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Abstract 

The emergence of American bramble (Rubus cuneifolius) across South Africa has caused 

severe ecological and economic damage. To date, most of the efforts to mitigate its effects have 

been largely unsuccessful due to its prolific growth and widespread distribution. Accurate and 

timeous detection and mapping of Bramble is therefore critical to the development of effective 

eradication management plans. Hence, this study sought to determine the potential of freely 

available, new generation medium spatial resolution satellite imagery for the detection and 

mapping of American Bramble infestations within the UNESCO world heritage site of the 

uKhahlamba Drakensberg Park (UDP). 

 

The first part of the thesis determined the potential of conventional freely available remote 

sensing imagery for the detection and mapping of Bramble. Utilizing the Support Vector 

Machine (SVM) learning algorithm, it was established that Bramble could be detected with 

limited users (45%) and reasonable producers (80%) accuracies. Much of the confusion 

occurred between the grassland land cover class and Bramble. 

 

The second part of the study focused on fusing the new age optical imagery and Synthetic 

Aperture Radar (SAR) imagery for Bramble detection and mapping. The synergistic potential of 

fused imagery was evaluated using multiclass SVM classification algorithm. Feature level image 

fusion of optical imagery and SAR resulted in an overall classification accuracy of 76%, with 

increased users and producers’ accuracies for Bramble. These positive results offered an 

opportunity to explore the polarization variables associated with SAR imagery for improved 

classification accuracies.  

 

The final section of the study dwelt on the use of Vegetation Indices (VIs) derived from new age 

satellite imagery, in concert with SAR to improve Bramble classification accuracies. Whereas 

improvement in classification accuracies were minimal, the potential of stand-alone VIs to detect 

and map Bramble (80%) was noteworthy. Lastly, dual-polarized SAR was fused with new age 

optical imagery to determine the synergistic potential of dual-polarized SAR to increase Bramble 

mapping accuracies. Results indicated a marked increase in overall Bramble classification 

accuracy (85%), suggesting improved potential of dual-polarized SAR and optical imagery in 

invasive species detection and mapping.    
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Overall, this study provides sufficient evidence of the complimentary and synergistic potential of 

active and passive remote sensing imagery for invasive alien species detection and mapping. 

Results of this study are important for supporting contemporary decision making relating to 

invasive species management and eradication in order to safeguard ecological biodiversity and 

pristine status of nationally protected areas.  
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Chapter One 

 

General Introduction  

1. Introduction 

Global biodiversity has rapidly decreased in recent decades, with the estimated loss of 

terrestrial biodiversity costing the global economy approximately $500 billion per annum (The 

Economics of Ecosystems and Biodiversity, 2009). Consequently, the United Nations 

Convention on Biological Diversity (CBD) has emphasized the Aichi 2020 targets, which aim to 

reduce pressure on biodiversity and improve biodiversity status by conserving ecosystems, 

species and genetic diversity (Proença et al., 2017). An assessment of the targets found that 

while steps to offset the deterioration of biodiversity have increased, so have been the 

associated pressures (Tittensor et al., 2014).  

Global grassland ecosystems have particularly experienced an extreme decline in biodiversity in 

recent decades. With grassland ecosystems covering approximately 40% of the earth’s surface 

(White et al., 2000), significant efforts are necessary to ensure conservation of such a valuable 

ecosystem. Grasslands serve to sequester atmospheric carbon, reduce surface water runoff 

and erosion, store runoff as groundwater and provide grazing for livestock and wild animals. 

Globally, grasslands accommodate several important species and include 15% of the world’s 

centres of plant endemism, 11% of endemic bird areas and 29% of ecoregions with outstanding 

biological distinctiveness (White et al., 2000). In South Africa, the grassland biome is one of the 

most threatened of the seven biomes, with roughly 60% of natural grassland environments 

considered permanently transformed (Reyers and Tosh 2003; Fairbanks et al., 2000). In 

addition, of the 339 237 km2 (29% of South Africa’s land surface area), only 2.8% is formally 

conserved (Reyers and Tosh, 2003). The decline in grassland ecosystems along with their 

associated biodiversity and ecosystem services demand urgent strategies to improve their 

condition (World Resource Institute, 2001). 

Biological invasions are a major driver of grassland ecosystem and biodiversity degradation, 

hence understanding their spatial distribution patterns and processes is becoming increasingly 

important (McLean et al., 2017). Considering that invasive plant species costs the South African 

economy an estimated R6.5 billion a year (De Lange and Van Wilgen, 2012), timely, accurate 

and cost-effective detection and mapping of specific invasive species is critical. In the KwaZulu-
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Natal Province of South Africa, the increasing proliferation of the American bramble (Rubus 

cuneifolius) has particularly become a concern. Bramble is an alien deciduous shrub of the 

Rosaceae family originally imported into South Africa from northern America during the late 

1800s and early 1900s, for commercial cultivation and production of jam from its berries 

(Erasmus, 1984). Subsequent to its introduction, Bramble has successfully escaped cultivated 

ranges and spread throughout KwaZulu-Natal, with disastrous effects (Figure 1.1). 

Figure 1.1: The American bramble (Rubus cuneifolius) (a); its inflorescence (b-c) and bramble 

patches within the grassland landscape of the UDP (d) and (e). 

The thorny, thickety nature of Bramble has adverse impacts on natural grazing lands, along 

roadsides and in riparian zones (Shezi and Poona, 2010). Generally, Bramble is known to 

adversely affect nutrient cycling, increase soil erosion, reduce animal carrying capacity and 

population viability, hinder natural plant succession, reduce quality and quantity of water 

production and promote changes in fire patterns and behaviour. Furthermore, the establishment 

of Bramble patches is known to have negative effects on specialist grassland species. In order 

to reduce these harmful impacts, the development of efficient and cost-effective Bramble 

management strategies is required.  

According to He et al (2011), repeated monitoring, detection and collation of spatial distributions 

of invasive alien plant species by conventional field-based survey is time consuming and 

expensive. The use of remotely sensed imagery in invasive alien species detection and 

mapping has attracted significant attention over recent decades and could significantly 
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contribute to reliable and accurate information relating to Bramble spatial distributions.  While 

there have been numerous studies conducted on detection and mapping of invasive alien 

species using a range of satellite imagery, with reasonable accuracy (Van den Berg et al., 2013; 

Masocha and Skidmore, 2011; Kimothi and Dasari, 2010; Rocchini et al., 2015), satellite 

specifications have always been the limiting factor in generating reliable and accurate spatial 

distribution maps. Bradley et al (2014), for instance notes that when using remotely sensed 

data, researchers are faced with the dilemma of trade-offs between spatial extent (swath width), 

spectral resolution (number of bands), spatial resolution (pixel size) and temporal resolution 

(revisit time). 

Currently, Earth Observation (EO) technology is characterized by an abundance of airborne and 

spaceborne sensors, providing a large variety of remotely sensed data (Schmitt et al., 2017). 

The abundance and improvements in remote sensing satellite technology have the potential to 

allow for improved accuracy in detecting and mapping of invasive alien species. For instance, 

the European Union, through its first Earth Observation (EO) programme Copernicus, launched 

the Sentinel-1 (S1) and Sentinel-2 (S2) satellites. Sentinel-1 (S1) is a Synthetic Aperture Radar 

(SAR) sensor providing unprecedented 250 km2 SAR imagery in single and dual polarization, 

while Sentinel-2 (S2) is a multispectral optical sensor, providing 290 km2 optical imagery in 13 

optical bands (Ramoelo et al., 2015). Gao et al (2017) notes that the tandem operation and the 

respective unique characteristics of these two satellites have established a new paradigm for 

remote sensing applications. In addition, Schmidt et al (2017) suggests that the timeous launch 

of S1 and S2 could serve to increase the applicability of remote sensing-based approaches for 

practical environmental monitoring and mapping tasks.  

The synergistic potential of multi-source remotely sensed imagery (eg. S1 SAR and S2 optical 

imagery) could potentially improve the analysis of Bramble’s functional and structural properties, 

and consequently increase accuracies associated with mapping their spatial distributions 

(Peerbhay et al., 2016 and Fard et al., 2014). SAR sensors operate at longer wavelengths and 

provide complimentary information relating to shape, moisture and roughness, information not 

provided by optical imagery (Chen et al., 2010). Since multispectral optical imagery record 

surface information regarding reflectance and emissivity characteristics, while SAR imagery 

capture the structure and dielectric properties of earth surface materials (Zhu et al., 2012), 

studies have suggested that the synergistic potential and complementarity of optical and SAR 

imagery has potential to cost-effectively improve vegetation classification accuracies (Talab-Ou-

Ali et al., 2017). Whereas the technique has been successfully applied in the computer vision, 
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medical imaging and defence security realms (Zhang, 2010), studies on fusion of optical and 

SAR imagery for the detection and mapping of invasive alien species spatial distribution are 

limited. 

Remote sensing image fusion seeks to combine information from multiple sources to achieve 

inferences that are not feasible from a single sensor or source. The approach seeks to integrate 

different data in order to obtain more information that can be derived from each of the single 

sensor data alone. Multi-sensor image fusion is widely recognized as an efficient tool for 

improving overall performance in image-based applications. Mitchell et al. (2010) and Zheng 

(2011) consider image fusion as the best option for the integration of information collected from 

different imaging sensors at varying spectral, spatial and temporal resolutions. Sentinel-1 and 

Sentinel-2 imagery provide a unique opportunity to investigate the synergistic potential of new 

age optical imagery fused with SAR imagery for invasive alien species detection and mapping. 

The freely available nature of S1 and S2 imagery, coupled with their large swath widths, short 

re-visit time and unprecedented spectral and spatial resolutions offers valuable cost-effective 

data for invasive alien species detection at both local and regional spatial extents.  

1.2 Aim and objectives 

The aim of this study was to investigate the potential of image fusion between medium 

resolution optical remote sensing and Synthetic Aperture Radar imagery to reliably detect and 

map Bramble invasions within the uKhahlamba Drakensberg Park (UDP), KwaZulu-Natal, South 

Africa.  

The objectives of the study were: 

1. To evaluate the potential of freely available multispectral remote sensing imagery for 

detecting and mapping American Bramble (Rubus cuneifolius)  

2. To determine the potential of fusing optical imagery and Synthetic Aperture Radar (SAR) 

imagery for American Bramble (Rubus cuneifolius) detection and mapping. 

3. To investigate the capability of fused optical imagery and SAR polarization combinations and 

ratios to improve American Bramble (Rubus cuneifolius) detection and mapping 

4. To determine the synergistic potential of Sentinel-2 optical imagery and S2 Vegetation 

Indices (VIs) in detecting and mapping the American Bramble (Rubus cuneifolius)  
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5. To determine the value of fusing Sentinel-2 Vegetation Indices (VIs) and Sentinel-1 Synthetic 

Aperture Radar (SAR) in detecting and mapping the American Bramble (Rubus cuneifolius), and  

6. To determine the value of dual-polarized Sentinel-1 Synthetic Aperture Radar (SAR) fused 

with Sentinel-2 optical imagery for the American Bramble (Rubus cuneifolius) detection and 

mapping 

1.3 Study area description 

The uKhahlamba-Drakensberg Park (UDP) covers approximately 2 428.13 km2 within the 

KwaZulu-Natal (KZN) Province and is located at 29°12' 44" S; 29° 29’ 11" E (Figure 1.2). 

Situated along the border of western Lesotho and eastern KZN, the UDP is predominantly a 

natural grassland with patches of bushland, native scrub vegetation and indigenous forests. 

Mean annual temperature in the area is approximately 16°C and annual precipitation ranges 

between 1000mm in the foothills and 1800mm at the escarpment (Tyson et al., 1976). Annual 

average rainfall ranges from 990 mm to 1130 mm, with the area experiencing dry and cold 

winters and wet and humid summers (Nel et al., 2004). The widespread distribution and 

infestation of American bramble (Rubus cuneifolius) has caused serious concerns on local 

biodiversity, land degradation and overall ecosystem functioning. Bramble has naturalized in 

localized patches of low to high cover while noticeable weed stands occupy vast areas within 

UDP natural grassland environment.  
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Figure 1.2: Location of the study area. The uKhahlamba-Drakensberg Park (UDP) is located 

within the KwaZulu-Natal midlands area, South Africa. 

1.4 Outline of the thesis 

This thesis is presented as a set of research papers addressing each of the objectives listed in 

section 1.2. Two research papers have been published in peer-reviewed scientific journals while 

the remaining four papers are either in preparation or under review. Including the introduction 

and synthesis, this thesis consists of eight chapters. 

Chapter Two assess the potential of freely available multispectral remote sensing imagery to 

detect and map the American Bramble from surrounding native vegetation. A comparison of 

classification accuracies was made between conventional Landsat 8 multispectral optical 

imagery and new-age Sentinel-2 multispectral optical imagery.  

Chapter Three evaluates the potential of Sentinel-2 optical imagery fused with Sentinel-1 

Synthetic Aperture Radar (SAR) imagery for Bramble detection and mapping. Feature level 
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image fusion in concert with the Support Vector Machine (SVM) algorithm are adopted to map 

Bramble infested areas.  

Chapter Four uses the observations and conclusion in chapter three to test the synergistic 

potential of Sentinel-2 imagery and varying Sentinel-1 Synthetic Aperture Radar (SAR) 

polarizations. The concept of SAR polarization combinations/ratios is introduced, and the SVM 

algorithm used for multi-class classification. A comparison across fused S2 and S1 SAR band 

polarization combinations/ratios is used to select the optimum fusion between S2 and S1 

polarizations.  

Chapter Five assesses the synergistic potential of S2 optical bands and S2 derived Vegetation 

Indices (VIs). Using Variable Importance in the Projection (VIP), only the most influential S2 

bands and VIs was selected for image fusion. Multi-class SVM was implemented in order to 

produce comparable seasonal confusion matrices. A comparison of seasonal results was 

conducted in order establish the optimum season for Bramble detection and mapping.  

Chapter Six uses the observations and conclusion of Chapter Four to evaluate the utility of 

fused Sentinel-2 Vegetation Indices (VIs) and Sentinel-1 Synthetic Aperture Radar (SAR). This 

is done to determine if the synergistic power of S2 VIs and S1 SAR could increase overall 

detection and mapping accuracies of Bramble from surrounding native vegetation.  

Chapter Seven introduces the concept of dual-polarized S1 Synthetic Aperture Radar (SAR) 

imagery. This chapter seeks to understand if S2 optical imagery fused with dual-polarized S1 

SAR has the potential to increase detection and mapping accuracies of Bramble. Two 

combinations of dual-polarized imagery was used for separate fusion products and compared to 

conventional Sentinel-2 optical bands.  

Finally, a synthesis of the study is given in Chapter Eight, where all findings and conclusions 

from the preceding chapters are summarized. 
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Chapter Two 

Evaluating the potential of freely available multispectral remotely sensed imagery 

in mapping American bramble (Rubus cuneifolius) 

This chapter is based on: Rajah, P., Odindi, J. and Mutanga, O., 2018: Evaluating the potential 

of freely available multispectral remotely sensed imagery in mapping American bramble (Rubus 

cuneifolius), South African Geographical Journal, 100,1-17. 

Abstract 

Globally, alien invasive plant species are considered a serious threat to native flora and fauna. 

In the eastern parts of South Africa, the American bramble (Rubus cuneifolius) has been 

identified as one of the major threats to social and ecological systems. Optimal management 

and mitigation of American bramble spread requires reliable and cost effective approaches to 

determine invaded spatial extents. In this study, we test the value of the recently launched, 

freely available Sentinel-2 (S2), as opposed to conventional Landsat 8 imagery in mapping the 

American bramble. Using the Support Vector Machine classification algorithm, we seek to 

identify the optimal season for mapping the American bramble as well as the most influential 

bands in the classification process. Results show that Sentinel-2 out-performed Landsat 8 in all 

seasons, with summer providing the highest classification accuracy (77% accuracy). The study 

also shows that strategically placed Sentinel-2 bands of Near Infrared, Red edge and Short 

Wave Infrared significantly contribute to an increase in overall bramble mapping accuracy. This 

study demonstrates the value of freely available multispectral imagery in mapping American 

bramble at large spatial extents, hence valuable for cost-effective operational use.  

Key words: Support Vector Machine (SVM), American bramble, Multi-spectral remote sensing, 

Sentinel-2, Landsat 8, Rubus cuneifolius 
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2.1 Introduction 

Alien plant invasions influence environmental change by adversely impacting ecological and 

socio-economic environments (Davies and Johnson, 2011; Rocchini et al., 2015). Invasive alien 

plant species are detrimental to natural ecosystems by depleting natural capital and ecosystem 

services and often require significant resources for mitigation and restoration (Richardson and 

van Wilgen, 2004; Davies and Johnson, 2011). In South Africa, approximately ten million 

hectares have been invaded by alien invasive plants, threatening ecological resources and 

livelihoods (Nel et al., 2005). Hence, methods that facilitate determination of their spatial extents 

are critical for mitigation of their spread and rehabilitation of invaded landscapes (Malanson and 

Walsh, 2013). Specifically, timely and cost-effective mapping of invasive species is valuable for 

the design and implementation of species-specific management and eradication strategies 

(Odindi et al., 2016). Furthermore, reliable mapping of plant invasions can be useful for 

allocation of resources for management and rehabilitation (Masocha and Skidmore, 2011). 

 

The American bramble (Rubus cuneifolius), a well-established alien invasive species in South 

Africa, has been identified as a major threat to native flora and fauna. The American bramble 

(hereafter referred to as Bramble) is a sprawling shrub species of the Rosaceae family found in 

diverse global climatic regions (Bromilow, 2010). Originating from North America, young 

Bramble canes (stems) are erect, but can bend over time with increased height. Bramble canes 

are characterised by downward curving thorns and trifoliate leaves. Majority of these leaves are 

shed during autumn and winter. New leaves and lateral branches grow from canes during 

spring. The latter are vegetative and give rise to approximately 2-5 white flowers at the end of 

short leafy shoots, flowering from September to January annually (ATLAS, 2014). The species 

is believed to be one of the most devastating invasive plants in South Africa, particularly in the 

cool and moist KwaZulu-Natal mist-belt region (Erasmus, 1984). Bramble has significant 

adverse direct and indirect impacts on biodiversity, which include changes in nutrient cycling, 

increase in soil erosion, reduction in rangeland carrying capacity and viability, natural plant 

succession, fire patterns and behaviour and hydrological processes (Henderson, 2001). 

 

Determination of an invasive species spatial extent is valuable for mitigation and rehabilitation of 

the invaded landscapes, as invasive alien species often degrade and compromise the natural 

state of landscapes (Bradley, 2014). Remote sensing technology provides an ideal opportunity 

to reliably detect, spatially monitor and map Bramble from surrounding native vegetation. 

Whereas the use of hyperspectral remotely sensed data for alien invasive detection and 



` 

26 
 

mapping has been relatively successful in recent years (Ustin et al., 2002; Underwood et al., 

2003; Tsai et al., 2007 Kimothi et al., 2010; Müllerova et al., 2013; Nagendra et al., 2013), 

adoption of hyperspectral imagery for regional mapping of alien invasive species remains a 

challenge. The reduced spatial extent (swath width) that characterises hyperspectral images 

require laborious mosaicking of multiple images for large-scale applications, which requires 

increased image pre-processing time as well as hardware and software capabilities. 

Furthermore, hyperspectral imagery is often not economically feasible, due to high cost per 

square kilometre and are characterised by high data dimensionality that require extensive 

processing and analytical skills. Similarly, whereas the application of new generation 

multispectral remotely sensed data (eg. World-View, Rapid Eye, IKONOS) for large scale alien 

invasive mapping has also been relatively successful (Kandwal et al., 2009; Gil et al., 2013; 

Robinson et al., 2016), their high cost per unit area remains a major constraint. 

 

To overcome the above-mentioned limitations, there has been an emergence of improved and 

freely available multispectral imagery for landscape mapping. The recently launched European 

Union’s Sentinel-2 (S2) sensor under the Copernicus programme for instance, aims to provide 

freely available imagery for the entire globe as a continuation of the SPOT and Landsat 

missions’ legacy (Hojas-Gascón et al., 2015; Frampton et al., 2013). The S2 carries a wide-

swath (290km), medium to high resolution (10-20m), multi-spectral imager with 13 bands. These 

specifications are unprecedented and present a unique opportunity to gain new perspectives on 

medium to large-scale vegetation mapping (Immitzer et al., 2016). The 13 spectral bands 

include three within the red-edge region, and two within the short-wave infrared region, 

strategically positioned for species level vegetation mapping (Cho et al., 2012; Hedley et al., 

2012). However, whereas S2s relatively high spatial resolution, unique spectral configurations, 

wide swath width and five-day temporal resolution offer great potential in vegetation mapping 

(Ramoelo et al., 2015; Hojas-Gascón et al., 2015), S2s value in alien invasive plant mapping 

vis-à-vis the freely available Landsat 8 series has not been suitably examined. 

 

The moderate temporal resolution that characterise freely available imagery such as S2 and 

traditional Landsat 8 (L8) facilitate multi-season analysis. According to Bradley (2014) and 

Haung and Asner (2009) the varying invasive species seasonal phenologies provide 

opportunities for reliable mapping. Denny (1990) notes that Bramble is characterised by varying 

phenological characteristics during its 18-month life cycle. Typically, new stems appear in 

October and grow rapidly until March, after which growth stops, with few leaves remaining until 
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the end of July. New leaves then appear in August, followed by flowers in September and 

fruiting development and ripening by January (Denny, 1990). This seasonal variability offers 

great potential for determination of the optimum season for Bramble detection and mapping.  

Recently, robust machine learning algorithms like the Support Vector Machines (SVMs) have 

become popular within the remote sensing community. SVM is a supervised statistical learning 

technique first developed by Vapnik (1979) to deal with binary classifications and aims to find a 

hyper plane that divides the dataset into a discrete predefined number of classes consistent with 

training data (Mountrakis and Ogole, 2011). An optimum hyper plane is developed using training 

data sets and its generalisation capability is corroborated with test data sets (Kavzoglu and 

Colkesen, 2009). The overall performance of SVMs differs depending on the choice of kernel 

function and its parameters. Kernel functions act as an optimiser of the non-linear procedure to 

map the input data into high dimensional feature space while minimising over-fitting and other 

multi-dimensional problems commonly experienced with remote sensing data (Ramoelo et al., 

2015). Recent literature has shown that SVMs are capable of classifying numerous classes 

using limited support vectors as training samples, without compromising overall accuracies 

(Foody and Mathur, 2004; Mantero et al., 2005; Bruzzone et al., 2006; Shao and Lunetta, 2012; 

Zheng et al., 2015). The characteristic thorny and thicket nature of the Bramble and prevalence 

on un-even mountainous terrain makes collection of training and validation data challenging. 

Hence, the insensitivity of SVM to training sample makes it ideal for the location chosen as the 

study area (Figure 2.1). 

The launch of S2 provides an ideal platform for comparison with existing freely available, 

medium spatial resolution, wide swath-width imagery such as L8. We hypothesise that 

improvements in freely available S2 imagery could improve Bramble mapping, due to the 

collective effects of several strategically placed spectral bands and superior spatial resolution. 

Hence, this study aims to compare the performance of multi-seasonal L8 and S2 in 

discriminating and mapping the distribution the Bramble within a conserved environment. 

2.2 Methodology 

2.2.1 Study area 

The study was conducted at the uKhahlamba Drakensberg Park (UDP), an official UNESCO 

world heritage site (GPS co-ordinates: -29.380018°S; 29.539746°E) along the western border of 

the KwaZulu-Natal province of South Africa (Figure 2.1). The UDP is considered one of the 
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most significant natural grasslands of South Africa (Everson and Everson, 2016). The UDP is 

managed by Ezemvelo KwaZulu-Natal Wildlife (EKZNW), a provincial conservation authority. 

Wet and humid conditions are experienced during summer (November to March) (Nel et al., 

2004), where rainfall ranges from 990-1130mm (Dollar and Goudy, 1999). Winters are dry and 

cold (May to August) with regular occurrences of snowfall and frost (Mansour et al., 2012).  

Mean annual temperature in the area is approximately 16°C and annual precipitation ranges 

between 1000mm in the foothills and 1800mm at the escarpment (Tyson et al., 1976). The 

landscape is predominantly natural grassland (wire grass (Aristida purpurea), weeping 

lovegrass (Eragrostis curvula) and common thatch grass (Hyparrhenia hirta) with patches of 

natural shrubs (Erica spp.) and thicket. Bramble is an emerging alien invasive plant species 

within the UDP and has already invaded a significant portion of the landscape (Bromilow, 2010). 

UDP climate provides adequate conditions for Bramble to thrive and spread. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: The study area (a and b) and the uKhahlamba Drakensberg Park (UDP) boundary 
(c). 
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(a) (b) 

2.2 Field data collection 

Using a Trimble differentially corrected GeoXT handheld GPS receiver, field data points were 

collected based on purposive sampling (Wang et al., 2012) during spring and summer, which 

coincides with Brambles flowering phenological stage (Table 2.1). Purposive sampling is the 

deliberate choice of a target species unique qualities. The technique is non-random and chosen 

individuals (ground truth points) are at the researcher’s discretion. The approach was 

considered ideal due to the area’s steep and mountainous terrain, hence restricted accessibility. 

Ground control points were collected as close as possible to the centre of Bramble patches. 

Patches of Bramble ranged from 15m x 15m to 50m x 50m (Figure 2.2),  

 

 

 

 

 

 

 

 

 

 

Figure 2.2: Examples of ground control Bramble patches collected via physical field work (a) 

and high resolution aerial photographs (b). 

Ground control point data collected from Bramble patches were spatially independent, so as to 

compensate for the images spatial resolution. Spatial independence of ground control data 

ensured that each Bramble patch fell within a single image pixel and was associated with the 

unique spectral reflectance of that specific pixel. In addition, aerial photograph imagery collected 

in 2016, at a 0.5m spatial resolution was used to supplement and verify selected ground truth 

points. 
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Table 2.1: Life-cycle phenology of American bramble (Rubus cuneifolius). 

* Green shading indicates most common time frame for stage of life-cycle, however, each stage may still occur 

during blue shaded phases. 

2.2.2 SVM classification 

Cloud free L8 and S2 images were acquired for each season (summer, spring, autumn and 

winter). Landsat 8 imagery was converted from digital number (DN) to surface reflectance using 

the ArcMap 10.4 Landsat 8 DN to reflectance toolbox (Dilts, 2015). The Landsat 8 toolbox 

provides several basic pre-processing tools that allow functionality of remote sensing data within 

an ArcMap environment. One of the basic tools is the DN to reflectance tool, which converts raw 

Digital Number (DN) values to surface reflectance values. S2 imagery was converted from level-

1C raw products (radiance) to level-2A products (surface reflectance) using the Sen2Cor plugin 

within the ESA SNAP toolbox 3.0 (SNAP - ESA Sentinel Application Platform). All images were 

corrected for topographic effects of shadow associated with mountainous areas using the SAGA 

(2.1.2) terrain analysis lighting tool within the Quantum GIS (QGIS) environment on a band by 

band basis. QGIS is GIS freeware and is the equivalent of ESRI ArcMap commercial GIS 

software. The System for Automated Geoscientific Analyses (SAGA) is a plugin that works in 

conjunction with QGIS and has numerous tools that automate analytical and pre-processing 

spatial algorithms (QGIS Development Team, 2016). The correction of topographic effects is 

one such tool, and was used to mitigate the topographic effects of shadow within the study area. 

Collected ground truth points (≈1000) were used to extract spectra for the four land cover 

classes (Bare rock, Bramble, Forest and Grassland) considered in this study. Spectral 

reflectance values were extracted from L8 (30m resolution) and S2 (20m resolution) imagery 

using the ArcMap extract multi-values to points tool. In L8 images, spectra from the red, green, 

blue, near infrared (NIR), short wave infrared 1 (SWIR1) and shortwave infrared 2 (SWIR2), 

 Jun Jul Aug Sept Oct Nov Dec Jan Feb Mar Apr May 

 Winter Spring Summer Autumn 

Germination             

Flowering (2-y-o)             

Fruiting (1-y-o)             

Tip rooting (1-y-o)             

Dormancy             
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were extracted while red, green, blue, near infrared (NIR), red edge 1 (RE1), red edge 2 (RE2), 

red edge 3 (RE3), shortwave infrared 1(SWIR1) and shortwave infrared 2 (SWIR2) bands were 

extracted from the S2 images. 

An optimal set of spectral bands, also known as band optimisation was determined for Bramble 

classification. Feature selection which recognised each spectral band as a feature which 

contributed to the overall accuracy of SVM classification accuracy was implemented using 

python to determine overall accuracy on a band by band basis. Overall accuracies for 

cumulative spectral bands were produced and the highest resulting accuracy was used for 

classification of the specific dataset. To optimise the SVM classification algorithm, a model 

tuning process was implemented within python to determine the best hyper-parameters for each 

season. The gamma range was 0.01 to 100, C range was 0.001 to 1000 and with four (linear, 

sigmoid, poly and rbf) kernel options. Optimum hyper-parameters derived from the SVM tuning 

process were then applied to the entire image based on results produced by the ground truth 

training spectra. Python 2.7.13 (van Rossum and Drake, 2012) was used to implement the SVM 

classification on all imagery and a one against all approach used to implement a multi-class 

classifier. A one against all approach isolates each class and is designed to separate the target 

class from the remaining classes. Ground control data were split into test (30%) and training 

data (70%) sets for SVM multi-class analysis.  Pixels were classified into the areas dominant 

land-use-land-cover classes, i.e. Bare rock (1), Bramble (2), Forest (3), Grassland (4). 

2.2.3 Mapping and map validation 

Optimal hyper-parameters derived from tuning the SVM algorithm were used in conjunction with 

Python 2.7.13 to spatially determine the major land-use-land-cover classes within the study 

area. Extracted training pixel spectra (70%) of the four classes served as the input for seasonal 

Bramble spatial distribution maps, in relation to other land-use-land-covers for the two sensors. 

Seasonal SVM classification accuracy was assessed using respective test pixel spectra (30%) 

that produced a single confusion matrix for each satellite at each season.  
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2.3 Results 

2.3.1 Optimum band selection and band identification 

Optimum number of selected bands varied between L8 and S2, across all seasons. Winter L8 

band selection produced the lowest (2) band selection across L8 seasonal imagery. Spring S2 

imagery produced the lowest optimum band selection (4), while autumn had the highest (9). All 

seasons except winter resulted in consistent optimum bands of NIR, SWIR1 and SWIR2 for L8 

imagery, with only winter analysis excluding the NIR as one of the influential bands (Table 2.2). 

Similarly, S2 placed importance on the NIR, SWIR1 and SWIR2 in all seasons. Additionally, S2 

placed importance on the RE1, RE2 and RE3 bands in all seasons, except spring (Table 2.2).  

Table 2.2: Bands identified for discrimination analysis (NIR = Near infrared; SWIR1= Shortwave 

infrared1, SWIR2= Shortwave infrared 2, RE1= Red edge 1, RE2= Red edge 2 and RE3= Red 

edge 3. 

 
Selected optimum bands 

Landsat 8 
 

Summer Blue, NIR, SWIR1, SWIR2 

Spring Green, Blue, NIR, SWIR1, SWIR2 

Autumn Green, Blue, NIR, SWIR1, SWIR2 

Winter SWIR1, SWIR2 

Sentinel-2 
 

Summer Green, Blue, NIR, RE1, RE2, RE3, SWIR1, SWIR2 

Spring NIR, RE3, SWIR1, SWIR2 

Autumn Red, Green, Blue, NIR, RE1, RE2, RE3, SWIR1, SWIR2 

Winter NIR, RE1, RE2, RE3, SWIR1, SWIR2 

 

2.3.2 Multi-seasonal discrimination 

Overfitting and over-estimation was observed for L8 spring imagery, as the SVM algorithm could 

not effectively discriminate between all classes (Table 2.3b). Similar to summer L8 results, 

users (45%) and producers (52%) accuracies were poor for Bramble, while Forest produced the 

highest users and producers accuracies (86% and 60%) (Table 2.3b). SVM optimal hyper-

parameters applied to the spring imagery over fitted for Bramble and under fitted for the Forest 

class (Figure 2.3c). Spring L8 SVM hyperparameters produced a lower overall accuracy (55%), 

as compared to summer (57%). 
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Table 2.3: Support vector machine confusion matrices showing users, producers and overall 

accuracy for all four seasons using Landsat 8 imagery. Where BR = Bare rock; BBL = Bramble; 

FR = Forest; GR = grassland; PA= Producers accuracy; OA= Overall accuracy and UA = Users 

Accuracy. 

 BR BBL FR GR UA (%) BR BBL FR GR UA (%) 

 (a) Spring (b) Summer 

BR 31 1 15 0 66 25 0 21 1 53 

BBL 0 32 28 48 30 0 35 4 39 45 

FR 1 4 73 0 94 11 0 67 0 86 

GR 0 23 1 28 54 1 32 20 29 35 

PA (%) 97 37 57 37  68 52 60 43  

OA (%) 57     55     

 (c) Autumn (d) Winter 

BR 36 0 9 2 77 32 0 3 12 68 

BBL 0 23 25 5 43 0 16 10 43 23 

FR 0 0 77 1 99 7 0 49 2 84 

GR 2 25 51 29 27 3 15 33 60 68 

PA (%) 95 48 48 78  76 52 61 57  

OA (%) 50     55     

 

Spring S2 results produced improved overall classification accuracy (70%) (Table 2.4a), 

compared to L8 spring results (Table 2.3a). Bramble achieved the lowest users accuracy of all 

land cover classes (39%) and the second lowest producers accuracy of all land cover classes 

(68%) (Table 2.4a). Application of optimal spring hyper-parameters to spring S2 imagery 

resulted in a spatial distribution map which proved to satisfactorily (70%) predict all classes 

involved with minimal over-fitting of classes (Figure 2.3d).  
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Table 2.4: Support vector machine confusion matrices showing users, producers and overall 

accuracy for all four seasons using Landsat 8 imagery. Where BR = Bare rock; BBL = Bramble; 

FR = Forest; GR = grassland; PA= Producers accuracy; OA= Overall accuracy and UA = Users 

Accuracy 

 BR BBL FR GR UA (%) BR BBL FR GR UA (%) 

 (a) Spring (b) Summer 

BR 31 0 0 15 67 32 2 0 12 69 

BBL 0 28 0 44 39 0 24 0 29 45 

FR 0 0 56 3 94 1 1 54 3 91 

GR 1 13 3 70 80 2 3 7 94 88 

PA (%) 96 68 94 53  91 80 88 68  

OA (%) 70     77     

 (c) Autumn (d) Winter 

BR 30 0 0 16 66 34 0 0 12 73 

BBL 0 20 1 47 30 0 22 1 69 24 

FR 1 0 55 3 93 1 0 53 5 89 

GR 1 30 0 60 66 0 15 1 51 76 

PA (%) 93 39 98 48  97 59 96 37  

OA (%) 63     61     

 

Summer L8 results showed unsatisfactory discrimination in all classes (Table 2.3a). The lowest 

producers accuracy was recorded for Bramble and Grassland classes while the highest 

producers accuracy was recorded for Bare rock (Table 2.3a). Overall summer classification 

accuracy was 57% and had the least overfitting and over-estimation, compared to other L8 

seasons. Bramble spatial distribution was over estimated once the optimal summer SVM hyper-

parameters were applied to the image, conversely, spatial distribution of grassland was under 

estimated (Figure 2.3a). Summer S2 classification accuracies were superior to L8 summer 

imagery (Table 2.2a and 2.3a). The use of optimal summer hyper-parameters on summer 
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imagery produced the highest overall accuracy (77%) for S2 across all seasonal imagery, with 

minimal over-overfitting (Figure 2.3b). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3: Summer and spring classification maps from Landsat 8 and Sentinel-2 imagery. 

Where (a) = Landsat 8 summer; (b) = Sentinel-2 summer; (c) = Landsat 8 spring and (d) = 

Sentinel-2 Spring. 

Landsat 8 autumn results provided the lowest overall classification accuracy (50%) across all 

seasonal L8 imagery (Table 2.3c). Low producers accuracies were observed for Bramble (48%) 

and Forest (48%) (Table 2.3c). Autumn imagery resulted in the most over-fitted L8 spatial 

distribution map across all seasons, with Bramble being the most over-estimated class and 

Grassland being the most under-estimated class (Figure 2.4a). Sentinel-2 autumn results 

yielded the third highest overall accuracy across all seasonal imagery (Table 2.4c). Bramble 

(a) 

(c) 
(d) 

(b) 
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achieved the lowest users and producers accuracies. Although Sentinel-2 autumn imagery 

provided an overall accuracy of 63%, the classification and spatial distribution of Bramble and 

other surrounding classes were unsatisfactory. 

Winter L8 results did not satisfactorily discriminate between Bramble and other land classes 

(Table 2.3d). Bramble achieved the lowest users and producers accuracies, whilst Bare rock 

achieved the highest producers accuracy and forest the highest users accuracy. Application of 

optimal SVM hyper-parameters to winter imagery resulted in overfitting (Figure 2.4c) and an 

over-estimation in the prediction of the spatial distribution of the Bramble and Forest classes. S2 

winter imagery provided unsatisfactory discrimination between Bramble and Grassland classes 

(Table 2.4d). Application of optimal SVM winter hyper-parameters to S2 winter imagery resulted 

in an over-estimation of Bramble and underestimation of Grassland (Figure 2.4d), despite a 

61% overall accuracy for winter SVM classification. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4: Autumn and Winter classification maps from Landsat 8 and Sentinel-2 imagery. 

Where (a) = Landsat 8 summer; (b) = Sentinel-2 summer; (c) = Landsat 8 spring and (d) = 

Sentinel-2 Spring. 

 

(a) 

(c) (d) 

(b) 



` 

37 
 

2.4. Discussion 

Generally, spatial distribution maps using L8 imagery resulted in inferior overall classification 

accuracies for Bramble. This can be attributed to overfitting when optimal SVM hyper-

parameters were used on seasonal L8 imagery, likely due to L8s lower spatial resolution. The 

30 meter L8 pixel is prone to the mixed pixel problem, as the dominant class has a major 

influence in the overall reflectance captured by the sensor. Consequently, smaller Bramble 

patches (less than 20m) were not easily distinguished as reflectance from the surrounding 

vegetation masked Bramble reflectance. This limitation is prevalent during the dry season, when 

both the Bramble and the surrounding vegetation senesce. The low Bramble classification 

accuracy using L8 could also be attributed to the sensors inability to differentiate the subtle 

spectral differences between Bramble and related land cover types like forest and grassland. 

However, despite these limitations, Bradley (2014) notes that results generated from medium 

resolution imagery such as L8 are useful in providing a preliminary understanding of a 

generalised landscape and regional invasion status and risk. 

Despite the lower Bramble classification accuracies, the L8 summer imagery produced the 

highest classification accuracies, compared to spring, autumn and winter L8 imagery. According 

to Bradley (2014), this arises from the high variability in energy absorption or reflectance 

between target classes. The higher classification accuracy during spring can also be attributed 

to Bramble’s distinct white inflorescence during the season (Denny, 1990), facilitating spectral 

discrimination from surrounding species. Autumn and winter produced the lowest classification 

accuracies. This finding is consistent with Shezi and Poona (2010), who found poor Bramble 

classification accuracies using SPOT 5 autumn and winter image data. Bramble and 

surrounding vegetation begin to senesce simultaneously during late autumn and winter (ATLAS, 

2014), impeding their reliable delineation. Furthermore, this relative homogeneity compromises 

SVM performance by over-fitting when using autumn and winter imagery. According to Melgani 

and Bruzzone (2004), SVM was originally developed for binary classifications, Karimi et al 

(2006) notes that this reduces the complexity of the classification problem. Consequently, a 

binary classification of Bramble from surrounding native vegetation may have achieved better 

results than those achieved using multi-class SVM.  

The S2 imagery produced improved Bramble discrimination results when compared to L8. The 

best seasons for discriminating Bramble from surrounding native vegetation were summer and 

spring. Several studies (e.g. Andrew and Ustin, 2008; Somodi et al., 2012; Mirik et al., 2013) 
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have attributed such increased discrimination capability to invasive plant species inflorescence 

during summer and spring. Within the study area, Bramble is predominantly surrounded by 

grassland vegetation such as wire grass (Aristida purpurea), weeping lovegrass (Eragrostis 

curvula) and common thatch grass (Hyparrhenia hirta) and several other native grass species 

which decreases potential spectral discrimination. In comparison to L8, S2’s higher spatial 

resolution (20 meters) reduces the mixed pixel problem. Therefore, the adoption of S2 facilitated 

the detection and mapping of smaller Bramble patches that were otherwise undetectable due to 

the coarser spatial resolution of L8. 

The S2’s superior spectral resolution could be used to account for the improved classification 

accuracies. The red edge spectral region is widely recognised for vegetation discrimination (Cho 

and Skidmore, 2006).  In consistency with Cho et al (2012) and Gilmore et al (2008), optimum 

band analysis in this study identified S2 red edge bands to be the most influential bands across 

all four seasons. This discriminatory power can be attributed to the region’s sensitivity to 

Bramble’s leaf chlorophyll, leaf structure and water content (Slaton et al., 2001; Sims and 

Gamon, 2002; Shafri et al., 2006; Gilmore et al. 2008). Unlike L8, S2 is characterised by three 

red edge bands, which could have contributed to the improved classification accuracy. These 

findings are consistent with Adelabu et al (2014), who noted a significant reduction in 

classification accuracy when red edge bands were excluded from classification.  

Bramble is known to thrive in cool and moist conditions such as riparian zones (Erasmus, 1984). 

In addition to the value of the red edge section in vegetation mapping, the short wave infrared 

(SWIR) reflectance has been associated with foliar water content (Trombetti et al., 2008; Yilmaz 

et al., 2008). The increased number of S2 SWIR bands could explain the improved classification 

accuracy within the study area, as SWIR bands were important across all seasons. Numerous 

studies (e.g. Hauglin and Ørka, 2016; Gil et al., 2013; Kimothi and Dasari, 2010) have validated 

the effectiveness of multispectral sensors for discriminating alien invasive species at a small 

scale. Results from this study indicate that applicable wide swath-width, new age multispectral 

imagery has the potential to provide an economically viable option for invasive alien detection 

and mapping at a large scale. This research targeted and mapped areas that were already 

heavily infested by Bramble, hence results are useful for implementing mitigation strategies as 

well as growing the knowledge base surrounding temporal and spatial patterns associated with 

Bramble infestations.  
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2.5. Conclusion 

The aim of this study was to determine the potential of freely available satellite imagery to 

discriminate and map the spatial distribution of American bramble (Rubus cuneifolius) in UDP. 

Results from this study indicate that S2 imagery, characterised by more strategically positioned 

bands like the NIR, Red edge and SWIR bands, provides a cost effective means of determining 

Bramble’s spatial distribution. Sentinel-2 outperformed L8 in discriminating and mapping 

Bramble spatial distribution within the UDP. Multi-season analysis of satellite imagery indicated 

that the optimum season for Bramble detection and mapping is either spring or summer. The 

superior performance of S2 over L8 can be attributed to its increased spectral resolution and 

strategically placed bands as well as its increased spatial resolution. This finding promotes S2 

imagery as a viable option to existing freely available wide-swath multispectral imagery for 

invasive species mapping.  
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Chapter Three 

Feature level image fusion of optical imagery and Synthetic Aperture Radar (SAR) 

for invasive alien plant species detection and mapping 

This chapter is based on: Rajah, P., Odindi, J. and Mutanga, O., 2018. Feature level image 

fusion of optical imagery and Synthetic Aperture Radar (SAR) for invasive alien plant species 

detection and mapping. Remote Sensing Applications: Society and Environment, 10, 198-208. 

 

Abstract 

Invasive alien plant species are regarded as a major threat to among others socio-economic 

systems, global biodiversity and conservation initiatives. A reliable understanding of their spatial 

and temporal distribution is paramount for understanding their impact on co-existing landscapes 

and ecosystems. While traditional passive remote sensing methods have been successful in 

assessing invasion of such species, limiting factors such as cost, restricted coverage, image 

availability, terrain and inadequate resolutions hamper mapping and detection at large spatial 

extents. To date, the adoption of active remote sensing techniques as complimentary data to 

invasive alien plant mapping has been limited. In this study, we fuse two commonly used 

medium spatial and spectral resolution imagery (Sentinel-2 and Landsat 8) with active remote 

sensing data (Synthetic Aperture Radar imagery) in determining the optimal season for 

detecting and mapping the American Bramble (Rubus cuneifolius). Feature level image fusion 

was adopted to integrate passive and active remote sensing imagery and Support Vector 

Machine (SVM) supervised classification algorithm used to discriminate the American Bramble 

from surrounding native vegetation. Seasonal results showed that Sentinel-2 data, fused with 

SAR data generated the highest classification accuracy during summer (76%), while Landsat 8 

imagery fused with SAR data performed best in winter (72%). These findings demonstrate that 

fusion of SAR with traditional optical imagery can be used to detect and map the American 

Bramble at a regional scale. We conclude that SAR data can be used synergistically with optical 

remote sensing to improve discrimination and mapping of the American Bramble.  

Key words: Invasive alien plant species; Remote sensing; Synthetic Aperture Radar (SAR); 

Sentinel-2; American Bramble, Multisensor image fusion  
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3.1 Introduction 

The range and spatial extent of invasive alien plant species are important variables influencing 

ecosystem health and biodiversity. According to Ghulam et al (2011), the robust natures of 

invasive alien plant species provide a competitive advantage for already limited resources. 

Commonly, absence of limiting factors leads to abundant growth and increase in spatial extent, 

which negatively affects local and regional landscape productivity and biodiversity (Dornelas, 

2010). Understanding the severity and extent of invasion is crucial for assessment of potential 

impacts on the landscape, ecosystem services and mitigation (Bourgeau-Chavez et al., 2013). 

Traditional field based methods of monitoring the extent and spread of invasive alien plant 

species are limited by their time consuming and laborious data collection, hence limited to small 

scale studies. Adoption of these approaches are also limited by their high cost and physical 

barriers that constrain accessibility (Bradley, 2014; Müllerová et al., 2013). Other approaches 

like use of aerial photographs have a high cost per unit area and are unsuitable for digital 

analysis.   

To date, the adoption of passive remote sensing imagery for invasive alien plant species 

mapping has significantly become popular (Gil et al., 2013; Müllerová et al., 2013; Bradley, 

2014; Kandwal et al., 2009; Tsai et al., 2007). Although such imagery are known to yield reliable 

spatial distribution maps (Walsh, 2018; Niphadkar et al., 2017; Bradley, 2014), their cost are of 

a major concern particularly for regional scale mapping. Furthermore, their limited swath width, 

cloud cover and spatial resolution remain key limiting factors for invasive alien plant species 

mapping. The advent of freely available sensors, with large swath widths and higher temporal 

resolutions (e.g. Landsat 8 and Sentinel-2) present unique opportunities for cost-effective and 

practical multi-season invasive alien plant species mapping at large spatial extents.  

In addition to exploitation of improved spatial and spectral resolution in vegetation mapping, 

Oldeland et al (2010) and Zhang et al (2008) noted that recent studies have sought to exploit 

additional factors such as species specific reflectance variability resulting from multi-temporal 

phenological evolution. Generally, multi-season invasive alien plant species mapping depends 

on a combination of factors that include biophysical and biochemical properties of target 

invaders relative to indigenous species, their spatial extent and pattern of dispersal and spatial 

resolution of imagery used (Dorigo et al., 2012). Invaders have often distinct phenological 

characteristics from resident species, which enables them to exploit ecological niches better 

within their invasive range. According to McNairn et al (2009), seasonal phenological 
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fluctuations in leaf pigmentation, water content and structure impact reflectance and backscatter 

measurements. Such variabilities offer great potential for detecting and mapping invasive alien 

plant species using remotely sensed data (Bradley, 2014). These characteristics, in addition to 

Landsat 8 and Sentinel-2’s shorter re-visit times, allow for repeat image acquisition, valuable for 

multi-season analysis. 

Recently, active remote sensing has shown great potential as a complementary data source to 

optical remotely sensed imagery. Synthetic Aperture Radar (SAR) in particular offers detailed 

information on the often difficult to detect characteristics of the surface target such as shape, 

moisture and roughness (Chen et al., 2010). However, despite this potential previous adoption 

of SAR imagery in invasive alien plant species, mapping has been limited by high acquisition 

cost, limited area coverages and complex data pre-processing and processing (McNairn et al., 

2009). The recent launch of Sentinel-1, a joint initiative between the European Commission 

(EC) and the European Space Agency (ESA) and the subsequent provision of its free SAR data 

provides new opportunities for mapping invasive alien plant species. Sentinel-1 has up to 

400kms swath-width and is equipped with a C-band SAR sensor operating in four exclusive 

imaging modes (Sentinel-1 User handbook, 2013). SAR data can operate at wavelengths 

regardless of cloud conditions or lack of illumination and is capable of acquiring data during day 

and night (Sentinel-1 User handbook, 2013). 

The complementarity between SAR and optical multi-spectral imagery has great potential in 

remote sensing applications. For example, multispectral images possess surface information on 

reflectance and emissivity characteristics, while SAR images capture the structure and 

backscatter dielectric properties of earth surface materials (Zhu et al., 2012). According to 

Zhang (2010) such complementarity, achieved through data fusion can be used to improve 

interpretation of source data. Additional data fusion benefits include improved output reliability, 

decreased uncertainty surrounding target features with similar spectral reflectance and 

improved delineation classification performance (Gharbia et al., 2014). According to Le Hegarat-

Mascle et al (2000), both optical and SAR imagery use their complementarities to reduce 

confusion through their description of target features, reducing imprecision and classification 

errors.  

Despite these potential benefits, very few studies have used multispectral imagery fused with 

SAR imagery to map alien invasive plant species. In a recent review for instance, Peerbhay et al 

(2016) identified a gap in literature on the use of fused SAR and optical imagery in invasive 
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alien plant mapping. As aforementioned, combining optical and SAR imagery allows for the 

measurement of reflectance of both canopy layer (optical imagery) and geometric information 

(SAR imagery) of vegetation cover (Vaglio et al., 2013). SAR sensors collect backscatter 

measurements in Decibels (dB), which are dependent on the roughness, geometry and content 

of the target object (Hong et al., 2014). Optical imagery on the other hand provides suitable and 

interpretable imagery for classification of broad vegetation classes. Complementarity of the two 

datasets increases the delineation variables, allowing for a more detailed vegetation 

characterisation (Sameen et al., 2016; McNairn et al., 2009; Hong et al., 2014). It is this 

complementary nature of optical and SAR imagery that could serve to better discriminate 

bramble from surrounding native vegetation upon image fusion. 

Image integration, based on fusion levels, can be broadly grouped into three; pixel-level, feature 

level and decision level (Hong et al., 2014). In this study, feature level fusion was adopted. The 

approach is an intermediate of image fusion, referring to the merging of measured physical 

parameters, but ensures minimal loss of information in the fused images (Pandit and Bhiwani, 

2015). Feature level fusion involves observation of an object and feature extraction to yield a 

feature vector for respective sensor (Zeng et al., 2006). Feature level fusion was adopted in this 

study as it is less stringent to sensor alignment compared to other fusion techniques. 

Additionally, feature level fusion achieves a considerable compression of information and is 

highly conducive to efficient real-time remote sensing imagery processing (Joshi et al., 2016; 

Solberg, 2006).  Feature vectors are then fused and identification is made based on the 

combined joint feature vector received from combined optical and SAR imagery. Accordingly, 

this study sought to determine the efficacy of mutli-source remote sensing data fusion by 

utilizing Landsat 8 and Sentinel-2 (S2) optical imagery fused with Sentinel-1 Synthetic Aperture 

Radar (SAR) imagery to detect and map the spatial distribution of the American Bramble 

(hereafter referred to as Bramble) 

 

3.2 Methodology  

3.2.1 Study area 

This study was conducted at the uKhahlamba Drakensberg Park (UDP) (Figure 3.1), considered 

one of the most important natural grasslands of South Africa (Everson and Everson, 2016). The 

UDP is a UNESCO world heritage site located on the western border of the KwaZulu-Natal 
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(a) (b) 

province of South Africa. The landscape is dominated by natural grassland with patches of 

natural shrubs and thicket. Winters are cold and dry with frost and snow experienced regularly 

(Mansour et al., 2012). Summers are humid and wet, with rainfall ranging from 990-1130mm 

(Dollar and Goudy, 1999).  

Figure 3.1: The location of the Kwazulu-Natal (KZN) province within South Africa (a). Extent of 

the uKhahlamba Drakensberg Park (UDP), illustrating altitude as meters above sea level (b). 

3.2.2 Target species 

American Bramble (Rubus cuneifolius) has been identified as a major threat to native flora and 

fauna. A sprawling shrub species belonging to the Rosaceae family, Bramble is known to thrive 

in a diverse range of habitats (Bromilow, 2010). Originally from North America, it is believed to 

be one of the most harmful invasive alien plants in South Africa, particularly within the KwaZulu-

Natal (KZN) province, where the cool and moist climatic conditions favour its proliferation 

(Erasmus, 1984). Bramble’s thorny stems and growth in bush clamps are directly responsible 

for adverse effects on biodiversity. Henderson et al (2001) identified reduction in a landscape’s 

carrying capacity, alterations in nutrient cycling, increased soil erosion, changes in fire regimes 

and behaviour and the disruption of hydrological process as some of the specie’s adverse 

effects. Hence, Bramble’s effective management or eradication is of paramount importance to 

landscape productivity and sustainability.   
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3.2.3 Field data collection 

Purposive sampling technique was used to collect ground truth land-cover data during spring 

and summer of 2016. These seasons were chosen as Bramble patches are easily discernible 

from surrounding vegetation during these periods. A Trimble differentially corrected GeoXT GPS 

was used to record Bramble patches and surrounding vegetation classes. Bramble ground 

control points were recorded as close to the centroid of Bramble patches as possible. In order to 

compensate for spatial resolution of satellite imagery, and to ensure that Bramble patches fell 

within image pixels and could be associated with the unique spectral reflectance, spatially 

independent ground truth Bramble patches ranging from 15m x 15m to 50m x 50m were 

collected. In this regard, a Bramble ground truth point was only collected if it was located more 

than one-pixel space away from the next Bramble patch, hence ensuring spatial independence. 

Due to the area’s steep and mountainous terrain, hence restricted accessibility, only Bramble 

patches that could be accessed by foot were considered for the study. Aerial photographs of 

0.5m spatial resolution captured in 2016 were also used to supplement and verify selected land-

cover ground truth points. A total of 1000 ground truth points were collected and used in the 

study.  

3.2.4 Image acquisition 

3.2.4.1 Optical imagery 

Multi-season (summer, autumn, winter and spring) Landsat 8 imagery (Table 3.1) was acquired 

and converted from digital number (DN) to surface reflectance using the ArcMap 10.4 Landsat 8 

DN to reflectance toolbox. The Landsat 8 toolbox provides several basic pre-processing tools 

that allow processing of remote sensing data within an ArcMap environment. The DN to 

reflectance tool converted raw Digital Number (DN) values to surface reflectance using Dark 

Object Subtraction 1 (DOS1) atmospheric correction. The ESA SNAP toolbox 3.0 was used to 

convert seasonal Sentinel-2 level-1C raw products (Table 3.1) to surface reflectance via the 

Sen2Cor plugin. Sen2Cor implements Sentinel-2 Atmospheric Correction (S2AC), which 

performs atmospheric correction based on the LIBRADTRAN radiative transfer model (Richter 

et al., 2011; Mayer and Kyling, 2000). Both Landsat 8 and Sentiel-2 images were corrected for 

topographic effects of shadow associated with mountainous areas. Topographic correction was 

performed using the System for Automated Geoscientific Analyses SAGA (2.1.2) terrain 

analysis lightening tool within a Quantum GIS (QGIS) environment. The terrain analysis 

lightening tool topographically corrected all images using the Minnaert Correction method, a 
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method which considers satellite azimuth and height. QGIS is GIS freeware and is comparable 

to ESRI ArcMap commercial GIS software. SAGA is a plugin that works in conjunction with 

QGIS.  

Table 3.1: Image acquisition dates for individual optical and SAR imagery 

*Image acquisition dates based on southern hemisphere seasonal variability 

3.2.4.2 SAR imagery 

Sentinel-1 is a phase-preserving dual polarisation SAR system. It can transmit a signal in either 

horizontal (H) or vertical (V) polarisation, and then receive in both H and V polarisations. Dual 

polarisation Level-1 Single Look Complex (SLC) products contain complex values. In addition to 

the backscatter intensity that can be measured from each single polarisation, the inter-channel 

phase information allows for analysis of backscattering properties. Hence, the inclusion of 

polarisation acquisition modes in Sentinel-1 SAR data allows for additional variables to be 

evaluated (Beyer, 2015; Vyjayanthia and Nizalapur, 2010). As backscatter is heavily dependent 

on the geometric structure of the target object, varying polarisations of SAR imagery fused with 

optical imagery could improve alien invasive plant mapping. Cross-polarised SAR backscatter 

measurements differ from co-polarised measurements as the former is more sensitive to 

vegetation volume (Srivastava et al., 2009). Consequently, Huang et al (2015) notes that cross 

polarised SAR data is better adapted to detect sparse vegetation, as compared to shorter 

wavelength co-polarised SAR data. 

Multi-season Synthetic Aperture Radar (SAR) images were downloaded from the Sentinel-1 

data hub. Sentinel-1 level-1 Ground Range Detected (GRD) products were utilised for this 

study. Level-1 GRD products were multi-looked and projected to ground range using an earth 

ellipsoid model. The products were acquired using the Interferometric Wide Swath (IW) mode, 

and had a spatial resolution of 20 meters with a 250km2 swath width. SAR imagery was pre-

Season *Landsat 8 image 

acquisition date 

*Sentinel-2 image 

acquisition date 

*Sentinel-1 (SAR) 

image acquisition 
date 

Summer 01/01/2017 19/01/2017 06/01/2017 

Autumn 06/05/2016 14/04/2016 11/05/2016 

Winter 09/07/2016 23/06/2016 22/07/2016 

Spring 30/11/2016 01/09/2016 07/11/2016 
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processed using the ESA SNAP toolbox following the methodology outlined in Bevington 

(2016). The Bevington (2016) SAR image processing chain consisted of five steps: (1) 

Application of orbit file to SAR image; (2) Radiometric calibration; (3) Terrain correction; (4) 

Application of speckle filter; (5) Convert SAR DN to Gamma backscatter values. SAR imagery in 

both Vertical Horizontal (VH) and Vertical Vertical (VV) polarisation modes were fused with 

optical imagery to determine the influence of SAR cross-polarisation on overall seasonal 

discrimination accuracies, in comparison to co-polarised SAR.  

3.2.5 Data fusion 

As aforementioned, the feature level approach was used to fuse optical and SAR imagery. 

Multi-season SAR images were resampled to 30 meter (Landsat 8) and 20-meter spatial 

resolution (Sentinel-2). An illustration of the steps followed to ensure feature level data fusion is 

shown in Figure 3.2. 

 

 

 

 

 

 

 

 

Figure 3.2: Feature level fusion processing chain. 

Extraction of features (ground truth points) were done separately for optical imagery (spectral 

reflectance measurements) and SAR imagery (backscatter measurement). Corresponding 

backscatter measurements were assigned to the corresponding extracted spectral reflectance 

measurement. The composite band tool was used to fuse optical and SAR imagery at a feature 

level within an ArcMap 10.4 environment. This was achieved by stacking optical and SAR 

imagery on a band by band basis, creating a composite (fused) image containing both spectral 
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reflectance and backscatter measurements. The fused spectral measurement and backscatter 

data was then used for image classification analysis. 

3.2.6 Image classification 

Fused spectral reflectance with SAR backscatter measurements were extracted and classified 

using SVM algorithm. SVM is a supervised statistical learning technique first developed by 

Vapnik (1979) to deal with binary classifications. The algorithm aims to find a hyper-plane that 

divides the dataset into a discrete predefined number of classes consistent with training data 

(Mountrakis et al., 2010). Studies have demonstrated that SVMs are proficient in classifying 

several classes using limited support vectors as training samples, without compromising overall 

accuracies (Foody and Mathur, 2004; Mantero et al., 2005; Bruzzone et al., 2006; Shao et al., 

2012; Zheng et al., 2015). Collected ground truth points were used to extract spectra for the four 

major land cover classes (Bare rock, Bramble, Forest and Grassland) in the study area.  

3.2.7 Spatial distribution maps and validation 

Python 2.7.13 was used to generate a SVM classification map of the four major land cover 

classes considered in this study. Fused (optical and SAR) training pixel spectra (70%) of all four 

classes served as the input for multi-season Bramble spatial distribution maps. Multi-season 

classification accuracy was assessed using the respective fused test pixel spectra (30%).  

3.3 Results 

3.3.1 Seasonal comparisons of Bramble infestations in relation to other landcovers  

3.3.1.1 Summer 

Summer L8 results for VH and VV SAR polarisations (Figure 3.3a and b) overall accuracies 

were 65% and 68% respectively (Table 3.2a and b). Users and producer’s accuracies for fused 

L8 and VH SAR imagery were low for Bramble (53% and 55%, respectively). The Summer L8 

VV fused imagery resulted in a 64% producers and a 57% user’s accuracy for Bramble. 

Sentinel-2 results for VH and VV SAR polarisations (Figure 2.3c and d) had overall accuracies 

of 76% (Table 3.2c and d). Bramble users and producer’s accuracies improved for both S2 VH 

(from 70% and 71%) and S2 VV (from 72% to 73%) fused imagery as compared to L8 fused 

imagery. Summer analysis between SAR polarisations resulted in L8 VV outperforming L8 VH 
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by 3%. There was however no difference in the overall accuracy achieved using fused L8 VH 

and L8 VV images.  

 

Table 3.2: Summer confusion matrices of VH and VV fused polarisation for Landsat 8 and 

Sentinel-2. Where BR = Bare rock; BBL = Bramble; FR = Forest; GR = grassland; PA= 

Producers accuracy; OA= Overall accuracy and UA = Users accuracy 

L8 Summer BR BBL FR GR UA (%) BR BBL FR GR UA (%) 

 (a) VH (b) VV 

BR 28 0 7 9 64 25 3 6 10 57 

BBL 0 28 13 12 53 0 30 9 14 57 

FR 0 8 38 3 78 0 4 40 5 82 

GR 0 15 7 46 68 0 10 7 50 75 

PA (%) 100 55 58 66  100 64 65 63  

OA (%) 65     68     

S2 Summer (c) VH (d) VV 

BR 33 0 4 9 72 31 0 5 10 67 

BBL 0 37 3 13 70 0 38 3 12 72 

FR 1 2 42 4 88 0 1 43 5 88 

GR 0 13 3 52 76 0 13 2 53 78 

PA (%) 97 71 81 67  100 73 81 66  

OA (%) 76     68     
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Figure 3.3: Summer spatial distribution maps for fused Landsat 8 and Sentinel-2 VH and VV 

polarisations. Where (a) = Landsat 8 (VH); (b) = Landsat 8 (VV); (c) = Sentinel-2 (VH) and (d) = 

Sentinel-2 (VV). 

3.3.1.2 Autumn 

Fused L8 autumn overall accuracies ranged from 71% (VH) to 66% (VV) (Figure 3.4a and b). 

However, user’s and producer’s accuracies for autumn L8 VH and L8 VV resulting from Bramble 

were the lowest across all land-cover classes (Table 3.3a and b). S2 VH and S2 VV fused 

imagery achieved superior overall accuracies as compared to L8 VV imagery (Figure 3.4c and 

d), while S2 VH imagery achieved similar overall accuracy to L8 VH imagery (Table 3.3a, b, c 

(a) (b) 

(c) (d) 
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and d). Bramble user’s and producer’s accuracies S2 VH (57% and 63%) and S2 VV (58% and 

60%) imagery surpassed those achieved using L8 fused imagery (Table 3.3a, b, c and d).  

 

Table 3.3: Autumn confusion matrices for VH and VV fused polarisation for Landsat 8 and 

Sentinel-2. Where BR = Bare rock; BBL = Bramble; FR = Forest; GR = grassland; PA= 

Producers accuracy; OA= Overall accuracy and UA = Users accuracy. 

 

 

 

 

 

 

 

 

L8 Autumn BR BBL FR GR UA (%) BR BBL FR GR UA (%) 

 (a) VH (b) VV 

BR 34 3 1 7 76 33 0 5 6 75 

BBL 0 28 10 15 53 0 18 19 16 34 

FR 1 3 44 1 90 1 2 43 3 88 

GR 0 15 5 48 71 0 10 10 48 71 

PA (%) 97 57 73 68  97 60 56 66  

OA (%) 71     66     

S2 Autumn (c) VH (d) VV 

BR 30 3 1 12 65 30 4 2 10 65 

BBL 0 30 8 15 57 0 31 7 15 58 

FR 1 2 45 1 92 1 2 42 4 86 

GR 1 13 4 50 74 1 15 4 48 71 

PA (%) 94 63 78 64  94 60 76 62  

OA (%) 71     70     
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Figure 3.4: Autumn spatial distribution maps for fused Landsat 8 and Sentinel-2 VH and VV 

polarisations. Where (a) = Landsat 8 (VH); (b) = Landsat 8 (VV); (c) = Sentinel-2 (VH) and (d) = 

Sentinel-2 (VV). 

3.3.1.3 Winter 

L8 VH fused imagery produced an overall accuracy of 72%, hence outperformed L8 VV fused 

imagery (Figure 3.5a and b) (overall accuracy of 64%) (Table 3.4a and b). Bramble user’s and 

producer’s accuracies were among the lowest of all the land cover classes (Table 3.4a and b) 

using L8 fused imagery. S2 fused imagery across both polarisations achieved higher overall 

accuracies (Figure 3.5c and d) as compared to L8 fused images. Sentinel-2 VH fused imagery 

produced an overall accuracy of 76%, while S2 VV fused imagery produced an overall accuracy 

(a) (b) 

(c) (d) 
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of 71% (Table 3.4c and d). S2 VH and S2 VV Bramble users and producer’s accuracies were 

higher than those recorded by L8 fused imagery.  

 

Table 3.4: Winter confusion matrices for VH and VV fused polarisation for Landsat 8 and 

Sentinel-2. Where BR = Bare rock; BBL = Bramble; FR = Forest; GR = grassland; PA= 

Producers accuracy; OA= Overall accuracy and UA = Users accuracy. 

 

 

 

 

 

 

 

 

L8 Winter BR BBL FR GR UA (%) BR BBL FR GR UA (%) 

 (a) VH (b) VV 

BR 29 6 2 9 63 27 4 5 8 61 

BBL 1 34 2 16 64 3 20 88 22 38 

FR 0 3 45 1 92 0 4 44 1 90 

GR 3 14 2 45 70 3 10 9 46 68 

PA (%) 88 60 88 63  82 29 67 60  

OA (%) 72     64     

S2 Winter (c) VH (d) VV 

BR 35 4 1 6 76 35 2 2 6 78 

BBL 1 35 2 15 66 1 25 8 17 49 

FR 1 3 45 0 92 1 4 43 1 88 

GR 7 9 2 48 73 5 8 6 48 72 

PA (%) 80 69 90 70  83 64 73 67  

OA (%) 76     71     
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Figure 3.5: Winter spatial distribution maps for fused Landsat 8 and Sentinel-2 VH and VV 

polarisations. Where (a) = Landsat 8 (VH); (b) = Landsat 8 (VV); (c) = Sentinel-2 (VH) and (d) = 

Sentinel-2 (VV). 

3.3.1.4 Spring 

Spring L8 results showed a decrease in overall accuracies for both VH and VV fused images 

(Figure 3.6a and b), both producing overall accuracies of 64% (Table 3.5a and b). A decrease in 

Bramble user’s accuracy (32%) and an increase in Bramble producer’s accuracy (71%) was 

realised for L8 VH and L8 VV fused imagery as compared to summer L8 fused results (Table 

3.5a and b). S2 overall accuracies for VH and VV fused images improved when compared to L8 

(Figure 3.6c and d), with overall accuracies ranging from 67% (VH) to 72% (VV) (Table 3.5c and 

d). Bramble user’s accuracy increased for VH and VV S2 fused images, while Bramble 

(a) (b) 

(c) (d) 
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producer’s accuracy decreased with the fusion of VH and VV SAR data and Sentinel-2 (Table 

3.5c and d). 

 

Table 3.5: Spring confusion matrices of VH and VV fused polarisation for Landsat 8 and 

Sentinel-2. Where BR = Bare rock; BBL = Bramble; FR = Forest; GR = grassland; PA= 

Producers accuracy; OA= Overall accuracy and UA = Users accuracy. 

 

 

 

 

 

 

 

 

L8 Spring BR BBL FR GR UA (%) BR BBL FR GR UA (%) 

 (a) VH (b) VV 

BR 27 2 4 12 60 25 0 9 10 57 

BBL 0 21 8 24 40 0 17 15 21 32 

FR 1 1 44 3 90 1 3 43 2 94 

GR 0 10 8 50 74 0 7 8 52 78 

PA (%) 96 62 69 56  96 71 57 61  

OA (%) 64     64     

S2 Spring (c) VH (d) VV 

BR 29 5 1 11  26 9 1 10 57 

BBL 0 30 0 23  1 33 3 16 62 

FR 1 1 44 3  0 1 46 2 94 

GR 9 14 4 41  4 11 2 51 75 

PA (%) 76 60 90 53  84 61 88 66  

OA (%) 67     72     
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Figure 3.6: Spring spatial distribution maps for fused Landsat 8 and Sentinel-2 VH and VV 

polarisations. Where (a) = Landsat 8 (VH); (b) = Landsat 8 (VV); (c) = Sentinel-2 (VH) and (d) = 

Sentinel-2 (VV). 

3.4 Discussion 

This study sought to determine the value of fusing optical and SAR imagery at a feature level in 

discriminating Bramble from surrounding native vegetation and other land cover types. 

Generally, overall accuracies of multi-season SAR fused Sentinel-2 data outperformed SAR 

fused multi-season Landsat 8 imagery. Summer Sentinel-2 fused data produced the highest 

accuracy (76%) across all seasons and SAR polarisations. This finding is in agreement with ven 

Beijma et al (2014) who suggests that the fusion of SAR with optical imagery could be reliably 

used to map vegetation at a species level. However, our results contradict Hong et al (2014), 

who noted that basic integration of SAR and optical imagery using feature level fusion may not 

(a) (b) 

(c) (d) 
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significantly improve the detection and mapping of land cover types. In our study, we 

hypothesise that timeous acquisition and seasonal alignment of SAR and optical imagery used 

for data fusion could have assisted in achieving improved Bramble classification accuracies. 

The broad-leafed nature of Bramble plants makes it easier to discriminate, in comparison to 

grassland and alfalfa considered in Hong et al (2014). This variability in phenology characteristic 

could be used to explain the contradictory results. According to Bradley (2014), no sensor can 

achieve high spatial, spectral and temporal coverage collectively over an expansive spatial 

extent. Consequently, the choice of remote sensing approach will always be limited by the 

above-mentioned sensor characteristics. Sentinel-2’s strategically placed bands, coupled with 

its superior spatial resolution, when compared to Landsat 8, is an example of trade-offs that can 

affect overall mapping accuracies.  

 
The summer results showed that simple feature level fusion can be used to reliably detect and 

map Bramble, in comparison to single source active or passive remote sensing imagery. 

McNairn et al (2009) demonstrated superior classification performance during summer, where 

seasonal changes in vegetation pigmentation, water content and structure are known to affect 

reflectance and SAR backscatter. Exploitation of these changes using the synergistic power of 

optical and SAR imagery, which is particularly sensitive to vegetation moisture content, could be 

responsible for summer’s best classification results, in comparison to other seasons. Studies 

into the behaviour of active remote sensing signals, as a function of leaf area index (LAI) has 

related decreased backscatter measurements with an increase in LAI for narrow vegetation 

(such as grassland), and an increase in backscatter measurements for broad leaf vegetation 

(Macelloni et al., 2001; Fontanelli et al., 2013). The relationship between LAI and the intensity of 

backscatter measurements could account for summer accuracies, as broad leaf Bramble 

patches would be more discernible from narrow leaf surrounding grassland.  

 
In fusing SAR data with optical imagery, Hong et al (2014) demonstrated that cross-polarised 

SAR performed slightly better than co-polarised SAR. These findings support results from this 

study for Sentinel-2 and Landsat 8 in winter and autumn and for Landsat 8 in spring. 

Additionally, the alignment of SAR data and optical data acquisition could further serve to 

explain suitable accuracies for Bramble discrimination and mapping, as seasonal differences in 

backscatter measurements combined with those of spectral reflectance could have improved 

classification accuracies. The superior performance of cross-polarised fused SAR data is 

attributed to sensitivity of scattering from the surface, relating to vegetation water content 

(Ghulam et al., 2011). This explains the increased accuracies resulting from cross-polarised 
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fusion during the drier autumn and winter seasons. Bramble is known to thrive in wet and moist 

habitats, hence out-compete native vegetation for water resources during these seasons.  

 
Summer was the only season where co-polarised fused SAR data outperformed or equalled 

cross-polarised fused SAR data. Similar findings were achieved by Naidoo et al (2013) within 

the study area. The relatively moderate classification accuracies achieved during autumn and 

winter as compared to spring also followed a similar trend to those achieved by Naidoo et al 

(2013). The better performance of winter and autumn fused imagery compared to spring fused 

imagery is also consistent with existing literature (Santoro et al., 2014 and Mathieu et al., 2013). 

Santoro et al (2014) attributes decreased classification accuracies to increased transparency 

within vegetation canopy due to senescence, which allows SAR penetration as well as an 

increased influence of exposed soil. 

 
Depending on the frequency or wavelength of the sensor in use, target vegetation content and 

structure can be sensed in different ways using SAR data. The C-band SAR wavelengths, for 

instance, interact with surface structures such as fine leaf and branch elements, which in turn 

results in canopy level backscattering. According to Naidoo et al (2013), polarisation of SAR 

data can significantly improve the sensing of vegetation structure. For example, VH polarisation 

is better linked to canopy structure due to volumetric water content within the canopy 

architecture (Schmullius and Evans, 1997). This study accordingly contributes to the existing 

literature by quantifying the impacts of both seasonality and polarisation information on 

classification accuracy. 

 

3.5 Conclusion 

This study sought to fuse wide swath optical remotely sensed data with wide swath Synthetic 

Aperture Radar (SAR) data to detect and map the American Bramble (Rubus cuneifolius). 

Although numerous studies have outlined the complementary nature of SAR to optical imagery 

(Gomez, 2017; Naidoo et al., 2015; Baghdadi et al., 2015; Hong et al., 2014), only few studies 

have been undertaken on a possible operational scale. Seasonal analysis of fused imagery 

indicated that feature level image fusion has the potential to accurately detect and map Bramble 

from surrounding native vegetation. Sentinel-2 fused imagery outperformed Landsat 8 fused 

imagery across all seasons, with the exception of autumn. Cross-polarised SAR data (VH), 

when fused with optical imagery, showed increased classification accuracies as compared to 

co-polarised SAR data (VV) during autumn and winter. The optimum season for Bramble 
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detection was in winter using Sentinel-2 co-polarised fused imagery. This study demonstrates 

that optical imagery can be used in conjunction with SAR imagery to provide a synergistic 

approach to invasive alien plant detection and mapping at a large scale.  
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Chapter Four 

The fusion of optical imagery and SAR polarization combinations and ratios for 

invasive alien plant detection and mapping 

This chapter is based on: Rajah, P., Odindi, J. and Mutanga, O., and Kiala, S., (Under review: 

Resubmission - Journal of Applied Remote Sensing): The fusion of optical imagery and SAR 

polarization combinations and ratios for invasive alien plant detection and mapping.  

Abstract 

Grassland is the largest biome on earth. The biome has great socio-economic and 

environmental value that includes carbon reservoir, biodiversity, source of pasture for livestock 

and wildlife and provision of a range of ecosystem goods and services. However, invasion by 

alien plant species has increasingly become a severe threat to the biome. Optimal and cost-

effective mitigation of effects of invasive species on the grassland biome requires an 

understanding of the extents and distribution of invasive alien species within the landscape. 

Whereas studies on the adoption of optical remote sensing for invasive alien plant detection and 

mapping are abound, there is paucity in literature on the use of Synthetic Aperture Radar (SAR) 

remotely sensed data on invasive species mapping. The inherent ability of SAR to acquire data 

in all weather conditions, during day or night, at varying polarizations could be valuable in 

complimenting optical imagery and consequently improving classification accuracies. Hence, 

this study sought to determine the synergistic potential of fusing Sentinel-2 (S2) optical imagery 

with Sentinel-1 S1) SAR band ratios in detecting and mapping the American bramble (Rubus 

cuneifolius) within a grassland environment. SAR dual polarization bands and indices were 

developed for feature level image fusion, and the Support Vector Machine (SVM) learning 

algorithm used to discriminate the American bramble from native vegetation. Results showed 

that S2 optical imagery fused with S1 SAR indices that measured the difference between 

polarizations (Vertical-Horizontal (VH) – Vertical-Vertical (VV) and Vertical-Vertical (VV) – 

Vertical-Horizontal (VH)) achieved the highest classification accuracies, with overall accuracies 

of 72% and 74%, respectively. These findings demonstrate the value of dual polarized SAR 

indices synergistic properties, fused with conventional optical imagery for mapping the American 

bramble within a grassland environment. 

Key words: Synthetic Aperture Radar (SAR); Support Vector Machine (SVM); Polarization; 

Synergistic; American Bramble.  
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4.1 Introduction 

The grassland biome is one of the most dominant land-cover types on earth, covering 

approximately 40.5% of global terrestrial landscape (Carlier et al., 2009; World Resources 

Institute, 2000). Globally, natural grasslands are valuable socio-economic and environmental 

resources. However, in South Africa, like many other parts of the world, the grassland biome is 

under severe threat from different forms of degradation. According to Fourie et al (2015) 

approximately 45% of the grassland biome in the country has been transformed. Invasive alien 

plant species have particularly become a major threat to the grassland biome (Te Beest et al., 

2012). These threats include enhanced fire frequency, which compromise ecosystem condition, 

nutrient depletions, changes in micro-climates, alteration in vegetation succession, and 

restriction in movement of grazing fauna (D'Antonio et al., 1992; Bradley et al., 2006, Foxcroft et 

al., 2010; Chaneton et al., 2012; Steidl et al., 2013; Maron et al., 2014). To mitigate these 

effects, objective and cost-effective approaches to identification and mapping of invasive 

species are paramount. Regular and timely detection and mapping of invasive alien species 

within the biome is particularly valuable in developing optimal eradication strategies and 

sustainable management of the biome (Hulme, 2009).  

The value of conventional optical remotely sensed data for invasive alien species detection and 

mapping has been extensively investigated in the recent past (Huang and Asner, 2009; Kimothi 

and Dasari, 2010; Van den Berg et al., 2013; Gil et al., 2013; Singh et al., 2013). Whereas the 

adoption of higher spatial and spectral resolution remotely sensed imagery are known to yield 

reliable results, use of such datasets are limited to smaller spatial extents due to high cost per 

unit area. On the other hand, lower spatial resolution sensors such as Moderate-Resolution 

Imaging Spectro-radiometer (MODIS) and the Landsat series cannot be used to reliably 

delineate invasive species as their utility is hindered by the common mixed pixel problem. Other 

commonly used sensors like SPOT have limited spectral discriminatory power. New generation 

moderate resolution sensors have recently emerged, with the Sentinel constellation (Sentinel-2 - 

optical and Sentinel-1 -Synthetic Aperture Radar - SAR) attracting significant interest. A product 

of the European Space Agency (ESA), Sentinel-2 (S2) and Sentinel-1 (S1) imagery are freely 

available and possess unique spatial and spectral characteristics valuable for landscape 

delineation. The sensors provide an opportunity to complement optical and SAR in invasive 

alien species detection and mapping.    
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According to Solberg (2006), surface features are characterized by specific spectral properties 

at different frequencies of the electromagnetic spectrum. Hence, sensors capturing different 

wavelengths provide complimentary information about the earth’s surface. Therefore, merging 

multi-source remotely sensed data such as S1 and S2 offer great potential for delineating 

surface features, as compared to single source data Solberg (2006). SAR sensors such as S1 

are also capable of recording SAR backscatter (sigma0) measurements in various polarization 

modes. Polarization of SAR data refers to the orientation of the electric field vector of emitted 

and received signals. S1 has the ability to emit and receive electromagnetic waves across both 

horizontal and vertical planes. Hence, a Vertical Horizontal (VH) polarization would emit an 

electromagnetic wave vertically and receive backscatter measurements on a horizontal plane. 

SAR emitted and received across opposite planes (VH) is referred to as cross-polarized in 

nature. A Vertical Vertical (VV) polarization on the other hand would emit and receive 

backscatter measurements on the vertical plane. This type of SAR measurement is referred to 

as co-polarized SAR data. Vegetation volume and geometric structure are believed to be key 

variables that determine SAR backscatter (Srivastava et al., 2009; Hong et al., 2014). The 

suggestion that co-polarized SAR is subtly stronger at detecting variations across these 

variables (Vyjayanthia and Nizalapur, 2010), provides background for investigating the potential 

of SAR polarization combinations and ratios for fusion with optical imagery to exploit these 

polarization subtleties for invasive alien detection and mapping. 

Merging remotely sensed imagery, a process referred to as image fusion, is most effective when 

intended to improve image reliability and subsequent image classification accuracies. 

Palubinskas (2012) notes that image fusion involves a combination of two or more images from 

sensors of different wavelengths, simultaneously viewing the same scene to form a composite 

image. According to Dong and Srivastava (2013), the composite image serves to improve image 

data content and facilitate determination of targets due to the synergistic properties of SAR and 

optical imagery. Currently, three image fusion approaches exist; pixel level, feature level and 

decision level (Sahu and Parsai, 2012). Feature level fusion was adopted in this study as it is 

less stringent to sensor alignment compared to other fusion techniques. Additionally, feature 

level fusion achieves a considerable compression of information and is highly conducive to 

efficient real-time remote sensing imagery processing (Malik et al., 2013). The approach 

extracts features such as edges, textures and shapes from different images of the same 

geographic area by separate pre-processing (Schmitt and Zhu, 2016; Pandit and Bhiwani, 

2015). Extracted features are then combined to form an optimal feature set that is further 
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classified using supervised or unsupervised classifiers. This process allows correlative feature 

information to be excavated, eliminates redundant features and establishes new compound 

features, increasing reliability of feature information (Zeng et al., 2006; Pandit and Bhiwani, 

2015). 

Although optical imagery is considered a powerful resource for invasive alien discrimination, 

constraints associated with spectral resolution and surface reflectance measurements that only 

take into account the surface of canopy vegetation, limit its application to alien invasive 

detection and mapping (Joshi et al., 2016). Hence, the unique ability of SAR to penetrate 

vegetation surface canopy has led to studies on relations between SAR backscatter and 

vegetation parameters such as leaf area index (LAI) and biomass (Ghasemi et al., 2011; Inoue 

et al., 2014). According to Dusseux et al (2014), SAR’s unique capabilities make it an ideal 

complement to optical data for grassland monitoring. The distinct invasive alien species 

characteristics such as LAI, canopy surface roughness and biomass present an ideal 

opportunity for the fusion of SAR and optical data for improved mapping accuracies. 

Consequently, this study sought to fuse different S1 SAR polarization ratios with new age S2 

optical imagery to determine their synergist potential in detecting and mapping the American 

bramble (Rubus cuneifolius) within a protected grassland environment. 

4.2 Methodology 

4.2.1 Study area 

This study was conducted within the uKhahlamba Drakensberg Park (UDP) in the Kwa-Zulu 

Natal (KZN) province, South Africa (Figure 4.1). The undulating terrain of the UDP is dominated 

by natural grassland and patches of thickets and natural shrubs. Summers are wet and humid, 

with a rainfall range of 990-1130mm (Dollar and Goudy, 1999). Winters are dry and cold with 

occasional snow and frost (Mansour et al., 2012).     
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Figure 4.1: uKhahlamba Drakensberg Park (UDP) boundary (c), within the KZN province (b) of 

South Africa (a). 

4.2.1.1 Field data collection 

Field data within the UDP was collected in September and December 2016. The stratified 

purposive non-random sampling technique was used to collect Bramble patches points using a 

handheld Trimble differentially corrected GeoXT geographical positioning system (GPS). The 

purposive non-random sampling approach ensured that an appropriate representative sample 

was achieved across all major land-cover classes within the study area (Bare rock, Bramble, 

Grassland and Forest). Field validation ground control points were collected as close as 

possible to the centroid of the respective land-cover class sampled. To ensure land-cover 

classes were associated with the unique spectral reflectance and backscatter of a single pixel, 

spatially independent ground control sample plots ranging from 15m x 15m to 50m x 50m were 

collected. The UDPs steep and mountainous terrain restricted accessibility to certain Bramble 

stands, hence only accessible Bramble stands were considered for this study. The 2015 UDP 

aerial photographs, at a 0.5m spatial resolution were used to collect additional Bramble and 

other land cover ground truth data for inaccessible areas and to verify land cover classes.  
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4.2.2 Image acquisition  

Summer S2 and S1 imageries were acquired from the Copernicus open access data hub 

(https://scihub.copernicus.eu/). The Sentinel Applications Platform (SNAP) toolbox version 3.0 

was used to pre-and process both S2 and S1 imageries.   

4.2.2.1 Optical imagery 

Level-1C S2 raw data products were acquired. S2 raw digital number (DN) values were 

converted to spectral surface reflectance values using the Sen2Cor plugin algorithm of SNAP. 

The System for Automated Geoscientific Analyses (SAGA 2.1.2) terrain analysis tool within a 

Quantum GIS (QGIS) environment was used to correct topographic effects of shadowing 

commonly associated with mountainous areas on a band by band basis. The following nine S2 

optical bands were used in this study: Band 2 (blue); Band 3 (green), Band 4 (red), Band 5 

(vegetation red edge 1), Band 6 (vegetation red edge 2), Band 7 (vegetation red edge 3), Band 

8 (Near Infra-red); Band 11 (Short-wave Infra-red1) and Band 12 (Short-wave Infra-red2). A 

nine-band optical composite image was used for feature level fusion with respective SAR 

polarization ratio bands.       

4.2.2.2 SAR imagery 

The S1 open access data-hub was used to download raw level-1 S1 level-1 Ground Range 

Detected (GRD) products. GRD products consist of focused SAR data that has been detected, 

multi-looked and projected to ground range using an Earth ellipsoid model were acquired. 

These S1 products were in Interferometric Wide Swath (IW) mode, with a spatial resolution of 

10 meters and a swath width of 250km2. S1 image products was pre-processed using the 

methodology outlined in Bevington (2016). The Bevington (2016) SAR image processing chain 

consists of five steps: (1) Application of orbit file to SAR image; (2) Radiometric calibration; (3) 

Application of speckle filter; (4) Terrain correction; and (5) Conversation of SAR DN to Sigma0 

backscatter values (dB) units using 10 X log10 (sigma0) equation (Li et al., 2011). S1 image 

products in dB units were then used to derive several S1 SAR dual polarized band indices.  

4.2.2.3 S1 SAR dual polarized indices 

S1 SAR dual polarized bands and indices were individually fused with S2 optical imagery at a 

feature level. S1 SAR dual polarized indices were calculated as follows: (1) VH/VV; (2) VH – 

VV; (3) VH + VV; (4) VH x VV; (5) VV/VH and (6) VV – VH.  SAR band indices were devised 

https://scihub.copernicus.eu/
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using all possible realistic mathematical expressions in order to determine if the difference, 

additive, multiplicative or fractional products of VH and VV dual polarizations were optimal for 

discriminating Bramble from surrounding native vegetation.  

4.2.3 Data Fusion 

Fusion of S2 optical imagery and S1 SAR dual polarized bands and indices was conducted at a 

feature level (Figure 4.2). S1 SAR imagery was resampled to a spatial resolution of 20 meters in 

order to coincide with the spatial resolution of S2 optical imagery.  

 

 

 

 

 

 

 

 

Figure 4.2: Feature level fusion processing chain 

In the feature-level fusion, each sensor observes an object, and a feature extraction is 

performed to yield a feature vector from each sensor. After using an association process to sort 

feature vectors into meaningful groups, these feature vectors are then fused and an identity 

declaration is made based on the joint feature vector (Zeng et al, 2006). Extraction of field 

validated features was done on an individual basis for optical imagery and SAR index images. 

Corresponding spectral reflectance measurements were assigned to extracted SAR ratio 

backscatter features. Fused S2 optical imagery and S1 SAR backscatter data were then used 

for classifying and mapping American bramble.  
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 4.2.4 Image classification 

Image classification was conducted post feature level image fusion using the Support Vector 

Machine (SVM) machine learning algorithm within a Python environment. SVM is a supervised 

statistical learning technique first developed by Vapnik (1979) to deal with binary classifications. 

The algorithm aims to find a hyper-plane that divides the dataset into a discrete predefined 

number of classes consistent with training data (Mountrakis and Ogole, 2011). Statistical 

evaluation has shown that SVM is proficient in classifying several classes using limited support 

vectors as training samples, without compromising the classification accuracies (Foody and 

Mathur, 2004;  Mantero et al., 2005, Bruzzone and Chi, 2006;  Shao and Lunetta, 2012;  Zheng 

et al., 2015). The SVM classifier is trained using 70% of the collected ground truth data points 

for the four major land cover classes (Bare rock, Bramble, Forest and Grassland) in the study 

area.  

4.2.5 Map production and accuracy assessment  

In a Python 2.7.13 environment, the SVM classifier was used to generate classification maps of 

the four land cover classes from fused data S2 optical and S1 SAR data. A random 30% of the 

ground data points were used as test data set to validate the classified maps. Confusion 

matrices for each of the six fused SAR ratios were produced on the test data set to evaluate 

user’s and producer’s accuracies of all four considered land cover classes.   

4.3 Results 

Generally, all S1 SAR dual polarized bands and indices fused with the S2 optical imagery 

produced above average classification accuracies, with values ranging from 64% to 74% 

(Tables 4.1 - 4.3). The VV – VH S1 SAR index achieved the highest overall classification 

accuracy across all S1 SAR dual polarized and S2 optical fused imagery (74%) (Table 4.1a). 

The VH – VV S1 SAR dual polarized index fused with S2 optical imagery produced the second 

highest overall classification accuracy (72%) (Table 4.1b). Bramble achieved the lowest user’s 

accuracy (47%) and Grassland the highest (88%) (Table 4.1b).  
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Table 4.1: Confusion matrices of VV - VH and VH - VV S1 SAR dual polarized indices fused 

with S2 optical imagery. Where BR = Bare rock; BBL = Bramble; FR = Forest; GR = grassland; 

PA= Producer’s accuracy; OA= Overall accuracy and UA = User’s accuracy. 

 (a) VV - VH (b) VH - VV 

 BR BBL FR GR UA (%) BR BBL FR GR UA (%) 

BR 50 0 5 10 77 43 0 0 10 81 

BBL 1 30 5 23 51 1 35 15 23 47 

FR 4 5 58 20 67 11 1 45 12 65 

GR 1 6 0 85 92 1 6 5 92 88 

PA (%) 89 73 85 66  77 83 69 67  

OA (%) 74     72     

 

The VV - VH and VH - VV spatial distribution map produced improved spatial extents for all 

land-cover classes considered in this study. From a visual perspective, Bare rock, Bramble and 

Forest spatial extents were the least over-estimated when compared to other SAR band 

combinations and ratios considered in this study (Figure 4.3a, Figure 4. 6).  
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Figure 4.3: Land cover maps produced using VV – VH and VH - VV S1 SAR dual polarized 

indices fused with S2 optical imagery and SVM classifier. 

The VH/VV SAR fused ratio produced an overall user’s classification accuracy of 68% (Table 

4.2a). The highest user’s accuracy was achieved by the grassland land cover class (89%) and 

the lowest by the Bramble land cover class (43%) (Table 4.2a). The VV/VH SAR ratio resulted 

in an overall accuracy of 67% (Table 4.2b). User’s accuracies ranged from 46% (Forest) to 93% 

(Grassland) (Table 4.2b). Producer’s accuracies ranged from 51% (Grassland) to 100% 

(Forest).  
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Table 4.2: Confusion matrices of VH/VV and VV/VH SAR ratios fused with Sentinel-2 optical 

imagery. Where BR = Bare rock; BBL = Bramble; FR = Forest; GR = grassland; PA= Producers 

accuracy; OA= Overall accuracy and UA = Users accuracy. 

 (a) VH/VV (b) VV/VH 

 BR BBL FR GR UA (%) BR BBL FR GR UA (%) 

BR 51 0 15 18 61 47 0 0 18 72 

BBL 11 31 10 21 43 1 32 0 30 51 

FR 1 2 46 10 78 6 1 37 36 46 

GR 0 9 0 75 89 0 6 0 86 93 

PA (%) 81 74 65 60  87 82 100 51  

OA (%) 68     67     

 

Spatial distribution maps resulting from the VH/VV SAR fused ratio produced improved 

accuracy of spatial extents of all considered land cover classes (Figure 4.4a and b). There were 

decreased over estimations of Bare rock and Forest land cover classes as compared to VH x 

VV and VH + VV SAR fused combinations (Figure 4.5a and b). Bramble spatial distribution 

across both SAR combinations showed improved accuracy in spatial extents, with decreased 

over-estimations as compared to the VH x VV and VH + VV SAR fused imagery (Figure 4.6).  
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Figure 4.4: Land cover maps produced using VH/VV and VV/VH S1 SAR dual polarized indices 

fused with S2 optical imagery and SVM classifier. 

The VH x VV fused ratio produced an overall classification accuracy of 64% (Table 4.3a), the 

lowest across all SAR fused imagery. Bramble users and producers accuracies were 56% and 

55% respectively and were the lowest across all land cover classes for the VH x VV SAR fused 

ratio. The VH + VV SAR fused combination produced an improved overall classification (68%) 

as compared to the VH x VV SAR ratio (Table 4.3b). The bramble land cover class had the 

lowest users accuracy (40%) for the VH + VV SAR combination (Table 4.3b).  
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Table 4.3: Confusion matrices of VH x VV and VH + VV SAR combinations fused with Sentinel-

2 optical imagery. Where BR = Bare rock; BBL = Bramble; FR = Forest; GR = grassland; PA= 

Producers accuracy; OA= Overall accuracy and UA = Users accuracy. 

 (a) VH x VV (b) VH + VV 

 BR BBL FR GR UA (%) BR BBL FR GR UA (%) 

BR 43 0 9 18 61 42 0 9 16 63 

BBL 2 36 0 56 56 2 35 10 40 40 

FR 11 4 39 62 62 11 4 39 10 61 

GR 0 26 0 74 74 1 15 3 63 77 

PA (%) 76 55 81   75 65 64 49  

OA (%) 64     68     

 

The SVM spatial distribution map produced for the VH x VV fused combination showed a slight 

over-estimation with regard to the Forest, Bare rock and Bramble classes. Consequently, the 

spatial distribution of the grassland land cover class showed a minor under-estimation in spatial 

extent (Figure 4.5a, Figure 4.6). 
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Figure 4.5: Land cover maps produced using VH x VV and VH + VV S1 SAR dual polarized 

indices fused with S2 optical imagery. 

The VH + VV SAR spatial distribution map provided an improved spatial extent of Bramble and 

Grassland classes, with minimal over-estimation (Figure 4.5b). Bare rock spatial distribution 

showed a slight improvement as compared to the VH x VV SAR combination, however, over-

estimation or bare rock was still visually represented (Figure 4.5a, Figure 4.6).   
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Figure 4 6: Overestimation and underestimation of Bramble classes across VH-VV; VV - VH; 

VH/VV; VV/VH; VH x VV and VV+VH band combinations and ratios 

4.4 Discussion 

This study sought to determine the potential synergistic properties of S1 SAR data fused with 

new age S2 optical imagery for detecting and mapping the American bramble (Rubus 

cuneifolius) invasive plant species. Generally, overall accuracies across all S1 SAR fused 

polarization indices performed relatively well, with overall accuracies ranging from 64% to 74%. 

Based on these results, we can affirm that S1 SAR imagery is a valuable supplementary data 

source to conventional optical imagery. The S1 SAR combination that utilized the difference 

between VV and VH dual polarized index achieved the highest overall classification accuracy 

(74%). Depending on the polarization of S1 SAR imagery, target vegetation classification may 

vary due to specific polarizations being more effective at sensing vegetation parameters. 

Parameters such as leaf area index, biomass and vegetation water content are the main 

O
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determinants of differences in measured SAR backscatter values (Santoro et al., 2011, Naidoo 

et al., 2013; Schmullius and Evans, 1997). Variations in co- and cross-polarized SAR 

backscatter measurements are known to occur as a result of sensor incidence angle. According 

to Baghdadi et al (2008), an increase in incidence angle results in an increase in sensitivity to 

vegetation roughness, which ultimately affects the strength of the received SAR signal. This 

finding is supported by Betbeder et al (2014) who established that SAR imagery, with a 

moderate incidence angle was successful in discriminating hedgerows and were more 

susceptible to vegetation roughness. Results from this study are in agreement with Baghdadi et 

al (2008) and Betbeder et al (2014), where a large satellite incidence angle range resulted in 

improved overall accuracies. The incidence angle of S1, which ranges from 29.1 - 40° could 

have accounted for the VV-VH and VH-VV SAR ratios out-performing all other SAR ratios 

considered. 

The index that measured the difference between VH and VV polarized S1 SAR data achieved 

the second highest overall classification accuracy (72%). A study by Ghulam et al (2014) noted 

the superior performance of cross-polarized SAR data as compared to co-polarized data. The 

superior performance was attributed to the sensitivity of cross-polarization to surface vegetation 

water content. As bramble is known to thrive in moist habitats, water content concentrations 

within bramble leaves are high. The difference between VH and VV polarized data could have 

been adequately significant to allow for effective discrimination of Bramble from surrounding 

native vegetation based on the difference in foliar water content. This finding is in line with a 

study by Da Costa Freitas et al (2009) and Baghdadi et al (2009), where the VH SAR 

polarization showed significant potential for vegetation discrimination as compared to the VV 

SAR polarization.  

The VH + VV SAR combination produced the third lowest overall classification accuracy (68%), 

compared to the highest (74%) and second highest (72%), proving that the additive effects of 

cross and co-polarized SAR data for detecting and mapping Bramble within a grassland 

environment exists. According to Silva et al (2009), cross polarized SAR data are more sensitive 

to vegetation variability as opposed to co-polarized SAR data. Cable et al (2014) further notes 

that ground targets that exhibit similar backscatter intensities are more likely to be separated 

using co-polarized data. This is attributed to increased phase information commonly associated 

with co-polarized SAR data. SAR phase information is primarily determined by the distance 

between the sensor antenna and the ground targets. The addition of the co-polarized VV SAR 

measurements to the cross-polarized VH measurements could have served to dilute the 
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sensitivity of the VH SAR backscatter measurements, resulting in the decreased overall 

classification accuracies achieved when using this index. 

The lowest classification accuracy was achieved using the VH x VV fused combination. 

Baghdadi et al (2008) notes that polarization (orientation of emitted and received radar waves) 

is a key contributing factor to observed SAR backscatter measurements. The VH x VV 

combination was not suitable for reliable and comprehensive detection of Bramble. McNairn et 

al (2000) notes that vertically emitted SAR waves do not penetrate as deep into vegetation 

canopy as horizontally emitted waves. Consequently, backscatter measurements from VH and 

VV SAR imagery could not record sufficient information to accurately discriminate between 

Bramble and surrounding vegetation. According to Mcnairn and Brisco (2004) single frequency 

SAR imagery provides a limited amount of information for precise vegetation separability. 

Whereas multi-frequency, fully polarimetric data has the potential for improved classification 

accuracies, until recently, they have not been readily available due to reduced coverages, costs 

associated with image acquisition, inaccessibility and inferior spatial resolutions. New age 

sensors produce a higher grade of information and therefore provide an opportunity to improve 

SAR imagery for vegetation applications (Simental et al., 2005). The recent launch of S1 serves 

to eliminate issues surrounding cost, coverage and availability of SAR data. The advantage of 

utilizing varying polarizations of new age S1 SAR data has been evident from the overall 

accuracies produced when using polarized SAR band ratios and combinations.   

4.5 Conclusions 

This study sought to highlight the significance of cost-effective, reliable new age remote sensing 

techniques, with the goal of contributing to effective management of natural grassland 

environments. This study contributes to existing literature that aims to improve conventional 

methods of invasive alien species detection and mapping within a natural grasslands. S2 optical 

imagery was fused at a feature level with S1 dual polarized SAR imagery, to detect and map 

American bramble (Rubus cuneifolius) from surrounding native vegetation. Although studies that 

have utilized SAR imagery for vegetation detection and mapping exist (Minchella et al., 2009; 

Poulain et al., 2009, de Carvalho et al., 2010;  Lardeux et al., 2011; Hong et al., 2014), none 

have tested the variability in potential of SAR polarization modes as done in this study. The 

fusion of S1 dual polarized SAR indices with S2 optical imagery indicated that specific SAR dual 

polarized band or index has the potential to detect Bramble from surrounding native grassland 

vegetation. The SAR dual polarized indices which measured the difference between cross and 
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co-polarized SAR data (VV – VH and VH – VV) were the most accurate in detecting and 

mapping Bramble. Hence, this study served to demonstrate the complementarity of polarized S1 

SAR imagery to optical imagery. Additionally, this study proves that cost-effective grassland 

management strategies can be developed at large scale, using the synergistic effects of SAR 

and optical remote sensing data 
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Chapter Five 

Assessing the synergistic potential of Sentinel-2 spectral reflectance bands and 

derived vegetation indices for detecting and mapping invasive alien plant species 

This chapter is based on: Rajah, P., Odindi, J. and Mutanga, O., and Kiala, S., (Under review 

- International Journal of Remote Sensing): Assessing the synergistic potential of Sentinel-2 

spectral reflectance bands and derived vegetation indices for detecting and mapping invasive 

alien plant species. 

Abstract 

Grassland biomes are valuable socio-economic and ecological resources. However, the 

invasion of grasslands by alien plant species has emerged as one of the biggest threats to their 

sustainability, management and conservation. Timely, cost-effective and accurate determination 

of invasive alien plant spatial distribution is paramount for mitigating the adverse effects of alien 

plants on natural grasslands. While there have been numerous studies on the use of optical 

bands for invasive alien detection and mapping, there is paucity in literature on the integration of 

Vegetation Indices (VIs) and optical reflectance bands in understanding the distribution of 

invasive alien plant species within a landscape. Specifically, there is need to test the value of 

improved and freely available sensors like Sentinel-2’s (S2) in understanding landscape 

invasion. Hence, this study sought to assess the value of S2’s optical bands and VIs for 

improving the detection and mapping of American Bramble (Rubus cuneifolius) within a 

grassland biome. Variable Importance in the Projection (VIP) was used to identify the most 

influential reflectance bands and VIs, which were then fused at a feature level. To determine the 

optimal season for the Bramble mapping, a multi-seasonal analysis was executed using the 

Support Vector Machine (SVM) learning algorithm. Multi-seasonal analysis indicated that spring 

was the optimum season for Bramble detection and mapping, with an overall accuracy of 73%. 

Findings from this study underline the value of complementing VIs and optical bands in 

determining the distribution of invasive species within grasslands. Furthermore, this study 

advocates for the adoption and fusion of freely available new age satellite imagery such as 

Sentinel-2 as a cost effective option in landscape mapping.  

Key words: Invasive alien plant, Grassland biome, Sentinel-2, Vegetation Indices, Spectral 

reflectance, Support Vector Machine (SVM).  
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5.1 Introduction 

Invasive alien plant species are regarded as the second most severe threat to global 

biodiversity after anthropogenic habitat destruction (Driver et al., 2012). Globally, vast pristine 

natural areas have been transformed as a direct result of invasive alien plant invasions, with 

detrimental impacts to among others human health, ecological resources, agriculture, water and 

tourism (Pysek et al., 2012). In South Africa, Carbutt and Martindale (2014) note that 

infestations by invasive species have led to irreversible transformation of between 60-80% of 

the country’s natural grassland. The South African grassland biome is the second largest biome 

in the country and predominates the country’s central high plateau regions of the KwaZulu-Natal 

and Eastern Cape provinces. Plant invasions in these regions have compromised the biome’s 

ecological integrity and socio-economic potential (Lenda et al. 2013). 

Traditional methods of identifying invasive alien species involve costly field surveys that are 

restricted to identification of species within accessible habitats (Edwards et al., 2007). While 

traditional methods such as the use of aerial photographs are known to be relatively accurate, 

they require intensive field work and ancillary data analysis, both susceptible to human error. 

Reliable interpretation of invasive alien plant data collected using conventional field-based 

surveys is further hampered by the laborious amount of time and effort needed to conduct 

surveys. Turner et al (2003) notes that although traditional methods may work well for smaller 

areas, they are often unsuitable for use on larger spatial extents, particularly in remote and 

inaccessible terrain. To overcome the above-named limitations, remote sensing approaches are 

becoming increasingly popular as an economic and efficient alternative for the detection and 

mapping of invasive alien species (Huang and Asner, 2009; Müllerová et al., 2013; Bradley, 

2014; Rocchini et al., 2015). 

Currently, a large number of studies adopting remote sensing approaches for mapping invasive 

alien plant species use spectral information of high and medium spatial resolution sensors. The 

use of spectral information assumes that the target invasive species has one or more unique 

light absorption or reflectance features relative to surrounding native vegetation (Bradley, 2014). 

Within a landscape, these unique reflectance features are particularly easier to determine when 

using hyperspectral imagery. The characteristic hundreds of narrow spectral bands of the 

dataset are capable of distinguishing subtle spectral differences between native and alien 

vegetation (Bradley, 2014). However, hyperspectral imagery is extremely expensive, requires 

extensive processing time and has reduced image swath widths (image coverage), hence 
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unsuitable for mapping large spatial extents. Recently, new generation multispectral imagery 

from among others Sentinel-2 and WorldView sensors have been successfully tested and used 

in vegetation mapping (Ng et al., 2017). However, there is a dearth in knowledge on their value 

in the detection and mapping of invasive alien plant species. The arrival of Sentinel-2 in 

particular, provides unprecedented opportunity to address the above-mentioned challenges.  

To facilitate higher classification accuracy of invasive alien species mapping, there has been an 

increased use of satellite derived vegetation indices to detect the extent of invaded 

environments (Levin et al., 2007; Bradley, 2014). According to Basso et al (2004), vegetation 

indices are more sensitive to vegetation parameters, compared to individual spectral bands, 

hence more useful when used as surrogates for vegetation and non-vegetation cover. Spectrally 

derived vegetation indices are particularly valuable as they significantly reduce the effects of 

soil, topography and satellite view angle (Hunt et al., 2013). Hence, indices have demonstrated 

ability to accurately quantify vegetation related spatial heterogeneity in complex landscapes 

(Rochinni et al., 2004; Benayas and Scheiner, 2002). Additionally, indices have been shown to 

vary across seasons and space, making them useful for detection within-field and intra and inter 

annual variability (Vina et al., 2011; Gobron et al., 2000).  

The efficacy of remote sensing and derived vegetation indices often rely heavily on the 

characteristics of the sensor utilized. The recent launch of the European Space Agency (ESA) 

Sentinel-2 (S2) multispectral satellite has availed new opportunities in remote sensing 

applications. S2 is a 13 band spectral resolution sensor spanning the visible/near-infrared, and 

short wave infrared spectral range and captures images at 60m, 20m and 10m spatial 

resolutions (Immitzer et al., 2016). Coupled with a 290km wide swath width and a 5 day 

temporal resolution, S2 offer new opportunities for both local and regional scale vegetation 

mapping. The sensor’s unique spectral resolution allows for the derivation of numerous 

vegetation indices that cannot be derived from other freely available multispectral satellites such 

as Landsat 8 and Moderate Resolution Imaging Spectroradiometer (MODIS). S2 also has three 

vegetation red edge spectral bands, currently not available in the freely available multispectral 

sensors (Cho et al., 2012; Hedley et al., 2012). These unique and progressive features, coupled 

with the sensor’s economic viability offer unprecedented opportunities in the discrimination and 

mapping of invasive alien plant species.  

Analysis based on phenological variability is imperative in optimal detection and mapping of 

vegetation species. According to Verbesselt et al (2009), seasonal changes influence plant 
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phenology and foliar chemistry, characteristics that can be exploited to determine optimal 

mapping seasons. Xue and Su (2017) note that remotely sensed information on vegetation vigor 

and growth can be useful for biodiversity conservation applications such as monitoring bush 

encroachment and estimating grassland biomass. According to McNairn et al (2009), invaders 

often exploit empty niches within a landscape and have distinct seasonal phenological 

characteristics from the surrounding native species, characteristics that provide potential for 

increased discrimination during a particular season. S2’s high temporal resolution (5 days), and 

consequently high data volume is a valuable asset that could be used to exploit these seasonal 

phenological variabilities. Hence, this study sought to determine the value of fusing the most 

influential S2 spectral reflectance bands and vegetation indices in mapping the American 

Bramble within a grassland biome. The study further sought to determine the optimal season for 

Bramble detection and mapping using the synergistic properties of spectral reflectance and VIs.  

5.2 Methodology  

5.2.1 Study area 

The Ukhahlamba Drakensberg Park (UDP) (-29.380018°S; 29.539746°E) borders the eastern 

escarpment of Lesotho and stretches along the western border of the KwaZulu-Natal province 

(Figure 5.1). The crescent shape of the UDP has an approximate length of 158km and a width 

of 28km at its widest point (Kruger et al., 2011). The mountainous terrain of the UDP ranges in 

altitude from 1200m to 3408m above sea level, with mean annual temperatures approximately 

16° Celsius. Mean annual precipitation varies from the foothills of the mountain (1000m) to the 

escarpment (1800m) (Kruger et al., 2011).   

5.2.1.1 Target species 

The American Bramble (Rubus cuneifolius) has been identified as a major threat to native flora 

and fauna within the South African grassland biome. A sprawling shrub species belonging to the 

Rosaceae family, Bramble is known to thrive in a diverse range of habitats (Bromilow, 2010). 

Originally from North America, Bramble is believed to be one of the most harmful invasive alien 

plants in South Africa, specifically across the KwaZulu-Natal province, where the cool and moist 

climatic conditions favour its growth. Its growth in bush clumps is directly responsible for its 

adverse effects on biodiversity. According to Henderson et al (2001), the impacts of Bramble 

infestation include a reduction in carrying capacity, alterations in nutrient cycling, increased soil 

erosion, changes in fire regimes and behavior and the disruption of hydrological process. 
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Generally, Bramble is considered a severe threat to natural resources and sustainability and its 

effective management or eradication is of paramount importance.   

Figure 5.1: The uKhahlamba Drakensberg Park (UDP) (c), located within the KwaZulu-Natal 

Province (b) of South Africa (a). 

5.2.1.2 Field data collection 

Four major land cover classes (Bare rock, Bramble, Forest and Grassland) were considered for 

this study. Ground validation GPS points of the four land cover classes were collected using the 

purposive sampling technique. Ground validation points were collected during spring and 

summer of 2016, as these seasons coincide with Bramble flowering (ATLAS, 2014). Hence, 

data collection during these seasons was preferred as Bramble patches were easily discernable 

while in field. A GeoXT differentially corrected Trimble GPS was used to record ground 

validation data. Bramble ground validation points were recorded as close to the centroid of the 

respective Bramble patch as possible. In order to compensate for sensor spatial resolution, and 

to ensure collected Bramble ground validation points fell within the sensor pixels and are 

associated with the unique spectral reflectance, all recorded Bramble patches were spatially 
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independent and ranged from 15m x 15m to 50m x 50m in size. Owing to the steep and 

mountainous terrain of the UDP, which restricted access, only Bramble patches accessible by 

foot were considered for this study. Aerial photographs at a 0.5m spatial resolution captured in 

2016 were also used to supplement and verify selected land cover ground truth points. 

5.2.2 Image acquisition  

5.2.2.1 Optical imagery 

Multi season (spring, summer, autumn and winter) Sentinel-2 (S2) level 1-C raw imagery were 

acquired from the Sentinel-2 Copernicus open access hub (https://scihub.copernicus.eu/). S2 

level 1-C raw products (radiance) were converted to level 2-A S2 products (surface reflectance) 

using the Sen2Cor plugin within the ESA SNAP toolbox 3.0. All S2 level 2-A products were 

corrected for topographic effects of shadow commonly associated with mountainous regions 

such as the UDP. Topographic correction was conducted using the System for Automated 

Geoscientific Analyses SAGA (2.1.2) plugin within a Quantum GIS environment (QGIS), using 

the SAGA terrain analysis lighting tool on a band by band basis.  

5.2.2.2 Vegetation indices 

Sixty-five vegetation indices selected from the online Index DataBase (IDB) 

(www.indexdatabase.de) were calculated from level 2A Sentinel-2 multi season optical imagery. 

Indices were selected on the basis of being specific to Sentinel-2 and are recognized by the IDB 

as effective and accurate measures of various vegetation parameters, such as vigor, greenness 

and seasonal influences. The IDB is a tool developed to provide a simple overview of satellite 

specific vegetation indices that are useable from a specific sensor for a specific application 

(Henrich et al., 2012). All indices were calculated within a python 2.7.13 environment using 

listed formulas from the IDB and spectral reflectance Sentinel-2 bands.  

5.2.3 Variable selection  

The Variable Importance in the Projection (VIP) method was implemented within a Python 

2.7.13 environment. The VIP method selected the 15 most influential bands across S2 optical 

bands and derived S2 vegetation indices. Selected VIP bands were used for data fusion and 

consequently formed the fused images used for image classification. Variable Importance in the 

Projection can serve to improve classification accuracy by efficiently identifying a subset of all 

initial variables that if combined, could enhance classification accuracies with parsimonious 

https://scihub.copernicus.eu/
http://www.indexdatabase.de/
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representation (Farrés et al., 2015). VIP measures the importance of each variable (S2 optical 

bands and vegetation indices) with regard to the influence it would have on increasing the 

classification accuracy. For example, a variable that scores closer to or greater than 1 was 

considered to be important, hence included in the image classification process, whereas a 

variable scoring significantly less than 1 was considered less important, hence excluded from 

the classification process. 

5.2.4 Image fusion: Optical bands and Vegetation Indices 

Feature level image fusion was adopted to merge the 15 most influential VIP bands. As 

vegetation indices were calculated from optical bands, selected VIP optical bands and 

vegetation indices were all calculated at a spatial resolution of 20m. VIP bands were fused 

using the composite bands tool within an ArcMap 10.4 environment, resulting in four fused 

images, each representing a single season. The extraction of ground truth points was 

conducted on an individual basis for VIP optical bands and vegetation indices. The feature level 

fusion of VIP optical bands and vegetation indices ensured that the corresponding optical 

spectral reflectance was used for the vegetation index value. Fused optical bands and 

vegetation indices were then used for image classification.  

5.2.5 Image classification 

Post feature level fusion image classification was conducted using the Support Vector Machine 

(SVM) algorithm within a Python environment. The SVM is a supervised statistical learning 

technique that was developed to deal with binary classifications (Vapnik, 1979). SVM seeks to 

identify a hyper-plane that can clearly distinguish input dataset into a predefined discrete 

number of classes that are consistent with training data (Mountrakis et al., 2010). Several 

evaluations of SVM have shown that the algorithm is capable of classifying/separating several 

classes with limited support vectors as training data, without ultimately compromising 

classification accuracies (Foody and Mathur, 2004; Mantero et al., 2005; Bruzzone et al., 2006; 

Shao et al., 2012; Zheng et al., 2015). Ground truth points were used to extract spectra for the 

four major land cover classes (Bare rock, Bramble, Forest and Grassland) in the study area. 

Extracted fused VIP spectral reflectance with vegetation indices measurements were used in 

the SVM classification process.  
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5.2.6 Spatial distribution map and accuracy assessment 

Support Vector Machine classification maps were generated for each seasonal image within a 

Python environment. Fused (VIP optical and vegetation indices) training data (70%) of all four 

considered land cover classes were used as the input for the multi-season Bramble spatial 

distribution maps. The respective test data set (30%) was then used to assess classification 

accuracies for each season. Confusion matrices were produced from the SVM process in order 

quantify the accuracy of seasonal Bramble spatial distribution maps.  

5.3 Results 

5.3.1 Optical and Vegetation Indices VIP band selection 

A total of the 15 most influential optical bands and vegetation indices were selected per season 

and considered for further analysis. The S2 SWIR1 (11) and SWIR2 (12) bands were the most 

influential optical bands as they were selected for spring, summer and winter imagery (Table 

5.1). The narrow infrared optical band (8a) was only selected for spring and summer seasonal 

imagery. From all analyzed vegetation indices, the TM5/TM7, SR520/670, SR800/550 and 

SRMIR/Red were the only indices selected across all seasonal imagery (Table 5.1). The 

SR860/550 and RDVI vegetation indices featured across both spring and summer while the 

Datt2 index featured across both autumn and winter (Table 5.1). Other vegetation indices that 

featured in multiple seasons include SRNIR/MIR (spring and autumn), SR672/550 (summer and 

winter), PSSRc2 (summer, autumn and winter), RGR (spring and winter), SIPI3 (spring and 

winter) and CIrededge (summer and autumn) (Table 5.1).  

Table 5.1: Selected VIP optical bands and Vegetation Indices (VIs) across all seasonal imagery 

(Indices derived from the Index Database - www.indexdatabase.de). 

 Season 

Spring Summer Autumn Winter 

Selected 

optical bands 

and/or 

Vegetation 

Indices (VIs) 

8a (Narrow NIR) 

 

11 (SWIR1) 

 

8a (Narrow NIR) 

 

11 (SWIR1) 

 

Rededge1 (Red 
edge 1) 

MSI2 (Moisture 

Stress Index) 

 

11 (SWIR1) 

 

12 (SWIR2) 

TM5/TM7 
(Simple Ratio 
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12 (SWIR2) 

 

MSI2 (Moisture 

Stress Index) 

TM5/TM7 (Simple 
Ratio 1650/2218) 

SR520/670 (Simple 
Ratio 520/670) 

SR800/2170, 
(Simple Ratio 

800/2170) 

SR800/550 (Simple 
Ratio 800/550) 

SR860/550 (Simple 
Ratio 860/550) 

SRMIR/Red 
(Simple Ratio 

MIR/Red 
Eisenhydroxid-

Index) 

SRNIR/MIR (Simple 
Ratio NIR/MIR 

RGR (Simple Ratio 
Red/Green Red-

Green Ratio) 

SRSWIRI/NIR 
(Simple Ratio 

SWIRI/NIR Ferrous 
Minerals) 

RDVI 
(Renormalized 

Difference 
Vegetation Index) 

SIPI3 (Structure 
Intensive Pigment 

Index 3) 

12 (SWIR2) 

 

MSI2 (Moisture 

Stress Index) 

 

TM5/TM7 

(Simple Ratio 

1650/2218) 

SR520/670 
(Simple Ratio 

520/670) 

SR672/550 
(Simple Ratio 

672/550 Datt5) 

PSSRc2 (Simple 
Ratio 800/470 

Pigment specific 
simple ratio C2) 

SR800/550 
(Simple Ratio 

800/550) 

SR833/1649 
(Simple Ratio 

833/1649 
MSIhyper) 

SR860/550 
(Simple Ratio 

860/550) 

SRMIR/Red 
(Simple Ratio 

MIR/Red 
Eisenhydroxid-

Index) 

CIrededge 
(Chlorophyll 

IndexRedEdge) 

TM5/TM7 (Simple 

Ratio 1650/2218) 

 

SR520/670(Simple 

Ratio 520/670) 

 

SR774/677 

(Simple Ratio 

774/677) 

PSSRc2 (Simple 
Ratio 800/470 

Pigment specific 
simple ratio C2) 

SR800/550 
(Simple Ratio 

800/550) 

Datt2 (Simple 
Ratio 850/710 

Datt2) 

SRMIR/Red 

(Simple Ratio 

MIR/Red 

Eisenhydroxid-

Index) 

 

SRNIR/MIR 
(Simple Ratio 

NIR/MIR) 

SRRed/NIR 
(Simple Ratio 
Red/NIR Ratio 

Vegetation-Index) 

ND790/670 
(Normalized 
Difference 
790/670) 

1650/2218) 

SR520/670 
(Simple Ratio 

520/670) 

SR672/550 
(Simple Ratio 

672/550 Datt5) 

774/677) 

(Simple Ratio 

800/470 Pigment 

specific simple 

ratio C2) 

SR800/550 
(Simple Ratio 

800/550) 

Datt2 (Simple 
Ratio 850/710 

Datt2) 

SR860/708 
(Simple Ratio 

860/708) 

SRNIR/700-715 
(Simple Ratio 
NIR/700-715) 

RGR (Simple 

Ratio Red/Green 

Red-Green 

Ratio) 

 

SIPI3 (Structure 

Intensive 

Pigment Index 3) 

 

PSSRc2 (Simple 
Ratio 800/470 
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RDVI 
(Renormalized 

Difference 
Vegetation 

Index) 

 

MGVI (Misra 

Green 

Vegetation 

Index) 

 

CIrededge 
(Chlorophyll 

IndexRedEdge) 

mNDVI (Modified 
NDVI) 

mSR (Modified 
Simple Ratio) 

Pigment specific 
simple ratio C2) 

SR860/550 
(Simple Ratio 

860/550) 

SRMIR/Red 

(Simple Ratio 

MIR/Red 

Eisenhydroxid-

Index) 

 

5.3.2 Seasonal classification 

5.3.2.1 S2 reflectance bands 

Seasonal classification using only S2 reflectance bands resulted in overall accuracies ranging 

from 61-77% (Table 5.2b and d). Summer exhibited the highest overall accuracy while winter 

produced the lowest. Stand-alone S2 reflectance band results were used as a benchmark to 

investigate the potential synergistic properties of Sentinel-2 optical bands fused with vegetation 

indices to increase the accuracy of detection and mapping of Bramble.   

5.3.2.2 Fused VIP S2 reflectance bands and Vegetation Indices 

Seasonal classification accuracies ranged from 61% to 73%, with spring imagery producing the 

highest overall accuracy and winter imagery producing the lowest overall accuracy (Table 5.3a 

and d). Spring results showed high producers and users accuracies for Bramble (73% and 75%) 

and grassland (78% and 80%) land cover classes (Table 5.3a). The classification map resulting 

from spring imagery showed a significant overestimation of the grassland land cover class and 

an underestimation in the bare rock and forest classes (Figure 5.2a). Although Bramble users 

and producers accuracies were high, a slight overestimation with regard to classification of 

Bramble patches was evident. Summer results produced the second highest overall 

classification accuracy (68%) across all seasonal imagery (Table 5.3b). Summer Bramble users 

(54%) and producers (68%) accuracies decreased as compared to spring results (Table 5.3b). 

An underestimation in the bare rock and forest land cover classes was observed, while an 

overestimation in the Bramble and grassland classes were observed when summer 

classification results were mapped (Figure 5.2b).  
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Table 5.2: S2 reflectance band Support Vector Machine (SVM) seasonal confusion matrices. 

Where BR = Bare rock; BBL = Bramble; FR = Forest; GR = grassland; PA= Producers 

accuracy; OA= Overall accuracy and UA = Users accuracy. 

 BR BBL FR GR UA (%) BR BBL FR GR UA (%) 

 (a) Spring (b) Summer 

BR 31 0 0 15 67 32 2 0 12 69 

BBL 0 28 0 44 39 0 24 0 29 45 

FR 0 0 56 3 94 1 1 54 3 91 

GR 1 13 3 70 80 2 3 7 94 88 

PA (%) 96 68 94 53  91 80 88 68  

OA (%) 70     77     

 (c) Autumn (d) Winter 

BR 30 0 0 16 65 34 0 0 12 73 

BBL 0 20 1 47 30 0 22 1 69 24 

FR 1 0 55 3 93 1 0 53 5 89 

GR 1 30 0 60 66 0 15 1 51 76 

PA (%) 93 39 98 48  97 59 96 37  

OA (%) 63     61     

 

Autumn imagery produced an intermediate classifcation accuracy (60%) across all seasonal 

imagery (Table 5.3c). Bramble users (43%) and producers (47%) accuracies resulting from 

autumn imagery were the lowest across all seaons (Table 5.3c). The resulting autumn 

classificaton map overestimated Bramble and grassland landcover spatial extent (Figure 5.2c), 

while underestimating the spatial extent of the bare rock and forest landcover classes (Figure 

5.2c). Winter imagery resulted in the lowest overall classification accuracy across all seasons 

(57%) (Table 5.3d). An overestimation of the grassland and Bramble landcover class was 

observed in the resulting winter classification map, while an underestimation of the bare rock 

and forest landcover classess was observed (Figure 5.2d). 
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Table 5.3: Fused VIP S2 optical bands and Vegetation Indices Support Vector Machine (SVM) 

seasonal confusion matrices. Where BR = Bare rock; BBL = Bramble; FR = Forest; GR = 

grassland; PA= Producers accuracy; OA= Overall accuracy and UA = Users accuracy. 

 

Generally, overall classification accuracies decreased with seasonal chrolological order, starting 

with Spring, resulting in varying users and producers accuracies across all seaonal imagery. In 

assessing the results obtained from fused imagery, although the highest overall accuracy was 

achieved using only optical bands, fused imagery increased overall classification accuracies 

during spring and autumn, whilst failing to improve on the benchmark of optical imagery during 

winter 

 BR BBL FR GR UA (%) BR BBL FR GR UA (%) 

 (a) Spring (b) Summer 

BR 31 0 16 0 65 31 2 5 3 67 

BBL 0 42 0 14 75 0 34 1 28 54 

FR 17 0 35 0 63 10 0 44 0 79 

GR 0 15 0 56 78 0 14 0 44 75 

PA (%) 64 73 69 80  75 68 78 59  

OA (%) 73     70     

Autumn (c) Autumn (d) Winter 

BR 32 0 4 2 72 30 0 1 5 80 

BBL 1 27 5 25 43 3 30 1 19 56 

FR 11 0 39 0 75 17 3 29 0 49 

GR 0 31 0 48 58 0 16 15 45 56 

PA (%) 73 47 69 57  50 61 52 65  

OA (%) 65     61     
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Figure 5.2: Multi-season classification maps produced using VIP selected optical bands and 

vegetation indices. Where (a) = Spring; (b) = Summer; (c) = Autumn and (d) = Winter. 

5.4 Discussion 

This study sought to determine if the synergistic properties of new generation optical imagery 

and derived vegetation indices have the potential to increase the discrimination and mapping of 

American Bramble (Rubus cuneifolius) from surrounding native vegetation. In addition, this 

study sought to determine the optimum season for the detection and mapping of Bramble. 

Generally, overall accuracies across the wet season (spring and summer) were greater, with 

spring achieving the highest accuracy (73%) across all seasons. Dry season (autumn and 
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winter) detection and mapping of Bramble was poor, with winter resulting in the lowest 

classification accuracy (61%) across all seasons. Wet season overall accuracies suggest that 

the combination of new age optical imagery bands and vegetation indices derived from these 

bands have sufficient potential for mapping and detecting Bramble. Sentinel-2 (S2) has an 

unprecedented three SWIR optical bands; two among the three were considered to be important 

variables (VIP) for spring, summer and winter seasonal imagery. Indices using the Shortwave 

Infrared (SWIR) optical band are known to be robust and provide an additional axis for potential 

vegetation discrimination (Kandwal et al., 2009). These unique characteristics of SWIR optical 

bands coupled with the increased S2 spectral resolution within the SWIR region, known to be 

sensitive to foliar water content (Kim et al., 2012), could have contributed to the elevated 

accuracies seen for spring and summer seasonal imagery.   

Simple ratio vegetation indices were repeatedly selected as a result of the VIP process and 

subsequently utilized in multi-season classification analysis. According to Xue and Su (2017), 

the simple ratio combination of visible and Near Infrared (NIR) bands significantly improves the 

ability to distinguish between varying vegetation phenological parameters. This could explain 

the increased overall classification accuracies experienced during spring and summer as 

opposed to autumn and winter. Bramble is known to start flowering from early to mid-spring, 

resulting in white inflorescence (Denny, 1990), an important phenological feature that could 

have been responsible for the superior performance of vegetation indices during spring. This 

finding is in agreement with Laba et al (2005) and Evangelista et al (2009) who similarly 

compared time series imagery and derivative spectral analyses to map particular invasive alien 

species, where similar seasonal classification trends were observed in the respective case 

studies. 

Gilmore et al (2008) notes that vegetation spectral properties and consequently species 

separability is dependent on several variables that include leaf pigmentation, water content and 

leaf structure and size. The red-edge region of the electromagnetic spectrum is known to 

accurately detect subtle differences between the above-mentioned variables (Cho et al., 2012). 

Although Sentinel-2 possesses an unprecedented three red-edge bands, none of them were 

deemed to have a substantial effect as a stand-alone variable on overall classification accuracy. 

In the instance, the Red edge 1 band was selected as a standalone variable for autumn 

imagery, which produced the second lowest (65%) overall classification accuracy. However, 

numerous vegetation indices that incorporated Red edge bands were commonly selected as 

VIP bands across all seasons. This finding is in agreement with Delegido et al (2013), who 
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developed a unique red-edge normalized vegetation index and successfully validated it against 

field data, noting it as an integral variable in determining vegetation physiological parameters.  

The reduced classification accuracies in the autumn and winter imagery could be closely linked 

to similarities between the phenological life cycle of Bramble and surrounding native grass and 

shrub species. Bramble is known to flower during spring and senesce just before autumn and 

winter (Denny, 1990), thus in syncrony with the inter-annual growth patterns of dominant native 

grass and shrub species found within the UDP. Successful detection based on phenological 

characteristics depends on seasonal variability or inter seasonal growth pattern of the target 

species from surrounding native vegetation (Bradley, 2014). Hence, as Bramble follows the 

same inter-seasonal growth pattern of surrounding native vegetation, there is an increased 

probability of misclassification between the target species and surrounding native vegetation 

(Liu et al., 2013; Taylor et al., 2013; Evangelista et al., 2009). This became evident when 

attempting to detect and map Bramble using autumn and winter Sentinel-2 imagery.  

In comparison to benchmark results achieved by Rajah et al (2018), who solely utilized S2 

spectral reflectance bands to detect and map Bramble, the synergistic nature of spectral 

reflectance bands and vegetation indices only increased overall classification accuracies during 

specific seasons (spring and autumn). Using fused S2 optical imagery and vegetation indices, 

the optimum season for the detection and mapping of Bramble was determined to be spring. 

Even though results from this study differ from those of the benchmark, the synergistic nature of 

fused imagery has reasonable potential to advocate further research within the field of data 

fusion for invasive alien plant detection and mapping.  

5.5 Conclusion  

The primary aim of this study was to determine the potential of combined Sentinel-2 spectral 

bands and vegetation indices in increasing the discrimination and mapping accuracy of 

American Bramble (Rubus cuneifolius). An additional aim was to determine the optimal season 

for the most effective and accurate Bramble detection and mapping. Results obtained from this 

study allude to the practical and operational potential within the synergistic properties of 

combining Sentinel-2 spectral bands and vegetation indices. Furthermore, the optimum season 

for Bramble detection and mapping was spring, with the highest overall accuracy (73%) across 

all seasons. In addition to these practical advantages, free availability, wide swath width and 

short re-visit time of Sentinel-2 are particularly attractive traits that offer unprecedented 

opportunity for invasive alien mapping at a regional scale.  
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Chapter Six 

The utility of Sentinel-2 Vegetation Indices (VIs) and Sentinel-1 Synthetic Aperture 

Radar (SAR) for invasive alien species detection and mapping 

This chapter is based on: Rajah, P., Odindi, J. and Mutanga, O., (Under review: Awaiting 

Subject editor's decision – Nature Conservation): The utility of Sentinel-2 Vegetation Indices 

(VIs) and Sentinel-1 Synthetic Aperture Radar (SAR) for invasive alien species detection and 

mapping. 

 

Abstract 

The threat of invasive alien plant species is increasingly becoming a serious global concern. 

Alien plant invasions adversely affect both ecological services and socio-economic systems. 

Hence, accurate detection and mapping of invasive alien species is valuable in mitigating 

adverse ecological and socio-economic effects. Recent advances in active and passive remote 

sensing technology have created new and cost-effective opportunities for the adoption of 

remote sensing for invasive species mapping. In this study, new generation Sentinel-2 (S2) 

optical imagery was compared to: (1) S2 derived Vegetation Indices (VIs) and (2) fused S2 VIs 

and Sentinel-1 (S1) Synthetic Aperture Radar (SAR) imagery for detecting and mapping the 

American Bramble (Rubus cuneifolius). Fusion of S2 VIs and S1 SAR imagery was conducted 

at a feature level and multi-class Support Vector Machine (SVM) image classification algorithm 

used to determine the dominant land use land cover classes. Results indicated that S2 derived 

VIs were the most accurate (80%) in detecting and mapping Bramble, while fused S2 VIs and 

S1 SAR were the least accurate (54%). Findings from this study suggest that the application of 

S2 VIs is more suitable for Bramble detection and mapping than the fused S2 VIs and S1 SAR. 

The superior performance of S2 VIs highlights the value of the new age S2 VIs for invasive alien 

species detection and mapping. Furthermore, this study recommends the use of freely available 

new age satellite imagery for cost effective and timeous mapping of Bramble from surrounding 

native vegetation and other land use land cover types.  

Key words: Alien species invasions, Sentinel-1, Synthetic Aperture Radar (SAR), Sentinel-2, 

Vegetation Indices (VIs), American Bramble, Fusion, Support Vector Machine (SVM). 
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6.1 Introduction 

Global biodiversity is increasingly becoming susceptible to pressure from invasive species 

(Butchart et al., 2010). Specifically, the rapid spread of invasive alien plants in several regions of 

the world has adversely impacted ecosystem health, native species diversity and local and 

national economies (Pysek et al., 2012; Schirmel et al., 2016; Convention on Biological Diversity 

2009). Brooks et al (2006) highlights the imperative need for the protection of native biodiversity, 

a need further emphasized by the United Nations (UN), declaring the period between 2010 and 

2020 as the decade of biodiversity. The perversity of effects associated with plant species 

invasion has increased impetus on development of efficient and cost effective approaches for 

the control and management of invasive alien plants.  

In South Africa, approximately two million hectares of land has been invaded by invasive alien 

plant species (Van Wilgen et al 2012). The south western, southern and eastern coastal and 

interior regions have been identified as highly vulnerable to invasion (Kotze et al., 2010; Van 

Wilgen et al., 2012; Clusella-Trullas and Garcia, 2017). In KwaZulu-Natal (KZN) province for 

instance, Erasmus (1984) notes that the cool and moist conditions favour a range of invasive 

alien plant species. The American Bramble (Rubus cuneifolius) has particularly thrived in the 

province’s western mountain ranges (Henderson, 2011). Originating from North America, 

Bramble belongs to the Rosaceae family and has adverse direct and indirect impacts on 

biodiversity, which include changes in nutrient cycling, increase in soil erosion, reduction in 

rangeland carrying capacity and viability, natural plant succession, fire patterns and behavior 

and hydrological processes (Henderson, 2001).  

To develop optimal mitigation of spread and eradication approaches, determination of spatial 

distribution and extent of Bramble infestation is paramount. Traditionally, surveys have been 

adopted for mapping and monitoring of invasive alien plant species (Tan et al., 2012; Shah and 

Reshi, 2014). However, reliance on field based surveys is often restrictive, as they are 

commonly time consuming, labor and resource intensive and unsuitable in inaccessible sites. 

Hence, the adoption of remotely sensed imagery for invasive alien species detection and 

mapping has recently gained popularity. Huang and Asner (2009) attribute this increase to 

improved sensor technology, facilitating detailed and large scale landscape mapping and 

monitoring. To date, majority of invasive alien plant species detection and mapping applications 

have relied on the use of spatial and spectral characteristics (Feilhauer et al., 2017; Mirik et al., 

2013; Müllerová et al., 2013). However, the advent of new sensors with radar scanning 
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capabilities provides new opportunities for invasive plant species detection and mapping 

(Bradley, 2014). One such example is the European Space Agency’s (ESA) sentinel 

constellation, which consists of the Sentinel-1 (S1) and Sentinel-2 (S2) earth observation 

instruments. Both sensors disseminate freely available multispectral optical (S2) and multi-

polarized SAR (S1) imagery. Unique S1 and S2 sensor characteristics, such as large swath 

widths, medium to fine scale spatial resolutions, short re-visit times and unique spectral bands 

(Frampton et al., 2013; Sentinel-1 User handbook, 2013) provide numerous opportunities to 

evaluate the potential of the sensors to improve the reliability of remote sensing approaches for 

invasive alien plant species mapping.  

 

Conventional remote sensing of invasive alien species utilizes spectral wavelengths of absorbed 

and reflected light by distinguishing certain pigments in leaves and inflorescence (Huang and 

Asner, 2009; Mirik et al., 2013; Weisberg et al., 2017; Müllerová et al., 2013; Bradley, 2014). 

Hence, the potential to adopt S2 to detect and map invasive alien species exists (Rajah et al., 

2018). Specifically, the sensor’s unparalleled spectral resolution can be used to derive 

numerous band ratios and indices useful for vegetation mapping. For example, spectral 

vegetation indices (VIs) derived from remotely sensed data have become valuable in mapping 

and monitoring vegetation species (Sun et al., 2007). VIs have several advantages over stand-

alone spectral bands that include; reduced effect of atmospheric conditions, canopy geometry 

and shading, decreased effect of soil background on canopy reflectance and enhanced 

variability of spectral reflectance of target vegetation (Liu et al, 2004; Vina et al., 2011). On the 

other hand, the unique characteristics of S1 SAR imagery could provide additional variables that 

could improve invasive alien species detection and mapping. SAR data can operate at 

wavelengths irrespective of cloud conditions or lack of illumination and is capable of acquiring 

data during day and night (Sentinel-1 User handbook, 2013). SAR offers detailed information on 

the often difficult to detect characteristics of vegetation such as shape, moisture and roughness 

(Chen et al., 2010). However, despite this potential, previous adoption of SAR imagery for 

invasive alien plant species mapping has been limited by high acquisition cost, limited area 

coverages and complex data pre-processing (McNairn et al., 2009). Hence, the provision of 

freely available SAR imagery from the S1 sensor provides new prospects for advancing the 

mapping and detection of invasive alien plant species.  

 

Asner et al (2008) and Zhang (2010) note that the fusion of imagery from various sensors, while 

applying appropriate methodologies may be valuable for invasive alien species detection and 
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mapping. Furthermore, conventional optical imagery and SAR are commonly believed to be 

complimentary (Zhu et al., 2012). Considering the above-mentioned advantages, as well as S2s 

unprecedented potential to derive unique VIs, the fusion of these datasets provides a unique 

opportunity to investigate the value of new generation sensors such as S1 and S2 in mapping 

alien species. Accordingly, this study sought to determine the performance of conventional 

stand-alone S2 optical imagery, stand-alone S2 derived VIs and fused S2 VIs with S1 Synthetic 

Aperture Radar (SAR) imagery in detecting and mapping the American Bramble. 

 

6.2 Methodology 

6.2.1 Study site 

This study was conducted at the uKhahlamba-Drakensberg Park (UDP), a UNESCO World 

heritage site that borders the western escarpment of the KwaZulu-Natal province of South Africa 

(Figure 6.1). The UDP is predominantly a natural grassland, with patches of thicket and natural 

shrub. Seasonal gradients range from cold and dry winters with regular occurrences of frost and 

snow, to wet and humid summers, with rainfall ranging from 990-1130mm (Dollar and Goudy, 

1999).  

Figure 6.1: The uKhahlamba Drakensberg Park (UDP) (C) located within the KwaZulu-Natal 

Province (B) of South Africa (A). 
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6.2.1.1 Field data collection 

Field data collection was conducted during spring and summer of 2016. Purposive sampling 

technique was utilized to record ground truth points of Bramble patches. These seasons were 

chosen for field data collection as Bramble patches are most phenologically discernable from 

native vegetation. Ground control points were recorded as close to the centroid of Bramble 

patches as possible. Collected Bramble patches ranged from 15m x 15m to 50m x 50m. Ground 

truth point data collected from Bramble patches were spatially independent from each other to 

compensate for the spatial resolution of satellite imagery utilized. This ensured that each 

Bramble patch fell within a single image pixel and could be associated with the unique spectral 

reflectance of a specific pixel. Due to the area’s steep and mountainous terrain, hence restricted 

accessibility, only Bramble patches that could be accessed by foot were considered for this 

study. In addition, aerial photographs at a 0.5m spatial resolution captured in 2016 were used to 

supplement and verify selected land cover ground truth points. 

6.2.2 Image acquisition 

6.2.2.1 Optical Imagery 

The ESA SNAP toolbox 3.0 was used to convert summer Sentinel-2 level-1C raw products to 

surface reflectance values in the Sen2Cor plugin. Images were corrected for topographic effects 

of shadow associated with mountainous areas using the System for Automated Geoscientific 

Analyses SAGA (2.1.2) terrain analysis lighting tool within the Quantum GIS (QGIS) 

environment on a band by band basis. QGIS is a GIS freeware and is comparable to ESRI 

ArcMap commercial GIS software. SAGA is a plugin that works in conjunction with QGIS. The 

correction of topographic effects is a tool within the SAGA plugin that best adjusts optical 

imagery for topographic effects of shadow. 

6.2.2.2 Sentinel-1 Synthetic Aperture Radar (SAR) Imagery 

Summer Synthetic Aperture Radar (SAR) images were downloaded from the Sentinel-1 data 

hub. Sentinel-1 level-1 Ground Range Detected (GRD) products were multi-looked and 

projected to ground range using an earth ellipsoid model. SAR Vertical-Horizontal (VH) 

polarized imagery was acquired using the Interferometric Wide Swath (IW) mode, with a spatial 

resolution of 20 meters and a 250km2 swath width. Pre-processing of SAR imagery was 

conducted using the ESA SNAP toolbox following the methodology outlined in Bevington 

(2016). The Bevington (2016) SAR image processing chain consists of 5 steps: (1) Application 
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of orbit file to SAR image; (2) Radiometric calibration; (3) Terrain correction; (4) Application of 

speckle filter; (5) Convert SAR DN to Gamma backscatter values. Polarisation of SAR imagery 

recorded in Vertical Horizontal (VH) acquisition mode was fused with S2 derived VIs. SAR 

backscatter measurements are believed to be a function of polarization and target object 

characteristics such as geometry, roughness and dielectric properties (Vyjayanthia and 

Nizalapur, 2010).   

6.2.2.3 Sentinel-2 derived Vegetation Indices (VIs) 

Sixty-five Vegetation Indices (VIs) selected from the online Index DataBase (IDB) 

(www.indexdatabase.de) were calculated from summer Sentinel-2 surface reflectance optical 

imagery. The IDB is a tool developed to provide a simple overview of satellite specific 

vegetation indices that are useable from a specific sensor for a specific application (Henrich et 

al., 2012). All VIs were calculated within a python 2.7.13 environment using listed formulas from 

the IDB and spectral reflectance Sentinel-2 bands. The 10 most influential VIs were selected for 

stand-alone classification results and subsequent image fusion with SAR imagery in order to 

produce a fused VIs and SAR classification result. Top 10 VI selections were done using the 

Variable Importance in the Projection (VIP) method. Variable Importance in the Projection aims 

to improve classification accuracy by recognizing a subset of all initial variables (VIs) that if 

combined, could increase classification accuracies with parsimonious representation (Farrés et 

al., 2015). VIP measured the importance of each VI with regard to the impact it had on 

increasing overall classification accuracy. 

6.2.3 Image fusion 

Feature level image fusion was adopted to merge the ten most influential VIP VIs and Sentinel-1 

SAR imagery. All VIs were derived from S2 optical bands at a spatial resolution of 20m. The 

extraction of ground truth points was done on an individual basis for VIs and SAR imagery. The 

feature level fusion of VIs and SAR ensured that the corresponding SAR value was used for the 

same VI value. Image fusion at a feature level as outlined above, further contributes information 

to features (ground truth points), and ultimately provides additional information for image 

analysis (Pandit, 2015). The extracted VI and SAR feature values were combined to form an 

optimum feature set. This fused optimum feature set was used to conduct the classification 

process.   

 

http://www.indexdatabase.de/
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6.2.4 Image classification 

Image classification was conducted post feature level image fusion as outlined in Pandit (2015). 

The Support Vector Machine (SVM) algorithm was used within a Python environment. The SVM 

algorithm is a supervised statistical learning technique initially developed to handle binary 

classification (Vapnik 1979). SVM aims to identify a hyper-plane that is able to distinguish the 

input dataset into a predefined discrete number of classes consistent with training data 

(Mountrakis et al., 2010). Several evaluations of SVM have shown that the algorithm is capable 

of classifying/separating several classes with limited support vectors as training data, without 

ultimately compromising classification accuracies (Foody and Mathur, 2004; Mantero et al., 

2005; Bruzzone et al., 2006; Shao et al., 2012; Zheng et al., 2015). Spectra were extracted 

using ground truth points for four major land cover classes (Bare rock, Bramble, Forest and 

Grassland) within the study area. The fused VIP vegetation indices and SAR image 

measurements were used in the SVM classification process.  

6.2.5 Determination of spatial distribution and validation 

Support Vector Machine classification maps were generated for S2 optical imagery; Vegetation 

Indices and for the fused VIs and SAR imagery within a Python environment. Training data 

(70%) of all four considered land cover classes were used as the input for Bramble spatial 

distribution maps. The respective test data set (30%) was then used to assess classification 

accuracies across all imagery. A confusion matrix generated from the SVM process was used to 

quantify the accuracy of resultant Bramble spatial distribution maps.  

6.3 Results 

6.3.1 Vegetation Indices (VIs) 

Discrimination and mapping of Bramble using stand-alone vegetation indices produced the 

highest overall accuracy (80%) when compared to the benchmark of using only S2 optical 

image bands (Table 6.1). A users’ accuracy of 70% for Bramble surpassed those achieved by 

S2 optical imagery as well as fused vegetation indices and SAR imagery (Table 6.1).  
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Table 6.1: Support Vector Machine (SVM) confusion matrix using Vegetation Indices for 

Bramble mapping and discrimination. Where BR = Bare rock; BBL = Bramble; FR = Forest; and 

GR = Grassland, UA = Users accuracy; PA = Producers accuracy and OA = Overall accuracy. 

Vegetation Indices 

(VIs) 
BR BBL FR GR 

UA 

(%) 

BR 52 11 0 0 83 

BBL 0 53 18 5 70 

FR 1 0 51 0 98 

GR 11 7 0 55 75 

PA (%) 81 75 74 92  

OA (%) 80     

 

The classification map resulting from fused vegetation indices and SAR imagery showed the 

most accurate discrimination and spatial distribution of all considered land cover classes. The 

Grassland and Bare rock classes were well represented and accurately discriminated (Figure 

6.2a and 6.3b). In addition, the spatial discrimination and distribution of Bramble was well 

represented as compared to the S2 optical band benchmark and the fused VIs and SAR 

imagery (Figure 6.2a and 6.3b). The Forest class was the only class that was underestimated 

using VIs and the SVM algorithm.   

6.3.2 Sentinel-2 optical bands 

The overall accuracy using S2 optical bands for Bramble discrimination and mapping was 77% 

(Table 6.2). Bramble produced the lowest users’ accuracy (45%) across all considered classes, 

while Grassland produced the lowest producers’ accuracy (68%) (Table 6.2). Results produced 

using only S2 optical bands were used as a benchmark for classification using VIs and VIs 

fused with SAR imagery.  
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Table 6.2: Support Vector Machine (SVM) confusion matrix using Sentinel-2 optical bands for 

Bramble mapping and discrimination. Where BR = Bae rock; BBL = Bramble; FR = Forest; and 

GR = Grassland, UA = Users accuracy; PA = Producers accuracy and OA = Overall accuracy. 

. S2 (Optical bands) BR BBL FR GR 
UA 

(%) 

BR 32 2 0 12 69 

BBL 0 24 0 29 45 

FR 1 1 54 3 91 

GR 2 3 7 94 88 

PA (%) 91 80 88 68  

OA (%) 77     

 

A large over-estimation of Bramble discrimination and spatial distribution using S2 optical bands 

was evident (Figure 6.2b and 6.3a). An underestimation in Grassland discrimination and spatial 

distribution was observed, as the SVM algorithm could not effectively distinguish between 

Bramble and Grassland (Table 6.2, Figure 6.2b). An underestimation in the spatial distribution of 

the Bare rock class was also evident, as there was consistent misclassification of Bare rock 

from Grassland and Bramble (Figure 6.2b and 6.3a).  
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(a) (b) (c) 

Figure 6.2: Support Vector Machine (SVM) classification maps produced utilizing (a) Vegetation 

Indices; (b) S2 optical bands and (c) Fused VIs and SAR. 

6.3.3 Vegetation Indices (VIs) and S1 SAR imagery  

The ten most influential S2 VIs were selected for feature level image fusion with S1 SAR 

imagery. Influence of VIs was identified by the importance each VI had on increasing overall 

classification accuracy. The ten bands that generated ten highest classification accuracies were 

selected. Five of the selected VIs incorporated the Near Infrared (NIR) optical band, while three 

selected VIs were derived using Shortwave Infrared 1 (SWIR1) and Shortwave Infrared 2 

(SWIR2) optical bands (Table 6.3). The SR520/670 and SR672/550 VIs were the only two VIP 

VIs derived using bands within the visible portion of the electromagnetic spectrum (Table 6.3). 
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Table 6.3: Selected S2 derived VIP vegetation indices subsequently utilized for SAR fusion. 

 

The fusion of VIs and S1 SAR imagery produced the lowest overall accuracy (54%) when 

compared to the benchmark of S2 optical band results (Table 6.4). Bramble users’ and 

producers’ accuracies were 28% and 21% respectively (Table 6.4), the lowest in all classes. 

The Forest (77% and 98%) and Bare rock (77% and 100%) classes were the highest users and 

producers accuracies, respectively.  

 

 

 

 

 

 

VIP Vegetation Indices (VIs) VI formula (S2 optical bands) 

Datt2 (Simple Ratio 850/710) Near Infrared (NIR)/Red Edge 1 

PSSRc2 (Simple Ratio 800/470 Pigment 

specific simple ratio C2) 

Near Infrared (NIR)/Blue 

RDVI (Renormalized Difference Vegetation 

Index) 

Near Infrared - Red/(Near Infrared + Red)0.5 

SR520/670 (Simple Ratio 520/670) Blue/Red 

SR672/550 (Simple Ratio 672/550) Red/Green 

SR800/550 (Simple Ratio 800/550) Near Infrared/Green 

SR833/1649 (Simple Ratio 833/1649 

MSIhyper) 

Near Infrared /Shortwave Infrared1 

SR860/550 (Simple Ratio 860/550) Narrow-Near Infrared/Green 

SRMIR/Red (Simple Ratio MIR/Red 

Eisenhydroxid-Index) 

Shortwave Infrared2/Red Edge 1 

TM5/TM7 (Simple Ratio 1650/2218) Shortwave Infrared1/ Shortwave Infrared2 
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Table 6.4: Support Vector Machine (SVM) confusion matrix using fused Vegetation Indices and 

SAR imagery for Bramble mapping and discrimination. Where BR = Bae rock; BBL = Bramble; 

FR = Forest; and GR = Grassland, UA = Users accuracy; PA = Producers accuracy and OA = 

Overall accuracy. 

 

The SVM classification map produced using fused vegetation indices and SAR resulted in an 

underestimation of the Bramble class, while an overestimation of the Grassland class was 

observed (Figure 6.2c). Although the Forest class received high users and producers 

accruacies, the overall distrubution and discrimination was over estimated as comapred to the 

benchmark (Figure 6.2c and 6.3c).  

(c) VIs and SAR BR BBL FR GR 
UA 

(%) 

BR 43 2 0 11 77 

BBL 0 15 0 38 28 

FR 1 0 45 17 71 

GR 0 53 0 39 42 

PA (%) 98 21 100 37  

OA (%) 54     
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Figure 6.3: Over-estimation and under-estimation of land-cover classes within an area of 

interest where (a) = S2 optical bands; (b) = Vegetation indices (VIs) and (c) = VIs and SAR 

imagery. 

6.4 Discussion 

This study sought to determine the potential of derived Vegetation Indices (VIs) and fused VIs 

and Synthetic Aperture Radar (SAR) imagery to improve invasive alien species detection and 

mapping. The overall classification accuracy of optical imagery was used as the benchmark for 

comparison of the results achieved using S2 VIs and fused VIs and SAR. Opposing the 

expected outcome, fused VIs and SAR imagery produced the lowest classification accuracy 

(54%) compared to conventional S2 optical imagery (77%). Moreover, S2 derived VIs produced 

the highest classification accuracy (80%) when compared to conventional S2 optical imagery 

and fused VIs and SAR.  

Poor performance of fused VIs and SAR imagery was unanticipated and opposes research 

done by Sano et al (2005), who noted that the combination of VIs and SAR for discrimination 

within a savannah environment was complementary and improved overall discriminant analysis. 

(b) 

(c) 

(a) 
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Sano et al (2005) also noted that VIs and SAR were able to easily separate Grassland from 

woodlands, a result that further opposes those achieved in this study. However, Sano et al 

(2005) also reported increased confusion between Grassland and shrub species when utilizing 

fused VIs and SAR. This provides some indication that previous research has also encountered 

unanticipated results when combining VIs and SAR for discrimination purposes. Poor overall 

classification accuracies of fused VIs and SAR imagery can further be attributed to vegetation 

structure and roughness, as this plays a major role in measured SAR backscatter values. 

Similar difficulties were documented by Millard and Richardson (2018), who note that even 

though it is well established that vegetation roughness influences SAR backscatter, there still 

remains difficulty in characterizing these variables spatially and temporally within natural 

environments. Although results from fused VIs and SAR were unexpected, similar poor 

performance using the same combination of variables is not unrealistic.  For example, Rakwatin 

et al (2005) and Toma et al (2004) also experienced poor performance when fusing VIs and 

SAR.  

Patel et al (2006) and Srivastava et al (2009) note that the magnitude of SAR backscatter is 

dependent on SAR band frequency, for instance, SAR backscatter signatures at high frequency 

(eg. X-band SAR) are known to be sensitive to subtle variations in vegetation phenology. This is 

attributed to deep canopy penetration of X-band SAR. Sentinel-1 C-band SAR is considered low 

frequency (decreased canopy penetration) SAR imagery, and could have experienced difficulty 

discerning between Bramble characteristics and surrounding native vegetation, providing further 

explanation for decreased accuracies resulting from fused VIs and S1 SAR imagery (Khosravi 

et al., 2017; Duguay et al., 2015; Naidoo et al., 2015; Hajj et al., 2014; van Beijma et al,. 2014; 

Turkar et al., 2012). The influence of sensor incident angle on SAR backscatter is known to be 

interpreted using the same mechanism, particularly for lower frequencies of SAR. Inoue et al 

(2003) notes that correlations to plant physiological characteristics, such as Leaf Area Index 

(LAI), canopy height and stem density decrease with an increasing incident angle. This is mainly 

attributed to the penetration of SAR microwaves responsible for backscatter measurements, as 

smaller incident angles are able to penetrate deeper into canopy cover hence extract more 

physiological information (McNairn et al., 2009). The relatively large incident angle of S1 (46°) 

(Sentinel-1 User handbook, 2013) could have hindered its ability to distinguish vegetation 

physiological information, which could serve to justify decreased classification accuracies 

achieved using fused VIs and SAR imagery (de Almeida Furtado et al., 2016; Naidoo et al., 

2015; Frampton et al., 2013; Vyjayanthia and Nizalapur, 2010). The influence of soil moisture 
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and roughness on leaf and stalk SAR backscatter measurements is considered a weakness of 

SAR imagery across specific classification applications (Moran et al., 2002). SAR imagery could 

have served to increase confusion between Bramble and surrounding native vegetation when 

fused with S2 VIs.  

The use of S2 VIs outperformed the benchmark accuracy achieved by conventional S2 optical 

imagery. Similar results were achieved by Kandwal et al (2009), where selected VIs performed 

well in discriminating Lantana camara (Verbenaceae), an invasive alien plant with similar growth 

pattern and phenology to Bramble. Majority of VIs selected as VIP indices were dominated by 

VIs incorporating the Near Infrared (NIR), Shortwave Infrared (SWIR) and red edge S2 bands. A 

study conducted by Zhao et al (2007) produced similar results, where VIs derived from SWIR, 

red-edge and NIR bands were reported to be closely correlated to canopy LAI and canopy 

chlorophyll density. Eight of the ten VIP VIs selected for Bramble discrimination and mapping 

were derived from at least one of these three spectral bands. The strong relationship between 

NIR, SWIR and red edge bands to variable vegetation parameters could have resulted in the 

increased accuracy of Bramble discrimination and mapping. Moreover, reflectance within the 

visible region of the spectrum is largely determined by vegetation pigments, and are commonly 

used to quantify vegetation physiological properties (Li et al., 2013; Zhao et al., 2007). The 

collective capability of combined VIs to discriminate various vegetation parameters could further 

explain the increased overall classification accuracy achieved using stand-alone vegetation 

indices.  

According to Motohka et al (2010), the potential of green-red VIs for phenological vegetation 

discrimination exists. VIs derived from ratios of red and green optical bands are known to be 

sensitive to variations in canopy colour, where changes in visible characteristics of vegetation 

canopy are often timeously detected (Motohka et al., 2010). The SR672/550 VI, an index 

derived solely from S2 red and green optical bands suggest an agreement with Motohka et al 

(2010). The SR672/550 VI could have assisted in the discrimination of Bramble as it produces 

noticeable white inflorescence during summer, a significant phenological trait that could have 

been exploited. Although the combined potential of VIs and SAR imagery produced the lowest 

overall classification accuracy, the potential of new age spectrally derived VIs was evident when 

compared to the benchmark set by conventional S2 optical imagery. While the fusion of S2 VIs 

and SAR showed limited utility with regard to accurately mapping Bramble, the complementarity 

of these data sets has previously been documented. Continued research into the application of 

new age sensors to improve alien invasive detection and mapping should concentrate on 
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innovative methods of integrating products derived from active and passive remote sensing 

technology.   

6.5 Conclusion 

This study utilized freely available new age Sentinel-1 radar and Sentinel-2 optical imagery, with 

the aim of evaluating spectrally derived VIs and fusing Synthetic Aperture Radar (SAR) imagery 

for improving American Bramble (Rubus cuneifolius) detection and mapping. This study 

contributes to the evaluation of economically viable, efficient and large scale invasive alien 

species detection and mapping. Conventional S2 optical imagery was used as a benchmark for 

comparison to results achieved using S2 VIs and fused VIs and S1 SAR imagery. The use of S2 

VIs increased overall classification accuracies as compared to traditional optical imagery 

results, while the fusion of S2 VIs and S1 SAR decreased the overall accuracies significantly. 

Hence this study demonstrated that new age S2 VIs have the potential to increase the detection 

and mapping of Bramble from surrounding native vegetation. Results further indicate that the 

fusion of VIs and SAR imagery for Bramble detection and mapping failed to increase overall 

classification accuracies, hence have limited utility when applied to Bramble detection and 

mapping. Since new age sensors such as S1 and S2 possess unprecedented sensor 

characteristics that can be used to improve landscape delineation, the utility of S1 and S2 

Bramble mapping. It is this type of innovative and continued research that will ultimately guide 

effective, economical and accurate invasive alien plant eradication and management strategies.  
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Chapter Seven 

The synergistic potential of dual-polarized Synthetic Aperture Radar (SAR) and 

multispectral optical imagery for invasive alien species detection and mapping 

This chapter is based on: Rajah, P., Odindi, J. and Mutanga, O., (In preparation): The 

synergistic potential of dual-polarized Synthetic Aperture Radar (SAR) and multispectral optical 

imagery for invasive alien species detection and mapping. 

Abstract 

Invasive alien species are a major threat to global biodiversity, and ultimately result in adverse 

environmental and socio-economic implications such as reduced ecosystem services, reduced 

landscape productivity and costly eradication initiatives. The ability to monitor the extent and 

spread of alien species invasions provides valuable insight for the mitigation of these adverse 

implications. The new generation Earth Observation (EO) Sentinel sensor provides 

unprecedented freely-available imagery suitable for both local and regional invasive species 

monitoring. Specifically, its radar (S1) and optical (S2) sensors offer unique tandem datasets 

valuable for landscape analysis.  Hence, this study sought to fuse S1 dual-polarized Synthetic 

Aperture Radar (SAR) imagery with S2 optical imagery to determine their synergistic potential 

for invasive alien species detection and mapping. S1 and S2 imagery were fused at feature 

level and the Support Vector Machine (SVM) algorithm used for multi-class image classification. 

Results indicated that the fusion of S1vv-vh dual-polarized imagery with S2 optical imagery 

produced the highest classification accuracy (85%), while stand-alone S2 optical bands 

produced the lowest classification accuracy (79%). Findings from this study underline the 

significant synergistic potential and complementarity of new age S2 optical imagery and dual-

polarized S1 SAR imagery for invasive alien species detection and mapping. Due to large 

swath, higher pixel resolution, free availability and possible tandem complementarity between 

optical and SAR sensors, this study recommends Sentinel EO imagery as an economically 

viable option for invasive alien species detection and mapping. 

Key words: Invasive alien species, Dual-polarized, Synthetic Aperture Radar (SAR), Sentinel-1, 

Sentinel-2, Image fusion, synergistic, Support Vector Machine (SVM)   
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7.1 Introduction 

The European Union (EU) Global Monitoring for Environment and Security (GMES) programme 

launched the Sentinel satellite constellation that consists of two new age remote sensing 

satellites; Sentinel-1 (Synthetic Aperture Radar - SAR) and Sentinel-2 (multispectral) optical 

sensors. Both sensors provide freely available 250km2 multi-polarized SAR imagery and 

290km2 multispectral optical imagery respectively. Goa et al (2017) notes that the tandem 

operation and the respective unique characteristics of these two satellites have established a 

new paradigm for remote sensing applications. According to Schmidt et al (2017), the timeous 

launch of the GMES satellite constellation could serve to increase the applicability of remote 

sensing-based approaches for practical landscape mapping and monitoring  

Recently, invasive alien species detection and mapping using remote sensing approaches has 

received increased attention (Haung, 2009). Alien invasive species can be detrimental to 

ecosystem services and functioning, integrated water resource management, fire regimes, the 

movement of wild animals and domestic livestock, rangeland biodiversity, human health and 

local and regional biodiversity (Avery et al., 2017; Ghulam et al., 2011; Dorigo et al., 2012; 

Bromilow, 2010). Hence, reliable, timeous and cost effective monitoring of alien species 

invasions is paramount in mitigating their effects. Haung (2009) notes that the recent increase in 

the adoption of remote sensing to invasive alien species detection and mapping is largely 

attributed to improvement in sensor characteristics and missions (Haung, 2009).  

The Sentinel mission with S1 and S2 sensors offers improved SAR and optical imagery 

respectively. The potential for complementarity between SAR (S1) and optical imagery (S2) has 

been noted in literature (Joshi et al., 2016; Baghdadi et al., 2016; Ghulam et al., 2014). 

According to Mohan et al (2011), SAR has demonstrated potential in characterizing vegetation 

due to its sensitivity to variations in vegetation structure and biomass. The value of SAR 

complementarity to optical imagery lies in its ability to measure vegetation physical structure, a 

trait that is only partially described by optical imagery (Schmidt et al., 2017; Laurin et al., 2013). 

SAR signals utilize transverse electromagnetic waves, hence varying polarization 

characteristics. Polarization refers to the orientation of the electric field vector of the transmitted 

and received SAR electromagnetic waves. SAR imagery can be broadly categorized into four 

polarization modes; single-polarization, dual-polarization, compact polarization and fully 

polarized imagery (Song et al., 2018). According to Kourgli et al (2010), certain polarizations are 

more sensitive to different target specific characteristics and properties like roughness and 
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structure. Although the adoption of single polarized SAR imagery for invasive species mapping 

has been well documented (Naidoo et al., 2015; Ghulam et al., 2014; Hong et al., 2014; 

Bourgeau-Chavez et al., 2013; Ghulam et al., 2011), the use of dual-polarized SAR imagery for 

invasive alien species mapping and detection remains largely unexplored.  

The integration (fusion) of S1 and S2 imagery provide unique opportunities for invasive plant 

detection and mapping. The purpose of image fusion is to integrate complementary data to 

obtain additional or enhanced feature or surface characteristics, often difficult to derive from 

single sensor datasets (Zeng et al., 2006; Jiang et al., 2013). Hence, the synergy of 

conventional spectral reflectance and unique dual-polarized SAR characteristics such as the 

ability to infer canopy characteristics (Ghulam et al., 2014), increased signal sensitivity, and the 

ability to quantify vegetation structure (Naidoo et al., 2015) offer great potential for invasive 

species detection and mapping. 

Remote sensing image fusion techniques are classified into three categories; pixel, feature and 

decision level fusion (Solberg, 2006; Sahu and Parsai, 2012; Pandit and Bhiwani, 2015). 

Feature level image fusion is the intermediate category of fusion and will be further explained. 

Typically, feature level image fusion ensures correlative feature information, eliminates 

redundant features and form new compound features, hence increasing reliability of feature 

information (Simone et al., 2002; Jiang, 2013). Advantages such as optimality for real-time 

processing, information compression and increased feature information are some of the major 

benefits associated with use of feature level fusion (Jiang, 2013; Zhang, 2010).  

To date, the majority of invasive species detection and mapping studies have solely relied on 

optical sensors and spectral reflectance (Evangelista et al 2009; Kimothi and Dasari, 2010; He 

et al., 2011; Gil, et al., 2013; Hauglin and Ørka, 2016). Although conventional multispectral 

imagery has generated reasonable success (Bradley, 2014), the application of new-age 

remotely sensed imagery has great potential for increased accuracy. SAR sensors such as S1 

are capable of providing diverse polarization and frequency acquisitions. These offer more 

comprehensive information regarding target variables, consequently offering potential for 

increased mapping accuracies (Shang et al., 2009). Furthermore, new age satellite imagery 

circumnavigates challenges involving spatial and spectral resolution, cost, data size and data 

processing time, which often render conventional detection and mapping approaches 

impractical, laborious and costly, particularly at large spatial extents. The ability of S1 to acquire 

dual-polarized SAR imagery in tandem with S2’s unique spectral and spatial resolution provides 
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a novel opportunity to investigate the use of dual-polarized SAR imagery for invasive alien 

species detection and mapping. Accordingly, this study sought to determine the potential of 

Sentinel-1 dual-polarized SAR imagery fused with Sentinel-2 optical imagery for invasive alien 

species detection and mapping. 

7.2 Methodology 

7.2.1 Study area 

This study was conducted at the uKhahlamba Drakensberg Park (UDP) UNESCO World 

Heritage site situated along the western escarpment of the KwaZulu-Natal province, South 

Africa (Figure 7.1). The UDP is dominated by natural grassland with patches of native scrubs, 

bushland and natural forest environments. Seasonal characteristics of the UDP range from cold 

dry winters with occasional frost and regular snowing to humid wet summers with rainfall 

ranging between 990 and 1130mm (Dollar and Goudy, 1999). 

7.2.2 Target species 

Native flora and fauna within South African grasslands are significantly threatened by the recent 

emergence of the American bramble (Rubus cuneifolius). Bromilow (2010) describes Bramble 

as a sprawling shrub species belonging to the Rosaceae family. Originating from North America, 

Bramble has successfully invaded vast natural grassland landscape within the KwaZulu-Natal 

(KZN) province of South Africa. The province’s favourable cool and moist climate allows it to 

thrive.  
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Figure 7.1: The uKhahlamba Drakensberg Park boundary (C), located within the KwaZulu-Natal 

province (B) of South Africa (A). 

Some of the consequences attributed to these Bramble’s invasion include increased soil 

erosion, altered nutrient cycling, reductions in grazing land’s carrying capacity, changes in fire 

regimes and a general disruption of hydrological processes (Henderson et al., 2001). Within the 

study area, Bramble is considered a severe threat to natural resources and sustainability, 

hence, its effective management or eradication is of paramount importance.   

7.2.3 Field data collection 

Ground truth data was collected using purposive sampling technique that involved the collection 

of ground truth validation points of four major land-cover classes within the UDP. Ground truth 

point data was collected for grassland, bare rock, bramble and forest. All ground truthing data 
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was collected during the spring and summer seasons as target species (Bramble) patches are 

easily discernible from surrounding vegetation. A GeoXT-Trimble differentially corrected GPS 

was used to record Bramble patches and surrounding vegetation classes. All land-cover ground 

truth points were captured (GPS-co-ords) as close to the centroid of the respective land-cover 

as possible. To ensure all land-cover ground truth data were associated with their respective 

pixel values, all field collected land-cover classes were spatially independent from each other. 

Target species (Bramble) patches collected ranged from 15m x 15m to 50m x 50m in size. 

Bramble ground truth points were only collected if located more than one-pixel away from the 

next Bramble patch, hence ensuring spatial independence. Due to the area’s steep 

mountainous terrain with restricted accessibility, only Bramble patches accessible on foot were 

considered for the study. Aerial photographs of 0.5m spatial resolution captured in 2016 were 

also used to supplement and verify selected land-cover ground truth points. A total of 1000 

ground truth points were collected and used in the study. 

7.2.4 Dual polarized Sentinel-1 Synthetic Aperture Radar (SAR) imagery 

Summer Senintel-1 dual polarized Synthetic Aperture Radar (SAR) imagery was downloaded 

from the Copernicus open access data hub (https://scihub.copernicus.eu/dhus/). Sentinel-1 

level-1 Ground Range Detected (GRD) products were utilized for this study. All dual polarized 

level-1 GRD products were multi-looked and projected to ground range using an earth ellipsoid 

model. S1 dual polarized imagery was recorded using the Interferometric Wide Swath (IW) 

mode, with a 20 m spatial resolution and a 250km2 swath width. The Bevington (2016) step-by-

step SAR imagery pre-processing methodology was followed. The SAR image processing chain 

consists of five steps: (1) Application of orbit file to SAR image; (2) Radiometric calibration; (3) 

Terrain correction; (4) Application of speckle filter and (5) Conversion of SAR DN to Gamma 

backscatter values (Bevington 2016). The Sentinel-1 mission has a predefined observation plan 

in order to prevent potential conflicts of interest among users regarding SAR operation modes or 

polarisation schemas over particular geographical areas. Hence, the general principle for S1 

dual-polarisation SAR imagery is as follows: HH-HV/HH polarization for the monitoring of polar 

environments or sea-ice zones and VV-VH/VV polarization for all other observation zones. The 

two available dual polarized data sets over the UDP were used for image fusion i.e. VV-VH and 

VV-VV dual-polarized combinations.  

 

 

https://scihub.copernicus.eu/dhus/
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7.2.5 Sentinel-2 optical imagery  

Summer Sentinel-2 optical imagery was downloaded from the Copernicus open access data 

hub (https://scihub.copernicus.eu/dhus/). The Sentinel-2 open access data hub provides access 

to freely available level-1C raw Sentinel-2 optical data products. Level-1C Sentinel-2 optical 

data products are disseminated in radians. The ESA SNAP toolbox 3.0 was used to convert 

summer level-1C raw products from radian pixel values to surface reflectance values using the 

Sen2Cor plugin. Sen2Cor applies Sentinel-2 Atmospheric Correction (S2AC) and performs 

atmospheric correction based on the LIBRADTRAN radiative transfer model (Richter et al., 

2011; Mayer and Kyling, 2000). Due to the mountainous terrain associated with the UDP, 

Sentiel-2 images were corrected for topographic effects of shadowing. Topographic correction 

was performed using the System for Automated Geoscientific Analyses SAGA (2.1.2) terrain 

analysis lightening tool within the freeware Quantum GIS (QGIS) environment. The terrain 

analysis lightening tool topographically corrected all images using the Minnaert Correction 

method, a method which considers satellite azimuth and height.  

Sentinel-2s Vegetation Red Edge 1; Vegetation Red Edge 2; Vegetation Red Edge 3; Near 

Infrared; Narrow-Near Infrared; Shortwave Infrared 1 and Shortwave Infrared 2 bands were the 

optical bands considered for feature level image fusion.  The use of these bands in vegetation 

classification is well documented (Frampton et al., 2013; Hill, 2013), and the unprecedented 

spectral resolution of these S2 bands provide a unique opportunity to assess their combined 

potential for invasive species detection and mapping.  

7.2.6 Feature level image fusion 

Feature level image fusion was employed to fuse S2 optical and S1 dual-polarized SAR 

imagery. Dual-polarized SAR images were resampled to a 20 meter spatial resolution so as to 

ensure all fused imagery possessed a standard spatial resolution (Sentinel-2). The extraction of 

features (ground truth points) was done separately for optical imagery (spectral) and dual-

polarized SAR imagery (backscatter), where subsequent backscatter measurements were 

allocated to the corresponding extracted S2 spectral reflectance measurement. The extracted 

spectral reflectance and SAR backscatter feature values were combined to form a fused 

optimum feature set. The fused optimum feature set was subsequently used for the 

classification.   

 

https://scihub.copernicus.eu/dhus/
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7.2.7 Image classification 

The optimum feature set (fused optical and SAR) was classified using SVM algorithm. SVM is a 

supervised statistical learning technique first developed by Vapnik (1979) to deal with binary 

classifications. The algorithm aims to find a hyper-plane that divides the dataset into a discrete 

predefined number of classes consistent with training data (Mountrakis et al., 2010). Studies 

have demonstrated that SVM is proficient in classifying several classes using limited support 

vectors as training samples, without compromising overall accuracies (Foody and Mathur, 2004; 

Mantero et al., 2005; Bruzzone et al., 2006; Shao et al., 2012; Zheng et al., 2015). The four 

most dominant land cover classes within the UDP were considered for image classification 

(Bare rock, Bramble, Forest and Grassland). 

7.2.8 Spatial distribution maps and validation 

Python 2.7.13 was used to generate SVM classification maps of the four major land cover 

classes considered in this study. Fused (optical and dual-polarized SAR) training pixel 

spectra/backscatter (70%) of all four classes served as the input for multi-season Bramble 

spatial distribution maps. Multi-season classification accuracy was assessed using the 

respective fused test pixel spectra/ backscatter (30%). Confusion matrices were produced for all 

fused optical and SAR imagery classification results. Confusion matrices were used to validate 

classification accuracies across all fused results.  

7.3 Results  

The highest overall classification accuracy of 85% was achieved by fusing S2 optical band with 

S1vv-vh dual polarized SAR imagery (Table 7.1a). User’s and producers accuracies for Bramble 

ranged between 80 and 89% respectively, while the forest land-cover class achieved the 

highest users and producers accuracies (Table 7.1a). Bare rock land-cover class and the 

grassland land-cover class had the lowest users and producer’s accuracy, respectively (Table 

7.1a).  

The spatial distribution of all land-cover classes mapped using multiclass SVM resulted in 

minimal overestimation and underestimation of individual classes. Minimal confusion between 

the grassland class and all other land-cover classes resulted in a slight underestimation of 

grassland cover as compared to the Bare rock, Forest and Bramble classes (Figure 7.2a). 
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Table 7.1: Confusion matrices of fused S2 optical bands and (a) S1vv-vh ; (b) S1vv-vv  SAR 

imagery compared to S2 optical band Confusion matrix. Where BR = Bare rock; BBL = Bramble; 

FR = Forest; GR = grassland; PA= Producers accuracy; OA= Overall accuracy and UA = Users 

accuracy. 

(a) S2 bands +  S1VV-VH BR BBL FR GR UA (%) 

BR 45 0 1 11 79 
BBL 2 73 0 16 80 
FR 0 4 51 1 91 
GR 2 5 2 77 90 

PA (%) 92 89 94 73  
OA (%) 85     

(b) S2 bands +  S1VV-VV  

BR 42 0 6 0 88 
BBL 2 69 0 24 73 
FR 3 3 48 2 86 
GR 1 8 4 78 86 

PA (%) 88 86 83 75  
OA (%) 82     

(c) S2 optical bands  

BR 45 0 1 11 79 
BBL 2 65 1 16 77 
FR 12 4 31 1 65 
GR 2 10 2 87 86 

PA (%) 74 82 89 76  
OA (%) 79     

 

Fusion of S2 optical bands and S1vv-vv dual polarized imagery resulted in the second highest 

overall classification accuracy (82%) (Table 7.1b). Bramble users (73%) and producers (86%) 

accuracies were inferior compared to results achieved by fusing S2 optical bands and S1vv-vh 

imagery (Table 7.1b). The Bare rock land-cover class produced the highest user’s (88%) and 

producer’s (88%) accuracies respectively, while Grassland (75%) achieved the lowest 

producers accuracy across all land-cover classes (Table 7.1b).   
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(a) (b) (c) 

The spatial detection and distribution of Bramble from surrounding classes produced marginal 

underestimation across specific land-cover classes (Figure 7.2b). Grassland, Forest and 

Bramble land-cover distributions were overestimated as compared to S1vv-vh spatial distributions, 

with consistent confusion across all three classes (Table 7.1b). The Bare rock class was the 

most accurately represented land-cover class, with minimal overestimation as compared to 

results produced using stand-alone S2 optical bands (Figure 7.2b and 7.2c).      

Figure 7.2: Spatial distribution maps of fused S2 optical bands and (a) S1vv-vh; (b) S1vv-vv 

dual-polarized SAR imagery compared to (c) S2 optical band spatial distribution map. 

The use of selected stand-alone S2 optical bands for Bramble discrimination and mapping 

generated the lowest overall classification (79%) (Table 7.1c). Bramble user’s (77%) and 

producers (82%) accuracies decreased as compared to results achieved using S2 selected 

optical bands fused with S1vv-vh SAR imagery (Table 7.3).   

The Forest land-cover class produced the lowest user’s accuracy (65%) while the Bare rock 

class achieved the lowest producers accuracy (74%) (Table 7.1c). There was evident 

overestimation of certain land-cover classes as compared to results achieved using S2 optical 

bands and S1vv-vh imagery (Figure 7.3). The spatial distribution of Bramble was considerably 

overestimated and was regularly misclassified as Grassland and Forest (Table 7.1c). The 
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Forest land-cover class was also frequently misclassified as Bare rock and Bramble, resulting in 

an overestimation of Forest spatial distribution (Figure 7.3).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.3: An example of mapped classification accuracies across S2+S1vv-vh ;  S2+S1vv-vv 

and S2 optical bands 

7.4. Discussion 

This study sought to determine the potential of fusing dual-polarized Sentinel-1 SAR imagery 

with Sentinel-2 optical imagery for the discrimination and mapping of the American bramble 

(Rubus cuneifolius). Generally, overall classification accuracies achieved using fused imagery 

outperformed accuracies achieved using stand-alone Sentinel-2 imagery. The fusion of S2 and 

S1VV-VH SAR imagery produced the highest classification accuracy (85%) while stand-alone S2 

imagery produced the lowest (79%). S1 information coupled with the unprecedented spectral 

resolution of S2 optical bands that span the vegetation Red Edge, Near Infrared, Narrow-Near 

Infrared and Shortwave-Infrared regions, indicate the complementarity of S1 and S2 imagery. 

S2 + S1vv-vh 

S2 + S1vv-vv 

S2  

Legend
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Bare rock

Bramble
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Based on these findings, the value of dual-polarized SAR imagery for invasive alien species 

detection and mapping is evident.  

C-band SAR sensors (Sentinel-1) are known to be sensitive to leaves and small branches 

(Huang et al., 2010). Specifically, the short Sentinel-1 C-band SAR wavelength is known to be 

effectively sensitive to the upper part of vegetation canopies, a trait believed to be valuable for 

retrieving and recording varying biophysical vegetation parameters (Schmidt et al., 2017). 

Castro-Gomez (2017) suggests that VV-VH dual-polarized SAR data strongly account for 

vegetation’s vertical orientation. The thorny, stalky nature of Bramble stem phenology is 

markedly different from the phenology of surrounding grassland dominated landscape within the 

UDP, hence S1VV-VH sensitivity could have effectively discriminated Bramble from surrounding 

land-cover classes. These results are consistent with Coleman and Buckley (2010) who noted 

an effective discrimination of invasive alien species and brush within a grassland environment. 

Furthermore, the value of S1VV-VH dual polarized SAR has been previously established for use in 

agricultural classification applications (Voormansik et al., 2016; De Wit and Clevers, 2004; 

McNairn et al., 2009). 

 

The value of single-polarized SAR data as a complimentary dataset for various environmental 

applications has been well documented (Shi et al 2012; Ghulam et al., 2014; Hong et al., 2014; 

Martinez and Toan, 2007). Ferro-Famil et al (2001) and Rajah et al (2018) noted that dual-

polarized SAR data was more effective in discriminating landscapes than single-polarized SAR. 

From a vegetation classification perspective, results from this study affirm those achieved by 

Abdikan et al (2016), where overall accuracies obtained with the combination of optical imagery 

and dual polarized SAR showed improvement when compared to accuracies achieved using 

single-polarized SAR data.  

Generally invasive alien species detection and mapping is often characterized by high spectral 

confusions, causing difficulty when using optical imagery alone. However, SAR is known to be 

sensitive to a range of geometric properties that include plant height and shape, leaf size and 

canopy structure (Zhang et al., 2018). SAR data is sensitive to these properties and thus can be 

used to improve the overall classification accuracy. 

 

The dominant scattering of microwave (e.g., C-band SAR in this study) in the SAR 

backscattering mechanisms greatly depends on vegetation height and biomass, which have 

been reported to vary significantly between Bramble and the surrounding natural grassland 
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(Masson et al., 2015; Reynolds and Symes, 2013). For example, the natural thickety nature of 

Bramble has higher biomass and often towers above natural grassland species, traits that can 

be reflected in the backscattering coefficient of dual-polarized C-band SAR data (Zhang et al., 

2018). Although improvements in accuracy attributable to this unique backscattering mechanism 

may be small (≈3% in this study), it may be essential for more efficient and cost-effective large-

scale Bramble monitoring. A similar positive valuation of dual-polarized SAR was established by 

Ziolkowski et al (2013), who used dual-polarimetric SAR to model vegetation biophysical 

parameters. Similar to this study, Ziolkowski et al (2013) also noted that varying products of 

dual-polarized SAR data exhibit variability in accuracy achieved based on the type, seasonal 

stage, and water content of target vegetation. The above-mentioned variability in classification 

accuracies further substantiates findings from this study between S1VV-VH and S1VV-VV.  

 

Results from this study highlight the potential of S1 C-band dual polarized SAR to improve 

Bramble detection and mapping. Similar improvements were observed by Lardeux et al (2011), 

who reported that despite C-band SARs reduced canopy penetration capability, major 

contributions to vegetation classification accuracies were recorded when using dual-polarized 

C-band SAR. Within a comparable context to this research, Laurin et al (2013), who evaluated 

synergies between optical and SAR imagery achieved the best vegetation classification 

accuracy by integrating freely available dual-polarized SAR and Landsat 8 imagery. Findings 

from this study emphasize and underline the contribution of dual-polarized SAR imagery 

towards improving the detection and mapping of invasive alien species. The freely available 

nature of both S1 and S2, coupled with the diversity in sensor payloads, provide a cost-effective 

and efficient alternative to conventional stand-alone remote sensing methodologies. 

Considering the benefits derived from increasing accuracies, it should be considered beneficial 

to integrate dual-polarized SAR data to compensate conventional optical data for improving 

invasive alien species detection and mapping. 

 

7.5. Conclusion 

This study sought to fuse conventional multispectral optical imagery with new age Synthetic 

Aperture Radar (SAR) imagery to determine the synergistic potential for invasive alien species 

mapping. Comparative analysis of stand-alone optical imagery fused with variations of dual 

polarized SAR data indicated that image fusion at a feature level has the potential to accurately 

detect and map the American Bramble within a native grassland environment. The sensitivity of 

SAR backscatter measurements to shape, size, texture, surface roughness and complex 
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permittivity of vegetation effectively complemented conventional optical imagery in delineating 

Bramble infested landscapes. The fused S2 optical and S1vv-vh dual polarized SAR synergy 

outperformed the stand alone S2 imagery as well as fused S2 optical and S1vv-vv imagery. 

These findings provide further evidence of the complementarity of dual-polarized SAR and S2 

optical imagery. Hence, the fusion of freely available dual polarized S1 radar imagery and S2 

optical imagery can be considered a viable and cost-effective opportunity for specific invasive 

alien species detection and mapping applications.  
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Chapter Eight 

Detecting and mapping invasive alien plants using freely available active and 

passive remotely sensed imagery: A synthesis 
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8.1 Introduction 

Invasive Alien Plants (IAPs) have recently received significant attention due to among others 

their rapid spread, severe threat to native biodiversity and adverse implication on ecosystem 

condition and associated services (Simberloff, 2010; Wilson et al., 2013). Hence, numerous 

countries have ratified the Convention on Biodiversity, which requires countries to ‘prevent the 

introduction of, control or eradicate alien species which threaten ecosystems, habitats or native 

species’ (Terblanche et al., 2016: Pg. 1). In South Africa, the national government has recently 

disseminated regulations under the National Environmental Management: Biodiversity Act 

(NEMBA) that makes provision for the development of national-level invasive species 

management programmes for priority invasive alien species (DEAT, 2009). Whereas a list of 

these priority species has not yet been defined, the urgent need to develop cost-effective and 

timeous methodologies for the detection and mapping of established invasive species is critical 

in.fulfilling.these.regulations.  

 

Spatially explicit data defines invaded areas as well as the extent and density of invasion, thus 

facilitating appropriate management actions (Le Bourgeois et al., 2016). In this context, the 

utility of freely available, new generation remote sensing technology offer a practical solution for 

the detection and mapping of invasive alien species. However, challenges in the use of 

conventional remotely sensed imagery for invasive alien species detection and mapping has 

been extensively documented (Feilhauer et al., 2017; Rocchini et al., 2015; Bradley, 2014; 

Shezi and Poona, 2010). The advent and launch of new generation, freely available sensors 

such as Sentinel-1 (S1) and Sentinel-2 (S2) with both optical and radar capabilities offer new 

opportunities to determine the value of combining optical and Synthetic Aperture Radar (SAR) 

properties for invasive alien species detection and mapping. The stand-alone and synergistic 

potential of S1 and S2 has shown great promise in vegetation mapping (Munyati, 2017; 

Stratoulias et al., 2015; D'Odorico et al., 2013; Gascon et al., 2009). In addition, the high 

operational ability, acquired data and potential products of the Sentinel missions also present 

significant scientific opportunity. Enhanced characteristics of Sentinel missions such as long-

term continuity of measurements (>20 years-time series building on previous observationally 

compatible missions), global and generally frequent coverage, careful calibration of the satellite 

sensors, data delivery and archiving that meet the rigorous performance requirements of 

operational and practical applications, and a broad variety of sensing methods (optical and 



` 

125 
 

microwave, active and passive, etc.) (Berger et al., 2012), offer new opportunities in landscape 

mapping.   

Hence, this study sought to: (1) Evaluate the potential of new generation Sentinel-2 imagery for 

the detection and mapping of American bramble (Rubus cuneifolius), (2) investigate the 

potential of fused Sentinel-1 and Sentinel-2 imagery for the detection and mapping of American 

bramble (Rubus cuneifolius), (3) investigate the capability of fused Sentinel-2 optical imagery 

Sentinel-1 SAR band combinations and ratios for American Bramble (Rubus cuneifolius) 

detection and mapping, (4) Assess the combined potential of Sentinel-2 spectral reflectance 

bands and derived vegetation indices for detecting and mapping American bramble (Rubus 

cuneifolius), (5) Evaluate the utility of Sentinel-2 Vegetation Indices (VIs) and Sentinel-1 

Synthetic Aperture Radar (SAR) for American bramble (Rubus cuneifolius) detection and 

mapping and (6) Assess the synergistic potential of dual-polarized Synthetic Aperture Radar 

(SAR) fused with Sentinel-2 imagery for improving American bramble (Rubus cuneifolius) 

detection and mapping. The findings of each objective in this thesis are described below. 

8.2 Evaluating the potential of freely available multispectral remotely sensed imagery for 

mapping invasive alien plant species 

The potential of new generation freely available multispectral remotely sensed imagery to detect 

and map Bramble within the UDP was assessed in chapter two. A comparison of multi-season 

Landsat 8 and new generation Sentinel-2 (S2) imagery resulted in S2 outperforming Landsat 8 

across all seasons (spring, summer, autumn and winter). Hence the application of multi-class 

Support Vector Machine (SVM) better discriminated between Bramble and surrounding native 

vegetation using selected S2 VIP bands.  

The optimum season for Bramble detection and mapping using S2 imagery was summer, which 

generated an overall accuracy of 77%, with individual landcover class accuracies ranging from 

45% and 91% (Table 8.1). Bare rock and Forest were the most correctly classified land-cover 

classes, while Grassland was predominantly confused for other classes (Figure 8.1). Hence the 

detection and mapping of Bramble within the UDP was regarded as suitable, but the need for 

further investigation into the improvement of detection of Bramble was considered.  
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Table 8.1: Seasonal overall classification accuracies resulting from Landsat 8 and Sentinel-2 

imagery   

 

 

 

 

 

In summary, the key finding in this chapter was the superior performance of S2 as compared to 

Landsat8 in Bramble detection and mapping. Furthermore, summer was identified as the 

optimal season for Bramble detection and mapping.  

 

 

 

 

 

 

 

 

 

 

Figure 8 1: Comparison of Landsat 8 and Sentinel-2 spatial distribution of all landcover classes 

considered in this study. 

 

Overall Accuracies 

 Spring Summer Autumn Winter 

Landsat-8 55% 57% 50% 55% 

Sentinel-2 70% 77% 63% 61% 
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The proposed methodology provides an efficient and cost-effective alternative to using labour 

intensive in-field methods to obtain spatial information related to invasive alien plant species. 

The application of S2 imagery is potentially valuable to conservation managers, ecologists and 

regional planners in supporting their decisions and operational tasks such as promoting and 

developing effective eradication strategies in relation to particular invasive species (Atkinson et 

al., 2014; Little et al., 1997).  

8.3 Feature level image fusion of optical imagery and Synthetic Aperture Radar (SAR) for 

invasive alien plant species detection and mapping 

In chapter three, Synthetic Aperture Radar (SAR) imagery was introduced and the potential to 

compliment the data with conventional optical imagery was assessed. Results indicated that the 

fusion of L8 and SAR increased Bramble detection and mapping accuracies across all seasons. 

Winter L8 fused with VH produced the highest overall classification accuracy (71%) while S2 

Winter and summer fused with VH produced the highest overall classification accuracies (76%) 

(Table 8.2). The study demonstrated the value of fusing SAR with new generation multi-spectral 

optical imagery in mapping Bramble. Results showed an improved overall classification 

accuracies using imagery captured in Autumn and Winter seasons. 

Table 8.2: Seasonal overall accuracies of fused Landsat 8 and Sentinel-1 SAR and Sentinel-2 

and Sentinel-1 SAR 

 Spring Summer Autumn Winter 

Fused 

combination 
VH VV VH VV VH VV VH VV 

Landsat-8 64% 64% 65% 68% 71% 66% 72% 64% 

Sentinel-2 67% 72% 76% 68% 71% 70% 76% 71% 

 

These results provide evidence of the complementarity between SAR and conventional optical 

imagery. The increase in overall classification accuracy seen in this research is comparable to 

that of pervious vegetation discrimination studies using SAR and optical image fusion (Walsh, 

2018; Pandit and Bhiwani, 2015; Hong et al., 2014; Vaglio et al., 2013; Vyjayanthia and 

Nizalapur, 2010; Zhang, 2010). Although findings from this chapter are progressive, the 

potential to utilize variations in SAR image acquisition still exists, and could be exploited to 
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further improve Bramble detection and mapping. Nevertheless, the proposed concept of the 

synergy between freely available new generation optical imagery and SAR has potential to 

provide an efficient and economical alternative to conventional invasive species mapping 

methodologies.  

8.4 The fusion of multispectral optical imagery and SAR polarization combinations/ratios for 

invasive alien plant detection and mapping 

Chapter four builds on results achieved from the previous chapter. In this chapter, Synthetic 

Aperture Radar (SAR) polarization combinations and ratios were developed and fused with 

Sentinel-2 (S2) imagery. The VH/VV, VH – VV, VH + VV, VH x VV, VV/VH and VV – VH SAR 

polarization band combinations and ratios were developed for feature level image fusion with S2 

optical imagery. The overall accuracy of fused S2 and SAR polarization combinations and ratios 

ranged between from 64% to 74% for VH x VV and VV - VH, respectively (Table 8.3). 

Table 8.3: Overall accuracies of fused Sentinel-2 imagery and Sentinel-1 SAR polarization 

combinations and ratios 

S1 SAR polarization combination/ratio + 

S2 optical imagery 

Overall accuracy 

achieved 

VV - VH 74% 

VH - VV 72% 

VH/VV 68% 

VV/VH 67% 

VH x VV 64% 

VH + VV 68% 

 

This study demonstrated the potential of varying SAR polarization combinations and ratios for 

invasive alien species detection and mapping. Confusion matrices illustrated that the difference 

between VV and VH S1 SAR polarizations was optimal for Bramble detection and mapping. 

Figure 8.2 illustrates the visual differences across classification accuracies resulting from the 

fusion of S2 optical imagery and the various S1 SAR polarization combinations and ratios. 

Findings reported in this chapter illustrate the dynamic and variable nature of SAR imagery 
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acquired at different polarizations. These findings are consistent with Hong et al (2014); Inoue et 

al (2014); Lardeux et al (2011); Srivastava et al (2009); Vyjayanthia and Nizalapur (2010) and 

Schmullius and Evans (1997) who noted SAR capability as well as variability in results using 

differing SAR polarizations.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.2: Overestimation and underestimation of Bramble classes across VH-VV; VV - VH; 

VH/VV; VV/VH; VH x VV and VV+VH band combinations and ratios 

8.5 Assessing the combined potential of Sentinel-2 spectral reflectance bands, derived 

Vegetation Indices (VIs) and Synthetic Aperture Radar (SAR) for detecting and mapping 

invasive alien species 

Chapter five sought to integrate S2 spectral reflectance bands with S2 derived Vegetation 

Indices (VIs) in order to improve overall seasonal detection and mapping accuracy of Bramble. 



` 

130 
 

A total of 65 VIs were derived from S2 optical bands. The Variable Importance in the Projection 

(VIP) was used to select the 15 most influential VIs and S2 reflectance bands for feature level 

image fusion. Benchmark classification accuracies were derived and mapped using only S2 

reflectance bands in all seasons. 

The Support Vector Machine (SVM) classification algorithm was used to classify multi-season 

fused VIs and S2 spectral reflectance bands. Results indicated that spring imagery produced 

the highest classification accuracy (73%) in all seasons, while winter produced the lowest 

(61%). Fused VIs and S2 reflectance bands improved overall accuracies across spring and 

autumn (65%), while winter (61%) overall accuracy remained unchanged as compared to when 

using only S2 reflectance bands. Summer was the only season where fused VIs and S2 

reflectance produced a lower overall accuracy (70%) as compared to S2 reflectance bands 

(77%) (Table 8.4). 

Table 8.4: Seasonal overall accuracies of stand-alone Sentinel-2 imagery compared to fused 

Sentinel-2 and Vegetation Indices (VIs) 

 Spring Summer Autumn Winter 

S2 70% 77% 63% 61% 

S2 + VIs 73% 70% 65% 61% 

 

Based on the outcome in chapter 5, chapter six investigated the synergistic potential of fused 

S2 VIs and S1 SAR for invasive species detection and mapping. Stand-alone S2 optical 

imagery was used as the overall accuracy benchmark for comparison to stand alone S2 VIs and 

fused S2 optical imagery and S2 VIs. Feature level image fusion was conducted in order to fuse 

VIP S2 VIs and S1 SAR imagery. The SVM learning algorithm was used for classifications. 

Table 8.5: Overall accuracies produced using stand-alone Sentinel-2 optical bands, VIP 

Vegetation Indices (Vis) and fused Sentinel-2 and Vegetation Indices 

 VIP VIs S2 S2 derived VIs 

Overall accuracy 54% 77% 80% 
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Stand-alone S2 derived VIs produced the highest classification accuracy (80%) across all three 

comparisons, while S2 optical imagery fused with S1 SAR produced the lowest overall 

classification accuracy (54%) (Table 8.5) 

 

Figure 8.3: Support Vector Machine (SVM) classification maps produced utilizing (a) Vegetation 

Indices; (b) S2 optical bands and (c) Fused VIs and SAR. 

8.6 The synergistic potential of dual-polarized Synthetic Aperture Radar (SAR) fused with 

multispectral optical imagery for invasive alien species detection and mapping 

In the final chapter there is chapter 6 and 7, the study evaluated the synergistic potential of 

dual-polarized S1 SAR and S2 optical imagery. Selected VIP S2 optical bands were fused with 

two variations of dual–polarized SAR imagery (S2 + S1VV-VH and S2 + S1VV-VV). Results showed 

that there was a 3-6% improvement in overall classification accuracies with fusion of dual 

polarized S1 SAR and VIP S2 bands. Feature level image fusion of S2 + S1VV-VH produced the 

highest overall accuracy (85%) across all comparisons, while S2 + S1VV-VV fused imagery 

produced an overall accuracy of 82% (Table 8.6). Benchmark stand-alone VIP S2 optical bands 

resulted in an overall classification accuracy of 79% (Table 8.6).  
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Table 8.6: Overall accuracies produced using Sentinel-2 optical imagery fused with dual-

polarized Sentinel-1 SAR imagery 

S2 and S1 fusion combination Overall accuracy 

S2 +  S1VV-VH 85% 

S2 +  S1VV-VV 82% 

Stand-alone S2 bands 79% 

 

The fusion of dual-polarized S1 SAR (VV-VH and VV-VV) with S2 optical imagery produced the 

highest overall classification in results reported in all chapters. Hence, the study has 

demonstrated that fusing dual-polarized SAR imagery with new-age S2 optical imagery 

improves Bramble detection and mapping. Consequently, this chapter outlines the potential 

synergistic value of dual-polarized S1 SAR imagery. In addition, the wide swath width and high 

temporal resolution of S1 and S2 satellites facilitates regional mapping using the presented 

methodology. The use of dual-polarized SAR in conjunction with new-age remotely sensed 

imagery offers a cost-effective alternative to the often tedious and costly traditional ground-

based mapping approaches.  
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(a) (b) (c) 

Figure 8.4: Spatial distribution maps of fused S2 optical bands and (a) S1vv-vh; (b) S1vv-vv dual-

polarized SAR imagery compared to (c) S2 optical band spatial distribution map. 

8.8 Conclusions 

This thesis aimed to investigate the potential of freely available new-age remote sensing 

technology to detect and map American Bramble (Rubus cuneifolius) within the uKuhlamba 

Drakensberg Park (UDP) UNESCO world heritage site. Findings in this study have 

demonstrated the capability of fusing active and passive remotely sensed imagery and data to 

detect and map Bramble within the UDP. The study concludes that; 

1. Sentinel-2 multispectral imagery outperforms Landsat 8 in the detection and mapping of 

Bramble and surrounding native vegetation.  

2. Feature level fusion of Sentinel-2/Landsat 8 optical imagery and Sentinel-1 Synthetic 

Aperture Radar (SAR) can be used to improve the detection and mapping of Bramble  

3. The fusion of Sentinel-1 Synthetic Aperture Radar (SAR) polarization band combinations and 

ratios with Sentinel-2 optical imagery can be used to improve detection and mapping of 

Bramble.  

4. The synergistic potential of Sentinel-2 derived Vegetation Indices and stand-alone Sentinel-2 

optical bands showed limited potential in Bramble detection and mapping. However, 
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classification results showed improvement, in comparison to the use of S2 optical imagery 

alone.  

5. The integration of S2 VIs and Sentnel-1 (S1) SAR did not increase the overall classification 

accuracies.  

6. Dual-polarized Synthetic Aperture Radar (SAR) fused with Sentinel-2 optical imagery showed 

increased potential in detecting and mapping of Bramble. All variations of dual-polarized SAR 

increased overall Bramble detection and mapping accuracies. This synergistic combination of 

active and passive remote sensing imagery produced the most effective results.  

8.9 The future 

The future of Bramble detection and mapping lies in understanding the spatial distribution of the 

plant invader in relation to the surrounding environment. This could be achieved by 

incorporating additional ancillary data representing environmental, topographical and edaphic 

variables in detection and mapping Bramble invasion. While such variables would improve the 

spatial recognition of Bramble and facilitate appropriate management and eradication strategies, 

the mapping and determination of areas at risk of invasion or habitat suitability should also be 

investigated. 

Future research should also focus on variations within Synthetic Aperture Radar (SAR), both 

with single and dual-polarization acquisition modes. Findings from this study confirm the 

complementarity of SAR to conventional optical remotely sensed imagery. However, the need 

for further application and continued testing with several more easily detectable invasive alien 

species is essential to understand the caveats and advantages associated with the fusion of 

SAR and new-age optical imagery. The technical aspects associated with SAR image pre-

processing is an additional focal point that should be investigated, as variables such as SAR 

speckle filter techniques could serve to produce increased classification accuracies. The use of 

freely available active (S1) and passive (S2) remotely sensed imagery has the potential to 

provide cost-effective, large scale invasive alien species detection and mapping. Future 

opportunities should seek to optimize this technical process by developing near real-time data 

acquisition and image processing workflows 

Finally, while this thesis focused on detecting and mapping Bramble infestation within the UDP, 

future research may consider up-scaling the proposed methods to a larger landscape. In this 

context, the development of practically applied detection and mapping techniques would be 
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valuable to environmental managers, but most importantly, in developing individual national-

level invasive species management programmes. 
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