve learner participation in mathematics hold hybrid views about the functions of 

proof, the question is “How dire is the situation in nonDinaledi schools?” While acknowledging 

that it would be unfair to assume homogeneity about school practices (Watson, 2008), given the 

fact that the participating schools were randomly selected, it is reasonable to believe that the 

situation is no different in schools outside the Dinaledi group. 

9.3.2 Suggestions for future research 

The results in this study seem to suggest that learners hold a distorted image of mathematics as 

they have not moved from the descriptive to the theoretical van Hiele level. The recommendation 

is that instruction needs to heighten the distinction between descriptive level and the deductive 

level. The findings further suggest that the Specific Aims in CAPS about proof are not necessarily 

shared by all high school learners. Thus, efforts in the form of intervention programs should be 

made to impress it upon learners that empirical arguments are merely a prerequisite and therefore 

do not constitute proof.  

In administering both questionnaires, I was confronted with learners in the township 

classrooms for whom English was their second or third language and struggled to understand some 

of the question which were, of course, in plain English. This problem was evident particularly in 

written argumentation (AFEG) questionnaire. Research on how learners are currently using their 

local language (IsiZulu) in their mathematics classrooms could provide insight into the extent 

language interfered with argumentation ability. 

There is a need to investigate the extent to which the findings in this study apply to other 

nonDinaledi schools. Although studies on the role of resources in scholastic achievements yielded 
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conflicting results, the situation in other schools require investigation. The investigation is 

necessary due to the fact that despite increase in budget for education, this has not translated into 

learner achievement. Learner performance has remained low in mathematics in general and in 

Euclidean geometry in particular across all schools. In addition, more and more learners seemed 

to opt or are made to do mathematical literacy rather than mathematics. In short, I chose to refer 

to it (mathematical literacy) as utilitarian mathematics in that it focused on finding answers to 

everyday problems which, by definition, not only encourage learners to develop a distorted view 

of mathematics but also deprived them the opportunities to gain insights into the nature of 

mathematics.  

As already suggested, understanding the concept of proof entails understanding and 

experiencing all these five functions prior to engagement in the construction of proofs. Thus, it is 

probably safe to suggest that further research is needed to examine the training of teachers on the 

concept of proof so as to capacitate them in engaging learners to doing proof meaningfully. At the 

very least, it represented an attempt to understand the root causes of hybrid beliefs about the 

functions of proof. In this respect, it is hoped that future studies will further delineate the 

phenomenon, motivate and inspire the development of innovative intervention programmes aimed 

at reducing the discrepancy between learners’ functional understanding of proof and those of 

contemporary mathematicians. I recommend that future studies need to conduct longitudinal 

studies on how learners make a transition from hybrid beliefs to informed beliefs about the 

functions of proof. Also, each of the factors in the LFUP scale could probably be strengthened 

through revision (rewriting) items with lower factor loadings and possibly adding new items. In 

addition, given the contradictory findings in research, future studies could explore the influence of 

DGS on understanding the functions of proof. 

In summary, I believe that with these recommendations and suggestions for further 

research I have shown the need to balance the amount of attention given to mathematical content 

with that given to the nature of mathematics. As already emphasised throughout this thesis, 

learning about the functions of proof in Euclidean geometry and practicing argumentation are the 

best place to learn about the nature of mathematics. I hope that curriculum delivery monitors will 



Conclusions Implications of the findings 

 

                                                                                                                                              
297 

take note of the recommendations in this study and appreciate that they were made in the spirit of 

giving learners the real deal; giving learners the complete picture of the mathematics discipline. 

9.4 Implications of the findings 

The recommendation that Euclidean geometry curriculum needed to be revamped for the purpose 

of making functional understanding of proof and argumentation explicit curriculum content has 

implications for a variety of constituencies. This then implies further that assessments, which all 

too often emphasise quick recall of facts, procedures, and memorisation of proofs at the expense 

of the “territory before proof” include elements of this territory in large-scale, formal assessments. 

As Marrades and Gutiérrez (2000) put is, ‘[a] complete assessment of students’ justification skills 

has to take into consideration both products (that is, justifications produced by students) and 

processes (that is, the ways in which students produce their justifications)’ (p. 88). 

In addition, although the qualitative findings of this study are limited to the case of Presh N, they 

provide evidence of the different factors influencing hybrid functional understanding of proof. 

Whereas the recommendation that learners’ appropriation of the functions of proof is necessary to 

foster meaningful learning of proof, gaining insight into the factors influencing the understanding 

is equally important. Thus, this revamp will have implications not only for mathematics teacher 

education but also for classroom practice. For instance, the teaching of the functions of proof in 

mathematics is conflated with doing proof in most if not all of teacher education programmes in 

South Africa owing to the partial alignment of teacher education programmes with school 

mathematics. 

9.5 Reflections 

9.5.1 The research process  

I have reached the end of what has been a fascinating journey to explore and understand the 

interaction between and among three variables; learners’ functional understanding of proof; 

learners’ argumentation ability, and the reasons why a learner held the beliefs she held about the 

functions of proof. In the conceptions of the study, my single most concern is that participants for 
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whom English is not their home language may find it challenging to engage in written 

argumentation. However, during the analysis process I pick up very few such instances.  

9.5.2 Pattern matching analysis process 

I used pattern matching to analyse Presh N’s experiences with the concept of proof. I acknowledge 

that in adopting this theoretical analysis stance, bias could have been inadvertently introduced as 

I may have ignored some critical aspects of the data or payed too much attention to some specific 

parts of the data (Javadi & Zarea, 2016). However, consideration of the robust procedures adopted 

in this study to obtain trustworthy qualitative findings may mitigate the effect of potentially bias 

procedures.  

9.5.3 Personal growth 

One of the advantages of this study is that it has contributed to the development of my own 

knowledge of functions of proof in mathematics. The review of the literature into why learners 

find proof difficult broadened my knowledge of the functions of proof even more. Also, using 

ATLAS.ti for coding involves a double learning curve: learning how to make sense and order 

textual data and learning a new computer programme.  

9.6 Chapter summary 

I argued that doing proof meaningfully, even if it meant understanding that the primary function 

of proof is to verify the truth of mathematical statements, is contingent upon holding informed 

functional understanding of proof. This understanding fulfilled the Specific Aim of CAPS. In fact, 

I argued that functional understanding of proof and argumentation provide learners with a sense 

of the nature of mathematics, and believe that such understanding contributes to halting low 

achievement in Euclidean geometry. I then argued that taking advantage of the relationship 

between argumentation and functional understanding of proof could contribute to the learning of 

proof.  

I also explained why Presh N held informed beliefs about the functions of proof; that is, 

identifying the roots of beliefs about the functions of proof that were consistent with those of the 
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mathematics community. The fluidity of learners’ beliefs about the functions of proof were 

corroborated by past research studies. Seeking insights into the factors influencing informed 

beliefs was important for instructional practices to address as such beliefs tend to either hinder or 

promote gaining of informed beliefs about the functions of proof. I discussed the interactions 

between and among learners’ functional understanding of proof, argumentation ability, and factors 

accounting for informed beliefs about the functions of proof in mathematics. I acknowledged 

several limitations inherent in the design of crosssectional studies such as the present study. For 

each of the research question discussed, I highlighted its implications and made recommendations 

for (1) actions to be taken to tackle the issues raised and for (2) the pursuit of further research, in 

the quantitative strand of the study.  

The three major contributions of this research are its methodology, the baseline quantitative 

data gathered on LFUP, and the proposed model for understanding factors influencing learners’ 

functional understanding of proof. Of course, the LFUP result is not a new insight. What is new, 

however, is another validation of an instrument. This validation enhances the fidelity with which 

the instrument can be used by both classroom teachers and mathematics education researchers. 

The large scale investigation was also intended to provide policymakers with insight from which 

to base their policies.  

In a nutshell, I surveyed learners on their functional understanding of proof and the 

relationship between this phenomenon and argumentation ability. I purposefully selected an 

extreme case whose reasons for holding informed beliefs about the functions of proof were 

examined through qualitative methods. Final, I explored the interaction among the three 

constructs: functional understanding of proof, argumentation, and factors influencing functional 

understanding of proof. The employment of a mixed-methods sequential explanatory design 

helped in describing how widespread hybrid understanding of proof was among learners, finding 

that the relationship between functional understanding of proof and argumentation was weak, 

Presh N’s understanding of the functions of proof was influenced by the teacher and the collectivist 

culture within which she functioned, and the interaction among the three constructs was 

undesirably coherent. Overall, the findings presented in this study are offered as a contribution to 



 Chapter summary 

 

                                                                                                                                              
300 

mathematics education’s growing interest in gaining insight into learners’ understanding of the 

functions of proof and argumentation to encourage meaningful learning of proof. 
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Permission letter from KZN Department of Education 
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Appendix B1 

Learners’ Functional Understanding of Proof (LFUP) Scale 

 

 

 

 

Instructions 

 This questionnaire will NOT affect your marks. Please, do not spend a long time 

on any one question – your first thoughts are usually your best.  

 Each statement is followed by a series of possible responses: Strongly disagree, 

disagree, undecided, agree or strongly agree.  

 Put a tick/circle over the corresponding response. Please respond to every 

statement – it’s important that you respond to each statement honestly. 

 All the information will be used for research purposes only. Your responses will 

be treated confidentially. Codes will be used to protect your identity. 

 This survey should take you about 20 minutes to complete. 

This survey is conducted by Ben Shongwe for his PhD studies at UKZN. 

 

 

 

Contact Person: Prof. Vimolan Mudaly 

E-mail: mudalyv@ukzn.ac.za 

Researcher: Mr. Ben Shongwe 

E-mail: shongweb@ukzn.ac.za 

For any queries please feel free to contact me. 
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 Demographic information 

Code: ______________ 

------------------------------------------------------------------------------------------------------- 

Please, circle/tick one answer for each of the following. 

Personal particulars 

Gender: Female Male Class (e.g. 11A)  

Home language: IsiZulu English Afrikaans Other: 

 

“1” 

Strongly Disagree 

“2”  

Disagree 

“3” 

Undecided 

“4”  

Agree 

“5”  

Strongly Agree 

Please, circle the number that best reflects your level of agreement with each statement: 

T

1 

A proof is useful in making sure that a mathematical 

statement is true. 

1 2 3 4 5 

T2 Some maths propositions are true even if they have not 

been verified to be so by proof. 

1 2 3 4 5 

T3 Confidence about the truth of a proposition motivates me 

to find its proof. 

1 2 3 4 5 

T4 A proof explains what a maths proposition means. 1 2 3 4 5 

T5 A proof hides how a conclusion that a certain maths 

proposition is true is reached. 

1 2 3 4 5 

T6 Proof shows that maths is made of connected concepts 

and procedures.  

1 2 3 4 5 

T7 When I do a proof, I get a better understanding of 

mathematical thinking. 

1 2 3 4 5 

T8 Proving make me understand how I proceeded from the 

given propositions to the conclusion. 

1 2 3 4 5 
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T9 Proof enables communication of the given propositions, 

the definitions used, and the theorem to be proven. 

1 2 3 4 5 

T10 Proof communicates maths results among learners 

themselves. 

1 2 3 4 5 

T11 Proof restricts the learning of argument standards. 1 2 3 4 5 

T12 Proof can be used to debate the correctness of maths ideas. 1 2 3 4 5 

T13 Doing proof limits the learning maths language. 1 2 3 4 5 

T14 I like proofs because they give me new insights as they 

show connections between theorems. 

1 2 3 4 5 

T15 I do not like proofs and do not see the need for them; I 

prefer just learning theorems. 

1 2 3 4 5 

 Leave this item blank 1 2 3 4 5 

T16 Analysis of proof may lead to invention of new results. 1 2 3 4 5 

T17 Proving prevents me from possibly inventing things about 

geometry. 

1 2 3 4 5 

T18 Proof may reveal completely new areas for investigation. 1 2 3 4 5 

T19 Proof shows the lack of connections between theorems 

and new results. 

1 2 3 4 5 

T20 Proving in maths may lead to an addition of new 

proposition that can be used in later proofs. 

1 2 3 4 5 

T21 Proving does not require one to decide which axioms may 

be chosen as true. 

1 2 3 4 5 

T22 Proving in maths may lead to a replacement of a set of 

propositions that could be used in later proofs 

1 2 3 4 5 

T23 Proof does not show the existing logical relationships 

between propositions. 

1 2 3 4 5 

T24 A proof in maths brings together and connects maths 

results. 

1 2 3 4 5 

 Leave this item blank 1 2 3 4 5 

T25 Proving involves reasoning and argumentation that is 

different from the rest of maths. 

1 2 3 4 5 

Thank you for your valued input and assistance. Please, turn over the page to go to the last part, AFEG. 
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Appendix B2 

Self-efficacy Scale 

Instruction 

The attached form lists different activities. In the column, rate how confident you are that you can 

do them as of now. Rate your degree of confidence by recording a number from 0 to 6 using the 

scale given below: 

0 1 2 3 4 5 6 

Cannot 

do at all 

Moderately can do Highly certain can do 

 

 Confidence 

(0–7) 

Engage in experimentation to seek patterns __________ 

Make a conjecture __________ 

Verify if the conjecture is true using few cases __________ 

Seek counterexamples __________ 

Persevere in the face of difficulties __________ 

Use previously proven statements __________ 

Formally write out and justify each step of your proof __________ 

Examine your proof for accuracy and identify any missing steps. __________ 
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Appendix B3 

Argumentation Frame in Euclidean Geometry (AFEG) 

I am interested in the claim that you can make about the data in the diagram. This questionnaire 

is not part of your regular geometry activity and so it will NOT affect your marks. Your name will 

not be linked to your responses. Please, use the dotted lines to respond to each prompt. 

In the diagram below, line DE is parallel to line BC on triangle ABC. 

 

Please, make ANY statement or claim from the diagram and justify it. Please, think carefully as 

you argue your points using the guide provided below.  

(1) My statement is that …………………………………………………...………. 

……………………………………………… …………………………………. 

(2) My reason for making this statement is that …………………………………... 

………………………………………………………………………………….. 

(3) Arguments against my idea might be that …….....…………………………….. 

………………………………………………………………………………….. 

 

End. Thank you. 
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Appendix B4 

Interview Schedule 

Code:   S1CAL15              R = Researcher              P =   Participant (Presh N) 

Transcriber:   Kamlesh M.   Typist:     Zodwa K. 

Date:    26 September   2017 Start:    14h50   End:   15h30 

A. Introduction 

I am from the University of KwaZulu-Natal (UKZN) conducting interviews to explain the source of your beliefs about the functions of proof. I 

am meeting with you because you have obtained the highest score in the questionnaire related to the functions of proof.  

Thank you for agreeing to be interviewed and audiorecorded by signing the consent form to indicate that you have received information about this 

study. Audiorecording of this talk will help me in making sure that I do not miss very important information you give and to save time.  

Please, take note that I am interested in your honest thoughts about the functions of proof; not to grade you.  

This interview will take approximately 30 minutes. Are you ready to begin?
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B. Interview questions 

RQ 

1.6.2.1 

Aim (overall 

information 

needed) 

Objectives (specific information needed 

to achieve the aim) 

Main questions Probes (Follow 

up questions) 

W
h

y 
d
o

es
 P

re
sh

 N
 h

o
ld

 i
n
fo

rm
ed

 b
el

ie
fs

 a
b
o
u
t 

th
e 

fu
n
ct

io
n
s 

o
f 

p
ro

o
f?

 

1. Confirmation A. To record informed consent. (i) Do you consent freely to participate in 

this audiorecorded interview? 

 

B. To establish whether learners have 

treated Euclidean proof in Grade 10, 

the second term as scheduled. 

(ii) In Grade 10, have you studied proof in 

geometry? 

Tell me about one 

theorem you just 

did in class. 

 

2. Checking 

semantic 

contamination 

A. To obtain insights into whether 

learner’s definition of proof is in terms 

of everyday meaning. 

(i) What, in your view, is proof in 

mathematics? 

Please, can you 

explain what a 

theorem is? 

(ii) What are the functions you believe 

proof performs in mathematics?” 

Why do you think 

so? 

 

3. Checking 

collectivist 

culture 

A. To understand whether participants 

hold internal or external views of 

mathematics.  

(i) According to you, what do you think is 

mathematics?  

How do you know 

this? 
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RQ 

1.6.2.1 

Aim (overall 

information 

needed) 

Objectives (specific information 

needed to achieve the aim) 

Main questions Probes (Follow 

up questions) 

W
h

y 
d
o

es
 P

re
sh

 N
 h

o
ld

 i
n
fo

rm
ed

 b
el

ie
fs

 a
b
o
u
t 

th
e 

fu
n
ct

io
n
s 

o
f 

p
ro

o
f?

 

Checking 

collectivist culture 

(continued) 

B. To be able to see whether learning of 

proof is through memorisation or 

investigations.  

(i) How do you learn your theorems?  Why do you use 

this way you have 

just described? 

 

Checking 

collectivist culture 

(continued) 

C. To see whether participants attribute 

failure to context conditions or effort. 

(i) What do you think is the reason if you 

are unable to prove a theorem? 

Why do you think 

so? 
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RQ 

1.6.2.1 

Aim (overall 

information 

needed) 

Objectives (specific 

information needed to 

achieve the aim) 

Main questions Probes 

(Follow up 

questions) 

W
h

y 
d
o

es
 P

re
sh

 N
 h

o
ld

 i
n
fo

rm
ed

 b
el

ie
fs

 a
b
o
u
t 

th
e 

fu
n
ct

io
n
s 

o
f 

p
ro

o
f?

  

4. Checking 

empirical 

arguments 

A. To understand if 

proving that something 

is true in geometry is 

the same as proving in 

everyday life 

(presenting an object as 

proof). 

Read this paper thoroughly. The stamp states “Proof”. 

 

(i) What is the difference between this “proof” and mathematical 

proof? 

Can you say 

more? 
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RQ 

1.6.2.1 

Aim (overall 

information 

needed) 

Objectives (specific 

information needed 

to achieve the aim) 

Main questions Probes 

(Follow up 

questions) 

W
h

y 
d
o

es
 P

re
sh

 N
 h

o
ld

 i
n
fo

rm
ed

 b
el

ie
fs

 a
b
o

u
t 

th
e 

fu
n
ct

io
n
s 

o
f 

p
ro

o
f?

  

5. Checking 

empirical 

argument 

A. To check if 

learners conceive 

of proof as 

making a number 

of observations.  

Please, consider the following diagrams, cartoon and its statement. 

 

 

 

 

 

(i) Do you agree with the learner that finding the same answer 

after trying many cases proves? 

Why do you 

agree? 

 

I constructed different triangles 

and measured their angles with 

a protractor. This is proof that 

“The sum of the angles of a 

triangle sum up to 1800. 
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RQ 

1.6.2.1 
Aim (overall 

information 

needed) 

Objectives (specific information 

needed to achieve the aim) 

Main questions Probes 

(Follow up 

questions) 

W
h

y 
d
o

es
 P

re
sh

 N
 h

o
ld

 i
n
fo

rm
ed

 b
el

ie
fs

 a
b
o
u
t 

th
e 

fu
n
ct

io
n
s 

o
f 

p
ro

o
f?

 

Checking 

empirical 

argument 

(continued) 

A. To check if learners conceive of 

proof as making a number of 

observations. 

(ii) How can the learner be sure that the statement 

that “The sum of the angles of a triangle sum 

up to 1800” always works? 

How do you 

know that? 

 

6. Checking 

teacher 

influence 

A. To understand whether the learner 

appreciate the need to read and 

understand a theorem for herself 

rather than rely on the authority of 

the teacher. 

(i) If the teacher has verified the truth of a 

theorem, what do you think is your role, next? 

Why do you 

think you 

have to do 

that? 

 

 
(ii) Do you have a mathematics textbook of your 

own? 

How often do 

you use it?  
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RQ 

1.6.2.1 

Aim (overall 

information 

needed) 

Objectives (specific 

information needed to 

achieve the aim) 

Main questions Probes (Follow up 

questions) 

W
h

y 
d
o

es
 P

re
sh

 N
 h

o
ld

 i
n
fo

rm
ed

 b
el

ie
fs

 a
b
o
u
t 

th
e 

fu
n
ct

io
n
s 

o
f 

p
ro

o
f?

  

Checking teacher 

influence 

(continued) 

B. To understand whether 

the learner appreciate the 

need to read and 

understand a theorem for 

herself rather than rely on 

the authority of the 

teacher. (continued) 

(iii) If the textbook has verified the truth of a theorem, 

what do you think is your role, next? 

Why do you think 

you have to do that? 

 

7. Checking 

textbook 

influence 

A. To check influence of 

textbook in promoting 

the “prove that” type 

rather than those that 

trigger conjecturing by 

learners. 

(i) How does the textbook help you to do proof? Please, can you 

elaborate? 
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C. Closing 

 We have come to the end of this interview. Are there any responses you would like to elaborate upon or questions that you would like to 

ask me about what took place during the interview?  

 Thank you very much for the effort you made to participate and the time you spent during the interview. 



 

  

 

                                                                                                                                              
342 

Appendix C1 

Glossary of transcript symbols 

P:/R: Speaker labels (P: = Participant; R: = Researcher) 

(·) A dot in parentheses indicates a brief interval (±a tenth of a second) within or between 

utterances. 

˚word˚  Degree signs bracketing an utterance or utterance-part indicates that the sounds are softer than 

the surrounding talk. 

*word* Asterisk signs bracketing an utterance or utterance-part indicates that the sounds are harder than 

the surrounding talk 

underline  Underlining used to mark words or syllables which are given special emphasis of some kind 

CAPS Words or parts of words spoken loudly marked in capital letters 

s:::  Sustained or stretched sound; the more colons, the longer the sound 

( ) Empty parentheses indicate that the transcriber is unable to get what is said. 

(( )) Doubled parentheses contained researcher’s descriptions. 

.hhh A dot-prefixed row of ‘h’s indicates an inbreath. Without the dot, the ‘h’s indicate an outbreath. 

– A dash indicated a cut-off word or sound 

= Equal signs indicate no break or gap. A pair of equal signs, one at the end of one line and one at 

the beginning of a next, indicate no break between the two lines. 

(1.7)  Numbers in parentheses indicated elapsed time by seconds. 

↑↓ Arrows indicate shifts into especially high or low pitch. 

£ The pound-sterling sign indicated a certain quality of voice which conveys ‘suppressed laughter’ 
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Appendix C2 

Presh N’s Interview Transcript 

1 R: Do you consent freely to participate in this audiorecorded interview? 

2 P: Yes. 

3 R: In Grade 10, have you studied proof in geometry? 

4 P: Yes. 

5 R: Tell me about one theorem you just did in class. 

6 P: .hhh (1.5) okay that would be the theorem that says if the angles of a quad are (·)= 

7  =supplementary, it is a cyclic quad. 

8 R: What, in your view, is proof in mathematics? 

9 I: Proof in mathematics is about coming up with ideas and developing .hhh (1.5)=  

10  = formulas by using things like theorems and measurements and .hhh (1.5) Yeah. 

11 R: Please, can you explain what a theorem is? 

12 P: A theorem is a statement that can be proven to be true ˚or not ˚  

13 R: What are the functions you believe proof performs in mathematics? 

14 P: * Sorry come again*.((clearing her throat)) 

15 R: What are the functions you believe proof performs in mathematics?” 

16 P: To verify if a statement is true or a problem is true to (·) to yeah 

17 R: Why do you think so? 

18 P: Because when you are proving you... there is a communication that and a language =  

19  =that you must follow and bringing together the ideas you have or you know = 

20  =about .hhh (2.0)  s:::  in this case geometry things you’ve learnt from previous = 

21  =grades putting them together things, that are relevant to what you are trying to = 

22  =solve, the problem you are trying to solve, ( ) something like that.  

23 R: According to you, what do you think is mathematics?  

24 P: Mathematics is about PATTERN, it’s a sequence of hhh. No it’s a pattern of numbers = 

25  =and shapes how they come about and .hhh (2.0) Yeah. 

26 R: How do you know this? 

27 P: I↑ know this because .hhh (2.0). Math, topics in maths are closely related .hhh (2.0)  

28  =Nothing is new YOU CAN ALWAYS RELATE TO THE PREVIOUS .hhh (2.0)= 

29  =CHAPTER you did so you can see a pattern forming and you can see lot = 

30  =of relationships things that you can compare or say you can use to solve other = 

31  =problems in different topics. I mean you can you can you can use .hhh (1.5)= 

32  =For example algebra, algebra is not only used for .hhh (1.0) solving x you can= 

33  =use it in word statements you can use it in in geometry, Euclidean geometry so it’s = 

34  =not something new that comes up when you do a different topic it’s a follow up= 

35  =or a continuous it’s just that it’s how you use it, it’s how apply it= 

36 R: How do you learn your theorems? 

37 P: I learn my theorems by obviously going through them reading try and understand = 

38  =follow the the the. £ rules and then apply them in a problem 

39 R: Why do you use this way you have just described? 
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40 P: I … I ... That’s how we were taught. Sorry, we were taught that, you read, follow the= 

41  = rules then apply them. 

42 R: What do you think is the reason if you are unable to prove a theorem? 

43  (1.5) 

44 P: .hhh (0.5) it might be the language or how the question is put or you didn’t exhaust = 

45  =all your theorems or yah all your theorems that you’ve learnt, I just said it is because=  

46  =you are having a problem in understanding the statement what it says or you = 

47  =haven’t applied every, you haven’t applied every .hhh (2.0) rule or theorem that you = 

48  =know in the problem. 

49 R: Read this paper thoroughly ((Sheet with bank stamp handed over to participant)). =  

50  =The stamp states “Proof”. 

51  

 
52 R: What is the difference between this “proof” and mathematical proof? 

53 P: From the stamp? 

54 R: Yes 

55 P: I see the name of the bank, the branch, the date and that it’s the proof. 

56 R: Can you say more? 

57 P: .hhh (1.0) in mathematics proof .hhh (1.0)  talks about or relates to how you came=  

58  =to a conclusion when solving a problem in this case in Euclidean geometry how= 

59  =how which steps did you take and what  those steps were supported by which =  

60  =statement and how did you take those steps to get where to your final answer. 

61 R: Can you say more? 

62 P: This proof I can say they are almost similar because there’s details that .hhh (0.5) = 

63  =the the client or customer that went to to to request for for the statement can agree =  

64  =to what they see on the statement by agreeing that this is their information so when =  

65  =the bank aah place the stamp on this statement they they verified with the =  

66  =customer that this is the is their information and the customer agreed and they they = 

67  =also took steps probably by .hhh (0.5) checking the the clients ID number and this is =  

68  =what they came up with so .hhh (1.5), even though there’s not a lot of similarities =  
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69  = but they took certain steps to come up with the final .hhh (0.5) statement. 

70 R: Please, consider the following diagrams, cartoon and its statement. ((Sheet = 

71  =with bank stamp handed over to participant)). According to the learner, the = 

72  

 

73  = statement that the angles of a triangle are supplementary has to be proved this way.= 

74  =Tell me what they say. 

75 R: It says I constructed different triangles and measured their angles with a protractor = 

76  =this is proof that the sum of the triangle, the the sum of the angles of a triangle = 

77  =sum up to 180 degrees. Basically the learner is saying .hhh (0.5). They used a = 

78  =protractor to measure the angles of a triangle and all of those triangles they = 

79  =measured they came up to180 degrees.↓ 

80 R: Do you agree with the learner that finding the same answer after trying many cases = 

81  =proves? 

82 P: .hhh (2.5) ˚Not completely˚ because the learner only relied on the protractor to come = 

83  =up with their conclusion but .hhh (1.0) his conclusion is not supported by statements = 

84  =or other theorems that were were, that they happen to be proven by mathematicians = 

85  =like maybe theorem of Pythagoras or things like that he  only relied on the =  

86  =protractor it’s not proof enough, .hhh (0.5). 

87 R: How can the learner be sure that the statement that “The sum of the angles of a =  

88  =triangle sum up to 1800” always works? 

89 P: .hhh (0.5) I think as students we can. We rely on on the textbooks that are written by = 

90  =mathematicians so by following their way  of of proving it is almost guaranteed = 

91  =that you are on the right track you you don’t just come up with your own. = 

92  =The learner can use .hhh (1.5). Can use a theorem that talks about parallel lines = 

93  =and a triangle drawn between parallel lines a sketch yeah .hhh (0.5) a learner =  

94  =can use a sketch which has parallel lines and in between the parallel lines there’s =      

95  =a triangle and use all the theorems that they have learnt to to work it out and see = 

96  =using the angles of that triangle talk about it using theorem. 

97 R: How do you know that? 

98 P: hhh We’ve done that in class 

99 R: If the teacher has verified the truth of a theorem, what do you think is your role, next? 

100 P: My role is to (2.5) is to go over it again .hhh (0.5) maybe try to find out how =  

I constructed different triangles and 

measured their angles with a protractor. 

This is proof that “The sum of the angles 

of a triangle sum up to 1800. 
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101  =other learners .hhh (0.5)how did the other learners find the the proof, how how did =  

102  =they managed to solve it without the teacher just basically going through it again = 

103  =and maybe asking maybe more questions from the teacher it ( ). 

104 R: Why do you think you have to do that? 

105 P: I guess because they .hhh (1.5). They’ve been proving for quite some time more than =  

106  =us because are just learning these things they’ve been exposed to these problems = 

107  =for a while more than us. 

108 R: Do you have a mathematics textbook of your own? 

109 P: Yes 

110 R: How often do you use it? 

111 P: Very often.↓ .hhh (1.5) s::: Maybe 4 times a week 

112 R: How does the textbook help you to do proof? 

113 P: To remind myself or to go back and and yeah to remind myself about the theorems or = 

114  =other examples and .hhh (1.5) To check the answers if I’m correct with my = 

115  =problems that I’ve attempted. .hhh (1.5) Is to continue (2.0) don’t stop. = 

116  =hhh (1.5) continue solving more problems more theorems more proofs and. 

117  (2.0) 

118 R: Please, can you elaborate? 

119 P: .hhh (1.5) The textbook .hhh (0.5) it’s got almost all the relevant information that = 

120  =I need so that’s how it helps me I get most of the information that I need from the = 

121  =textbook. 

122 R: We have come to the end of this interview. Are there any responses you would like to = 

123  =elaborate upon or questions that you would like to ask me about what took place = 

124  =during (·) the interview? 

125 P: No.↓ 

126 R: Thank↑ you very much for the effort you made to participate and the time you spent = 

127  =during the interview. 
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Appendix C3 

ATLAS.ti interview quotations and codes 

Project: Presh N interview 

Report created by Shongwe B on 2017/11/30 

Quotation Report 

All (34) quotations 

 2:1 the theorem that says if the angles of a quad are supplementary, it is… 

(224:308) 

3 Codes: 

● Collectivist culture / ○ Correctly stated theorem / ○ The theorem is precisely stated 

 2:2 Proof in mathematics is about coming up with ideas and developing eeh.…… 

(361:489)  

2 Codes: 

○ Mathematicians prove, learners can't discover / ○ Proof is conjecturing; inductive 

arguments and axioms 

 2:3 theorem is a statement that can be proven to be true or not (552:610)  

3 Codes: 

● Collectivist culture / ○ Proof verifies / ○ Theorem can be true or false 

 2:4 To verify if a statement is true (785:817)  

1 Codes: 

○ Proof verifies 

 2:5 when you are proving you... there is a communication (884:936)  
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1 Codes: 

○ Proving is communicating 

 2:6 language that you must follow (948:977)  

2 Codes: 

○ Proving is communicating / ○ Proving requires following a language 

 2:7 bringing together the ideas you have or you know about aah.... in this…… 

(982:1136)  

1 Codes: 

● Proving is systematising 

 2:8 that are relevant to what you are trying to solve (1139:1187)  

2 Codes: 

○ Proof uses relevant ideas / ● Proving is systematising 

 2:9 Mathematics is about pattern, it’s a sequence of ammh... No it’s a pat…… 

(1310:1425 

2 Codes: 

○ Maths is patterning of numbers and shapes / ● Proving is systematising 

 2:10 Math, topics in maths are closely related mmh... Nothing is new you ca…… 

(1501:1651)  

2 Codes: 

○ Maths topics related & form pattern / ● Proving is systematising 

 2:11 you can see a pattern forming and you can see lot of relationships thi…… 

(1622:1772) 

2 Codes: 
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○ Patterns & relations help / ● Proving is systematising 

 2:12 is not only used for aah solving x you can use it in word statements y…… 

(1857:2131) 

2 Codes: 

○ Link between diff domains / ● Proving is systematising 

 2:13 I learn my theorems by obviously going through them reading try and un…… 

(2172:2308) 

2 Codes: 

● Collectivist culture / ○ Learning theorems by memorisation 

 2:14 That’s how we were taught. Sorry, we were taught that, you read, follo…… 

(2375:2471) 

3 Codes: 

● Collectivist culture / ○ Taught to follow rules / ● Teacher influence 

 2:15 Ahh... it might be the language or how the question is put or you didn…… 

(2549:2892) 

2 Codes: 

● Collectivist culture / ○ Failure to prove shows inability to apply rules 

 2:16 I see the name of the bank, the branch, the date and that it’s the pro…… 

(3053:3125) 

4 Codes: 

○ Proof verifies / ● Semantic contamination / ○ Stamp is proof / ○ Stamp verifies 

 2:17 Aah in mathematics proof aahm talks about or relates to how you came…… 

(3151:3450) 

2 Codes: 
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● Proving is systematising / ○ Proving shows steps to conclusion 

 2:18 This proof I can say they are almost similar because there’s details t…… 

(3476:3718) 

4 Codes: 

○ Evidence is mathematical proof / ○ Proof verifies / ● Semantic contamination / ○ 

Stamp verifies 

 2:19 when the bank aah place the stamp on this statement they they verified…… 

(3723:3989) 

2 Codes: 

○ Proof verifies / ○ Stamp verifies 

 2:20 yaah, even though there’s not a lot of similarities but they took certain…… 

(3995:4112)  

1 Codes: 

○ Letter & proof use steps to reach conclusion 

 2:21 Not completely because the learner only relied on the protractor to co…… 

(4801:4898) 

2 Codes: 

● Empirical arguments / ○ Measurement does not imply proof 

 2:22 his conclusion is not supported by statements or other theorems that w…… 

(4910:5018) 

2 Codes: 

○ Deductive reasoning not followed / ● Proving is systematising 

 2:23 theorems that were … were , that they happen to be proven by 

mathematicians…… (4965:5090) 



 

 Appendix C3 

 

                                                                                                                                              
351 

2 Codes: 

● Collectivist culture / ○ Theorems proved by mathematicians 

 2:24 he only relied on the protractor, it’s not proof enough (5091:5146) 

4 Codes: 

● Empirical arguments / ○ Measurement isn't proof / ○ Patterns & relations help / ● 

Proving is systematising 

 2:25 I think as students we can .we rely on … on the text books that are wr…… 

(5287:5477) 

2 Codes: 

● Collectivist culture / ○ Mathematicians prove; learners follow 

 2:26 you don’t just come up with your own (5482:5517) 

1 Codes: 

○ Mathematicians prove, learners can't discover 

 2:27 The learner can use aahmm. Can use a theorem that talks about parallel…… 

(5519:5893) 

1 Codes: 

○ Axioms used to do proof 

 2:28 We’ve done that in class (5931:5954) 

3 Codes: 

● Collectivist culture / ○ Proof done in class / ● Teacher influence 

 2:29 My role is to … is to go over it again aah maybe try to find out how o…… 

(6052:6340) 

2 Codes: 
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● Collectivist culture / ○ Memorisation of teacher proof 

 2:30 They’ve been proving for quite some time more than us because are just…… 

(6414:6570) 

3 Codes: 

● Teacher influence / ○ Teachers exposed to proving more / ● Textbook influence 

 2:31 Very often. Mmmh...Maybe 4 times a week (6661:6699) 

2 Codes: 

● Textbook influence / ○ Textbook used 4 times/week 

 2:32 To remind myself or to go back and and yah to remind myself about the…… 

(6751:6847) 

2 Codes: 

● Textbook influence / ○ Textbook source of theorems 

 2:33 To check the answers if I’m correct with my problems that I’ve attempt…… 

(6859:7039) 

2 Codes: 

● Textbook influence / ○ Textbook to check correctness of proofs 

 2:34 the text book eeh it’s got almost all the relevant information that I…… 

(7078:7239) 

4 Codes: 

○ Info needed is in textbook / ● Teacher influence / ○ Textbook contains most 

information / ● Textbook influence 

 

 


