LASER AND ULTRASOUND RADIATION PRETREATMENT
OF CELLULOSE IN
DISSOLVING WOOD PULP

by

Atsile Rosy Ocwelwang

Submitted in fulfilment of the academic requirements for the degree of Doctor of
Philosophy in Chemical Engineering, at the School of Engineering, College of
Agriculture, Engineering, and Science, University of KwaZulu-Natal
Durban, South Africa

Supervisor: Prof. Bruce B. Sithole

Co-supervisors: Prof. Deresh Ramjugernath, Dr. Viren Chunilall

December 2017
PREFACE

The research contained in this thesis was completed by the candidate for a doctoral degree while based in the Discipline of Chemical Engineering, School of Engineering, of the College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Howard College Campus, South Africa.

The contents of this work have not been submitted in any form to another university for a degree, and except where the work of others is acknowledged in the text, the results reported are due to investigations by the candidate.

As the candidate’s supervisor, I approve this thesis for submission.

_________________________ ________________________
Signed: Prof. B. Sithole (Supervisor) Date:
DECLARATION

I, Atsile Rosy Ocwelwang, declare that:

(i) This thesis, except where otherwise indicated is my original work.

(ii) The contents of this research have not been submitted in any form to another university for any degree or examination.

(iii) This thesis does not contain other person’s data, pictures, graphs or other information unless specifically acknowledged as being sourced from other persons.

(iv) This thesis does not contain other person’s writing unless specifically acknowledged as being sourced from other researchers. Where other written sources have been quoted, then:

a) Their words have been re-written, but the general information attributed to them has been referenced;

b) Where their exact words have been used, their writing has been placed inside quotation marks and referenced.

(v) This thesis does not contain text, graphics or tables copied and pasted from the internet, unless specifically acknowledged, and the source being detailed in the thesis and the References section.

______________________________  ______________________
Signed: A.R. Ocwelwang (candidate)   Date:
ABSTRACT

Dissolving wood pulp (DWP) refers to wood extracted, chemically refined bleached pulp that comprises more than 90% pure cellulose. This type of pulp is mainly utilised for the production of various cellulose derivatives such as rayon, cellophane, cellulose ethers and cellulose esters. Production of these valuable products is achieved by dissolution of DWP in chemical solvents such as sodium hydroxide (NaOH) and carbon disulphide (CS₂). However, cellulose dissolution is not easily achievable due to the strong hydrogen bond interactions that give this biopolymer its highly ordered crystalline structure. High cellulose crystallinity limits the accessibility and chemical reactivity of this biopolymer. Various forms of pretreatment techniques have been developed to solve this problem. The primary aim of the pretreatment is to disrupt the rigid crystalline structure of cellulose, and this increases its structural accessibility and chemical reactivity. However, most pretreatment techniques have drawbacks such as being energy intensive, costly, corrosive, posing risks to personnel operating them, and not being readily accessible. For example, gamma ray irradiation has been shown to be an effective pretreatment technique for cellulose and other lignocellulosic materials, but it is a costly technology. For this reason, research into environmentally friendly and profitable pretreatment techniques is ongoing.

This study aimed to evaluate the effect of two procedures, namely, ultrasound and laser irradiation, as possible pretreatment techniques for cellulose activation. Ultrasound irradiation is a conventional method that has been used for pretreatment of a wide range of polymeric materials, whereas the use of laser irradiation as a pretreatment technique for cellulose activation has never been reported. Therefore, using lasers as a pretreatment for activation of DWP with the aim of modifying the cellulose structure to improve its chemical reactivity is a novel aspect of this thesis. The effects of these two pretreatment techniques on the structure of cellulose were studied and compared.

The effects of the two techniques were investigated separately in two parts. The first part focused on the effect of ultrasound irradiation on the structure of cellulose, and the dissolution behaviour of the ultrasonicated pulp samples in aqueous NaOH solution. The second part evaluated the effect of laser irradiation on the structure of cellulose, and the
chemical reactivity of the pretreated cellulose pulp samples was measured using the Fock test method.

A range of analytical techniques was employed to characterise the pretreated samples to evaluate the structural modifications that resulted from the pretreatments. Size exclusion chromatography with multi-angle light scattering (SEC-MALS) analysis was used to study the molecular structural properties of cellulose. X-ray diffraction (XRD), and Solid-state CP/MAS $^{13}$C-NMR were used to investigate the crystalline structure of cellulose and to measure its degree of crystallinity (CrI). Ultrastructural and morphological properties of cellulose were also studied by atomic force microscopy (AFM), scanning electron microscopy (SEM), and morphological fibre analyser (MorFi). Untreated DWP samples were used as control samples for all procedures and analysis conducted in the study.

In the first part of this study, DWP samples were pretreated with ultrasound irradiation and subsequently dissolved in aqueous NaOH solution. SEC-MALS results showed a shift in average molar weight (Mw) from high to lower region after ultrasonication. Broadening of the molecular weight distribution (MWD) was displayed by increase in polydispersity index (PDI). A decrease in Mw was also observed with increasing pretreatment time; this confirmed the effect of the ultrasonic pretreatment on the molecular structure of cellulose. SEC-MALS analysis of the ultrasonicated and alkali treated samples displayed different dissolution behaviour compared to the control, and the changes in the MWD data did not follow any trend relative to treatment time.

XRD results indicated that ultrasound irradiation had minor or no effect on the degree of cellulose crystallinity (CrI). However, treatment of the ultrasonicated pulp samples with aqueous NaOH significantly decreased the CrI. This reduction in CrI indicates that alkali treatment transformed natural cellulose to regenerated cellulose. A CrI decrease of more than 50% was also observed for the samples treated for 60 minutes (alkcell-UT60 min).

AFM ultrastructural results revealed that ultrasonication did not induce visible changes on the surface of the S2 layer. An overall decrease of lateral fibril aggregate dimensions (LFAD) was observed after ultrasound irradiation, but the reduction did not show a linear relationship with increasing treatment time. Fibre distribution and dimensions results
from the MorFi analyser showed that with prolonged treatment time, the number of fibres in solution increased, average fibre length decreased, while the average fibre width did not display significant changes. SEM surface morphology results showed that after ultrasonication the surface of the fibres became smooth, and there was less or no fibrillation. SEM analysis revealed that after alkali treatment the surface of the fibres displayed folds and trenches which ran parallel to the length of the fibres. This is an indication of an increase in the surface area of the fibres due to the treatment with an alkali solution. Moreover, the fibres appeared compact and agglomerated.

In the second part of this study, laser radiation was used for pretreatment of DWP samples. The pretreatment caused visible morphological and molecular changes in the structure of cellulose. SEC-MALS results demonstrated that laser irradiation decreased the average Mw of the cellulose polymer and caused noticeable modifications on the molecular structure of this biopolymer. The PDI also showed increase; this rise in PDI is indicative of the size distribution of the Mw and the heterogeneity of the cellulose chain lengths as a result of the pretreatment. XRD results demonstrated that laser irradiation disrupted the crystalline structure of cellulose; an overall significant decrease in CrI was noticed for all the laser irradiated samples. NMR characterization of the irradiated samples also displayed a decline in CrI.

SEM characterization results illustrated that laser pretreatment disrupted the morphology of the cellulose fibres and created porous cavities on the fibre surfaces. AFM images for laser irradiated samples also displayed similar features. The S2 layer within the cross-sections of the samples irradiated with Nd:YAG laser at 266 nm and 355 nm also had small pores and dark areas between the fibril aggregates which represent the less stiff or potential accessible regions. Calculated LFAD results also confirmed these observations in that the data displayed a noticeable decline in LFAD after laser irradiation. Finally, the Fock test results showed that the laser pretreatment caused a linear increase in cellulose reactivity with increasing irradiation time.

From the results and observations presented in this study, it can be concluded that laser radiation pretreatment caused noticeable structural disruptions on the structure of cellulose compared to ultrasound irradiation. It disrupted and damaged the surface morphology of cellulose and further caused a significant degradation of the molecular
structure. Moreover, increase in cellulose reactivity as measured by the Fock test method was observed in all samples pretreated with lasers. The highest reactivity increase of more than 35% was obtained in samples irradiated with the Nd:YAG laser at a wavelength of 266 nm compared to Nd:YAG and CO₂ lasers at 355 nm, and 10.6 µm respectively. This observation showed that laser wavelength was influential in cellulose modification compared to laser power. Furthermore, the increase confirmed that laser radiation pretreatment reduced the cellulose Mw and disturbed its crystalline structure thus enhancing its accessibility and reactivity to chemical solvents. Therefore, the novel aspect of the thesis is that: Pretreatment of DWP with laser radiation modified the structural features of cellulose, and this led to an overall cellulose reactivity increase of about 20%. Consequently, this should result in a reduction of dosages of chemical reagents used for induction of cellulose reactivity and processing. The use of lasers for cellulose pretreatment could be a more affordable option compared to the conventional high energy radiation sources because they are less expensive and readily accessible.
ACKNOWLEDGEMENTS

All glory and honour to God all mighty, for His faithfulness, infinite mercies and grace throughout my journey, *Ebenezer*!

I would like to express my sincere appreciation to my supervisor and co-supervisors:

- Professor B.B. Sithole for his endless support, constructive criticism, and guidance throughout this project. Thank you for your patience, encouragement, and for believing in me and my work.
- Professor D. Ramjugernath, thank you for your genuine interest in my project, for asking the difficult questions, and for always giving valuable advice.
- Dr V. Chunilall, thank you for all your guidance, close supervision and technical training during this study. I am grateful to you for believing in my work, and for always sharing your insight on the subject.

My greatest gratitude goes to the National Research Foundation (NRF), Council for Scientific, Industrial Research (CSIR) – Professional Development Program (PDP), and the University of KwaZulu-Natal (UKZN) College of Agriculture, Engineering, and Science (CAES) for financial support. I would also like to thank the CSIR (NRE – Biorefinery Industry Development Facility (BIDF), the National Laser Centre (NLC) of South Africa), and UKZN for providing laboratory space and equipment for me to carry out my experimental work.

I would also like to acknowledge and thank the staff at NLC and BIDF, SAPPI Saiccor, the University of Stellenbosch (NMR unit), University of Fort Hare (XRD unit), and UKZN (NMR, XRD, and EM unit) for providing logistical and technical assistance, training and support for me to accomplish the aims and objectives of this study. A special mention to the following individuals who assisted me from day one: Mrs G. Andrews, Dr P. Lekha, Mr N. Gounden, Mrs E. Sibande, Mr P. Seemela, and Dr B. Masina, I am grateful for all your advice and help.

To my colleagues and friends at CSIR, especially members of my research group, thank you all for your words of encouragement, support and friendship. Finally, I would like to express my heartfelt gratitude to my family, especially my siblings for their relentless support and unconditional love throughout this journey. Many thanks go to my friends
and acquired family, thank you for your prayers, love, encouragement, and emotional support.
DEDICATION

To the loving memory of my late parents

Moeng and Abueng Ocuelwang

“If I have seen further in life, it is by standing on the shoulders of Giants.”
—Sir Isaac Newton
LIST OF CONFERENCES AND PUBLICATIONS

The findings reported in this thesis were presented at the following local and international conferences:


The following manuscripts emanating from the contents of this thesis have been prepared for publication in peer-reviewed journals:


# TABLE OF CONTENTS

PREFACE ................................................................................................................................. i

DECLARATION .......................................................................................................................... ii

ABSTRACT ................................................................................................................................. iii

ACKNOWLEDGEMENTS ........................................................................................................... vii

DEDICATION ........................................................................................................................... ix

LIST OF CONFERENCES AND PUBLICATIONS ................................................................. x

TABLE OF CONTENTS .......................................................................................................... xi

TABLE OF FIGURES ............................................................................................................... xv

LIST OF TABLES ..................................................................................................................... xviii

LIST OF ABBREVIATIONS AND SYMBOLS .......................................................................... xix

CHAPTER 1 – INTRODUCTION ............................................................................................. 1

1 Introduction ............................................................................................................................ 1

1.1 Motivation for the study ...................................................................................................... 2

1.2 Research question ............................................................................................................. 3

1.3 Aim and objectives ........................................................................................................... 4

1.4 Thesis outline .................................................................................................................. 4

CHAPTER 2 – LITERATURE REVIEW .................................................................................... 6

2 Introduction ............................................................................................................................ 6

2.1 Dissolving Wood Pulp (DWP) .......................................................................................... 7

2.2 Structure of cellulose ....................................................................................................... 9

2.2.1 Molecular structural level of cellulose ...................................................................... 9
2.2.2 Morphological structure of cellulose .............................................. 12
2.2.3 Supramolecular structure of cellulose .......................................... 14
2.3 Modification of cellulose I for production of cellulose derivatives .......... 17
  2.3.1 Viscose process: Regenerated cellulose ...................................... 18
  2.3.2 Alkali dissolution of cellulose .................................................. 21
2.4 Cellulose I reactivity and reactivity measurements ............................. 22
  2.4.1 Cellulose reactivity measurement: Fock method ............................ 24
2.5 Pretreatment of cellulosic materials ............................................... 25
  2.5.1 Biological pretreatment of cellulosic biomass ............................... 27
  2.5.2 Chemical pretreatment of cellulosic biomass ............................... 27
  2.5.3 Physical pretreatment of cellulosic biomass ................................ 28
2.6 Radiation pretreatment of cellulose ................................................. 28
  2.6.1 Ionising radiation pretreatment ................................................. 30
  2.6.2 Non-ionising radiation pretreatment .......................................... 32
    2.6.2.1 Ultrasound irradiation pretreatment ..................................... 33
    2.6.2.2 Laser irradiation pretreatment .......................................... 37
2.7 Structural characterization of cellulose ........................................... 40
  2.7.1 Size Exclusion Chromatography Multi-Angle Light Scattering (SEC-
   MALS) ......................................................................................... 40
  2.7.2 X-Ray Diffraction (XRD) .......................................................... 42
  2.7.3 Cross-Polarization Magic Angle Spinning $^{13}$C-NMR (CP/MAS $^{13}$C-
   NMR) ......................................................................................... 44
  2.7.4 Atomic Force Microscopy (AFM) ................................................. 47
  2.7.5 Scanning Electron Microscopy (SEM) .......................................... 51
  2.7.6 Compact Morphological fibre (MorFi) Analyser ............................ 51
CHAPTER 3 – MATERIALS AND METHODS ................................................................. 53

3 Introduction ........................................................................................................... 53

3.1 Materials and methods ...................................................................................... 53

3.1.1 Dissolving wood pulp .................................................................................. 53

3.1.2 Chemical reagents ....................................................................................... 53

3.2 Methodology ...................................................................................................... 54

3.2.1 Pretreatment: Ultrasound irradiation ......................................................... 54

3.2.2 Pretreatment: Laser irradiation .................................................................. 54

3.3 Cellulose reactivity and dissolution tests ...................................................... 57

3.3.1 Alkali dissolution test .................................................................................. 57

3.3.2 Fock reactivity test ..................................................................................... 57

3.4 Characterization techniques ............................................................................. 60

3.4.1 Size Exclusion Chromatography Multi-Angle Light Scattering (SEC-MALS) .............................................................................................................. 60

3.4.2 X-Ray Diffraction (XRD) ........................................................................... 61

3.4.3 Cross Polarization Magic Angle Spinning $^{13}$C-NMR (CP/MAS $^{13}$C-NMR) .................................................................................................................... 62

3.4.4 Atomic Force Microscopy (AFM) ................................................................. 63

3.4.5 Scanning Electron Microscopy (SEM) ......................................................... 64

3.4.6 Compact Morphological Fibre (MorFi) analyser .......................................... 65

CHAPTER 4: RESULTS AND DISCUSSIONS – ULTRASOUND IRRADIATION 66

4 Introduction ......................................................................................................... 66

4.1 Ultrasound irradiation of cellulose ................................................................. 66

4.1.1 Size Exclusion Chromatography with Multi-Angle Light Scattering (SEC-MALS) results ................................................................. 66
4.1.2 X-Ray Diffractions (XRD) results ................................................................. 70
4.1.3 Atomic Force Microscopy (AFM) results .................................................... 75
4.1.4 Scanning Electron Microscopy (SEM) results ........................................... 76
4.1.5 Compact Morphological Fibre (MorFi) Analyser results ......................... 79

CHAPTER 5: RESULTS AND DISCUSSIONS – LASER IRRADIATION ............ 82

5 Introduction ........................................................................................................ 82

5.1 Laser irradiation pretreatment ....................................................................... 82

5.1.1 Size Exclusion Chromatography Multi-Angle Light Scattering .............. 82
(SEC-MALS) results .............................................................................................. 82

5.1.2 X-Ray Diffractions (XRD) results .............................................................. 89

5.1.3 CP/MAS $^{13}$C-Nuclear Magnetic Resonance (CP/MAS $^{13}$C-NMR) results ................................................................................................................. 93

5.1.4 Atomic Force Microscopy (AFM) results ................................................... 97

5.1.5 Scanning Electron Microscopy (SEM) results ......................................... 100

5.2 Cellulose reactivity results (Fock test method) ............................................ 103

CHAPTER 6 – CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER RESEARCH .................................................................................................. 107

6 Introduction ........................................................................................................ 107

6.1 Conclusions .................................................................................................... 107

6.2 Recommendations for further research ....................................................... 110

REFERENCES ....................................................................................................... 112
# TABLE OF FIGURES

Figure 2.1: Dissolving wood pulp end-uses and end products ........................................... 8

Figure 2.2: Molecular structure of cellulose ........................................................................... 10

Figure 2.3: The structure of intra-(dotted lines) and inter-molecular (dashed lines) hydrogen bonds in natural cellulose ........................................................................................................ 11

Figure 2.4: Arrangement of cellulose fibrils, microfibrils and cellulose molecules in the plant cell wall ........................................................................................................................................ 13

Figure 2.5: An illustration of the plant cell wall structure with the different cell wall layers ........................................................................................................................................ 14

Figure 2.6: A schematic diagram of the mode of unit cell chain packing of the two crystalline polymorphs of cellulose I: (A) Triclinic unit cell (Iα) and (B) Monoclinic (Iβ) ....................................................................................................................................... 16

Figure 2.7: A schematic diagram of the formation of cellulose polymorphs .................. 17

Figure 2.8: Viscose manufacturing process ............................................................................. 19

Figure 2.9: A schematic diagram showing the effect of lignocellulosic biomass pretreatment .................................................................................................................................................................................. 25

Figure 2.10: Electromagnetic spectrum of radiation energy .............................................. 29

Figure 2.11: Mechanism of ultrasound irradiation of lignocellulosic biomass ........... 34

Figure 2.12: A schematic diagram of amorphous (accessible) and crystalline (inaccessible) region of cellulose ........................................................................................................................................ 35

Figure 2.13: A schematic representation of the Bragg’s Law reflection ....................... 43

Figure 2.14: The overall CP/MAS $^{13}$C-NMR spectrum of cellulose I showing the crystalline and non-crystalline regions and carbon atoms assignments on the AGU .... 46

Figure 2.15: The C-4 region spectral fitting of quantitative cellulose I CP/MAS $^{13}$C-NMR spectrum with the respective signal assignments .................................................. 47
Figure 2.16: A schematic presentation of the transverse section of the S2 cell wall layer displaying the cellulose microfibrils and cellulose fibril aggregates

Figure 2.17: A schematic diagram of an AFM

Figure 3.1: A schematic diagram of the experimental setup of laser irradiation of DWP samples

Figure 4.1: SEC-MALS chromatograms of dissolving pulp samples ultrasonicated for 10, 20, 30, 45 and 60 minutes compared to the control sample

Figure 4.2: SEC-MALS chromatograms of the ultrasound irradiated-alkali cellulose samples (cellulose II) compared to cellulose I-control and alkcell control

Figure 4.3: Superimposed XRD pattern for dissolving pulp samples after ultrasound irradiation compared to the control sample

Figure 4.4: Superimposed XRD patterns of dissolving pulp samples after ultrasound irradiation and treatment with aqueous NaOH solution

Figure 4.5: AFM 1x1 μm phase images of the cross-section of secondary cell wall (S2) layer for the ultrasound irradiated pulp samples compared to the control

Figure 4.6: SEM images of pulp samples after ultrasound irradiation (10, 20, 30, 45 and 60 minutes) compared to the control

Figure 4.7: SEM images of pulp samples after ultrasound irradiation and treatment with aqueous NaOH solution compared to the control

Figure 5.1: SEC-MALS chromatograms of the Nd:YAG laser irradiated samples (λ=2.66 nm for 15, 30 and 45 minutes) and control sample

Figure 5.2: SEC-MALS chromatograms of the Nd:YAG laser irradiated samples (λ=355 nm for 15, 30 and 45 minutes) and control sample

Figure 5.3: SEC-MALS chromatograms of the CO₂ laser irradiated samples (λ=10.6 μm for 15, 30 and 45 minutes) and control sample
Figure 5.4: Decrease in molecular weight (Mw) of irradiated samples with increasing pretreatment time (15, 30 & 45 minutes). ................................................................. 88

Figure 5.5: Intrinsic viscosity of the laser irradiated samples as a function of time ...... 88

Figure 5.6: XRD pattern for dissolving pulp samples pretreated with the Nd:YAG laser at $\lambda = 266$ nm ................................................................. 90

Figure 5.7: XRD pattern for dissolving pulp samples pretreated with the Nd:YAG laser at $\lambda = 355$ nm ................................................................. 90

Figure 5.8: Superimposed XRD pattern for dissolving pulp samples pretreated with the CO$_2$ laser at $\lambda = 10.6$ $\mu$m ................................................................. 91

Figure 5.9: Graphical representation of the XRD %CrI results as a function of laser treatment time (0, 15, 30 and 45 minutes). ................................................................. 93

Figure 5.10: C-4 region of the $^{13}$C-NMR spectra of the pulp samples irradiated with Nd:YAG laser at $\lambda = 266$ nm for 15, 30 and 45 minutes compared to the control....... 95

Figure 5.11: C-4 region of the $^{13}$C-NMR spectra of pulp samples irradiated with Nd:YAG laser at $\lambda = 355$ nm for 15, 30 and 45 minutes compared to the control.................... 95

Figure 5.12: C-4 region of the $^{13}$C-NMR spectra of the pulp samples irradiated with CO$_2$ laser at $\lambda = 10.6$ $\mu$m for 15, 30 and 45 minutes compared to the control .................. 96

Figure 5.13: Graphical representation of the solid state $^{13}$C NMR %CrI results as a function of treatment time (0, 15, 30 and 45 minutes). ................................................................. 97

Figure 5.14: 1x1 $\mu$m AFM scans of the secondary plant cell wall (S2) layer for the pulp samples irradiated with Nd:YAG and CO$_2$ lasers and the untreated control sample. .... 98

Figure 5.15: SEM images of pulp samples pretreated with laser radiation at three different wavelengths for different treatment times compared to the control .................. 102

Figure 5.16: A plot of the Fock reactivity of cellulose pulp samples after laser irradiation as a function of treatment time (0, 15, 30 and 45 minutes). ................................................................. 105
LIST OF TABLES

Table 2.1: Effect of various pretreatment techniques on the processability and reactivity of cellulosic biomass ................................................................. 26

Table 2.2: Typical ranges of Mw and PDI for different cellulose pulps ................. 42

Table 4.1: Average molecular weight distribution (MWD) results after ultrasound irradiation ........................................................................................................... 68

Table 4.2: Average MWD results after ultrasound irradiation and alkali dissolution treatment ........................................................................................................... 70

Table 4.3: Average crystallinity index (CrI) results after ultrasound irradiation .... 72

Table 4.4: Average CrI results after ultrasound irradiation and alkali treatment .... 74

Table 4.5: Average LFAD results for ultrasound irradiated pulp samples .............. 76

Table 4.6: MorFi analysis of pulp samples after ultrasound irradiation compared to the untreated control ................................................................................................. 80

Table 5.1: SEC-MALS MWD results of the samples irradiated with Nd:YAG laser at \( \lambda = 266, 355\text{nm} \) and \( \text{CO}_2 \) laser at \( \lambda = 10.6\mu\text{m} \) .......................................................................................................................... 86

Table 5.2: XRD results showing the effect of irradiation time on %CrI .................... 92

Table 5.3: Calculated CrI results for Nd:YAG and \( \text{CO}_2 \) laser irradiated samples .... 96

Table 5.4: Calculated average lateral fibril aggregate dimensions (LFAD) results ....... 100

Table 5.5: Fock test reactivity results for laser irradiated samples ......................... 105
# LIST OF ABBREVIATIONS AND SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>Alpha</td>
</tr>
<tr>
<td>AFM</td>
<td>Atomic Force Microscopy</td>
</tr>
<tr>
<td>AGU</td>
<td>Anhydroglucose unit</td>
</tr>
<tr>
<td>Alkcell</td>
<td>Alkali cellulose</td>
</tr>
<tr>
<td>β</td>
<td>Beta</td>
</tr>
<tr>
<td>CO₂</td>
<td>Carbon dioxide</td>
</tr>
<tr>
<td>CP/MAS</td>
<td>Cross Polarization / Magic Angle Spinning Nuclear Magnetic Resonance</td>
</tr>
<tr>
<td>CrI</td>
<td>Crystallinity Index</td>
</tr>
<tr>
<td>CS₂</td>
<td>Carbon disulphide</td>
</tr>
<tr>
<td>DP</td>
<td>Degree of Polymerization</td>
</tr>
<tr>
<td>DWP</td>
<td>Dissolving Wood Pulp</td>
</tr>
<tr>
<td>EB</td>
<td>Electron beam</td>
</tr>
<tr>
<td>γ</td>
<td>Gamma</td>
</tr>
<tr>
<td>[η]</td>
<td>Intrinsic viscosity</td>
</tr>
<tr>
<td>LASER</td>
<td>Light Amplification by Stimulated Emission of Radiation</td>
</tr>
<tr>
<td>LFAD</td>
<td>Lateral Fibril Aggregate Dimensions</td>
</tr>
<tr>
<td>Min</td>
<td>Minutes</td>
</tr>
<tr>
<td>Mn</td>
<td>Number average molar mass</td>
</tr>
<tr>
<td>Mw</td>
<td>Weight average molar mass</td>
</tr>
<tr>
<td>MorFi analyser</td>
<td>Morphological fibre analyser</td>
</tr>
<tr>
<td>MWD</td>
<td>Molecular weight distribution</td>
</tr>
<tr>
<td>NaOH</td>
<td>Sodium Hydroxide</td>
</tr>
<tr>
<td>Nd:YAG</td>
<td>Neodymium Yttrium Garnet</td>
</tr>
<tr>
<td>nm</td>
<td>nanometer</td>
</tr>
<tr>
<td>PDI</td>
<td>Polydispersity Index</td>
</tr>
<tr>
<td>PHK</td>
<td>Pre-hydrolysis Kraft</td>
</tr>
<tr>
<td>rpm</td>
<td>Revolutions per minute</td>
</tr>
<tr>
<td>SEC-MALS</td>
<td>Size Exclusion Chromatography with Multi-Angle Light Scattering</td>
</tr>
<tr>
<td>SEM</td>
<td>Scanning Electron Microscopy</td>
</tr>
<tr>
<td>S1</td>
<td>Outer layer of the secondary plant cell wall</td>
</tr>
<tr>
<td>S2</td>
<td>Middle layer of the secondary plant cell wall</td>
</tr>
</tbody>
</table>
S3 – Inner layer of the secondary plant cell wall
SSA – Specific Surface Area
Θ – Theta
μm – micrometre
UT – Ultrasound Treated
XRD – X-Ray Diffraction
CHAPTER 1 – INTRODUCTION

1 Introduction

The global market for dissolving wood pulp (DWP) continues to grow exponentially due to the high demand for high-value end products that are derived from this natural resource (Sixta et al., 2013; ReportLinker, 2014). DWP refers to chemically refined pulp that contains more than 90% cellulose content and low hemicelluloses and lignin content. This type of pulp is used as raw material for the production of cellulose based products such as viscose rayon, cellophane, cellulose ethers, cellulose esters and films (Chunilall et al., 2006; Liu et al., 2016). Cellulose derivatives and products find application in various industries including pharmaceuticals, automobile, food, textiles and clothing, paints, packaging, as well as in many household uses (Durbak, 1993; Azeredo, 2009; Jahan & Rahman, 2012; Shokri & Adibkia, 2013).

For decades, cellulose has been a subject of interest and extensive research because of its complex structure that limits its industrial application. The main hindrance of cellulose reactivity is its highly ordered crystalline structure that has crystallinity that varies between 60 and 70% depending on the source (Kollman & Côté, 1968; Weightman et al., 2007). The high crystallinity in the cellulose structure results from the strong inter- and intramolecular hydrogen bond interactions formed between the molecular chains of this polymer (Kong & Eichhorn, 2005; Hu et al., 2014). As a consequence, the accessibility and reactivity of cellulose are limited, and the full potential of this valuable macromolecule is severely limited (Engstrom et al., 2006; Ioelovich, 2009; Hu et al., 2014).

Extensive research has been carried out on various pretreatment methods with the aim of increasing cellulose accessibility and reactivity. This phenomenon is known as cellulose activation. Cellulose activation relates to the treatment of raw cellulose materials to disrupt the high crystalline structure of cellulose, thus making more hydroxyl (-OH) groups available for chemical reactivity. Conventional techniques used for cellulose activation are either physical, mechanical or chemical (Takacs et al., 2001; Hu et al., 2014). Cellulose activation alters the crystal structure of cellulose and increases the porosity of the polymer thus increasing specific surface area and chemical accessibility (Kunze & Fink, 2005; Takacs et al., 2001).
There is limited research on the application of ultrasound and laser irradiation as possible pretreatment methods for cellulose activation. Hence, this study investigated the effect of laser radiation on the structure of cellulose, and this was compared to the effect of the conventional ultrasound radiation pretreatment. The study investigated and compared the effect of both techniques on cellulose structure. Furthermore, an analysis of how laser irradiation affects cellulose reactivity and how ultrasound irradiation influences dissolution of cellulose in alkali were carried out. These assessments were performed to determine the potential of these pretreatment technologies as auxiliary steps into cellulose derivatization and dissolution process.

1.1 Motivation for the study

The cellulose processing industry is currently experiencing environmental and economic challenges due to the use of large amounts of chemical reagents in cellulose derivatization processes. Production of viscose rayon with the viscose process requires concentrated sodium hydroxide and carbon disulphide (CS₂) to break down the highly crystalline structure of cellulose for production of viscose rayon fibres (Shen et al., 2010). This process is still one of the principal methods for production of cellulose derivatives, but it is plagued by many weaknesses. The viscose process produces harmful environmental and atmospheric by-products that are costly and challenging to recover, and contribute to the emission of greenhouse gases (GHG) (Szabó et al., 2009; Shen et al., 2010). Complete elimination of these conventional cellulose processing methods is still not possible because application of most environmentally benign methods is still at research level. Until alternative, environmentally friendly, and economically viable cellulose processing techniques are fully developed and industrialised, continuous research in this field is essential.

The concept of incorporating cellulose biomass pretreatment with derivatization processes is a subject that has been under extensive research for decades. One of the pretreatment techniques that has been widely reported is the use of high-energy radiation sources for cellulose activation. Some of the radiation techniques that have been used include gamma, X-rays, electron beam, microwave, and ultrasound (Imamura et al., 1972; Takács et al., 1999; Cleland et al., 2003; Kaczmarek et al., 2005; Byun et al., 2008). However, these technologies use energy intensive, expensive equipment that is
not readily available. For this reason, no commercial applications are using them. Very few studies have investigated the use of low-energy radiation sources for pretreatment of this polymer with the intention of producing cellulose derivatives. Hence, in this study, the effect of ultrasound and laser irradiation on the structure of cellulose was investigated. Ultrasound and laser irradiation techniques are classified as non-ionising radiation sources; they are relatively low energy radiation sources compared to conventional ionising radiation sources.

The novelty of this study lies in the application of laser radiation technology for pretreatment of cellulose with interest to explore its potential as an auxiliary pretreatment step to cellulose derivatization. There is currently no research on laser irradiation pretreatment of dissolving wood pulp, with the aim of disrupting the structure of cellulose for production of valuable cellulose derivatives. Ultrasound irradiation, on the other hand, is a well-established conventional non-ionising radiation technique that has been explored broadly for polymer degradation including cellulosic materials. Ultrasound irradiation makes use of acoustic sound waves with a frequency range 20 – 100 kHz medium to generate ultrasound power.

To the best of our knowledge, a contrast of the efficiency of laser and ultrasound irradiation pretreatment of DWP has not yet been reported. This study has the potential to develop into the “green chemistry” concept for cellulose activation since these two pretreatment techniques are environmentally clean and they do not require the use of chemicals. Furthermore, results obtained from the overall study will add new information to the knowledge base of the science community.

1.2 Research question

This project is an exploratory study that compares the effect of two physical pretreatment techniques, the laser and ultrasound irradiation on the structure of cellulose. Experimental tests were carried out on the particular pretreatment methods in a quest to answer the research questions below:

- What is the effect of ultrasound irradiation on the structure of cellulose (in comparison to laser radiation), and what is the impact of this pretreatment on alkali dissolution of cellulose?
Can laser irradiation pretreatment of dissolving wood pulp impact the structural properties of cellulose, and help improve its accessibility and reactivity?

1.3 Aim and objectives

The primary focus of this project was to investigate the impact of ultrasound and laser radiation pretreatment on the structure of cellulose I and to further determine the effect of both the pretreatment techniques on the accessibility and reactivity of cellulose to chemical solvents by alkali dissolution test and Fock test method respectively.

Objectives of study:

- To determine and compare the effect of ultrasound (benchmark technique) and laser irradiation on the structural properties of cellulose in DWP;
- To analyse, and evaluate, the effect of neodymium yttrium garnet (Nd:YAG) and carbon dioxide (CO₂) lasers on the structure of cellulose;
- To determine the effect of laser irradiation pretreatment on the reactivity of cellulose (Fock reactivity test);
- To evaluate the effect of ultrasound irradiation pretreatment on the solubility of cellulose in sodium hydroxide (Alkali dissolution tests).

1.4 Thesis outline

This research study is composed of six chapters. Chapter one gives a brief background, motivation, research question, as well as the main aim and objectives of this study.

Chapter two presents a literature review of this study. An extensive review of cellulose, its sources, structure, and applications is given. Furthermore, discussions on the conventional viscose process and alkali dissolution method used for derivatization of cellulose I to cellulose II are presented. The chapter also outlines a background of the different types of pretreatment methods that are used for cellulose, the benefits and weaknesses of the methods are defined. Chapter two is concluded by a discussion of the techniques that were employed for structural characterization of cellulose in this study.
Chapter three describes the experimental protocols used in this study. This chapter details a list of materials that were utilised in the study, and it gives details of the pretreatment methods as well as the characterization techniques that were employed. Furthermore, a description of cellulose reactivity and dissolution test methods is given, and the chapter concludes with a description of the characterization techniques that were used for structural analysis.

Chapters four and five respectively present discussions of results and observations that were attained in this study. Chapter four is a presentation of structural characterization results of DWP samples after pretreatment with ultrasound irradiation and dissolution in aqueous NaOH solution. Chapter five is divided into two sections, the first section is a presentation of structural characterization results after laser irradiation and the second section presents the cellulose reactivity results.

Chapter six gives a summary of the main findings and results obtained from this study, as well as conclusions. Furthermore, recommendations for future work are outlined. A reference list of all the literature consulted in this study is provided at the end of the thesis.
CHAPTER 2 – LITERATURE REVIEW

2 Introduction

Woody plants are the primary source of the lignocellulosic biomass which mainly comprises of cellulose, hemicellulose, and lignin. Of these three biopolymers, cellulose is the main component that accounts for 40-55% of the plant cell wall and is wrapped in a matrix of hemicellulose and lignin which account for 20-35% and 5-30% respectively (Atalla, 1990; Jarvis, 2000; Harmsen et al., 2010). Lignocellulosic materials, in particular, cellulose, find industrial applications in a variety of fields. Cellulose is first modified and converted to various cellulose derivatives and high-value end products (Ostberg et al., 2012; Iqbal et al., 2013).

However, the production of these valuable cellulose derivatives is hindered by the resistance of this biopolymer to different processing techniques. Moreover, this recalcitrant nature of cellulose restricts its commercial and large scale applications (Zhao et al., 2007; Iqbal et al., 2013). As a result, extensive research has been undertaken to evaluate the effect of various pretreatment technologies on the structure of lignocellulosic materials. The use of high-energy radiation sources for pretreatment of lignocellulosics has progressively developed over the years to the extent of being incorporated into the cellulose processing industry (Los Alamos Science, 1995; Takacs et al., 2000; Cleland et al., 2003; Weightman et al., 2007; Byun et al., 2008). A review by Rajgopal & Stepanik (1996) highlighted that electron processing technologies have the potential to alter the degree of polymerization of cellulose, improve the rate of cellulose derivatization, and ultimately save production costs. However, the efficiency of these pretreatment technologies is directly dependent on the energy input, and this is one of the major drawbacks of these techniques. For example, in a year, 50 000 tonnes of pulp would require an energy of 50 kiloWatts (kW) for processing (Rajagopal & Stepanik, 1996).

Various scholars have widely reviewed and contrasted the different types of high-energy radiation sources that are used in industry. However, low-energy radiation sources have not received much attention, and there are few reports on their application as pretreatment techniques for cellulose activation. Therefore, this chapter expands on the different high-energy radiation sources, previously reported benefits and shortcomings of these technologies. Furthermore, a review of the low-energy radiation sources is made, and the
focus is mainly on the evolution and application of ultrasound and laser radiation sources as pretreatment techniques for lignocellulosic materials. For the purpose of this study, the discussion is centred on the pretreatment of dissolving wood pulp (DWP).

An overview of current methods used for pretreatment of cellulosic biomass is provided together with conventional radiation techniques that have been used for pretreatment of this polymer. Structural changes that occur due to exposure of these materials to radiation pretreatment are discussed. Finally, the application of laser and ultrasound radiation pretreatment on cellulose is explored, as well as the current status and possible prospects of these technologies in the field of cellulose derivatization.

2.1 Dissolving Wood Pulp (DWP)

Dissolving pulp, also known as dissolving cellulose, refers to chemically refined bleached pulp that has more than 90% pure cellulose content (Chunilall et al., 2006; Strunk, 2012; Bodhlyera et al., 2015). Because of its high molecular weight cellulose content, and low hemicellulose content, dissolving pulp is also called alpha cellulose (α-cellulose) (Burton & Rasch, 1931; Weightman et al., 2007). The α-cellulose content is measured by the insolubility of cellulosic materials in a mercerising caustic solution under certain fixed conditions (Burton & Rasch, 1931). Dissolving pulp can be produced from cotton linters, and wood, with the latter being the primary source (Wilkes, 2001). Over 80% of the dissolving pulp manufactured in the world is extracted from woody plants, softwood (e.g. pine and spruce) and hardwood (e.g. beech and eucalyptus) species (Sixta, 2006; Liu et al., 2016). When the pulp is produced from wood, it is referred to as “dissolving wood pulp” (DWP).

DWP is extracted from wood by chemical pulping and subsequent bleaching processes. Chemical pulping entails treatment or cooking of wood chips in aqueous chemical solvents at high temperature and pressure to dissolve lignin that binds cellulose fibres together and to remove hemicellulose and extractives. The two main processes that are used for the production of this precious commodity are pre-hydrolysis Kraft (PHK) and acid bisulphite pulping processes (Jahan et al., 2008; Gehmayr et al., 2011; Bodhlyera et al., 2015). The pulping process modifies the cellulose fibres by dissolving the majority of hemicellulose and lignin in preparation for the bleaching process. The main aim of
bleaching is to remove the residual lignin, to improve pulp brightness and purity. This is achieved by treating the pulp with oxidative bleaching agents which depolymerise lignin, remove hemicellulose, and decrease extractives (Durbak, 1993; Gümüskaya et al., 2003; Jahan et al., 2008; Bodhlyera et al., 2015). Depending on the type of bleaching sequence followed during the refining process, DWP can be classified into different alpha grades which can vary between 90 and 96% (Durbak, 1993; Liu et al., 2016).

The high purity, brightness and even molecular weight of dissolving cellulose are some of the attractive features of this precious resource that distinguish it from ordinary paper and paperboard pulps (Strunk, 2012; Bodhlyera et al., 2015). Because of this reasons, dissolving cellulose is used as the primary raw material for a broad range of applications, and derivatization of various products as shown in Figure 2.1 (Azeredo, 2009; Ibarra et al., 2010; Teras & Jokinen, 2010; Iqbal et al., 2013).

Figure 2.1: Dissolving wood pulp end-uses and end products, adapted from (Teras & Jokinen, 2010).
DWP undergoes a variety of manufacturing processes such as nitration, acetylation, xanthation which is also known as the viscose process, and other processes that are used for the production of various cellulose based end-products. These manufacturing processes are classified according to the different alpha grades used to produce these cellulose derivatives. For example, 90%, 92-94% and 96% α-cellulose are respectively utilised for the production of microcrystalline cellulose (MCC), viscose, and cellulose acetate (Chunilall et al., 2010; Liu et al., 2016).

2.2 Structure of cellulose

Cellulose is one of the most abundant, biodegradable natural molecules found on Earth. This biopolymer is well known for its distinctive properties that make it attractive for conversion into useful cellulose derivatives (Engstrom et al., 2006; Sixta et al., 2013). Conversion of cellulose to these valuable materials is largely dependent on the accessibility and reactivity of this biopolymer. High cellulose accessibility and reactivity are essential for a homogeneous substitution of the hydroxyl (-OH) groups to produce high-quality products. Therefore, knowledge and understanding of the structural arrangement of cellulose are necessary. Naturally, cellulose has a complex structural arrangement that can be described in three fundamental levels; molecular, morphological and supramolecular (Atalla, 1990; Kopcke, 2010; Strunk, 2012). These levels are representative of a polymer with an entwined structural system. Thus, the description of each level demonstrates the link from one level to another.

2.2.1 Molecular structural level of cellulose

Cellulose was first discovered and isolated from plants by a French chemist called Anselme Payen in 1838 (Hon, 1994; Hallac & Ragauskas, 2011). In his research, Payen characterised cellulose into its chemical constituents and reported that it had the empirical formula C₆H₁₀O₅ (O'Sullivan, 1997; Klemm et al., 2005). Cellulose is primarily sourced from plants as it is a fundamental constituent of the plant cell wall. It can also be extracted from algae, bacteria, fungi and other marine species such as tunicates (Klemm et al., 2005; Esa et al., 2014). Approximately 10¹¹-10¹² tonnes of pure cellulose are produced by plants annually through the process of photosynthesis (O'Sullivan, 1997; Klemm et al., 2005; Siquera et al., 2010).
Cellulose is a fibrous polymer that is insoluble in water, dilute acidic and alkaline solutions at average temperature. Apart from being naturally abundant and affordable, cellulose is biocompatible, biodegradable, and renewable with excellent mechanical properties. For this reasons, cellulose is used in various industries such as nanotechnology, pharmaceuticals, medicine, and in biorefinery for production of biofuels, biocomposites and other natural products (O'Sullivan, 1997; Czaja et al., 2006; Azeredo, 2009; Shokri & Adibkia, 2013).

Cellulose is a linear homopolysaccharide formed by β-D-anhydroglucose units (AGU) that are covalently linked together by (1→4) glycosidic bonds between the equatorial -OH group at C4 and the C1 carbon atom. The basic building block of cellulose is made up of repetitive units of glucose monomers referred to as cellubiose; they form a linear cellulose chain as displayed in Figure 2.2. Each AGU is arranged in a chair conformation with three –OH groups in an axial position on carbon atoms C2, C3 and C6 of cellulose (O'Sullivan, 1997; Klemm et al., 2005; Lavoine et al., 2012; Peng et al., 2013; Eriksson, 2014).

![Figure 2.2: Molecular structure of cellulose, adapted from (Klemm et al., 2005).](image)

The arrangement of the -OH groups in cellulose fibres is responsible for its crystalline fibrous structure. Native cellulose comprises of long straight monomer chains that are aligned parallel to each other, with a large number of -OH groups evenly distributed on both sides of the anhydroglucose units. The parallel alignment of the cellulose chains and
the distribution of the -OH groups on the polymer chains allow for the formation of strong intra- and inter-molecular hydrogen bonds. The intramolecular hydrogen bonds form between the -OH groups of the same cellulose chain, while intermolecular hydrogen bonds form between adjacent cellulose chains, thus creating a crystalline cellulose structure (Siqueira et al., 2010; Harmsen et al., 2010; Eriksson, 2014). In intramolecular hydrogen bonding, two bonds form per one glucose unit; the first one forms between the hydroxyl group on the C3 carbon and the ring oxygen atom of the neighbouring AGU (-O3-H--O5) and the second bond forms between the hydroxyl groups on C2 and C6 carbons atoms (-O6-H---O2-H). Concerning the intermolecular hydrogen bonding, only one bond exist per glucose unit. The bond occurs between the C6 –OH group of one and the C3 –OH group of the next cellulose chain (Gardner & Blackwell, 1974; Festucci-Buselli et al., 2007).

Cellulose is not a chemically homogeneous polymer; each terminal of its molecular chains consists of two different glucose residues, the non-reducing and the reducing end groups (Figure 2.3). The non-reducing end comprises a closed ring structure with an alcoholic hydroxyl group on the C4 carbon. On the other end, at the C1 carbon atom, the reducing end group is comprised of an open chain aldehyde group. Aldehyde groups can form a pyranose ring, and this is in equilibrium with the cyclic hemiacetal form (Festucci-Buselli et al., 2007; Kopcke, 2010).

![Figure 2.3: The structure of intra-(dotted lines) and inter-molecular (dashed lines) hydrogen bonds in natural cellulose, adapted from (Festucci-Buselli et al., 2007).](image)
The structure of cellulose is characteristic of having high molecular weight (Mw) and degree of polymerization (DP). The DP is one of the most important features of cellulose that have a significant influence on the reactivity and derivatization of this biomolecule. It refers to the number of AGUs that make up the cellulose polymer chain; it is an expression of the polymer chain length (Klemm et al., 2005; Harmsen et al., 2010). The value of DP can vary considerably depending on the source of the polymer, for example, some scholars have reported that the DP value for bacterial cellulose ranges between 2000 to 8000 AGUs, and that plant and cotton celluloses have a DP of approximately 10000 and 15000 AGUs respectively. The DP has a significant influence on various properties of cellulose including the molecular weight distribution (O'Sullivan, 1997; Somerville, 2006; Lavoine et al., 2012).

### 2.2.2 Morphological structure of cellulose

The morphological structure of cellulose primarily describes the arrangement of microfibrils into fibril aggregates to form fibre wall layers within this biopolymer. Cellulose is a relatively stable polymer; its structure consists of a network of microfibrils made from aggregated chains of cellulose molecules that are aligned parallel to each other and held together by strong hydrogen bonds (Klemm et al., 2005; Carlmark et al., 2012). Microfibrils are considered the smallest units in the morphology of plant cell wall; their diameter is approximately 3-4 nm. The microfibrils also agglomerate with each other to form large units referred to as macrofibrils or cellulose fibril aggregates which have a diameter of 20-25 nm (Figure 2.4).
Figure 2.4: Arrangement of cellulose fibrils, microfibrils and cellulose molecules in the plant cell wall, adapted from (Funes, 2013).

The cellulose fibril aggregates are tightly held together by intra- and intermolecular hydrogen bonds, dipole interactions and van der Waals interactions (Fahlén & Salmén, 2002; Fahlén & Salmén, 2005; Donaldson, 2007; Harmsen et al., 2010). Thorough knowledge of the arrangement of cellulose chains within the molecule is essential for improving the reactivity and accessibility of cellulose, for the production of cellulose derivatives (Zuckerstatter et al., 2009; Ostberg et al., 2012).

The structure of the fibre cell wall consists of several distinct layers: primary cell wall (P), secondary cell wall (S), the lumen (L) as well as the middle lamella (ML) which serves as a binding agent between adjacent cells. The secondary cell wall can be divided further into three layers known as S1, S2, and S3. The three layers are differentiated from each other by the arrangement of the cellulose fibrils (Akerholm, 2003; Frone et al., 2011; Chuniilall et al., 2012). The S2 layer is the most important structural component of the cell wall; it accounts for 40-90% of the total cell wall thickness. Moreover, it has a significant influence on the physical properties, and it gives plants their mechanical strength (Tabet & Aziz, 2013; Rafsanjani et al., 2014). A schematic description of the fibre cell wall is shown in Figure 2.5.
2.2.3 Supramolecular structure of cellulose

The degree of cellulose crystallinity, in particular, surface area, and porosity are the main parameters that describe the supramolecular structure of cellulose. These properties of the cellulose structure have a significant influence on the mechanical properties of cellulose pulp as well as its reactivity and accessibility towards chemical processing (Josefsson et al., 2001; Aldaeus et al., 2015; Peciulyte et al., 2015). The cellulose structure comprises of hydrogen bonded β-D-(1→4)-glucan units which are agglomerated together into microfibrils also referred to as “cellulose fibril aggregates.” The cellulose fibril aggregates are what forms the cellulose fibres which are the building block of the plant cell walls. Cellulose fibrils are made up of crystalline regions with highly ordered cellulose chains as well as non-crystalline regions that are less ordered. The less ordered cellulose chains are also referred to as “amorphous regions” (Fahlén & Salmén, 2003; Fahlén & Salmén, 2005; Aldaeus et al., 2015).

The ratio of crystalline to non-crystalline regions in cellulose is a major factor that affects the accessibility and reactivity of cellulose. The high crystalline regions of the cellulose act as a barrier rendering the polymer insoluble in conventional solvents and resistant to hydrolysis (O’Sullivan, 1997; Kontturi et al., 2006; Carlmark et al., 2012). The degree of crystallinity in the cellulosic material is usually described using the crystallinity index.
(CrI). The crystallinity index of natural cellulose is reported to range from 40-95% with the remainder of the material being non-crystalline cellulose (Quiroz-Castañeda & Folch-Mallol, 2013).

Cellulose exists in six different crystalline domains labelled: cellulose I, II, IIIa, IIIb, IVa, and IVb. The polymorphic properties of cellulose have been widely studied with various spectroscopic and diffractometric techniques, such as X-ray diffraction (XRD), synchrotron X-ray, neutron fibre diffraction, and solid state $^{13}$C nuclear magnetic resonance (NMR). Other characterization techniques that have been used include, the Fourier transform infrared (FTIR), and Raman spectroscopy (Atalla, 1990; O’Sullivan, 1997; Atalla & VanderHart, 1999; Nishiyama et al., 2002; French & Cintrón, 2013).

Several research groups have reported that natural cellulose in higher plants exists in a crystalline form and that it is a composite of coexisting phases. Atalla et al. (1980) and Festucci-Buselli et al. (2007) indicated that native cellulose consists of two crystalline polymorphic forms which are cellulose Iα and Iβ. Other scholars have however argued that cellulose comprises of three crystalline forms including the para-crystalline cellulose which is a mixture of cellulose of Iα and Iβ. Compared cellulose Iα and Iβ, para-crystalline cellulose is said to have low crystalline order, but more ordered than amorphous cellulose (Hallac & Ragauskas, 2011; Quiroz-Castaneda & Folch-Mallol, 2013). The crystalline chain packing of cellulose Iα is described as having a triclinic unit cell with one chain, while cellulose Iβ has a monoclinic unit cell with two parallel chains (Figure 2.6) (Koyama et al., 1997; Hallac & Ragauskas, 2011; Quiroz-Castaneda & Folch-Mallol, 2013). The triclinic Iα phase is metastable; it can readily convert into the more stable monoclinic Iβ phase by hydrothermal alkaline treatments and annealing (O’Sullivan, 1997; Poletto et al., 2014).

The molecular chains of these two cellulose crystal forms have the same alignment, sheets of hydrogen bonded cellulose chains are stacked parallel on top of each other. However, the differentiating factor between their structures is the hydrogen bonding pattern, the chain conformation as well as the arrangement of the cellulose molecules within the unit cell. This distinction is mainly observed in the relative displacement of cellulose sheets that exist along the (110) lattice plane in the triclinic structure and the
(200) lattice plane in the monoclinic structure called “hydrogen-bonded” planes (Quiroz-Castaneda & Folch-Mallol, 2013; Poletto et al., 2014). The quantity of each crystal form depends on the source of cellulose. For example, while higher plants synthesise both crystalline structures, the predominant phase is cellulose ßβ, whereas phase ßα is abundant in the cell wall of lower plants and bacterial cellulosics (Brown, 1999; Atalla & VanderHart, 1999; Sun et al., 2008; Peng et al., 2013).

Figure 2.6: A schematic diagram of the mode of unit cell chain packing of the two crystalline polymorphs of cellulose I: (A) Triclinic unit cell (Iα) and (B) Monoclinic (Iß), adapted from (Koyama et al., 1997).

Cellulose I and II are the most studied crystalline forms of cellulose. Cellulose II is known to have more thermal stability than cellulose I; it is produced by treating cellulose I (natural cellulose) with an alkali solution by either mercerization or regeneration processes (Festucci-Buselli et al., 2007; Wada et al., 2008). These processes are irreversible; the cellulose microfibrils become swollen in a solvent, and this leads to a complete disruption of the highly ordered cellulose structure. The resulting cellulose II structure is made up of two monoclinic unit cells in which cellulose chains are stacked antiparallel to each other (O'Sullivan, 1997; Siqueira et al., 2010; Frone et al., 2011).
Figure 2.7 displays a schematic diagram of the interconversion processes of cellulose I into other cellulose polymorphs. Cellulose III\textsubscript{I} and III\textsubscript{II} form in reversible processes when celluloses I and II react with liquid ammonia (NH\textsubscript{3}) or with organic amines (RNH\textsubscript{2}) at lower temperatures in their reactions. Cellulose IV\textsubscript{I} and IV\textsubscript{II} polymorphs result when natural cellulose and regenerated cellulose react with glycerol at high temperatures (O'Sullivan, 1997; Rojas, 2013).

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{schematic_diagram.png}
\caption{A schematic diagram of the formation of cellulose polymorphs, adapted from (Rojas, 2013).}
\end{figure}

2.3 **Modification of cellulose I for production of cellulose derivatives**

The global market for dissolving wood pulp and its output continues to rise with the growing demand for regenerated cellulose and natural cellulose based products (Liu et al., 2016). This growth is motivated by the fact that cellulose possesses fundamental qualities that are not present in synthetic polymers such as biodegradability, renewability and natural abundance. The fibre and textile industry is still one of the major industries that use the dissolving wood pulp. Other industries where dissolving wood pulp finds application are pharmaceutical, food, painting, films, and more recently in the nanocrystalline and microcrystalline celluloses (NCC/MCC) industries (Stepanik et al., 2000; Iller et al., 2002; Ibarra et al., 2010). According to a report by (Sappi, 2014), over 80% of the dissolving wood pulp produced globally is used for the production of regenerated cellulose which is also known as viscose rayon. The viscose manufacturing industry is documented as the second largest consumer of cellulose in the world after the
paper industry (Stepanik et al., 1998; Cleland et al., 1999). Various methods including Lyocell and Cuprammonium process have been developed for the production of regenerated cellulose, but the conventional viscose process is still the most common method used to manufacture this commodity.

2.3.1 Viscose process: Regenerated cellulose

The viscose process is a conventional viscose producing method that was discovered in 1892 by a British chemist Charles F. Cross, and two of his co-workers, Edward Bevan and Clayton Beadle (Dee Snell, 1926; Heinze & Koschella, 2005). They learned that sodium hydroxide (NaOH) and carbon disulphide (CS$_2$) could be used to dissolve wood derived cellulose fibres into a viscous solution that they referred to as “viscose”. In 1893, these scientists were granted the first patent for their discovery (Wilkes, 2001; Shaikh et al., 2012). The viscose process became very popular in the textile industry due to its ability to chemically manipulate cellulose pulp into versatile artificial fibres used to manufacture rayon (Dee Snell, 1926; Wilkes, 2001). Furthermore, the viscose process was economically feasible regarding the type of chemical reagents that were utilised. As a result, it is still the most important, and widely used method in the rayon manufacturing industry (Dee Snell, 1926; Heinze & Koschella, 2005; Shaikh et al., 2012).

The main aim of the viscose process is to depolymerise cellulose and to adjust its molecular weight (Mw) to a level that is amenable for downstream processing (Stepanik et al., 1998; Ostberg et al., 2012). The viscose process involves a series of steps and chemical reactions. Figure 2.8 displays a schematic diagram of the viscose manufacturing process, and the main chemical reactions that occur during the process are illustrated below in equations (Eq. 2.1 to 2.4).
In the first step, cellulose fibres are soaked in an aqueous solution of sodium hydroxide (NaOH), with a concentration ranging between 17-20% (w/v), this process is known as mercerization.

During mercerization, NaOH causes the cellulose fibres to swell up, separate, and finally dissolution of short cellulose chains and low molecular weight carbohydrates. Mercerization induces depolymerization and enhances the accessibility of cellulose fibres, and subsequently leads to increased rate of hydrolysis (Millert et al., 1975; Engstrom et al., 2006). Ultimately, mercerization converts cellulose I to sodium cellulosate which is commonly known as alkali cellulose or the white crumb (Eq. 2.1).

$$\text{C}_6\text{H}_{10}\text{O}_4\text{OH} + \text{NaOH} \rightarrow \text{C}_6\text{H}_{10}\text{O}_4\text{ONa} + \text{H}_2\text{O} \quad 2.1$$ (Sodium cellulosate)

After mercerization, the swollen alkali cellulose (AC) mass is pressed to remove excess alkali solution to obtain a precise alkali to cellulose ratio, and shredded to increase the surface area of AC to ensure constant reactions in downstream viscose process steps. Subsequently, AC is aged or pre-ripened in a controlled environment for 8 to 12 hours at
40-50° C. During ageing, AC undergoes oxidation as it reacts with atmospheric oxygen. The oxidation step adjusts the viscosity of the solution, and further depolymerises the cellulose chain to the desired degree of polymerization (DP) before reaction with carbon disulphide (CS$_2$) (Morgan, 2005; Engstrom et al., 2006).

Following depolymerization and shredding, the AC mass is reacted with CS$_2$ in the xanthation step (E.q. 2.2) to produce a thick yellow-orange compound of sodium cellulose xanthate also called the yellow crumb and by-product salts such as sodium trithiocarbamate (Na$_2$CS$_3$) which are responsible for the dark orange colour change.

\[
C_6H_9O_4ONa + CS_2 \rightarrow C_6H_9O_4OCS_2Na \quad (2.2)
\]

(Sodium cellulose xanthate)

The thick yellow-orange complex of sodium cellulose xanthate is dissolved in dilute aqueous NaOH to produce a homogenous viscous orange slurry called viscose (E.q. 2.3).

\[
C_6H_9O_4OCS_2Na + NaOH \rightarrow \text{Viscose} \quad 2.3
\]

The formed viscose undergoes ripening and depolymerization for some time at a set temperature to improve the homogeneity of the degree of substitution (DS) (Weightman et al., 2007). After ripening, the viscose is filtered, degassed to remove air bubbles from the slurry, and forced through tiny spinnerette holes into a sulphuric acid (H$_2$SO$_4$) bath. This extrusion process is referred to as spinning, the xanthate groups on the viscous solution are hydrolyzed as the viscose dope coagulates into fine cellulose filaments when it comes into contact with the acid (Eq. 2.4). The regenerated cellulose filaments are referred to as “rayon”.

\[
C_6H_9O_4OCS_2Na + \frac{1}{2}H_2SO_4 \rightarrow C_6H_9O_4OH + CS_2 + \frac{1}{2}Na_2SO_4 \quad 2.4
\]

The rayon filaments are then stretched and strengthened in the drawing process. Finally, the fibres undergo a series of after-treatment steps; this entails bleaching of the fibres to enhance their brightness and purity and washing to remove impurities. Excess CS$_2$ is also recovered from the effluent and manufactured by-products such as hydrogen sulphide gas.
(H$_2$S), and sodium sulphate (Na$_2$SO$_4$) are also recovered and collected (Stepanik et al., 1998; Cleland et al., 1999; Christoffersson, 2005; Ostberg et al., 2012).

**Disadvantages of the viscose process**

The viscose process has proved to be successful in the production of viscose rayon for more than 100 years. However, this process is plagued by various challenges. The viscose process is widely known for its negative impact on the environment and toxic effect on human health. In the early 1940s, more than 100 cases of CS$_2$ poisoning were reported amongst factory employees in Piedmont within a two year period (Vigliani, 1954). In a similar study, Tiller et al. (1968) indicated that long-term exposure of workers to CS$_2$ at a viscose rayon factory was identified as the leading cause of coronary heart disease and subsequent death (Tiller et al., 1968). Thus, further research and development of eco-friendly and profitable methods that will not compromise the quality of the end products are required.

### 2.3.2 Alkali dissolution of cellulose

The structural complexity and molecular composition of cellulose render it insoluble in most common solvents, thus limiting its application (Zhang et al., 2002). The recalcitrance of the cellulose structure continues to be the driving force behind research to find environmentally friendly and non-degrading processes to dissolve this macromolecule. Direct dissolution of cellulosic biomass in an alkali solution is one method that has widely been studied. Alkali dissolution of cellulose is a longstanding method that has been used for cellulose modification. It is a process in which rigid inter- and intra-chain hydrogen bonding between the hydroxyl groups on the cellulose backbone are chemically broken down at a temperature below zero degrees. The aim of this process is to disrupt the crystal structure of cellulose to produce a clear solution of molecular cellulose (Wang, 2008; Olsson & Westman, 2013). The proposed mechanism for this disruption is that NaOH and water form a hydrate which breaks the inter- and intra-molecular hydrogen bonding network of this biopolymer (Medronho & Lindman, 2015).

Cellulose dissolution is different to mercerization because, in the latter process, the alkali solution interacts with the polymer as a swelling agent before xanthation occurs in the viscose process. In mercerization, the alkali solution works as a derivatizing solvent; it
reacts with one or all the –OH groups on the cellulose backbone to give an alkali-cellulose intermediate that is soluble in common solvents. This intermediate is the one that reacts with CS$_2$ as described in the viscose process (Olsson & Westman, 2013). Conversely, in cellulose dissolution, NaOH acts as a non-derivatizing solvent; it disrupts the forces that hold the cellulose molecules together without changing the chemical composition of the polymer (Isogai & Atalla, 1998; Olsson & Westman, 2013).

Complete dissolution of cellulose fibres in aqueous alkali solutions has been widely studied and reported by a variety of scholars. In their research, Zhang and co-workers have on separate studies indicated that their success in producing regenerated cellulose membranes and films by complete dissolution of cotton linters at low temperatures, with urea and thiourea as additives (Zhou & Zhang, 2000; Zhang et al., 2002). A similar study by (Wang & Deng, 2009) displayed that complete cellulose dissolution is influenced by a variety of parameters including the concentration of NaOH, the temperature of the cooling system as well as the additive used. In their study, Wang and co-workers also observed that pretreated cellulose with shorter chain length and low DP were easier to dissolve in alkali compared to the reference samples (Wang et al., 2014). Cellulose pretreatment which affected the DP and crystallinity also had a significant influence on the efficiency of the dissolution process.

The molecular weight (Mw) and degree of polymerization have been highlighted as the main influences on alkali cellulose dissolution. Isogai and Atalla noted that low Mw samples were able to fully dissolve in NaOH, unlike the higher plants cellulose samples (Isogai & Atalla, 1998). An inversely proportional relationship between alkali dissolution and the degree of polymerization has also been reported as a major role player in polymer reactions. Rahkamo and colleagues exposed dissolving pulp to enzymatic modification and dissolved the pulp in an aqueous NaOH solution (9 wt. %) at a temperature below freezing point. A significant increase in alkali dissolution by more than 20% was observed with a decrease in viscosity due to enzyme pretreatment (Rahkamo et al., 1996).

2.4 Cellulose I reactivity and reactivity measurements

Conversion of cellulose pulp to its valuable derivatives such as cellulose esters, ethers, acetates and cellulose xanthate, is substantially dependent on the reactivity of this
polymer. Reactivity refers to the relative ease by which chemical reagents can access the three reactive cellulose hydroxyl groups. Furthermore, it is a measure of the ability of this polymer to take part in a variety of chemical reactions (Urquhart, 1958; Christoffersson et al., 2002; Chunilall et al., 2013). Cellulose reactivity is an important aspect of the dissolving wood pulp industry, and it is an important parameter for evaluating the quality of the pulp for manufacturing cellulose derivatives and regenerated cellulose. It is impractical to discuss cellulose reactivity apart from the molecular and supramolecular structural properties of this polymer. Some of the structural features of cellulose fibres such as morphology, crystallinity and the degree of polymerization (DP) have a significant influence on the reactivity and accessibility of this biopolymer (Christoffersson et al., 2002; Park et al., 2010; Duan et al., 2016).

The correlation between cellulose structure and reactivity has long been a subject of interest because of the importance of this natural polymer for many industrial applications. As aforementioned, the cellulose polymer consists of a network of hydroxyl (-OH) groups. Each glucose unit that makes up the polymer chain has three -OH groups that can form hydrogen bonds with each other. It is the inter- and intramolecular hydrogen bonding system of the -OH groups within the polymer chain that is responsible for the high crystallinity structure of cellulose which results during linear packing of cellulose microfibrils (Atalla, 1990; O'Sullivan, 1997; Klemm et al., 2005). Accessibility of these –OH groups towards chemical reagents during processing plays a key role in determining the reactivity of cellulose. Furthermore, cellulose accessibility cannot be discussed independently from cellulose structural features, mainly crystallinity (Nelson & Oliver, 1971; Ioelovich, 2009).

A study by Park and co-workers reported a high rate of enzyme digestibility for samples that had more amorphous regions compared to high crystalline cellulose. Similar results were obtained when Ioelovich observed that amorphous cellulose regions were more accessible to water molecules compared to the highly ordered crystalline regions. Furthermore, it was noted that water molecules had more fibre accessibility compared to organic solvents with lower polarity (Ioelovich, 2009; Park et al., 2010).

Characterization of the cellulose structure was carried out by Aldaeus et al. (2015) to assess the impact of various structural factors on the extent of enzyme hydrolysability of
cellulose substrates. The structure of cellulose has displayed that it has an adverse influence on the throughput of enzymatic hydrolysis. Although a direct relationship between the actual conversion of the cellulose substrate and cellulose crystallinity has not yet been established, many structural and compositional factors influence cellulose hydrolysis for production of biofuels. Listed factors include cellulose particle size, supramolecular properties, specific surface area (SSA) and degree of polymerization (Puri, 1984; Park et al., 2010; Peciulyte et al., 2015; Aldaeus et al., 2015).

### 2.4.1 Cellulose reactivity measurement: Fock method

Measurement of cellulose reactivity is an important parameter in the cellulose regeneration industry because it represents the processability of cellulose in downstream chemical reactions (Christoffersson, 2005; Tian et al., 2014). The Fock test method is one of the conventional methods used for measuring the reactivity of cellulose at laboratory scale. Fock first described it in 1959; it is a micro-scale process that is similar to the conventional viscose process. Fock test procedure works in such a way that a small amount of cellulose pulp sample is mercerised in excess NaOH (9% w/w) and CS₂ to produce an orange cellulose xanthate solution. A quantity of the alkali activated cellulose is expected to react with CS₂. Subsequently, to regenerate cellulose, the cellulose xanthate complex is reacted with sulphuric acid (H₂SO₄). Finally, the amount of regenerated cellulose in solution is evaluated by oxidation with potassium dichromate (K₂Cr₂O₇) (Fock, 1959; Tian et al., 2013). This method is preferred because it is a relatively direct and straightforward procedure that does not require specialised equipment. As a result, it can be carried out in a conventional wet chemistry laboratory under high safety measures due to the toxicity of CS₂. Moreover, the Fock test does not need a large quantity of the sample for analysis (Christoffersson, 2005; Kopcke, 2010; Tian et al., 2013).

Using the Fock test method, Henriksson et al. (2005) reported an increase in cellulose reactivity after this macromolecule was pretreated with enzyme endoglucanase. In a similar study, Miao’s research group tested the reactivity of hardwood pre-hydrolysis Kraft (PHK) pulp by the Fock test method. They observed an increase of more than 5% in reactivity of the PHK hardwood pulp when the pulp was first exposed to mechanical and enzymatic pretreatments (Henriksson et al., 2005; Miao et al., 2015). In essence, reactivity measurements are carried out to determine the extent to which the three –OH
groups on the glucose monomers are accessible for substitution and reaction with chemicals.

2.5 Pretreatment of cellulosic materials

Pretreatment of cellulosic biomass is primarily concerned with changing the structure and chemical properties of cellulose, and opening up the fibrillar structure of cellulose, to increase accessibility (Wertz & Bedue, 2013; Ogura et al., 2013). Limited accessibility of the hydroxyl groups on cellulose monomer units causes inhomogeneity in the cellulose derivatives produced, and this affects the quality of the products (Henniges et al., 2012). Pretreatment of cellulose is, however, expected to improve the accessibility of the material without damaging the carbohydrate. Furthermore, it must not form by-products that could, in turn, inhibit subsequent reaction processes, and it must be cost effective (Sun & Cheng, 2002; Wertz & Bedue, 2013; Chen, 2014). Figure 2.9 displays a schematic diagram for the overall goal of lignocellulosic biomass pretreatment.

Figure 2.9: A schematic diagram showing the effect of lignocellulosic biomass pretreatment, adapted from (Harmsen et al., 2010).

The primary purpose of all pretreatment techniques is to disrupt and alter the plant cell wall structure and to increase the ratio of cellulose non-crystalline regions to crystalline regions thus making it readily accessible for chemical reactivity (Mosier et al., 2005; Kumar et al., 2009; Brodeur et al., 2011). Extensive research has been carried out on the
types of pretreatment methods used for cellulosic biomass. Table 2.1 presents some of
the effects of various pretreatment techniques on the reactivity or digestibility of

Table 2.1: Effect of various pretreatment techniques on the processability and reactivity
of cellulosic biomass

<table>
<thead>
<tr>
<th>Type of pretreatment</th>
<th>Effect of pretreatment on cellulose reactivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pretreatment of dissolving pulp with monocomponent endoglucanase at different enzyme dosages (ECU/g dry wt. pulp)</td>
<td>According to Fock method, the reactivity of the pretreated pulp increased from 75% to 100% with increasing enzyme dosage over different treatment times (0, 10, 30, and 90 min) (Engstrom et al., 2006).</td>
</tr>
<tr>
<td>Enzymatic activation of hardwood and softwood dissolving-grade pulps with different commercial monocomponent endoglucanases</td>
<td>An increase of about 20% in Fock reactivity was achieved for both hardwood and softwood pulps relative to their respective reference samples (Ibarra et al., 2010).</td>
</tr>
<tr>
<td>Pretreatment of sugarcane bagasse with 2% (v/v) H₂O₂ + 2% NaOH &amp; 5% (v/v) H₂O₂ + 2% NaOH</td>
<td>Maximum saccharification of 57.4% and 63.3% were achieved respectively during enzyme hydrolysis of the pretreated samples (Irfan et al., 2011).</td>
</tr>
<tr>
<td>Enzymatic pretreatment of pulp before viscose process stages</td>
<td>Reactivity of the enzyme pretreated pulp increased from 70% (reference sample) to about 85% after a relatively short treatment time (Ostberg et al., 2012).</td>
</tr>
<tr>
<td>Wet oxidation pretreatment of wood pulp waste</td>
<td>The pretreatment caused significant modification on the structure of cellulose and improved enzymatic saccharification; this resulted in 76% glucose recovery (Ji et al., 2015).</td>
</tr>
</tbody>
</table>

Depending on the desired end products, pretreatment techniques can be used individually
or in combination to maximise their efficiency. Several pretreatment techniques can be
used to achieve modification in the morphological, molecular or supramolecular
structure. Commonly used techniques can be divided into three classes: biological, chemical and physical pretreatments.

2.5.1 Biological pretreatment of cellulosic biomass

Biological pretreatment of cellulosic biomass for production of biofuels is one of the research areas that have gained much attention over the recent years. This technique refers to the use of cellulolytic and hemicellulolytic enzymes secreted by fungi and bacteria to disrupt the polymer chain and to create a porous cellulose substrate. The enzymes infiltrate the cellulose fibres and enhance their accessibility for hydrolysis. Commonly used enzymes include endoglucanases; endocellulases; and exocellulase (Christoffersson et al., 2002; Taherzadeh & Karimi, 2008; Peciulyte et al., 2015). Crucial steps in this pretreatment technique are hydrolysis of cellulose in the matrix to produce reducing sugars and fermentation of these sugars to give bioethanol (Hatakka, 1984; Sun & Cheng, 2002). Even though biological pretreatments do not cause harm to the environment, they are not favourable for the commercial and industrial application. Their disadvantage is that the microorganisms work at a slow pace and their treatment rate is also minimal (Maurya et al., 2015).

2.5.2 Chemical pretreatment of cellulosic biomass

Chemical pretreatment methods involve the use of chemical solvents to hydrolyze hemicellulose and lignin in lignocellulosic biomass. The primary purpose of this form of pretreatment is to break down the crystalline structure of cellulose to improve its accessibility for downstream chemical and enzymatic reactions (Jiao & Xiong, 2014; SriBala et al., 2016). These pretreatment methods are known to cause cellulose chain scission thus leading to depolymerization and transformation of the crystalline structure to amorphous structure. Subsequently, this enhances cellulose processability and enzymatic hydrolysis (Ye & Farriol, 2005; Badiei et al., 2014).

Chemical pretreatment of cellulose is one of the most widely reviewed methods of cellulose activation. Some of the conventional methods that have been used in this technique include acid and alkaline hydrolysis, organosolv, ionic liquids and oxidative delignification where oxidising agents are used for disintegrating the lignin (Harmsen et al., 2010; Chen, 2014; Sidiras & Salapa, 2015). Chemical pretreatment plays a significant
role in the production of pure cellulose from wood by pre-hydrolysis Kraft pulping and acid bisulphite pulping processes (Sixta et al., 2004; Kumar et al., 2009).

However, chemical pretreatment methods still encounter various disadvantages, some of the documented drawbacks include high costs, low product yield at long, laborious experiments. Moreover, they require specialised corrosion resistant reactors that can withstand toxic effluents that result (Maurya et al., 2015). With the current stringency of environmental regulations, the use of chemicals and these techniques continues to be a liability for most pulp and paper industries, and industries that produce valuable cellulose end products.

2.5.3 Physical pretreatment of cellulosic biomass

Physical pretreatment is a method that alters the physical structure of the biomass. The primary goal of this is to reduce the particle size and crystallinity of lignocellulosic materials while increasing the surface area and reducing the degree of polymerization (Chen, 2014; Maurya et al., 2015). There is a broad range of physical pretreatment methods that have been established for cellulosic biomass pretreatment. Mechanical pretreatments (e.g. grinding, crushing, milling, and chipping) are mostly used during the pulping stages. Other methods include pyrolysis, steam explosion, and radiation (Kumar et al., 2009; Xiao et al., 2010; Brodeur et al., 2011; Tian et al., 2011).

2.6 Radiation pretreatment of cellulose

Radiation processing of polymeric materials is a subject that has attracted considerable interest for a long time. It can be dated back to the early 1940s when most of the powerful nuclear radiation sources became popular and commercialised in the polymer industry (Chapiro, 2002; Chmielewski et al., 2005). Over the years, radiation technology has progressively proved to be a useful tool for modifying polymers, and for enhancing their properties. With the increasing stringency of the environmental regulations towards pollution over the years, radiation processing has shown to be an effective alternative to conventional methods that have been used for polymer modification (Chmielewski & Haji-Saeid, 2004; Rao, 2009).
For many years, various industries, scientists, and scholars in the field of radiation chemistry have used this technology to process and manipulate the properties of both synthetic and natural polymers for different applications. Radiation chemistry is primarily concerned with the chemical effects that result in the material of interest due to its interaction with radiation energy (U.S.NRC, 2013; H.P.S., 2010; Meléndez-Ortiz et al., 2015). Some of the earliest industrial applications of radiation technologies in the polymer industry include: crosslinking, grafting, and polymer chain scission, and polymer degradation. Additional uses of this technology include sterilization of disposable plastic medical devices; art conservation; food preservation, as well as bio-energy production from polysaccharides (Rosa et al., 1983; Clough, 2001; Chmielewski et al., 2005; H.P.S., 2010).

Radiation energy is one of the most abundant forms of energy that is available on earth. It naturally occurs in the form of light (solar energy), sound, and heat, and it can also be generated using modern technologies. It is emitted and transferred in the form of a magnetic wave or a particle (Dahlan, 2001). Radiation energy can be categorised according to the photon energy (eV) and wavelength (metres). Figure 2.10 below depicts the electromagnetic spectra of radiation energy from radio waves, through the visible light spectrum, up to X-rays and gamma rays (Bhattacharya, 2000; Kasaa, 2013).

![Electromagnetic Radiation Spectrum](image)

*Figure 2.10: Electromagnetic spectrum of radiation energy, adapted from (Electropaedia, 2005).*
As a form of physical pretreatment, radiation processing has many advantages compared to conventional processing methods like chemical and thermal treatments (Cleland, 2006; Chen, 2014). Radiation processing has higher throughput rates at less energy consumption relative to conventional methods, and it is environmentally benign since it does not use hazardous chemical reagents that result in toxic effluents. Moreover, radiation pretreatment gives higher quality products with desirable properties at shorter pretreatment times. Some of the radiation instruments are controllable, and relatively simple to operate (Cleland, 2006; Rao, 2009; Meléndez-Ortiz et al., 2015).

Radiation energy can be classified into two types, ionising and non-ionising radiation depending on the quantity of energy that is produced by the source, and the impact of its interaction with an object during processing (EPA, 2012). Ionising radiation is the type of radiation that has sufficient energy to remove electrons from atoms and molecules, thus converting them into ions and free radicals (Wojnárovits, 2011). Absorption of radiation energy by the backbone of the polymeric material leads to the formation of free radicals, and subsequent initiation of chemical and biological reactions (Bhattacharya, 2000; Cleland et al., 2003). On the other hand, non-ionising radiation does not have enough energy to produce ions when passing through matter, but the energy is sufficient to cause excitation of the molecules (Ng, 2003). Moreover, non-ionising radiation has the potential to cause biological effects, especially in human beings (Wilkening, 1991).

2.6.1 Ionising radiation pretreatment
Ionising radiation consists of high-energy particles and electromagnetic radiation in the short wavelength and high-frequency range of the electromagnetic spectrum (Kwiatkowska et al., 2011). Some of the conventional radiation sources that have extensively been used to modify the structure of polymers and to improve their reactivity include gamma radiation (γ-radiation), X-ray, electron beam irradiation and pulsed electric field (Gueven, 2004; Kasaa, 2013; Meléndez-Ortiz et al., 2015; Loow et al., 2016). Ionising radiation can be produced from different sources, γ-radiation is emitted from radioactive nuclides; while X-ray and electron beam radiation are produced from high electron accelerators (Cleland, 2006; Henniges et al., 2013).

Ionization processing of cellulosic biomass leads to the formation of radical reaction intermediates which undergo a series of chain reactions. These initiation reactions result
in the abstraction of the hydrogen atom from the cellulose molecule and the formation of new bonds (Gueven, 2004; Chmielewski et al., 2005). Moreover, research has shown that exposure of cellulose fibre to ionising radiation causes cleavage of the long polymer chains into shorter chains and it can cause opening of the glucopyranose ring to give shorter sugar chains.

Several scholars have reported that structural modification of cellulose by ionization treatment increases cellulose accessibility to chemical reagents and this enhances the reactivity of the polymer (Kraft & Schelosky, 2000; Iller et al., 2007). In their study, Khan and co-workers were able to show the impact of γ-radiation on the chemical and physical properties of jute biofibres which is one of the natural cellulose fibres that have been used in textiles for years (Khan et al., 2006; Zhang, 2014). They argued that with increasing γ-radiation dose, the fibres displayed a significant decrease in tensile strength and chemical stability. Moreover, noticeable changes were observed in the thermal and mechanical properties of the biomolecule (Khan et al., 2006). These observations are expected since various scholars have widely reported the efficiency of γ-radiation for cellulose modification. Research findings by (Ershov & Klimentov, 1984) attributed the degradation of cellulose and the reduction in the degree of polymerization (DP) to the breakage of the high crystalline structure of cellulose that is held together by the intermolecular hydrogen bonds. This phenomenon was also displayed in a study done by Takacs et al. (2000) where treatment of cotton cellulose, with γ-radiation, resulted in the transformation of the crystalline structure of cellulose from cellulose I to cellulose II, cellulose degradation was observed by a decrease in the DP.

Another form of ionising radiation that has also been widely evaluated for polymer processing, more especially cellulose, is electron beam irradiation. In the viscose manufacturing industry, various scholars argue that this technology has the potential to alter the structure of cellulose, thus making it amenable to chemical treatment (Rajagopal & Stepanik, 1996; Weightman et al., 2007). Some of the observed benefits of cellulose pretreatment before the viscose process include possible reduction of the concentration of NaOH and CS₂ required for processing (Weightman et al., 2007). Henniges et al. (2013) investigated the effect of electron beam radiation on the characteristics of microcrystalline cellulose (MCC). Their report displayed a linear relationship between radiation dose and the molar mass of MCC. After radiation treatment, the molar mass of
MCC decreased from 82 000 gmol\(^{-1}\) to 5400 gmol\(^{-1}\) when the radiation dosage was increased to 100 kilograys (kGy). According to this study, irradiation pretreatment ionises cellulose and disrupts its structure; this increases the accessibility and reactivity of this polymer to solvents. These observations are similar to what several scholars have reported using various ionising radiation techniques (Kraft & Schelosky, 2000; Clough, 2001; Dubey et al., 2004; Alberti et al., 2005).

Disadvantages of ionising radiation

Although radiation pretreatment of cellulosic biomass is a topic that has been broadly studied, the focus has mainly been on high energy radiation sources as mentioned above. The drawback to some of the high energy radiation sources is that they are energy intensive and costly. As a result, industrial or large-scale application of these techniques is limited and mostly at a level of research and development (Chen, 2014).

2.6.2 Non-ionising radiation pretreatment

Non-ionising radiation is located at the edge of the X-ray region to the opposite end of the electromagnetic spectrum, in the radio waves region. This portion of the electromagnetic spectrum is in the opposite direction from the ionising radiation range and towards low frequency (3\(\times\)10\(^2\) \(\leq\) 3\(\times\)10\(^{15}\) Hz) and long wavelengths (> 100 nm). Radiation energy which is known as Photon energy is directly proportional to the frequency of radiation and inversely proportional to the wavelength. In the non-ionising region, photon energy ranges between 1.77 electron volts (eV) to 12.4 eV. Hence, non-ionising radiation sources are classified as low energy radiation sources compared to the ionising radiation sources which have photon energy that ranges from 12.4 eV and 40 eV (Wilkening, 1991; Ng, 2003; Tee, 2003). There are two types of non-ionising radiation, optical radiation and radiofrequency. Optical radiation consists of the ultraviolet (UV), visible, infrared (IR) and lasers, whereas the latter covers the microwave, as well as the low and high-frequency radio wave which includes ultrasound irradiation (Oberhofer, 1984; Dahlan, 2001; Ng, 2003).

Non-ionising radiation energy does not have enough energy to knock out electrons from molecules instantly, however, depending on the wavelength and power density values, it can cause disruption to biological materials or human cells when exposed to it (Ng, 2003).
As a result, the effects of non-ionising radiation sources such as the ultrasound and laser have extensively been explored in various fields.

2.6.2.1 Ultrasound irradiation pretreatment

Ultrasound refers to longitudinal sound waves with a frequency more than 16 kHz that is emitted from the sound spectrum. The ultrasound frequency lies in the upper limit of the sound that is audible to the human ear, referred to as the sonic waves (20 Hz to 20 kHz). Based on its frequency, ultrasound can be divided into three categories, power or high-intensity ultrasound (16 - 100 kHz), high-frequency ultrasound (100 kHz-1 MHz) and diagnostic ultrasound (1-10 MHz) (Ma et al., 2012; Martini, 2013; Loow et al., 2016). The high-intensity ultrasound irradiation is widely applied in Sonochemistry; hence the application of ultrasound as pretreatment of materials is commonly referred to as sonication. The latter two categories are used for clinical and medical ultrasonography purposes (Kwiatkowska et al., 2011; Ogutu et al., 2015)

High-intensity ultrasound radiation is a process that has physical and chemical effects on the structure of cellulose. The driving force behind ultrasound irradiation is a process called acoustic cavitation. Acoustic cavitation is described as a process in which bubbles form, grow and implode in a liquid as a result of increased negative pressure from the applied sound energy (Suslick & Price, 1999; Karimi et al., 2014). Cavitation refers to the formation, expansion, and collapse of microscopic gas bubbles when the suspended molecules absorb ultrasound energy. The volatile implosion of cavitation bubbles in solution generates a flow of explosive shock waves which create high pressure and temperature conditions in the system. Interaction of these rough shock waves with the polymer substrate leads to the formation of cavities; they induce disaggregation and breakdown of the biomass structure (Figure 2.11) (Suslick & Price, 1999; Wang & Cheng, 2009; Frone et al., 2011). Some of the major factors that play an influential role in ultrasonication include frequency to transfer energy from the probe into the fluid; polymer concentration; the intensity of the sound waves; treatment time, and the system temperature (Mazzoccoli, 2010; Ofori-Boateng & Lee, 2014).
Application of high-intensity ultrasound irradiation of a frequency range 20 kHz to 1 MHz for pretreatment of lignocellulosic biomass has widely been studied. It has shown that it has the potential to modify and disrupt the molecular structure of cellulose as pretreatment to downstream processing steps (Wang & Cheng, 2009; Cheng et al., 2009; Rehman et al., 2013). Various scholars have also observed that the interaction of cavitation bubbles and shock waves with the surface fibres results in different morphological and compositional modifications (Xing et al., 2010). Moreover, this pretreatment technique has been documented for many years as the leading cause of cellulose depolymerization (Weissler, 1950; Garcia-Lopera et al., 2005; Wong et al., 2012).

In a study to increase the reactivity and accessibility of cellulose with sodium periodate, Aimin et al., (2005) subjected cellulose fibres to ultrasound irradiation for different treatment times. Structural characterization results showed disruption of the primary cell wall layer, but the treatment did not have much of an effect on the crystallinity index (CrI) of the polymer. An increase in water retention values expressed an increase in accessible reaction sites and porosity. Structural observations made in this study are in agreement with what was observed by Oubani et al., (2006) that ultrasonication caused
fibrillation of the cellulose fibre and increased surface area. Moreover, it was also noted that the degree of polymerization was reduced. However, contrasting observations were made on the crystallinity of the ultrasonicated samples; CrI decreased with increasing irradiation time. Sumari and co-workers reported similar results; they observed that with increasing pretreatment time, there was a reduction in particle size, crystallinity and sample crystallite sizes. The reaction temperature was varied between 40° and 60°C, but the results obtained did not show significant differences, implying that temperature changes did not have much influence in this experiment (Sumari et al., 2013).

On the other hand, ultrasound irradiation has recently become popular in the nanotechnology field for isolation of cellulose fibrils with high crystallinity that is used as reinforcements for application in polymer nanocomposites (Cheng et al., 2009; Wang & Cheng, 2009). Nanocomposites such as poly (vinyl alcohol) (PVA)/cellulose with high mechanical strength and excellent thermal properties is an example of such materials produced through ultrasound treatment (Frone et al., 2011).

![Diagram of cellulose fibrils](image)

Figure 2.12: A schematic diagram of amorphous (accessible) and crystalline (inaccessible) region of cellulose, adapted from (Börjesson & Westman, 2015).

There is conflicting evidence when it comes to the degree of cellulose crystallinity and how it is affected by ultrasound irradiation. A proposed mechanism of ultrasound
pretreatment on cellulose is that the process attacks the easily accessible amorphous regions, thus leaving the highly ordered crystalline regions exposed (Figure 2.12). Moreover, ultrasound irradiated cellulose chains are prone to break at the centre point of the fibre; this suggests that degree of polymerization of the polymer is also an important factor that contributes to the efficiency of this technique. It has also been observed that ultrasonication is effective on long polymer chain than on the short and rigid ones. The commonly observed increase in crystallinity index after pretreatment of lignocellulosic biomass may be due to exposure of the crystalline region after ultrasonication (Mazzoccoli, 2010; Li et al., 2015; SriBala et al., 2016).

Interaction of lignocellulosic biomass with ultrasound irradiation is an interesting technique that can be used to achieve diverse objectives such as reduction of polymer molecular weight, thus controlling viscosity. Moreover, exposure of the biomass to Ultrasound irradiation can reduce particle sizes, cause surface erosion, disrupt the crystalline cellulose, isolate and extract valuable materials from biomass at reduced chemical compounds, adapted from (Mazzoccoli, 2010; Luo et al., 2014).

Ultrasound irradiation demonstrates that it is an efficient and multipurpose technique that can be used in combination with biomass processing methods such as delignification, hydrolysis, and dissolution for process optimization. Over the years, high-intensity ultrasound irradiation has found use in wastewater treatment plants, biomass and bio-fibre for the production of biofuels (Harmsen et al., 2010; Ma et al., 2012; Luo et al., 2014; Loow et al., 2016). Ultrasonication of lignocellulosic biomass before hydrolysis for bioethanol production has shown that it can increase the rate of saccharification. Furthermore, enzyme hydrolysis has also demonstrated improved sugar recovery and yield after when ultrasound irradiation and NaOH were used together as pretreatment for lignocellulosic biomass. A combination of these two pretreatment techniques has shown that it can successfully break the intermolecular hydrogen bonds within the lignocellulosic biomass (Taherzadeh & Karimi, 2008; Kang et al., 2013; Gabhane et al., 2014).

There is extensive literature on ultrasound pretreatment usage in combination with chemical pretreatments for enzymatic hydrolysis for conversion of cellulose biomass to
bioethanol and other bio-based products (Taherzadeh & Karimi, 2008; Kumar et al., 2009; Harmsen et al., 2010).

2.6.2.2 Laser irradiation pretreatment

The term “LASER” is an acronym for “light amplification by stimulated emission of radiation”. Lasers produce optical radiation from the mid-ultraviolet (UV) region, through to the visible region, and infrared region of the electromagnetic spectrum (Sliney, 2001; Dutta Majumdar & Manna, 2011). Laser technology comprises of three main elements: the amplifying medium, the means for exciting the medium to its amplifying state and an optical resonator. The amplifying medium determines the laser wavelength and the type of excitation that is required. Based on the amplifying medium, lasers can be categorized into four major classes, namely: gas lasers (e.g. carbon dioxide, helium-neon, excimer lasers); dye lasers; solid-state lasers (e.g. ruby, Nd:YAG lasers); and semiconductor lasers (Chow et al., 2011; Singh et al., 2012). Lasers are primarily operated in two modes, the continuous wave (CW) or the pulsed (modulated) mode (El-Dessouky, 2014).

The basis of laser theory was first presented by Albert Einstein in early 1917 using Planck’s law of radiation. It was only in 1960 that Theodore Maiman built the first laser after years of extensive research by several scholars (Dutta Majumdar & Manna, 2011; Singh et al., 2012). In his discovery, Maiman used a crystalline ruby rod to generate pulsed red laser radiation at a wavelength of 694 nm. This invention received positive reception and predictions that this new technology might change the global view of optical science (Baldacchini et al., 2008; Singh et al., 2012). Since then, research on the modification, operation and application of lasers gradually increased over the years. Advantages of using lasers are that they are a source of optical frequency radiation with high power and intensity that can be easily controlled to acquire desired results (Bass, 1983; Chow et al., 2010). In summary, lasers are a source of light which is (1) nearly monochromatic; (2) nearly unidirectional; (3) has a spatial distribution imposed by the optical resonator; and (4) can be very energetic. It is because of these attractive properties that lasers are considered suitable for application in various industries (Bass, 1983; Sliney, 2001).
For many years, lasers have been used in sectors such as medicine, dentistry, cosmetics, steel cutting and manufacturing, cultural heritage, science and technology research, polymers and textile industries. In the medical field, they are used for diagnostics, cosmetic surgery, and for sterilization of equipment amongst other purposes (Boulnois, 1986; Pick & Colvard, 1993; Sasaki et al., 2002). For historians and cultural heritage conservers, laser irradiation can be used as a safe alternative method for cleaning and to preserve old art materials and paper documents in archives (Rudolph et al., 2004; Baldacchini et al., 2008). In the polymer and textile industries, lasers have widely been used for modification of polymers, and research in this field continues to grow progressively (Said-Galiev & Nikitin, 1993; Kreutz et al., 1995; Horn et al., 1999; Kubovsky & Kacik, 2009).

Application of this technology in the polymer and textile industry has mainly been to change and enhance the structural properties of both natural and synthetic polymeric materials (Said-Galiev & Nikitin, 1993; Balakhnina et al., 2013). The effect of laser pretreatment on various properties of textiles and fabric materials such as cotton, silk, polyester, nylon, linen has been studied on a broad scale (Kolar et al., 2000; Chow et al., 2010; Montazer et al., 2012; Shahidi & Wiener, 2016). Treatment of these materials is mostly carried out using lasers that have wavelengths in the UV- and IR-spectral regions such as excimer, CO$_2$ and Nd:YAG lasers (Kolar et al., 2000; Haller et al., 2001; Kolar et al., 2002; Kan, 2014; Montazer et al., 2014). The mechanism of laser radiation processing involves deposition of energy onto the surface of a sample by excitation or de-excitation of electrons within a short period of time (Dutta Majumdar & Manna, 2011).

Chow et al. (2011) used different characterization techniques to study the effect of CO$_2$ laser pretreatment on cotton fabrics. Scanning Electron Microscopy (SEM) analysis showed that the pretreatment caused pores and cracks on the surface of the material, and Fourier Transform Infrared (FTIR) spectroscopic results displayed that the treatment modified the chemical structure of cellulose, and caused oxidation of the –OH groups to produce carbonyl/carboxyl groups. CO$_2$ laser treatment has shown it is an efficient alternative method that can be used to modify the surface and colour properties of fabrics like denim compared to the conventional environmentally harsh chemical methods (Kan et al., 2010; Kan, 2014). In their study, Kan et al. (2010) used laser treatment to engrave
and modify the visual effect of the surface of the denim fabric instead of using the conventional dyeing methods. Furthermore, the treatment altered properties of the material such as surface morphology, crystallite size, bending rigidity, and wettability of fabric. In a similar study where natural polymer, raw, and unbleached cotton fabrics were pretreated with a CO\textsubscript{2} laser, improved morphological and reaction properties were observed. Irradiation of cotton fabrics resulted in yellowing of the sample surface, and this was suggested to be due to thermal effect and surface oxidation of the material, in which aldehyde groups form. This reaction is similar to the caramelization reaction usually observed in reducing sugars that have an aldehyde group (Montazer \textit{et al.}, 2014).

To a great extent, the effect of laser treatment on polymers is influenced by the laser power. Montazer \textit{et al.} (2012) observed that with increasing laser power, crystalline sizes of polyester decreased, the polymer melted, and its surface porosity was altered. Other scholars argue that the effect of laser radiation on polymer properties like crystallinity is relatively dependent on three main factors: radiation energy delivered per unit area of the polymer; laser power; as well as the energy absorbed by the polymer substrate at a given fluence (Said-Galiev & Nikitin, 1993; Hsu \textit{et al.}, 2012). In their study, Hsu and co-workers reported that laser treatment of poly (L-lactic acid) (PLLA) caused a reduction of polymer crystallinity as a function of radiation fluence. In another study, a decrease in PLLA crystallinity was also reported when this biodegradable polymer was irradiated with Nd:YAG laser at varying fluence (Bhatla & Yao, 2008).

Laser pretreatment technique is used in various research fields as it is a procedure that is usually carried out in combination with downstream hydrolysis processes for the production of bio-based products. For example, Tian \textit{et al.} (2012) pretreated corn stover chips with CO\textsubscript{2} laser radiation to break down the tight lignin bound structures of cellulose and hemicelluloses to expose them for enzymatic hydrolysis. SEM images obtained after the pretreatment demonstrated that the surface structure of corn stover samples had been disrupted. The FTIR results confirmed the structural disruption by showing an increase in the peak intensity of lignin due to the biomass degradation. The pretreatment was able to remove lignin and some of the hemicellulose, thus improving the rate of saccharification and hydrolysis of the test samples significantly.
The main advantage of using laser radiation pretreatment method over chemical methods is that chemical pretreatments cause environmental pollution, and require specialised equipment and reactors to carry out. From various literature studies, it can be concluded that lasers have an effect on the properties of polymeric materials and this can produce improvement in their reactivity.

2.7 Structural characterization of cellulose

The structure of cellulose has a great influence on how it behaves chemically. Therefore, a clear understanding of structural characteristics of this polymer is of utmost importance for improving current methods used for cellulose processing and derivatization (Schult et al., 2002).

2.7.1 Size Exclusion Chromatography Multi-Angle Light Scattering (SEC-MALS)

Size-exclusion chromatography (SEC-MALS) is a useful technique for monitoring the molecular weight, molecular weight distribution (MWD) and the degree of polymerization (DP) of polymers during pretreatment and processing (Schult et al., 2002; Hallac & Ragauskas, 2011; Sun & Sun, 2015). Moreover, it gives an indication of the quality of the biopolymer products that result as well as their polymerization properties (Sun & Sun, 2015). The SEC-MALS is extensively used in the paper and pulp industry to determine the DP of cellulose because it is one of the molecular features that influence the accessibility and reactivity of this biopolymer to solvents. The DP of cellulose plays a significant role in the properties and quality of the derived end products (Puri, 1984; Hallac & Ragauskas, 2011).

SEC-MALS, formerly known as gel permeation chromatography (GPC) was first introduced in the 1950s as an ideal method for determining the MWD of synthetic and natural polymers that have been dissolved in suitable solvents (Gaborieau & Castignolles, 2011). SEC-MALS is a separation technique; it separates molecules in an aqueous solution based on their molecular sizes; this is also referred to as separation by hydrodynamic volume (Trathnigg, 2000; Schult et al., 2002). The molecules pass through a porous material with a broad distribution of pore sizes. When the sample is injected into the column, molecules can either diffuse into the pores of the packing material or exit the
column. Undissolved molecules and those that are too bulky to enter into the packed column pores are the first ones to be eluted from the column. Smaller polymer molecules, on the other hand, are eluted last since they are retained longer in the column because they can permeate into the column system (Silva, 1995; Trathnigg, 2000).

SEC-MALS is a non-adsorptive and non-destructive analytical method, it can provide detailed information about the polymer such as molecular weight average molar mass (Mw), molecular weight distribution (MWD), polydispersity index (PDI) and the intrinsic viscosity ([η]) (Silva, 1995; Garcia-Lopera et al., 2005). The intrinsic viscosity is a function that is used to measure the molecular mass of the polymer; it is an expression of the polymer chain length or degree of polymerization (DP). The DP denotes the number of the repeating units of the polymer chain, and it can be calculated by dividing the molecular mass of cellulose by that of a single cellulose repeating unit which is 162 g/mol. The polydispersity expresses the ratio of Mw and Mn; where Mw and Mn represent the weight average molar mass and number average molar mass, respectively. PDI gives an indication of the broadness of the MWD of a polymer (Garcia-Lopera et al., 2005; Sun & Sun, 2015; Oberlerchner et al., 2015). Table 2.2 presents examples of typical Mw and PDI values of cellulose pulps of softwood and hardwood species that were pulped and bleached by different bleaching sequences.
Table 2.2: Typical ranges of Mw and PDI for different cellulose pulps, adapted from (Silva, 1995)

<table>
<thead>
<tr>
<th>Characteristic of cellulose pulps</th>
<th>Ave. Mw (g/mol)</th>
<th>PDI (Mw/Mn)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Softwood, bleached (C-E-H), Kraft pulp</td>
<td>645745</td>
<td>3.773</td>
</tr>
<tr>
<td>Hardwood, semi-bleached, Kraft pulp</td>
<td>640995</td>
<td>4.912</td>
</tr>
<tr>
<td>Prehydrolyzed softwood Kraft pulp</td>
<td>419923</td>
<td>3.031</td>
</tr>
<tr>
<td>Softwood, bleached (D-O-E-D-P), Sulfite/Mg base pulp</td>
<td>465946</td>
<td>2.777</td>
</tr>
<tr>
<td>Softwood, bleached (Dc-Eo-P-D)</td>
<td>433517</td>
<td>3.391</td>
</tr>
<tr>
<td>Softwood Kraft pulp (91% α cellulose)</td>
<td>559243</td>
<td>5.378</td>
</tr>
<tr>
<td>Softwood Sulfite pulp (91% α cellulose)</td>
<td>379532</td>
<td>3.340</td>
</tr>
<tr>
<td>Commercial cellulose</td>
<td>211987</td>
<td>3.635</td>
</tr>
<tr>
<td>Cotton linters</td>
<td>360535</td>
<td>1.678</td>
</tr>
<tr>
<td>Rayon fibre</td>
<td>219128</td>
<td>1.784</td>
</tr>
</tbody>
</table>

2.7.2 X-Ray Diffraction (XRD)

Cellulose is known for its biphasic structure; it is comprised of crystalline and non-crystalline (amorphous) regions (Oubani et al., 2006). Since its discovery in the 1800s, the structure of cellulose, particularly its crystallinity, has been extensively studied. This is because crystallinity plays a significant role in the mechanical, physical and chemical properties of this polymer (French & Cintrón, 2013; Ju et al., 2015). Moreover, it is important to understand the crystallinity of cellulose because it is one of the main factors that affect the behaviour of cellulose during pretreatment and reactivity (Nelson & Oliver, 1971; Kumar et al., 2009).

X-ray diffraction is one of the most common techniques used for measuring the crystallinity of cellulose and other crystallographic features such as crystalline phase, crystallite sizes and the \(d\)-spacing between monomer chains. The degree of cellulose crystallinity is measurable based on the relative amount of the crystalline region within the total structure of cellulose, and it is referred to as crystallinity index (CrI) (Segal et al., 1959; Park et al., 2010). This observation is parallel to what has been reported that XRD crystallinity...
measurements take into account the crystalline regions of cellulose more than the amorphous region fractions (Terinte et al., 2011).

XRD is a versatile, non-destructive analytical method; its functioning is based on the interaction of monochromatic X-rays with the crystalline sample. X-rays are generated in the cathode ray tube and then filtered to produce monochromatic radiation which goes through a collimator to increase their intensity and finally directed onto the sample. Bombardment of the target sample with the incident X-ray beams leads to interaction of the crystalline atoms with the incident beam thus causing the X-rays to scatter from the sample in different directions. This reflection of the incident X-rays from the surface of the crystal lattice planes is referred to as X-ray diffraction. The diffracted beams are then detected, processed and converted into count rates and recorded provided the conditions of Bragg’s law are satisfied. Figure 2.13 presents the Bragg’s law reflection where: \( \lambda \) is the wavelength of X-rays, \( d \) is the spacing between the planes in the atomic lattice, and \( \theta \) is the angle between the incident rays and the surface of the crystal lattice planes (Bragg, 1913; Henry et al., 2012).

![Figure 2.13: A schematic representation of the Bragg's Law reflection, adapted from (Bragg, 1913).](image)

Park and co-workers have broadly expounded on the various methods that have been used to estimate the CrI values using NMR, FTIR, and XRD. They also outlined and compared
common methods that are used to compute CrI and how the value of CrI varies depending on the method of choice (Park et al., 2010). Some of the well known XRD based methods include the peak height method that was developed by Segal and co-workers for estimation of CrI of natural cellulose, the peak deconvolution method and the amorphous subtraction method (Segal et al., 1959; Park et al., 2010). Various studies have successfully investigated the crystalline nature and computed the CrI status of cellulose and other lignocellulosic materials with this technique. In a study by Fang and co-workers, XRD analysis was conducted to study the effect of surfactant-assisted microwave pretreatment on the structure of peanut shells biomass. Research findings showed that the pretreatment increased the crystallinity degree of the pretreated samples compared to the untreated ones by 7.96% (Fang et al., 2014). Similarly, Xing’s research group used the XRD to evaluate the effect of ultrasound pretreatment on the crystalline structure of chemimechanical pulp. A slight decrease in crystallinity from 52% to about 49% was observed after ultrasonic pretreatment of unbleached pulp (Xing et al., 2010). The crystallinity of cellulose can range 30% to over 90% depending on its original source and the acquisition process (Park et al., 2010; Terinte et al., 2011).

2.7.3 Cross-Polarization Magic Angle Spinning $^{13}$C-NMR (CP/MAS $^{13}$C-NMR)

CP/MAS $^{13}$C-NMR also referred to as “solid state NMR” spectroscopy is a useful non-destructive analytical technique that has widely been used to study the ultrastructure and interactions of cellulose in its natural and processed form (Larsson et al., 1997). Solid state NMR is sensitive to the magnetic non-equivalence in an environment of chemically equivalent nuclei. Over the years it has proved to be a valuable technique for determining the degree of cellulose crystallinity as well as its crystallite sizes (Evans et al., 1995; Larsson et al., 1997; Park et al., 2010). Hence this technique has been applied in the characterization of cellulose structural and chemical properties for a long time.

However, this has not always been the case as in the past; this technique could not be used for structural determination due to line broadening caused by chemical shift anisotropy and static dipolar interactions between $^{13}$C and $^1$H. To overcome this problem, solid state NMR is coupled with high-resolution cross-polarization magic angle spinning (CP/MAS). The CP/MAS comprises of three techniques, the first being cross polarization (CP) which enhances the intensity of the $^{13}$C signals. The second technique is the high-power proton decoupling which removes the strong dipolar interactions between $^{13}$C and
neighbouring protons. Finally, the third method is the magic angle spinning (MAS) which eliminates chemical anisotropy by setting the sample to spin rapidly at an angle of 54.7° with respect to the external magnetic field (Atalla & Vanderhart, 1984; Foston et al., 2011; Chunilall et al., 2013). A combination of CP/MAS, high-power proton decoupling, and ¹³C-NMR is a useful technique that produces high-resolution spectra with high ¹³C nuclei sensitivity.

In the early 1980s, Atalla and Vanderhart, tested out their model using this method and they revealed that natural cellulose exists as a composite of two different crystalline forms, referred to as cellulose Iα and cellulose Iβ (Atalla et al., 1980; Atalla & Vanderhart, 1984). The proportion of each polymorph is dependent on cellulose origin, for example, cellulose Iα is predominantly found in bacterial and algal cellulose, whereas cellulose Iβ is found in higher plants and tunicate cellulose (Atalla & Vanderhart, 1984; Larsson et al., 1997).

Typical CP/MAS ¹³C-NMR spectra of native cellulose consist of six anhydroglucose unit signals that are divided into fine structure clusters due to the supra-molecular structure of cellulose I fibril. Figure 2.14 presents a standard CP/MAS ¹³C-NMR spectrum of cellulose I displaying the polymer’s wide chemical shift ranging from 60 to 92 ppm (Larsson et al., 1997; Wickholm et al., 1998).
Figure 2.14: The overall CP/MAS $^{13}$C-NMR spectrum of cellulose I showing the crystalline and non-crystalline regions and carbon atoms assignments on the AGU, adapted from (Larsson et al., 1999).

From the lower to upper end of the spectrum, the region between 60 and 70 ppm is assigned to the C-6 carbon atom. Following the C-6 assignment is a resonance cluster between 70 and 81 ppm ascribed to the ring carbons C-2, C-3, and C-5. The region between 81 and 93 ppm represents the C-4 region, and the last carbon atom C1 is associated with the area between 102 and 108 ppm (Atalla & Vanderhart, 1984; Atalla & VanderHart, 1999). The $^{13}$C-NMR spectrum of cellulose I is very informative; however, accessibility to this information is masked by the severe overlap between the spectral signals. To attain quantitative information on the supra-molecular structure of cellulose, the $^{13}$C-NMR analysis is carried out in combination with spectral fitting (Larsson et al., 1999; Chunilall et al., 2012).

The most useful information on the $^{13}$C-NMR spectra of native cellulose is found in the C4 region with a distribution from 80 to 92 ppm (Figure 2.15) (Wickholm et al., 1998; Hult et al., 2000). This region consists of sharp peaks in the range 86 to 92 ppm which corresponds to the crystalline cellulose domain, relatively broad peaks from 80 to 86 ppm
correspond to the non-crystalline sphere (Larsson et al., 1999; Hult et al., 2000). In their study, Larsson and his colleagues were able to quantify these regions by performing spectral fitting on the C-4 area of the $^{13}$C-NMR cellulose I spectra. Their model revealed all the C-4 region crystalline domains as cellulose $1\alpha$, $1\beta$, $1(\alpha+\beta)$, para-crystalline cellulose, cellulose at accessible fibril surface (AFS) and cellulose at inaccessible fibril surfaces (IFS) (Larsson et al., 1999). This model was in correspondence with what has previously been reported by Atalla and Vanderhart (Atalla & Vanderhart, 1984).

![Figure 2.15](image)

Figure 2.15: The C-4 region spectral fitting of quantitative cellulose I CP/MAS $^{13}$C-NMR spectrum with the respective signal assignments, adapted from (Larsson et al., 1999).

2.7.4 Atomic Force Microscopy (AFM)

Removal of hemicelluloses and lignin from cellulose during chemical processing has widely been reported as the leading cause of cellulose microfibril aggregation. This phenomenon has been documented as one of the factors that reduce the reactivity of cellulose and ultimately the quality of the cellulose derivatives in downstream processes (Pönni et al., 2012; Chunilall et al., 2012). Atomic force microscopy (AFM) is the most common subdivision of the scanning probe microscopy (SPM) family that is widely used to study the surface structure and topography of various materials including natural and synthetic polymers (Giessibl, 2003; Starostina & West, 2006). The AFM was first developed and commercialised by Binnig and his colleagues in 1986 at IBM Zurich.
research laboratories in Switzerland (Giessibl, 2003; Safanama et al., 2012). The invention of the AFM was achieved after extensive studies on the Scanning Tunnelling Microscope (STM) and realization of its limitations that it cannot analyse nonconductive materials (Binnig et al., 1986; Copolovici & Sirghie, 2013).

The AFM is a relatively novel analytical technique that is useful for visualising the surface of natural fibres as well as their ultrastructural properties at a high-resolution. It can also be used to study the molecular composition and mechanical properties of a broad range of polymers (Safanama et al., 2012). The AFM provides three-dimensional (3D) image profiles of the topographic structure of molecules at the nanoscale. Hence, it finds application in a wide variety of disciplines of research such as surface science, material engineering, biochemistry, and biology.

Using the AFM in conjunction with image analysis, various research groups have studied the changes that occur in the transverse fibre wall of cellulose during mechanical and chemical treatment. They observed the degradation of lignin and hemicellulose matrix during chemical pulping leads to coalescence and enlargement of the cellulose microfibrils (Fahlén & Salmén, 2005; Chunilall et al., 2006). Fahlen and Salmen combined the AFM with image analysis and computed the pore sizes and the cellulose microfibril aggregates after the removal of the matrix (Fahlén & Salmén, 2005). To confirm the results they obtained from the solid state NMR, Chunilall and co-workers also used this technique to measure the average diameter or the lateral fibril aggregate dimensions (LFAD) of the cellulose fibril aggregates within the S2 layer of the fibre wall (Chunilall, 2009; Chunilall et al., 2013). Figure 2.16 illustrates a schematic diagram of how microfibrils are agglomerated to form cellulose fibril aggregates.
Figure 2.16: A schematic presentation of the transverse section of the S2 cell wall layer displaying the cellulose microfibrils and cellulose fibril aggregates, adapted from (Fahlén & Salmén, 2005).

The benefits of using the AFM lie in the fact that it is non-destructive and samples can be analysed in their native state. Moreover, this technique is particularly useful for characterization of nonconductive materials and biological samples because of its ability to analyse samples in a liquid medium. Some of the characterization properties that can be obtained from AFM analysis include particle surface, morphology, shape, and size (Starostina & West, 2006; Chang & Andersson, 2011).

The fundamental principle for AFM functionality is the measurement of the attractive and repulsive forces that are created between the sharp tip and the surface of the sample when they are close to each other (Figure 2.17) (Safanama et al., 2012). The tip is a sharp probe that is fixed at the free end of a small flexible spring-like structure called the cantilever. The cantilever is usually made out of silicon or silicon nitride, and its backside is commonly coated with a thin layer of gold or metallic coating to enhance the reflectivity of the laser beam during scanning (Safanama et al., 2012).

During analysis, the tip is gently lowered onto the surface of the sample on a glass slide mounted on a piezoelectric scanner. The piezoelectric scanner provides sub-Angstrom motions of the samples, and the tip gently scans across the sample. As the tip moves over the sample surface, a change in topography is detected, and this causes the cantilever to deflect towards and away from the surface. This vertical deflection of the cantilever is monitored by the laser beam which is focused on the back of the flexible cantilever. The incident laser beam is reflected off the back side of the cantilever, and its displacement is...
detected and recorded on the position sensitive photodiode detector (Barattin & Voyer, 2008; Chunilall, 2009).

Figure 2.17: A schematic diagram of an AFM, adapted from (Barattin & Voyer, 2008).

The AFM can be operated in two primary imaging modes to obtain topographic images of the sample surface, the contact and Tapping mode. The difference between these AFM imaging modes is mainly on the interaction and movement of the tip on the sample surface. In the contact mode, the tip touches the sample surface, and they move together in a lateral x, y-plane. The force created between the tip and the sample surface is kept constant by the feedback loop while the piezoelectric scanner adjusts the height of the tip relative to the sample surface. In the Tapping mode, the tip does not have direct contact with the sample surface (Chunilall, 2009; Fahlén & Salmén, 2005). The cantilever oscillates below its normal resonance frequency so that direct interaction between the tip and the sample surface is minimal. This latter mode is the one preferred when analysing sensitive materials like biological samples because the shear force between the tip and the sample surface can rupture samples with a soft surface. The AFM features make it a useful technique for characterization of the fibre wall cross-section (Fahlén & Salmén, 2005).
2.7.5 Scanning Electron Microscopy (SEM)

Electron microscopy was first introduced in the mid-20th century. A scanning electron microscope is a powerful tool for structural analysis of wood from morphological level to ultrastructural level. The images yield information about the topography, morphology (size and shape), composition and crystallographic information of the sample. The SEM is commonly used to complement the AFM. Unlike the conventional light microscopes that use light waves to create their images, the SEM works by scanning the surface of a sample with a high-energy beam of electrons emitted from an electron source which is under the influence of an electric current. Nonconductive samples like natural fibres are coated with a conducting metal layer before analysis to prevent the sample from charging when exposed to the electron beam.

The electron gun is focussed on the sample, and when a beam of electrons from the gun hits the surface of the specimen, the electrons interact with the atoms of the sample to produce signals in the form of secondary electrons. Backscattered electrons and diffracted backscattered electrons are then used to determine the crystal structures and orientations of minerals. The secondary electrons from the surface of the sample are then detected by the secondary electron detector, which amplifies them and converts them into an electric signal. The SEM forms a three-dimensional (3D) image from the number of electrons that are emitted from the sample. The SEM produces micrographs of the sample surface, revealing details about the shape, width, and length of the sample.

2.7.6 Compact Morphological fibre (MorFi) Analyser

Pretreatment of cellulosic biomass can result in various forms of structural, morphological and molecular modifications such as depolymerization, chain scission, fibrillation, and bond breakage (SriBala et al., 2016; Loow et al., 2016). These induced modifications can have an influence on the behaviour of cellulose during chemical processing and ultimately the properties and quality of the derived end products (Chevalier-Billosta et al., 2007). Thus, understanding of the structural properties of this biopolymer is essential. The MorFi analyser is one of the common techniques for studying the morphological features of cellulose fibres during processing. Fibre morphology encompasses five parameters, length, width, coarseness, kink, and curl. Fibre length and width are the commonly presented features (Hirn & Bauer, 2006).
MorFi analysis is based on the image analysis of fibres in a suspension acquired by use of a high-resolution camera. The benefit to using this technique is that it has a quick turnaround time and it provides reliable morphological features or dimensions (Chevalier-Billosta et al., 2007; Besbes et al., 2011). As a result, this technique has widely been used in the pulp and paper industry for years to monitor the quality of fibres at different stages of lignocellulose processing (Hirn & Bauer, 2006). More recently it has also proved to be a useful characterization technique in the nanoscience and nanotechnology research field (Hirn & Bauer, 2006). In their waste valorization study, Chen and co-workers measured the fibre length and width distribution of cellulose and nanocellulose fibres extracted from agro-waste (Chen et al., 2014). Various authors have reported on the efficiency of this technique for characterization and evaluation of the morphological properties of nanofibres and nanocomposites isolated from cellulose (Sarrazin et al., 2009; Besbes et al., 2011; Nechyporchuk, 2015). Thus, the MorFi analyser has shown that it is useful for monitoring modifications induced by various pretreatment methods.
CHAPTER 3 – MATERIALS AND METHODS

3 Introduction

Chapter three lists equipment and reagents that were used in this study. It also describes the experimental procedures that were followed to achieve the aim and objectives of this study. An outline of the ultrasound and laser radiation pretreatment techniques that were used for cellulose structural modification is given; this is followed by a description of the Fock reactivity and alkali dissolution methods. Finally, an overview of the characterization techniques used for structural analysis of cellulose is presented.

3.1 Materials and methods

This section lists and describes the materials and chemical reagents that were used in this study. Furthermore, this section discusses the method followed to manufacture the cellulose pulp that was used as a raw material in this study.

3.1.1 Dissolving wood pulp

Dissolving wood pulp (DWP) was prepared from Eucalyptus dunnii (E.dunnii) on a batch-scale at the CSIR - Biorefinery Industry Development Facility (BIDF), Durban. E.dunnii is one of the clones of the plantation hardwood Eucalyptus species grown in South Africa. It is primarily grown for the production of pulp, paper, and other solid wood products. A 92α grade pulp was prepared from wood chips by acid bisulphite pulping process followed by a hypochlorite 4-stage bleaching sequence. The pulp was made into hand-sheets using a ‘Rapid Köthen’ hand-sheet former according to the TAPPI Standard Test Methods (T 205 sp-02) for laboratory determination of physical properties of pulp. The handsheets were air-dried for five days in a dark conditioned room with a temperature fixed at 23° C. This method of drying pulp has been reported to cause negligible coalescence of microfibrils compared to oven drying (Chunilall et al., 2013). The prepared handsheets were used as the raw material and source of cellulose samples.

3.1.2 Chemical reagents

The chemical reagents employed in the study were: sodium hydroxide (NaOH) pellets, acetic acid (AA), carbon disulphide (CS₂), sulphuric acid (H₂SO₄), potassium dichromate (K₂Cr₂O₇), potassium iodide (KI), sodium thiosulphate (Na₂S₂O₃), and the starch
indicator. They were all of analytical grade (AR) and were used as received from the suppliers (Merck SA (Pty) Ltd).

3.2 Methodology

This section outlines the methods and procedures that were followed to achieve objectives of this study. A detailed description of the steps followed during pretreatment of cellulose pulp with ultrasound and laser irradiation is given below.

3.2.1 Pretreatment: Ultrasound irradiation

A UP400S-Ultrasound processor, with a tip of a diameter of 20 mm, a working frequency of 24 kHz, and a maximum power of 400 W (Hielscher Ultrasounds, Teltow, Germany) was used to perform the ultrasound irradiation experiments. Three grams (3 g) of cellulose pulp was first torn into smaller pieces and soaked overnight in 1000 mL of deionized water. Ultrasound pretreatment or sonication of the pulp samples was carried out in an ice bath to avoid overheating of the experimental set-up. The samples were ultrasonicated for 10, 20, 30, 45 and 60 minutes (with 1-minute breaks after every 5 minutes of ultrasonication to avoid overheating the system), to evaluate the effect of pretreatment time. An average power in the range 35 – 77 W was noted during pretreatment of every sample using a power meter connected to the ultrasound processor. After ultrasonication, the samples were filtered using a vacuum pump and air dried in a temperature controlled room. After drying, structural characterization of the samples was performed, and the untreated cellulose pulp sample (UT-t=0) was used as a control.

3.2.2 Pretreatment: Laser irradiation

Irradiation pretreatment was carried out using two types of lasers, the Quanta-Ray Pro series Neodymium–doped yttrium garnet (Nd:YAG) and carbon dioxide (CO$_2$) lasers accessed at the CSIR-National Laser Centre (NLC) in Pretoria, South Africa. The approach taken in this study was first to conduct a series of preliminary experiments with different lasers of varying wavelength to identify the lasers which favourably interacted with the cellulose material, and modified its structure without scorching it. Furthermore, the laser screening tests were useful in selecting optimum processing parameters. CO$_2$ and Nd:YAG lasers were chosen based on the interaction of the laser beam and the cellulose material.
Figure 3.1 displays a schematic diagram of the experimental setup of laser irradiation pretreatment of DWP samples. The schematic diagram shows the path length and direction of the laser beam from the laser. The helium-neon (He/Ne) laser light was used as a safety measure to assist in locating the position of the colourless beam from the laser. The three mirrors were used for redirecting and channelling the path of the laser beam through the collimator which was used for adjusting the laser power directed towards the pulp sample mounted on the computer (PC) controlled XYZ stage. The XYZ stage was used as a mobile sample holder for all experiments, and the temperature of the room was maintained at 23°C to ensure that the instruments were not overheated. Moreover, safety precautions were observed by wearing appropriate personal protective equipment (PPE) when operating the laser, i.e., safety goggles.

The Nd:YAG laser is a pulsed laser, that gives an output of energy milliJoules (mJ); its emission wavelength for this study was fixed at 266 nm and 355 nm which is located on the ultraviolet (UV) region on the electromagnetic (EM) spectrum. The CO₂ laser is a continuous wave (CW) laser that gives its output in power (Watts) and has an emission wavelength of 10.6 μm which is in the infrared (IR) region. Variables that were evaluated were: laser power density of the lasers for the two lasers at different wavelengths, and the
treatment time in minutes (15, 30 and 45 minutes). Laser power density, also known as laser fluence describes the laser energy delivered per unit area of material scanned (Savalani et al., 2006; LIDARIS, 2016). Before calculating the power density of the Nd:YAG laser, the energy output was converted to power by calculating the peak power which is given in Watts (W) using equation [3.1]. Equation [3.2] was used to calculate power density of the lasers, and it is given in units of Watts per cm² (W/cm²) (Savalani et al., 2006; LIDARIS, 2016).

\[
\text{Peak power (W)} = \frac{\text{Laser pulse energy (J)}}{\text{Pulse duration (seconds)}} \tag{3.1}
\]

\[
\text{Intensity of Power Density (W/cm}^2) = \frac{\text{Laser Peak power (W)}}{\text{Effective focal spot area(cm}^2)} \tag{3.2}
\]

The average thickness of the hand-sheets after drying was 0.5 mm, and the sheets were cut into squares of dimension 5x5 cm². The pulp samples were mounted on the PC controlled mobile sample holder (XYZ stage) and directly placed in the direction of the laser radiation source. The distance between the pulp sample and laser source was fixed at 40 cm. The laser power output was measured before and after sample exposure using Coherent laser energy and power meters. The temperature output of the laser beam was also measured during irradiation to assess the effect of heat on the sample. The diameter of the laser beam spot size was 10 mm, and the repetition rate of the pulsed laser was 10 Hz. The power density delivered to the sample varied from 0.32 – 0.4 W/cm² in the Nd:YAG lasers for both wavelengths (266 & 355 nm) and 1.53-2.55 W/cm² for the CO₂ laser at 10.6 μm. The respective power density and settings of these two lasers were chosen as optimum conditions for this study after a series of preliminary laser screening tests.

After laser irradiation pretreatment, the samples were analysed and characterised to assess the effect of the pretreatment on the structural and molecular properties of cellulose. The characterization techniques that were used in this study are outlined below.
3.3 Cellulose reactivity and dissolution tests

The sections below discuss the wet chemistry treatments that were conducted on the pulp samples after pretreatment with ultrasound and laser radiation.

3.3.1 Alkali dissolution test

Dissolution of cellulose in aqueous NaOH or alkali solution is an essential step for conversion of cellulose to valuable products and derivatives. Therefore, after structural characterization of the ultrasonicated cellulose samples, the samples were dissolved in a solution of aqueous sodium hydroxide (NaOH) to convert cellulose I to alkali cellulose (alkcell) or cellulose II. The method followed was adapted from (Zhang et al., 2002) and modified for this study.

One gram (1 g) of cellulose was dispersed in a reaction vessel with 100 mL of pre-cooled (-4 °C) prepared 18% (w/w) aqueous NaOH solution. The reaction was carried out for 30 minutes with continuous stirring, and the temperature was kept below 6 °C until a slurry formed. A milky viscous solution resulted, and it was placed in the freezer and kept for 2 hours at -5 °C to allow for complete dissolution. After 2 hours, the solution was thawed and stirred vigorously for 15 minutes until a semi-clear solution resulted. The solution was centrifuged for 30 minutes at 9000 rpm using a centrifuge (Universal 320 LR Centrifuge, Hettich Instruments, Germany). A clear solution with a gel-like residue resulted. It was then filtered and neutralised with 150 mL of 10% acetic acid (AA). The resultant white material was washed thoroughly with deionized water, filtered, and then oven dried overnight at 55 °C. Structural characterization of the samples was then carried out, and the alkali cellulose sample (alkcell – UT-t=0) that was not ultrasonicated was used as the control sample.

3.3.2 Fock reactivity test

Cellulose reactivity of the laser pretreated DWP samples was measured according to Fock test method with slight modifications as adapted from Fock (1959) and Tian et al. (2013). The method was used to measure the reactivity of pulp samples in a system of NaOH and CS₂ after pretreatment with two lasers at three different wavelengths (i.e. Nd:YAG laser at 266 & 355 nm, and CO₂ laser at 10.6 µm). This method is suitable for giving an estimate of the pulp reactivity; it is, however, not an absolute method for determining
how pulp reacts in a viscose plant. It was chosen for this study because it is a straightforward and quick method that does not require a large sample. The Fock reactivity is a two-part experiment that is conducted over two days. Due to the project time limit and budget, the samples were run in sets of three replicates to determine the repeatability.

**Step 1: Xanthation and regeneration of cellulose**

A 0.5 gram mass of oven dried pulp was measured and added to a 100 mL Erlenmeyer flask with a stopcock. A 50 mL volume of aqueous sodium hydroxide (NaOH) (9% w/w) and 1.3 mL of carbon disulphide (CS₂) were measured and added to the flask. The mixture was stirred for 4 hours with a magnetic stirrer at room temperature. After 4 hours of stirring, distilled water was added to the sample to give a total weight of 100 g. The reaction flask was shaken vigorously until the sample was thoroughly mixed. This step was followed by centrifugation of the sample for 15 min at 5000 rpm. Then 10 mL of the upper liquid phase was pipetted into a 100 mL beaker and neutralised with ca. 3 mL sulphuric acid (H₂SO₄) (20% w/w) added dropwise with a medicine dropper. The mixture was then transferred into a tube with a stopper and set overnight for 15-20 hours in a fume cupboard. During this time, cellulose was regenerated and the solution degassed to remove CS₂.

**Step 2: Potassium dichromate (K₂Cr₂O₇) oxidation reaction**

The amount of regenerated cellulose was measured by adding 20 mL of H₂SO₄ (68% w/w) into a 100 mL flask with the regenerated cellulose solution. Using a magnetic stirrer, the solution was stirred for 1 hour to acidify the regenerated cellulose sample. The acidified sample mixture was transferred carefully into a reaction vessel, after which, 10 mL of 0.17 M potassium dichromate (K₂Cr₂O₇) solution was added. The mixture was then refluxed for 1 hour and during this time oxidation occurred. Once the hour elapsed, the oxidised sample was allowed to cool down to ambient temperature, and it was then transferred to a 100 mL volumetric flask and filled to the mark with distilled water. Exactly 40 mL of the liquid was then pipetted out and transferred into a 100 mL Erlenmeyer flask, 5 mL of potassium iodide (KI) (10% w/v) was added to react with the solution. The iodine produced was titrated with 0.1 N sodium thiosulphate (Na₂S₂O₄). Starch was used as an indicator to give a sharp endpoint colour. The titration was carried out until the colour of the solution changed from a dark blue-black to a light blue colour.
The volume of the titrant (Na$_2$S$_2$O$_4$) was recorded and used for pulp reactivity calculations as described below.

The Fock reactivity calculation is based on the amount of unreduced Cr$^{6+}$ that remains after the oxidative reaction between potassium dichromate and cellulose. Chemical equations below (3.1 – 3.4) display reduction-oxidation reactions that occurred during the cellulose titration:

$$4 \text{Cr}_2\text{O}_7^{2-} + 32 \text{H}^+ + \text{C}_6\text{H}_{10}\text{O}_5 \rightarrow 8 \text{Cr}^{3+} + 6 \text{CO}_2 + 21 \text{H}_2\text{O} \quad 3.1$$

The unreduced Cr$^{6+}$ in reaction (3.1) is reduced by iodide to Cr$^{3+}$:

$$14 \text{H}^+ + 6 \text{I}^- + \text{Cr}_2\text{O}_7^{2-} \rightarrow 2 \text{Cr}^{3+} + 3 \text{I}_2 + 7 \text{H}_2\text{O} \quad 3.2$$

and the iodine is then titrated with sodium thiosulphate:

$$6 \text{S}_2\text{O}_3^{2-} + 3 \text{I}_2 \rightarrow 3 \text{S}_4\text{O}_6^{2-} + 6 \text{I}^- \quad 3.3$$

Finally, the addition of reactions (3.2) and (3.3) gives:

$$14 \text{H}^+ + \text{Cr}_2\text{O}_7^{2-} + 6 \text{S}_2\text{O}_3^{2-} \rightarrow 2\text{Cr}^{3+} + 3 \text{S}_4\text{O}_6^{2-} + 7 \text{H}_2\text{O} \quad 3.4$$

**Step 3: Fock reactivity (%) calculations**

The percentage (%) reactivity of the dissolved cellulose that reacted with carbon disulphide was calculated using the equation [3.3]:

$$\text{Dissolved cellulose (\%)} = \left(\frac{(V_1C_1 - (V_2C_2 \times \frac{100}{40})) \times \frac{1}{100}}{M \times \frac{1}{4} \times \frac{100}{1000}}\right) \times 100$$ \[3.3\]

Where, $V_1$ is the volume of the K$_2$Cr$_2$O$_7$ added (L), $C_1$ is the concentration of the K$_2$Cr$_2$O$_7$ 0.17 M, $V_2$ is the volume of titrated Na$_2$S$_2$O$_4$ (L), $C_2$ is the concentration of Na$_2$S$_2$O$_4$ (0.1 N); $M$ is the molecular weight of the glucose unit (162 g/mol), and $m$ represents the weight of the oven dried pulp sample. The figure (100/40) refers to the dilution of the sample in the volumetric flask (100 mL) and the amount taken out and titrated (40 mL).
The number (1/6) indicates that each dichromate ion consumes 6 thiosulphate ions (Eq. 3.4) and the term (1/4) denotes that cellulose consumes 4 dichromate ions (Eq. 3.1). The last term, (100/10.4) designates the first dilution to 100 g and that a 10 mL sample (equivalent to 10.4 g) that was pipetted out and acidified with ca. 3 mL H₂SO₄.

### 3.4 Characterization techniques

Outlined below are some of the characterization techniques that were employed in this study to evaluate and identify the changes that took place in the cellulose structure as a result of laser and ultrasound irradiation pretreatment. Untreated pulp samples were used as references for all techniques.

#### 3.4.1 Size Exclusion Chromatography Multi-Angle Light Scattering (SEC-MALS)

SEC-MALS was used to evaluate the molecular weight (Mw) and the molecular weight distribution (MWD) of the pretreated samples. It is essential to study these properties of cellulose because they assist with monitoring the chemical behaviour and physiochemical characteristics of this biomolecule when it is exposed to various treatments (Sun & Sun, 2015). The SEC-MALS used in this study was fitted with two detectors, the DAWN EOS light scattering detector and the differential refractive index (RI) detector by Wyatt Technologies.

**Sample preparation**

To prepare the pulp sample for the SEC-MALS analysis, the first step was to prepare nitration acid that was used to convert natural cellulose to its soluble derivative. Nitration acid was prepared by adding 76 grams of phosphorus pentoxide (P₂O₅) to 40 mL of phosphoric acid (H₃PO₄) (84% w/v). The reaction mixture was stirred vigorously and then allowed to cool down in an ice bath for 3 hours with intermittent stirring. A measured amount of fuming nitric acid (61 mL) was added to the acid mixture with constant stirring. The nitration acid was then stored at 0 °C overnight.

About 150 mg of the pulp sample was pre-cooled in an ice bath for an hour after which, 15 mL of the prepared nitration acid was added to the pulp and mixed. The mixture was cooled down to 0 °C and kept on ice for 3 hours with occasional shaking to mix the
contents. Excess nitration acid was pressed out and filtered from the formed cellulose nitrate using a sintered glass crucible. The sample was neutralised by a stepwise addition of 150 mL of 2% (w/v) aqueous sodium carbonate (Na₂CO₃) solution without suction. The sample was washed with 800 mL of deionized water without suction. After washing the sample a few times, the water that was covering the sample was removed by suction using a vacuum line, and for 2 hours the sample was stabilised by covering it with methanol at room temperature. After 2 hours, the methanol was removed by suction, and the cellulose nitrate sample was dried over P₂O₅ for 15 hours at 20 °C. Approximately 0.009 mg of cellulose nitrate was weighed out and dissolved in 10 mL tetrahydrofuran (THF). The mixture was stirred in a shaker for 4 hours to ensure that the sample was dissolved completely. Two (2 mL) of the sample was injected into a syringe attached to a 0.45 μm glass fibre filter. Data was acquired and processed using the ASTRA Software for Windows (version 4.72.03) Wyatt technologies.

3.4.2 X-Ray Diffraction (XRD)

XRD analysis was carried out on the ultrasound and laser irradiated pulp samples to study the changes in the crystalline structure of cellulose. A D8 Bruker AXS Advance XRD, fitted with a LynxEye detector, using a Cu Kα X-ray radiation source with a wavelength of 1.54 Å was utilised in this study. The operating power of the instrument was 300 W (voltage, 30 kV, and a current of 10 mA) with a scanning rate of 0.01°. The XRD Bragg angle was set to scan from 2θ = 5° to 35°, and the data was processed using a DIFFRAC SUITE software package. The crystallinity index (CrI) for all samples was calculated using the peak height method developed by Segal et al. (1959) and described by Park et al. (2010) according to equation [3.4]:

\[
CrI = \left( \frac{I_{\text{max}} - I_{\text{min}}}{I_{\text{max}}} \right) \times 100\% \quad [3.4]
\]

Where, \(I_{\text{max}}\) refers to the diffraction intensity at (002) peak position when 2θ = 22.5° and \(I_{\text{min}}\) is the minimum intensity above the baseline between 2θ= 18° and 19° corresponding to crystalline and non-crystalline cellulose regions, respectively.
Sample preparation
The dry cellulose specimen was fixed onto a 20 mm disc and mounted on an aluminium sample holder. The samples were irradiated by X-ray beam with the described specifications. The data was exported as Microsoft Excel format and used to plot diffractograms.

3.4.3 Cross Polarization Magic Angle Spinning $^{13}$C-NMR (CP/MAS $^{13}$C-NMR)
The CP/MAS $^{13}$C-NMR is a powerful tool that can provide valuable information about the molecular and supramolecular structure of polymer molecules. In this study, CP/MAS $^{13}$C-NMR technique was primarily used to examine the changes in the crystalline structure of cellulose samples after pretreatment with laser and ultrasound irradiation. Spectra were recorded on the Bruker Advance III 600 MHz instrument operating at a magnetic field strength of 7.04 $T$ and an ambient temperature (298±1 °K). The magic angle spinning (MAS) spinning rate was of 5 kHz. A double air-bearing probe was used. The acquisition was performed with a Contact Pulse (CP) sequence using a 4.3 μs proton 90° pulse, 800 μs ramped (100 - 50%) falling contact pulse and a 2.5 s delay between repetitions. The TPPM15 pulse sequence was used for $^1$H decoupling. Glycine was utilised for the Hartmann-Hahn matching procedure, as well as an external standard for calibration of the chemical shift scale relative to tetramethysilane ((CH$_3$)$_4$Si). The data point of maximum intensity in glycine carbonyl was assigned a chemical shift of 176.03 ppm. The NMR data was processed using the built-in Topspin software (version 2.1). The crystallinity index (CrI) was evaluated by deconvolution of peaks in the C-4 region of the cellulose I NMR spectra into crystalline and amorphous peaks. The signal at 86-92 ppm corresponds to the highly ordered crystalline area of cellulose, and the signal at 79-86 ppm corresponds with the non-crystalline cellulose or less ordered cellulose chains. The area of the crystalline peak (86 to 92 ppm) was divided by the total area assigned to the C-4 peak (80 to 92 ppm).

Sample preparation
After pretreatment, all pulp samples were first wet with deionized water (40 – 60% moisture), uniformly packed in a zirconium oxide rotor and analysed. Untreated pulp samples were used as a control. After analysis, data was retrieved and processed using the Topspin software (version 2.1).
3.4.4 Atomic Force Microscopy (AFM)

Cellulose processing and manipulation cause structural alteration of the fibres on the ultrastructural level. Therefore, to understand the effect of laser and ultrasound irradiation on the structure of cellulose, AFM analysis of the ultrastructure of the cellulose fibres, particularly the S2 layer within the secondary cell wall was conducted. The analysis was carried out by the NT-MDT manufactured Solver P47H base with a SMENA head. The AFM tip used was of the following specifications: SuperSharpSilicon SPM-Sensors (SSS_NCLR, Nanosensors) with a resonance frequency of 146-236 kHz, Force constant of 21-98 N/, a tip radius of 2 nm. The data obtained was then used to compute the lateral fibril aggregate dimensions (LFAD).

Sample preparation

Samples for AFM analysis were prepared with caution to minimise alteration of the cell wall structure and preserve the ultrastructure of the fibre cell wall. The pulp samples were first strung out into strands of fibres using tweezers and aligned on the prepared pieces of aluminium foil. The piece of foil with fibre threads was then rapidly dipped in liquid nitrogen slush; after that, the piece of foil was placed in the freeze drying equipment for about 24 hours. The freeze-drier stage was pre-cooled to -70 °C before insertion of the samples and the system was kept under vacuum by a connected vacuum pump. On the second day, the pulp fibres were then embedded in the prepared epoxy resin and placed in the oven fixed at 70 °C for 8 hours. This was to allow the resin to polymerise and harden. After this procedure, the next step was to transversely section a 1.0 μm thick cross-section on the ultramicrotome (EM UC7, Leica Microsystems, Germany) using the lab-prepared glass knives. The cross-sections of the samples were then picked and placed on a glass slide, dried and scanned on the AFM.

AFM sample scanning

The pulp fibre cross-sections of the pretreated samples and an untreated control were studied on the AFM. The AFM can be operated in three basic imaging modes, the contact, non-contact and the Tapping mode. In the contact mode, the sample is in direct touch with the sample, and this is applicable to studies of hard surfaces. In the case of non-contact mode, the AFM tip scans the sample by vibrating on top of the sample surface, and this is useful for analysis of soft specimens. The Tapping mode, on the other hand, is
an extension of the non-contact mode but the tip vibrates at a higher altitude on top of the sample surface. For the purpose of this study, the latter mode was selected because the tip has less direct contact with the sample. This mode of scanning has less potential of damaging the structure of the fibre wall, and it also keeps the fibre wall in its native structure. The samples were scanned in ambient conditions at a room temperature of 25 °C. The area of interest was the S2 layer of the cellulose fibre wall. At first, an area of 13x13 μm of the entire fibre was scanned; this was reduced progressively to 8x8 μm, 4x4 μm and finally, a 1x1 μm area was scanned. The images were taken in both height and phase mode. In the height mode, deflection of the cantilever is directly used to measure the z position, while in the phase mode; the lateral movements of the cantilever measure the surface properties of the material.

**AFM image analysis**

Image analysis of the acquired 1x1 μm scans was conducted to determine the change in LFAD due to the pretreatments. The Image-Pro Plus (Version 6.0) software was used to analyse AFM scans and to obtain images in phase mode. Phase imaging is useful for assessing fine surface features such as aggregation and elasticity. Firstly, a grayscale photograph of the phase mode scan was obtained, and then a watershed segmentation filter was applied. Then the image was masked to reveal possible fibril aggregate areas and the mean of the aggregate diameter was measured in nanometres (nm). The image analysis data was compiled and presented in Microsoft Excel format.

**3.4.5 Scanning Electron Microscopy (SEM)**

In this study, SEM micrographs of the pretreated pulp samples were acquired by analysis with ZEISS EVO LS15 scanning electron microscope fitted with a secondary electron detector. The SEM was equipped with the Energy dispersive X-ray spectroscopy (EDX) analyser. The accelerating voltage used was between 5 kV at different magnifications. The purpose of using the SEM was to assess morphological changes on the surface of cellulose pulp samples as a result of the laser and ultrasound radiation pretreatment.

**Sample preparation**

The pretreated dry pulp samples were mounted onto metal stubs using a carbon double sided tape with the side to be examined facing upwards. Before exposure to the SEM, the
samples were sputter coated with a gold layer (gold and palladium ratio of 80:20) using an EIKO IB3 Ion coater to create a conductive metallic layer that inhibits charging and improves sample imaging. After sputter coating, the samples were ready for analysis on the SEM. Image analysis was conducted on the Soft Imaging Software (SIS).

3.4.6 Compact Morphological Fibre (MorFi) analyser

Further morphological analysis of the ultrasound irradiated pulp samples was carried out using the Compact MorFi analyser (TechPap, France). The fibre analyser was used to characterise the average fibre distribution (length and width) and the change in the number of fibres after the pretreatment in comparison to the untreated control samples.

Sample preparation
The moisture of the ultrasonicated samples and control sample was measured on the moisture analyser and recorded on the MorFi sample spreadsheet. Moisture content measurements were used to calculate the mass of the pulp required to achieve a consistency of 30 mg/L. The samples were weighed according to the values given by the spreadsheet and the actual mass weighed was recorded into the worksheet. The weighed samples were transferred to their respectively labelled 100 mL beakers and wet by adding water into the beaker until the sample was submerged. The weighed sample was then washed into the disintegrator holder with 700 mL tap water and placed into the disintegrator instrument. The samples were fragmented in the disintegrator for three (3) minutes. Once the disintegration was complete, the disintegrator blades were washed into the holder with approximately 50 mL of tap water to ensure that there was no sample left behind on the blades. The sample was then transferred to a 1000 mL volumetric flask using a funnel to make sure that nothing was spilt over. The funnel was rinsed with approximately 200 mL aliquots of tap water and the 1000 mL volumetric flask was then filled to the mark. The flask was closed using a stopper and shaken to ensure a homogeneous mixture. The contents were then rapidly transferred into a 1000 mL plastic beaker and taken for measurement of fibre dimensions using a fibre analysis apparatus.

Sample analysis
The study was carried out in duplicate, and the results were recorded on the application software and exported to Microsoft (MS) Excel for data analysis.
CHAPTER 4: RESULTS AND DISCUSSIONS – ULTRASOUND IRRADIATION

4 Introduction

Chapter 4 presents characterization results for dissolving pulp samples after ultrasound irradiation and treatment with aqueous sodium hydroxide (NaOH) solution.

4.1 Ultrasound irradiation of cellulose

Ultrasound irradiation is a powerful and environmentally benign pretreatment technique that can be used to depolymerise and disrupt the cell wall structure of cellulose (Wong et al., 2009; Karimi et al., 2014). This method is widely known for its ability to cause polymer degradation by breaking the cellulose fibre chains into smaller units. The chain breakage is due to the mechanical stress that results during cavitation (Antti et al., 2008; Frone et al., 2011; Wong et al., 2012). This part of the study investigated the effect of ultrasound irradiation on the structure of cellulose. Furthermore, the impact of this pretreatment technique on the dissolution behaviour of cellulose in an aqueous sodium hydroxide (NaOH) solution was also studied. The samples were ultrasonicated for 10, 20, 30, 45, and 60 minutes and subsequently reacted with 18% (w/w) NaOH solution. Untreated pulp samples were used as experimental control. Structural characterization of the pretreated samples was conducted, and the results are outlined below.

4.1.1 Size Exclusion Chromatography with Multi-Angle Light Scattering (SEC-MALS) results

SEC-MALS is a standard technique that is used in research laboratories and industrial institutions to determine the average weight molar mass (Mw) and molecular weight distribution (MWD) of both synthetic and natural polymers including cellulose (Conner, 1995; Trathnigg, 2000). The Mw and MWD play a major role in polymer characterization because these parameters can directly influence properties and behaviour of the polymer, especially during reactivity and dissolution (Rogošić et al., 1996). In this study, the Mw and MWD were analysed by SEC-MALS after pretreatment of the pulp samples with ultrasound radiation and dissolution in aqueous NaOH.
Figure 4.1 displays SEC-MALS chromatograms of cellulose obtained after ultrasound irradiation. The chromatograms of the pretreated samples show a slight shift in average Mw from a high to lower value compared to the untreated control sample. Moreover, an increase in the width of the MWD curves is also observed, and this is more pronounced after 60 minutes of ultrasonication. The UT-60 min curve shows that this sample has a relatively broad MWD and a high fraction of the low Mw polysaccharides as shown by the long tail-end bump towards the low molecular weight side. These observations are in agreement with the average MWD data shown in Table 4.1. With increasing treatment time (10, 20, 30, 45 and 60 minutes), the weight average molar mass (Mw) displays a significant decrease of 6.4%, 8.5%, 8.7%, 10.2%, and 12.0% respectively. The decrease in Mw is an indication of cellulose depolymerization which can be attributed to cleavage of the long cellulose chains due to the cavitation bubbles that are generated in solution during ultrasound irradiation (Wong et al., 2009; Wong et al., 2012).

Changes in the Polydispersity index (PDI) was also observed after the pretreatment. PDI is a ratio of the molecular weight averages (Mw/Mn), it is an indication of the broadness of the MWD of a polymer. Samples that were ultrasonicated for 10 and 20 minutes display minor declines in PDI, but the latter three samples that were irradiated for 30, 45 and 60 minutes show an increase in PDI. Compared to the control sample, a PDI % increase of 86.5% was observed when the sample was exposed to ultrasound irradiation for 60 minutes. These observations correspond to earlier findings which have displayed that the length of ultrasound treatment time also plays a significant role in determining the extent of polymer degradation (Antti et al., 2008; Goodwin et al., 2011; Wong et al., 2012).

On the other hand, minor declines in the intrinsic viscosity were observed in samples after exposure to ultrasound irradiation. The intrinsic viscosity has widely been documented as a function of the average Mw of a polymer, and it is used for estimating the viscosity-average degree of polymerization (DP) (Weissler, 1950; Liu et al., 2006). However, a different conclusion can be drawn from the observed results because no parallel decreasing trend was realised between the Mw and molecular weight average intrinsic viscosity ([η]w).
Figure 4.1: SEC-MALS chromatograms of dissolving pulp samples ultrasonicated for 10, 20, 30, 45 and 60 minutes compared to the control sample.

Table 4.1: Average molecular weight distribution (MWD) results after ultrasound irradiation

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>*Mw (x10^5 g/mol)</th>
<th>*[ƞ]w (mL/g)</th>
<th>*PDI (Mw/Mn)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cellulose I control</td>
<td>5.78±0.3</td>
<td>1218.0±24.4</td>
<td>4.28±0.4</td>
</tr>
<tr>
<td>UT - 10 min</td>
<td>5.41±0.1</td>
<td>1194.11±2.15</td>
<td>4.107±1.0</td>
</tr>
<tr>
<td>UT - 20 min</td>
<td>5.29±0.2</td>
<td>1212.74±9.9</td>
<td>4.253±1.2</td>
</tr>
<tr>
<td>UT - 30 min</td>
<td>5.28±0.3</td>
<td>1207.57±6.6</td>
<td>5.001±2.4</td>
</tr>
<tr>
<td>UT - 45 min</td>
<td>5.19±0.0</td>
<td>1217.86±7.5</td>
<td>4.847±0.4</td>
</tr>
<tr>
<td>UT - 60 min</td>
<td>5.09±0.3</td>
<td>1191.99±8.7</td>
<td>7.981±2.6</td>
</tr>
</tbody>
</table>

*Mean calculated from a total of three experimental trials (n = 3)

Since ultrasound irradiation has been reported to cause cellulose depolymerization and alteration in MWD, it can be resolved that ultrasound irradiation can improve cellulose dissolution (Xing et al., 2010; Sumari et al., 2013). Low Mw polymers react much faster, and they require less driving force for dissolution compared to the high Mw polymers (Sumari et al., 2013). Figure 4.2 presents the SEC-MALS chromatograms with average log differential molar mass.
modifications that occurred in the molecular structure of cellulose pulp samples after ultrasound irradiation and dissolution in aqueous NaOH solution. Compared to the native cellulose control, the alkcell control and all UT-alkcell samples displayed slight shifts from high to lower average Mw. However, in comparison to the alkcell control, the test samples exhibited different behaviour, the curves for alkcell-UT samples ultrasonicated for 10, 30 and 60 minutes display a shift to high Mw. In contrast, the alkcell-UT-20 and 45 minutes shifted to the low Mw. The shift was more pronounced on alkcell-UT45 minutes sample, and this was accompanied by broadening of the peak. These peak shifts correspond to the results as shown in Table 4.2.

The Mw of alkcell-UT 45 min peak displayed a significant decline in average Mw from 4.75x10^5 g/mol to 4.06x10^5 g/mol. The decrease in average Mw for this sample reveals an inversely proportional relationship with the corresponding PDI ratio. The PDI increased from 2.763 to 4.171 to show that after ultrasonication and NaOH treatment, the distribution of the Mw widened. Furthermore, a directly proportional relationship is observed between the Mw and intrinsic viscosity to this sample, a noticeable intrinsic viscosity decrease from 1178.18 mL/g to 1113.50 mL/g was achieved. These observations agree with earlier suggestions made about Mw and intrinsic viscosity. Some scholars have been able to determine the average Mw of cellulose from the intrinsic viscosity (Weissler, 1950; Kulicke et al., 2005). However, from the observed cellulose modifications, after the ultrasound irradiation and alkali dissolution, no apparent trend could be established in comparison to pretreatment time. This lack of change or minimal changes in cellulose Mw and its distributions may be due to cross-linking within the cellulose molecules as a result of the pretreatments (Yacob et al., 2013; Saini et al., 2015).
Figure 4.2: SEC-MALS chromatograms of the ultrasound irradiated-alkali cellulose samples (cellulose II) compared to cellulose I-control and alkcell control.

Table 4.2: Average MWD results after ultrasound irradiation and alkali dissolution treatment

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>*Mw (x10^5 g/mol)</th>
<th>* [ƞ]w (mL/g)</th>
<th>*PDI (Mw/Mn)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cellulose I control</td>
<td>5.57±0.4</td>
<td>1358.89±10.0</td>
<td>4.549±0.2</td>
</tr>
<tr>
<td>Alkcell control</td>
<td>4.75±07</td>
<td>1178.18±3.6</td>
<td>2.763±0.9</td>
</tr>
<tr>
<td>Alkcell-UT10 min</td>
<td>5.36±0.2</td>
<td>1248.87±3.7</td>
<td>3.916±0.4</td>
</tr>
<tr>
<td>Alkcell-UT20 min</td>
<td>4.65±0.4</td>
<td>1151.68±16.1</td>
<td>4.619±0.2</td>
</tr>
<tr>
<td>Alkcell-UT30 min</td>
<td>5.19±0.3</td>
<td>1262.56±6.9</td>
<td>3.031±0.6</td>
</tr>
<tr>
<td>Alkcell-UT45 min</td>
<td>4.06±0.9</td>
<td>1113.50±16.9</td>
<td>4.171±0.3</td>
</tr>
<tr>
<td>Alkcell-UT60 min</td>
<td>5.30±0.2</td>
<td>1337.01±7.6</td>
<td>2.263±1.1</td>
</tr>
</tbody>
</table>

*Mean calculated from a total of three experimental trials (n = 3)

4.1.2 X-Ray Diffractions (XRD) results
High cellulose crystallinity is a consequence of the strong intra and intermolecular hydrogen bonds that hold the cellulose molecules together (Wong et al., 2012). Cellulose crystallinity is one of the most important parameters that significantly influence the
mechanical, physical and chemical properties of this biopolymer. Pretreatment of cellulose with ultrasound radiation induces changes in the physical structure of cellulose by isolating the cellulose surface fibres, this has various chemical effects on the structure, and may ultimately lead to improved cellulose reactivity (Suslick & Price, 1999; Cheng et al., 2010). XRD is a well-established technique that is used for characterising the crystallinity of a wide range of crystalline materials. In this study, XRD analysis was performed to examine the crystalline structure of cellulose after ultrasound irradiation, and the degree of crystallinity (CrI) was calculated by the peak height method that was developed by Segal et al. (1959). Figure 4.3 depicts superimposed XRD patterns of the samples after ultrasound irradiation for 10, 20, 30, 45 and 60 minutes and the untreated pulp sample used as a control. The diffraction patterns display characteristic natural cellulose peaks with different intensities and width. The first peak is located at approximately $2\theta = 16^\circ$; this peak is broad because it is an overlap of two peaks located at $2\theta = 15.5^\circ$, $16.4^\circ$. The third peak is an intense sharp peak located at $2\theta = 23.2^\circ$. These $2\theta$ reflections correspond to (101), (101), and (002) crystallographic planes; and they confirm the native cellulose crystalline structure (Borysiak & Doczekalska, 2005; Park et al., 2010).

After ultrasound irradiation, the peak intensities of the pretreated samples display a slight decrease and a shift in $2\theta$ to higher values compared to the untreated control sample. However, the shape of the peaks did not change after ultrasonication; this shows that the treatment did not have much of an effect on the crystalline structure of cellulose. These observations are in agreement with what has been shown in the literature (Xing et al., 2010). Estimated CrI results shown in Table 4.3 also confirmed these observations, with increasing treatment time cellulose crystallinity was slightly decreased from 62.2% (control) to 60.8%, 56.7%, 59.6%, 60.9% and 57.1% in samples ultrasonicated for 10, 20, 30, 45, and 60 minutes, respectively.

Ultrasound irradiation has been reported to have a significant effect on various structural properties of cellulose. However, observations made in this study suggest that the pretreatment did not cause visible changes in the degree of cellulose crystallinity. Xing et al. (2010) also recorded minor modifications on the crystallinity of cellulose after ultrasound irradiation which was suggested to be due to the damage induced by the acoustic cavitation process. Ultrasound irradiation does not have much effect on the
crystalline structure of cellulose; however, it has shown that it removes the amorphous regions and the upper layer of cellulose fibres thus exposing the crystalline regions. As a result, various studies have reported that ultrasound irradiation can cause the cellulose crystallinity to either increase or remain unchanged (Aimin et al., 2005; Cheng et al., 2010; Frone et al., 2011).

![Figure 4.3](image)

Figure 4.3: Superimposed XRD pattern for dissolving pulp samples after ultrasound irradiation compared to the control sample

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Treatment time/min</th>
<th>(^{*}\text{CrI - XRD (%)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>0</td>
<td>62.2±2.2</td>
</tr>
<tr>
<td>UT-10 min</td>
<td>10</td>
<td>60.8±1.9</td>
</tr>
<tr>
<td>UT-20 min</td>
<td>20</td>
<td>56.7±2.5</td>
</tr>
<tr>
<td>UT-30 min</td>
<td>30</td>
<td>59.6±3.3</td>
</tr>
<tr>
<td>UT-45 min</td>
<td>45</td>
<td>60.9±1.5</td>
</tr>
<tr>
<td>UT-60 min</td>
<td>60</td>
<td>57.1±1.6</td>
</tr>
</tbody>
</table>

*Mean calculated from a total of three experimental trials (n = 3)*
Figure 4.4 presents X-ray diffraction patterns of cellulose pulp samples after ultrasonication and treatment with aqueous NaOH solution (alkali treatment) compared to the untreated natural cellulose (cellulose I control). After the samples were treated with aqueous NaOH solution, all diffractograms display a shift to lower 2θ values and characteristic cellulose II peaks. The peaks shifted to approximately 2θ = 12.7°, 20.6° and 22.2° which respectively correspond to (110), (101) and (002) crystallographic plane reflections (Oudiani et al., 2011). From the results, the conversion of cellulose I to cellulose II is observed after treatment with aqueous NaOH solution. This transition is proven by the disappearance or reduction of all the peaks that correspond to Bragg’s angle at 2θ = 16° and 23° in native cellulose. The high ordered crystalline structure of cellulose I was transformed to the amorphous structure of cellulose II (alkcell); this conversion can be attributed to the reduction of the existing inter- and intramolecular hydrogen bonds that tightly bind the cellulose molecules together (Ciolacu et al., 2011).

Table 4.4 displays the change in crystallinity index after ultrasonication and alkali treatment. A CrI decline of 55% was achieved for the alkcell-UT 60 min sample in comparison to the alkcell-control sample. Other alkcell-UT samples also displayed noticeable changes in CrI after alkali treatment. These observations agree with what has been reported about the ability of aqueous NaOH solution to infiltrate and break the crystalline regions of cellulose (Medronho & Lindman, 2015). Ultrasound treatment alone was unable to disrupt the cellulose crystalline structure, but when it was used in combination with alkali treatment, noticeable changes in cellulose crystallinity were noticed.
Figure 4.4: Superimposed XRD patterns of dissolving pulp samples after ultrasound irradiation and treatment with aqueous NaOH solution

Table 4.4: Average CrI results after ultrasound irradiation and alkali treatment

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Treatment time/min</th>
<th>CrI - XRD (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkcell-control</td>
<td>0</td>
<td>30.7±0.9</td>
</tr>
<tr>
<td>Alkcell-UT 10 min</td>
<td>10</td>
<td>22.8±1.0</td>
</tr>
<tr>
<td>Alkcell-UT 20 min</td>
<td>20</td>
<td>23.4±2.6</td>
</tr>
<tr>
<td>Alkcell-UT 30 min</td>
<td>30</td>
<td>20.2±0.3</td>
</tr>
<tr>
<td>Alkcell-UT 45 min</td>
<td>45</td>
<td>23.4±2.5</td>
</tr>
<tr>
<td>Alkcell-UT 60 min</td>
<td>60</td>
<td>13.9±0.0</td>
</tr>
</tbody>
</table>

*Mean calculated from a total of three experimental trials (n = 3)

Moreover, the transformation of cellulose chains from the crystalline structure of native cellulose to the thermodynamically stable cellulose II phase was achieved. Although the relationship between the effect of increasing treatment time and the pretreatment is not pronounced, the samples that were ultrasonicated for 10 and 30 minutes displayed a complete conversion to amorphous cellulose while other test samples were a combination of both phases. These observations are attributable to the proposed mechanism of alkali
treatment of cellulose which suggests that NaOH molecules can enter the crystalline regions of the cellulose, cause them to swell and ultimately break the hydrogen bonds within the network structure. These structural modifications ultimately lead to the overall decrease in cellulose crystallinity, increased accessibility and reactivity (John & Anandjiwala, 2008; Öztürk et al., 2009; Olsson & Westman, 2013). The above observations are in agreement with what has been reported in various studies that ultrasound irradiation combined with alkali treatment can alter the morphology and crystalline structure of cellulose (Wong et al., 2012; SriBala et al., 2016).

### 4.1.3 Atomic Force Microscopy (AFM) results

Surface topography and roughness modifications after pretreatment with ultrasound radiation were determined with the AFM with the aim of finding the correlation between the pretreatment and morphological alterations. Figure 4.5 displays 1x1 μm phase images of the secondary cell wall (S2 layer) of the ultrasonicated samples as well as the untreated control sample. No obvious changes were observed on the micrographs of the cross-sections after ultrasonication when compared to the control sample; there are no visible pores that formed due to the pretreatment. The tightly bound regions on the fibril aggregates are more pronounced after ultrasonication compared to the dark areas which represent the less stiff regions. Table 4.5 presents the average LFAD obtained after ultrasound irradiation of the cellulose pulp samples in comparison to the control sample. LFAD is a measure of the diameter of the lateral fibril aggregates, and it has a significant influence on the availability of the surface area for chemical processing (Chunilall et al., 2006; Pönni et al., 2012).

After ultrasound irradiation, a slight decrease in LFAD was observed. The LFAD value for the control sample decreased from 31.98 nm to 28.4 nm, 29.3 nm, 23.0 nm, 29.7 nm and 25.6 nm after ultrasonication for 10, 20, 30, 45 and 60 minutes, respectively. Even though the decrease does not show a trend with increasing treatment time, it can be seen that to some extent; ultrasound irradiation had an effect on the ultrastructure of cellulose fibres. Earlier studies have established that there is an inversely proportional relationship that exists between the LFAD and specific surface area (Chunilall et al., 2010). Therefore the slight decrease in LFAD suggests that there is an increase in available surface area for reactions.
Figure 4.5: AFM 1x1 μm phase images of the cross-section of secondary cell wall (S2) layer for the ultrasound irradiated pulp samples compared to the control.

Table 4.5: Average LFAD results for ultrasound irradiated pulp samples

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Time/mins</th>
<th>LFAD/nm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>0</td>
<td>31.98±2.7</td>
</tr>
<tr>
<td>UT -10 min</td>
<td>10</td>
<td>28.4±2.8</td>
</tr>
<tr>
<td>UT -20 min</td>
<td>20</td>
<td>29.3±2.1</td>
</tr>
<tr>
<td>UT -30 min</td>
<td>30</td>
<td>23.0±1.6</td>
</tr>
<tr>
<td>UT -45 min</td>
<td>45</td>
<td>29.7±2.9</td>
</tr>
<tr>
<td>UT -60 min</td>
<td>60</td>
<td>25.6±1.5</td>
</tr>
</tbody>
</table>

*Mean calculated from a total of three experimental trials (n = 3)

4.1.4 Scanning Electron Microscopy (SEM) results

Pretreatment is a paramount step in cellulose processing because it helps to overcome the recalcitrant nature of this polymer by inducing various physical and chemical
modifications to its ultrastructure (Brodeur et al., 2011). Acoustic cavitation is a phenomenon of ultrasound irradiation that is known as the driving force behind the morphological changes that occur on the surface of materials during application of this pretreatment technique. The generated microbubbles collide and collapse to produce high energy shockwaves which damage the surface of cellulose fibres and causes bond breakage (Suslick & Price, 1999).

Figure 4.6(a) to (f) presents SEM micrographs for the control sample (untreated natural cellulose) and ultrasonicated cellulose samples. Before ultrasonication, the surface of the control sample displayed “scaly” irregular folds which may be due to the S1 cell wall layer. With increasing ultrasonication time, cavitation of microbubbles led to the dislocation and erosion of the S1 cell wall layer until the surface of the fibres became smooth as shown in the fibre obtained after treatment for 60 minutes. Ultrasound irradiation efficiently induced noticeable morphological changes on the surface of the cellulose fibres. These observations are in agreement with earlier findings that displayed that by acoustic cavitation, ultrasound irradiation can disrupt both the primary and secondary cellulose cell wall. Modification of cellulose surface morphology leads to increased surface area and improved chemical accessibility and processing (Wong et al., 2012; Karimi et al., 2014).
Figure 4.7(a) presents the SEM micrograph of the surface of cellulose fibres after alkali treatment only (alkcell control sample), and Figure 4.7(b-f) presents images of cellulose fibres that were exposed to ultrasound irradiation and alkali treatment respectively. The images demonstrate noticeable changes on the surface of all the test samples and the alkcell control sample. After the treatments the samples became compact and agglomerate; the surface of the fibres was rough with wrinkles and grooves. These observations were more apparent on samples UT+alkali (c) to (f). Treatment of cellulose fibres with NaOH solution at low temperature is known for its ability to penetrate the crystalline regions of cellulose and for breaking the hydrogen bonds within the complex network structure of this polymer (Olsson & Westman, 2013; Medronho & Lindman, 2015).

The combination of alkali treatment of cellulose with ultrasound irradiation has also shown that it can disintegrate and break the surface of fibre walls. Therefore, the cracks and roughness noticed on the surface of the cellulose fibres after the treatments are an indication of a possible increase in exposure and accessibility of new reaction sites.
Increased surface area is known to enhance reactivity because the substrate is more accessible to reagents (Xing et al., 2010; Kang et al., 2013). These modifications are attributable to the localised shockwaves of ultrasound caused by the cavitation process.

![Figure 4.7: SEM images of pulp samples after ultrasound irradiation and treatment with aqueous NaOH solution compared to the control.](image)

### 4.1.5 Compact Morphological Fibre (MorFi) Analyser results

The MorFi analyser was used to investigate the structural dimensions of the ultrasound irradiated samples and compared to the untreated control samples. The results are shown and discussed below. Table 4.6 displays the fibre distributions of dissolving pulp after ultrasound irradiation compared to the control sample. A slight decrease in fibre lengths for the pretreated pulp fibres is observed in comparison to the control. However, the pretreatment did not have a significant impact on the number of fibres and the average width of the fibres. The number of fibres displayed an increase with increasing ultrasonication time, although the increase did not show a linear relationship trend. The average fibre widths also exhibited an insignificant decrease with increasing ultrasonication time.
Table 4.6: MorFi analysis of pulp samples after ultrasound irradiation compared to the untreated control

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>*Fibre No.</th>
<th>*Ave. Length (μm)</th>
<th>*Ave. Width (μm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>5016±7.7</td>
<td>659±12.0</td>
<td>13.4±0.2</td>
</tr>
<tr>
<td>UT-10min</td>
<td>5055±4.9</td>
<td>627±5.7</td>
<td>13.0±0.3</td>
</tr>
<tr>
<td>UT-20min</td>
<td>5234±3.9</td>
<td>621±1.4</td>
<td>13.2±0.2</td>
</tr>
<tr>
<td>UT-30min</td>
<td>5089±5.9</td>
<td>616±10.0</td>
<td>13.0±0.1</td>
</tr>
<tr>
<td>UT-45min</td>
<td>5257±2.1</td>
<td>624±4.9</td>
<td>13.1±0.3</td>
</tr>
<tr>
<td>UT-60min</td>
<td>5175±4.7</td>
<td>603±1.4</td>
<td>13.3±0.5</td>
</tr>
</tbody>
</table>

*Mean calculated from a total of two experimental trials (n = 2)

Figure 4.8 displays optical microscope images of the fibres after ultrasonication. There are no noticeable visual changes regarding the fibre chain lengths and distribution of the fibres appears to be homogeneous after ultrasonication. These observations are to be expected since ultrasound irradiation is not a random process and it causes chain breakage to occur at the centre of a fibre before reaching a levelling-off point where chains do not fragment further (Suslick & Price, 1999; Caruso et al., 2009).
Figure 4.8: Images obtained from the MorFi analyser displaying morphological properties of dissolving pulp samples after ultrasound irradiation.
CHAPTER 5: RESULTS AND DISCUSSIONS – LASER IRRADIATION

5 Introduction

Chapter 5 gives a detailed overview of the results obtained in this study; it is divided into two sections and their respective subsections. Section 5.1 presents structural characterization results for the laser irradiated pulp samples, and section 5.2 outlines the Fock reactivity results and observations.

5.1 Laser irradiation pretreatment

Dissolving pulp samples were irradiated with the carbon dioxide (CO₂) laser that emits at a wavelength of 10.6 μm and the neodymium yttrium aluminium garnet (Nd:YAG) laser emitting at 266 and 355 nm. Irradiation time was set for 15, 30 and 45 minutes. Characterization of the irradiated pulp samples was carried out using various techniques to assess any structural modifications that occurred due to the pretreatment.

5.1.1 Size Exclusion Chromatography Multi-Angle Light Scattering (SEC-MALS) results

The behaviour and chemical reactivity of polymers are strongly influenced by their average weight molar masses (Mw) and molecular weight distribution (MWD) (Bernhard & Oppermann, 2004). When polymers are exposed to radiation treatment, they undergo two main reactions; chain scission and cross-linking, and these reactions ultimately have an impact their final properties (Yacob et al., 2013). The SEC-MALS was used to study the molecular weight of cellulose and its distribution after laser radiation pretreatment.

Figures 5.1 to 5.3 present overlaid chromatograms of the laser irradiated cellulose pulp samples and the untreated control sample. The MWD curves are plots of differential weight fraction (1/log(g/mol)) versus molar mass (g/mol), these curves provide a description of the size distribution of the cellulose molecule chains from high to low molar mass regions. The low molar mass region represents degraded short chain glucans (Berggren, 2003). From the obtained MWD data, corresponding parameters Mw, intrinsic viscosity and PDI were acquired and displayed in Table 5.1.
Figure 5.1 shows the MWD of pulp samples that were exposed to Nd:YAG laser radiation
at a wavelength of 266 nm for 15, 30 and 45 minutes respectively, the laser density
(fluence) was kept in the range of 0.32 – 0.4 W/cm². The untreated pulp samples were
used as a control, and the results are discussed in comparison to the control samples. A
large redistribution of the Mw is observed between the laser irradiated samples and the
control sample with increasing pretreatment time from 15 – 45 minutes. Chromatograms
of the pretreated samples display a shift in Mw, from a high to a low molar mass region.
Moreover, an increase in PDI after irradiation of pulp samples was observed compared
to the untreated control (Table 5.1). Since PDI is a measure of the broadness of the MWD
of a polymer, an increase in PDI suggests that the pretreatment was able to alter the
molecular weight of the cellulose fibres by either degradation or chain scission (Strlič &

The MWD curves of the pretreated samples show a sizeable shift from high to lower Mw
values, and an increase in width compared to the narrow curve of the untreated control
sample. However, the change between the irradiated samples does not show a significant
difference with increasing treatment time. Nonetheless, the marked shift in the
distribution of all the test samples suggests that laser irradiation caused degradation of
the high molecular weight cellulose chains. A decrease in differential weight fraction is
also observed, this suggests that the pretreatment resulted in cleavage of the long
molecular chains to short chains. Chain scission leads to a decrease in the degree of
polymerization (DP) which is an indirect measure of the viscosity of the polymer (Dupont
& Mortha, 2004).
Figure 5.1: SEC-MALS chromatograms of the Nd:YAG laser irradiated samples ($\lambda$=266 nm for 15, 30 and 45 minutes) and control sample.

Similar observations are made in Figures 5.2 which displays the MWD of samples that were irradiated with the Nd:YAG laser at a wavelength of 355 nm. A noticeable decrease in Mw is displayed by the shift of the Mw curves to lower Mw regions for all the pretreated samples compared to the control. Figure 5.3 also displays the MWD of samples that were irradiated with the CO$_2$ laser at a wavelength of 10.6 um and power density in the range of 1.53 – 2.55 W/cm$^2$. A slight shift from high to lower Mw is observed for all the pretreated samples relative to the untreated control. However, the Mw shift achieved after pretreatment with CO$_2$ laser was minor compared to what was achieved when the samples were irradiated with Nd:YAG laser at both 266 nm and 355 nm. Overall, the chromatograms in Figures 5.1 -5.3 show that the elution of all the pretreated samples from the column was delayed compared to that of the control sample. The height of the peaks which expresses the differential weight fraction was also decreased. The evaluated laser wavelengths illustrate that optimal MWD shifts occurred when the samples were exposed to the laser for 45 minutes, and more so for the samples pretreated with Nd:YAG laser at 266 nm.
Figure 5.2: SEC-MALS chromatograms of the Nd:YAG laser irradiated samples ($\lambda=355$ nm for 15, 30 and 45 minutes) and control sample.

Figure 5.3: SEC-MALS chromatograms of the CO$_2$ laser irradiated samples ($\lambda=10.6$ $\mu$m for 15, 30 and 45 minutes) and control sample.
Table 5.1 presents a summary of MWD results that correspond to the changes observed in the chromatograms above (Figures 5.1 - 5.3) after laser irradiation. A linear decrease in both the molecular weight and intrinsic viscosity as a function of time was observed for all the irradiated samples compared to the untreated control sample. A drop in cellulose viscosity and molecular weight has been reported as an important factor that significantly affects the quality of the final product during the production of viscose rayon (Duan et al., 2016). Viscosity is closely linked to polymer chain length; it is an indirect measure of the average degree of polymerization (DP) of cellulose chains, and it gives the extent to which the cellulose fibres were degraded during processing. Moreover, the change in cellulose rigidity due to its strong hydrogen bonds was shown in viscosity (Sjoholm, 2005). Therefore, a decrease in viscosity suggests that the tendency of the cellulose fibril to crystallise was reduced and cellulose accessibility was increased. On the other hand, a weak correlation was established between Polydispersity (PDI) and treatment time. An inconsistent increase in PDI was observed, but there was no linear trend demonstrated between the type of laser used for the pretreatment and the irradiation time.

Table 5.1: SEC-MALS MWD results of the samples irradiated with Nd:YAG laser at \( \lambda = 266, 355\text{nm} \) and \( \text{CO}_2 \) laser at \( \lambda = 10.6\mu\text{m} \)

<table>
<thead>
<tr>
<th>Wavelength (nm/( \mu \text{m} ))</th>
<th>Irradiation time/min</th>
<th>*Mw (x10^5 g/mol)</th>
<th>*Intrinsic viscosity ([\eta]_w ) (mL/g)</th>
<th>*PDI (Mw/Mn)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>0</td>
<td>5.78±0.2</td>
<td>1218.0</td>
<td>4.28±0.2</td>
</tr>
<tr>
<td>Nd:YAG – 266nm</td>
<td>15</td>
<td>4.76 ±0.7</td>
<td>972.57</td>
<td>5.96±0.1</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>4.12 ±0.6</td>
<td>1043.8</td>
<td>4.94±0.01</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>4.03 ±0.4</td>
<td>879.38</td>
<td>4.67±0.3</td>
</tr>
<tr>
<td>Nd:YAG – 355nm</td>
<td>15</td>
<td>5.37 ±0.5</td>
<td>1120.1</td>
<td>4.68±0.8</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>5.06 ±0.7</td>
<td>1130.4</td>
<td>4.04±0.9</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>4.29 ±0.1</td>
<td>918.32</td>
<td>4.11±0.8</td>
</tr>
<tr>
<td>( \text{CO}_2 ) – 10.6( \mu \text{m} )</td>
<td>15</td>
<td>5.55 ±0.6</td>
<td>1203.2</td>
<td>3.10±0.4</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>5.64 ±0.7</td>
<td>1227.9</td>
<td>3.25±0.9</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>4.56 ±0.1</td>
<td>1141.03</td>
<td>3.03±0.03</td>
</tr>
</tbody>
</table>

*Mean calculated from a total of three experimental trials (n = 3)
Figures 5.4 and 5.5, present the effect of the Nd:YAG (λ = 266 & 355 nm) and CO₂ (λ = 10.6 μm) lasers on the molecular structure of cellulose is compared. Figure 5.4 displays a plot of molecular weight versus time for laser irradiated samples compared to the control sample. Percentage change in Mw lies between 17.7% – 30.2% for samples irradiated with Nd:YAG laser at 266 nm. For samples irradiated with Nd:YAG at 355 nm and CO₂ at 10.6 μm, change in Mw were between 7.1% – 25.8% and 2.5% – 10%, respectively. Furthermore, the effect on intrinsic viscosity (Figure 5.5) was also compared between the three different wavelengths. At 266 nm and 355 nm, an intrinsic viscosity decrease of 14% – 28% and 7% – 25% was achieved respectively. Moreover, for the CO₂ laser, a viscosity decline in the range 1% - 20% resulted.

The observed minimal changes in viscosity of CO₂ laser irradiated samples compared to the Nd:YAG laser treated samples at both 266 nm, and 355 nm wavelengths may be due to a more favourable radiation absorption of cellulose in the UV region compared to the IR region. Laser radiation in the UV spectrum has been reported to cause efficient photodegradation of cellulosic material compared to other radiation sources with higher wavelengths (Kolar et al., 2000; Pandey & Vuorinen, 2008; Vargas-Radillo et al., 2013).

A negative linear correlation was observed for both Mw with increasing irradiation time but not with intrinsic viscosity. However, a significant reduction in both Mw and intrinsic viscosity was observed for samples that were irradiated for 45 minutes and the Nd:YAG laser at 266 nm was the most effective compared to the Nd:YAG at 355 nm and the CO₂ laser emitting at 10.6 μm. Overall regression statistics analysis at 95% confidence level showed a significant decrease of the Mw for Nd:YAG laser irradiated samples at wavelengths, 266 nm and 355 nm respectively (P = 0.05, P < 0.05). A moderate decline was however observed for both intrinsic viscosity and PDI (P-value > 0.05 obtained for pretreatment with both Nd:YAG and CO₂ lasers). Observations from the presented results show that the Nd:YAG laser at both wavelengths was efficient at causing degradation of cellulose compared to the CO₂ laser which had a high power density. Laser radiation wavelength was the main influential parameter that caused the observed cellulose modifications.
Figure 5.4: Decrease in molecular weight (Mw) of irradiated samples with increasing pretreatment time (15, 30 & 45 minutes).

Figure 5.5: Intrinsic viscosity of the laser irradiated samples as a function of time
5.1.2 X-Ray Diffractions (XRD) results

Cellulose crystallinity has a significant influence on cellulose reactivity and processing. XRD is widely used in determining the crystallographic nature and characteristics of cellulose including the crystallinity index (CrI) (Park et al., 2010; French & Cintrón, 2013).

Figures 5.6, 5.7 and 5.8 present superimposed XRD patterns obtained after laser irradiation of dissolving pulp samples compared to the control sample. The diffractograms display typical natural cellulose patterns which consist of three characteristic peaks at approximately two theta (2θ) = 14°, 16°, and 22°-24° which correspond to (101), (1-01) and (002) Miller indices (Park et al., 2010). The high sharp intensity of the peaks defines the crystalline nature of the material, while the intensity value is a measure of the crystalline structure.

After laser irradiation, all the diffraction peaks of the test samples maintained the typical cellulose diffraction pattern even though the width of the peaks increased. They also overlapped with the control sample and shifted towards higher 2θ values. These observed peak shifts and broadening can be ascribed to three factors: instrumental effects, crystallite size, residual stress and strain on the crystal lattice due to the pretreatment (Zhao & Zhang, 2008; Mishra et al., 2015). These factors have been reported to reduce the crystal grain sizes and cause amorphization of crystalline materials after exposure to high pressure and high temperature treatments (Zhao & Zhang, 2008). A decrease in the intensities of the peaks was also observed compared to the control sample. Using these XRD patterns, CrI values for XRD were calculated, and the results are presented in Table 5.2.
Figure 5.6: XRD pattern of dissolving pulp samples pretreated with the Nd:YAG laser at $\lambda = 266$ nm

Figure 5.7: XRD pattern of dissolving pulp samples pretreated with the Nd:YAG laser at $\lambda = 355$ nm
Figure 5.8: Superimposed XRD pattern of dissolving pulp samples pretreated with the CO$_2$ laser at $\lambda = 10.6$ $\mu$m

Table 5.2 displays CrI results calculated from the XRD peak intensities. After laser irradiation, there were minor changes in the CrI values. For samples irradiated with Nd:YAG laser at a wavelength of 266 nm, a slight decrease in CrI from 64.2% to 61.5%, 59.3% and 57.7% with increasing treatment time was observed. Samples that were irradiated with Nd:YAG at 355 nm and CO$_2$ at 10.6 $\mu$m respectively displayed a CrI decrease more than 10%. Compared to the control sample the degree of crystallinity samples treated at 355 nm decreased from 64.2% to 57.7%, 53.5%, and 54.8%, while samples treated at CO$_2$ decreased from 64.2% to 55.5%, 56.0% and 55.8% with increasing treatment time respectively. The overall CrI decrease between the three wavelengths does not show significant differences as it would otherwise be expected based on the discussed trends of Mw and its distributions in section 5.1.1.

A drop in the intensity and sharpness of the peaks confirms the observed decrease in CrI results. The % decrease recorded in Table 5.2 is presented graphically in Figure 5.9 to show the decline in %CrI as a function of laser irradiation time. A strong linear relationship is observed between the %CrI and treatment time for samples irradiation with Nd:YAG laser at 266nm compared to Nd:YAG laser and CO$_2$ laser. However, with
increasing treatment time the degree of crystallinity of the three wavelengths decreases. A negative linear correlation (R-value) of 0.99, 0.87 and 0.76 was obtained for Nd:YAG laser at 266nm, 355 nm, and CO₂ laser at 10.6 μm respectively.

Table 5.2: XRD results showing the effect of irradiation time on %CrI

<table>
<thead>
<tr>
<th>Wavelength (nm/um)</th>
<th>Time (min)</th>
<th>CrI - XRD (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>0</td>
<td>64.2 ±4.1</td>
</tr>
<tr>
<td>Nd:YAG - 266 nm</td>
<td>15</td>
<td>61.5 ±1.5</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>59.3 ±6.2</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>57.7 ±2.0</td>
</tr>
<tr>
<td>Nd:YAG - 355 nm</td>
<td>15</td>
<td>57.5 ±1.6</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>53.5 ±3.4</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>54.8 ±0.8</td>
</tr>
<tr>
<td>CO₂ - 10.6 um</td>
<td>15</td>
<td>55.5 ±1.1</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>56.0 ±5.1</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>55.8 ±4.0</td>
</tr>
</tbody>
</table>

*Mean calculated from a total of three experimental trials (n = 3)
5.1.3 CP/MAS $^{13}\text{C}$-Nuclear Magnetic Resonance (CP/MAS $^{13}\text{C}$-NMR) results

CP/MAS solid-state $^{13}\text{C}$-NMR spectroscopy is also one of the commonly used techniques for determining the degree of cellulose crystallinity or the crystallinity index (CrI). In this study, the solid state $^{13}\text{C}$-NMR was used to monitor the ultrastructural changes that occurred on cellulose due to the pretreatment with the Nd:YAG and CO$_2$ lasers. Figures 5.10 to 5.12 display the region between 81 and 93 ppm which represents the C-4 region of the solid state $^{13}\text{C}$-NMR spectra of the cellulose samples that were irradiated with Nd:YAG and CO$_2$ lasers for 15, 30 and 45 minutes. The spectra of the irradiated samples are superimposed together with the control sample. The peak at the resonance of 89 ppm is assigned to the C4 carbon in the crystalline cellulose, and the peak at 84 ppm is assigned to the C4 carbon of the non-crystalline cellulose (Larsson et al., 1999).

The three spectra in Figures 5.10 to 5.12 do not show significant changes in the C4 region peaks that are used to estimate cellulose crystallinity compared to the control sample after pretreatment. Except, for the minor broadening of the peaks at 84 ppm for the samples
irradiated with Nd:YAG at 266 nm for 45 minutes and the one irradiated at 355 nm for 45 minutes. These slight or lack of changes in cellulose crystallinity after pretreatment are however to be expected because both NMR and XRD studies have reported that most of the pretreatment techniques do not have an effect on cellulose crystallinity (Zhao et al., 2007).

Table 5.3 shows the CrI results of cellulose that were calculated by dividing the area of the crystalline peak (from 88 to 90 ppm) by the total area assigned to the peaks in the C-4 region (79 to 90 ppm). The crystallinity index results, on the other hand, display a slight decrease in the crystallinity of irradiated pulp samples, the reduction ranges between 2.0% to 9.1%. After 15 minutes irradiation of the pulp samples with Nd:YAG laser at 266 nm, the CrI decreased from 43.6 ±0.01 to 41.7 ±0.02. For samples treated with the same laser for 30 and 45 minutes respectively, the decrease was from 43.6 ±0.01 to 42.3 ±0.02 and 42.0 ±0.0. Radiation pretreatment of cellulose with shorter wavelength lasers has been reported to cause breakage of cellulose chain bonds and creation of shorter chains (Kaminska et al., 2007).

On the other hand, irradiation of cellulose with higher wavelength lasers has been reported to lead to the formation of undesired intra- and intermolecular cross-links of ether origin which cause the DP to increase (Kolar et al., 2000; Kolar et al., 2003). Similar observations are made for samples that were irradiated with Nd:YAG laser at 355 nm and CO2 laser at 10.6 μm. These observations correspond to the XRD CrI results presented in section 5.1.2 even though the decrease does not follow an identical pattern. This can be expected because these two techniques have underlying differences in terms of their measurement scales and estimates. The NMR provides sample information based on the physical and chemical environment, whereas XRD is sensitive to long-range order (Terinte et al., 2011; Ahvenainen et al., 2016). A decreasing trend in CrI is observed after laser irradiation (Figure 5.13), although the decrease does not show a linear relationship increasing treatment time for the different wavelengths used in this study (266, 355 nm and 10.6 μm).
Figure 5.10: C-4 region of the $^{13}$C-NMR spectra of the pulp samples irradiated with Nd:YAG laser at $\lambda = 266$ nm for 15, 30 and 45 minutes compared to the control.

Figure 5.11: C-4 region of the $^{13}$C-NMR spectra of pulp samples irradiated with Nd:YAG laser at $\lambda = 355$ nm for 15, 30 and 45 minutes compared to the control.
Figure 5.12: C-4 region of the $^{13}$C-NMR spectra of the pulp samples irradiated with CO$_2$ laser at $\lambda = 10.6 \, \mu$m for 15, 30 and 45 minutes compared to the control.

Table 5.3: Calculated CrI results of the Nd:YAG and CO$_2$ laser irradiated samples

<table>
<thead>
<tr>
<th>Wavelength (nm/um)</th>
<th>Time (min)</th>
<th>CrI - NMR (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>0</td>
<td>43.6 ±0.01</td>
</tr>
<tr>
<td>Nd:YAG 266 nm</td>
<td>15</td>
<td>41.7 ±0.02</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>42.3 ±0.02</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>42.0 ±0.00</td>
</tr>
<tr>
<td>Nd:YAG 355 nm</td>
<td>15</td>
<td>42.9 ±0.01</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>41.9 ±0.01</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>42.9 ±0.01</td>
</tr>
<tr>
<td>CO$_2$ 10.6 um</td>
<td>15</td>
<td>39.9 ±0.02</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>40.1 ±0.01</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>40.0 ±0.01</td>
</tr>
</tbody>
</table>

*Mean calculated from a total of three experimental trials (n = 3)
5.1.4 Atomic Force Microscopy (AFM) results

The AFM in conjunction with image analysis was used to study the organization of the surface chains of cellulose and to assess topographical changes caused by the pretreatment. The Image Pro Plus (Version 6.0) software with watershed segmentation was used for processing the images and for calculating the lateral fibril aggregate dimensions (LFAD). Figure 5.14 presents AFM 1x1 μm phase images of the S2 cell wall layer of cellulose pulp samples after irradiation with Nd:YAG and CO₂ lasers (treatment time: 15, 30 and 45 minutes).
The recorded AFM micrographs of the control sample displayed a dense agglomeration of the cellulose surface fibrils with an even alignment. On the other hand, the micrographs for the cellulose fibrils of the irradiated samples appeared sparse and less aggregated. In particular, more interesting observations were made on the samples that were irradiated with Nd:YAG laser at 266 nm for 15 minutes, and at 355 nm for 30 and 45 minutes. The surface of the samples showed an uneven surface with small holes which appeared as dark areas between the fibrils which may have been created by the pulse effect of the Nd:YAG laser. These findings correspond to what has been reported by (Fahlén & Salmén, 2005) that bright areas on the AFM images represent regions of high stiffness and dark areas represent the less stiff regions between the fibril aggregates. Furthermore, they correspond to what Choi and co-workers observed after pretreatment of natural
cellulose fibres with electron beam radiation. Their study observed that the pretreatment led to the removal of the pectin, wax and the primary layer from the cell wall (Choi et al., 2008). This might have also contributed to the surface roughness and unevenness of the pretreated samples.

Perforation and loosening up of the cellulose fibril aggregates is an indication of increased reaction sites and accessibility for solvents during chemical processing of cellulose. Table 5.4 displays LFAD results for the irradiated sample. A linear decrease in the LFAD from 31.98±2.7 for the control sample to 23.8±4.4 nm was observed for pulp samples that were irradiated with Nd:YAG laser at 266 nm. An overall decrease in LFAD for samples irradiated with Nd:YAG laser at a wavelength of 355 nm and CO₂ laser at 10.6 μm was also observed, but a weak linear relationship was observed between the LFAD decline and the laser pretreatment times.

An inversely proportional relationship between the LFAD and the specific surface area (SSA) has widely been investigated, as well as the effect of these properties on the accessibility and reactivity of cellulose (Chunilall et al., 2012). A decrease in LFAD leads to increased specific surface area; hence an increase in reaction sites and this enhances cellulose reactivity. AFM results presented below depict a decline in LFAD within the molecular cell wall structure.
### Table 5.4: Calculated average lateral fibril aggregate dimensions (LFAD) results

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Irradiation time/min</th>
<th>LFAD/nm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>0</td>
<td>31.98±2.7</td>
</tr>
<tr>
<td>Nd:YAG-266 nm</td>
<td>15</td>
<td>25.9±3.2</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>24.0±3.0</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>23.8±4.4</td>
</tr>
<tr>
<td>Nd:YAG-355 nm</td>
<td>15</td>
<td>24.8±4.1</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>28.8±2.4</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>25.4±1.3</td>
</tr>
<tr>
<td>CO$_2$ – 10.6 μm</td>
<td>15</td>
<td>24.9±3.4</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>28.9±1.2</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>22.5±0.9</td>
</tr>
</tbody>
</table>

*Mean calculated from a total of three experimental trials (n = 3)*

### 5.1.5 Scanning Electron Microscopy (SEM) results

Cellulose pretreatment with the aim of improving its accessibility and reactivity towards chemical reagents is a significant step in the production of valuable cellulose derivatives (Chen, 2014). SEM analysis was performed on the laser irradiated pulp samples to characterise any surface morphology changes that might have occurred as a result of the laser pretreatment. Figure 5.15 presents SEM images obtained after the pretreatment with Nd:YAG laser at wavelengths of 266 nm and 355 nm, and the CO$_2$ laser at a wavelength of 10.6 μm.

The surface morphology of the pretreated samples was compared to the morphology of the untreated pulp sample. The untreated pulp samples displayed a smooth, but cracked surface with relatively straight lines and trenches parallel to the direction of the fibre axis. The micrographs for all the irradiated samples, on the other hand, indicated that to some degree, laser irradiation caused damage to the surface of the samples; the surface of the samples appeared rough with trenches and small holes with “sponge” like areas compared to the surface of the control sample.

The pulp samples irradiated with the Nd:YAG laser at a wavelength of 266 nm for 15 minutes showed that the surface of the pulp had cracks and terraces after the pretreatment.
Similar observations were made for samples irradiated with the same laser for 30 and 45 minutes respectively. The surface of the sample treated for 30 minutes showed small holes and fibrillation of the upper layer on the fibril. Pronounced peeling off and fold shapes on the fibre wall surface was also observed in the sample treated for 45 minutes. These modifications can be due to the effects of the radiation energy that have previously been reported such as cross-linking and breakage of the cellulose molecular chains (Martínez-Barrera et al., 2015). These observations correspond to what has previously been reported in the literature that irradiation of cellulose fibres with a laser in the UV range especially at 266 nm affects the morphology of the fibres leading to peeling off of the outer fibre wall (Kaminska et al., 2007).
Figure 5.15: SEM images of pulp samples pretreated with laser radiation at three different wavelengths for different treatment times compared to the control.

SEM micrographs of samples irradiated with the Nd:YAG laser at 355 nm also showed that the surface of the cellulose material was disrupted. The surface of the samples irradiated for 30 and 45 minutes demonstrates that laser radiation pretreatment caused perforation and fibrillation of the fibre wall layers. The surface of all the irradiated pulp samples shows cracks and irregular terraces compared to the control sample. The observed cracks and surface pores have been suggested to be a result of dehydration of the pulp due to the thermal energy of the laser released during irradiation (Hung et al., 2016). The surface of samples that were irradiated with a CO₂ laser at 10.6 μm also displayed kinks and a non-homogenous surface with wrinkles and cracks which
corresponds to what Chow and co-workers also reported (Chow et al., 2010). The samples also showed small holes even though they were not pronounced compared to the Nd:YAG laser irradiated samples. These observations are comparable to what has been described by other scholars that lasers with shorter wavelengths such as 266 nm have a more visible effect on the surface of cellulose fibres compared to lasers with longer wavelengths (Kaminska et al., 2007).

During laser irradiation, thermal energy is released from the laser source and absorbed by the cellulose samples; this leads to perforation and degradation of the polymer because of the high temperature (Hung et al., 2016). Formation of pores on the surface of the cellulose exhibit a more open structure which would lead to improved exposure of the hydroxyl groups and increase reaction sites for processing. Ultimately, the disruption of the primary cell wall and exposure of the microfibers leads to the improved application of cellulose in various industries (Jiao & Xiong, 2014; Duan et al., 2016). These observations correspond to those that have been discussed in the AFM images.

5.2 Cellulose reactivity results (Fock test method)

The Fock test is a widely used method for studying the reactivity of dissolving pulp, whereby the pulp is first mercerised with aqueous NaOH solution to form alkali cellulose which is subsequently reacted with carbon disulphide (CS₂) (Tian et al., 2013). High cellulose reactivity is indicative of pulp homogeneity, and this is a major factor for the production of high-quality cellulose derivatives (Ibarra et al., 2010).

In the present study, the effect of laser irradiation on cellulose pulp reactivity was determined by the Fock test, and the results are displayed in Table 5.5 and graphically represented in Figure 5.16. The effect of pretreatment time, laser power density and laser wavelengths on cellulose reactivity are displayed and discussed. Table 5.5 shows recorded Fock reactivity values (%); for the control pulp sample, % reactivity was noted as 44.2%. With increasing laser irradiation time, all samples display an overall linear increase in cellulose reactivity. For samples that were irradiated with Nd:YAG at 266 nm a sharp increase of 60.8%, 60.9%, and 60.9% in cellulose reactivity was achieved at with increasing pretreatment times of 15, 30 and 45 minutes respectively. This increase accounts for more than 35% increase in reactivity compared to the control sample. Fock
test reactivity for samples irradiated with Nd:YAG laser at 355 nm increased from 44.2% to 54.2%, 58.8% and 59.4% at a treatment time of 15, 30 and 45 minutes respectively. The reactivity increase ranged from 22% to 34%. Finally, the samples that were irradiated with a CO₂ laser at 10.6 μm also displayed a linear increase in reactivity from 48.3%, 54.3%, and 61.2% for samples irradiated for 15, 30 and 45 minutes respectively. Longer exposure of the samples to laser radiation did not have much effect on cellulose reactivity. Moreover, the greatest Fock reactivity increase was achieved in samples that were pretreated for 15 minutes with Nd:YAG at a wavelength of 266 nm. This observation can be attributed to what has been reported in the literature that UV laser irradiation can significantly disrupt the structure of cellulose and cause cellulose chains to break into shorter chains compared to lasers in the visible and near-IR ranges (Kaminska et al., 2007; Pandey & Vuorinen, 2008).

The increase in cellulose reactivity was observed with increasing treatment time for all three wavelengths; a noticeable increase was recorded for samples irradiated with Nd:YAG at 266 nm and the CO₂ laser at 10.6 μm for 45 minutes. These observations correspond to previous reports which showed that cellulose activation before chemical processing increased the accessibility and reactivity of cellulose for downstream reactions (Kunze & Fink, 2005). Moreover, these results concur with a study by (Tian et al., 2012) which showed that pretreatment of lignocellulosic biomass with CO₂ laser significantly increased the reactivity and the rate of cellulose saccharification for the production of bioethanol. However, these observations also displayed that laser wavelength was more efficient in cellulose modification than high power density.

Furthermore, this increase in cellulose reactivity is in correspondence with SEC-MALS molecular weight distribution data (Table 5.1) which showed that the pretreatment decreased the Mw and intrinsic viscosity of cellulose. The overall decrease in CrI and surface morphology characterization results also illustrated that laser irradiation pretreatment altered the structure of cellulose. Similar observations have been reported by Ibarra and colleagues when they observed that exposure of cellulose pulps to various enzymatic pretreatments modified the structural properties and behaviour of this polymer (Ibarra et al., 2010).
Table 5.5: Fock test reactivity results for laser irradiated samples

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Irradiation time/min</th>
<th>Fock reactivity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>0</td>
<td>44.2±1.3</td>
</tr>
<tr>
<td>Nd:YAG-266 nm</td>
<td>15</td>
<td>60.8±0.8</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>60.9±2.2</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>60.9±1.7</td>
</tr>
<tr>
<td>Nd:YAG-355 nm</td>
<td>15</td>
<td>54.2±3.6</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>58.8±4.0</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>59.4±2.9</td>
</tr>
<tr>
<td>CO₂ – 10.6 μm</td>
<td>15</td>
<td>48.3±0.2</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>54.3±2.4</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>61.2±0.8</td>
</tr>
</tbody>
</table>

*Mean calculated from a total of three experimental trials (n = 3)

Figure 5.16: A plot of the Fock reactivity of cellulose pulp samples after laser irradiation as a function of treatment time (0, 15, 30 and 45 minutes).

Overall results and observations outlined in this chapter agree with what has been reported by other scholars that cellulose reactivity is greatly influenced by its structural characteristics, mainly; the degree of polymerization (DP) and crystallinity. With laser
irradiation, the average Mw and intrinsic viscosity of cellulose were altered, and this can be attributed to the cellulose chain scission during the pretreatment. This observation is in agreement with a study by Chow et al. (2011) which displayed a directly proportional relationship between the % weight loss of cotton and the laser irradiation time. Furthermore, a noticeable decrease in the degree of cellulose crystallinity was observed due to the disruption of the breakdown of the amorphous and crystalline regions of cellulose. This is comparable to what has been argued by several scholars using both ionising and non-ionising radiation technologies (Beardmore et al., 1980; Dlugunovich et al., 2003; Kubovsky & Kacik, 2009; Hsu et al., 2012).
CHAPTER 6 – CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER RESEARCH

6 Introduction

This section gives a comprehensive overview of the major observations, experimental findings and results obtained in this study, and conclusions deduced from them. Furthermore, recommendations for future work are outlined.

6.1 Conclusions

The primary focus of this study was to investigate the effect of ultrasound and laser irradiation on the structure of cellulose in dissolving wood pulp (raw material) and to further establish their impact on the dissolution behaviour and reactivity of this polymer. A variety of analytical instruments and characterization techniques were used to evaluate the influence of these two pretreatment technologies on the structural properties of cellulose. Moreover, observed structural modifications caused by the two methods were compared.

The goal of cellulose pretreatment is to activate cellulose by opening it up and disrupting its highly ordered crystalline structure to increase its chemical accessibility and thus improve its dissolution and reactivity. Therefore, after pretreatment of DWP samples with ultrasound and laser radiation respectively, alkali dissolution and Fock reactivity tests were performed. Alkali dissolution tests and structural characterization of the ultrasound irradiated samples were conducted, and the Fock reactivity tests were carried out on the laser irradiated samples.

A summary of the experimental results and observations that were made from this study is given below:

- SEC-MALS was used to characterise the Mw and MWD of cellulose after ultrasound and laser pretreatments. Results demonstrated that both techniques caused disruption on the molecular structure of cellulose. However, laser irradiated samples displayed more apparent modifications compared to the ultrasound irradiated samples. The effect of the two lasers on cellulose samples was also compared based on their power densities and wavelengths. The
chromatograms obtained from SEC-MALS analysis revealed that samples irradiated with the UV range laser, Nd:YAG experienced a noticeable shift in MWD and a decrease in Mw compared to the samples irradiated to the high wavelength CO\textsubscript{2} laser and the untreated control. Ultrasound irradiation resulted in minor alteration of the Mw and MWD compared to both the laser irradiated and the control samples. Moreover, the decrease in Mw and intrinsic viscosity relative to the untreated control also confirms that laser pretreatment resulted in cellulose chain scission and depolymerization.

- Ultrasonicated samples did not show outstanding alterations in Mw and MWD compared to the laser irradiated samples. Furthermore, after these samples were treated with an alkali solution, they displayed different dissolution behaviour relative to the irradiation time. The observed changes in MWD data did not show trends relative to treatment time.

- XRD results showed that laser irradiation efficiently disrupted the crystalline structure of cellulose compared to ultrasound irradiation pretreatment which displayed minor or no changes. This shift in cellulose crystallinity was demonstrated by the calculated decrease in CrI.

- Ultrasound irradiated samples only displayed significant changes and disruptions on the crystalline structure after the samples were treated with alkali. X-ray diffractograms showed characteristics of cellulose II allomorph; the transformation of native cellulose (cellulose I) to alkali cellulose (cellulose II) was demonstrated by the shift in 20 peaks and the complete disruption of the high intensity crystallinity peak located at 20 =22°-24° in native cellulose.

- SEM results showed that laser irradiation caused cracks, fibrillation and perforation of the fibre surfaces which may be due to laser thermal energy which is released in the form of heat. AFM results were in agreement with these observations: alterations and small pores in between cellulose fibril aggregates were observed. Moreover, LFAD results were also favourable, slight decreases in LFAD were observed suggesting a possible increase of surface reaction sites.

- Morphological analysis of ultrasonicated samples showed that the pretreatment removed the outer layer of the cellulose fibres and it able disrupted the amorphous regions. These observations concur with the XRD crystallinity results that demonstrated that ultrasonication did not have a significant effect on
cellulose crystallinity. However, when the samples were treated with aqueous NaOH solution after ultrasonication, a complete destruction of the cellulose crystalline structure was observed.

- Structural characterization results have shown that laser irradiation has the potential to cause cellulose degradation, with increasing pretreatment time, an average decrease of more than 10% in Mw, and intrinsic viscosity was obtained for samples that were irradiated with Nd:YAG laser emitting at both 266 nm and 355 nm. The intrinsic viscosity gives an indication of the DP of the irradiated samples. From these observations, it can be concluded that laser pretreatment caused cellulose fibre chains to break and decreased the DP of the polymer. Modified cellulose DP is a favourable condition for increased accessibility and reactivity of this biopolymer.

- Fock test results have shown that % reactivity of cellulose increased significantly after laser irradiation. Relative to the untreated control sample, samples irradiated with Nd:YAG emitting at 266 nm showed a reactivity increase of 35%, at 355 nm an increase of more 22% was achieved. For samples irradiated with a CO₂ laser emitting at 10.6 µm, a linear % increase of more than 35% was obtained with increasing treatment time.

- Laser wavelength and treatment time are parameters that had the greatest impact on the modification of cellulose. The Nd:YAG laser (fluence = 0.32 – 0.4 W/cm²) is a low power laser compared to the CO₂ laser (fluence = 1.53 – 2.55 W/cm²), but it was more effective in causing cellulose degradation and ultimately increasing cellulose reactivity from 44.2% to 60.8% within 15 minutes of treatment.

- Overall deductions from this study are that laser irradiation had a significant impact on the structural properties of dissolving pulp compared to ultrasound irradiation, the reactivity of cellulose was increased by more than 20% for all the irradiated samples compared to the control sample. Furthermore, significant structural modifications and % increase in cellulose reactivity were observed in samples pretreated with Nd:YAG laser emitting at 266 nm.
6.2 Recommendations for further research

The main aim and objectives of this study have been achieved. Findings and observations made in this study have demonstrated that laser irradiation is a prospective pretreatment technique that has effect on various structural properties of cellulose. The surface morphology and ultrastructural properties of the cellulose fibres were significantly modified compared to samples exposed to ultrasound irradiation. However, further research of laser radiation pretreatment is necessary in order to improve and develop this method into an effective technique for industrial usage.

Therefore, it would be interesting to investigate the following in future:

- To carry out a computer-based model study of laser radiation pretreatment of cellulose and to compare the simulated results with experimental results with the aim of optimising laser parameters such as the laser power density of the Nd:YAG and CO₂ lasers.

- Structural characterization results obtained in this study have shown that the laser radiation pretreatment can modify the surface properties and structure of cellulose without destroying the samples. Therefore, it would thus be interesting to evaluate the effect of increased treatment time on the structure of cellulose and to explore what effect laser resolution would have on this biopolymer.

- Cellulose pretreatment with high energy radiation techniques has been postulated to improve cellulose accessibility and reactivity, thus leading to a reduction in the amount of chemical reagents required for reactivity tests (i.e. NaOH and CS₂). Therefore, since Fock reactivity test results have shown that laser radiation pretreatment improved cellulose reactivity, it would be interesting to carry out reactivity tests on the pretreatment samples using varying concentrations of the chemical reagents. This will be done to determine whether the improved cellulose accessibility caused by laser irradiation will help to reduce the amount of chemical reagents required for Fock test method.

- To prepare cellulose derivatives (e.g., films and electrospun fibres) from the laser pretreated viscose dope, and examine the quality and properties of the resulting cellulose based products.

- To upscale the laser pretreatment technology and produce electrospun cellulose fibres for practical applications by electrospinning process.
• Finally, an investigation on the technical and economic feasibility on the application of this technique in an industrial mill scale would also be beneficial.
REFERENCES


JARVIS, M.C., 2000. Interconversion of the \( I_A \) and \( I_B \) Crystalline Forms of Cellulose by bending. Carbohydrate Research, 325, pp. 150-154.


WANG, Y., 2008. Cellulose fiber dissolution in sodium hydroxide solution at low temperature: Dissolution kinetics and solubility improvement, Georgia Institute of Technology.


