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Abstract

In this thesis, we develop accurate and computationally efficient spectral collocation-based methods,

both modified and new, and apply them to solve differential equations. Spectral collocation-based

methods are the most commonly used methods for approximating smooth solutions of differential

equations defined over simple geometries. Procedurally, these methods entail transforming the gov-

erning differential equation(s) into a system of linear algebraic equations that can be solved directly.

Owing to the complexity of expanding the numerical algorithms to higher dimensions, as reported

in the literature, researchers often transform their models to reduce the number of variables or

narrow them down to problems with fewer dimensions. Such a process is accomplished by making

a series of assumptions that limit the scope of the study. To address this deficiency, the present

study explores the development of numerical algorithms for solving ordinary and partial differential

equations defined over simple geometries. The solutions of the differential equations considered are

approximated using interpolating polynomials that satisfy the given differential equation at se-

lected distinct collocation points preferably the Chebyshev-Gauss-Lobatto points. The size of the

computational domain is particularly emphasized as it plays a key role in determining the number

of grid points that are used; a feature that dictates the accuracy and the computational expense of

the spectral method. To solve differential equations defined on large computational domains much

effort is devoted to the development and application of new multidomain approaches, based on

decomposing large spatial domain(s) into a sequence of overlapping subintervals and a large time

interval into equal non-overlapping subintervals. The rigorous analysis of the numerical results con-

firms the superiority of these multiple domain techniques in terms of accuracy and computational

efficiency over the single domain approach when applied to problems defined over large domains.

The structure of the thesis indicates a smooth sequence of constructing spectral collocation method

algorithms for problems across different dimensions. The process of switching between dimensions

is explained by presenting the work in chronological order from a simple one-dimensional problem

to more complex higher-dimensional problems. The preliminary chapter explores solutions of or-

dinary differential equations. Subsequent chapters then build on solutions to partial differential
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equations in order of increasing computational complexity. The transition between intermediate

dimensions is demonstrated and reinforced while highlighting the computational complexities in-

volved. Discussions of the numerical methods terminate with development and application of a

new method namely; the trivariate spectral collocation method for solving two-dimensional initial-

boundary value problems. Finally, the new error bound theorems on polynomial interpolation are

presented with rigorous proofs in each chapter to benchmark the adoption of the different numerical

algorithms. The numerical results of the study confirm that incorporating domain decomposition

techniques in spectral collocation methods work effectively for all dimensions, as we report highly

accurate results obtained in a computationally efficient manner for problems defined on large do-

mains. The findings of this study thus lay a solid foundation to overcome major challenges that

numerical analysts might encounter.
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Chapter 1

Introduction

1.1 General Brief on Differential Equations

Differential equations, both ordinary and partial, are fundamental in modelling problems in science,

economics, and engineering [1]. For instance, differential equations find application in the mass-

spring-damper system and in checking the stability of the system. The study of simple harmonic

motion, population dynamics, the spread of disease, and exponential growth; and decay, all lead

to differential equations. In engineering, we often encounter differential equations in the field

of fluid dynamics, which has direct application in the design of containers and funnels, in heat

conduction analysis applied in the design of heat spreaders in microelectronics, and in combined

heat conduction and convection on which the design of heating and cooling chambers is dependent

[2]. Rigid-body dynamic analysis, among other physical applications, also relies on solutions to

differential equations. In economics, differential equations assist in finding optimal investment

strategies. When studying such systems, researchers attempt to find formulas that connect a

dependent variable to one or more independent variables to describe the system’s behaviour at any

given instant, based on prescribed initial and boundary conditions. The complexity involved in

obtaining the solution to differential equations increases as one moves from ordinary to the partial

differential equations, with well-known difficulties encountered in the case of a nonlinear problem

[3].

Solving a differential equation involves, primarily, finding a self-contained formula that satisfies

the differential equation. However, this is only possible for a few classes of problems, notably the

linear ones [4]. There exist analytical methods for solving differential equations, and the choice

of a suitable method depends on the nature of the problem at hand. For linear parabolic partial

differential equations (PDEs) with constant coefficients, the method of separation of variables
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can be used to solve them; it is based on the assumption that the solution can be expressed as

a product of two terms, each depending on a single parameter. The method of characteristics

(similarity transformation method), involves finding a characteristic curve that reduces the PDE

to an ordinary differential equation (ODE), or simply transforming the PDE to an equivalent

PDE that is easier to solve. The integral transform method and method of change of variables

seek to transform the original PDE to a simple one [5]. It is, nevertheless, difficult to obtain

closed-form solutions of nonlinear differential equations. In most cases, only approximate solutions

(either analytical or numerical) can be expected. Over the years, perturbation methods have

dominated analytical techniques for studying weakly nonlinear problems in science, engineering,

and technology [6]. However, the dependence of perturbation methods on small values for physical

parameters makes them inflexible, thereby limiting their applications, [7]. The limitations of over-

dependence on the existence of a small parameter were solved by the development and introduction

of semi-analytic techniques with the aim of broadening the scope of real-life applicable problems

that could be solved.

Examples of semi-analytic techniques developed for solving differential equations are the series

expansion methods, which include the Adomian decomposition method (ADM) used by Somali

and Gokmen [8] to solve nonlinear Sturm-Liouville problems and the homotopy analysis method

(HAM) of Liao [9]. Unlike the perturbation based techniques, the ADM and HAM are independent

of a physical parameter being small, so giving such methods more flexibility. Another semi-analytic

method that has featured in the solution of nonlinear differential equations is the variational iter-

ation method used by He [10]. The variational iteration method was also applied by Abdou and

Soliman [11, 12] to solve a large class of nonlinear problems, which yielded approximations that

converged rapidly to accurate solutions. Despite the rigorous research in developing the analytic

and semi-analytic methods of solution, their application is also limited in that it excludes the most

practical models. Such models are represented by strongly nonlinear differential equations, for

which only numerical methods give approximate solutions to a certain degree of accuracy [13].

Traditional numerical methods of solution for differential equations are based on the finite

element and the finite difference methods [14]. The finite element methods, on the one hand, seek

to eliminate the differential equation completely, in cases where the problem is time independent,

or to transform the PDE to a system of ODEs, which are then integrated numerically using well

known standard techniques such as Runge-Kutta methods and Euler’s method [15]. The finite
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difference methods, on the other hand, approximate the derivatives using finite difference equations.

Although the finite difference based, methods are applicable to a wide range of problems, including

complex nonlinear PDEs where other numerical methods fail, they have the disadvantage that they

require many grid points to achieve sufficient accuracy in the results and so are not computationally

efficient. The challenge of accuracy and increased computational time are attributed, respectively,

to the low order interpolating polynomials used to approximate the solution of the differential

equation and to the large-sized matrices associated with the use of many grid points, Ward [16].

Recent advances on the development of numerical methods focus on the use of spectral based

collocation techniques, which have been demonstrated by Hussaini et al. [17] to yield very accurate

results with few grid points in a computationally efficient manner.

1.2 Spectral Collocation-Based Methods

In the spectral collocation-based methods, the solution of differential equations is approximated by

a linear combination of a finite number of basis functions. The basis functions chosen can be of a

polynomial kind for non-periodic problems, Fourier basis for periodic problems or rational functions,

according to Davis [18]. In the solution process, one seeks to derive the formula that relates the

spectral coefficients of the function being approximated with its derivatives. The approximating

functions are substituted in the differential equations and then evaluated at selected grid points

in a process known as collocation, see Dehghan and Izadi [19]. The equations resulting from the

discretized differential equation, coupled with those from prescribed conditions at the collocation

points, translate into a linear system that can be solved directly in Mathematica, MatLab or any

other mathematics application that supports matrix computation. Many spectral collocation-based

methods have been developed to solve differential equations. They differ in several ways. Firstly,

they differ in terms of the type of the differential equations they can be applied to solve, either

ODEs or PDEs, both linear and nonlinear. They differ in terms of the strategies that are used to

simplify the nonlinearity in the differential equations and procedures by which the approximating

functions are constructed.

Examples of these spectral based collocation methods for solving ordinary differential equa-

tion include, among others; the spectral homotopy analysis method (SHAM), successive local lin-

earization method (SLLM), spectral relaxation method (SRM), and the spectral quasi-linearization

method (SQLM). Motsa et al. [20] used the SHAM to solve a system of second-order nonlinear
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ODEs that describes Darcy-Brinkman-Forchheimer equation for a fully developed steady fluid flow

in a horizontal channel filled with a porous medium. The SHAM was found to be more efficient and

converged faster than the standard homotopy analysis method, that had been previously proposed

by Liao [21]. The successive linearization method was applied by Motsa and Shateyi [22] to solve

second order singular initial and boundary value problems of the Lane-Emdem type. Motsa [23]

reported the SLLM and used it to solve a system of highly nonlinear boundary layer flows with

exponential profiles. The SQLM and SRM were used by authors in [24] and [25], respectively, to

solve systems of nonlinear ordinary differential equations. Both the SRM and SLLM decouple the

system of equations and solve them iteratively using the updated solution in any equation immedi-

ately when computing the solution in the subsequent equations, whereas the SQLM linearizes the

system of equations globally and solves all as a coupled system. It is worth noting that the primary

difference between the SRM and the SLLM is that in the SRM the nonlinear terms in the differ-

ential equation are evaluated at the previous iteration, whereas in the SLLM the nonlinear terms

are linearized using the Gauss-Seidel approach. A new numerical method was proposed by Motsa

et al. [26] in order to extend the application of the enumerated spectral based collocation meth-

ods to solutions of PDEs. This new method is termed the bivariate spectral collocation method.

The method uses the spectral collocation on the time variable to first reduce the problem to an

ODE, after which the spectral collocation is applied in the space direction giving systems of linear

equations, which are easier to solve. The method was first tested on evolutionary parabolic partial

differential equations and it has been adapted by Rezazadeh et al. [27] to solve different classes of

partial differential equations involving two independent variables. The spectral collocation-based

methods mentioned above rely on interpolating polynomials to approximate the solutions of differ-

ential equations. It has been observed that the accuracy of spectral collocation methods depends

on the choice of grid points and the type of basis function used in constructing the interpolating

polynomial [28]. In addition, when these spectral based methods are applied to PDEs problems

defined on a large time interval, the accuracy of the results deteriorates. As will be shown later, the

deterioration of accuracy is also noticed in cases of large spatial domains and, in some instances of

fluid flow problems where these involve very small or very large values for the Reynolds number. In

view of the accuracy of the methods depending on the type of grid points used in interpolation, and

the size of computational domains, a better understanding of the underlying theory on polynomial

interpolation will be useful in developing superior numerical methods of solution for differential

equations. First, we address the problem of polynomial interpolation and thereafter the size of the
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computational domain.

1.3 Polynomial Interpolation

Polynomial interpolation is an area of research that dates back many decades. Polynomial in-

terpolation arises from the need to find an appropriate polynomial of a finite degree that closely

approximates the underlying function at some given grid points, see Ismail [29]. The interest of nu-

merical analysts is to determine to what extent this approximating function deviates from the exact

function. The error in polynomial interpolations depends mainly on the smoothness of interpolated

function, as shown by Howell [30]. The regularity of functions plays a crucial role in determining

the behaviour of higher order derivatives and, indeed, the literature reveals that the values of the

derivatives within the interval of approximation regulate the magnitude of the error in polynomial

interpolation, see Narcowich and Ward [31]. Quantifying the sizes of these polynomial interpo-

lation errors becomes very important if such interpolating polynomials are used to approximate

solution of differential equations. In consequence, Canuto et al. [32] derived the analytic expres-

sion of error bounds for univariate polynomial interpolation. The findings of their study indicate

that the errors resulting from polynomial interpolation are influenced by the choice of interpolation

nodes. In particular, the symmetrically distributed grid points have been reported to give better

interpolation features than the equispaced nodes. The theorems and proofs on analytic expressions

of error bounds for univariate polynomial interpolation using equispaced nodes and Chebyshev

nodes were given by Ghili and Iaccarino [33] and the results showed that Chebyshev nodes give

the least possible polynomial interpolation error. However, this claim was challenged when Fischer

and Freund, [34] established that the best approximation is obtained from the set of interpolation

nodes which gives a Lebesgue constant close to 1. The study of Lebesgue constants for different

sets of grid points had previously been given in [35, 36]. Unfortunately, since it is impossible to

obtain the formula that explicitly defines the set of grid points that gives the best approximation,

the Chebyshev nodes presently remain the best choice of interpolation nodes [37, 38]. An exten-

sion to univariate polynomial interpolation error bound theorems and their proofs are due to the

works of Bhrawy [39] and Bhrawy and Zaky [40], who explored the analytic expression for error

bounds on bivariate polynomial interpolation. The arguments were analogous to those that had

been presented in the case of univariate polynomial interpolation. Close scrutiny of the literature

reveals that the analytic expressions for the error bounds when using Chebyshev-Gauss-Lobatto
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(CGL) nodes have not yet been developed. However, as explained by Trefethen and Weideman

in [41], the Chebyshev-Gauss-Lobatto nodes have consistently been used in discretizing differential

equations using spectral collocation-based methods. This raises the question of whether there is

any pronounced difference between CGL and Chebyshev nodes and if CGL nodes would be better

than Chebyshev nodes in terms of their practical application.

In the present work, we aim to introduce theorems and proofs based on CGL nodes. In addition,

analytic expressions of the error bounds for generalized multivariate polynomial interpolation are

constructed. To the best of our knowledge, the analytical expressions for the error bound theorems

using Chebyshev-Gauss-Lobatto nodes are stated and proved here for the first time in the literature.

We remark that when the domain of approximation is large, it is a requirement that many grid

points be used to improve the accuracy of numerical approximations. However, the use of many grid

points is known to be memory inefficient and requires considerable computer time to invert the large

matrices associated with the system of linear algebraic equations being solved. The drawbacks of

using a large number of grid points are exacerbated if the underlying function being approximated

has unbounded higher ordered derivatives [42]. This feature results in large interpolation errors the

magnitude of the approximation error is dependent on the size of these derivatives over the entire

domain of interpolation. To resolve this challenge, a key strategy will be to divide the interval of

approximation into smaller sub-domains and perform piecewise polynomial interpolation on each

subinterval. This approach also creates room to reduce the number of interpolation nodes in

each subinterval while retaining excellent interpolating properties. The use of fewer grid points

reduces interpolation errors associated with ill-behaved higher ordered derivatives, such as those

evident in the Runge function (see Epperson [43]). Based on this idea, several multi-domain based

spectral collocation method approaches have been developed to solve differential equations (see [44]

and references therein). Research findings have indicated that the multidomain approaches yield

very accurate results and are computationally efficient with a small number of grid points. The

multi-domain approaches to spectral collocation methods have been applied to ordinary differential

equations prescribed as initial value problems [45]. In the multi-domain approach, the solution

of the ODE (initial value problem) is sought independently at each subdomain in time and the

approximate numerical solution computed by matching solutions along the common boundaries of

the non-overlapping subdomains. In the case of ODE formulated as a boundary value problem, non-

overlapping subdomains will not suffice due to the presence of boundary conditions that must be
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imposed during each solving stage. In such a case, an overlapping grid based spectral collocation

method yields promising results for a large interval of the spatial domain [46]. As it will be

demonstrated, a non-overlapping subdomains approach is key to reducing the size of associated

coefficient matrices, whereas integrating the overlapping grids approach in spectral collocation

method introduces sparsity in the matrices, thus rendering a stable numerical scheme.

In this work, domain decomposition techniques are incorporated into existing numerical methods

of solving the differential equations to present modified spectral collocation methods, which are

applicable in solving ordinary differential equations, one-dimensional partial differential equations

of hyperbolic and parabolic type, and two-dimensional PDEs of elliptic type. The thesis is organized

in such a way that descriptions of the numerical methods are presented from the simplest to the

most complex, with theoretical results of the error bound theorems and proofs being used at

each stage to benchmark the findings of numerical simulations. Finally, a new method of solving

a partial differential equation involving three independent variables is proposed, described and

applied to solve two-dimensional initial-boundary value problems. The method shall be named the

trivariate spectral collocation method and its superiority will be improved through the integration

of a domain decomposition technique. The new error bound theorems and proofs resulting from the

incorporation of domain decomposition techniques and those emanating from trivariate polynomial

interpolation are presented here for the first time in the literature. It is worth mentioning that

the quasi-linearization method of Bellman and Kalaba [47] will be used to simplify the nonlinear

differential equations throughout the thesis owing to its fast quadratic rate of convergence. The

Lagrangian form of polynomial interpolation constructed at Chebyshev-Gauss-Lobatto points will

be used as approximating functions to the solution of differential equations. The preferable choice of

Lagrangian basis functions and Chebyshev-Gauss-Lobatto points is attributed to their convenience

in defining the spectral differentiation matrices. For the sake of clarity, we next introduce the set

of differential equations considered in this thesis.

1.4 Ordinary Differential Equations

Nonlinear ordinary differential equations that are considered in this study are boundary layer flow

problems. Three types of problems are included. The first case considered is that of steady two-

dimensional laminar flow of a viscous incompressible electrically conducting fluid over a continuous
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shrinking sheet [48]. The second case is the Falkner-Skan equation which describes a two- dimen-

sional flow of incompressible fluid past a stationary semi-infinite impenetrable wedge surface with

stream-wise gradient [49], while the third case involves a boundary layer flow over the unsteady

stretching sheet in the presence of Hall effect and heat transfer over the stretching surface [50]. The

study of boundary layer flow over a stretching sheet has application in industrial manufacturing

processes such as paper and glass-fibre production, wire drawing, hot rolling, drawing of plastic

films, polymer extrusion, and metal spinning. As reported in [51], the stretching and simultaneous

heating or cooling during these processes influence the quality of the final products. The many

applications of fluid flow over a stretching sheet have led to growing research interest in it. In his

pioneering work, Sakiadis [52] developed the flow model due to a flat surface that is moving with a

constant velocity in a quiescent fluid. Sakiadis work was later extended by Crane [53] to the two-

dimensional problem of considering the surface velocity that is proportional to the distance from

the flat surface. The effect of the transverse magnetic field on the laminar flow over the stretching

sheet has also been studied by a number of researchers, such as [54] to [57]. Similarly, the bound-

ary layer flow of an incompressible viscous fluid over a shrinking sheet has received substantial

attention, due to its increasing application in engineering systems. Wang [58] first investigated the

flow over a shrinking sheet when he was working on the boundary layer flow of a liquid film over

an unsteady stretching sheet. Later, Miklavcic and Wang [59] obtained an analytic solution for

the steady viscous hydrodynamic flow over a permeable shrinking sheet. We remark that when

a strong magnetic field is present, the effect of Hall currents cannot be neglected. The study of

magnetohydrodynamics (MHD) viscous flow with Hall currents has important applications in prob-

lems of Hall accelerators as well as flight magnetohydrodynamics. With this understanding, and

with regard to external hydrodynamic flows, Katagiri [60] and Sato [61] both discussed the effects

of Hall current on the boundary layer flow past a semi-infinite plane. Pop and Soundalgekar [62]

investigated the Hall effects in the steady hydrodynamic flow past an infinite porous plate. Falkner

and Skan [63] first obtained the, so named, Falkner-Skan (FS) equation. In its general form, the

Falkner-Skan equation is a third order boundary value problem that is strongly nonlinear with no

known closed-form solution. The FS equation has been considered by a number of authors [64] to

[66] as a benchmark problem for testing the performance of newly developed solution methods.

It is worth noting that the ordinary differential equations highlighted above are strongly non-

linear and there exists an extensive body of research work invested in the study of methods of
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solution for such nonlinear ordinary differential equations. For instance, Elbashbeshy and Bazid

[67] presented the similarity solution of the boundary layer equations which describe the unsteady

flow and heat transfer over a stretching sheet. An attempt to obtain analytic and semi-analytic

solutions for simple cases of boundary layer flow can be found in the work of Liao [68] and Tan

and Liao [69], respectively. In the case of flow induced by shrinking sheet, Hayat et al. [70] de-

rived both exact and series solutions describing the magnetohydrodynamic boundary layer flow of

a second-grade fluid over a shrinking sheet. The boundary layer flow problem over a shrinking

sheet was also solved using the Adomian decomposition method by Noor et al. [71]. A closed

form of analytic solution for the flow over shrinking sheet can be found in the works of Fang and

Zang [72] and Midya [73]. the homotopy analysis method (HAM) was applied by Sajid and Hayat

[74] on boundary layer flows induced by a shrinking sheet. Early attempts to solve the generalized

Falker-Skan equation that were based on traditional numerical approaches such as the shooting

method and finite differences, can be found in studies by Hartree [75], Weyl [76] and Kuo [77]. The

HAM was used by Liao and Campo [78] and Abbasbandy and Hayat [79] to solve the Blasius and

Falkner-Skan problems. To counter the limitation of normal HAM, Motsa and Sibanda [80] applied

the spectral homotopy analysis method (SHAM) to solve the Falkner-Skan equation. In this thesis,

many of the nonlinear ODEs used for numerical experimentation are defined over semi-infinite do-

mains. Before the numerical method is applied, the semi-infinite domain of approximation [0,∞)

must be truncated to a finite domain [0, L]. As a rule of thumb, such a truncation should ensure

that L is sufficiently large to approximate conditions at infinity. With this in mind, Lakestani [81]

truncated the semi-infinite physical domain of the problem to a finite domain and expanded the

required approximate solution as the element of Chebyshev cardinal functions. Further, we note the

need to use many grid points when the truncated domain of approximation is large, and when the

accuracy of the approximate numerical solution must be improved. However, as mentioned earlier,

an increase in the number of grid points results in matrices that are large dense. Some large sized

matrices are also ill-conditioned, a phenomenon that leads to an unstable numerical scheme. This

challenges the extent of the reliability of the numerical results that have been presented in literature

so far; a query that we now address. The main concern of the second chapter of this thesis, is,

thus, to provide a robust numerical algorithm that can be applied to solve many nonlinear ODEs

that model physically relevant boundary layer flow problems defined over a semi-infinite domain.

Finer details about the method are contained in Chapter 2.
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1.5 One-Dimensional Hyperbolic PDEs

Another class of differential equations that we sought to solve are the hyperbolic partial differential

equations, which are initial value problems [82]. These equations are highly applicable in various

branches of engineering and science [83], particularly, in mechanics [84]. Therefore their study has

generated considerable interest among researchers. With regard to numerical solutions of hyperbolic

PDEs by using domain decomposition techniques, close scrutiny of the literature indicates that

previous studies focused their approach on the application of overlapping grids on only the space

variable. The discretization has widely been performed using the spectral collocation in the space

variable and the finite difference in the time variable. Dehghan and Taleei [85] applied a method,

based on pseudo-spectral collocation, with a domain decomposition algorithm for approximating

the spatial variable in coupled nonlinear Schrödinger equations and demonstrated that such an

algorithm reduces the effect of round-off errors. Later, in [86], the same authors considered the long-

time behavior of numerical solutions for the Klein-Gordon-Schrödinger equations using a similar

approach. Kopriva [87] developed a multidomain Chebyshev spectral method for solving hyperbolic

partial differential equations using spectral collocation discretization in space and finite difference

discretization in time. A pseudo-spectral method based on the overlapping grids multidomain

technique for the numerical solution of the Sine-Gordon equation in one and two spatial dimensions

was also applied by Taleei and Dehghan in [88]. In that work, the overlapping domain decomposition

technique coupled with spectral collocation discretization was performed on the spatial variable, and

an implicit fourth-order Runge-Kutta method was adopted to carry out discretization in the entire

time variable. A substantial literature on the numerical methods of solution for two-dimensional

hyperbolic PDEs can be found in work by the authors in [89, 90] and the references given therein.

Although the overlapping grids approach that had been previously applied to space variable leads to

sparse matrices of the resulting system of linear algebraic equations, such matrices are nevertheless

large and take considerable large computer time to invert.

In Chapter 3, the bivariate spectral collocation method, that had previously been applied on

nonlinear evolutionary parabolic PDEs, is extended to obtain solutions of hyperbolic PDEs de-

fined on large time intervals, by incorporating the non-overlapping subdomains decomposition

technique. The multi-domain approach based on decomposing a large time interval into smaller

non-overlapping subintervals is adopted to solve one dimensional hyperbolic PDEs. This approach

preserves the benefits of dealing with small-sized matrices because the hyperbolic PDE is solved
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independently on each subinterval in time, so few grid points can be used in each subinterval. The

spectral collocation discretization is applied in both space and time variables and the approximate

solution of the differential equation is obtained by matching solutions from different subintervals

in time along the common boundary. In the case of nonlinear differential equations, the matching

procedure is evoked after the solutions in each subdomain converge. We aim to demonstrate that

adopting a multi-domain approach in solving such hyperbolic PDEs yields very accurate results with

notably short computer time. We remark that to the best of our knowledge, the non-overlapping

based multidomain spectral collocation methods with Chebyshev Gauss-Lobatto points have not

been applied to hyperbolic PDEs defined on large time intervals.

The hyperbolic PDEs solved herein are PDEs, both linear and nonlinear, that have been re-

ported in the literature. For simplicity in validating the accuracy of the proposed numerical method,

the selected illustrative examples are those which possess exact solutions. We emphasize that the

choice of the numerical examples was purely meant to facilitate demonstration on the usefulness of

the method and was not tied to the extent of applicability of the problems themselves. However,

a similar approach could be adopted to solve important hyperbolic PDEs that emerge in real-life

applications. The extent of the discussion of the multidomain approach in this study is limited

to only non-overlapping subintervals and is implemented for the time variable. For comparative

purposes, the hyperbolic PDEs are also solved using the single domain approach, namely, the bi-

variate spectral collocation method. The prototypical examples of hyperbolic PDEs that are solved

in this thesis include; the damped wave equation, the telegraph equation, the modified Liouville

equation, and the 1-D Phi-four equation. The first two are linear, and the latter two are nonlinear.

The damped wave equation describes the propagation of disturbances out of the region at a fixed

speed in one spatial direction [91, 92]. This wave equation finds application in areas of elasticity,

plasma physics, quantum mechanics, and general relativity. The telegraph equation originates from

Maxwell’s equation, and, for an electrical transmission line, it describes the variation of voltage

and current with distance and time [93]. The modified Liouville equation plays an important role

in biology and mathematical physics, where it describes the time evolution of the phase space dis-

tribution function [94, 94]. Finally, the 1-D Phi-four equation finds application in many areas of

physics such as plasma physics, fluid dynamics, solid-state physics, and quantum field theory [96].
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1.6 One-Dimensional Parabolic PDEs

Parabolic partial differential equations often arise in many practical problems in fields of mathe-

matical physics and engineering. Parabolic PDEs are useful in describing a wide family of problems

in science that include heat diffusion, ocean acoustic propagation and physical or mathematical sys-

tems with a time variable [97]. Examples of parabolic PDEs that are considered in this study include

the evolutionary equations that are defined as a single equation such as; the reaction-diffusion equa-

tion, the generalized Burgers-Fisher equation [98], and the generalized FitzHugh-Nagumo equation

[99]. Reaction-diffusion equations model reaction-diffusion processes in chemical kinematics, astro-

physics, and biology. The generalized Burgers-Fisher equation describes different mechanisms that

arise in the fields of financial mathematics, fluid mechanics, shock wave formation, traffic flows,

turbulence, heat conduction and transmission of sound waves through viscous media among other

disciplines of applied sciences [100]. The generalized FitzHugh-Nagumo equation [101] arises in

genetics, biology, and heat and mass transfer [102, 103]. In biology, it models the activation and

deactivation dynamics of a spiking neuron [104]. For systems of parabolic PDEs, we consider fluid

flow problems of boundary layer type. In particular, we consider boundary layer flow over a per-

meable flat plane arising from differences in concentration or material constitution in conjunction

with temperature effects. These types of flows have received much attention, by researchers, owing

to their great practical importance [105]. For instance, atmospheric flows at all scales, are driven

appreciably by both temperature and water concentration differences [106]. In addition, flow in

water bodies is driven through equally important effects of temperature [107].

Several methods have been developed and applied to solve parabolic PDEs. They include the

semi-analytical methods such as; the Tanh method [108], Adomian decomposition method [109,

110], homotopy perturbation method [111], the variational iteration method [112], and numerical

methods such as the finite difference methods [113] and the spectral collocation methods [114].

As for the problems considered in this study, in [115], Javidi studied spectral collocation method

for the generalized reaction-diffusion equation and later, working in collaboration with Golbabai

[116], the spectral domain decomposition method was applied on the same problem. Babolian [117]

gave some analytic approaches to the solution of Burgers-Fisher equation. The explicit solutions

and numerical simulations of the generalized Burger-Fisher’s equation were introduced by Kaya

and Sayed in [118]. Wazwaz [108] presented the Tanh method for the generalized Burgers-Fisher

equation which was later solved by Mickens and Gumel [119] and Khao et al. in [120] using a
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nonstandard finite difference scheme and Chebyshev-Legendre pseudospectral method, respectively.

Numerical approximations of the generalized FitzHugh-Nagumo equation also exist. One such

example is, the Hopscotch finite difference scheme, which is a fast second order differential equation

solver, that was first proposed by Gordon [121] and further developed by Gourlay [122]. Other

numerical methods that have been applied to solve the FitzHugh-Nagumo equation include the

pseudospectral method [123] and the polynomial differential quadrature method [124]. In the case

of boundary layer flows, the problem of natural convection flow from a vertical permeable plate

with variable surface temperature and species concentration was solved by Hussain and Hossain

[125] using three methods; finite differences for the entire ξ region (where ξ is the scaled stream-

wise variable), the series solution method for small ξ and asymptotic solution method for large ξ.

There exists a vast literature on different methods that have been applied for numerical solutions

to boundary layer flow problems (see [126]). Close scrutiny of the literature reveals that among

the numerical methods that are available for approximating solutions of parabolic PDEs, spectral

methods (tau, Galerkin, and collocation-based) are superior, especially where the problem possesses

a smooth solution [127]. Spectral methods are advantageous in that they require a few grid points

to give accurate results and short computation time is needed to realize the results. When solving

initial-boundary value problems, the spectral collocation-based approaches are often used as they

offer a simple treatment of boundary conditions [128]. In this regard, the bivariate spectral quasi-

linearization method has been successfully applied to solve parabolic PDEs defined over small space

and time intervals. However, it has been observed that when the method is applied to solve PDE

defined over a large time interval, the accuracy deteriorates even with a large number of grid points

[129]. In view of this drawback, the utility of the method has recently improved with a new version

that is based on decomposing the time variable domain into smaller non-overlapping subintervals

[130]. In the modified approach, the PDE is solved independently at each time subinterval, and

the resultant solution to the PDE is obtained by merging the solution from different subintervals

along common boundaries. We remark that this approach disregards a large spatial domain, which

is an issue that we now address.

In Chapter 4, we introduce a new overlapping grid based multidomain bivariate spectral col-

location method for the solution of parabolic PDEs that are defined on over large space and time

intervals. We also aim to demonstrate that this multi-domain approach yields very accurate re-

sults in an appreciably short computer time. The new method is based on decomposing the space
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and time variable domains into smaller equal overlapping and non-overlapping subintervals, respec-

tively. The PDE is then discretized at each of these subintervals using spectral collocation with

Chebyshev-Gauss-Lobatto points. The overlapping in the spatial variable is done in such a way

that the first and last two nodes of the interior subintervals coincide with those of the neighbour-

ing subintervals and they remain common. Chebyshev differentiation matrices from the different

spatial subintervals are incorporated to assemble a new Chebyshev differentiation matrix for the

decomposed space variable. The PDE is solved over the entire spatial domain but independently

at each time subinterval using the continuity condition to obtain initial conditions at subsequent

subintervals. The solution of the PDE in the entire time domain is taken as the union of the solu-

tions from different time subintervals. To the best of our knowledge, the spectral collocation-based

methods with Chebyshev-Gauss-Lobatto points have not been applied simultaneously on overlap-

ping grids in space and non-overlapping subintervals in time. To further explain the performance

of the proposed method and the preferred choice of Chebyshev-Gauss-Lobatto points over other

sets of nodes, we develop new error bound theorems that govern piecewise bivariate polynomial

interpolation using CGL nodes and present their rigorous proofs.

1.7 Two-Dimensional Elliptic PDEs

Elliptic partial differential equations describe phenomena that do not change with time. They

have numerous applications in almost all areas of mathematics, ranging from harmonic analysis

to Lie theory and in physics. As reported by Fedoseyev et al. [131] and in a book on differential

equations by Polyanin and Zaitsev [132], many processes in the applied sciences have important

features of the real world phenomena which can only be modeled by elliptic equations. The resulting

nonlinear partial differential equations present mathematical difficulties [133]. The desire to find

and understand the solutions of these equations has inspired mathematicians to develop a diverse

spectrum of numerical methods for their solution, thereby giving rigorous answers to important

questions of the nonlinear world [134]. Over time, many impressive results in this area have further

motivated the introduction of superior methods of solutions. Notably, at the onset of designing a

numerical algorithm for nonlinear differential equations, the most remarkable features to consider

include the requirements of accuracy, the ease to design the algorithm and computational complexity

involved during implementation.

In the literature, there are three basic numerical approaches for solving nonlinear elliptic PDEs;
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finite differences, finite elements, and spectral collocation methods [135]. Finite difference methods

use many subdomains and calculate the discrete solution on a grid, by expanding to low order in each

subdomain. Finite difference methods are simple and the easiest to code, but difficult to work with

on complicated domains [136]. Avellaneda et al. [137] applied the finite difference method to solve

elliptic PDEs with rapidly oscillating coefficients. Later, Conca and Natesan [138] provided a better

approximation to the solution of these elliptic problems using a numerical method based on the

Bloch wave approach. Chan et al. [139] solved two-dimensional nonlinear obstacle problems using

a generalized finite difference method. There is furthermore a vast literature on the application

of finite difference methods to nonlinear elliptic PDEs in work by Jensen [140]. Finite element

methods differ in that they are based on partitioning the domain into small finite elements followed

by expansion of the solution in basis functions [141]. Finite element methods are particularly well

suited to use with irregular domains which appear in many engineering applications: however,

they are more complex to set up and analyze. Hou and Wu [142] introduced a multi-scale finite

element method for elliptic problems in composite materials and porous media. Matache et al.

[143] proposed a p-finite element method for numerically approximating the solution of nonlinear

elliptic PDEs. Spectral collocation methods approximate solutions to nonlinear PDEs on a single

domain, or a few subdomains, with higher expansion orders of the basis functions. They are

generally faster and highly accurate for problems with smooth solutions. [144] presented a pseudo-

spectral collocation-based approach to solutions of nonlinear elliptic PDEs using Chebyshev basis

functions. Yi and Wangy [145] proposed a Legendre-Gauss-type collocation algorithm for nonlinear

partial differential equations and demonstrated the high accuracy and effectiveness of the suggested

algorithms.

Multidomain spectral collocation methods originating from pioneering work of Gottlieb and

Orszag [146] have been applied to solutions of nonlinear PDEs (see for instance [147]). Despite

much attention on this subject, previous studies on the application of spectral collocation methods

with domain decomposition techniques have focused on only one-dimensional problems. Where

higher dimensional problems are involved, a suitable similarity transformation has been applied to

reduce the number of independent variables in an attempt to reduce the computational complexity

before the spectral collocation method with domain decomposition is applied [148]. By contrast,

direct application of spectral collocation methods with overlapping grids to higher dimensional non-

linear problems and in particular nonlinear elliptic PDEs emanating from heat and mass transfer,
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combustion theory and classical fluid flow problems has traditionally been viewed as problematic.

The possible reason for this reservation would be the extent of the anticipated numerical complex-

ity involved in dealing with overlapping subintervals in different spatial directions. Indeed, with a

few noticeable exceptions [149, 150], very little work has been done on adopting a purely spectral

collocation method with overlapping grids for the solution of such an important class of problems.

Chapter 5 focuses on the direct application of a domain decomposition based spectral collocation

method on two-dimensional nonlinear PDEs defined on large rectangular domains. Preliminaries

of the numerical algorithm involve breaking the large computational domain into smaller equal

overlapping subintervals on each space direction. The solution of the PDE is approximated using a

bivariate Lagrange interpolating polynomials constructed using Chebyshev-Gauss-Lobatto (CGL)

nodes. The linearized PDE is discretized on each subinterval and through careful dislodgement of

repeated equations at overlapping regions, a linearly independent system of algebraic equations is

obtained. The numerical scheme is tested using three typical nonlinear elliptic PDEs that have

been reported in the literature. These include the two dimensional heat and mass transfer equation

with a n-th order volume reaction that arise in combustion theory [151], the stationary equation of

Khokhlov-Zabolotskaya that describes different acoustic phenomena [152], and a system of equa-

tions representing the problem of heat and mass transfer effects of a steady magneto-hydromagnetic

flow of viscous, electrically conducting fluid past a semi-infinite inclined porous plate [153]. Nu-

merical simulations confirm that the overlapping grids based approach is highly accurate and com-

putationally efficient when compared to the single domain approach for the considered class of

problems.

1.8 Two-Dimensional Initial-Boundary Value Problems

Finally, despite the benefits of the spectral collocation methods, review of the literature indicates

that previous application of purely spectral collocation methods has focused on the solutions of

either or both of ordinary differential equations and partial differential equations involving two

independent variables [154]. With a few noticeable exceptions such as in [155] where spectral collo-

cation methods have been applied to obtain numerical solutions of two-dimensional time-dependent

PDEs, such has been achieved through the application of spectral collocation discretization on the

space variables and finite difference discretization on the time variable. It is well known that fi-
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nite difference methods require many grid points to yield accurate results. Their accuracy cannot

match those obtained when spectral collocation methods are applied on PDEs defined on simple

geometries if the underlying solutions are smooth. Motivated by the usefulness of incorporating do-

main decomposition technique in the spectral collocation method, we propose an overlapping grid

based multidomain trivariate spectral collocation method for solving nonlinear two-dimensional

time-dependent PDEs defined on large rectangular domains over large time intervals.

Typical examples of two-dimensional nonlinear time-dependent PDEs considered in this study

include the nonlinear PDEs given as single equations that describe the problem of unsteady two-

dimensional heat and mass transfer, firstly, in quiescent media with chemical reaction [156], and

secondly, with power-law temperature-dependent thermal conductivity [157]. The problems of

heat and mass transfer phenomena are found throughout the physical world and frequently in

the industry. For nonlinear PDEs, described as systems of equations, we consider, firstly, a case

of the coupled two-dimensional Burgers system [158] and the two-dimensional reaction-diffusion

Brusselator system [159]. The Burgers equation is a fundamental PDEs from fluid mechanics; it

occurs in various areas of applied mathematics, such as modeling of hydrodynamic turbulence,

shock waves, and traffic flow problems. It also describes the sedimentation of particles in fluid

suspensions under the effect of gravity, transport, and dispersion of pollutants in rivers [160]. The

second system of PDEs considered is the Brusselator system arising in the mathematical modeling of

chemical systems such as enzymatic reactions, and in plasma and laser physics in multiple coupling

between certain modes [161]. The Brusselator model is also evident in the formation of the ozone

layer through a triple collision of oxygen atoms. The problems considered here have exact solutions

and have been reported in the literature to be very useful in testing newly developed numerical

methods of solution for nonlinear partial differential equations that arise in the modeling of various

aspects of the real world. We, therefore, consider them appropriate to demonstrate the effectiveness

of the proposed method of solution.

Exact solutions of two-dimensional heat and mass transfer problem in quiescent media with

chemical reaction were discussed by Polyanin and Zaitsev [156]. The problem has been solved

numerically using an implicit finite-difference method by Chamkha [162]. The problem of two-

dimensional heat and mass transfer with power-law temperature-dependent thermal conductivity

was examined by Pamuk and Pamuk [157], where they obtained a particular exact solution using

the Adomian decomposition method and numerical methods for the solution of this problem can be
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found in references they cite. Burgers [158] pioneered the investigation of the mathematical proper-

ties defined by the so-named Burgers equation. Analytical solution of the unsteady two dimensional

coupled Burgers equation was first given by Fletcher [163] using the Hopf-Cole transformation. In

[164], the differential transformation method was applied to obtain the analytical solution of a

coupled unsteady Burgers equation. Numerical solution of Burgers equation is a natural and first

step towards developing methods for the computation around complex flows. The Burgers equation

has been used frequently to test new approaches in computational fluid dynamics by first applying

the new approaches to it. For instance, a numerical method based on local discontinuous Galerkin-

finite elements was analyzed in [165] to solve the two-dimensional Burgers equation. In another

instance, the local radial basis functions collocation method used to approximate the numerical

solution of the transient coupled Burgers equation was examined in [166]. The Brusellor model

has been extensively studied both numerically and analytically. For instance, Twizell et al. [167]

developed a second-order finite difference method for the numerical solution of the initial-boundary

value problems of the Brusselator model; Khani et al. [168] found exact solutions of the Brusselator

reaction-diffusion model using the exp-function method, while Biazar and Ayati [169] obtained an

approximate solution to the Brusselator system by applying the Adomian decomposition method.

In Chapter 6, a purely spectral collocation method, namely, the overlapping grids multidomain

trivariate spectral collocation method, is introduced and applied to solve two-dimensional initial-

boundary value problems defined on over large space and time intervals. The solution process

involves, firstly, the simplification of the PDE using the quasi-linearization method. Next, the

spatial domain is decomposed into a sequence of equal overlapping subintervals, and the large time

domain is decomposed into equal non-overlapping subintervals. The solution to the linearized PDE

is assumed to be a trivariate Lagrangian interpolating polynomial constructed on Chebyshev Gauss-

Lobatto points defined on each subinterval. The PDE is discretized in all space variables and time

variable using the spectral collocation method to yield a system of linear algebraic equations that

are solved iteratively. The solution of the PDE is computed simultaneously across all subintervals

in space, and independently at each subinterval in time, applying the continuity condition to obtain

the initial condition for the second to last subintervals. The proposed numerical method is then

tested using typical examples of initial-boundary value problems reported in the literature. The

accuracy of the numerical scheme is assessed by computing the absolute difference between the nu-

merical results with the exact solutions. The differences are presented and discussed in tabular and
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graphical form. Numerical results obtained using the new solution approach are compared against

those obtained using the standard single domain based trivariate spectral collocation method. Find-

ings from numerical simulations show that the current method yields highly accurate results in a

computationally efficient manner when applied to problems defined on a large time interval, large

spatial domains, and obtaining numerical approximations of solutions to the differential equation

for large parameter values. To the best of our knowledge, the spectral collocation-based method

with Chebyshev-Gauss-Lobatto points has not been applied simultaneously on overlapping grids

in two-dimensional space and non-overlapping grids in time. The new theoretical results of error

bound theorems support the findings of the numerical simulations.

In summary, the diagram given below in Figure 1.1 demonstrates the nature of the differential equa-

tions that will be encountered in this thesis. They start with one-dimensional ordinary differential

equations and progress through to two-dimensional time-dependent partial differential equations.

x

x

y x

y

z

1D
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2D
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Transition (Time dependent processes)

Figure 1.1: Schematic representation of the nature of differential equations solved in this thesis

19



Chapter 2

A Modified Spectral Collocation

Method of Solution for Ordinary

Differential Equations

In this chapter, we present an accurate and computationally efficient overlapping grid based spectral

collocation method for approximating the solutions of nonlinear ordinary differential equations.

The practical applicability of the proposed method is showcased by solving boundary layer flow

problems reported in the literature as a single equation or a system of ordinary differential equations.

The primary focus is to demonstrate that the proposed solution approach is highly accurate and

computationally efficient when applied to solve ordinary differential equations defined over large

computational domains. We conclude this chapter with a discussion of new results on error bound

theorems and proofs on univariate polynomial interpolation using Chebyshev-Gauss-Lobatto nodes

in the single domain and the overlapping grid. The numerical method described in this chapter

can be adjusted and applied to many other classes of ordinary differential equations with diverse

practical applications.
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Abstract

In this paper, an accurate, and computationally efficient algorithm for the solution of nonlinear

boundary layer flow problems that are defined on semi-infinite domains is presented. In this ap-

proach, the quasi-linearization method is used to simplify the nonlinear equations before applying

the spectral collocation method on overlapping grids, which are defined on the truncated domain.

The practical applicability of the method is demonstrated by solving boundary layer flow problems

that have been reported in the literature as a single equation or system of ordinary differential

equations (ODEs). The aim is to demonstrate that the proposed approach is highly accurate and

computationally efficient when applied on problems defined over large computational domains. The

accuracy, efficiency, and robustness of the method are demonstrated by comparing the current re-

sults with those obtained using MatLab build-in routine, and a good agreement is observed. The

numerical results have also been compared against the exact solution where it exists, and a residual

error analysis is conducted to assess the accuracy of the method for problems without exact solu-

tions. We examine the significance of varying the number of overlapping grids and report stable

results. Finally, the new error bound theorems and proofs on polynomial interpolation that are

presented provide benchmarks the adoption of the present numerical algorithm.
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1. Introduction

Nonlinear ordinary differential equations that are considered in this paper are boundary layer

flow problems and include the cases of, firstly, the steady two-dimensional laminar flow of a viscous

incompressible electrically conducting fluid over a continuous shrinking sheet [1], secondly, the

Falkner-Skan equation which describes a two-dimensional flow of an incompressible fluid past a

stationary semi-infinite impenetrable wedge surface with stream-wise gradient [2] and thirdly, a

boundary layer flow over an unsteady stretching sheet in the presence of Hall effect and heat

transfer over the stretching surface [3].

The study of boundary layer flow over a stretching sheet has application in the engineering

of industrial processes such as the production of paper and glass-fibre, wire drawing, hot rolling,

drawing of plastic films, polymer extrusion, and metal spinning. As reported in [4], the stretching

and simultaneous heating or cooling during these processes influence the quality of the final prod-

ucts. Accordingly, in view of its many applications, there has been a growing research interest on

fluid flow over a stretching sheet. In his pioneering work, Sakiadis [5] developed the flow model

due to a flat surface that is moving with a constant velocity in a quiescent fluid. Sakiadis work

was later extended by Crane [6] to the two-dimensional problem of considering the surface veloc-

ity that is proportional to the distance from the flat surface. The effect of a transverse magnetic

field on the laminar flow over a stretching sheet has also been studied by a number of researchers

such as [7]-[10]. Paralleling this work, the boundary layer flow of an incompressible viscous fluid

over a shrinking sheet has also received considerable attention due to its increasing application in

engineering systems. Wang [11] first noted the flow over a shrinking sheet when he was working

on the boundary layer flow of a liquid film over an unsteady stretching sheet. Later, Miklavcic and

Wang [12] obtained an analytic solution for the steady viscous hydrodynamic flow over a permeable

shrinking sheet. We remark that when a strong magnetic field is present, the effect of Hall currents

cannot be neglected. The study of magnetohydrodynamics (MHD) viscous flow with Hall currents

has important applications in problems of Hall accelerators as well as aeronautical magnetohydro-

dynamics. With this understanding and with regard to external hydrodynamic flows, Katagiri [13]

and Sato [14] discussed the effects of the Hall current on the boundary layer flow past a semi-infinite

plane. Pop and Soundalgekar [15] investigated the Hall effects in the steady hydrodynamic flow

past an infinite porous plate. The Falkner-Skan (FS) equation was first obtained by Falkner and

Skan [16]. In its general form, the equation is a third order boundary value problem that is strongly
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nonlinear with no known closed-form solution. The FS equation has been considered by a number

of authors [17] to [19] as a benchmark problem for testing the performance of newly developed

solution methods.

The examples highlighted above and many others in science and engineering are notably strongly

nonlinear. Although an extensive body of research work has been invested in the study of methods of

solution of nonlinear systems, exact solutions are limited to special simple cases of these problems.

For instance, Elbashbeshy and Bazid [20] presented a similarity solution of the boundary layer

equations which describe the unsteady flow and heat transfer over a stretching sheet. Attempts

to obtained analytic and semi-analytic solutions for simple cases of boundary layer flow can be

found in the work of Liao [21] and Tan and Liao [22], respectively. For the case of flow induced

by a shrinking sheet, Hayat et al. [23] derived both exact and series solutions describing the

magnetohydrodynamic boundary layer flow of a second-grade fluid over a shrinking sheet. The

boundary layer flow problem over shrinking sheet was also solved using Adomian decomposition

method by Noor et al. [24]. A closed form of analytic solution for the flow over a shrinking sheet can

be found in work of Fang and Zhang [25] and Midya [26]. The homotopy analysis method (HAM)

was applied by Sajid and Hayat [27] on boundary layer flows induced by a shrinking sheet. Early

attempts to solve the generalized Falker-Skan equation that were based on traditional numerical

approaches, such as the shooting method and finite differences, can be found in work by Hartree

[28], Weyl [29] and Kuo [30]. The HAM was used by Liao and Campo [31] and Abbasbandy and

Hayat [32] to solve the Blasius and Falkner-Skan problems. To counter the limitation of the normal

HAM, as explained in studies by Motsa et al. [33], the spectral homotopy analysis method(SHAM)

was used to solve the Falkner-Skan equation by Motsa and Sibanda [34].

A close examination of the above class of nonlinear problems reveals that many of the ODEs

are defined over semi-infinite domains. Before the numerical method is applied, the semi-infinite

domain of approximation [0,∞) must be truncated to a finite domain [0, L]. As a rule of thumb,

such a truncation should ensure that L is sufficiently large to approximate conditions at infinity.

With this in mind, Lakestani [35] truncated the semi-infinite physical domain of the problem to

a finite domain and expanded the required approximate solution as the element of Chebyshev

cardinal functions. Further, we note that when the domain of approximation is large, any attempt

to improve the accuracy of the approximate numerical solution requires the use of many grid points.

However, as reported by Trefethen [36], increasing the number of grid points results in large-sized
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and dense matrices. Consequently, the computation time required to invert them is compromised.

Furthermore, some large-sized matrices are ill-conditioned; a phenomenon that leads to an unstable

numerical scheme. This effect creates some uncertainty concerning the reliability of the numerical

results that have been presented in literature: a query that we now address.

The main concern of the present paper is to provide a robust algorithm for the solution of

nonlinear ODEs that model physically relevant boundary layer flow problems defined over a semi-

infinite domain. The nonlinear ODEs is first linearized using the quasi-linearization method (QLM)

of Bellman and Kalaba [37]. The linearized QLM scheme is then solved using the spectral collocation

method applied on overlapping grids. In this approach, the truncated computational domain is

subdivided into overlapping subintervals of equal length and the approximate solution is computed

over the entire interval. The overlapping nature is such that two grid points at the ends of each

subinterval coincide with those of neighboring subintervals. We show that the current approach

leads to less dense matrices that require short computation time to invert. The well-posed nature of

the resulting system of linear equations is demonstrated by displacing the condition number of the

coefficient matrices. A well-conditioned system guarantees stability and, consequently, leads to the

highly accurate solutions that we claim are reported. To further explain the proposed algorithm,

we provide a new error bound theorem with a rigorous proof for error bound expressions emanating

from the use of interpolating polynomial to approximate the solution to the ODE for the chosen

basis functions and collocation points. It is the result of this theorem that informed us about the

usefulness of the present solution approach, for which we now demonstrate the superiority. All

calculations were programmed in MatLab and Mathematica and solutions have been presented in

tables and graphs.

The outline of the present article is the following. In Section 2 the numerical method is described.

Section 3 is devoted for the presentation of the new error bound theorems and proofs for polynomial

interpolation. In Section 4 the numerical method is applied to selected boundary layer flow problems

and results and discussions are given in Section 5. Finally, concluding remarks are given in Section

6.

2. Method of solution

In this section, we describe the proposed method of solution. The spectral quasi-linearization

method of solution has been applied to solve systems of ordinary differential equations on a single
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domain, for instance in [38]. In this work, we describe the multi-domain extension of the solution

algorithm. The approach is first described for a single nonlinear equation before considering its

expansion to a generalized system of nonlinear ODEs. The present approach is reliable for giving

highly accurate solutions over large domains.

2.1. The multi-domain spectral collocation method for a single nonlinear ODE

In this subsection, the development of the solution algorithm for a single equation is illustrated

by considering an n-th order ordinary differential equation that takes the form;

L
[
u(0)(x), u(1)(x), u(2)(x), . . . , u(n)(x)

]
= h(x), x ∈ (a, b), (1)

where L is a nonlinear operator acting on u and its first n ordinary derivatives, u(0)(x) = u(x), and

h(x) is a known function of the independent variable x. The ODE Eq.(1) is to be solved subject

to the two point boundary conditions which can be expressed as

n−1∑

p=0

α[p]
ν u

(p)(a) = ga,ν , ν = 1, 2, . . . , na, (2)

n−1∑

p=0

β[p]σ u
(p)(b) = gb,σ, σ = 1, 2, . . . , nb, (3)

where ga,ν , gb,σ are constants, α
[p]
ν and β

[p]
σ are the constant coefficients of p-th ordinary derivative,

u(p)(x), in the boundary conditions, and na and nb denote the total number of boundary conditions

prescribed at x = a and x = b, respectively. The method of solution involves the stages described

in the subsections below.

2.1.1. The quasi-linearisation method

The nonlinear ODE is first simplified using the quasi-linearisation method (QLM) of Bellman

and Kalaba [37]. The QLM is based on the Newton-Raphson method and is built from the linear

terms of a Taylor series expansion about an initial approximation to the solution. The QLM assumes

that the difference between solutions at two successive iterations, denoted by us+1 − us, is very

small. In particular, the QLM is comparable to providing the linear approximation of a function

of several variables, where, the derivatives of different order and the previous approximation of

the solution assume, respectively, the role of independent variables and the functional value at

the reference point. Finer details about linear approximation of functions can be found in any
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elementary book on differential calculus. Applying the QLM on Eq.(1) we obtain

γn,s(x)u
(n)
s+1 + γn−1,s(x)u

(n−1)
s+1 + . . .+ γ1,s(x)u

(1)
s+1 + γ0,s(x)us+1 = Rs(x), (4)

where

γµ,s(x) =
∂L

∂u
(µ)
s

[
us, u

(1)
s , u(2), . . . , u(n)s

]
, µ = 0, 1, 2, . . . , n,

Rs(x) = h(x) +
n∑

ζ=0

γζ,s(x)u(ζ)s − L
[
us, u

(1)
s , u(2)s , . . . , u(n)s

]
.

(5)

Here s = 1, 2, . . . , denotes the iteration level. Starting with an initial approximation to solution u0,

the QLM scheme Eq.(4) is solved iteratively until a solution with the desired accuracy tolerance is

realized.

2.1.2. Domain decomposition and discretization

The spatial domain x ∈ [a, b] is decomposed into q overlapping subintervals of equal length as

Λl = [xl−1, x̄l] , xl−1 < xl < x̄l, x0 = a, x̄q = b, l = 1, 2, . . . , q, (6)

where xl < x̄l, depicts the overlapping nature. Pictorially, the above decomposition of the x domain

can be represented as in [39] by Figure 1.

xNx

1
x0
1

Λ1

xNx

3
x0
3

Λ3

xNx

5
x0
5

Λ5

xNx

7
x0
7

Λ7

xNx

2
x0
2

Λ2

xNx

4
x0
4

Λ4

xNx

6
x0
6

Λ6

xNx

8
x0
8

Λ8

Figure 1: Pictorial illustration of decomposition of the x domain into 8 equal overlapping subintervals

The computational domain [xl−1, x̄l] in the lth subinterval is transformed into x̂ ∈ [−1, 1] where the

standard Chebyshev differentiation matrix is defined by applying the linear map

x̂(x) =
2

x̄l − xl−1

[
x− 1

2
(x̄l + xl−1)

]
, x ∈ [xl−1, x̄l]. (7)

Further, each subinterval is discretized into Nx + 1 Chebyshev-Gauss-Lobatto points. The subin-

tervals in the decomposed domain are made to overlap in such a way that the last two points in the

Λl subinterval overlap with the first two points of the Λl+1 subinterval and they remain common.

26



In general, the set of grid points over the entire x domain can be represented as

{a = x
(1)
Nx
, . . . , x

(1)
1 = x

(2)
Nx
, x

(1)
0 = x

(2)
Nx−1, . . . , x

(l−1)
1 = x

(l)
Nx
, x

(l−1)
0 = x

(l)
Nx−1, . . . , x

(q)
0 = b, 2 ≤ l ≤ q}.

(8)

The ordering of grid points as illustrated in Eq.(8) signifies that the spectral collocation is done

from right to left of the subinterval. The collocation nodes in the lth subinterval in x variable are

defined in [36] by

{x̂i}Nxi=0 = cos

(
iπ

Nx

)
. (9)

An explicit expression of the length L = x̄l − xl−1 in terms of the number of overlapping grids q in

x is useful in defining the grid points at the interior subintervals. To obtain this, we first observe

that overlapping of q subintervals in x results in (q − 1) regions of overlaps. Further, using the

linear map of Eq.(7) we notice that each of the overlapping space region has the length

L

(
1

2
− 1

2
cos

{
π

Nx

})
. (10)

The length L of the subinterval can therefore be obtained from the solution of

qL− L (q − 1)

(
1

2
− 1

2
cos

{
π

Nx

})
= b− a, (11)

which is

L =
b− a

q + (1− q)
(
1
2 − 1

2 cos
{

π
Nx

}) . (12)

Evidently, xl and x̄l are related by

x̄l = xl + L

(
1

2
− 1

2
cos

{
π

Nx

})
. (13)

We remark that this subdivision of the entire space domain into subintervals of the same length

and subsequent discretization of each subinterval into an equal number of grid points is a sufficient

condition for the grid points of neighboring subdomains to overlap.

2.1.3. Spectral collocation

The multidomain spectral quasilinearization method is implemented on the linearised QLM

scheme Eq.(4) as illustrated below. We assume that the approximate solution that is sought is a

Lagrange interpolation polynomial that takes the form

u(x) ≈ U(x) =

Nx∑

p=0

U(xp)Lp(x). (14)
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The spatial derivatives of the unknown function u(x) at each subinterval, l = 1, 2, . . . , q, are ap-

proximated at the collocation nodes, x̂j , j = 0, 1, . . . , Nx, as follows:

du

dx
≈

Nx∑

i=0

U(xi)L
′
i(xj) =

Nx∑

j=0

l
Di,jU(xj) =

l
DU, i = 0, 1, . . . , Nx, l = 1, 2, . . . , q, (15)

where
l
D =

(
2
L

)
D̂ and D̂ of size (Nx + 1) × (Nx + 1) is the standard first order Chebyshev

differentiation matrix as defined in [36]. The vector U is defined as

U =
[
u(xl0), u(xl1), . . . , u(xlNx)

]T
, (16)

where T denotes the matrix transpose. We note that the solution is computed simultaneously

across all subintervals and that the multi-domain approach only becomes evident when assembling

differentiation matrices in x. Since the last two points in the lth subinterval and the first two points

in the (l+ 1)th subinterval overlap and remain common, we can assemble the differentiation matrix

D for overlapping grids in x by carefully discarding the rows corresponding to the recurrent points

as

D =




q

D0,0 . . .
q

D0,Nx−1
q

D0,Nx
q

D1,0 . . .
q

D1,Nx−1
q

D1,Nx

. . .
. . .

. . .
. . .

q

DNx−1,0 . . .
q

DNx−1,Nx−1
q

DNx−1,Nx
. . .

. . .
2
D1,0

2
D1,1 . . .

2
D1,Nx−1

2
D1,Nx

. . .
. . .

. . .
. . .

. . .
2
DNx−1,0

2
DNx−1,1 . . .

2
DNx−1,Nx−1

2
DNx−1,Nx

1
D1,0

1
D1,1 . . .

1
D1,Nx

. . .
. . .

. . .
. . .

1
DNx−1,0

1
DNx−1,1 . . .

1
DNx−1,Nx

1
DNx,0

1
DNx,1 . . .

1
DNx,Nx




.

(17)

Here the empty entries of matrix D are zeros and
l
D represents the Chebyshev differentiation matrix

in lth subinterval in space. The size of matrix D is (r+1)×(r+1), where r = Nx+(Nx − 1)×(q − 1).
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The x grid corresponding to the assembled differentiation matrix over entire spatial domain in the

multi-domain approach is

{a = x
(1)
Nx
, . . . , x

(1)
1 , x

(2)
Nx−1, . . . , x

(2)
1 , . . . , x

(l)
Nx−1, . . . , x

(l)
1 , . . . , x

(q)
Nx−1 . . . , x

(q)
0 = b, 3 ≤ l ≤ q − 1}.

(18)

The higher order differentiation matrix over the entire domain can be approximated using matrix

multiplication as

dpu

dxp
≈ DpŪ, (19)

where vector Ū is defined as

Ū = [u(x0), u(x1), . . . , u(xr)]
T . (20)

We assert that the bar in Ū at Eq.(20) distinguishes it from the vector U at Eq.(16). The x grid

points at Eq.(18) are those in Eq.(8) when arranged from right to left such that x0 = b = x
(q)
0 , xr =

a = x
(1)
Nx

. Using the definition of discrete derivatives, Eq.(4) can be expressed in matrix form as

[
γn,s(x)Dn + γn−1,s(x)Dn−1 + . . .+ γ1,s(x)D + γ0,s(x)

]
Ū = Rs(x). (21)

Eq.(21) is a (r + 1) system of linear equations which can expressed as an (r + 1)× (r + 1) matrix

system that is given by



A0,0 A0,1 A0,2 . . . A0,r

A1,0 A1,1 A1,2 . . . A1,r

...
...

... . . .
...

Ar−1,0 Ar−1,1 Ar−1,2 . . . Ar−1,r

Ar,0 Ar,1 Ar,2 . . . Ar,r







Ū0

Ū1

...

Ūr−1

Ūr




=




R0

R1

...

Rr−1

Rr




, (22)

where

A = γn,s(x)Dn + γn−1,s(x)Dn−1 + . . .+ γ1,s(x)D + γ0,s(x),

Ūδ = u(xδ), Rδ = R(xδ), δ = 0, 1, 2, . . . , r.
(23)

The boundary conditions are evaluated at the collocation points as

n−1∑

p=0

α[p]
ν

r∑

j=0

Dp
r,jus+1(xj) = ga,ν , ν = 1, 2, . . . , na, (24)

n−1∑

p=0

β[p]σ

r∑

j=0

Dp
0,jus+1(xj) = gb,σ, σ = 1, 2, . . . , nb. (25)

The discrete boundary conditions Eq.(24) and Eq.(25) are imposed onto the matrix system Eq.(22).
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2.2. Multi-domain spectral collocation method for systems of nonlinear ODEs

In this section, we extend the algorithm described in the previous subsection to the solution

of a generalized system of ODEs. We consider a system of m ordinary differential equations in m

unknown functions ui(x), i = 1, 2, . . . ,m represented as

Li [u1(x), u2(x), . . . , um(x)] = hi(x), x ∈ (a, b), i = 1, 2, . . . ,m, (26)

where Li is a nonlinear differential operator acting on unknown functions and hi(x) is a known

function of the independent variable x in the ith equation. For illustrative purpose, we assume that

the system Eq.(26) is to be solved subject to the two point boundary conditions given by

m∑

j=0

nj−1∑

p=0

α
[p]
ν,ju

(p)
j (a) = ga,ν , ν = 1, 2, . . . , na, (27)

m∑

j=0

nj−1∑

p=0

β
[p]
σ,ju

(p)
j (b) = gb,σ, σ = 1, 2, . . . , nb, (28)

where α
[p]
ν,j and β

[p]
σ,j are the constant coefficients of u

(p)
j (x) in the boundary conditions, nj , (j =

1, 2, . . . ,m) is the highest derivative order of the variable uj appearing in the system of equations,

and na, nb denote the total number of boundary conditions prescribed at x = a and x = b,

respectively. Applying the QLM on Eq.(26) we obtain the linearized coupled scheme

m∑

l=1

nj∑

k=0

γk,li,s (x)u
(k)
l,s+1 = hi(x)+

m∑

l=1

nj∑

k=0

γk,li,s (x)u
(k)
l,s −Li [u1,s(x), u2,s(x), . . . , um,s(x)] , i = 1, 2, . . . ,m,

(29)

where

γk,li,s =
∂Li

∂u
(k)
l,s

[u1,s(x), u2,s(x), . . . , um,s(x)] , (30)

denotes the coefficient of the kth derivative of variable ul(x) in the ith equation. Applying spectral

collocation in Eq.(29) we obtain

m∑

l=1

[ nj∑

k=0

γk,li,s (x)Dk

]
Ūl = Ri,s(x), i = 1, 2, . . . ,m, (31)

where

Ūl = [ul(x0), ul(x1), . . . , ul(xr)]
T , Ri,s(x) = hi(x)

+

m∑

l=1

nj∑

k=0

γk,li,s (x)u
(k)
l,s − Li [u1,s(x), u2,s(x), . . . , um,s(x)] .

(32)
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We remark that the highest ordered derivative in the variable ul, (l = 1, 2, . . . ,m) may not appear

in every one of the m equations. Consequently, some coefficients may fall to zero. Eq.(31) can be

written compactly as
m∑

l=1

A(l,i)Ūl = Ri,s(x), i = 1, 2, . . . ,m, (33)

where

A(l,i) =

nj∑

k=0

γk,li,s (x)Dk. (34)

Expansion of Eq.(33) results in an m(r + 1)×m(r + 1) matrix system that can be represented as




A(1,1) A(1,2) A(1,3) . . . A(1,m)

A(2,1) A(2,2) A(2,3) . . . A(2,m)

...
...

... . . .
...

A(m−1,1) A(m−1,2) A(m−1,m) . . . A(m−1,m)

A(m,1) A(m,2) A(m,3) . . . A(m,m)







Ū1

Ū2

...

Ūm−1

Ūm




=




R1

R2

...

Rm−1

Rm




, (35)

where Rl = [Rl(x0), Rl(x1), . . . , Rl(xr)]
T , l = 1, 2, . . . ,m.

The matrix system Eq.(35) is solved subject to the discrete boundary conditions

m∑

j=1

nj−1∑

p=0

α
[p]
ν,j

r∑

k=0

Dp
r,juj,s+1(xk) = ga,ν , ν = 1, 2, . . . , na, (36)

m∑

j=1

nj−1∑

p=0

β
[p]
σ,j

r∑

k=0

Dp
0,juj,s+1(xk) = gb,σ, σ = 1, 2, . . . , nb. (37)

The boundary conditions Eq.(36)-(37) are imposed on the diagonal submatrices A(l,l), l = 1, 2, . . . ,m,

of Eq.(35).

2.3. Error bounds in univariate polynomial interpolation

Below, we state the theorem that governs error bounds in univariate polynomial interpolation;

Theorem 1. [40][Theorem of interpolation errors] If U(x) is a polynomial of degree at most

N that interpolates u(x) at N + 1 distinct grid points x0, x1, x2, ..., xN , in the interval [a, b], and if

the first (N + 1)th derivatives of u(x) exists and are continuous, then, ∀ x ∈ [a, b] there exist an ξx

for which

|u(x)− U(x)| ≤ 1

(N + 1)!
u(N+1)(ξx)

N∏

j=0

(x− xj). (38)

where U(x) is the N + 1-th degree interpolating polynomial that approximates u(x).
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In practical applications, the function u(x) is not known and therefore there is little that can

be done on u(N+1)(ξx) in the quest to improve accuracy. However, the values of N should ideally

be controlled within some optimal value, because it has implications on the memory requirements

and consequently the computation time needed to realize results. if, based on the physics of the

problem, it is possible to predict the behaviour of the function some control of N may be possible.

Eq.(38) suggests that the only sufficient condition to guarantee reduction in approximation errors

as the number of grid points increase is the uniform boundedness of higher order derivatives of u

within the interval of approximation x ∈ [a, b]. We remark that if the values of higher ordered

derivatives increase indefinitely without bound, then the approximations errors may grow as the

number of grid points N increase. It is worth noting that the product term
N∏

j=0

(x−xj) can be made

as small as possible by making a suitable choice of grid points, [41]. Going forward, we reveal new

error bound theorems and proofs emanating from an interpolating polynomial constructed using

Chebyshev-Gauss-Lobatto nodes. The ultimate goal is to obtain the upper bound of the product

term

N∏

j=0

(x− xj) with x0, x1, , . . . , xN , being the Chebyshev-Gauss-Lobatto nodes defined on the

finite interval [a, b] on both single and multiple domains. The following definition shall be required

in understanding the key elements of the proofs.

The Chebyshev-Gauss-Lobatto nodes on the interval x ∈ [a, b] are defined as

{x̂j}Nj=0 = cos

(
jπ

N

)
, x̂(x) =

2

b− a

[
x− 1

2
(a+ b)

]
, x ∈ [a, b]. (39)

and are the relative extremes of the N -th degree Chebyshev polynomial [42], TN (x̂), x̂ ∈ [−1, 1].

Thus, to obtain the interior Gauss-Lobatto nodes, we solve the equation T ′N (x̂) = 0, where the

prime denotes differentiation with respect to x. The exterior nodes, −1 and 1, are solutions of

(1− x̂2) = 0. Consequently, the complete set of the Gauss-Lobatto nodes defined by equation (39)

can be said to be the roots of (N + 1)-th degree polynomial,

LN+1(x̂) = (1− x̂2)T ′N (x̂). (40)

We formulate the theorem below.

Theorem 2 (Error bound for Chebyshev-Gauss-Lobatto (CGL) grid points in single

domain). The resulting error bound when CGL grid points, {xj}Nj=0 ∈ [a, b], are used in univariate

polynomial interpolation is given by

E(x) ≤ 4

2N (N + 1)!

(
b− a

2

)N+1

u(N+1)(ξx). (41)
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Proof. To prove the analytic expression for the error bound when Chebyshev-Gauss-Lobatto points

are used, we first construct a new (N + 1)-th degree polynomial, LN+1 using the relation stated in

[43] as

LN+1(x̂) = (1− x̂2)T ′N (x̂) = −Nx̂TN (x̂) +NTN−1(x̂). (42)

Since for x̂ ∈ [−1, 1], |TN (x̂)| ≤ 1, applying the triangle inequality to the absolute value of Eq.(42)

we have

|LN+1(x̂)| = | −Nx̂TN (x̂) +NTN−1(x̂)| ≤ | −Nx̂TN (x̂)|+ |NTN−1(x̂)| ≤ N +N = 2N. (43)

The absolute value of the leading coefficient of LN+1(x̂) is 2N−1N . The components 2N−1 and

N come, respectively, from the leading coefficient of TN (x̂) and the application of N -th rule of

differentiation on TN (x̂). The factorized monic polynomial expression appearing as a product term

in the error bound expression given at Eq.(38) can therefore be written as

N∏

j=0

(x̂− x̂j) =
LN+1(x̂)

2N−1N
. (44)

This monic polynomial is bounded above by
∣∣∣∣∣∣

N∏

j=0

(x− xj)

∣∣∣∣∣∣
=

∣∣∣∣
LN+1(x̂)

2N−1N

∣∣∣∣ ≤
2N

2N−1N
=

4

2N
. (45)

For a general interval x ∈ [a, b] this product term is bounded above by

max
a≤x≤b

∣∣∣∣∣∣

N∏

j=0

(x− xj)

∣∣∣∣∣∣
= max
−1≤x̂≤1

∣∣∣∣∣∣

N∏

j=0

(b− a)

2
(x̂− x̂j)

∣∣∣∣∣∣
=

(
b− a

2

)N+1

max
−1≤x̂≤1

∣∣∣∣∣∣

N∏

j=0

(x̂− x̂j)

∣∣∣∣∣∣

=

(
b− a

2

)N+1

max
−1≤x̂≤1

∣∣∣∣
LN+1(x̂)

2N−1N

∣∣∣∣ ≤
4

2N

(
b− a

2

)N+1

.

(46)

Using Eq.(46) in Eq.(38) the proof is completed.

2.3.1. Error bound theorem for CGL nodes in multiple domains

Here, we extend Theorem 2, the univariate interpolation polynomial error bound to obtain its

variant on a decomposed domain. In the description, it is assumed that the number of grid points

is the same for all subintervals.

Theorem 3 (Error bound in the decomposed domain). The error bound when Chebyshev-

Gauss-Lobatto grid points {xj}Nj=0 ∈ [xl−1, x̄l], l = 1, 2, . . . , q, for the decomposed domain x-variable

are used in univariate polynomial interpolation is given by

E(x) ≤ 4

2N (N + 1)!

(
L

2

)N+1

u(N+1)(ξx). (47)
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where L is the length of each subinterval.

Proof. In the entire domain [a, b], we have that

∣∣∣∣∣∣

N∏

j=0

(x− xj)

∣∣∣∣∣∣
≤ 4

2N

(
b− a

2

)N+1

, x ∈ [a, b]. (48)

This implies that in the decomposed domain and at each subinterval, we should have

∣∣∣∣∣∣

N∏

j=0

(x− xj)

∣∣∣∣∣∣
≤ 4

2N

(
L

2

)N+1

, x ∈ [xl−1, x̄l]. (49)

For smooth u, there exists ξµ ∈ [xµ−1, x̄µ], µ = 1, 2, . . . , p, for which the value u(N+1)(ξµ) is the

absolute extrema of u(N+1)(x) in [xµ−1, x̄µ]. This enables us to define the error bound in component

form for each subinterval as
{

4

2N (N + 1)!

(
L

2

)N+1

u(N+1)(ξµ)

}q

µ=1

. (50)

We define

‖ û(N+1)(ξ) ‖∞≡ max{u(N+1)(ξ1), u
(N+1)(ξ2), . . . , u

(N+1)(ξq)} (51)

to denote the maximum absolute value of the (N + 1)-th derivative of u(x) with respect to x in

[a, b]. Clearly, ‖ û(N+1)(ξ) ‖∞= u(N+1)(ξx), where u(N+1)(ξx) is identical to the one at Eq.(41). To

expand the error bound over the entire domain, we shall take the largest possible error across all

sub-domains which is
4

2N (N + 1)!

(
L

2

)N+1

u(N+1)(ξx). (52)

Using the results at Eq.(52) in Eq.(38) completes the proof.

To the best of our knowledge, the above theorem is presented for the first time in this article. We

note that L < (b − a) and
(
L
2

)N+1 �
(
b−a
2

)N+1
. Comparing Eq.(41) and Eq.(47) we see that the

error in polynomial interpolation is smaller when interpolation is conducted on multiple domains

than on a single domain. We emphasize that when approximating the solution to an initial or

a boundary value problem using an interpolating polynomial in spectral collocation methods, for

interpolation nodes, using the CGL nodes is preferable to using the well known optimal Chebyshev

nodes [44]. This is because the CGL nodes are convenient in constructing differentiation matrices

as they contain the nodes at the end of computational domain [a, b], which is advantageous when

treating the boundary conditions of the problem as opposed to using Chebyshev nodes. The use
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of a multiple domains approach and subsequent reduction in the number of grids points N at

each subinterval leads to a good approximation. The multiple domain approach is advantageous

if interpolation errors that ought to be propagated into the numerical scheme are attributed to

unbounded higher ordered derivatives of the unknown function u(x).

3. Numerical experimentation

In this section, we consider several examples of boundary layer equations that are defined over

semi-infinite domains to demonstrate the efficiency and accuracy of our proposed method.

3.1. One equation ODE

Example 1. For a single nonlinear boundary layer equation, we first consider a problem of a

steady two dimensional laminar flow of a viscous incompressible electrically conducting fluid over

a continuous shrinking sheet. The governing equation for this problem is given in similarity form

in [1] as

f ′′′ + ff ′′ −
(
f ′
)2 −M2f ′ = 0, (53)

subject to boundary conditions

f(0) = 0, f ′(0) = −1, f ′(∞) = 0, (54)

where prime denotes differentiation with respect to the similarity variable η and M is the magnetic

interaction parameter. The QLM scheme for ODE Eq.(53) is

γ3,sf
′′′
s+1 + γ2,sf

′′
s+1 + γ1,sf

′
s+1 + γ0,sfs+1 = Rs, (55)

where

γ3,s = 1, γs,2 = fs, γ1,s = −2f ′s −M2, γ0,s = f ′′s , Rs = fsf
′′
s −

(
f ′s
)2
, (56)

and the coefficient matrix is

A = γ3,s(η)D3 + γ2,s(η)D2 + γ1,s(η)D + γ0,s(η). (57)

The boundary conditions at the collocation points are

fs+1(ηr) = 0,
r∑

j=0

Dr,jfs+1(ηj) = −1,
r∑

j=0

D0,jfs+1(ηj) = 0. (58)

The exact analytical solution of Eq.(53) exists for M ≥ 1 and is known to be

f(η) =
1

σ

(
e−ση − 1

)
, σ =

√
M2 − 1. (59)
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This problem is thus chosen to ease validation of the accuracy of the proposed solution algorithm.

The accuracy is found by computing the absolute difference between the numerical approximations

at the current iteration level fs+1, and the exact solution. The absolute error formula shall be

defined as the infinity norm

Es+1 = ||fs+1 − f ||∞, (60)

where f is the exact solution evaluated at the collocation points.

Example 2. Secondly, we consider the Falkner-Skan equation [16] given in non-dimensional form

as

f ′′′ + αff ′′ + β
[
1− (f ′)2

]
= 0, (61)

subject to boundary conditions

f(0) = 0, f ′(0) = 0, f ′(∞) = 1, (62)

where f is the dimensionless stream function of the dimensionless normal co-ordinate η, α, β are

constants and β ≥ 0. Physically, the Falkner-Skan equation describes a two dimensional flow of

incompressible fluid past a stationary semi-infinite impenetrable wedge surface with stream-wise

gradient. The surface is inclined at an angle βπ, which in the limit of β → 0 gives a flat plate, and

consequently the Blasius equation with the same boundary conditions for α = 1
2 .

The QLM scheme for Eq.(61) is

γ3,sf
′′′
s+1 + γ2,sf

′′
s+1 + γ1,sf

′
s+1 + γ0,sfs+1 = Rs, (63)

where

γ3,s = 1, γs,2 = αfs, γ1,s = −2βf ′s, γ0,s = αf ′′s , Rs = αfsf
′′
s − β

(
1 + f ′2s

)
. (64)

The coefficient matrix becomes

A = γ3,s(η)D3 + γ2,s(η)D2 + γ1,s(η)D + γ0,s(η). (65)

The boundary conditions at the collocation points are

fs+1(ηr) = 0,
r∑

j=0

Dr,jfs+1(ηj) = 0,
r∑

j=0

D0,jfs+1(ηj) = 1. (66)

For this problem, the accuracy of the scheme shall be assessed by considering the residual error at

the current iteration level s+ 1, which is defined as

ResF = ||Fs+1||∞, Fs+1 = f ′′′s+1 + αfs+1f
′′
s+1 + β

[
1− (f ′s+1)

2
]

= 0. (67)
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The iterative scheme is said to have converged after ω iterations if the infinity norm ||fs+1−fs||∞ ≤
τ, ∀s ≥ ω, for some specified tolerance τ .

3.2. System of ODEs

Example 3. We consider, here, the problem of a boundary layer flow over an unsteady stretching

sheet in the presence of Hall effect and heat transfer over the stretching surface. The governing

system of equations are given in dimensionless form by El-Aziz [3] as

f ′′′ + ff ′′ −
(
f ′
)2 −A

(
f ′ +

η

2
f ′′
)
− M

1 +m2

(
f ′ +mh

)
= 0, (68)

h′′ + fh′ − f ′h−A
(
h+

η

2
h′
)

+
M

1 +m2

(
mf ′ − h

)
= 0, (69)

1

Pr
θ′′ + fθ′ − 2f ′θ − A

2

(
3θ + ηθ′

)
= 0, (70)

subject to boundary conditions

f(0) = 0, f ′(0) = 1, h(0) = 0, θ(0) = 1, f ′(∞) = 0, h(∞) = 0, θ(∞) = 0. (71)

Here, f ′(η), h(η), and θ(η) are unknown functions representing the axial velocity, the transverse

velocity, and the non-dimensionless temperature, respectively. The primes denote differentiation

with respect to η, A is the unsteadiness parameter, M is the magnetic parameter, m is the Hall

parameter and Pr is the Prandtl number.

The QLM scheme for the system of the ODEs Eq.(68) - Eq.(70) is

γ3,11,sf
′′′
s+1 + γ2,11,sf

′′
s+1 + γ1,11,sf

′
s+1 + γ0,11,sfs+1 + γ0,21,shs+1 = R1,s, (72)

γ1,12,sf
′
s+1 + γ0,12,sfs+1 + γ2,22,sh

′′
s+1 + γ1,22,sh

′
s+1 + γ0,22,shs+1 = R2,s, (73)

γ1,13,sf
′
s+1 + γ0,13,sfs+1 + γ2,33,sθ

′′
s+1 + γ1,33,sθ

′
s+1 + γ0,33,sθs+1 = R3,s, (74)

where

γ3,11,s = 1, γ2,11,s = fs−Aη
2
, γ1,11,s = −2f ′s −A−

M

1 +m2
, γ0,11,s = f ′′s , γ0,21,s = − Mm

1 +m2
,

γ1,12,s = −hs +
Mm

1 +m2
, γ0,12,s = h′s, γ2,22,s = 1, γ1,22,s = fs −A

η

2
, γ0,22,s = −f ′s −A−

M

1 +m2
,

γ1,13,s = −2θs, γ1,03,s = θ′s, γ2,33,s =
1

Pr
, γ1,33,s = fs −A

η

2
, γ0,33,s = −2f ′s −

3A

2
,

R1,s = f ′sf
′′
s −

(
f ′s
)2
, R2,s = fsh

′
s − f ′shs, R3,s = fsθ

′
s − 2f ′sθs.

(75)
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The coefficient matrices are

A(1,1) = γ3,11,s (η)D3 + γ2,11,s (η)D2 + γ1,11,s (η)D + γ0,11,s (η), A(1,2) = γ0,21,s (η), A(1,3) = 0

A(2,1) = γ1,12,s (η)D + γ0,12,s (η), A(2,2) = γ2,22,s (η)D2 + γ1,22,s (η)D + γ0,12,s (η), A(2,3) = 0,

A(3,1) = γ1,13,s (η)D + γ0,13,s (η), A(3,2) = 0, A(3,3) = γ2,33,s (η)D2 + γ1,33,s (η)D + γ0,33,s (η),

(76)

with 0 being a zero matrix of size (r + 1)× (r + 1). The boundary conditions are evaluated at the

collocation points as

fs+1(ηr) = 0,

r∑

j=0

Dr,jfs+1(ηj) = 1, hs+1(ηr) = 0, θs+1(ηr) = 1,

r∑

j=0

D0,jfs+1(ηj) = 0, hs+1(η0) = 0, θs+1(η0) = 0.

(77)

4. Results and discussions

In this section, numerical results obtained by solving the nonlinear boundary layer problems

given in Examples 1 to 3 are presented in tables and graphs. The results for each example have been

considered separately and they demonstrate various aspects of the proposed method of solution.

The validity of the present method is checked by comparing the current results with results existing

in literature and good agreement is observed. We emphasize that the numerical results for the first

problem, which possesses an exact solution, were meant to validate the accuracy of the algorithm

by allowing a comparison between the approximate numerical values and the exact solution. The

numerical scheme in Example 1 was implemented on Mathematica and the precision was set at 300

digits. The semi-infinite domain [0,∞) was truncated to the finite interval [0, 30] and 200 grids

points were used in both single and multiple domains approaches. The absolute errors given in

Table 1 were computed as the difference between the exact and numerical values of the function f at

different iteration levels. The data in Table 1 confirms that the algorithm is very accurate, because

absolute errors of order 10−23 are recorded after only 5 iterations. We affirm that even though

the performance of single domain approach is comparable to that of multiple domains approach

in terms of accuracy, for Example 1, such is attributed to the advantages of high precision that

was set on Mathematica platform where the results were generated. It must be noted that such

high precision is computationally expensive. From Table 1 we can infer that the multiple domains

approach is advantageous in terms of computation time as opposed to the single domain approach.

The problem seems well-posed in the case of the multiple domains approach as signified by the

smaller condition number of the coefficient matrix. The numerical results in Table 1 suggest that
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the iterative scheme converges after 5 iterations. Figure 2 shows the graph of absolute error values

for Example 1, which were recorded after 5 iterations, against the number of subintervals. The

number of grid points in the entire domain was maintained at 200. The aim was to determine the

number of subintervals that are required to yield the most accurate results, while at the same time

saving on the computational time. The figure suggests that the optimal number of subintervals

for Example 1 is 6. With 6 subintervals we obtain the most accurate results, within a remarkably

short computation time. A further increase in the number of subintervals leads to deterioration of

accuracy, because at each further subdivision, the piecewise interpolating polynomial approximating

the unknown function will be of lesser degree.

In Example 2, there exists no exact solution and the accuracy of the numerical scheme is assessed

by considering the residual error as defined in Eq.(67). The numerical scheme for the Falkner-Skan

equation was also implemented in Mathematica. In Table 2, the numerical values of the local skin

friction, f ′′(0), for the Falkner-Skan equation, using the current method, are compared with some

of the most accurate results found in literature, where the problem was solved using the MatLab

built-in routine bvp4c. A good agreement is observed for different values of the inclination angle,

β. From the results in Table 2, we can infer that skin friction increases with an increase in β.

This can be explained by an increase in the value of β resulting in an increase in the size of the

boundary layer. In Figure 3, the residual errors obtained by varying the number of subintervals

q is compared at different iteration levels. The number of grid points in the entire domain was

maintained constant. From the graph, we conclude that, in terms of accuracy, the best results for

the Falkner-Skan equation are obtained when 2 subintervals are used. This can be explained by,

in this particular case, a small value of the parameter β = 0.5 being considered. The implication

is that the thickness of the boundary layer is small. This restriction informed us when truncating

the semi-infinite [0,∞) to the finite interval [0, 10], which is relatively small. For a small interval

of approximation, a low number of subintervals are required to yield the most accurate results,

showing the advantages of approximating a function using interpolating polynomials of higher

degree. It is worth noting that in Example 2, we took advantages of the high precision that was

set on Mathematica just as in the case of Example 1.

The numerical scheme of Example 3 was implemented in MatLab. Experimentally, we estab-

lished that the truncation of the semi-infinite domain to a large finite domain [0, 70] yielded the

best results for this problem. In Table 3, the residual errors values for f , h, and θ that are obtained
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at different iteration levels using 5 subintervals have been presented. For comparison, residual error

values obtained using 2 subintervals have also been presented in Table 4. We observe that the use of

5 subintervals yields more accurate results for a short CPU time than when 2 subintervals are used.

This is due to the less dense coefficient matrices associated with the use of many subintervals for a

large computational domain, which is the focus in the present approach. Well-posedness is depicted

by the small condition number of the coefficient matrix obtained in the case of 5 subintervals. We

remark that in this particular example, with a large domain of approximation, the usefulness of

the multiple domains approach has been exposed as MatLab platform executes numerals with an

accuracy of up to 16 digits. In Figure 4 we display convergence graphs for the unknown functions

f , h, and θ. The figure depicts that the numerical scheme is convergent and that convergence is

realized after 5 iterations.

Table 1: Spectral approximation of Example 1 on overlapping grids using Nx = 40, q = 5, for η∞ = 30, M = 5.

Iteration, s Single Domain Multiple Domains

1 3.16939×10−2 3.16939×10−2

2 1.21909×10−4 1.21909×10−4

3 1.47038×10−9 1.47038×10−9

4 1.86137×10−19 1.86137×10−19

5 1.17462×10−23 1.17462×10−23

6 1.17462×10−23 1.17462×10−23

CPU time (sec) 16.6755 4.3368

cond(A) 5.5899×109 6.4810×107
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Figure 2: Graph of the absolute error values against the number of subintervals using 200 grid points

Table 2: Comparison between the overlapping grid approach results and the bvp4c numerical results [45] for f ′′(0)

at selected values of β for Falkner-Skan Example 2 using Nx = 20, q = 10, for η∞ = 10, α = 1.

β Current results Numerical

s=2 s=3 bvp4c

0.4 0.854422 0.854421 0.854421

0.8 1.120265 1.120268 1.120268

1.2 1.335723 1.335721 1.335721

1.6 1.521514 1.521514 1.521514

2.0 1.687218 1.687218 1.687218
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Figure 3: Graph of the residual error against iterations for different domain decomposition

Table 3: Spectral approximation of Example 3 on overlapping grids using Nx = 40, q = 5, for η∞ = 70, A =

0.5, M = 1, m = 0.5.

Iteration Residual error

s ||Fs+1||∞ ||Hs+1||∞ ||Θs+1||∞

1.00 3.75070e-001 5.67287e-002 5.11974e-002

2.00 3.58227e-002 9.17907e-004 1.56959e-002

3.00 2.58387e-004 2.26789e-005 3.87065e-004

4.00 1.01330e-008 1.70642e-009 6.96569e-008

5.00 3.09963e-012 1.16504e-013 5.87419e-013

CPU time (sec) 0.074567

cond(A) 5.23456e+07

42



Table 4: Spectral approximation of Example 3 on overlapping grids using Nx = 100, q = 2, for η∞ = 70, A =

0.5, M = 1, m = 0.5.

Iteration Residual error

s ||Fs+1||∞ ||Hs+1||∞ ||Θs+1||∞

1.00 4.38484e-002 6.07923e-003 1.41794e-002

2.00 2.00334e-004 8.59323e-006 5.16436e-004

3.00 6.24130e-007 8.48203e-010 1.04837e-007

4.00 3.94428e-007 6.67558e-011 1.60723e-010

5.00 1.88953e-007 4.69308e-011 1.25923e-010

CPU time (sec) 0.25463

cond(A) 7.86324e+09
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Figure 4: Convergence graphs for f , h, and θ
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5. Conclusion

In this study, the spectral collocation method of solution based on overlapping grids has been

described and successfully applied to solve nonlinear boundary layer equations characterized as

a single or system of ordinary differential equations. It is found that the results of the present

work are in agreement with those obtained by other methods. Our aim was to demonstrate that

the proposed approach is highly accurate and computationally efficient when applied on problems

defined over large computational domains and such has been confirmed. The improved accuracy

is attributed to the well-conditioned nature of the matrices resulting from the use of a multiple

domains approach for large approximation domains. The new error bound theorems and proofs on

polynomial interpolation that have been presented to theoretically form the basis for adopting the

current algorithm. The error bounds theorems are based on Chebyshev-Gauss-Lobatto points and

Lagrange interpolating polynomials that have been used to construct the approximating functions

for the solution of the nonlinear ODEs. The method can be applied to other boundary layer

problems that are described as systems of ordinary differential equations.
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Chapter 3

A Modified Spectral Collocation

Method of Solution for

One-Dimensional Hyperbolic PDEs

In this chapter, we extend the discussion on spectral collocation-based solution techniques to one-

dimensional partial differential equations. The non-overlapping grids based multidomain spectral

collocation method is developed and applied to solve hyperbolic PDEs defined over large time in-

tervals. The proposed solution approach involves decomposing the large time interval into smaller

non-overlapping subintervals and solving the PDE independently on each of these subintervals. We

aim to demonstrate that a reduction in the size of the computational domain in each time subin-

terval guarantees accurate results within a short computation time. A single domain approach

is considered in space to limit the present investigation to the benefits of using non-overlapping

subintervals in a large time interval. The new error bound theorems, with proofs in bivariate poly-

nomial interpolation using Chebyshev-Gauss-Lobatto nodes, are given to explain the advantages of

the proposed solution algorithm.
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a b s t r a c t

In this article, the non-overlapping grids based multidomain bivariate spectral collocation
method is applied to solve hyperbolic partial differential equations(PDEs) defined over
large time domains. The article is among the very first works which consider the multido-
main approachwith respect to the time interval for hyperbolic PDEs. The proposedmethod
is based on decomposing the time domain into smaller non-overlapping subintervals and
solving the PDE independently on each of these subintervals. In this study, we aim at
showing that the reduction in the size of the computational domain at each subinterval
guarantees accurate results within a short computational time. In the solution process, the
approximate solutions of the PDEs are approximated using bivariate Lagrange interpolating
polynomials. The PDEs are discretized in both time and space variables using the spectral
collocation, unlike previous studieswhere spectral collocationmethod has been applied on
space variable only and finite difference based discretization in the time variable and vice
versa. The resulting linear systems of algebraic equations are then solved independently at
each subinterval with the continuity equation being employed to obtain initial conditions
in subsequent subintervals. Finally, the approximate solutions of the PDEs are obtained by
matching the solutions on different subintervals along common boundaries. The new error
bound theorems and proofs for bivariate polynomial interpolation using Gauss–Lobatto
nodes given explain the advantages of the proposed solution algorithm. The effectiveness
and accuracy of the proposed method are demonstrated by presenting error analysis and
the computational time for the solution of well known hyperbolic PDEs that have been
reported in the literature. The method can be adopted and extended to solve problems in
real life that are modeled by hyperbolic PDEs.

© 2019 Published by Elsevier B.V.

1. Introduction

Hyperbolic partial differential equations are highly applicable in various branches of engineering and science [1]. In
particular, many of the equations encountered in mechanics [2] are hyperbolic and therefore their study has long been
a subject of sizeable contemporary interest among researchers. Hyperbolic partial differential equations are initial value
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problems [3]. One of the important aspects that have been reported in the literature in regards to the development of
efficient numerical schemes for solving an initial value problem using spectral collocation-based methods is the size of
the computational domain. It has been observed that, when the size of the computational domain is large, many grid points
are required to achieve results with stringent accuracy requirements [4]. The use of many grid points poses an ominous
problem, requiring a significant amount of computer memory and CPU time. In some instances, the use of large number
grid points does not guarantee improved accuracy [5–7]. An increase in the number of grid points increases the size of the
resulting coefficient matrix and correspondingly its condition number, a property that deteriorates the accuracy of results
of the linear system of equations [8,9]. A large number of grid points also introduces roundoff errors that are associated with
the approximation of a function by an interpolating polynomial of a high degree. A similar decay in accuracy is evident in
results presented by authors in [10,11]. The most elegant technique that has been used in an attempt to revolve around this
challenge is the introduction of multidomain based approaches in the method of solution.

In regards to numerical solutions of hyperbolic PDEs using domain decomposition techniques, close scrutiny of the litera-
ture indicates that previous studies focused on the application of overlapping grids approach on the space variable only. The
discretization haswidely been performed using the spectral collocation in space variable and the finite difference in the time
variable. Dehghan et al. [12] applied amethod based on the pseudo-spectral collocationmethodwith domain decomposition
algorithm for approximating the spatial variable in a coupled nonlinear Schrödinger equations and demonstrated that such
an algorithm reduce the effect of round-off errors. Later, in [13], authors considered the long-time behavior of numerical
solutions for the Klein–Gordon–Schrödinger equations using a similar approach. Kopriva [14] developed a multidomain
Chebyshev spectral method for solving hyperbolic partial differential equations using spectral collocation discretization in
space and finite difference discretization in time. A pseudo-spectral method based on the overlapping grids multidomain
technique for the numerical solution of the Sine–Gordon equation in one and two spatial dimensions was also applied
by Taleei et al. in [15]. In their work, the overlapping domain decomposition technique coupled with spectral collocation
discretization was performed on the spatial variable, and an implicit fourth-order Runge–Kutta method was adopted to
carry out discretization in the entire time variable. A substantial literature on the numerical methods of solution for two-
dimensional hyperbolic PDEs can be found in work by the authors in [16,17] and the references given therein. Although the
overlapping grids approach that has been applied previously on space only lead to sparse matrices of the resulting system
of linear algebraic equations, such matrices are large and take considerably large CPU time to invert. In the present study,
a multi-domain approach based on the decomposition of large time interval into smaller non-overlapping grids is adopted.
This approach preserves benefits of dealing with small-sized matrices as the solution is solved independently on each time
subinterval. One dimensional hyperbolic PDEs are solved using spectral collocation discretization in both space and time
variables.

The non-overlapping grids based multidomain approaches in spectral methods have been applied to solve nonlinear
ordinary differential equations that model chaotic systems described as first order systems of equations, [18,19]. In the
non-overlapping grids based multidomain spectral collocation method, the differential equation is solved independently
on each subinterval and solutions across the different subintervals are matched along the common boundary. In the case
of nonlinear differential equations, the matching procedure is evoked after the solution in each subdomain converge. Most
recently, Motsa et al. [20] developed and applied the bivariate spectral collocation method to solve nonlinear parabolic
evolutionary PDEs that are defined over a small time interval and reported that the method yield very accurate results over
a short CPU time.When the samemethodwas applied to parabolic PDEs defined over large time intervals, the accuracy of the
numerical results deteriorated. We aim at addressing this downfall in regard to the application of the method to hyperbolic
PDEs.

In this work, we aim at extending the bivariate spectral collocationmethod previously applied on nonlinear evolutionary
parabolic PDEs to obtain solutions of hyperbolic PDEs defined on large time interval by in-cooperating the non-overlapping
grids domain decomposition technique. We also aim at demonstrating that the adoption of a multi-domain approach in
solving such hyperbolic PDEs yields very accurate results at a considerable short CPU time. We remark that to the best of
our knowledge, the non-overlapping grids based multidomain spectral collocation method with Chebyshev Gauss–Lobatto
points have not been applied on hyperbolic PDEs defined on large time intervals. The hyperbolic PDEs solved herein are linear
andnonlinear PDEs that have been reported in the literature. The selected illustrative examples are thosewhich possess exact
solutions for simplicity in validating the accuracy of the proposed method. We emphasize that the choice of the numerical
examples was purely meant to facilitate demonstration on the usefulness of the method and was not tied to the extent of
applicability of the problems themselves. However, a similar approach can be adapted to solve highly important hyperbolic
PDEs that emerge in real life. The extent of the discussion ofmultidomain approach in this study is limited to non-overlapping
subintervals only and is implemented on the time variable. For comparative purposes, the hyperbolic PDEs are also solved
using the single domain approach namely, the bivariate spectral collocation method.

The prototypical examples of hyperbolic PDEs that are solved in this article include; the damped wave equation, the
telegraph equation, the modified Liouville equation, and the 1-D Phi-four equation. The first two are linear, and the latter
are nonlinear. The solution of damped wave equation describes the propagation of disturbances out from the region at a
fixed speed in one spatial direction [21,22]. This wave equation fits its application in areas of elasticity, plasma physics,
quantummechanics, and general relativity. The telegraph equation originates fromMaxwell’s equation and it describes the
voltage and current on an electrical transmission line with distance and time [23]. On the other hand, the modified Liouville
equation plays an important role in biology and mathematical physics where it describes the time evolution of the phase
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space distribution function [24,25]. Finally, the 1-D Phi-four equation finds application in many areas of physics such as
plasma physics, fluid dynamics, solid state physics, and quantum field theory [26].

In the next section, we describe themultidomain bivariate spectral collocationmethod for hyperbolic PDEs.We note that
hyperbolic PDEs differ from evolutionary parabolic PDEs in terms of constructing the numerical scheme due to the presence
of the time derivative initial condition. This is dealt with in this section. In Section 3, we present new error bound theorems
and proofs for bivariate polynomial interpolation in single and multiple domains using Gauss–Lobatto nodes. In Section 4,
we give the examples that have been chosen for numerical experimentation. In Section 5, we present numerical results for
the four example problems. Many practical issues like computational time and conditioning of the matrices are discussed
here. A detailed comparison of multi-domain and single domain approaches is also included. Finally, concluding remarks is
given in Section 6, followed by Acknowledgments.

2. Method of solution

In this section, we describe an algorithm for the multidomain spectral collocation method and apply it to solve second
order partial differential equations of hyperbolic type. To do this, we consider a linear hyperbolic PDE which takes the form;

∂2u
∂t2

+ α
∂u
∂t

= β2 ∂
2u
∂x2

+ φ(x, t)
∂u
∂x

+ ψ(x, t)u + γ (x, t), (1)

and is defined on the domain [x, t] ∈ [a, b] × [0, T ], where α, β2 are known constants and φ(x, t), ψ(x, t), γ (x, t) are
known functions. Towards the end of this section, the scheme is extended to nonlinear hyperbolic PDEs. Eq. (1) is to be
solved subject to the boundary conditions

u(a, t) = ga(t), u(b, t) = gb(t), (2)

and initial conditions

u(x, 0) = f (x), ut (x, 0) = h(x), (3)

where ga(t), gb(t), f (x), and h(x) are known functions. We remark that for the purpose of this paper, the multi-domain
approach is implemented on the time-t variable only. Below we give an illustration that demonstrates the implementation
of the multidomain approach on the solution of Eq. (1);

Let t ∈ Γ where Γ ∈ [0, T ]. The domain Γ is decomposed into p non-overlapping intervals as

Γk = [tk−1, tk], tk−1 < tk, t0 = 0, tp = T , k = 1, 2, . . . , p.

The variable t ∈ [tk−1, tk] in the kth subdomain is first transformed into t̂ ∈ [−1, 1] using the linear transformation

t =
1
2
(tk − tk−1) t̂ +

1
2
(tk + tk−1) , (4)

before the spectral collocation is applied. Similarly, the spatial domain x ∈ [a, b] is transformed into x̂ ∈ [−1, 1] by applying
the linear map

x =
1
2
(b − a) x̂ +

1
2
(b + a) . (5)

The collocation nodes are taken to be the symmetrically distributed Gauss–Lobatto grid points defined in [27] on the interval
[−1, 1] by{

x̂i
}Nx
i=0 = cos

(
iπ
Nx

)
,

{
t̂j
}Nt
j=0 = cos

(
jπ
Nt

)
. (6)

The solution at different sub-domains is made distinguishable by adopting the notation
(k)
u (x, t), k = 1, 2, . . . , p, to denote

solution at the kth subinterval in t . The equation is solved independently at each subinterval. Thus we must solve

∂2
(k)
u

∂t2
+ α

∂
(k)
u
∂t

= β2 ∂
2(k)u
∂x2

+

(k)
φ (x, t)

∂
(k)
u
∂x

+

(k)
ψ(x, t)

(k)
u +

(k)
γ (x, t), (7)

subject to the boundary conditions
(k)
u (a, t) = ga(t),

(k)
u (b, t) = gb(t), (8)

and initial conditions
(1)
u (x, 0) = f (x),

(1)
u t (x, 0) = h(x), (9)

(k)
u (x, tk−1) =

(k−1)
u (x, tk−1),

(k)
ut (x, tk−1) =

(k−1)
ut (x, tk−1), for k = 2, 3, . . . , p. (10)
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We note that the initial conditions for k = 2, 3, . . . , p, Eq. (10) are based on the continuity condition whereby the solution
at the right hand boundary of the (k − 1)th subinterval is taken to be the initial condition when computing the solution
in the kth subinterval. The unknown solution,

(k)
u (x, t) of Eq. (7) is approximated using a bivariate Lagrange interpolating

polynomial defined as

(k)
U (x, t) =

Nx∑
p=0

Nt∑
q=0

(k)
U (xp, tq)Lp(x)Lq(t), (11)

where the functions Lp(x) are the Lagrange cardinal polynomial

Lp(x) =

Nx∏
p=0
p̸=i

x − xp
xi − xp

, with lp(xi) = δpi =

{
1 if p = i,
0 if p ̸= i.

(12)

The functions Lq(t) are defined in a similar manner [28]. The first derivative with respect to x is approximated at the Gauss–
Lobatto points (xi, tj), for j = 0, 1, 2, . . . ,Nt , as

∂
(k)
U
∂x

⏐⏐⏐⏐
x=xi,t=tj

=

Nx∑
p=0

Nt∑
q=0

(k)
U (xp, tq)Lq(tj)

dLp(x)
dx

⏐⏐⏐⏐
x=xi

=

Nx∑
p=0

D(1,0)
i,p

(k)
U (xp, tj), i = 0, 1, 2, . . . ,Nx,

= D(1,0)
(k)
U j, at t = tj, (13)

whereD(1,0) is obtained from scaling the standard first derivative Chebyshev differentiationmatrix of size (Nx +1)× (Nx +1)

as defined in [27] by multiplying it with 2
b−a . The vector

(k)
U j is defined as

(k)
U j =

[
u(x0, tj), u(x1, tj), u(x2, tj, ), . . . , u(xNx , tj)

]T
, (14)

where T denotes matrix transpose. The second order partial derivative with respect to x is defined as

∂2
(k)
U

∂x2

⏐⏐⏐⏐
x=xi,t=tj

= D(2,0)
(k)
U j. (15)

The derivatives with respect to t are computed at (xi, tj), for i = 0, 1, 2, . . . ,Nx, as

∂
(k)
U
∂t

⏐⏐⏐⏐
x=xi,t=tj

=

Nx∑
p=0

Nt∑
q=0

(k)
U (xp, tq)Lp(xi)

dLq(t)
dt

⏐⏐⏐⏐
t=tj

=

Nt∑
q=0

D(0,1)
j,q

(k)
U (xi, tq), j = 0, 1, 2, . . . ,Nt ,

=

Nt∑
q=0

D(0,1)
j,q

(k)
Uq, (16)

where D(0,1)
j,q , j, q = 0, 1, 2, . . . ,Nt , is obtained from scaling the standard first derivative Chebyshev differentiation matrix

of size (Nt + 1) × (Nt + 1) by multiplying it with 2
tk−tk−1

. Finally, we obtain the second derivative with respect to t as

∂2
(k)
U

∂t2

⏐⏐⏐⏐
x=xi,t=tj

=

Nt∑
q=0

D(0,2)
j,q

(k)
Uq. (17)

We remark that the temporal differentiation matrices D(0,1)
j,q depends on k if the subdomains are not assumed to be of the

same length. Substituting the discrete derivatives in the differential equation (7) we obtain[
β2D(2,0)

+

(k)
φ (x, tj)D(1,0)

+

(k)
ψ(x, tj)

]
(k)
U j −

Nt∑
q=0

[
D(0,2)
j,q + αD(0,1)

j,q

] (k)
Uq = −

(k)
γ (x, tj). (18)
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Using the initial condition
(1)
u (x, 0) = f (x) and noting that the grid points are indexed from right to left of the subinterval

in time such that t = 0 correspond to the grid point tNt , at the collocation points in the first subinterval in time we have
(1)
U (x, tNt ) = f (x) =

(1)
UNt or

(k)
U (x, tk−1) =

(k−1)
U (x, tk−1) =

(k)
UNt , for k = 2, 3, . . . , p. Notation wise, x denotes the vector of grid

points in the entire domain in x. Eq. (18) can be written as[
β2D(2,0)

+ φ(x, tj)D(1,0)
+ ψ(x, tj)

] (k)
U j

−

Nt−1∑
q=0

[
D(0,2)
j,q + αD(0,1)

j,q

] (k)
Uq = −

(k)
γ (x, tj) +

[
D(0,2)
j,Nt

+ αD(0,1)
j,Nt

] (k)
UNt . (19)

Expansion of Eq. (19) is a (Nx + 1)(Nt ) × (Nx + 1)(Nt ) matrix system given by⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A0,0 A0,1 A0,2 . . . A0,Nt−2 A0,Nt−1

A1,0 A1,1 A1,2 . . . A1,Nt−2 A0,Nt−1

A2,0 A2,1 A2,2 . . . A2,Nt−2 A0,Nt−1
...

...
...

. . .
...

...

ANt−2,0 ANt−2,1 ANt−2,2 . . . ANt−2,Nt−2 ANt−2,Nt−1

ANt−1,0 ANt−1,1 ANt−1,2 . . . ANt−1,Nt−2 ANt−1,Nt−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(k)
U0
(k)
U1
(k)
U2
...

(k)
UNt−2
(k)
UNt−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(k)
R0
(k)
R1
(k)
R2
...

(k)
RNt−2
(k)
RNt−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (20)

where

Ai,i = β2D(2,0)
+

(k)
φ (x, ti)D(1,0)

+

(k)
ψ(x, ti) −

[
D(0,2)
i,i + αD(0,1)

i,i

]
I, i = 0, 1, 2 . . . ,Nt − 1,

Ai,j = −

[
D(0,2)
i,j + αD(0,1)

i,j

]
I, i ̸= j, i, j = 0, 1, 2 . . . ,Nt − 1,

(k)
R i = −

(k)
γ (x, ti) +

[
D(0,2)
i,Nt

+ αD(0,1)
i,Nt

] (k)
UNt , i = 0, 1, 2 . . . ,Nt − 1,

and I is an identity matrix of size (Nx + 1)× (Nx + 1). Evaluation of the boundary conditions at the collocation points yields;

(k)
u (xNx , ti) = ga(ti),

(k)
u (x0, ti) = gb(ti), i = 0, 1, 2, . . . ,Nt − 1. (21)

The boundary conditions are imposed by replacing the first and last rows of previously defined Ai,i, Ai,j and R(k)
i blocks as

Ai,i =

⎡⎢⎣
1 0 . . . 0 0

Ai,i
0 0 . . . 0 1

⎤⎥⎦ , Ai,j =

⎡⎢⎣
0 0 . . . 0 0

Ai,j
0 0 . . . 0 0

⎤⎥⎦ , i ̸= j,
(k)
R i =

⎡⎢⎢⎢⎣
gb(ti)

(k)

Ri
ga(ti)

⎤⎥⎥⎥⎦ . (22)

The derivative initial condition at t = 0, in the first subinterval k = 1 is resolved at collocation points as follows;

(1)
u t (xj, tNt ) =

Nt∑
q=0

D(0,1)
Nt ,q

(1)
Uq = h(xj), j = 0, 1, 2, . . . ,Nx. (23)

Using the condition
(1)
u (x, 0) =

(1)
u (x, tNt ) =

(1)
UNt = f (x), and noting that the values

(k)
U (x0, tNt ),

(k)
U (xNx , tNt ) are known from

the boundary conditions, Eq. (23) can be written as

Nt−1∑
q=0

D(0,1)
Nt ,q

(1)
Uq = h(xj) − D(0,1)

Nt ,Nt
f (xj), j = 1, 2, . . . ,Nx − 1. (24)

The conditions reflected on Eq. (24) are imposed on the last block of sub-matrices as follows;

ANt−1,0 =

⎡⎢⎢⎣
1 0 0 . . . 0 0

D(0,1)
Nt ,0 I(1 : Nx − 1, 0 : Nx)

0 0 0 . . . 0 1

⎤⎥⎥⎦ , (25)
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ANt−1,i =

⎡⎢⎢⎣
0 0 0 . . . 0 0

D(0,1)
Nt ,i I(1 : Nx − 1, 0 : Nx)

0 0 0 . . . 0 0

⎤⎥⎥⎦, i = 1, 2, . . . ,Nt − 1. (26)

Consequently, the right hand side of Eq. (20) is modified as

R(Nt−1) =

⎡⎢⎢⎣
gb(tNt−1)

h(x(1 : Nx − 1)) − D(0,1)
Nt ,Nt

f (x(1 : Nx − 1))

ga(tNt−1)

⎤⎥⎥⎦. (27)

We remark that in Eqs. (25)–(27), we exerted MatLab syntax ‘‘ :′′ for representation of matrices. For k = 2, 3, . . . , p, Eq. (24)
becomes

Nt−1∑
q=0

D(0,1)
Nt ,q

(k)
Uq =

Nt−1∑
q=0

D(0,1)
0,q

(k−1)
Uq =

(k−1)
UU0 − D(0,1)

Nt ,Nt

(k−1)
U0 . (28)

Here
(k−1)
UU0 denotes the value of the first derivative with respect to t evaluated at the right hand boundary of the (k − 1)th

subinterval which acts as the derivative initial condition in the kth subinterval. We remark that Eqs. (23)–(28) strikes the
major difference between hyperbolic and parabolic PDEs in terms of solution procedure. An extension of the numerical
scheme to the solution of nonlinear PDEs is illustrated by considering the solution of a second-order nonlinear hyperbolic
PDE of the form

∂2u
∂t2

+ α
∂u
∂t

= β2 ∂
2u
∂x2

+ φ(x, t)
∂u
∂x

+ F (u) + γ (x, t), (29)

where F is a nonlinear operator acting on the unknown function u(x, t). Eq. (29) is to be solved subject to the boundary
conditions

u(a, t) = ga(t), u(b, t) = gb(t), (30)

and initial conditions

u(x, 0) = f (x), ut (x, 0) = h(x). (31)

To solve Eq. (29), we first linearize it using the quasi-linearization method (QLM) of Bellman and Kalaba [29]. The QLM is
based on the Newton–Raphson method and is constructed from the linear terms of Taylor series expansion about an initial
approximation to the solution. The QLM assumes that the difference between solutions at two successive iterations denoted
by ur and ur+1 is very small. Applying the QLM on Eq. (29) yields

β2 ∂
2ur+1

∂x2
+ φ(x, t)

∂ur+1

∂x
+ ωrur+1 −

∂2ur+1

∂t2
− α

∂ur+1

∂t
= −γ (x, t) + ωrur − F (ur ), (32)

where ω =
dF (u)
du and r = 1, 2, 3, . . . denotes the level of iteration. The QLM scheme Eq. (32) is solved iteratively subject to

the boundary conditions

ur+1(a, t) = ga(t), ur+1(b, t) = gb(t), (33)

and initial conditions

ur+1(x, 0) = f (x),
∂ur+1

∂t
(x, 0) = h(x). (34)

The matrix system resulting from spectral collocation are

Ai,i = β2D(2,0)
+

(k)
φ (x, ti)D(1,0)

+
(k)
ωr,i −

[
D(0,2)
i,i + αD(0,1)

i,i

]
I, i = 0, 1, 2 . . . ,Nt − 1, (35)

Ai,j = −

[
D(0,2)
i,j + αD(0,1)

i,j

]
I, i ̸= j, i, j = 0, 1, 2 . . . ,Nt − 1, (36)

(k)
R r,i = −

(k)
γ (x, ti) +

[
D(0,2)
i,Nt

+ αD(0,1)
i,Nt

] (k)
UNt +

(k)
ωr,i

(k)
Ur,i − F (

(k)
Ur,i), 0 ≤ i ≤ Nt − 1. (37)

3. Error bounds in bivariate polynomial interpolation

In this section, we present the error bound theorems that emanate from bivariate polynomial interpolation using Gauss–
Lobatto nodes. To the best of our knowledge, the error bound theorems given in this section are new and are been presented
for the first time in literature. The error bound theorems given herein acts a theoretical basis of argument as to why
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multidomain approaches are most suitable when approximating the solutions of differential equations that are defined over
large interval domains. We note that Gauss–Lobatto nodes are relative extremes of the Nxth degree Chebyshev polynomial
of the first kind TNx (x̂), x̂ ∈ [−1, 1]. There does not exist a well known explicitly defined polynomial whose roots are the
GL nodes. However, if we think of interior Gauss–Lobatto nodes as the solution of T ′

Nx
(x̂) = 0, where the prime denotes

differentiation with respect to x̂, the complete set of the Gauss–Lobatto nodes can be said to be the roots of (Nx +1)th degree
polynomial;

LNx+1(x̂) = (1 − x̂2)T ′

Nx
(x̂). (38)

Below, we state a theorem that acts as a benchmark for stating subsequent error bound theorems on bivariate polynomial
interpolation and devising their proofs;

Theorem 1 ([30]). Let u(x, t) ∈ CNx+Nt+2([a, b]×[0, T ]) be sufficiently smooth such that at least the (Nx +1)th partial derivative
with respect to x, (Nt + 1)th partial derivative with respect to t and (Nx +Nt + 2)th mixed partial derivative with respect to x and
t exists and are all continuous, then there exists values ξx, ξ ′

x ∈ (a, b), and ξt , ξ ′
t ∈ (0, T ), such that

u(x, t) − U(x, t) =
∂Nx+1u(ξx, t)
∂xNx+1(Nx + 1)!

Nx∏
i=0

(x − xi) +
∂Nt+1u(x, ξt )
∂tNt+1(Nt + 1)!

Nt∏
j=0

(t − tj)

−
∂Nx+Nt+2u(ξ ′

x, ξ
′
t )

∂xNx+1∂tNt+1(Nx + 1)!(Nt + 1)!

Nx∏
i=0

(x − xi)
Nt∏
j=0

(t − tj), (39)

where U(x, t) is a polynomial interpolant of u(x, t) at {xi}
Nx
i=0 grid points in x-variable and {tj}

Nt
j=0 grid points in t-variable.

A similar result was later reproduced by authors in [31]. Taking the absolute value of Eq. (39) we obtain

E(x, t) ≤ max
(x,t)∈Ω

⏐⏐⏐⏐∂Nx+1u(ξx, t)
∂xNx+1

⏐⏐⏐⏐
⏐⏐⏐⏐⏐
Nx∏
i=0

(x − xi)

⏐⏐⏐⏐⏐
(Nx + 1)!

+ max
(x,t)∈Ω

⏐⏐⏐⏐∂Nt+1u(x, ξt )
∂tNt+1

⏐⏐⏐⏐
⏐⏐⏐⏐⏐⏐

Nt∏
j=0

(t − tj)

⏐⏐⏐⏐⏐⏐
(Nt + 1)!

+ max
(x,t)∈Ω

⏐⏐⏐⏐∂Nx+Nt+2u(ξ ′
x, ξ

′
t )

∂xNx+1∂tNt+1

⏐⏐⏐⏐
⏐⏐⏐⏐⏐
Nx∏
i=0

(x − xi)

⏐⏐⏐⏐⏐
⏐⏐⏐⏐⏐⏐

Nt∏
j=0

(t − tj)

⏐⏐⏐⏐⏐⏐
(Nx + 1)!(Nt + 1)!

. (40)

Here E(x, t) = |u(x, t) − U(x, t)|. Since the function u(x, t) is assumed to be smooth onΩ , it follows that its derivatives are
bounded and thus ∃ constants C1, C2 and C3, such that

max
(x,t)∈Ω

⏐⏐⏐⏐∂Nx+1u(x, t)
∂xNx+1

⏐⏐⏐⏐ ≤ C1, max
(x,t)∈Ω

⏐⏐⏐⏐∂Nt+1u(x, t)
∂tNt+1

⏐⏐⏐⏐ ≤ C2, max
(x,t)∈Ω

⏐⏐⏐⏐∂Nx+Nt+2u(x, t)
∂xNx+1∂tNt+1

⏐⏐⏐⏐ ≤ C3. (41)

3.1. Error bound theorem on a single domain

In this subsection, we state and prove the error bound theorem that govern bivariate polynomial interpolation on a single
domain using Gauss–Lobatto nodes.

Theorem 2 (Error Bound on a Single Domain). The resulting error bound when GL grid points {xi}
Nx
i=0 ∈ [a, b], in x-variable and

{tj}
Nt
j=0 ∈ [0, T ], in t-variable are used in bivariate polynomial interpolation is given by

E(x, t) ≤ C1
8
( b−a

4

)Nx+1

(Nx + 1)!
+ C2

8
( T
4

)Nt+1

(Nt + 1)!
+ C3

82
( b−a

4

)Nx+1 ( T
4

)Nt+1

(Nx + 1)!(Nt + 1)!
, (42)

where C1, C2 and C3, are as defined in Eq. (41).

Proof. To prove the analytic expression for the error bound when Gauss–Lobatto are used in bivariate polynomial
interpolation, we first apply the relation stated in [32] to write the (Nx + 1)th degree polynomial LNx+1(x̂) at Eq. (38) as

LNx+1(x̂) = (1 − x̂2)T ′

Nx
(x̂) = −Nxx̂TNx (x̂) + NxTNx−1(x̂). (43)

Noting that |TNx (x̂)| ≤ 1 for x̂ ∈ [−1, 1], we have

|LNx+1(x̂)| = |−Nxx̂TNx (x̂) + NxTNx−1(x̂)| ≤ |−Nxx̂TNx (x̂)| + |NxTNx−1(x̂)| ≤ 2Nx. (44)
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The leading coefficient of LNx+1(x̂) is 2Nx−1Nx. The components 2Nx−1 and Nx comes from the leading coefficient of TNx (x̂) and
the application of Nx-th rule of differentiation on TNx (x̂), respectively. The product factor in the error bound expression given
in Eq. (40) can therefore be taken to be the factorized form of monic polynomial LNx+1(x̂)

2Nx−1Nx
. We write

Nx∏
i=0

(x̂ − x̂i) =
LNx+1(x̂)
2Nx−1Nx

. (45)

Using Eq. (44) we observe that this monic polynomial Eq. (45) is bounded above by⏐⏐⏐⏐⏐⏐
Nx∏
j=0

(x̂ − x̂i)

⏐⏐⏐⏐⏐⏐ =

⏐⏐⏐⏐ LNx+1(x̂)
2Nx−1Nx

⏐⏐⏐⏐ ≤
2Nx

2Nx−1Nx
=

4
2Nx

. (46)

Considering a general interval x ∈ [a, b], we can show that the first product factor in Eq. (40) is bounded above by

max
a≤x≤b

⏐⏐⏐⏐⏐
Nx∏
i=0

(x − xi)

⏐⏐⏐⏐⏐ = max
−1≤x̂≤1

⏐⏐⏐⏐⏐
Nx∏
i=0

(b − a)
2

(x̂ − x̂i)

⏐⏐⏐⏐⏐ =

(
b − a
2

)Nx+1

max
−1≤x̂≤1

⏐⏐⏐⏐⏐⏐
Nx∏
j=0

(x̂ − x̂i)

⏐⏐⏐⏐⏐⏐
=

(
b − a
2

)Nx+1

max
−1≤x̂≤1

⏐⏐⏐⏐ LNx+1(x̂)
2Nx−1Nx

⏐⏐⏐⏐
≤

4
( b−a

2

)Nx+1

2Nx
= 8

(
b − a
4

)Nx+1

. (47)

In a similar manner, it can be shown that for the second product term

max
0≤t≤T

⏐⏐⏐⏐⏐⏐
Nt∏
j=0

(t − tj)

⏐⏐⏐⏐⏐⏐ =

(
T
2

)Nt+1

max
−1≤t̂≤1

⏐⏐⏐⏐ LNt+1(t̂)
2Nt−1Nt

⏐⏐⏐⏐ ≤
4
( T
2

)Nt+1

2Nt
= 8

(
T
4

)Nt+1

. (48)

Using Eqs. (47), (48), and (41) in Eq. (40) completes the proof. □

3.2. Error bound theorem on multidomain

In this subsection, we extend the bivariate interpolation polynomial error bound theorem presented in the previous
subsection to obtain its variant on a decomposed domain. In the description, it is assumed that the number of grid points is
the same across all subintervals.

Theorem 3 (Error Bound in the Decomposed Domain). The error bound when Gauss–Lobatto grid points {xi}
Nx
i=0 ∈ [a, b] for

x-variable and {tj}
Nt
j=0 ∈ [tk−1, tk], k = 1, 2, . . . , p, for the decomposed domain in t-variable (expanded over the entire interval

[0, T ]) are used in bivariate polynomial interpolation is given by

E(x, t) ≤ C1
8
( b−a

4

)Nx+1

(Nx + 1)!
+ C2

8
( T
4

)Nt+1

(Nt + 1)!

(
1
p

)Nt+1

+ C3
82

( b−a
4

)Nx+1 ( T
4

)Nt+1

(Nx + 1)!(Nt + 1)!

(
1
p

)Nt+1

. (49)

Proof. Let define the Gauss–Lobatto grid points in the t- variable at the kth subinterval as

{τ
(k)
j }

Nt
j=0 = cos

(
jπ
Nt

)
, t (k)j =

1
2

(
tk + tk−1

Nt

)
+

1
2

(
tk − tk−1

Nt

)
τ
(k)
j . (50)

In the entire domain [0, T ], we have that⏐⏐⏐⏐⏐⏐
Nt∏
j=0

(t − tj)

⏐⏐⏐⏐⏐⏐ ≤
4
( T
2

)Nt+1

2Nt
= 8

(
T
4

)Nt+1

,

which implies that in the decomposed domain, at each subinterval, we should have⏐⏐⏐⏐⏐⏐
Nt∏
j=0

(t − t (k)j )

⏐⏐⏐⏐⏐⏐ ≤ 8
(

T
4p

)Nt+1

= 8
(
T
4

)Nt+1 (
1
p

)Nt+1

. (51)

We remark that there exists t values ξµ ∈ (tµ−1, tµ),µ = 1, 2, . . . , p, for which the values of the (Nt +1)th partial derivatives

with respect to t in each subinterval is the absolutemaximum. This enables us to break the second term C2
8
(
T
4

)Nt+1

(Nt+1)! in Eq. (42)
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into different components that are not necessarily equal in the decomposed domain as{
C (k)
2

8
( T
4

)Nt+1

(Nt + 1)!

(
1
p

)Nt+1
}p

k=1

, (52)

where

max
(x,t)∈Ω

⏐⏐⏐⏐∂Nt+1u(x, t)
∂tNt+1

⏐⏐⏐⏐ =

⏐⏐⏐⏐∂Nt+1u(x, ξk)
∂tNt+1

⏐⏐⏐⏐ ≤ C (k)
2 , t ∈ [tk−1, tk]. (53)

We define

∥ Ĉ2 ∥∞≡ max{C (1)
2 , C (2)

2 , . . . , C (p)
2 }, (54)

to denote the maximum absolute value of (Nt + 1)th partial derivatives of uwith respect to t in [0, T ]. Clearly, ∥Ĉ2∥∞ = C2.
To expand the error bound over the entire domain, we shall take the largest possible error across all sub-domains which is

C2
8
( T
4

)Nt+1

(Nt + 1)!

(
1
p

)Nt+1

. (55)

In a similar manner, the third term C3
82

(
b−a
4

)Nx+1( T
4

)Nt+1

(Nx+1)!(Nt+1)! in Eq. (42) becomes

C3
82

( b−a
4

)Nx+1 ( T
4

)Nt+1

(Nx + 1)!(Nt + 1)!

(
1
p

)Nt+1

, (56)

in the case of multi-domain approach. Using Eqs. (55) and (56) in Eq. (42) completes the proof. □

Comparing Eqs. (42) and (49) it is clear that errors associatedwith bivariate polynomial interpolation are smaller when using
multi-domain approach than the single domain approach as the second and third terms in Eq. (42) have been multiplied by(

1
p

)Nt+1
≪ 1 for large p in Eq. (49). The assumption that is made here is that the spatial interval is small and thus the first

term in the error bound expression has less influence on the size of interpolation error. This multidomain approach that is
described here enhances significant reduction in the size of interpolations errors if such errors are mainly contributed by
time, (t) variable. The use of the multi-domain approach allows for a reduction in the number of grids points, Nt on the time
variable at each subinterval. Consequently, small-sized matrices that are well-conditioned arises and the approximation
errors are minimized. This is especially the case if the enormous errors are caused by large valued higher order time
derivatives of the function u(x, t) within the domain of approximation. Reducing the size of interpolation error ensures
that more accurate numerical results are arrived at when such interpolating polynomials are used to approximate solutions
of differential equations. Polynomial interpolation error bound theorems using the close variant of Gauss–Lobatto nodes
namely; the equispaced nodes and Chebyshev nodes are well known in the literature and their proofs can be found in any
elementary book in numerical analysis. The equispaced grids points have poor interpolating features as they result in Runge
phenomena [33]. The Chebyshev grids points which upon comparison with the theorems presented in this work yields a
slightly smaller interpolating error (almost half that of Gauss–Lobatto nodes) are not used in spectral based collocation
methods. The reason behind the preferable choice of GL nodes to Chebyshev nodes as collocation nodes is their convenience
in generating differentiation matrices. The Gauss–Lobatto nodes also include the boundary nodes of the computational
domain −1 and 1 which is advantageous when treating the boundary conditions of the problem in question. This is not
the case with Chebyshev nodes.

4. Numerical experimentation

In this section, the applicability of themultidomain bivariate spectral collocationmethod to solutions of hyperbolic partial
differential equations is illustrated by considering the solution of well known linear and non-linear PDEs that have been
reported in the literature;

Example 1. Consider the linear damped wave equation

∂2u
∂t2

+ 2c
∂u
∂t

= β2 ∂
2u
∂x2

, (57)

where c is a small positive constant. The term 2c ∂u
∂t represents a damping force proportional to the velocity ∂u

∂t . For simplicity,
we will assume that the length of the string is L = π , and the constant β2

= c = 1. These substitution yields

∂2u
∂t2

+ 2
∂u
∂t

=
∂2u
∂x2

. (58)
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Eq. (58) is solved subject to boundary conditions

u(0, t) = 0, u(π, t) = 0, for all t > 0, (59)

and initial conditions

u(x, 0) = sin x, ut (x, 0) = − sin x. (60)

The exact solution is given in [22] as

u(x, t) = e−t sin x. (61)

Example 2. Consider the linear Telegraph equation

∂2u
∂t2

+ υ
∂u
∂t

= β2 ∂
2u
∂x2

− κu. (62)

Eq. (62) describes the voltage u(x, t) inside a piece of telegraph/transmissionwire, whose electrical properties per unit length
are resistance R, inductance I , capacitance C and conductance of leakage current G, where β2

=
1
LC , υ =

G
C +

R
L , and κ =

GR
CL .

Setting all electrical properties quantities to unity Eq. (62) reduces to

∂2u
∂t2

+ 2
∂u
∂t

=
∂2u
∂x2

− u. (63)

Eq. (63) is solved subject to boundary conditions

u(0, t) = e−2t , u(1, t) = e1−2t , for all t > 0, (64)

and initial conditions

u(x, 0) = ex, ut (x, 0) = −2ex. (65)

The exact solution is given in [23] as

u(x, t) = ex−2t . (66)

Example 3. Consider the nonlinear modified Liouville equation

∂2u
∂t2

= β2 ∂
2u
∂x2

+ κeλu. (67)

Setting β2
= κ = λ = 1 Eq. (67) reduces to

∂2u
∂t2

=
∂2u
∂x2

+ eu. (68)

Eq. (68) is to be solved subject to boundary conditions

u(1, t) = ln
[

6
(1 + 2t)2

]
, u(2, t) = ln

[
6

(2 + 2t)2

]
, for all t > 0, (69)

with the initial conditions

u(x, 0) = ln
[
6
x2

]
, ut (x, 0) = −

4
x
. (70)

The exact solution is given in [24] as

u(x, t) = ln
[

6
(x + 2t)2

]
. (71)

Example 4. Consider the nonlinear 1- dimensional phi-four equation

∂2u
∂t2

= β
∂2u
∂x2

− δu − λu3. (72)

Setting β = δ = λ = −1 Eq. (72) reduces to

∂2u
∂t2

= −
∂2u
∂x2

+ u + u3. (73)

Eq. (73) is to be solved subject to boundary conditions

u(0, t) = tan
(
t
4

)
, u

(π
2
, t

)
= tan

( π
2 + t
4

)
, for all t > 0, (74)

59



F.M. Samuel and S.S. Motsa / Wave Motion 88 (2019) 57–72 67

Table 1
Relative error values obtained when Example Example 1 is solved using Nx = 20, Nt = 100, p = 1.

t

x 1.0 2.0 5.0 10.0

0.0193 4.66290e−008 7.44967e−008 4.09623e−007 8.70789e−007
0.4601 1.06465e−009 1.30864e−009 1.58031e−009 5.13471e−008
1.3251 3.23212e−010 2.69150e−009 3.21242e−009 1.75804e−008
2.2839 5.15519e−009 2.53688e−009 7.62498e−009 2.60394e−008
2.9704 1.95880e−008 1.54940e−008 4.31666e−008 7.89615e−008

CPU time (s) 1.423548 Cond number 7.0462e+0011

with the initial conditions

u(x, 0) = tan
( x
4

)
, ut (x, 0) =

1
4
sec2

( x
4

)
. (75)

The exact solution is given in [26] as

u(x, t) = tan
(
x + t
4

)
. (76)

Example 5. Determine the interpolation error in approximating the function

u(x, t) = ex+t , x ∈ [−1, 1], t ∈ [−2, 2]. (77)

We note that Examples 1–4 are used to demonstrate the applicability of multidomain spectral collocation method in
solving hyperbolic PDEs whereas Example 5 is used to test the error bound theorems.

5. Results and discussions

In this section, numerical results in terms absolute error and relative error values obtained at selected values of x and
t when solving Examples 1–4 are presented. The bivariate spectral collocation method (single domain approach) and the
multi-domain bivariate spectral collocation method have both been applied in solving each Example. The computation
time that is taken to produce results and the condition number of the coefficient matrix resulting from collocation is also
presented. The CPU time recorded here is the time taken to execute instructions contained in the algorithm right away from
compilation to the instant when results are realized. The condition number of the matrix A is evaluated as ∥A∥∥A−1

∥ [34]
and is invoked using the MatLab command cond(A). In the case of the multidomain approach, the largest condition number
across all the subintervals is presented. The absolute and relative errors are evaluated as

Absi,j =
⏐⏐ue(xi, tj) − Ua(xi, tj)

⏐⏐ , and Reli,j =

⏐⏐⏐⏐ Absi,j
ue(xi, tj)

⏐⏐⏐⏐ , respectively, (78)

where ue(xi, tj) is the exact solution and Ua(xi, tj) is the approximate solution at the collocation points (xi, tj). The results for
each example have been presented in two separate tables. The first table is a representation of the results obtained using
the single domain approach whereas the second one depicts those obtained from themulti-domain approach in the quest to
compare their performance. We remark that the bivariate spectral collocation method which is the single domain approach
is invoked by setting the number of subintervals p = 1. The results in Tables 1–8 were obtained using MatLab software
where as those in Table 9 were computed on Mathematica platform.

The results obtained from approximating the solution of Eq. (58) are presented in Tables 1 and 2. Table 1 shows the results
obtained when bivariate spectral collocation method is applied. Relative errors of order 10−7 are obtained. Table 2 displays
similar results when themulti-domain bivariate spectral collocation is applied and smaller absolute errors than those in case
of the single domain approach are obtained. The relative errors are of order 10−10. In addition, Tables 1 and 2 indicate that
a shorter computation time is taken to generate results and the condition number of the coefficient matrix is smaller when
the multidomain approach is adopted. Small condition number is responsible for improved accuracy in the multidomain
approach.

The results obtained from approximating the solution of Eq. (63) are presented in Tables 3 and 4. Table 3 shows the results
obtained when a single domain approach is applied. The relative errors obtained here are of order 10−5. On the other hand,
Table 4 shows similar results that are obtained when the multi-domain approach is applied in the method of solution. The
relative errors (of order 10−8) are smaller in the multi-domain approach than those obtained in case of the single domain
approach. A shorter computation time and a smaller condition number of the coefficient matrix is evident in the case of the
multi-domain approach, Table 4, than that recorded when the single domain approach is adopted, Table 3.

The results obtained from approximating the solution of Eq. (68) are presented in Tables 5 and 6. The results given herein
are those obtained after the 5th iteration. Table 5 shows the results obtainedwhen a single domain approach is usedwhereas
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Table 2
Relative error values obtained when Example Example 1 is solved using Nx = 20, Nt = 10, p = 10.

t

x 1.0 2.0 5.0 10.0

0.0193 5.33321e−012 3.49871e−011 1.95661e−010 7.62712e−010
0.4601 1.74861e−011 5.05352e−011 2.44538e−010 8.89471e−010
1.3251 1.62381e−011 4.84196e−011 2.42403e−010 8.89054e−010
2.2839 1.40134e−011 4.69972e−011 2.40025e−010 8.88724e−010
2.9704 5.11146e−012 3.92272e−011 2.31320e−010 8.73026e−010

CPU time (s) 0.114274 Cond number 8.7192e+006

Table 3
Relative error values obtained when Example Example 2 is solved using Nx = 20, Nt = 100, p = 1.

t

x 1.0 2.0 5.0 10.0

0.0062 2.18419e−008 8.27964e−008 2.53078e−007 2.34678e−006
0.1464 5.15727e−008 1.80808e−009 7.05926e−007 1.24505e−005
0.4218 1.11300e−008 5.67612e−008 1.74194e−007 7.61562e−006
0.7270 2.86742e−008 3.67432e−008 2.96557e−007 3.60689e−005
0.9455 2.96515e−008 1.35708e−007 2.21656e−007 8.10334e−005

CPU time (s) 2.846143 Cond number 6.4327e+011

Table 4
Relative error values obtained when Example Example 2 is solved using Nx = 20, Nt = 10, p = 10.

t

x 1.0 2.0 5.0 10.0

0.0062 3.95601e−012 2.02862e−012 3.39103e−010 6.39796e−008
0.1464 1.50557e−012 3.41663e−012 3.49983e−010 6.77700e−008
0.4218 4.88940e−012 7.25118e−011 5.85170e−010 9.00861e−008
0.7270 3.79695e−012 9.79213e−012 4.54850e−010 9.87302e−008
0.9455 1.87760e−012 2.69463e−011 7.11001e−011 9.78759e−008

CPU time (s) 0.146381 Cond number 8.4572e+006

Table 5
Absolute error values obtained when Example Example 3 is solved using Nx = 20, Nt = 50, p = 1, It=5.

t

x 0.2 0.4 0.6 0.8

1.0062 3.47944e−009 3.77384e−009 8.2309e−008 2.18613e−009
1.1464 7.45887e−010 3.02654e−009 3.06068e−009 2.18613e−009
1.4218 3.52577e−010 3.89464e−009 6.36734e−010 4.19664e−010
1.7270 7.02645e−011 9.92337e−011 1.09369e−009 1.09697e−010
1.9455 1.78821e−009 2.73041e−009 1.88447e−009 5.45717e−010

CPU time (s) 1.519801 Cond number 7.8367e+009

Table 6 shows similar results that are obtained when the multi-domain approach is applied in the method of solution. The
absolute errors of order 10−11 are achieved in the case of the multi-domain approach and are much smaller than those
obtained in the case of the single domain approach (order 10−8). The trend on the amount of computation time and the
value of the condition number of the coefficient matrix is analogous to those presented in preceding examples.

The results obtained from approximating the solution of Eq. (73) are presented in Tables 7 and 8. Table 7 displays the
results obtained when bivariate spectral collocation method is applied in solving Eq. (73). The absolute errors of order
10−5 are obtained. Numerical results that are obtained when the multi-domain approach is applied are shown in Table 8.
The absolute errors of order 10−10 are obtained in the case of the multi-domain approach. In regards to the amount of
computation time and the condition number of the coefficient matrix, a trend analogous to that presented in preceding
tables is evident across the two approaches.

In Table 9, the results obtained from piece-wise polynomial interpolation on multiple domains have been bolded to
distinguish them from those obtained when interpolation performed on a single domain. The column label, Bound, denotes
the maximum possible theoretical value of interpolation error evaluated from the error bound theorems. The t domain was
subdivided into 2 subintervals of equal length. The number of grid pointswasmaintained the sameover the entire domain for
comparison purposes. The Table shows that the size of interpolation errors decrease as the number of grid points increase.
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Table 6
Absolute error values obtained when Example Example 3 is solved using Nx = 20, Nt = 5, p = 10, It=5.

t

x 0.2 0.4 0.6 0.8

1.0062 6.36269e−011 9.95849e−011 5.44590e−011 1.95023e−011
1.1464 1.69966e−011 2.91311e−011 2.86388e−011 1.75647e−011
1.4218 1.97931e−012 5.97371e−011 2.04829e−011 4.18210e−012
1.7270 8.39218e−013 1.21388e−011 9.29423e−013 4.77738e−011
1.9455 1.54289e−011 3.12200e−011 4.69424e−012 8.03992e−011

CPU time (s) 0.105744 Cond number 2.8509e+006

Table 7
Absolute error values obtained when Example Example 4 is solved using Nx = 20, Nt = 50, p = 1, It=5.

t

x 0.02 0.04 0.06 0.08

0.0097 8.79971e−009 4.08907e−008 1.05963e−008 3.71353e−006
0.2300 2.50317e−010 2.50693e−009 2.53192e−008 2.52560e−007
0.6625 2.66273e−010 2.80803e−009 2.75705e−008 2.62539e−007
1.1420 8.84794e−010 1.01925e−008 1.02061e−007 9.73155e−007
1.4852 2.47955e−008 3.31860e−007 3.49922e−006 3.39059e−005

CPU time (s) 1.539690 Cond number 2.3494e+015

Table 8
Absolute error values obtained when Example Example 4 is solved using Nx = 20, Nt = 5, p = 10, It=5.

t

x 0.02 0.04 0.06 0.08

0.0097 3.79300e−012 3.65525e−011 3.78129e−010 3.85786e−009
0.2300 6.13676e−014 4.73760e−013 4.12961e−012 3.94241e−011
0.6625 3.66929e−014 3.03868e−013 2.95070e−012 2.78306e−011
1.1420 1.79856e−013 1.17273e−012 1.06025e−011 9.83894e−011
1.4852 2.71216e−012 3.41522e−011 3.52029e−010 3.38485e−009

CPU time (s) 0.350592 Cond number 1.5534e+007

Table 9
Numerical values of interpolation errors obtained when interpolating Eq.(77) in a single and multiple domains.
Nx Nt P CPU Time(s) Bound Gauss–Lobatto

10 10 1 1.5760 1.4874 × 10−6 2.8320 × 10−7

10 5 2 1.1437 8.2877 × 10−5 3.8721 × 10−5

20 20 1 6.7860 2.0460 × 10−8 6.4615 × 10−14

20 10 2 4.7495 1.7551 × 10−8 1.8046 × 10−13

40 40 1 38.0700 6.3882 × 10−9 1.7955 × 10−13

40 20 2 15.3842 5.3520 × 10−10 2.8411 × 10−16

It also demonstrates that numerical values of absolute errors are always smaller than the theoretical error bound values
verifying that the function considered here obeys the bivariate polynomial interpolation error bound theorems presented
in Section 3. We observe that performing interpolation over many smaller domains recorded significantly shorter CPU time
than the single domain. Further, an improved accuracy is registered when 40 grid points are used in t on multiple domains
than the single domain which registers a drop in accuracy.

To further discuss the results, the numerical solution of Examples 1–4 is comparedwith the exact solution through figures.
The numerical solution depicted here is that obtained using the multidomain approach with Nx = 20, Nt = 5, p = 10.
Figs. 1–4 shows that the numerical solution is in close agreement with the exact solution confirming the accuracy of the
proposed approach. Fig. 5 compares the absolute errors obtained when approximating the polynomial given in Example 5
by an interpolating polynomial using Nx = 40, Nt = 40 for the single and multidomain approach. The figure confirms that
the multidomain approach records smaller interpolation errors as compared to single domain approach.

6. Conclusion

We have successfully proposed the multi-domain bivariate spectral collocation method for solving hyperbolic PDEs.
Secondly, we have demonstrated that this method yields very accurate approximate solution when it is applied in solving
hyperbolic PDEs that are defined over larger time domains and that results are generated over little time. The reduction in
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Fig. 1. Comparison of exact and numerical solution for Example 1 evaluated at t = 10.

Fig. 2. Comparison of exact and numerical solution for Example 2 evaluated at t = 10.

the size of the computation domain and consequently the use of fewer grid points at each sub-domain reduces the size of the
coefficient matrix. The small-sized matrices are easy to invert, and this translates to short computation time that is required
to generate results. Themore accurate results are attributed to small condition numbers of the coefficient matrices obtained
when using the multi-domain approach. The performance of the method is reliable, and it gives a more general scheme
that is easily adaptable. The multi-domain bivariate spectral collocation method can thus be extended to solve many other
problems in real life that are modeled by hyperbolic PDEs. We have also successfully proved and tested new error bound
theorems for bivariate Lagrange interpolating polynomial which is used to approximate the solution of the hyperbolic PDEs.
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Fig. 3. Comparison of exact and numerical solution for Example 3 evaluated at t = 1.

Fig. 4. Comparison of exact and numerical solution for Example 4 evaluated at t = 0.1.

Fig. 5. Comparison of interpolation errors for Example 5 using the single and multidomain approach.
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Chapter 4

A Modified Spectral Collocation

Method of Solution for

One-Dimensional Parabolic PDEs

In this chapter, we aim to take full advantages of the combined benefits of incorporating both the

overlapping grid approach in space and the non-overlapping subdomains approach in time. An ef-

fective overlapping grid based multidomain spectral collocation method is developed and applied to

solve parabolic partial differential equations defined on large spatial and time domains. Numerical

experimentation to illustrate the applicability of the modified solution approach is conducted using

typical examples of parabolic PDEs that have been reported in the literature. We demonstrate that

concurrent decomposition of large spatial and time computational domain into smaller subintervals

guarantees improved accuracy and reduced computational time as opposed to further increase in

the number of grid points in a single large domain. To benchmark, the current method of solution,

new versions of the error bound theorems and proofs for bivariate polynomial interpolation emerge

as a consequence of incorporating the overlapping grid approach and non-overlapping subdomains

approach in space and time variables, respectively. The current method of solution could handle

other classes of parabolic PDEs modeling different real-life scenarios.
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Abstract

In this article, an efficient multidomain spectral collocation method is introduced and applied to

solve parabolic partial differential equations (PDEs) that are defined on large intervals. In the

literature, there exist multidomain spectral collocation approaches that have been applied in ei-

ther space or time variables, but not simultaneously on both. In this work, we demonstrate that

rather than incrementing the number of grid points in a single domain, concurrent decomposition

of large spatial and time computational domains into smaller subintervals ensured better accuracy

of results and reduced computational time. In the solution process, the domain of approximation

is decomposed into smaller, equal overlapping and non-overlapping subintervals in space and time

directions, respectively. The PDE is discretized on each subinterval using spectral collocation at

Chebyshev-Gauss-Lobatto (CGL) points. The PDE is then solved simultaneously across all subin-

tervals in space. In the time direction, the solution is computed independently at each subinterval

and the approximate solution is obtained by matching solutions at different subintervals along the

common boundaries. We demonstrate the accuracy and effectiveness of the proposed method by

presenting numerical results of well known parabolic PDEs that have been reported literature as a

single equation or systems of equations. New error bounds theorems and proofs have been presented

to benchmark the current method of solution.

Keywords: Parabolic PDEs, Spectral collocation, Multidomain, Overlapping grids, Error bounds,

CGL points.
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1. Introduction

Partial differential equations often arise in many practical problems in fields of mathematical

physics and engineering. In particular, parabolic PDEs are useful in describing a wide family of

problems in science and engineering that include physical and mathematical systems with a time

variable such as heat diffusion and ocean acoustics propagation [1]. Many highly nonlinear PDEs

that are encountered in engineering are difficult to solve analytically; the few that may possess

analytic solutions, finding the solution is cumbersome, and the solution process may depend on

making a number of essential assumptions [2]. Consequently, owing to the potential applicability of

the nonlinear PDEs, the quest to seek the best methods that approximate the solutions of nonlinear

models has remained an active area of research in recent decades.

Examples of parabolic PDEs that are considered in this article include the evolutionary equa-

tions that are single equations such as the reaction-diffusion equation, the generalized Burgers-

Fisher equation [3], and the generalized FitzHugh-Nagumo equation [4]. Reaction-diffusion equa-

tions model such processes in chemical kinematics, astrophysics, and biology. The generalized

Burgers-Fisher equation describes different mechanisms that arise in fields of financial mathematics,

fluid mechanics, shock wave formation, traffic flows, turbulence, heat conduction and transmission

of sound waves through viscous media, among other disciplines of applied sciences [5]. The gener-

alized FitzHugh-Nagumo equation [6] arises in genetics, biology, and heat and mass transfer [7, 8].

In biology, the FitzHugh-Nagumo equation models the activation and deactivation dynamics of a

spiking neuron [9]. For systems of parabolic PDEs, we consider fluid flow problems of boundary

layer type, in particular, the boundary layer flow over a permeable flat plate arising from differences

in concentration or material constitution, in conjunction with temperature effects. These type of

flows have received much attention from researchers owing to their great practical importance [10].

For instance, atmospheric flows at all scales, are driven appreciably by both temperature and wa-

ter concentration differences [11]. In addition, flow in water bodies are driven through equally

important effects of temperature [12].

Several methods have been developed and applied to solve parabolic PDEs. They include the

semi-analytical methods such as; the Tanh method [13], Adomian decomposition method [14, 15],

homotopy perturbation method [16], the variational iteration method [17], and numerical meth-

ods such as the finite difference methods [18] and the spectral collocation methods [19]. As for

the problems considered in this study, Javidi [20] studied the spectral collocation method for the
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generalized reaction-diffusion equation and later, working in collaboration with Golbabai [21], they

applied the spectral domain decomposition method on the same problem. Babalian and Saeidian

[22] gave some analytic approaches to the solution of the Burgers-Fisher equation. The explicit

solutions and numerical simulations of the generalized Burgers-Fisher equation were introduced

by Kaya and El-Sayed [23]. Wazwaz [13] presented the Tanh method for the generalized Burgers-

Fisher equation which was later solved by Mickens and Gumel [24] and Zhao et al. [25] using a

nonstandard finite difference scheme and the Chebyshev Legendre pseudospectral method, respec-

tively. Numerical approximations of the generalized FitzHugh-Nagumo equation also exist. For

instance, the Hopscotch finite difference scheme, which is a fast second order differential equa-

tion solver first proposed by Gordon [26], was further developed by Gourlay [27] and applied to

solve the FitzHugh-Nagumo equation. Other numerical methods that have been applied to solve

the FitzHugh-Nagumo equation include the pseudospectral method [28] and the polynomial dif-

ferential quadrature method [29]. For the case, of boundary layer flows, the problem of natural

convection flow from a vertical permeable flat plate with variable surface temperature and species

concentration was solved by Hussain et al. [30] using finite differences for the entire ξ region (where

ξ is the scaled stream-wise variable), series solution method for small ξ and asymptotic solution

method for large ξ. There exists a vast literature on different methods that have been applied to

numerically solve boundary layer flow problems (see [31]).

Among the numerical methods that are available in the literature for approximating solutions

of parabolic PDEs, spectral methods (Galerkin, tau, and collocation-based) have been shown to

be superior, especially where the problem possesses a smooth solution [32]. Spectral methods

are advantageous in that they require low numbers of grid points to give accurate results and

short computation time is needed to realize the results [33]. When solving initial-boundary value

problems, the spectral collocation-based approaches are often used because they offer a simple

treatment of boundary conditions [34, 35]. Motsa et al. [36] used spectral and collocation techniques

to develop the bivariate spectral quasi-linearization method for solving nonlinear parabolic PDEs.

In this method, the spectral approximation of the PDE that is sought is a bivariate Lagrange

interpolating polynomial. The quasi-linearization (QLM) method of Bellman and Kalaba [37] is

first applied to simplify a nonlinear PDE, which is then discretized using spectral collocation in both

space and time variables. The method has since been successfully applied to solve problems that are

defined over small space and time intervals. However, it has been observed that when the method is
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applied to solve a PDE defined over a large time interval, the accuracy deteriorates even with a large

number of grid points [38]. In view of this drawback, the applicability of the method has recently

been widened in a new version that is based on decomposing the time variable domain into smaller

non-overlapping subintervals [39]. In the modified approach, the PDE is solved independently on

each time subinterval and the resultant solution of the PDE is obtained by merging the solution

from different subintervals along common boundaries. We remark that, nevertheless, this approach

still disregards a large spatial domain an issue that we now address.

In this study, we aim to introduce a new multidomain spectral collocation method for the

solution of parabolic PDEs that are defined over large space and time intervals. We also aim to

demonstrate that the current multi-domain approach yields very accurate results in a remarkably

short CPU time. The new method is based on decomposing the space and time variable domains

into smaller equal overlapping and non-overlapping subintervals, respectively. The PDE is then

discretized for each of these subintervals using spectral collocation with Chebyshev-Gauss-Lobatto

points. The spatial variable domain overlapping is carried out such that the first and last two nodes

of the interior subintervals coincide with those of the neighboring subintervals and they remain

common. Chebyshev differentiation matrices from the different spatial subintervals are incorporated

to assemble a new Chebyshev differentiation matrix for the decomposed space variable. The PDE

is solved over the entire spatial domain, but independently at each time subinterval. For the

subintervals in time, the continuity condition to obtain initial conditions at subsequent subintervals.

The solution of the PDE in the entire time domain is taken as the union of the solutions at the

different time subintervals. To the best of our knowledge, such a spectral collocation-based method

with Chebyshev-Gauss-Lobatto points has not been applied simultaneously on overlapping grids

in space and non-overlapping grids in time. To further explain the performance of the proposed

method and our preferred choice of Chebyshev-Gauss-Lobatto points over other sets of nodes, we

develop new error bound theorems that govern piece-wise bivariate polynomial interpolation using

CGL nodes and present their rigorous proofs.

The rest of this article is organized as follows; In Section 2, we briefly introduce the multidomain

spectral collocation method and establish numerical discretization for a single nonlinear PDE. This

numerical scheme is then extended in Section 3 to solve systems of nonlinear parabolic PDEs of

boundary layer flow type. Results that show the performance of the proposed method are given

and discussed in Section 4. That section ends with an exploration of error bounds theorems in

70



piece-wise bivariate polynomial interpolation using CGL grid points. Finally, the conclusion of our

work and acknowledgment are given in Sections 5 and 6, respectively.

2. Method of solution for a single nonlinear equation

In this section, we describe an algorithm to show how the multi-domain spectral collocation

method can be applied to solve a single equation parabolic PDEs defined on the domain (x, t) ∈
[a, b]× [0, T ] for large (b−a) and T . The method is illustrated by considering a general second-order

nonlinear parabolic PDE;

∂u

∂t
= F

(
u,
∂u

∂x
,
∂2u

∂x2

)
, x ∈ (a, b), t ∈ (0, T ], (1)

where F is a nonlinear operator operating on the unknown function u(x, t) and its first two spatial

derivatives. The PDE Eq.(1) is solved subject to the boundary conditions

α1
∂u

∂x
(a, t) + α0u(a, t) = ga(t), β1

∂u

∂x
(b, t) + β0u(b, t) = gb(t), t ∈ (0, T ], (2)

and initial condition

u(x, 0) = f(x), x ∈ [a, b]. (3)

The components α0, α1, β0, β1 are known constants and f(x), ga(t) and gb(t) are known functions.

The method of solution involves the stages given in the subsections below.

2.1. The quasi-linearisation method

The PDE is first simplified using the quasi-linearisation method (QLM) of Bellman and Kalaba

[37]. The QLM is based on the Newton-Raphson method and is built from the linear terms of a

Taylor series expansion about an initial approximation to the solution. The QLM assumes that the

difference between solutions at two successive iterations, denoted by us+1 − us, is small. Applying

the QLM on Eq.(1) we obtain

δ2,s(x, t)u
′′
s+1 + δ1,s(x, t)u

′
s+1 + δ0,s(x, t)us+1 − u̇s+1 = Rs(x, t), (4)

where

Rs(x, t) =

2∑

ζ=0

δζ,s(x, t)u
(ζ)
s − F (us, u

′
s, u
′′
s), δµ,s(x, t) =

∂F

∂u
(µ)
s

(us, u
′
s, u
′′
s), µ = 0, 1, 2. (5)

Here the prime and dot denotes differentiation with respect to x and t, respectively, s is the iteration

level and u(0) = u. Starting with an initial approximation for solution u0, the QLM scheme Eq.(4)

is solved iteratively until a solution with the desired accuracy is realized.
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2.2. Domain decomposition and discretization

The domain of approximation is decomposed in both space and time direction into smaller

subintervals. First, we consider the fragmentation of time variable domain. If we let t ∈ Γ where

Γ ∈ [0, T ]. The domain Γ is decomposed into p equal non-overlapping subintervals as

Γk = [tk−1, tk], tk−1 < tk, t0 = 0, tp = T, k = 1, 2, . . . , p. (6)

The domain t ∈ [tk−1, tk] in each of the kth subintervals is transformed into t̂ ∈ [−1, 1] using the

linear map

t̂(t) =
2

tk − tk−1

[
t− 1

2
(tk + tk−1)

]
, t ∈ [tk−1, tk]. (7)

In the next step, each subinterval is further discretized into Nt+1 Chebyshev-Gauss-Lobatto points,

before the spectral collocation is applied. The entire grid in the t variable can be represented as

{0 = t
(1)
Nt
, . . . , t

(1)
0 = t

(2)
Nt
, . . . , t

(k−1)
0 = t

(k)
Nt
, . . . , t

(p)
0 = T, . . . , 2 ≤ k ≤ p}. (8)

The superscripts and subscripts are the subinterval and grid point indices, respectively. The spatial

domain x ∈ [a, b] is then decomposed into q equal overlapping subintervals as

Λl = [xl−1, x̄l] , xl−1 < xl < x̄l, x0 = a, x̄q = b, l = 1, 2, . . . , q, (9)

where xl < x̄l, depicts the overlapping nature. The computational domain [xl−1, x̄l] in the lth

subinterval is next transformed into x̂ ∈ [−1, 1] by applying the linear map

x̂(x) =
2

x̄l − xl−1

[
x− 1

2
(x̄l + xl−1)

]
, x ∈ [xl−1, x̄l]. (10)

Finally, each subinterval is further discretized into Nx + 1 Chebyshev-Gauss-Lobatto points. The

subintervals are made to overlap in such a way that the first two grids points in the Λl+1 subinterval

coincide with the last two grid points in the Λl subinterval. In general, the set of grid points over

the entire x domain can be represented as

{a = x
(1)
Nx
, . . . , x

(1)
1 = x

(2)
Nx
, x

(1)
0 = x

(2)
Nx−1, . . . , x

(l−1)
1 = x

(l)
Nx
, x

(l−1)
0 = x

(l)
Nx−1, . . . , x

(q)
0 = b, 2 ≤ l ≤ q}.

(11)

The ordering of grid points as illustrated in Eq.(8) and Eq.(11) signifies that the spectral collocation

is done from right to left of the subinterval. The collocation nodes in the kth subinterval in t variable

and lth subinterval in x variable are defined in [32] by

{
t̂j
}Nt

j=0
= cos

(
jπ

Nt

)
, and {x̂i}Nx

i=0 = cos

(
iπ

Nx

)
. (12)
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An explicit expression of the length L = x̄l − xl−1 in terms of the number of subintervals q in x

is useful in defining the grid points at the interior subintervals in space. To obtain this, we first

observe that overlapping of q subintervals in x results into (q − 1) regions of overlaps. Further,

using the linear map Eq.(10) we notice that each of the overlapping space regions has the length

L

(
1

2
− 1

2
cos

{
π

Nx

})
.

The length L of the subinterval can, therefore, be obtained from the solution of

qL− L (q − 1)

(
1

2
− 1

2
cos

{
π

Nx

})
= b− a, (13)

which is

L =
b− a

q + (1− q)
(

1
2 − 1

2 cos
{

π
Nx

}) . (14)

Evidently, xl and x̄l are related by

x̄l = xl + L

(
1

2
− 1

2
cos

{
π

Nx

})
. (15)

We remark that this subdivision of the entire space domain into subintervals of the same length

and subsequent discretization of each subinterval into an equal number of grid points is a sufficient

condition for the grid points of neighboring subdomains to overlap.

2.3. Spectral collocation

The multidomain spectral collocation method is implemented on the linearized QLM scheme

Eq.(4) as illustrated below. The PDE is solved independently over each t subinterval; with the

label
(k)
u , k = 1, 2, . . . , p, being used to distinguish solutions at different t subintervals. We note

that the solution in the spatial direction is computed simultaneously across all subintervals and

that the multidomain approach is evident only when assembling differentiation matrices in x. We

must solve

δ2,s(x, t)
∂2(k)
u s+1

∂x2
+ δ1,s(x, t)

∂
(k)
u s+1

∂x
+ δ0,s(x, t)

(k)
u s+1 −

∂
(k)
u s+1

∂t
=

(k)

R s(x, t), x ∈ [a, b], t ∈ [tk−1, tk],

(16)

subject to boundary conditions

α1
∂

(k)
u

∂x
(a, t) + α0

(k)
u (a, t) = ga(t), β1

∂
(k)
u

∂x
(b, t) + β0

(k)
u (b, t) = gb(t), t ∈ (0, T ], (17)
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and initial condition

(1)
u (x, 0) = f(x),

(k)
u (x, tk−1) =

(k−1)
u (x, tk−1), k = 2, . . . , p, x ∈ [a, b]. (18)

In the solution process, the approximate solution that is sought is a bivariate Lagrange interpolating

polynomial that takes the form

(k)
u (x, t) ≈

(k)

U (x, t) =

Nx∑

p=0

Nt∑

q=0

(k)

U (xp, tq)Lp(x)Lq(t). (19)

The spatial derivatives at each subinterval, l = 1, 2, . . . , q, are evaluated at the collocation nodes

(x̂i, t̂j), for j = 0, 1, 2, . . . , Nt, as follows

∂
(k)
u

∂x
(x̂i, t̂j) = D

(k)

Uj =

(
2

L

)
D̂

(k)

Uj ,
∂2(k)
u

∂x2
(x̂i, t̂j) = D2

(k)

Uj ,
∂n

(k)
u

∂xn
(x̂i, t̂j) = Dn

(k)

Uj
(20)

where D̂ =
(
L
2

)
D of size (Nx + 1)× (Nx + 1) is the standard first order Chebyshev differentiation

matrix as defined in [32]. The vector
(k)

Uj is defined as

(k)

Uj =

[
(k)
u (x

(l)
0 , tj),

(k)
u (x

(l)
1 , tj),

(k)
u (x

(l)
2 , tj , ), . . . ,

(k)
u (x

(l)
Nx
, tj)

]T
, l = 1, 2, . . . , q, (21)

where T denotes matrix transpose. Since the last two points in the lth subinterval and the first two

points in the (l + 1)th subinterval overlap and remain common, we can assemble the Chebyshev

differentiation matrix
(1,0)

D for the multidomain approach in x by carefully discarding the recurrent

points as

(1,0)

D =




q

D0,0 . . .
q

D0,Nx−1

q

D0,Nx

q

D1,0 . . .
q

D1,Nx−1

q

D1,Nx

. . .
. . .

. . .
. . .

q

DNx−1,0 . . .
q

DNx−1,Nx−1

q

DNx−1,Nx

. . .
. . .

2
D1,0

2
D1,1 . . .

2
D1,Nx−1

2
D1,Nx

. . .
. . .

. . .
. . .

. . .
2
DNx−1,0

2
DNx−1,1 . . .

2
DNx−1,Nx−1

2
DNx−1,Nx

1
D1,0

1
D1,1 . . .

1
D1,Nx

. . .
. . .

. . .
. . .

1
DNx−1,0

1
DNx−1,1 . . .

1
DNx−1,Nx

1
DNx,0

1
DNx,1 . . .

1
DNx,Nx




.
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(22)

Here the empty entries of matrix
(1,0)

D are zeros and
l
D represents the Chebyshev differentiation

matrix in the lth subinterval in space. The size of matrix
(1,0)

D is (r + 1) × (r + 1), where r =

Nx+(Nx − 1)×(q − 1). The higher order differentiation matrices with respect to x can be obtained

using matrix multiplication. The x grid corresponding to the assembled differentiation matrix over

entire spatial domain in the multidomain approach is

{a = x
(1)
Nx
, . . . , x

(1)
1 , x

(2)
Nx−1, . . . , x

(2)
1 , . . . , x

(l)
Nx−1, . . . , x

(l)
1 , . . . , x

(q)
Nx−1 . . . , x

(q)
0 = b, 3 ≤ l ≤ q − 1}.

(23)

The time derivative is approximated at the collocation nodes (x̂i, t̂j), for i = 0, 1, 2, . . . , r, as

∂
(k)
u

∂t
(x̂i, t̂j) =

Nt∑

q=0

dj,q

(k)

Ūq =

Nt∑

q=0

(
2

tk − tk−1

)
d̂j,q

(k)

Ūq, (24)

where d̂j,q =
(
tk−tk−1

2

)
dj,q, j, q = 0, 1, 2, . . . , Nt, are entries of the standard first order Chebyshev

differentiation matrix of size (Nt + 1)× (Nt + 1). In Eq.(24), q is used in the grid points sense and

does not refer to the number of subintervals in x. The vector
(k)

Ūj is defined as

(k)

Ūj =

[
(k)
u (x0, tj),

(k)
u (x1, tj), . . . ,

(k)
u (xr, tj)

]T
, (25)

where T denotes matrix transpose. We recognize that the bar in
(k)

Ūj at Eq.(25) distinguishes it

from the vector
(k)

Uj at Eq.(21). The x grid points at Eq.(25) are those in Eq.(23) when arranged

from right to left such that x0 = b = x
(q)
0 , xr = a = x

(1)
Nx

. Using the definition of discrete derivatives

and the initial condition, Eq.(16) can be expressed in matrix form as
[
δ2,s(x, ti)

(2,0)

D + δ1,s(x, ti)
(1,0)

D + δ0,s(x, ti)

]
(k)

Ūi −
Nt−1∑

j=0

di,j

(k)

Ūj =
(k)

Rs(x, ti) + di,Nt

(k)

ŪtNt
. (26)

Eq.(26) is a system of Nt(r+ 1) linear equations in Nt(r+ 1) unknowns which can be expressed as

the Nt(r + 1)×Nt(r + 1) matrix system given by




A0,0 A0,1 A0,2 . . . A0,Nt−1

A1,0 A1,1 A1,2 . . . A1,Nt−1

...
...

... . . .
...

ANt−1,0 ANt−1,1 ANt−1,2 . . . ANt−1,Nt−1







(k)

Ū0

(k)

Ū1

...
(k)

ŪNt−1




=




(k)

R0

(k)

R1

...
(k)

RNt−1




, (27)
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where

Ai,i = δ2,s(x, ti)
(2,0)

D + δ1,s(x, ti)
(1,0)

D + δ0,s(x, ti)− di,iI, Ai,j = −di,jI, i 6= j,

R
(k)
i = R(k)

s (x, ti) + di,NtU
(k)
Nt
,

δµ,s(x, ti) =




δµ,s(x0, ti)

δµ,s(x1, ti)

. . .

δµ,s(xr, ti)



, µ = 0, 1, 2,

and I is an identity matrix of size (r + 1) × (r + 1). The boundary conditions when evaluated at

the collocation points give

α1

r∑

p=0

D(1,0)
r,p

(k)

Ū (xp, ti) + α0

(k)

Ū (xr, ti) = ga(ti), β1

r∑

p=0

D
(1,0)
0,p

(k)

Ū (xp, ti) + β0

(k)

Ū (x0, ti) = gb(ti). (28)

The boundary conditions are imposed on the first and last row of the diagonal sub-matrices in

Eq.(27).

The practical applicability of the multidomain spectral collocation method to solutions of parabolic

PDEs that are described as a single equation is illustrated by considering the solution of well known

linear and nonlinear evolutionary PDEs that have been reported in the literature. We notice that

the scheme for the nonlinear PDEs described in this section can be adapted to solve linear PDEs

and in this case the coefficients δµ,s, µ = 0, 1, 2, and
(k)

R will be free of the dependent variable

u. The selected test examples below are parabolic PDEs that possess an exact solution for easy

validation.

Example 1. Consider the following linear reaction-diffusion equation [14]

∂u

∂t
=
∂2u

∂x2
− u, x ∈ (0, 20), t ∈ (0, 10]. (29)

Eq.(29) is solved subject to the boundary conditions

u(0, t) = 1, u(20, t) = e−20 + 20e−t, t > 0, (30)

and initial conditions

u(x, 0) = e−x + x. (31)

The exact solution is

u(x, t) = e−x + xe−t. (32)
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Example 2. Examine the solution of a generalized Burgers-Fisher equation [5]

∂u

∂t
+ u

∂u

∂x
=
∂2u

∂x2
+ u(1− u), x ∈ (0, 20), t ∈ (0, 10], (33)

solved subject to the boundary conditions

u(0, t) =
1

2
+

1

2
tanh

(
5t

8

)
, u(20, t) =

1

2
+

1

2
tanh

(
5t

8
− 20

4

)
, t > 0, (34)

and initial condition

u(x, 0) =
1

2
− 1

2
tanh

(x
4

)
. (35)

The exact solution is given in [5] as

u(x, t) =
1

2
+

1

2
tanh

(
5t

8
− x

4

)
. (36)

Example 3. Inspect the solution of the generalized FitzHugh-Nagumo equation [4]

∂u

∂t
=
∂2u

∂x2
+ u(u− 1)(1− u), x ∈ (1, 5), t ∈ (0, 1], (37)

that is solved subject to the boundary conditions

u(1, t) =
1

2

[
1− coth

( −1

2
√

2
+
t

4

)]
, u(5, t) =

1

2

[
1− coth

( −5

2
√

2
+
t

4

)]
, t > 0, (38)

and initial condition

u(x, 0) =
1

2

[
1− coth

( −x
2
√

2

)]
. (39)

The exact solution is given in [8] as

u(x, t) =
1

2

[
1− coth

( −x
2
√

2
+
t

4

)]
. (40)

We remark that Example 3 is chosen to emphasize the fact that the benefits of the proposed method

may not be manifested in problems that are defined over small computational domains.

3. Method of solution for systems of parabolic PDEs

In this section, we present an extension of the numerical scheme that was described in the

previous section to now include systems of nonlinear partial differential equations of boundary

layer flow type. The numerical scheme is illustrated in the examples given below.
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Example 4. Consider a system of two equations that describe the problem of steady two-dimensional

laminar free convection flow past a non-isothermal porous cone with variable surface temperature.

The governing non-similarity system of partial differential equations are given in the dimensionless

form by Hussain et al. [30] as

f ′′′ +
n+ 7

4
ff ′′ − n+ 1

2
f ′2 + θ + ξf ′′ =

1− n
4

ξ

(
f ′
∂f ′

∂ξ
− f ′′∂f

∂ξ

)
, (41)

1

Pr
θ′′ +

n+ 7

4
fθ′ − nf ′θ + ξθ′ =

1− n
4

ξ

(
f ′
∂θ

∂ξ
− θ′∂f

∂ξ

)
, (42)

where Pr = ν
α is the Prandtl number, n is the temperature gradient, ξ is the dimensionless suction

parameter and the primes denote differentiation with respect to the similarity variable η. The

appropriate corresponding boundary conditions are

f(0, ξ) = 0, f ′(0, ξ) = 0, θ(0, ξ) = 1, f ′(∞, ξ) = 0, θ(∞, ξ) = 0. (43)

The skin friction coefficient Cfx and the Nusset number Nux describe the shear-stress and the heat

flux rate at the surface, respectively, and are defined in [40] as

CfxGr
1/4
x = f ′′(ξ, 0),

Nux

Gr
1/4
x

= −θ′(ξ, 0). (44)

For convenience, Eq.(41) and Eq.(42) are first expressed in the form

G = G

(
f ′′′, f ′′, f ′, f,

∂f ′

∂ξ
,
∂f

∂ξ
, θ

)
= 0, and H = H

(
f ′, f,

∂f

∂ξ
, θ′′, θ′, θ,

∂θ

∂ξ

)
= 0, (45)

respectively, where G and H are nonlinear operators acting on the entities inside the parenthesis.

The linearized QLM scheme that can be used to approximate the solution at the (s+1)-th iteration

level is given by the coupled system

α0,sf
′′′
s+1 + α1,sf

′′
s+1 + α2,sf

′
s+1 + α3,sfr+1 + α4,s

∂f ′s+1

∂ξ
+ α5,s

∂fs+1

∂ξ
+ α6,sθs+1 = R1,s, (46)

β0,sf
′
s+1 + β1,sfs+1 + β2,s

∂fs+1

∂ξ
+ β3,sθ

′′
s+1 + β4,sθ

′
s+1 + β5,sθs+1 + β6,s

∂θs+1

∂ξ
= R2,s, (47)
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where

α0,s =
∂G

∂f ′′′s
= 1, α1,s =

∂G

∂f ′′s
=
n+ 7

4
fs + ξ +

1− n
4

ξ
∂fs
∂ξ

, α2,s =
∂G

∂f ′s
= −(n+ 1)f ′s −

1− n
4

ξ
∂f ′s
∂ξ

,

α3,s =
∂G

∂fs
=
n+ 7

4
f ′′s , α4,s =

∂G

∂
(
f ′
s

∂ξ

) = −1− n
4

ξf ′s, α5,s =
∂G

∂
(
fs
∂ξ

) =
1− n

4
ξf ′′s , α6,s =

∂G

∂θs
= 1,

β0,s =
∂H

∂f ′s
= −nθs −

1− n
4

ξ
∂θs
∂ξ

, β1,s =
∂H

∂fs
=
n+ 7

4
θ′s, β2,s =

∂H

∂ ∂fs∂ξ
=

1− n
4

ξθ′s, β3,s =
∂H

∂θ′′s
=

1

Pr
,

β4,s =
∂H

∂θ′s
=
n+ 7

4
fs + ξ +

1− n
4

ξ
∂fs
∂ξ

, β5,s =
∂H

∂θs
= −nf ′s, β6,s =

H

∂
(
∂θs
∂ξ

) = −1− n
4

ξf ′s,

R1,s =
n+ 7

4
fsf

′′
s −

n+ 1

2
f ′

2
s −

1− n
4

ξ

(
f ′
∂f ′s
∂ξ
− f ′′s

∂fs
∂ξ

)
,

R2,s =
n+ 7

4
fsθ

′
s − nf ′sθs −

1− n
4

ξ

(
f ′
∂θs
∂ξ
− θ′s

∂fs
∂ξ

)
.

In the solution process, the semi-infinite domain [0,∞) in η is first truncated into a finite domain

[0, Lx] where Lx is taken to be large enough to approximate conditions at infinity. The truncated

domain in η is then decomposed into smaller overlapping subintervals as illustrated in variable x,

Eq.9, for the case of a single nonlinear equation. The domain in ξ is decomposed into smaller

non-overlapping grids, just as demonstrated in t, Eq.6. The initial conditions for this problem at

ξ = 0 can be found by solving the equations

f ′′′ +
n+ 7

4
ff ′′ − n+ 1

2
f ′2 + θ = 0, (48)

1

Pr
θ′′ +

n+ 7

4
fθ′ − nf ′θ = 0, (49)

subject to the boundary conditions

f(0, 0) = 0, f ′(0, 0) = 0, θ(0, 0) = 1, f ′(∞, 0) = 0, θ(∞, 0) = 0. (50)

We denote the solutions at the k-th subinterval in ξ by
(k)

f (η, ξ) and
(k)

θ (η, ξ). Applying the continuity

conditions
(k)

f (η, ξk−1) =
(k−1)

f (η, ξk−1),
(k)

θ (η, ξk−1) =
(k−1)

θ (η, ξk−1),

to obtain the initial conditions for k = 2, 3, . . . , p, subintervals in ξ, the multidomain approach is

applied on the QLM scheme Eq.(46) and Eq.(47). Thus we must solve

(k)
α0,s

(k)

f ′′′s+1 +
(k)
α1,s

(k)

f ′′s+1 +
(k)
α2,s

(k)

f ′s+1 +
(k)
α3,s

(k)

fs+1 +
(k)
α4,s

∂
(k)

f ′s+1

∂ξ
+

(k)
α5,s

∂
(k)

fs+1

∂ξ
+

(k)
α6,s

(k)

θs+1 =
(k)

R1,s,
(51)
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(k)

β0,s

(k)

f ′s+1 +
(k)

β1,s

(k)

fs+1 +
(k)

β2,s
∂

(k)

fs+1

∂ξ
+

(k)

β3,s

(k)

θ′′s+1 +
(k)

β4,s

(k)

θ′s+1 +
(k)

β5,s

(k)

θs+1 +
(k)

β6,s
∂

(k)

θs+1

∂ξ
=

(k)

Rs,s,
(52)

subject to the boundary conditions

(k)

fs+1(0, ξ) = 0,
(k)

f ′s+1(0, ξ) = 0,
(k)

θs+1(0, ξ) = 1,
(k)

f ′s+1(∞, ξ) = 0,
(k)

θs+1(∞, ξ) = 0. (53)

Applying spectral collocation, Eq.(51) and Eq.(52) can be converted into a 2Nt(r + 1) system of

linear equation in 2Nt(r + 1) unknowns as

[
(k)
α0,sD

3 +
(k)
α1,sD

2 +
(k)
α2,sD +

(k)
α3,s

]
(k)

F i,s+1 +
(k)
α4,s

Nt−1∑

j=0

di,jD
(k)

F j,s+1 +
(k)
α5,s

Nt−1∑

j=0

di,j
(k)

F j,s+1

+
(k)
α6,s

(k)

Θi,s+1 =
(k)

R1,i,s −
(k)
α4,sdi,NtD

(k)

FNt,s+1 −
(k)
α5,sdi,Nt

(k)

FNt,s+1,

(54)

[
(k)

β0,sD +
(k)

β1,s

]
(k)

F i,s+1 +
(k)

β2,s

Nt−1∑

j=0

di,j
(k)

F j,s+1 +

[
(k)

β3,sD
2 +

(k)

β4,sD +
(k)

β5,s

]
(k)

Θi,s+1

+
(k)

β6,r

Nt−1∑

j=0

di,j
(k)

Θj,s+1 =
(k)

R2,i,s −
(k)

β2,sdi,Nt

(k)

FNt,s+1 −
(k)

β6,sdi,Nt

(k)

ΘNt,s+1,

(55)

or compactly as

(i)

A1,1

(k)

F i,s+1 +
(k)
α4,s

Nt∑

j=0

di,jD
(k)

F j,s+1 +
(k)
α5,s

Nt∑

j=0

di,j
(k)

F j,s+1 +
(i)

A1,2

(k)

Θi,s+1 =
(k)

B1,i,s, (56)

(i)

A2,1

(k)

F i,s+1 +
(k)
α5,s

Nt∑

j=0

di,j
(k)

F j,s+1 +
(i)

A2,2

(k)

Θi,s+1 +
(k)

β6,s

Nt∑

j=0

di,j
(k)

Θj,s+1 =
(k)

B2,i,s, (57)

where

(i)

A1,1 =
(k)
α0,sD

3 +
(k)
α1,sD

2 +
(k)
α2,sD +

(k)
α3,s,

(i)

A1,2 =
(k)
α6,sI,

(i)

A2,1 =
(k)

β0,sD +
(k)

β1,s,
(i)

A2,2 =
(k)

β3,sD
2 +

(k)

β4,sD +
(k)

β5,s,

(k)

B1,i,s =
(k)

R1,i,s −
(k)
α4,sdi,NtD

(k)

FNt,s+1 −
(k)
α5,sdi,Nt

(k)

FNt,s+1,

(k)

B2,i,s =
(k)

R2,i,s −
(k)

β2,sdi,Nt

(k)

FNt,s+1 −
(k)

β6,sdi,Nt

(k)

ΘNt,s+1.

(58)

The boundary conditions given in Eq.(53) when evaluated at the collocation points, give

(k)

fs+1(ηr, ξi) = 0,

r∑

p=0

Dr,p

(k)

fs+1(ηp, ξi) = 0,
(k)

θs+1(ηr, ξi) = 1,

r∑

p=0

D0,p

(k)

fs+1(ηp, ξi) = 0,
(k)

θs+1(η0, ξi) = 0.

(59)
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Here F and Θ are vectors of size r + 1 that are defined just as vector Ū in Eq.(25) . The scheme

described above can be extended to a system of three or more equations in a straightforward

manner.

Example 5. For a system of three equations, we consider the problem of natural convection

boundary layer flow, influenced by the combined buoyancy forces of mass and thermal diffusion from

a permeable vertical flat surface with non-uniform surface temperature and non-uniform surface

species concentration, but with a uniform rate of suction of fluid through the permeable surface.

The problem is governed by the non-similarity system of equations given in dimensionless form in

[40] as

f ′′′ +
n+ 3

4
ff ′′ − n+ 1

2
f ′2 + ξf ′′ + (1− w)g + wh =

1− n
4

ξ

[
f ′
∂f ′

∂ξ
− f ′′∂f

∂ξ

]
, (60)

1

Pr
g′′ +

n+ 3

4
fg′ + ξg′ =

1− n
4

ξ

[
f ′
∂g

∂ξ
− g′∂f

∂ξ

]
, (61)

1

Sc
h′′ +

n+ 3

4
fh′ + ξh′ =

1− n
4

ξ

[
f ′
∂h

∂ξ
− h′∂f

∂ξ

]
. (62)

Here, f , g, h, are the non-dimensional stream function, temperature function and concentration

function, respectively; η is the pseudo-similarity variable and ξ is the transpiration parameter and

the primes denote differentiation with respect to η. The boundary conditions appropriate to the

above equations are;

f(0, ξ) = f ′(0, ξ) = 0, g(0, ξ) = h(0, ξ) = 1,

f ′(∞, ξ) = g(∞, ξ) = h(∞, ξ) = 0.
(63)

In Eq.(60), w is the measure of relative importance of solutal and thermal diffusion in causing the

density changes that drive the flow.

4. Results and discussion

In this section, numerical results that are obtained after solving Examples 1 to 5 using the

multidomain spectral collocation method are presented and discussed in tabular and graphical

forms. The numerical schemes were implemented in MatLab 2017b and 5 iterations were used

for the nonlinear problems. To demonstrate the superiority of the proposed method in terms of

accuracy, absolute errors obtained with the multidomain approach are compared with the equivalent
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absolute errors obtained when the spectral collocation method is applied on a single domain. The

absolute errors are computed at selected grid points in x and t for Examples 1 to 3 and are defined

by

Ei,j =

∣∣∣∣
a
U(xi, tj)− U(xi, tj)

∣∣∣∣ . (64)

Here
a
U and U denote the spectral approximation and the analytic solution, respectively. Further, to

show the advantages of adopting the multidomain approach, we determine the effect of increasing

the number of subintervals in both x and t directions, as opposed to incrementing the number

of grid points on a single large domain. This investigation is aimed at relating the size of the

resulting linear system of equations to the condition numbers of the associated coefficient matrices

and thereby predicting the magnitude of the CPU time that the proposed method of solution would

take to realize results. The condition number of a matrix A is invoked using the MatLab built-in

command cond (A).

The numerical results obtained from spectral approximation of Eq.(29) using the multidomain

spectral collocation method are given in Table 1. Results indicate that the method is very accurate,

as shown by the absolute errors of order 10−14 being registered. The algorithm is executed over a

short CPU time as results are generated within a fraction of a second.

The results obtained from approximating the solution of Eq.(33) are given in Tables 2 and 3.

Table 2 shows the results generated when multidomain spectral collocation method is applied

whereas Table 3 presents the results obtained when the single domain based approach namely, the

bivariate spectral collocation method, is used. The number of grid points over the entire interval

is kept constant. It is evident that the results obtained when using the multidomain approach

are more accurate than those realized with the single domain approach, as approximation errors

of order 10−12 and 10−08, respectively, are recorded. Additionally, we notice that a shorter CPU

time is required when the multidomain approach is adopted. This is attributed to the fact that

decomposing the domain into smaller subintervals and consequently reducing the number of grid

points per subinterval shrinks the size of the coefficient matrix at each subinterval and thus shorter

time is needed to invert them. The use of a few numbers of grid points at each subinterval also

reduces the effects of roundoff errors that are associated with approximating functions with an

interpolating polynomial of higher degrees. Furthermore, small-sized matrices are also advantageous

as they are well conditioned and this renders a well-posed problem ensuring that stable results are

obtained [41].
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Tables 4 and 5 give the numerical results obtained when approximating the solution of Eq.(37)

using the proposed multidomain spectral collocation method. In Table 4, there are 5 subintervals

and 20 grid points are used in the space variable x; for Table 5, we used 10 subintervals with 10

grid points each. Contrary to the results displayed in Table 2 and 3, in this particular case, the

use of many subintervals deteriorates the accuracy of the spectral approximation. This can be

attributed to the fact that the spatial domain in Example 3 is small, b− a = 4. In this particular

case, increasing the number of subintervals at the expense of the number of grid points is not

advantageous as it translates into approximating a function using an interpolating polynomial of

a very low degree. However, we observe that in both cases the difference in sizes of the coefficient

matrix is insignificant. This is because the size of the matrix is a function of both the number of

spatial subintervals q and the number of grid points Nx at each of these subintervals. We remark

that this unforeseen difference in matrix dimension is linked to the number of common nodes that

are discarded when assembling the spatial differentiation matrix in the multidomain overlapping

grids based approach.

For the boundary layer flow problem in Example 4, the results are presented in terms of the local

skin friction and local Nusselt number for different values of ξ. The numerical values of local skin

friction and local Nusselt number are depicted in Table 6 for Pr = 0.7, n = 0 and they show a

similar trend to those obtained in [30]. We observe that the values of skin friction values decrease

as ξ increases. From Table 6 it can be seen that the values of the local Nusselt number increase

with the increasing values of the suction parameter ξ. The accuracy of the numerical scheme for

a system of PDEs is assessed by considering the residual error profiles at different iteration levels.

The residual error for f and θ equations is evaluated, respectively, as

|Gs+1|∞ , and |Hs+1|∞ , (65)

where G and H are as defined in Eq.(45) when evaluated at the collocation points. The residual

error profiles, as displayed in Figure 1, suggest that the numerical scheme is very accurate and that

convergence occurs after the 4th iteration.

Finally, to dissect the numerical results for the boundary layer flow problem given in Example

5, the effect of the transpiration parameter ξ on the dimensionless velocity, f ′(η, ξ), the dimen-

sionless temperature g(η, ξ), and the dimensionless concentration h(η, ξ) in the flow field is shown

graphically. Figures 2 and 4 show, the values of the dimensionless velocity, temperature and con-

centration, respectively, against the similarity variable η for different values of the transpiration
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parameter ξ = 5, 10, 15, 20, 25, and 30 with Pr = 0.72, w = 1/3, n = 0 and Sc = 0.94. We remark

that the value Sc = 0.94 signifies the presence of carbon dioxide as the chemical species. From

Figure 2 it can be observed that the velocity profiles decrease with an increase of transpiration

parameter ξ. It can also be seen that for each value of the transpiration parameter ξ there exist

local maximum values of velocity in the boundary layer region. From Figure 3 and Figure 4, we

see that owing to increase of the values of transpiration parameter ξ both the temperature and

concentration decrease. These results are in agreement with those of Hussain and Paul [40].

Table 1: Absolute error values obtained when Example 1 is solved on multiple domains: Nx = 20, q = 5, Nt =

10, p = 10.

t

x 2.0 4.0 6.0 8.0

0.0247 1.33227e-015 1.01030e-014 1.05471e-014 5.77316e-015

4.0934 4.25215e-014 1.15602e-014 2.21004e-015 8.50015e-016

8.2092 8.63754e-014 2.30649e-014 4.78437e-015 8.36570e-016

12.3690 1.29452e-014 3.40006e-014 6.84175e-015 1.22732e-015

16.5689 1.92735e-014 4.61853e-014 8.52096e-015 1.31492e-015

CPU time (sec) 0.612198 Matrix Size 970×970 Cond Number 6.6254e+003

Table 2: Absolute error values obtained when Example 2 is solved on multiple domains: Nx = 20, q = 5, Nt =

10, p = 10.

t

x 2.0 4.0 6.0 8.0

0.0247 1.27898e-013 1.55431e-014 3.65263e-014 4.66294e-015

4.0934 3.17268e-012 2.87881e-013 8.21565e-015 1.08802e-014

8.2092 2.57208e-012 1.17450e-012 6.35048e-014 6.88338e-015

12.3690 3.05943e-013 4.66849e-014 1.12266e-012 2.50910e-014

16.5689 1.95508e-014 5.72674e-013 3.03307e-012 1.06271e-012

CPU time (sec) 7.304909 Matrix Size 970×970 Cond Number 7.2791e+003
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Table 3: Absolute error values obtained when Example 2 is solved on a single domain: Nx = 100, q = 1, Nt =

100, p = 1.

t

x 2.0 4.0 6.0 8.0

0.0247 6.41265e-009 5.62239e-009 1.34481e-009 2.44027e-009

4.0934 8.37108e-011 4.13558e-010 1.26998e-012 3.33289e-010

8.2092 3.05311e-012 4.10783e-012 8.32667e-012 1.10125e-008

12.3690 4.75314e-012 2.85327e-011 6.15064e-011 1.43219e-011

16.5689 3.45154e-011 9.77239e-011 2.90989e-010 7.44960e-011

CPU time (sec) 453.126036 Matrix Size 10100×10100 Cond Number 5.4326e+008

Table 4: Absolute error values obtained when Example 3 is solved on multiple domains: Nx = 20, q = 5, Nt =

10, p = 5.

t

x 0.2 0.4 0.6 0.8

1.4649 9.87432e-013 4.31388e-012 1.21436e-012 4.47731e-012

2.3252 4.10338e-013 3.31291e-013 2.75113e-013 5.81757e-014

3.1825 5.83977e-014 4.68514e-014 1.26343e-013 3.93685e-013

4.0353 7.18536e-013 9.76996e-015 1.01830e-012 2.28217e-012

4.8823 3.25540e-012 1.29252e-012 9.20575e-012 3.28981e-012

CPU time (sec) 3.919302 Matrix Size 970×970 Cond Number 2.1610e+005

Table 5: Absolute error values obtained when Example 3 is solved on multiple domain: Nx = 10, q = 10, Nt =

10, p = 5.

t

x 0.2 0.4 0.6 0.8

1.4649 4.80942e-011 2.47637e-010 1.61166e-009 1.50184e-008

2.3252 7.77756e-012 4.67542e-011 2.63619e-010 2.00697e-009

3.1825 2.47358e-013 3.48788e-012 2.01479e-011 1.24099e-010

4.0353 7.79377e-014 7.28306e-014 1.23390e-012 8.24474e-012

4.8823 3.01759e-013 1.22102e-012 1.64313e-013 4.37206e-013

CPU time (sec) 3.379178 Matrix Size 920×920 Cond Number 5.1185e+004
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Table 6: Numerical values of local skin friction f ′′(0, ξ), and local Nusselt number −θ′(0, ξ) for different values of ξ

for Example 4 using Nx = 50, q = 5, Nt = 5, p = 40, Lx = 20, , P r = 0.7, n = 0.5, Iterations= 5

Multiple Domains Solution

ξ f ′′(0, ξ) −θ′(0, ξ)

5 0.2842719 3.5066677

10 0.1428115 7.0008399

15 0.0952321 10.5002490

20 0.0714271 14.0001050

25 0.0571424 17.5000538

30 0.0476189 21.0000311
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Figure 1: Residual error profile against the number of iterations
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Figure 2: Velocity profile at different values of ξ
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Figure 3: Temperature profile at different values of ξ
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Figure 4: Concentration profile at different values of ξ

4.1. Error bounds theorems in bivariate polynomial interpolation

In this subsection, we present new error bound theorems and proofs emanating from bivariate

polynomial interpolation using Chebyshev-Gauss-Lobatto nodes on single and decomposed do-

mains. The error bound theorems given herein form the basis for theoretical argument as to why

multidomain approaches are most suitable when approximating the solutions of partial differential

equations that are defined over large domains. We note that CGL nodes are the relative extremes of

the Nx-th degree Chebyshev polynomial of the first kind, TNx(x̂) = cos [Nx arccos(x̂)] , x̂ ∈ [−1, 1].

To the best of our knowledge, there does not exist a well-known family of polynomials whose roots

are the CGL nodes. However, if we think of the interior CGL nodes as the roots of T ′Nx
(x̂) = 0,

one would recognize that a complete set of the CGL nodes can be obtained from the roots of the

(Nx + 1)th degree polynomial given by

LNx+1(x̂) = (1− x̂2)T ′Nx
(x̂). (66)

Below, we state a theorem that acts as a benchmark in formulating error bound theorems on

bivariate polynomial interpolation.
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Theorem 1. [42] Let u(x, t) ∈ CNx+Nt+2([a, b] × [0, T ]) be sufficiently smooth such that at least

the (Nx + 1)th partial derivative with respect to x, (Nt + 1)th partial derivative with respect to t and

(Nx +Nt + 2)th mixed partial derivative with respect to x and t exists and are all continuous, then

there exist values ξx, ξ
′
x ∈ (a, b), and ξt, ξ

′
t ∈ (0, T ), such that

u(x, t)− U(x, t) =
∂Nx+1u(ξx, t)

∂xNx+1(Nx + 1)!

Nx∏

i=0

(x− xi) +
∂Nt+1u(x, ξt)

∂tNt+1(Nt + 1)!

Nt∏

j=0

(t− tj)

− ∂Nx+Nt+2u(ξ′x, ξ
′
t)

∂xNx+1∂tNt+1(Nx + 1)!(Nt + 1)!

Nx∏

i=0

(x− xi)
Nt∏

j=0

(t− tj),
(67)

where U(x, t) is a bivariate interpolating polynomial of u(x, t) at {xi}Nx
i=0 grid points in x-variable

and {tj}Nt
j=0 grid points in t-variable.

A result similar to Eq.(67) was reproduced by Bhrawy in [43]. Taking the absolute value of Eq.(67)

we obtain

|u(x, t)− U(x, t)| ≤ max
(x,t)∈Ω

∣∣∣∣
∂Nx+1u(ξx, t)

∂xNx+1

∣∣∣∣

∣∣∣∣∣
Nx∏

i=0

(x− xi)
∣∣∣∣∣

(Nx + 1)!
+ max

(x,t)∈Ω

∣∣∣∣
∂Nt+1u(x, ξt)

∂tNt+1

∣∣∣∣

∣∣∣∣∣∣

Nt∏

j=0

(t− tj)

∣∣∣∣∣∣
(Nt + 1)!

+ max
(x,t)∈Ω

∣∣∣∣
∂Nx+Nt+2u(ξ′x, ξ

′
t)

∂xNx+1∂tNt+1

∣∣∣∣

∣∣∣∣∣
Nx∏

i=0

(x− xi)
∣∣∣∣∣

∣∣∣∣∣∣

Nt∏

j=0

(t− tj)

∣∣∣∣∣∣
(Nx + 1)!(Nt + 1)!

,

(68)

where Ω = [a, b] × [0, T ]. Since the function u(x, t) is assumed to be smooth on the interval of

approximation, it follows that its derivatives are bounded and thus ∃ constants C1, C2 and C3,

such that

max
(x,t)∈Ω

∣∣∣∣
∂Nx+1u(x, t)

∂xNx+1

∣∣∣∣ ≤ C1, max
(x,t)∈Ω

∣∣∣∣
∂Nt+1u(x, t)

∂tNt+1

∣∣∣∣ ≤ C2, max
(x,t)∈Ω

∣∣∣∣
∂Nx+Nt+2u(x, t)

∂xNx+1∂tNt+1

∣∣∣∣ ≤ C3. (69)

4.1.1. Error bound theorem on a single domain

The error bound for bivariate polynomial interpolation using Gauss-Lobatto nodes on a single

domain is governed by the theorem below,

Theorem 2 (Error bound in a single domain). The resulting error bound when CGL grid

points {xi}Nx
i=0 ∈ [a, b], in x-variable, and {tj}Nt

j=0 ∈ [0, T ], in t-variable, are used in bivariate

polynomial interpolation is given by

E(x, t) ≤ C1
8
(
b−a

4

)Nx+1

(Nx + 1)!
+ C2

8
(
T
4

)Nt+1

(Nt + 1)!
+ C3

82
(
b−a

4

)Nx+1 (T
4

)Nt+1

(Nx + 1)!(Nt + 1)!
. (70)
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Proof. First, using the relation stated in [44] we express Eq.(66) as

LNx+1(x̂) = (1− x̂2)T ′Nx
(x̂) = −Nxx̂TNx(x̂) +NxTNx−1(x̂). (71)

Using the triangle inequality and noting that |TNx(x̂)| ≤ 1, ∀ x̂ ∈ [−1, 1], we have

|LNx+1(x̂)| = | −Nxx̂TNx(x̂) +NxTNx−1(x̂)| ≤ | −Nxx̂TNx(x̂)|+ |NxTNx−1(x̂)| ≤ 2Nx. (72)

The leading coefficient of LNx+1(x̂) is 2Nx−1Nx, where the components 2Nx−1 and Nx come, re-

spectively, from the leading coefficient of TNx(x̂) and the application of Nx-th rule of differentiation

on TNx(x̂). The product factor in the first term of the error bound expression given at Eq.(68) can

therefore be taken as the factorized form of monic polynomial
LNx+1(x̂)

2Nx−1Nx
. We write,

Nx∏

i=0

(x̂− x̂i) =
LNx+1(x̂)

2Nx−1Nx
, x̂ ∈ [−1, 1]. (73)

Using Eq.(72), it is easy to establish that the monic polynomial Eq.(73) is bounded by

∣∣∣∣∣∣

Nx∏

j=0

(x− x̂i)

∣∣∣∣∣∣
=

∣∣∣∣
LNx+1(x̂)

2Nx−1Nx

∣∣∣∣ ≤
2Nx

2Nx−1Nx
=

4

2Nx
. (74)

Considering a general interval x ∈ [a, b], we can show that the first product factor in Eq.(68) is

bounded by

max
a≤x≤b

∣∣∣∣∣
Nx∏

i=0

(x− xi)
∣∣∣∣∣ = max

−1≤x̂≤1

∣∣∣∣∣
Nx∏

i=0

(b− a)

2
(x̂− x̂i)

∣∣∣∣∣ =

(
b− a

2

)Nx+1

max
−1≤x̂≤1

∣∣∣∣∣
Nx∏

i=0

(x̂− x̂i)
∣∣∣∣∣

=

(
b− a

2

)Nx+1

max
−1≤x̂≤1

∣∣∣∣
LNx+1(x̂)

2Nx−1Nx

∣∣∣∣ ≤
4
(
b−a

2

)Nx+1

2Nx
= 8

(
b− a

4

)Nx+1

.

(75)

Similarly, the second product factor is bounded above by

max
0≤t≤T

∣∣∣∣∣∣

Nt∏

j=0

(t− tj)

∣∣∣∣∣∣
=

(
T

2

)Nt+1

max
−1≤t̂≤1

∣∣∣∣
LNt+1(t̂)

2Nt−1Nt

∣∣∣∣ ≤
4
(
T
2

)Nt+1

2Nt
= 8

(
T

4

)Nt+1

. (76)

Using Eq.(75), Eq.(76), and Eq.(69) in Eq.(68) the proof is completed.

4.1.2. Error bound theorem on multiple domains

Here, we extend the bivariate polynomial interpolation error bound Theorem 2 to obtain its

variant on a decomposed domain. In the description, it is assumed that the number of grid points

is the same for all subintervals in either space or time direction.
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Theorem 3 (Error bound in the decomposed domain). The error bound when Chebyshev

Gauss-Lobatto grid points {xi}Nx
i=0 ∈ [xl−1, x̄l], l = 1, 2, . . . , q, for the decomposed domain in x-

variable, and {tj}Nt
j=0 ∈ [tk−1, tk], k = 1, 2, . . . , p, for the decomposed domain in t-variable, are used

in bivariate polynomial interpolation is given by

E(x, t) ≤ C1
8
(
L
4

)Nx+1

(Nx + 1)!
+ C2

8
(
T
4

)Nt+1

(Nt + 1)!

(
1

p

)Nt+1

+ C3
82
(
L
4

)Nx+1 (T
4

)Nt+1

(Nx + 1)!(Nt + 1)!

(
1

p

)Nt+1

. (77)

Proof. First, we consider the t variable. In the entire domain [0, T ], we have that
∣∣∣∣∣∣

Nt∏

j=0

(t− tj)

∣∣∣∣∣∣
≤ 8

(
T

4

)Nt+1

, t ∈ [0, T ]. (78)

The implication is that in the decomposed domain and at each subinterval, we must have
∣∣∣∣∣∣

Nt∏

j=0

(t− tj)

∣∣∣∣∣∣
≤ 8

(
T

4p

)Nt+1

= 8

(
T

4

)Nt+1(1

p

)Nt+1

, t ∈ [tk−1, tk]. (79)

For smooth u, there exists ξµ ∈ (tµ−1, tµ), µ = 1, 2, . . . , p, for which the values of (Nt + 1)th partial

derivative of u with respect to t in each subinterval is the absolute extrema. This enables us to

break the second term C2
8(T

4 )
Nt+1

(Nt+1)! , which appears in the error bound expression at Eq.(70), into

different components that are necessarily not equal in the decomposed domain as

{
(k)

C 2
8
(
T
4

)Nt+1

(Nt + 1)!

(
1

p

)Nt+1
}p

k=1

, (80)

where

max
(x,t)∈Ω

∣∣∣∣
∂Nt+1u(x, t)

∂tNt+1

∣∣∣∣ =

∣∣∣∣
∂Nt+1u(x, ξk)

∂tNt+1

∣∣∣∣ ≤
(k)

C 2, t ∈ [tk−1, tk].

We define

‖ Ĉ2 ‖∞≡ max{
(1)

C 2,
(2)

C 2, . . . ,
(p)

C 2}, (81)

to denote the maximum absolute value of (Nt + 1)th partial derivative of u with respect to t in

[0, T ]. Clearly, ‖ Ĉ2 ‖∞= C2, where C2 is identical to the one given at Eq.(70). To expand the

error bound over the entire t domain, we shall take the largest possible error across all subintervals

in t, which is

C2
8
(
T
4

)Nt+1

(Nt + 1)!

(
1

p

)Nt+1

. (82)

In a similar manner, we can show that the first component in the error bound Eq.(70) in the

decomposed domain translates to

C1
8
(
L
4

)Nx+1

(Nx + 1)!
, (83)
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where L is the length of each subinterval in space variable, as defined at Eq.(14), and
(
L
4

)Nx+1
<<

(
b−a

4

)Nx+1
for a large number of subintervals q. Consequently, the third component

in Eq.(70) becomes

C3
82
(
L
4

)Nx+1 (T
4

)Nt+1

(Nx + 1)!(Nt + 1)!

(
1

p

)Nt+1

, (84)

in the multi-domain approach. Using the results at Eq.(82), Eq.(83), and Eq.(84) in Eq.(70)

completes the proof.

Comparing Eq.(70) and Eq.(77) we note that the error in bivariate polynomial interpolation is

smaller when interpolation is conducted on multiple domains than when conducted on a single

domain. We reveal that when using spectral collocation methods to solve initial-boundary value

problems, CGL nodes are preferable candidates for interpolation, because they are convenient in

constructing differentiation matrices due to their containing the boundary nodes. This is advanta-

geous when treating the boundary conditions of the problem.

5. Conclusion

In this work, we have described the multidomain spectral collocation method for solving parabolic

PDEs that are defined on large space and time intervals. The superiority of the current method

has been demonstrated by presenting numerical results for well known evolutionary parabolic PDEs

that are defined over large domains. It has been confirmed that the results obtained using the mul-

tidomain spectral collocation method are very accurate and such accuracy is realized with short

CPU time. This contrasts with, a single domain approach, which leads to accuracy deterioration

when the computational domain is large. The short CPU time that is required in the multidomain

approach is linked to the small-sized matrices, which are easy to invert. Improved accuracy is

attributed to the small condition numbers of the coefficient matrices. The present results have

also been compared against results in the literature and a good agreement is observed. Further,

to show that the proposed method is well suited for problems defined over large domains, we have

applied the multidomain spectral collocation to a problem defined over a small interval and the

results suggest that the multidomain approaches are not fit for such applications. Owing to the

performance reliability of the proposed method, the general numerical scheme can be extended to

solve many practical problems in real life that are modeled by parabolic PDEs defined on large

intervals, as demonstrated by the case of boundary layer flow problems. The preference for the
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CGL nodes as the choice of interpolation nodes have been backed up by rigorous proofs of new

error bound theorems.
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Chapter 5

A Modified Spectral Collocation

Method of Solution for

Two-Dimensional Elliptic PDEs

In this chapter, we develop a spectral collocation solution-based approach for solving two-dimensional

elliptic PDEs. This is an extension of the discussion of the solution techniques for one-dimensional

PDEs considered in Chapters 3 and 4. The solution algorithm involves the decomposition of a

large computational domain in each space variable into a sequence of overlapping grids. We remark

that the current method of solution is applicable to solving many classes of two-dimensional elliptic

PDEs, including those in two-dimensional steady fluid dynamics problems formulated on rectan-

gular cavities. However, in the present study, the proposed method is tested on typical examples

of elliptic PDEs that have been reported in the literature. The numerical results show a good

agreement. Error bound theorems presented in this chapter with proofs, due to the decomposi-

tion of the spatial domains confirm the theory explaining the benefit of the proposed numerical

method of solution. Numerical results show that the proposed method of solution is accurate and

computationally efficient when applied to solve nonlinear elliptic PDEs defined on large spatial

domains.
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Abstract

Spectral collocation methods on a single domain have been proven effective for solving nonlinear

partial differential equations (PDEs) defined on small domains but are inefficient when applied to

solve problems defined on large domains. In this article, an overlapping grid based spectral collo-

cation method, which addresses this limitation, is presented and applied to solve two-dimensional

nonlinear PDEs. The problems considered are nonlinear elliptic PDEs defined on large rectangular

domains. The aim is to demonstrate that solving this class of problems on overlapping grids yields

highly accurate results in a more computationally efficient manner than would the application of a

similar approach on a single domain. The current solution approach involves decomposing the do-

main of approximation into smaller overlapping subintervals of equal length in each space variable.

The PDE is linearized using the quasi-linearization method and bivariate Lagrange interpolating

polynomials are employed to represent the solution in each subinterval. Subsequently, discretiza-

tion is performed on each subinterval using Chebyshev-Gauss-Lobatto (CGL) nodes. Removal of

repeated equations at overlapping regions leads to a linearly independent system of algebraic of

equations that are solved iteratively. We compare our numerical solutions with those obtained using

a single domain spectral collocation method and display results in the tabular and graphical form.

Current numerical results show a good agreement with results published in the literature. Finally,

error bound theorems and proofs have been presented to unfold the theory behind the benefits of

the proposed numerical method of solution.

Keywords: 2D Nonlinear elliptic PDEs, rectangular domains, spectral collocation, overlapping

grids, error bounds, CGL points.
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1. Introduction

Elliptic partial differential equations have numerous applications in almost all areas of mathe-

matics ranging from harmonic analysis to Lie theory, as well as numerous applications in physics.

Elliptic PDEs describe phenomena that do not change with time. Many processes in the applied

sciences that are modeled by elliptic equations present nonlinear problems. However, as reported

by Fedoseyev et al. [1] and in the book on differential equations by Polyanin and Zaitsev [2], non-

linear partial differential equations, and systems of them, exhibit a number of properties associated

with an essential to important features of real-world phenomena, which the mathematical model

is supposed to describe; these complexities lead to new difficulties in the mathematical treatments

of the equations [3]. When dealing with differential equations, the most challenging task is to find

explicit formulas for their solution. However, this can only be done in the simplest situations, which

excludes the strongly nonlinear elliptic PDEs encountered in many real-life applications. The desire

to understand the solutions of these equations has inspired mathematicians to successfully develop

a diverse spectrum of numerical methods for solutions that give sufficiently rigorous answers to im-

portant questions of the nonlinear world [4]. Over time, new methods have given some impressive

results in this area, which has motivated the quest for even more superior methods of solutions.

Notably, at the onset of designing a numerical algorithm for nonlinear differential equations, the

most remarkable features to consider include; the accuracy requirements, the ease of design for the

algorithm and the computational complexity involved during implementation.

In the literature, there are three basic numerical approaches for solving nonlinear elliptic PDEs;

namely, finite differences, finite elements, and the spectral collocation methods [5]. Finite difference

methods use many subdomains and find the discrete solution on a grid by expanding the solution

to low order in each subdomain. Finite difference methods are simple and the coding is easy,

but they are difficult to work with on complicated domains [6]. Avellaneda et al. [7] applied the

finite difference method to solve elliptic PDEs with rapidly oscillating coefficients. Later, Conca

and Natesan [8] provided a better approximation to the solution of these elliptic problems using a

numerical method based on the Bloch wave approach while Chan et al. [9] solved two-dimensional

nonlinear obstacle problems using a generalized finite difference method and there exists a vast

literature on the application of finite difference methods to nonlinear elliptic PDEs in work by

Jensen [10]. Finite element methods, by contrast, are based on partitioning the domain into small
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finite elements followed by expansion of the solution in basis functions [11]. Finite elements methods

are particularly well suited to the irregular domains that appear in many engineering applications;

however, they are more complex to set up and analyze. Hou and Wu [12] introduced a multi-scale

finite element method for elliptic problems in composite materials and porous media. Matatche et

al. [13] proposed a p-finite element method for numerically approximating the solution of nonlinear

elliptic PDEs. Spectral collocation methods approximate solutions to nonlinear PDEs on a single

domain or few subdomains with higher expansion orders of the basis functions. They are generally

fast and highly accurate for problems with smooth solutions. They are, however, not useful on

irregular domains or for problems with discontinuities. Ghimire et al. [14] presented a pseudo-

spectral collocation-based approach to solutions of nonlinear elliptic PDEs using Chebyshev basis

functions. In [15], Yi and Wang proposed a Legendre-Gauss-type collocation algorithm for solving

nonlinear partial differential equations and demonstrated its high accuracy and effectiveness.

Since their inception, spectral collocation methods have gained popularity for the numerical

approximation of the solution of nonlinear PDEs, owing to their superior accuracy. One important

aspect that has been reported in the literature regarding the development of efficient numerical

schemes for solving the boundary value problem using spectral collocation-based methods is the

size of the computational domain. It has been observed that, when the size of the computational

domain is large, many grid points are required to achieve stringently accurate results [16]. The use

of many grid points requires a significant amount of computer memory and CPU time. However,

as highlighted by Don and Solomonoff [17], the use of a large number of grid points does not always

guarantee improved accuracy. Indeed, the opposite happens because increasing the number of

grid points increases the size of the resulting coefficient matrix and, correspondingly, its condition

number, which leads to deteriorating accuracy of the results of the linear system of equations [18].

The most elegant technique that has been used in an attempt to remedy this challenge is the

introduction of multidomain based approaches in the method of solution.

Multidomain spectral collocation methods originate from the pioneering work of Gotltlieb and

Orszag [19] and have been applied to solutions of nonlinear PDEs (see for instance [20]). Despite

much attention on this subject, previous studies on the application of spectral collocation methods

with domain decomposition techniques limited their focus to one-dimensional problems. Where

higher dimensional problems are involved, in an attempt to reduce the computational complexity,

a suitable similarity transformation has been applied to reduce the number of independent variables

before the spectral collocation method with domain decomposition is applied [21]. As an alterna-
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tive, direct application of spectral collocation methods with overlapping grids to higher dimensional

nonlinear problems, and in particular to nonlinear elliptic PDEs emanating from heat and mass

transfer, combustion theory and classical fluid flow problems has traditionally, been viewed as prob-

lematic, due, possibly, to the extent of the anticipated numerical complexity involved in dealing

with overlapping subintervals in different spatial directions. Indeed, with a few noticeable excep-

tions [22, 23], very little work has been done on adopting a purely spectral collocation method with

overlapping grids for the solution of this class of such important problems.

This paper focuses on the direct application of a domain decomposition based spectral colloca-

tion method on two-dimensional nonlinear PDEs defined on large rectangular domains. Preliminar-

ies of the numerical algorithm involve breaking the large computational domain into smaller equal

overlapping subintervals on each space direction. The solution of the PDE is then approximated

using a bivariate Lagrange interpolating polynomial constructed using Chebyshev-Gauss-Lobatto

(CGL) nodes. The linearized PDE is discretized on each subinterval and through careful dis-

lodgement of repeated equations at overlapping regions, a system of linearly independent algebraic

equations is obtained. The numerical scheme is tested using typical nonlinear elliptic PDEs, which

have been reported in the literature and which includes the two dimensional heat and mass transfer

equation with a n-th order volume reaction that arise in combustion theory [24], the stationary

equation of Zabolotskaya and Khokhlov that describes different phenomena in acoustics [25], and a

system of equations representing the problem of heat and mass transfer effects of a steady magneto-

hydromagnetic flow of viscous, electrically conducting fluid past a semi-infinite inclined porous plate

[26]. Numerical simulations confirm that the overlapping grids based approach is highly accurate

and computationally efficient when compared to a single domain approach for the considered class

of problems.

The rest of this paper is organized as follows. In Section 2, we give a detailed description of

the numerical algorithm for the solution to nonlinear elliptic PDEs defined as a single equation.

This novel approach is adapted and extended to systems of nonlinear elliptic equations in Section

3. then Section 4, is devoted to presenting new error bound theorems, and their rigorous proofs

for bivariate interpolating polynomials on overlapping subdomains. These new theorems unveil

the theory behind the benefits of the proposed numerical method of solution. In Section 5, we

present and discuss numerical results for the selected examples. Finally, concluding remarks and

acknowledgment are given in Sections 6 and 7, respectively.
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2. Method of solution for a single nonlinear elliptic PDE

In this section, we describe the solution algorithm for a two-dimensional problem described by

a single nonlinear equation. To do so, we consider a second-order nonlinear elliptic PDE that takes

the form;

F

(
∂2u

∂x2
,
∂2u

∂y2
,
∂2u

∂y∂x
,
∂u

∂x
,
∂u

∂y
, u

)
= h(x, y), (1)

where F is a nonlinear operator operating on u, and its first and second order spatial derivatives

and h is a known function. Eq.(1) is to be solved subject to the Robin boundary conditions

αa1
∂u

∂x
(a, y) + αa0u(a, y) = fa(y), αb1

∂u

∂x
(b, y) + αb0u(b, y) = fb(y),

βc1
∂u

∂y
(x, c) + βc0u(x, c) = gc(x), βd1

∂u

∂y
(x, d) + αd0u(x, d) = gd(x),

(2)

where αa1, α
a
0, α

b
1, α

b
0, β

c
1, β

c
0, β

d
1 , β

d
0 are known constants and fa(y), fb(y), gc(x), gd(x), are

known functions. We note that the Robin boundary conditions in Eq.(2) can be reduced to either

Neumann boundary conditions by setting αa0, α
b
0, β

c
0, β

d
0 to zero or to Dirichlet boundary conditions

by setting αa1, α
b
1, β

c
1, β

d
1 to zero.

The PDE Eq.(1) is first simplified using the quasi-linearization method (QLM) of Bellman and

Kalaba [27]. The QLM is based on the Newton-Raphson method. It is constructed using linear

terms of Taylor series expansion about an initial approximation to the solution, on the assumption

that the difference between solutions at two successive iterations, denoted by us+1−us, is very small.

In particular, the QLM is comparable to the linear approximation of a function of several variables

where the derivatives of the different orders and the previous approximation to the solution assume

the two respective roles of independent variables and of the functional value at the reference point.

Finer details about the linear approximation of functions can be found in any elementary book on

differential calculus. Applying the QLM on Eq.(1) we obtain

β0,s
∂2us+1

∂x2
+ β1,s

∂us+1

∂x
+ β2,sus+1 + β3,s

∂2us+1

∂y∂x
+ β4,s

∂2us+1

∂y2
+ β5,s

∂us+1

∂y
= Rs + h(x, y), (3)

where

β0,s =
∂Fs

∂(uxx)s
, β1,s =

∂Fs
∂(ux)s

, β2,s =
∂Fs
∂us

, β3,s =
∂Fs

∂(uxy)s
, β4,s =

∂Fs
∂(uyy)s

, β5,s =
∂Fs
∂(uy)s

,

Rs = β0,s(uxx)s + β1,s(ux)s + β2,sus + β3,s(uxy)s + β4,s(uyy)s + β5,s(uy)s − Fs.

(4)
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The spatial domain x ∈ [a, b] is decomposed into q overlapping subintervals of equal length as

Λl = [xl−1, x̄l] , xl−1 < xl < x̄l, x0 = a, x̄q = b, l = 1, 2, . . . , q, (5)

where xl < x̄l, depicts the overlapping nature. Pictorially, the above decomposition of the x domain

can be represented as in [28] by

xNx

1
x0
1

Λ1

xNx

3
x0
3

Λ3

xNx

5
x0
5

Λ5

xNx

7
x0
7

Λ7

xNx

2
x0
2

Λ2

xNx

4
x0
4

Λ4

xNx

6
x0
6

Λ6

xNx

8
x0
8

Λ8

Figure 1: Pictorial illustration of decomposition of the x domain into 8 equal overlapping subintervals

The computational domain [xl−1, x̄l] in the lth subinterval is then transformed into x̂ ∈ [−1, 1]

where the standard Chebyshev differentiation matrix is defined by applying the linear map

x̂(x) =
2

x̄l − xl−1

[
x− 1

2
(x̄l + xl−1)

]
, x ∈ [xl−1, x̄l]. (6)

Further, each subinterval is discretized into Nx+1 Chebyshev-Gauss-Lobatto points. The subinter-

vals in the decomposed domain overlap in such a way that the last two points in the Λl subinterval

overlap with the first two points in the Λl+1 subinterval and they remain common. In general, the

set of grid points over the entire x domain can be represented as

{a = x
(1)
Nx
, . . . , x

(1)
1 = x

(2)
Nx
, x

(1)
0 = x

(2)
Nx−1, . . . , x

(l−1)
1 = x

(l)
Nx
, x

(l−1)
0 = x

(l)
Nx−1, . . . , x

(q)
0 = b, 2 ≤ l ≤ q}.

(7)

Similarly, the spatial domain in y variable [c, d] is decomposed into p equal overlapping subintervals

which are further discretized into Ny + 1 collocation points. The subdivision of the computational

domain in y is illustrated by

Γk = [yk−1, ȳk] , yk−1 < yk < ȳk, y0 = c, ȳp = d, k = 1, 2, . . . , p, (8)

and the overlapping nature is analogous to that in x variable. The computational domain [yk−1, ȳk]

in the kth subinterval is transformed into ŷ ∈ [−1, 1] by applying the linear transformation

ŷ(y) =
2

ȳk − yk−1

[
y − 1

2
(ȳk + yk−1)

]
, y ∈ [yk−1, ȳk], (9)
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before spectral collocation is applied. The points in the entire y domain can be represented as

{c = y
(1)
Ny
, . . . , y

(1)
1 = y

(2)
Ny
, y

(1)
0 = y

(2)
Ny−1, . . . , y

(k−1)
1 = y

(k)
Ny
, y

(k−1)
0 = y

(k)
Ny−1, . . . , y

(p)
0 = d, 2 ≤ k ≤ p}.

(10)

We remark that the number of subintervals q in x need not to be equal to the number of subintervals

p in y. The ordering of grid points as illustrated in Eq.(7) and Eq.(10) signifies that the spectral

collocation is done from right to left of the subinterval. The grid points in the kth subinterval in y

and the lth subinterval in x variable are defined in [29] by

{ŷj}Ny

j=0 = cos

(
jπ

Ny

)
, and {x̂i}Nx

i=0 = cos

(
iπ

Nx

)
. (11)

To obtain the explicit expression of the length of each subinterval L = x̄l − xl−1 in x and K =

ȳk − yk−1 in y, in terms of the number of subintervals q and p, respectively, we solve

qL− L (q − 1)

(
1

2
− 1

2
cos

{
π

Nx

})
= b− a, pK −K (p− 1)

(
1

2
− 1

2
cos

{
π

Ny

})
= d− c, (12)

to obtain

L =
b− a

q + (1− q)
(

1
2 − 1

2 cos
{

π
Nx

}) , and K =
d− c

p+ (1− p)
(

1
2 − 1

2 cos
{

π
Ny

}) . (13)

Consequently, we obtain the following relations:

x̄l = xl + L

(
1

2
− 1

2
cos

{
π

Nx

})
, ȳk = yk +K

(
1

2
− 1

2
cos

{
π

Ny

})
. (14)

Eq.(14) is used in defining the boundaries of the overlapping subintervals when performing dis-

cretization.

In the solution process, the approximate solution of the nonlinear elliptic PDE Eq.(1) is assumed

to be a bivariate Lagrange interpolating polynomial that takes the form;

u(x, y) ≈ U(x, y) =

Nx∑

p=0

Ny∑

q=0

U(xp, yq)Lp(x)Lq(y). (15)

The derivative of u with respect to x in the lth subinterval for l = 1, 2, . . . , q, is approximated at

the collocation nodes (x̂i, ŷj), for j = 0, 1, 2, . . . , Ny, as follows

∂u

∂x
(x̂i, ŷj) ≈

l
DUj =

(
2

L

) l

D̂Uj , (16)
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where
l

D̂ =
(
L
2

) l
D is the standard first order Chebyshev differentiation matrix of size (Nx + 1) ×

(Nx + 1) as defined in [29]. The vector Uj is defined as

Uj = [u(x0, yj), u(x1, yj), u(x2, yj , ), . . . , u(xNx , yj)]
T , (17)

where T denotes matrix transpose. The spatial derivative in y in the kth subinterval k = 1, 2, . . . , p,

is approximated at the collocation nodes (x̂i, ŷj), for i = 0, 1, 2, . . . , Nx, as follows

∂u

∂y
(x̂i, ŷj) ≈

Ny∑

q=0

k

D̄j,qUq =

Ny∑

q=0

(
2

K

) k
ˆ̂
Dj,qUq, (18)

where

k
ˆ̂
Dj,q =

(
K
2

) k

D̄j,q, j, q = 0, 1, 2, . . . , Ny, are entries of a standard first order Chebyshev

differentiation matrix of size (Ny + 1) × (Ny + 1). We recognize that the bar in
k

D̄ at Eq.(18)

distinguishes the differentiation matrix in y from that in x,
l

D. The higher order differentiation

matrices with respect to x and y can be obtained using matrix multiplication in Eq.(16) and

Eq.(18), respectively. It is worth noting that L and K appearing in Eq.(16) and Eq.(18), are the

usual lengths of the overlapping subintervals in x and y, respectively, and the simplification arrived

therein employs properties of Lagrange interpolating polynomials. Finally, the mixed second order

derivative of u is approximated as

∂2u

∂x∂y
(x̂i, ŷj) ≈

Ny∑

q=0

k

D̄j,q

[
l

DUq

]
, j, q = 0, 1, 2, . . . , Ny. (19)

The solution in each spatial direction is computed simultaneously across all subintervals and the

multidomain approach is noticeable only when assembling the differentiation matrices. The mul-

tidomain overlapping grids based spectral collocation method is implemented on the linearized

QLM scheme Eq.(3) as detailed below; the first step is to assemble the differentiation matrices in

both space variables. To achieve this, we take the x variable as an example and since the last

two points in the lth subinterval and the first two points in the (l + 1)th subinterval overlap and

remain common, we discard the rows corresponding to the recurrent grid points and assemble the

Chebyshev differentiation matrix D (without the superscript l) for the multidomain approach in x
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as

D =




q

D0,0 . . .
q

D0,Nx−1

q

D0,Nx

q

D1,0 . . .
q

D1,Nx−1

q

D1,Nx

. . .
. . .

. . .
. . .

q

DNx−1,0 . . .
q

DNx−1,Nx−1

q

DNx−1,Nx

. . .
. . .

2
D1,0

2
D1,1 . . .

2
D1,Nx−1

2
D1,Nx

. . .
. . .

. . .
. . .

. . .
2
DNx−1,0

2
DNx−1,1 . . .

2
DNx−1,Nx−1

2
DNx−1,Nx

1
D1,0

1
D1,1 . . .

1
D1,Nx

. . .
. . .

. . .
. . .

1
DNx−1,0

1
DNx−1,1 . . .

1
DNx−1,Nx

1
DNx,0

1
DNx,1 . . .

1
DNx,Nx




.

(20)

Here the empty entries of matrix D are zeros and
l
D represents Chebyshev differentiation matrix

in the lth subinterval in space variable x. The size of matrix D is (δ + 1) × (δ + 1), where δ =

Nx + (Nx − 1)× (q − 1). The differentiation matrix in y is assembled using
k

D̄ in a similar manner

to obtain a matrix D̄ of size (σ + 1) × (σ + 1), where σ = Ny + (Ny − 1) × (p− 1). The second

order differentiation matrices with respect to x and y, D2 and D̄
2
, respectively, can be obtained

using matrix multiplication. Notation wise, the bar in D̄ has been used to distinguish the assembled

differentiation matrices in y from those in x. The mixed second order derivative of u in the multiple

domains case is approximated as

∂2u

∂x∂y
(x̂i, ŷj) ≈

σ∑

q=0

D̄j,q

[
DŪq

]
, j, q = 0, 1, 2, . . . , σ. (21)

In the multiple domains approach, the vector Ūj , of size (δ + 1), corresponds to vector Uj given

in Eq.(17), and is defined as

Ūj = [u(x0, yj), u(x1, yj), . . . , u(xδ, yj)]
T , j = 0, 1, 2, . . . , σ, (22)

where T denotes matrix transpose. The x grid points at Eq.(22) are those in Eq.(7) when arranged

from right to left such that x0 = b = x
(q)
0 , xδ = a = x

(1)
Nx

. The bar in Ūj at Eq.(22) is meant to

distinguish it from the vector Uj at Eq.(17). Using the assembled differentiation matrices in both
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x and y directions in Eq.(3) we obtain a (δ + 1)(σ + 1) system of linear algebraic equations given

by

[
β0,sD

2 + β1,sD + β2,sI
]
Ui + β3,s

σ∑

j=0

D̄i,j [DU]j +
σ∑

j=0

[
β4,sD̄

2
i,j + β5,sD̄i,j

]
Uj = Ri, (23)

where Ri is a vector of size (δ + 1) defined by Ri = Ri,s + h(x, yi), i = 0, 1, 2, . . . , σ. The linear

system of equations Eq.(23) can be expanded into a (δ + 1)(σ + 1)× (δ + 1)(σ + 1) matrix system

that takes the form



A0,0 A0,1 A0,2 . . . A0,σ

A1,0 A1,1 A1,2 . . . A1,σ

...
...

... . . .
...

Aσ,0 Aσ,1 Aσ,2 . . . Aσ,σ







Ū0

Ū1

...

Ūσ




=




R0

R1

...

Rσ



, (24)

where

Ai,i = β0,sD
2 + β1,sD + β2,sI + β3,sDD̄i,i +

[
β4,sD̄

2
i,i + β5,sD̄i,i

]
I,

Ai,j = β3,sDD̄i,j +
[
β4,sD̄

2
i,j + β5,sD̄i,j

]
I, i 6= j, i, j = 0, 1, 2, . . . , σ,

(25)

and I is an identity matrix of size (δ + 1)× (δ + 1). The boundary conditions are evaluated at the

collocation nodes as

αa1

δ∑

p=0

Dδ,pu(xp, yi) + αa0u(xδ, yi) = fa(yi), αb1

δ∑

p=0

D0,pu(xp, yi) + αb0u(x0, yi) = fb(yi), i = 0, 1, 2, . . . , σ,

(26)

and

βc1

σ∑

q=0

D̄σ,qu(xj , yq) + βc0u(xj , yσ) = gc(xj), βd1

σ∑

q=0

D̄0,qu(xj , yq) + βd0u(xj , y0) = gd(xj), j = 0, 1, 2, . . . , δ.

(27)

The boundary conditions are imposed on the matrix system Eq.(24) to yield a different matrix

system that takes the form



βd1D̄0,0I + βd0I βd1D̄0,1I βd1D̄0,2I . . . βd1D̄0,σI

Ā1,0 Ā1,1 Ā1,2 . . . Ā1,σ

Ā2,0 Ā2,1 Ā2,2 . . . Ā2,σ

...
...

... . . .
...

Āσ−1,0 Āσ−1,1 Āσ−1,2 . . . Āσ−1,σ

βc1D̄σ,0I βc1D̄σ,1I βc1D̄σ,2I βc1 . . . βc1D̄σ,σI + βc0I







Ū0

Ū1

Ū2

...

Ūσ−1

Ūσ




=




Ḡd

R̄1

R̄2

...

R̄σ−1

Ḡc




, (28)
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where

Āi,i =




αb1D0,0 + αb0 αb1D0,1 αb1D0,2 . . . αb1D0,δ

Ai,i(1 : δ − 1, 0 : δ)

αa1Dδ,0 αa1Dδ,1 αa1Dδ,2 . . . αa1Dδ,δ + αa0




, i = 1, 2, . . . , σ − 1,

Āi,j =




0 0 0 . . . 0

Ai,j(1 : δ − 1, 0 : δ)

0 0 0 . . . 0




, i 6= j, i = 1, 2, . . . , σ − 1, j = 0, 1, 2, . . . , σ,

(29)

and

R̄i =




fb(yi)

Ri(1 : δ − 1)

fa(yi)




, i = 1, 2, . . . , σ − 1,

Ḡd = [gd(x0), gd(x1), gd(x2), . . . , gd(xδ)]
T , Ḡc = [gc(x0), gc(x1), gc(x2), . . . , gc(xδ)]

T .

(30)

We remark that we have employed the MatLab syntax for representing a matrix in Eq.(29) and

Eq.(30). Starting with an initial approximation to the solution, the system Eq.(28) is solved

iteratively until a solution with the desired accuracy is realized.

The practical applicability of the multidomain overlapping grid based spectral collocation

method to solutions of nonlinear elliptic PDEs given as a single equation is illustrated by con-

sidering the solution of typical examples of nonlinear elliptic PDEs that have been reported in the

literature. For easy validation of the method, the selected test examples are nonlinear elliptic PDEs

with exact solutions.

Example 1 (Steady heat and mass transfer equation with an nth order volume reaction in two

dimensions [24]). This equation arises in combustion theory and is given by

∂2u

∂x2
+
∂2u

∂y2
= kun. (31)
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We analyze the nonlinear PDE for the case k = 8 and n = 2, which has the exact solution

u(x, y) =

(
x+

y√
3

+ 1

)−2

. (32)

Eq.(31) is solved subject to the boundary conditions

u(0, y) =

(
y√
3

+ 1

)−2

, u(10, y) =

(
11 +

y√
3

)−2

, u(x, 0) = (x+ 1)
−2
, u(x, 10) =

(
x+

10√
3

+ 1

)−2

.

(33)

Example 2 (Stationary PDE of Zabolotskaya and Khokhlov [25]). The stationary equation of

Zabolotskaya and Khokhlov describes different phenomena in acoustic, nonlinear mechanics, heat

and mass transfer theory. Its general form is given by

∂2u

∂x2
+

∂

∂y

[
(αu+ β)

∂u

∂y

]
= 0. (34)

The analytical solution for α = 1, β = 0 is

u(x, y) = −
(
y + 1

x+ 1

)2

. (35)

Eq.(34) is solved subject to the boundary conditions

u(0, y) = − (y + 1)2 , u(5, x) = −
(
y + 1

6

)2

u(x, 0) = −
(

1

x+ 1

)2

, u(x, 10) = −
(

11

x+ 1

)2

.

(36)

3. Method of solution for a system of nonlinear elliptic PDEs

In this section, we extend the multidomain overlapping grids based spectral collocation method

described in the previous section to solutions of a system of two-dimensional nonlinear PDEs. This

is demonstrated by considering the problem of heat and mass transfer effects on a steady magneto-

hydromagnetic flow of a viscous, incompressible, electrically conducting and dissipating fluid past

a semi-infinite porous plate inclined at an angle of α to the vertical. The flow is assumed to be

in the x direction, taken as being along the semi-infinite inclined porous plate, and the y-axis is

normal to it.

Example 3. The equations governing this flow were given in dimensionless form in [26] as

∂ψ

∂y

∂2ψ

∂x∂y
− ∂ψ

∂x

∂2ψ

∂y2
=
∂3ψ

∂y3
+Grθ cosα+Gcφ cosα−

(
M +

1

K

)
∂ψ

∂y
, (37)

∂ψ

∂y

∂θ

∂x
− ∂ψ

∂x

∂θ

∂y
=

1

Pr

∂2θ

∂y2
+ Ec

(
∂2ψ

∂y2

)2

(38)
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∂ψ

∂y

∂φ

∂x
− ∂ψ

∂x

∂φ

∂y
=

1

Sc

∂2φ

∂y2
−Krφ, (39)

where ψ, θ, and φ are unknown functions of x and y representing the stream function, the tem-

perature distribution, and concentration distribution, respectively. The governing parameters are,

namely, thermal Grashof number Gr, mass Grashof number Gc, magnetic field number M , perme-

ability parameter K, Prandtl number Pr, Eckert number Ec, Schmidt number Sc, and chemical

reaction parameter Kr. The appropriate boundary conditions for this problem are

∂ψ

∂x
=
∂ψ

∂y
= 0, θ = 1, ψ = 1, at y = 0

∂ψ

∂y
→ 0, θ → 0, φ→ 0, as y →∞.

(40)

As in the case of a single nonlinear equation, the system of PDEs Eqs.(37)-(39) is first simplified

using the quasi-linearization method. Applying the QLM on Eqs.(37)-(39) we obtain

β
(1)
0,s (ψx)s+1+β

(1)
1,s (ψxy)s+1+β

(1)
2,s (ψyyy)s+1+β

(1)
3,s (ψyy)s+1+β

(1)
4,s (ψy)s+1+β

(1)
5,sθs+1+β

(1)
6,sθs+1 = R1,s

(41)

β
(2)
0,s (ψx)s+1 + β

(2)
1,s (ψyy)s+1 + β

(2)
2,s (ψy)s+1 + β

(2)
3,s (θx)s+1 + β

(2)
4,s (θyy)s+1 + β

(2)
5,s (θy)s+1 = R2,s (42)

β
(3)
0,s (ψx)s+1 + β

(3)
1,s (ψy)s+1 + β

(3)
2,s (φx)s+1 + β

(3)
3,sφs+1 + β

(3)
4,s (φyy)s+1 β

(3)
5,s (φy)s+1 + = R3,s (43)

where

β
(1)
(0,s) = (ψyy)s , β

(1)
(1,s) = − (ψy)s , β

(1)
2,s = 1, β

(1)
3,s = (ψx)s , β

(1)
4,s = − (ψxy)s −

(
M +

1

k

)
,

β
(1)
(5,s) = Gr cosα, β

(1)
(6,s) = Gc cosα, R1,s = (ψx)s (ψyy)s − (ψy)s (ψxy) ,

β
(2)
0,s = (θy)s , β

(2)
1,s = 2Ec (ψyy)s , β

(2)
2,s = − (θx)s , β

(2)
(3,s) = − (ψy)s , β

(3)
(4,s) =

1

Pr
,

β
(2)
(5,s) = (ψx)s , R2,s = Ec (ψyy)

2
s + (ψx)s (θy)s − (ψy)s (θx)s ,

β
(3)
0,s = (φy)s , β

(3)
1,s = − (φx)s , β

(3)
(2,s) = − (ψy)s , β

(3)
(3,s) = −Kr, β

(3)
4,s =

1

Sc
,

β
(3)
(5,s) = (ψx)s , R3,s = (ψx)s (φy)s − (ψy)s (φx)s .

(44)

Here, the subscripts inside parenthesis denote the partial derivatives of the various functions with

respect to the indicated independent variable. For instance, (ψx) is the first derivative of ψ with
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respect to x. Using an initial approximations ψ0, θ0, and φ0 that satisfies the given boundary

conditions, the linearized QLM scheme in Eqs.(41)-(43) is solved iteratively until a solution of the

desired accuracy is obtained. Before applying the spectral collocation, the semi-infinite domains

of [0,∞) in x and [0,∞) in y are first truncated into the finite domains [0, Lx] and [0, Ly], re-

spectively, where Lx and Ly are taken to be large enough to approximate conditions at infinity in

their respective directions. The finite domains of approximation are then decomposed into smaller

subintervals, exactly as demonstrated in Eq.(5) and Eq.(8) in the previous section. The smaller

subintervals are further discretized into Chebyshev-Gauss-Lobatto points as illustrated in Eq.(11).

In the solution process, the approximate solutions sought for the system of PDEs Eqs.(37)-(39) are

bivariate Lagrange interpolating polynomials that take the form

ψ(x, y) ≈ Ψ(x, y) =

Nx∑

p=0

Ny∑

q=0

Ψ(xp, yq)Lp(x)Lq(y),

θ(x, y) ≈ Θ(x, y) =

Nx∑

p=0

Ny∑

q=0

Θ(xp, yq)Lp(x)Lq(y),

φ(x, y) ≈ Φ(x, y) =

Nx∑

p=0

Ny∑

q=0

Φ(xp, yq)Lp(x)Lq(y).

(45)

The spectral approximation of derivatives for the unknown functions ψ(x, y), θ(x, y) and φ(x, y)

is achieved by adopting the strategy described in the previous section. By making an appropriate

substitution of the discrete derivatives, the QLM scheme Eqs.(41)-(43) is converted into a 3(σ +

1)(δ + 1) system of linear algebraic equations given by

β
(1)
0,sDΨi+β

(1)
1,s

σ∑

j=0

D̄i,j [DΨq]+
σ∑

j=0

[
β
(1)
2,sD̄

3
i,j + β

(1)
3,sD̄

2
i,j + β

(1)
4,sD̄i,j

]
Ψj+β

(1)
5,sΘi+β

(1)
6,sΦi = R1,i,

(46)

β
(2)
0,sDΨi +

σ∑

j=0

[
β
(2)
1,sD̄

2
i,j + β

(2)
2,sD̄i,j

]
Ψj + β

(2)
3,sDΘi +

σ∑

j=0

[
β
(2)
4,sD̄

2
i,j + β

(3)
5,sD̄i,j

]
Θq = R2,i, (47)

β
(3)
0,sDΨi +

σ∑

j=0

β
(3)
1,sD̄i,jΨq +

[
β
(3)
2,sD + β

(3)
3,s

]
Φi +

σ∑

j=0

[
β
(3)
4,sD̄

2
i,j + β

(3)
5,sD̄i,j

]
Φq = R3,i, (48)
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where i = 0, 1, 2, . . . , σ. The boundary conditions are evaluated at the collocation nodes as

ψ′s+1(xj , yσ) = 0,

Ny∑

q=0

D̄σ,qψs+1(xj , yq) = 0, θs+1(xj , yσ) = 1, φs+1(xj , yσ) = 1,

σ∑

q=0

D̄0,qψs+1(xj , y0) = 0, θs+1(xj , y0) = 0, φs+1(xj , y0) = 0, j = 0, 1, 2, . . . , δ.

(49)

In Eq.(49) the prime in ψ′ denotes the vector of discrete derivative, ψ′ = DΨ. The vectors Ψi, Θi,

and Φi for i = 0, 1, 2, . . . , σ are defined analogouslyt o Ūj in Eq.(22). The boundary conditions at

Eq.(49) are imposed by replacing the corresponding equations in Eqs.(46)-(48) with Eq.(49) to yield

a new system of linear algebraic equations, that can be expressed as a 3(σ+1)(δ+1)×3(σ+1)(δ+1)

matrix system. As will be shown in the results, we notice that, in the single domain approach, when

enlarging the size of the truncated intervals [0, Lx] and [0, Ly] in x and y directions, respectively,

in an attempt to properly approximate conditions at infinity, leads to deteriorating accuracy even

with increase in the number of collocation points. This is the challenge that the overlapping grids

based algorithm described in this paper seeks to address.

4. Error bounds theorems in a bivariate polynomial interpolation

In this section, we present new error bound theorems and their proofs which emanate from a

bivariate Lagrange interpolating polynomial that is constructed using Chebyshev Gauss-Lobatto

nodes on a domain that has been decomposed into smaller overlapping grids of equal length. The

error bound theorems given herein form the foundation for the reasoning behind the theoretical

argument as to why multidomain approaches are most suitable for approximating the solutions

to partial differential equations defined over large domains. Fundamental components related

to the construction of proofs of the theorems include understanding, firstly, that CGL nodes

are the relative extremes of the Nx-th degree Chebyshev polynomial of the first kind TNx(x̂) =

cos [Nx arccos(x̂)] , x̂ ∈ [−1, 1], and, secondly, the general properties of Chebyshev polynomials.

Although to the best of our knowledge, there does not exist a well-known family of polynomials

whose roots are the CGL nodes, it is easy to discern that the interior CGL nodes are roots of

T ′Nx
(x̂) = 0. This fact leads to the discovery of a complete set of the CGL nodes as the roots of

the Nx + 1-th degree polynomial given by

LNx+1(x̂) = (1− x̂2)T ′Nx
(x̂). (50)

Below, is the theorem that benchmarks formulation of the error bound theorems on bivariate

polynomial interpolation.
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Theorem 1. [30] Let u(x, t) ∈ CNx+Ny+2([a, b]× [c, d]) be sufficiently smooth such that at least the

(Nx+ 1)th partial derivative with respect to x, the (Ny + 1)th partial derivative with respect to t and

(Nx + Ny + 2)th mixed partial derivative with respect to x and y all exist and are all continuous,

then there exist values ξx, ξ
′
x ∈ (a, b), and ξy, ξ

′
y ∈ (c, d), such that

u(x, y)− U(x, y) =
∂Nx+1u(ξx, y)

∂xNx+1(Nx + 1)!

Nx∏

i=0

(x− xi) +
∂Ny+1u(x, ξy)

∂yNy+1(Ny + 1)!

Ny∏

j=0

(y − yj)

−
∂Nx+Ny+2u(ξ′x, ξ

′
y)

∂xNx+1∂yNy+1(Nx + 1)!(Ny + 1)!

Nx∏

i=0

(x− xi)
Ny∏

j=0

(y − yj),
(51)

where U(x, y) is a bivariate interpolating polynomial of u(x, y) at {xi}Nx
i=0 grid points in the x-

variable and {yj}Ny

j=0 grid points in the y-variable.

A result similar to Eq.(51) was reproduced by Bhrawy in [31]. Taking the absolute value of Eq.(51)

we obtain

|u(x, y)− U(x, y)| ≤ max
(x,y)∈Ω

∣∣∣∣
∂Nx+1u(ξx, y)

∂xNx+1

∣∣∣∣

∣∣∣∣∣
Nx∏

i=0

(x− xi)
∣∣∣∣∣

(Nx + 1)!
+ max

(x,y)∈Ω

∣∣∣∣
∂Ny+1u(x, ξy)

∂yNy+1

∣∣∣∣

∣∣∣∣∣∣

Ny∏

j=0

(y − yj)

∣∣∣∣∣∣
(Ny + 1)!

+ max
(x,y)∈Ω

∣∣∣∣∣
∂Nx+Ny+2u(ξ′x, ξ

′
y)

∂xNx+1∂yNy+1

∣∣∣∣∣

∣∣∣∣∣
Nx∏

i=0

(x− xi)
∣∣∣∣∣

∣∣∣∣∣∣

Ny∏

j=0

(y − yj)

∣∣∣∣∣∣
(Nx + 1)!(Ny + 1)!

,

(52)

where Ω = [a, b] × [c, d]. Since the function u(x, y) is assumed to be smooth on the interval of

approximation, it follows that its derivatives are bounded and thus ∃ constants C1, C2 and C3,

such that

max
(xyt)∈Ω

∣∣∣∣
∂Nx+1u(x, y)

∂xNx+1

∣∣∣∣ ≤ C1, max
(x,y)∈Ω

∣∣∣∣
∂Ny+1u(x, y)

∂yNy+1

∣∣∣∣ ≤ C2, max
(x,y)∈Ω

∣∣∣∣
∂Nx+Ny+2u(x, y)

∂xNx+1∂yNy+1

∣∣∣∣ ≤ C3. (53)

4.1. Error bound theorem on a single domain

The error bound for bivariate polynomial interpolation using Chebyshev-Gauss-Lobatto nodes

on a single domain is governed by the theorem below

Theorem 2 (The error bound in a single domain). The resulting error bound when CGL

grid points, {xi}Nx
i=0 ∈ [a, b], in x-variable and, {yj}Ny

j=0 ∈ [c, d], in y-variable are used in bivariate

polynomial interpolation is given by

E(x, y) ≤ C1
8
(
b−a

4

)Nx+1

(Nx + 1)!
+ C2

8
(
d−c

4

)Ny+1

(Ny + 1)!
+ C3

82
(
b−a

4

)Nx+1 (d−c
4

)Ny+1

(Nx + 1)!(Ny + 1)!
. (54)
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Proof. First, using the relation stated in [32] we express Eq.(50) as

LNx+1(x̂) = (1− x̂2)T ′Nx
(x̂) = −Nxx̂TNx(x̂) +NxTNx−1(x̂). (55)

Using the triangle inequality and noting that |TNx(x̂)| ≤ 1, ∀ x̂ ∈ [−1, 1], we have

|LNx+1(x̂)| = | −Nxx̂TNx(x̂) +NxTNx−1(x̂)| ≤ | −Nxx̂TNx(x̂)|+ |NxTNx−1(x̂)| ≤ 2Nx. (56)

The leading coefficient of LNx+1(x̂) is 2Nx−1Nx, where the components 2Nx−1 and Nx come, re-

spectively, from the leading coefficient of TNx(x̂) and the application of Nx-th rule of differentiation

on TNx(x̂). The product factor in the first term of the error bound expression given in Eq.(52) can

therefore be taken as the factorized form of a monic polynomial
LNx+1(x̂)

2Nx−1Nx
. We write

Nx∏

i=0

(x̂− x̂i) =
LNx+1(x̂)

2Nx−1Nx
, x̂ ∈ [−1, 1]. (57)

Using Eq.(56), it is easy to establish that the monic polynomial Eq.(57) is bounded by

∣∣∣∣∣∣

Nx∏

j=0

(x− x̂i)

∣∣∣∣∣∣
=

∣∣∣∣
LNx+1(x̂)

2Nx−1Nx

∣∣∣∣ ≤
2Nx

2Nx−1Nx
=

4

2Nx
. (58)

Considering a general interval x ∈ [a, b], we can show that the first product factor in Eq.(52) is

bounded by

max
a≤x≤b

∣∣∣∣∣
Nx∏

i=0

(x− xi)
∣∣∣∣∣ = max

−1≤x̂≤1

∣∣∣∣∣
Nx∏

i=0

(b− a)

2
(x̂− x̂i)

∣∣∣∣∣ =

(
b− a

2

)Nx+1

max
−1≤x̂≤1

∣∣∣∣∣
Nx∏

i=0

(x̂− x̂i)
∣∣∣∣∣

=

(
b− a

2

)Nx+1

max
−1≤x̂≤1

∣∣∣∣
LNx+1(x̂)

2Nx−1Nx

∣∣∣∣ ≤
4
(
b−a

2

)Nx+1

2Nx
= 8

(
b− a

4

)Nx+1

.

(59)

Similarly, we conclude that the second product factor is bounded by

max
c≤y≤d

∣∣∣∣∣∣

Ny∏

j=0

(y − yj)

∣∣∣∣∣∣
=

(
d− c

2

)Ny+1

max
−1≤ŷ≤1

∣∣∣∣
LNy+1(ŷ)

2Ny−1Ny

∣∣∣∣ ≤
4
(
d−c

2

)Ny+1

2Ny
= 8

(
d− c

4

)Ny+1

. (60)

Using Eq.(53), Eq.(59), and Eq.(60) in Eq.(52) the proof is completed.

4.2. Error bound theorem on decomposed domain

Here, we extend the bivariate polynomial interpolation error bound Theorem 2 to obtain its

variant on a decomposed domain. We assume that the number of grid points is the same for all

subintervals in either direction of the space variable, x or y.
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Theorem 3 (The error bound in the decomposed domain). The error bound, when Chebyshev-

Gauss-Lobatto grid points {xi}Nx
i=0 ∈ [xl−1, x̄l], l = 1, 2, . . . , q, for the decomposed domain in x-

variable and {yj}Ny

j=0 ∈ [yk−1, ȳk], k = 1, 2, . . . , p, for the decomposed domain in y-variable are used

in bivariate polynomial interpolation, is given by

E(x, t) ≤ C1
8
(
L
4

)Nx+1

(Nx + 1)!
+ C2

8
(
K
4

)Ny+1

(Ny + 1)!
+ C3

82
(
L
4

)Nx+1 (K
4

)Ny+1

(Nx + 1)!(Ny + 1)!
, (61)

where L and K denote the length of each subinterval in x and y, respectively as defined in Eq.(13).

Proof. First, we consider the x variable. In the entire domain [a, b], we have that
∣∣∣∣∣
Nx∏

i=0

(x− xi)
∣∣∣∣∣ ≤ 8

(
b− a

4

)Nx+1

, x ∈ [a, b]. (62)

Since interpolation is performed piece-wise and noting from the previous theorem that the error

bound depends on the length of the interval, there is a direct implication that in the decomposed

domain and at each subinterval in x, we must have
∣∣∣∣∣
Nx∏

i=0

(x− xi)
∣∣∣∣∣ ≤ 8

(
L

4

)Nx+1

, {xi}Nx
i=0 ∈ [xl−1, x̄l], l = 1, 2, . . . , q. (63)

Under the assumption that the unknown function u(x, y) is smooth, it is logical to assert that

∃ ξµ ∈ (xµ−1, x̄µ), µ = 1, 2, . . . , q, for which the values of the (Nx+1)th partial derivatives of u with

respect to x in each subinterval, is the absolute extrema. This enables us to break the first term

C1
8( b−a

4 )
Nx+1

(Nx+1)! , which appears in the error bound expression at Eq.(54), into different components

that are necessarily not equal in the decomposed x domain, as
{

(l)

C1
8
(
L
4

)Nx+1

(Nx + 1)!

}q

l=1

, (64)

where

max
(x,y)∈Ω

∣∣∣∣
∂Nx+1u(x, y)

∂xNx+1

∣∣∣∣ =

∣∣∣∣
∂Nx+1u(ξl, y)

∂xNx+1

∣∣∣∣ ≤
(k)

C 1, x ∈ [xl−1, x̄l].

We define

‖ Ĉ1 ‖∞≡ max{
(1)

C 1,
(2)

C 1, . . . ,
(q)

C 1}, (65)

to denote the maximum absolute value of the (Nx + 1)th partial derivatives of u with respect to

x in [a, b]. Clearly, ‖ Ĉ1 ‖∞= C1, where C1 is identical to that given in Eq.(54). To expand the

error bound over the entire x domain, we shall take the largest possible error across all overlapping

subintervals in x which is

C1
8
(
L
4

)Nx+1

(Nx + 1)!
. (66)
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Similar reasoning can be applied to show that the second component in error bound Eq.(54) in the

decomposed y domain translates to

C2
8
(
K
4

)Ny+1

(Ny + 1)!
. (67)

Consequently, the third component in Eq.(54) becomes,

C3
82
(
L
4

)Nx+1 (K
4

)Ny+1

(Nx + 1)!(Ny + 1)!
, (68)

in the decomposed domain and
(
L
4

)Nx+1
<<

(
b−a

4

)Nx+1
and

(
K
4

)Ny+1
<<

(
d−c

4

)Ny+1
for a large

number of subintervals q and p in x and y, respectively. Using Eqs.(66) to (68) in Eq.(54) completes

the proof.

Comparing Eq.(54) and Eq.(61), we note that the error in bivariate polynomial interpolation is

smaller when interpolation is conducted on multiple overlapping domains than on a single domain.

Further, we remark that CGL nodes are the preferred candidates for interpolation when using

spectral collocation methods to solve boundary value problems because they are convenient for

constructing differentiation matrices as they contain the boundary nodes, which is advantageous

when treating the boundary conditions of the problem. To conduct a numerical validation of error

bound theorems, we consider the interpolation error in approximating the function of two variables,

as given below.

Example 4. Consider constructing an interpolating polynomial to approximate the function

u(x, y) = ex+y, x ∈ [0, 4], y ∈ [−2, 2]. (69)

5. Results and discussion

In this section, numerical results obtained after solving the test Examples 1 to 3 using the

overlapping grid based spectral collocation method are presented in tabular and graphical forms

and discussed. The numerical schemes were implemented on the MatLab 2017b platform. We

demonstrate the superiority of the proposed method in terms of accuracy by comparing absolute

errors obtained using the overlapping grids approach against the equivalent results using a single

domain. The absolute error values computed at selected grid points in x and y for Examples 1− 2

are defined by

Ei,j =

∣∣∣∣
a
U(xi, yj)− U(xi, yj)

∣∣∣∣ . (70)
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Here
a
U and U denote the approximate and the analytic solution, respectively. To highlight the

advantages of adopting the overlapping grids approach, we examine properties of the coefficient

matrices for the resulting linear system of algebraic equations. To set a base for comparison, the

number of grid points across the entire domain is maintained constant. We investigate the effect of

increasing the number of subintervals in both x and y directions, as opposed to incrementing the

number of grid points on a single large domain. The aim is to quantify the size of the resulting

linear system of equations, find condition numbers of the associated coefficient matrices and keep

track of the CPU time that the proposed method of solution takes to realize results. The condition

number of the matrix A is found using the MatLab build in command cond (A). For the nonlinear

system of equations in Example 3, for which no exact solutions exist, the accuracy of the numerical

scheme is evaluated by presenting residual error values at different iteration levels. To define the

residual error, it is convenient to first rewrite Eqs.(37)-(39), respectively, in the form;

Fψ (ψ, θ, φ) = 0, Fθ (ψ, θ, φ) = 0, and Fφ (ψ, θ, φ) = 0, (71)

where Fψ, Fθ, and Fφ are nonlinear differential operators. The residual error is thus computed as

Rψ = ||Fψ,s+1||∞, Rθ = ||Fθ,s+1||∞, Rφ = ||Fφ,s+1||∞. (72)

To assess convergence of the iterative scheme for the system of equations, the graph of solution

error values versus iteration number is presented. Solution error is measured using the infinity

norm of the vector obtained by taking the difference between solutions at successive iterations as

Sψ = ||Ψs+1 −Ψs||∞, Sθ = ||Θs+1 −Θs||∞, Sφ = ||Φs+1 −Φs||∞. (73)

The effect of several flow parameters on the temperature and concentration profiles is also investi-

gated and compared with results already published in the literature.

The numerical results obtained from approximating the solution of Eq.(31) using the spectral

collocation method on overlapping grids are given in Table 1. Results indicate that the method is

very accurate, as absolute errors of order 10−13 were registered. The algorithm is also executed over

a short CPU time as shown in Table 1 by the small CPU time of less than 0.14 seconds. Equivalent

results obtained using the single domain approach are displayed in Table 2. It can be seen that

absolute errors of order 10−11 are reported, which is 100 times larger than those in Table 1, and

the CPU time is more than 5 times greater than for the overlapping grids approach. The number

of grids points across the entire interval is maintained constant in both approaches. The numerical
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results from Table 1 and 2 suggest that the overlapping grids based spectral collocation method is

more accurate and computationally more efficient than the single domain approach when applied to

solve nonlinear elliptic PDEs defined on large rectangular domains. The improved accuracy for the

overlapping grids approach can be attributed to smaller condition numbers of the matrices. The

shorter CPU time required to realize results in the multiple domains approached can be explained

by the sparse nature of the coefficient matrices, which are then easy to invert. We remark that

the unanticipated difference in matrix dimension between both approaches relates to the number

of common nodes that are discarded when assembling the spatial differentiation matrix in the

multidomain overlapping grids based approach.

The results obtained from approximating the solution of Eq.(34) are given in Table 3 and Table

4. Table 3 shows the results generated with the multidomain overlapping grids based spectral

collocation method whereas Table 4 presents the results obtained using the single domain based

approach namely, the bivariate spectral collocation method is used. As in the previous example, the

number of grid points over the entire interval is kept constant. It is evident that the results obtained

when using the multidomain approach are more accurate than those realized from the single domain

approach, with absolute errors of order 10−10 and 10−09, respectively, being recorded. Additionally,

we notice that the CPU time required for the multidomain approach is about 5 times shorter than for

the single domain approach. For the new approach, the need for only a few numbers of grid points

at each subinterval also reduces the effects of roundoff errors that are associated with approximating

functions with interpolating polynomials of higher degree. Furthermore, sparse matrices are also

advantageous as they are well conditioned and so render a well-posed problem, ensuring that stable

results are obtained [33]. Noticeable difference in magnitudes of absolute errors obtained when

Example 1 and Example 2 are solved is caused by the smoothness of solution for Eq.(31), which

contrasts with the discontinuity of the solution of Eq.(34) at x = −1. Finally, we observe that the

relative difference between the absolute errors in Tables 3 and 4 are smaller than those in Table

1 and 2. This is because in Example 2, we considered a relatively smaller x domain b − a = 5,

compared to that in Example 1, b− a = 10. This comparison is significant as it indicates that the

superiority of overlapping grids approach is most noticeable in problems that are defined over large

domains.

Numerical results for the system of nonlinear equations given in Example 3 are presented in terms of

graphs of the residual error and solution error values at different iteration levels, in line with findings
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of investigating the effect of several parameters on the behaviour of the flow. The following default

values of flow parameters are adopted during experimentation; Gr = 2.0, Gc = 2.0, M = 1.0,

K = 1.0, Ec = 0.01, Pr = 0.71, Sc = 0.6, and Kr = 0.5. The angle of inclination of the porous

plate was taken to be α = π
6 . All graphs, therefore, correspond to these values unless indicated

otherwise on the appropriate graphs. The domain of approximation was truncated as Lx = 30 and

Ly = 5, in x and y directions, respectively. In the case of single domain approach, 40 grid points

were used in x domain whereas 20 grid points were used in y. Spectral collocation on overlapping

grids is invoked using q = 2 overlapping subintervals in x with 20 grid points in each subinterval, and

p = 2 overlapping subintervals in y with 10 grid points in each. The values of residual error against

iterations are depicted in Figure 2. The graphs in Figure 2 suggests that the present numerical

algorithm works perfectly well on systems of nonlinear elliptic PDEs as small residual error values

of order 10−9 are recorded. The dotted lines represent residual error profiles obtained from the

overlapping grid approach whereas continuous line denotes the residual error profiles for the case of

single domain approach. The superiority of the overlapping grids based approach is manifested in

the graphs. As confirmed by the residual error profiles displayed in Figure 2, the best approximate

solutions are obtained after 4 iterations. In addition, Figure 3 shows that the numerical scheme

converges quadratically and that convergence is indeed achieved after the 4th iteration.

The overlapping grid approach was employed to generate graphs shown in Figures 4-7, which

demonstrate the effect of different parameters on flow fields. Figures 4-9. Figures 4-7 show the

temperature profiles for different parameters. The Prandtl number, Pr, defines the ratio of mo-

mentum diffusivity to thermal diffusivity. From Figure 4, it is observed that an increase in the

Prandtl number decreases the thermal boundary layer thickness and in general lowers the average

temperature within the boundary layer. This phenomenon can be explained by the decreased values

of Prandtl number being equivalent to increased thermal conductivity, consequently, heat diffuses

away from the heated plate more rapidly than it would for higher values of Prandtl number. The

effect of the viscous dissipation parameter, Eckert number Ec, on temperature is shown in Figure

5. The Eckert number expresses the relationship between the kinetic energy and enthalpy in the

flow and it embodies the conversion of kinetic energy into internal energy by work done against

the viscous fluid stress. Greater viscous dissipative heat causes an increase in temperature, which

is evident from Figure 5. The effect of different values of the magnetic field parameter M on tem-

perature profiles is plotted in Figure 6. It is observed that as the magnetic parameter increases,
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the temperature also increase. Figure 7 represents the effect of the porosity parameter K on the

temperature profiles. We notice that very small changes occur in the thermal boundary layer when

changes are made to the porosity parameter. The temperature increases with an increase in the

porosity parameter. The influence of the Schmidt number, Sc, on the concentration profiles, is

plotted in Figure 8. The Schmidt number embodies the ratio of the momentum to mass diffusivity

and therefore it quantifies the relative effectiveness of momentum and mass transport by diffusion

in the concentration (species) boundary layer. As can be seen from Figure 8, increasing the Schmidt

number decreases the species concentration. The influence of the chemical reaction parameter Kr

on the concentration profiles across the boundary layer are presented in Figure 9. We see that

the concentration distribution across the boundary layer decreases with an increase in chemical

reaction parameter. Overall, the observations made on the effects of different parameters on flow

as shown in our results are in agreement with those made by Reddy et al. [26].

Finally, Table 5 presents interpolation errors obtained from approximating the function given in

Eq.69 using a bivariate Lagrange interpolating polynomial at CGL points. The results for over-

lapping grids based approximation are shown in bold to distinguish them from those obtained by

interpolation on a single domain. The column label, Bound, denotes the maximum possible the-

oretical value of interpolation error evaluated using formulas given in the error bound theorems

Eq.(54) and Eq.(61). The domain of approximation was subdivided into 2 overlapping subintervals

of equal length in both x and y directions. The number of grid points over the entire domain

was maintained constant to achieve a fair comparison. Table 5 shows that the interpolation errors

decrease as the number of grid points increase. It also demonstrates that numerical values of inter-

polation errors are always smaller than the theoretical error bound values, thereby verifying that

the function considered here obeys the bivariate interpolating polynomial error bound theorems

that were presented in Section 4. We observe that performing interpolation over many smaller

overlapping domains records a significantly shorter CPU time than the equivalent process over a

single domain. Further, improved accuracy is registered when 40 grid points are used in multiple

domains, whereas for a single domain 40 grid points results in a drop in accuracy.
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Table 1: Absolute error values obtained when Example 1 is solved on overlapping domains: Nx = 20, q = 2, Ny =

20, p = 2.

y

x 9.9384 5.7822 0.5450

9.9846 1.08637e-15 3.16414e-15 3.00255e-14

8.8020 2.68188e-15 5.75581e-15 8.24072e-14

7.6125 5.65693e-15 3.49876e-14 2.51086e-13

6.1672 6.96491e-15 1.47209e-14 2.09039e-13

3.0866 5.94733e-14 5.78860e-13 2.09039e-13

CPU time (sec) 0.135284

Matrix Size 1600×1600

Cond Number 4.87352e+003

Table 2: Absolute error values obtained when Example 1 is solved on a single domain: Nx = 40, Ny = 40.

y

x 9.9384 5.7822 0.5450

9.9846 9.42779e-13 6.38465e-13 5.78079e-13

8.8020 5.26489e-14 1.91149e-13 3.81223e-13

7.6125 3.51628e-13 5.07198e-13 2.98928e-13

6.1672 1.50756e-12 1.39328e-12 4.09846e-13

3.0866 3.17623e-11 8.84608e-12 3.97314e-11

CPU time (sec) 0.743578

Matrix Size 1681×1681

Cond Number 7.6543e+004
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Table 3: Absolute error values obtained when Example 2 is solved on overlapping domains: Nx = 20, q = 2, Ny =

10, p = 5.

y

x 9.9691 7.1000 1.7328

4.9923 1.07443e-11 1.38911e-11 8.56769e-11

4.2739 2.23288e-11 1.74158e10 1.12733e-10

2.9300 3.18758e-11 1.06726e-10 3.52343e-10

1.5909 5.98632e-12 6.45883e-11 1.78728e-11

0.2588 5.16565e-11 2.39211e-10 2.02153e-10

CPU time (sec) 0.243617

Matrix Size 1940×1940

Cond Number 4.2389e+007

Table 4: Absolute error values obtained when Example 2 is solved on a single domain: Nx = 40, Ny = 50.

y

x 9.9691 7.1000 1.7328

4.9923 6.49512e-11 3.81219e-10 1.27900e-10

4.2739 1.20477e-10 1.94005e-09 9.43050e-10

2.9300 3.15801e-11 1.94005e-09 8.00239e-10

1.5909 4.48859e-10 9.23929e-10 1.27900e-10

0.2588 9.82577e-10 1.34028e-09 4.07725e-09

CPU time (sec) 1.383625

Matrix Size 2091×2091

Cond Number 2.7812e+009
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Figure 2: Residual error profile against the number of iterations
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Figure 3: Solution error profile against the number of iterations
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Pr = 0.71, 1.00, 1.50, 2.00
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Figure 4: Temperature profiles for different values of Pr

Ec = 0.0, 0.1, 0.3, 0.5
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Figure 5: Temperature profiles for different values of Ec
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M = 0.0, 1.0, 2.0, 3.0
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Figure 6: Temperature profiles for different values of M
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Figure 7: Temperature profiles for different values of K
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Sc = 0.6, 0.78, 1.0, 1.5
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Figure 8: Concentration profiles for different values of Sc
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Figure 9: Concentration profiles for different values of Kr
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Table 5: Numerical values of interpolation errors obtained when interpolating Eq.(69) in a single domain and over-

lapping domains.

Nx Ny q p CPU Time(Sec) Bound Interpolation Error

10 10 1 1 1.5760 1.4874× 10−6 2.8320× 10−7

10 5 2 2 1.1437 8.2877× 10−5 3.8721× 10−5

20 20 1 1 6.7860 2.0460× 10−8 6.4615× 10−14

20 10 2 2 4.7495 1.7551× 10−8 1.8046× 10−13

40 40 1 1 38.0700 6.3882× 10−9 1.7955× 10−13

40 20 2 2 15.3842 5.3520× 10−10 2.8411× 10−16

6. Conclusion

We have described and successfully applied an overlapping grid based spectral collocation

method to solve typical examples of two-dimensional nonlinear elliptic partial differential equa-

tions defined on large rectangular domains. We have demonstrated that in comparison to the

single domain approach applying the spectral collocation method on overlapping grids gives supe-

rior accuracy and computational efficiency when applied to solve nonlinear elliptic PDEs defined

on large domains. Improved accuracy is attributed to the small condition numbers of coefficient

matrices in the overlapping grids approach. The computational efficiency of the proposed numerical

algorithm rests on the ease of inverting the sparse coefficient matrices of the linear algebraic systems

of equations that are to be solved. The evaluations of the method have confirmed that the benefits

of overlapping grid spectral collocation approach only manifest when the domain of approximation

is large. Current numerical results show a good agreement with published results in the literature.

Although the numerical scheme developed has been tested on nonlinear elliptic PDEs, the same

concept could be adapted and applied to solve other class of nonlinear two-dimensional problems

representing certain real-life phenomena. New error bound theorems and proofs on bivariate poly-

nomial interpolation have been proven and tested. The error bound theorems unfold the theory

behind the benefits of the proposed numerical method of solution and indeed, it is what motivated

adoption of current numerical technique to nonlinear elliptic problems.
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Chapter 6

A New Spectral Collocation Method

of Solution for Two-Dimensional

Initial-Boundary Value Problems

This chapter is the climax of the study. We propose herein an accurate and computationally

efficient overlapping grid based multidomain trivariate spectral collocation method for solving two-

dimensional nonlinear initial-boundary value problems defined over large spatial and time domains.

The numerical scheme is tested on typical examples of two-dimensional nonlinear parabolic PDEs

reported in the literature as a single equation or system of equations. Numerical results confirm that

the method is highly accurate and computationally efficient when applied to solve two-dimensional

initial-boundary value problems defined on large spatial domains and time intervals when com-

pared to the standard method on a single domain. Adopting the structure of the previous chapters,

this particular one ends with a discussion of error bound theorems and proofs on trivariate poly-

nomial interpolation. Extension of the trivariate spectral collocation method described in this

chapter to the solution of three-dimensional problems is achievable in a straight forward manner.

A manuscript on the single domain version of this method has been published in the Journal of

Applied Mathematics and Computation. This paper is attached, as an appendix, at the end of this

thesis. A paper detailing incorporation of a domain decomposition technique on trivariate spectral

collocation method, then, constitutes chapter 6, thereby, retaining the central focus of the thesis.
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Abstract

In this article, we propose an accurate and computationally efficient overlapping grid based multido-

main trivariate spectral collocation method for solving two-dimensional nonlinear initial-boundary

value problems over large time intervals. In the current solution approach, the quasi-linearization

method is used to simplify the nonlinear PDEs. The spatial domain is decomposed into a se-

quence of overlapping subintervals of equal length whereas the time domain is broken into equal

non-overlapping subintervals. Trivariate Lagrange interpolating polynomials constructed using

Chebyshev-Gauss-Lobatto (CGL) points are used to approximate the solutions to the nonlinear

PDEs. A purely spectral collocation-based discretization is employed on the two space variables

and the time variable on each subinterval to yield a system of linear algebraic equations that is

solved. The PDEs are solved simultaneously across all subintervals in space, but independently

on each subinterval in time, with the continuity condition been applied to obtain initial conditions

in subsequent time subintervals. The numerical scheme is tested on typical examples of two di-

mensional nonlinear parabolic PDEs reported in the literature as a single equation or system of

equations. Numerical results confirm that the proposed solution approach is highly accurate and

computationally efficient, when applied to solve two-dimensional initial-boundary value problems

defined on large time intervals and large spatial domains when compared with the standard method

on a single domain. In addition, it is demonstrated that the overlapping grids technique preserves

the stability of the numerical scheme when solving fluid mechanics problems for large Reynolds

numbers. The new error bound theorems and proofs on trivariate polynomial interpolation that

we present support findings from the numerical simulations.
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1. Introduction

Spectral collocation-based methods, have since their first appearance, gained popularity for the

numerical approximation of the solution of partial differential equations, owing to their superior ac-

curacy when applied to solve problems with smooth solutions [1]. They are particularly appropriate

for approximating solutions of nonlinear PDEs defined on regular geometries, and they require few

grid points to achieve highly accurate results [2]. Despite the benefits of these spectral collocation

methods, previous applications of purely spectral collocation methods have focused only on the

solutions of ordinary differential equations For instance, or partial differential equations involving

two independent variables [3]. For instance, Zhao et al. [4] and Tadmor [5] indicate extensive

examples in the literature where the spectral collocation methods have been applied successfully on

such problems with highly accurate results being achieved in a computationally efficient manner.

In nearly all cases these results have been achieved through the application of spectral collocation

discretization on the space variables and finite difference discretization on the time variable. The

few noticeable examples include [6] and references give therein, where spectral collocation methods

have been applied to obtain numerical solutions of two-dimensional time-dependent PDEs. It is

well known that finite difference methods require many grid points to yield accurate results which

can hardly match those obtained when spectral collocation methods are applied on PDEs defined

on simple geometries particularly if the underlying solutions are smooth. As observed in [7], the

accuracy of a single domain based spectral collocation method deteriorates when the method is

applied to solve PDEs defined over a large time interval even with a large number of grid points.

As shown by Motsa et al. [8], the utility of the spectral collocation method can be improved by

decomposing the large time domain into smaller non-overlapping subintervals and solving the dif-

ferential equation independently for each of these subintervals in time. Further, as will be shown

later, decomposing the spatial domains into a sequence of overlapping subintervals improves accu-

racy when solving differential equations defined over large spatial domains and presents a stable

numerical scheme when solving a differential equation for very large or small values of the pa-

rameters. Motivated by these facts, we propose an overlapping grid based multidomain trivariate

spectral collocation method for solving nonlinear two-dimensional time-dependent PDEs defined
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on large rectangular domains over large time intervals.

Typical examples of two-dimensional nonlinear time-dependent PDEs considered in this study

include the nonlinear PDEs given as single equations that describe the problem of unsteady two-

dimensional heat and mass transfer, firstly, in quiescent media with a chemical reaction [9], and

secondly, with power-law temperature-dependent thermal conductivity [10]. Heat and mass trans-

fer phenomena are found throughout the physical world and the industrial domain. For nonlinear

PDEs described as systems of equations we consider the case of the coupled two-dimensional Burg-

ers system [11] and the two-dimensional reaction-diffusion Brusselator system [12]. The Burgers

equation is a fundamental PDEs from fluid mechanics, that appears in various areas of applied

mathematics, such as modeling of hydrodynamic turbulence, shock waves theory, and traffic flow

problems. It also describes the sedimentation of particles in fluid suspensions under the effect of

gravity, transport, and dispersion of pollutants in rivers [13]. The second system of PDEs consid-

ered is the Brusselator system arising in the mathematical modeling of chemical systems such as

enzymatic reactions, and in plasma and laser physics in multiple coupling between certain modes

[14]. The Brusselator model is also evident in the formation of the ozone layer through a triple

collision of oxygen atoms. The problems considered here have exact solutions and have been re-

ported in the literature to be very useful in testing newly developed numerical methods of solution

for nonlinear partial differential equations arising in modeling of various aspects of the real world.

We, therefore, consider them appropriate to demonstrate the effectiveness of the current method

of solution.

Exact solutions of equations modelling two-dimensional heat and mass transfer problem in qui-

escent media with chemical reaction were discussed by Polyanin and Zaitsev [9]. The problem has

been solved numerically using an implicit finite-difference method by Chamkha and Aly [15]. On the

other hand, the problem of two-dimensional heat and mass transfer with power-law temperature-

dependent thermal conductivity was examined by Pamuk and Pamuk [10] who obtained a particular

exact solution using the Adomian decomposition method. Further numerical methods of solution

for this problem can be found in the references they give. Burgers [11] pioneered the investigation

of the mathematical properties of Burgers equation. The analytical solution of the unsteady two

dimensional coupled Burgers equation was first given by Fletcher [16] using the Hopf-Cole trans-

formation, and in, [17], the differential transformation method was applied to obtain the analytical

solution of a coupled unsteady Burgers equation. Numerical solution of the Burgers equation is,
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therefore, a natural first step towards developing methods for the computation of complex flows.

Accordingly, the Burgers equation has been used intensively to test new approaches in computa-

tional fluid dynamics. For instance, a numerical method based on local discontinuous Galerkin

finite element was analyzed in [18] to solve the two-dimensional Burgers equation. The local radial

basis functions collocation method to approximate the numerical solution of the transient coupled

Burgers equation was examined in [19]. In another development, the Brusellor model has been

extensively studied, both numerically and analytically. For example, Twizell et al. [20] developed

a second-order finite difference method for the numerical solution of the initial-boundary value

problems of the Brusselator model. Khani et al. [21] found exact solutions of the Brusselator

reaction-diffusion model using the exp-function method and Biazar and Ayati [22] obtained an

approximate solution to the Brusselator system by applying the Adomian decomposition method.

In this paper, a purely spectral collocation method, namely, the overlapping grids multidomain

trivariate spectral collocation method is introduced and applied to solve two-dimensional initial-

boundary value problems defined on over large space and time intervals. The solution process

involves, first, the simplification of the PDE using the quasi-linearization method. Next, the spatial

domain is decomposed into a sequence of equal overlapping subintervals and the large time domain

is decomposed into equal non-overlapping subintervals. The solution to the linearized PDE is

assumed to be a trivariate Lagrange interpolating polynomials constructed on Chebyshev-Gauss-

Lobatto points defined on each subinterval. The PDE is discretized in all space variables and time

variable using the spectral collocation method to yield a system of linear algebraic equations that are

then solved iteratively. The solution of the PDE is computed simultaneously across all subintervals

in space and independently at each subinterval in time. Applying the continuity condition allows

us to obtain the initial condition for the second to last subintervals. The current numerical method

is tested using typical examples of initial-boundary value problems reported in the literature. The

accuracy of the numerical scheme is assessed by computing the absolute difference between the

numerical results with the exact solutions, these are presented in tabular and graphical form and

discussed. Numerical results obtained using the current solution approach are also compared with

those obtained using the standard single domain based trivariate spectral collocation method.

Findings from numerical simulations show that the current method yields highly accurate results in

a computationally efficient manner when applied to problems defined on a large time interval, large

spatial domains, and obtaining numerical approximations of solutions to the differential equation
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for large parameter values. To the best of our knowledge, the spectral collocation-based method

with Chebyshev-Gauss-Lobatto points has not been applied simultaneously on overlapping grids

in two-dimensional space and non-overlapping grids in time. The new theoretical results of error

bound theorems support the finding of the numerical simulations.

The rest of this paper is organized as follows. In Section 2, we describe the overlapping grids

based multidomain trivariate spectral collocation method for approximating the solution of two-

dimensional nonlinear initial-boundary value problems described by single equations or systems of

equations. In Section 3, the error bound theorems and proofs emanating from trivariate Lagrange

interpolating polynomials constructed on Chebyshev-Gauss-Lobatto grid points emerge. In Section

4, we give four test examples where the numerical method is applied to demonstrate its applicability.

Section 5 is devoted to results and discussion. In Section 6, we summarize the findings and point

out the direction of future work.

2. The method of solution

In this section, we describe the algorithm for solving two-dimensional partial differential equa-

tions of initial-boundary value problems type. The present investigation focuses on the partial

differential equations of the second order. For purposes of simplicity, this section is divided into

two subsections. In the first subsection, we construct numerical algorithms for solving nonlinear

PDEs that are expressible as a single equation and in the second subsection, the idea is extended

to systems of nonlinear PDEs.

2.1. Method of solution for a single nonlinear PDE

In this subsection, the overlapping grids based multidomain spectral collocation algorithm for

solving two-dimensional partial differential equations of initial-boundary value problems type given

as a single nonlinear equation is described. To illustrate the solution process, we consider a general

second-order nonlinear PDE that takes the form

∂u

∂t
= F

(
∂2u

∂x2
,
∂2u

∂y2
,
∂u

∂x
,
∂u

∂y
, u

)
, (x, y) ∈ (a, b)× (c, d), t ∈ (0, T ), (1)

where F is a nonlinear operator operating on the unknown function u and its first and second order

spatial derivatives. Eq.(1) is solved subject to the boundary conditions

αa1
∂u

∂x
(a, y, t) + αa0u(a, y, t) = fa(y, t), αb1

∂u

∂x
(b, y, t) + αb0u(b, y, t) = fb(y, t),

βc1
∂u

∂y
(x, c, t) + βc0u(x, c, t) = gc(x, t), βd1

∂u

∂y
(x, d, t) + βd0u(x, d, t) = gd(x, t),

(2)
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where αa1, α
a
0, α

b
1, α

b
0, β

c
1, β

c
0, β

d
1 , β

d
0 are known constants and fa(y), fb(y), gc(x), gd(x), are

known functions. The initial condition for this problem is given as

u(x, y, 0) = h(x, y). (3)

The solution process involves the stages given in the subsections below.

2.1.1. The quasi-linearization method

The PDE Eq.(1) is first simplified using the quasi-linearization method (QLM) of Bellman and

Kalaba [24]. The QLM is based on the Newton-Raphson method and is constructed from the

linear terms of a Taylor series expansion about an initial approximation to the solution. The QLM

assumes that the difference between solutions at two successive iterations, denoted by us+1−us, is

very small. In particular, the QLM is comparable to giving the linear approximation of a function

of several variables, where the derivatives of a different order, and the previous approximation to

the solution, assume the respective roles of independent variables and the functional value at the

reference point. Finer details about the linear approximation of functions can be found in any

elementary book on differential calculus. Applying the QLM on Eq.(1) we obtain

δ4,s
∂2us+1

∂x2
+ δ3,s

∂2us+1

∂y2
+ δ2,s

∂us+1

∂x
+ δ1,s

∂us+1

∂y
+ δ0,sus+1 − u̇s+1 = Rs, (4)

where

δ4,s =
∂F

∂ (uxx)s
, δ3,s =

∂F

∂ (uyy)s
, δ2,s =

∂F

∂ (ux)s
, δ1,s =

∂F

∂ (uy)s
, δ0,s =

∂F

∂ (u)s
,

Rs = δ4,s(uxx)s + δ3,s(uyy)s + δ2,s(ux)s + δ1,s(uy)s + δ0,sus − Fs.
(5)

The subscripts in ux and uxx, denote, respectively, the first and second partial derivatives of u with

respect to x. Similarly, the first and the second derivatives with respect to y are denoted by uy and

uyy, respectively. The dot in u̇ denotes the derivative with respect to t and s signifies the previous

iteration.

2.1.2. Domain decomposition and discretization

If we let t ∈ Γ where Γ = [0, T ]. The domain of approximation in the time direction Γ is

decomposed into p equal non-overlapping subintervals as

Γτ = [tτ−1, tτ ], tτ−1 < tτ , t0 = 0, tp = T, τ = 1, 2, . . . , p. (6)

The domain decomposition in the t variable is illustrated below.
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t0 t1 t2 t3 tp−1 tp

Γ = [0, T ] :
Γ1 Γ2 Γ3 Γp

The subdomain t ∈ [tτ−1, tτ ] in each of the τ th subintervals is transformed into t̂ ∈ [−1, 1] using

the linear map

t̂(t) =
2

tτ − tτ−1

[
t− 1

2
(tτ + tτ−1)

]
, t ∈ [tτ−1, tτ ], t̂ ∈ [−1, 1], τ = 1, 2, . . . , p, (7)

before the spectral collocation is applied. The domain of approximation in each time subinterval

is further discretized into Nt + 1 Chebyshev Gauss-Lobatto nodes defined in [25] as

{
t̂k
}Nt
k=0

= cos

(
kπ

Nt

)
. (8)

The entire grid in the t variable can be represented as

{0 = t
(1)
Nt
, . . . , t

(1)
0 = t

(2)
Nt
, . . . , t

(τ−1)
0 = t

(τ)
Nt
, . . . , t

(p)
0 = T, . . . , 2 ≤ τ ≤ p}. (9)

The superscripts and subscripts are the subinterval and grid points indices, respectively. The spatial

domain x ∈ [a, b] is decomposed into q overlapping subintervals of equal length as

Λl = [xl−1, x̄l] , xl−1 < xl < x̄l, x0 = a, x̄q = b, l = 1, 2, . . . , q, (10)

where xl < x̄l, depicts the overlapping nature. Pictorially, this overlapping domain decomposition

in x can be represented as

x0 x̄1

x1 x̄2

x2 x̄3

x3 xq−1 xq

Λ = [a, b] :

Λ1

Λ2

Λ3

Λ4

Λq

The computational domain [xl−1, x̄l] in the lth subinterval is then transformed into x̂ ∈ [−1, 1]

where the standard Chebyshev differentiation matrix is defined by applying the linear map

x̂(x) =
2

x̄l − xl−1

[
x− 1

2
(x̄l + xl−1)

]
, x ∈ [xl−1, x̄l], x̂ ∈ [−1, 1]. (11)

Further, each subinterval is discretized into Nx + 1 Chebyshev Gauss Lobatto points. The subin-

tervals in the decomposed domain overlap in such a manner that the last two points in the Λl

subinterval overlap with the first two points in the Λl+1 subinterval and they remain common. For

illustrative purpose, the case Nx = 5 is considered.

(1)
x5

(1)
x4

(1)
x3

(1)
x2

(1)
x1

(1)
x0

(2)
x5

(2)
x4

(2)
x3

(2)
x2

(2)
x1

(2)
x0

(3)
x5

(3)
x4

(3)
x3

Nx = 5 :
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In general, the set of grid points over the entire x domain can be represented as

{a = x
(1)
Nx
, . . . , x

(1)
1 = x

(2)
Nx
, x

(1)
0 = x

(2)
Nx−1, . . . , x

(l−1)
1 = x

(l)
Nx
, x

(l−1)
0 = x

(l)
Nx−1, . . . , x

(q)
0 = b, 2 ≤ l ≤ q}.

(12)

Similarly, the spatial domain in y variable [c, d] is decomposed into m equal overlapping subintervals

which are further discretized into Ny + 1 collocation points. The subdivision of the computational

domain in y is illustrated by

Ωζ = [yζ−1, ȳζ ] , yζ−1 < yζ < ȳζ , y0 = c, ȳm = d, ζ = 1, 2, . . . ,m, (13)

and the overlapping nature is analogous to that in the x variable. The computational domain

[yζ−1, ȳζ ] in the ζth subinterval is transformed into ŷ ∈ [−1, 1] by applying the linear transformation

ŷ(y) =
2

ȳζ − yζ−1

[
y − 1

2
(ȳζ + yζ−1)

]
, y ∈ [yζ−1, ȳζ ], ŷ ∈ [−1, 1], (14)

before spectral collocation is applied. The grid points in the entire y domain can be represented as

{c = y
(1)
Ny
, . . . , y

(1)
1 = y

(2)
Ny
, y

(1)
0 = y

(2)
Ny−1, . . . , y

(ζ−1)
1 = y

(ζ)
Ny
, y

(ζ−1)
0 = y

(ζ)
Ny−1, . . . , y

(m)
0 = d, 2 ≤ ζ ≤ m}.

(15)

We remark that the number of subintervals q in x need not to be equal to the number of subintervals

m in y. The ordering of grid points as illustrated in Eq.(12) and Eq.(15) signifies that the spectral

collocation is done from right to left of the subinterval. The grid points in the lth subinterval in x

and the ζth subinterval in y variable are defined in [25] by

{x̂i}Nxi=0 = cos

(
iπ

Nx

)
, and {ŷj}Nyj=0 = cos

(
jπ

Ny

)
. (16)

To obtain explicit expression of the length of each subinterval L = x̄l−xl−1 in x and Z = ȳζ −yζ−1

in y in terms of the number of subintervals q and m, respectively, we solve

qL− L (q − 1)

(
1

2
− 1

2
cos

{
π

Nx

})
= b− a, mZ − Z (m− 1)

(
1

2
− 1

2
cos

{
π

Ny

})
= d− c, (17)

to obtain

L =
b− a

q + (1− q)
(

1
2 − 1

2 cos
{

π
Nx

}) , and Z =
d− c

m+ (1−m)
(

1
2 − 1

2 cos
{

π
Ny

}) . (18)

Consequently, we obtain the following relations:

x̄l = xl + L

(
1

2
− 1

2
cos

{
π

Nx

})
, ȳζ = yζ + Z

(
1

2
− 1

2
cos

{
π

Ny

})
. (19)
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Eq.(19) is used in defining the boundaries of the overlapping subintervals when performing dis-

cretization.

2.1.3. Spectral collocation

The overlapping grids multidomain trivariate spectral collocation method is implemented on the

linearised QLM scheme Eq.(4) as detailed below. For simplicity, the label
(τ)
u , τ = 1, 2, . . . , p, will

been used to distinguish solutions at different subintervals in time. We note that the application of

the non-overlapping technique is limited to the time interval only. The PDE is solved independently

at each subinterval in t, τ = 1, 2, . . . , p, and therefore we must solve

δ4,s
∂2(τ)
u s+1

∂x2
+ δ3,s

∂2(τ)
u s+1

∂y2
+ δ2,s

∂
(τ)
u s+1

∂x
+ δ1,s

∂
(τ)
u s+1

∂y
+ δ0,s

(τ)
u s+1 −

∂
(τ)
u s+1

∂t
= Rs,

(x, y) ∈ [a, b]× [c, d], t ∈ [tτ−1, tτ ],

(20)

subject to the boundary conditions

αa1
∂

(τ)
u

∂x
(a, y, t) + αa0

(τ)
u (a, y, t) = fa(y), αb1

∂
(τ)
u

∂x
(b, y, t) + αb0

(τ)
u (b, y, t) = fb(y),

βc1
∂

(τ)
u

∂y
(x, c, t) + βc0

(τ)
u (x, c, t) = gc(x), βd1

∂
(τ)
u

∂y
(x, d, t) + βd0

(τ)
u (x, d, t) = gd(x),

(21)

and the initial condition

(1)
u (x, y, 0) = h(x, y),

(τ)
u (x, y, tτ−1) =

(τ−1)
u (x, y, tτ−1), τ = 2, . . . , p, (x, y) ∈ [a, b]× [c, d]. (22)

In the solution process, the approximate solution of the linearized QLM scheme Eq.(4) at each

subinterval in time is assumed to be the trivariate Lagrange interpolating polynomial that takes

the form

(τ)
u (x, y, t) ≈

(τ)

U (x, y, t) =

Nx∑

p=0

Ny∑

q=0

Nt∑

r=0

(τ)

U (xp, yq, tr)Lp(x)Lq(y)Lr(t). (23)

The spatial differentiation matrix in x is approximated at the collocation nodes, (x̂i, ŷj , tk) for

j = 0, 1, 2, . . . , Ny, and k = 0, 1, 2, . . . , Nt, in the l-th subinterval as follows

∂
(τ)
u

∂x
(x̂i, ŷj , t̂k) ≈

Nx∑

p=0

Ny∑

q=0

Nt∑

r=0

(τ)

U (xp, yq, tr)L
′
p(x̂i)Lq(ŷj)Lr(t̂k) =

Nx∑

p=0

(τ)

U (xp, yj , tk)L
′
p(x̂i) =

l
D

j

Uk

=

(
2

L

) l

D̂
j

Uk,

(24)
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where
l

D̂ =
(
L
2

) l
D is the standard first order Chebyshev differentiation matrix of size (Nx + 1) ×

(Nx + 1) as defined in [25]. The higher order differentiation matrices are obtained using matrix

multiplication. The vector
j

Uk is defined as

j

Uk = [u(x0, yj , tk), u(x1, yj , tk), . . . , u(xNx , yj , tk)]
T , j = 0, 1, . . . , Ny, k = 0, 1, . . . , Nt, (25)

where T denotes the matrix transpose. Similarly, the spatial differentiation matrix in y is approx-

imated at the collocation points, (x̂i, ŷj , t̂k) for i = 0, 1, 2, . . . , Nx, and k = 0, 1, 2, . . . , Nt, in the

ζ-th subinterval as

∂
(τ)
u

∂y
(x̂i, ŷj , t̂k) ≈

Ny∑

q=0

(τ)

U (xi, yq, tk)L
′
q(ŷj) =

Ny∑

q=0

ζ

D̄j,q

q

Uk =

Ny∑

q=0

(
2

Z

) ζ

ˆ̂
Dj,q

q

Uk, (26)

where

ζ

ˆ̂
Dj,q =

(
Z
2

) ζ

D̄j,q, j, q = 0, 1, 2, . . . , Ny, are entries of a standard first order Chebyshev

differentiation matrix of size (Ny + 1) × (Ny + 1). The higher order differentiation matrix with

respect to y can be obtained using matrix multiplication. Finally, the differentiation matrix in

t at the collocation points (x̂i, ŷj , t̂k), for i = 0, 1, 2, . . . , Nx, and j = 0, 1, 2, . . . , Ny, in the τ -th

subinterval is approximated as

∂
(τ)
u

∂t
(x̂i, ŷj , t̂k) ≈

Nt∑

r=0

Ny∑

q=0

(τ)

U (xi, yj , tr)L
′
r(t̂k) =

Nt∑

r=0

Ny∑

q=0

¯̄Dk,r

q

Ur =

Nt∑

r=0

Ny∑

q=0

(
2

tτ − tτ−1

)
ˆ̂
D̂k,r

q

Ur,

τ = 1, 2, . . . , p,

(27)

where
ˆ̂
D̂k,r =

(
tτ−tτ−1

2

)
¯̄Dk,r, k, r = 0, 1, 2, . . . , Nt, are entries of a standard first order Chebyshev

differentiation matrix of size (Nt+1)×(Nt+1). We remark that the bar in D̄ in Eq.(26) and double

bar in ¯̄D in Eq.(27) distinguishes the differentiation matrices in y and t, respectively, from that in

x. We note that in generating the sequence of vectors
j

Uk, j = 0, 1, 2, . . . , Ny, k = 0, 1, 2, . . . , Nt,

the superscript j is varied of each subscript k. Such a pattern will be useful when arranging the

system of linear algebraic equations to assemble coefficient matrices.

The solution in the spatial directions is computed simultaneously across all subintervals and the

multidomain approach only becomes noticeable when assembling differentiation matrices. A key

step towards the solution involve assembling the differentiation matrices in both space variables. To

achieve this, we take x variable as an example, and since the last two points in the lth subinterval
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and the first two points in the (l + 1)th subinterval overlap and remain common, we discard the

rows corresponding to the recurrent grid points and assemble the Chebyshev differentiation matrix

D (without the superscript l) for the overlapping grids multidomain approach in x as

D =




q

D0,0 . . .
q

D0,Nx−1

q

D0,Nx
q

D1,0 . . .
q

D1,Nx−1

q

D1,Nx

. . .
. . .

. . .
. . .

q

DNx−1,0 . . .
q

DNx−1,Nx−1

q

DNx−1,Nx

. . .
. . .

2
D1,0

2
D1,1 . . .

2
D1,Nx−1

2
D1,Nx

. . .
. . .

. . .
. . .

. . .
2
DNx−1,0

2
DNx−1,1 . . .

2
DNx−1,Nx−1

2
DNx−1,Nx

1
D1,0

1
D1,1 . . .

1
D1,Nx

. . .
. . .

. . .
. . .

1
DNx−1,0

1
DNx−1,1 . . .

1
DNx−1,Nx

1
DNx,0

1
DNx,1 . . .

1
DNx,Nx




.

(28)

Here the empty entries of matrix D are zeros and
l
D represents the Chebyshev differentiation

matrix in the lth subinterval in space variable x. The size of matrix D is (δ + 1) × (δ + 1), where

δ = Nx + (Nx − 1) × (q − 1). The differentiation matrix in y is assembled using
ζ

D̄ in a similar

manner to obtain a matrix D̄ of size (σ + 1) × (σ + 1), where σ = Ny + (Ny − 1) × (m− 1). The

second order differentiation matrices with respect to x and y, D2 and D̄
2
, respectively, can be

obtained using matrix multiplication. Notation wise, the bar in D̄ has been used to distinguish the

assembled differentiation matrices in y from those in x.

2.1.4. Assembling linear system of algebraic equations

Using Eq.(24), Eq.(26) and Eq.(27) in the QLM scheme Eq.(20), we obtain a (Nt+1)(σ+1)(δ+1)

system of linear algebraic equations given by

[
δ4,sD

2 + δ2,sD + δ0,sI
] j

Ūk +
σ∑

q=0

[
δ3,sD̄

2
j,q + δ1,sD̄j,q

] q

Ūk −
Nt∑

r=0

σ∑

q=0

¯̄Dk,r

q

Ūr =
j

Rk, τ = 1, . . . , p,

(29)

for j = 0, 1, 2, . . . , σ, k = 0, 1, 2, . . . , Nt and where I is an identity matrix of size (δ + 1)× (δ + 1).

The vector
j

Ūk of size (δ + 1) represents the values of the unknown function u(x, y, t) evaluated at
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the (δ + 1) grid points in entire the x domain of Eq.(12) and the jth and the kth grid points in

y and t, respectively. The bar in
j

Ūk distinguishes it from vector
j

Uk of size (Nx + 1) defined at

Eq.(25). The initial condition when evaluated at the collocation points yields

(1)
u (xi, yj , 0) =

(1)
u (xi, yj , tNt) = h(xi, yj) =

j

ŪNt , i = 0, 1, 2, . . . , δ, j = 0, 1, 2, . . . , σ,

(τ)
u (xi, yj , tτ−1) =

(τ−1)
u (xi, yj , tτ−1), τ = 2, 3, . . . , p.

(30)

Using the initial condition Eq.(30), we can reduce Eq.(29) to

[
δ4,sD

2 + δ2,sD + δ0,sI
] j

Ūk +

σ∑

q=0

[
δ3,sD̄

2
j,q + δ1,sD̄j,q

] q

Ūk −
Nt−1∑

r=0

σ∑

q=0

¯̄Dk,r

q

Ūr =
j

R̄k,

τ = 1, 2, 3, . . . , p.

(31)

where j = 0, 1, 2, . . . , σ, k = 0, 1, 2, . . . , Nt − 1 and

j

R̄k =
j

Rk +
σ∑

q=0

¯̄Dk,Nt

q

ŪNt , k = 0, 1, 2, . . . , Nt − 1. (32)

The linear system of equations in Eq.(31) can be expanded into an Nt(σ+1)(δ+1)×Nt(σ+1)(δ+1)

matrix system given by




A0,0 A0,1 A0,2 . . . A0,Nt−1

A1,0 A1,1 A1,2 . . . A1,Nt−1

...
...

... . . .
...

ANt−1,0 ANt−1,1 ANt−1,2 . . . ANt−1,Nt−1







j

Ū0

j

Ū1

...
j

ŪNt−1




=




j

R0

j

R1

...
j

RNt−1



, τ = 1, 2, 3, . . . , p. (33)

The matrix system Eq.(33) can be written compactly as

[
A

] [
(τ)

U

]
=

[
(τ)

R

]
, , τ = 1, 2, 3, . . . , p, (34)

where

Ak,k = B− ¯̄Dk,kIxy, Ak,r = − ¯̄Dk,rIxy, k 6= r, k, r = 0, 1, 2, . . . , Nt − 1,

Bi,i = δ4,sD
2 + δ2,sD + δ0,sIx + δ3,sD̄

2
i,iIx + δ1,sD̄i,iIx,

Bi,j = δ3,sD̄
2
i,jIx + δ1,sD̄i,jIx, i 6= j, i, j = 0, 1, 2, . . . , σ,

(τ)

U =

[
(τ)
u (x0, y0, t0), . . . ,

(τ)
u (xδ, y0, t0),

(τ)
u (x0, y1, t0), . . . ,

(τ)
u (xNx , yσ, t0), . . . ,

(τ)
u (xδ, yσ, tNt)

]T
,

(35)
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and
(τ)

R is the right hand side corresponding to the unknown vector
(τ)

U. The quantities Ixy and Ix

are identity matrices of size (σ + 1)(δ + 1)× (σ + 1)(δ + 1) and (δ + 1)× (δ + 1), respectively. The

boundary conditions Eq.(21) are evaluated at the collocation nodes as

αa1

δ∑

p=0

Dδ,p
(τ)
u (xp, yj , tk) + αa1

(τ)
u (xδ, yj , tk) = fa(yj , tk),

αb1

δ∑

p=0

D0,p
(τ)
u (xp, yj , tk) + αb0

(τ)
u (x0, yj , tk) = fb(yj , tk), j = 0, 1, 2, . . . , σ, k = 0, 1, 2, . . . , Nt,

(36)

and

βc1

σ∑

q=0

D̄σ,q
(τ)
u (xi, yq, tk) + βc0

(τ)
u (xi, yσ, tk) = gc(xi, tk),

βd1

σ∑

q=0

D̄0,q
(τ)
u (xi, yq, tk) + βd0

(τ)
u (xi, y0, tk) = gd(xi, tk), i = 0, 1, 2, . . . , δ, k = 0, 1, 2, . . . , Nt.

(37)

The boundary conditions are imposed on the main diagonal sub-blocks of matrices in Eq.(33) to

yield a new consistent system of linear algebraic equations. The required solution of this system

is obtained through an iterative process starting with an appropriate initial approximation to the

solution.

2.2. Method of solution for systems of nonlinear PDEs

In this subsection, we extend the algorithm described in the previous subsection to the solution

of systems of nonlinear PDEs. To demonstrate the construction of the algorithm, we consider a

system of two nonlinear PDEs that can be expressed in the form

∂u

∂t
= F1

(
∂2u

∂x2
,
∂2v

∂x2
,
∂2u

∂y2
,
∂2v

∂y2
,
∂u

∂x
,
∂v

∂x
,
∂u

∂y
,
∂v

∂y
, u, v

)
,

∂v

∂t
= F2

(
∂2u

∂x2
,
∂2v

∂x2
,
∂2u

∂y2
,
∂2v

∂y2
,
∂u

∂x
,
∂v

∂x
,
∂u

∂y
,
∂v

∂y
, u, v

)
,

(38)

where F1 and F2 are nonlinear operators acting on the unknown functions u and v and their

derivatives with respect to x and y as illustrated. The system Eq.(38) is solved subject to the

boundary conditions

αa1
∂u

∂x
(a, y, t) + αa0u(a, y, t) = fa(y, t), αb1

∂u

∂x
(b, y, t) + αb0u(b, y, t) = fb(y, t),

βc1
∂u

∂y
(x, c, t) + βc0u(x, c, t) = gc(x, t), βd1

∂u

∂y
(x, d, t) + βd0u(x, d, t) = gd(x, t),

(39)
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and

αa∗1
∂v

∂x
(a, y, t) + αa∗0 v(a, y, t) = fa∗(y, t), αb∗1

∂v

∂x
(b, y, t) + αb∗0 v(b, y, t) = fb∗(y, t),

βc∗1
∂v

∂y
(x, c, t) + βc∗0 v(x, c, t) = gc∗(x, t), βd∗1

∂v

∂y
(x, d, t) + βd∗0 v(x, d, t) = gd∗(x, t).

(40)

The star ∗ in Eq.(40) distinguishes the boundary conditions in v from those of u. The initial

conditions for this problem are

u(x, y, 0) = h1(x, y), v(x, y, 0) = h2(x, y). (41)

Applying the QLM, Eq.(38) can be expressed as the linearized coupled system

δ1
4,s

∂2us+1

∂x2
+ δ1

3,s

∂2us+1

∂y2
+ δ1

2,s

∂us+1

∂x
+ δ1

1,s

∂us+1

∂y
+ δ1

0,sus+1

− u̇s+1 + σ1
4,s

∂2vs+1

∂x2
+ σ1

3,s

∂2vs+1

∂y2
+ σ1

2,s

∂vs+1

∂x
+ σ1

1,s

∂vs+1

∂y
+ σ1

0,svs+1 = R1,s,

(42)

δ2
4,s

∂2us+1

∂x2
+ δ2

3,s

∂2us+1

∂y2
+ δ2

2,s

∂us+1

∂x
+ δ2

1,s

∂us+1

∂y
+ δ2

0,sus+1

+ σ2
4,s

∂2vs+1

∂x2
+ σ2

3,s

∂2vs+1

∂y2
+ σ2

2,s

∂vs+1

∂x
+ σ2

1,s

∂vs+1

∂y
+ σ2

0,svs+1 − v̇s+1 = R2,s,

(43)

where

δν4,s =
∂Fν

∂ (uxx)s
, δν3,s =

∂Fν
∂ (uyy)s

, δν2,s =
∂Fν
∂ (ux)s

, δν1,s =
∂Fν
∂ (uy)s

, δν0,s =
∂Fν
∂ (u)s

,

σν4,s =
∂Fν

∂ (uxx)s
, σν3,s =

∂Fν
∂ (uyy)s

, σν2,s =
∂Fν
∂ (ux)s

, σν1,s =
∂Fν
∂ (uy)s

, σν0,s =
∂Fν
∂ (u)s

, ν = 1, 2,

(44)

Rν,s =δν4,s(uxx)s + δν3,s(uyy)s + δν2,s(ux)s + δν1,s(uy)s + δν0,sus+

σν4,s(vxx)s + σν3,s(vyy)s + σν2,s(vx)s + σν1,s(vy)s + σν0,svs − Fν,s , ν = 1, 2.
(45)

For each subinterval in time, we must solve

δ1
4,s

∂2(τ)
u s+1

∂x2
+ δ1

3,s

∂2(τ)
u s+1

∂y2
+ δ1

2,s

∂
(τ)
u s+1

∂x
+ δ1

1,s

∂
(τ)
u s+1

∂y
+ δ1

0,s

(τ)
u s+1

− ∂
(τ)
u s+1

∂t
+ σ1

4,s

∂2(τ)
v s+1

∂x2
+ σ1

3,s

∂2(τ)
v s+1

∂y2
+ σ1

2,s

∂
(τ)
v s+1

∂x
+ σ1

1,s

∂
(τ)
v s+1

∂y
+ σ1

0,s

(τ)
v s+1 = R1,s,

(46)

δ2
4,s

∂2(τ)
u s+1

∂x2
+ δ2

3,s

∂2(τ)
u s+1

∂y2
+ δ2

2,s

∂
(τ)
u s+1

∂x
+ δ2

1,s

∂
(τ)
u s+1

∂y
+ δ2

0,s

(τ)
u s+1

+ σ2
4,s

∂2(τ)
v s+1

∂x2
+ σ2

3,s

∂2(τ)
v s+1

∂y2
+ σ2

2,s

∂
(τ)
v s+1

∂x
+ σ2

1,s

∂
(τ)
v s+1

∂y
+ σ2

0,s

(τ)
v s+1 −

∂
(τ)
v s+1

∂t
= R2,s,

(47)
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subject to the corresponding boundary conditions. Here the initial conditions are evaluated at

collocation points as

(1)
u (xi, yj , 0) =

(1)
u (xi, yj , tNt) = h1(xi, yj) =

j

UNt ,
(1)
v (xi, yj , 0) =

(1)
v (xi, yj , tNt) = h2(xi, yj) =

j

VNt ,

(τ)
u (xi, yj , tτ−1) =

(τ−1)
u (xi, yj , tτ−1),

(τ)
v (xi, yj , tτ−1) =

(τ−1)
v (xi, yj , tτ−1), τ = 2, 3, . . . , p.

(48)

Applying the spectral collocation method to the linearized QLM scheme Eqs.(46)-(47) and account-

ing for the effect of the initial condition we obtain a system of 2Nt(σ + 1)(δ + 1) linear algebraic

equations for each subinterval τ = 1, 2, . . . , p, in t given by

[
δ14,sD

2 + δ12,sD + δ10,sI
] j

Ūk +
σ∑

q=0

[
δ13,sD̄

2
j,q + δ11,sD̄j,q

] q

Ūk −
Nt−1∑

r=0

σ∑

q=0

¯̄Dk,r

q

Ūr

+
[
σ1
4,sD

2 + σ1
2,sD + σ1

0,sI
] j

V̄k +
σ∑

q=0

[
σ1
3,sD̄

2
j,q + σ1

1,sD̄j,q

] q

V̄k =
j

R̄1,k,

(49)

[
δ24,sD

2 + δ22,sD + δ20,sI
] j

Ūk +
σ∑

q=0

[
δ23,sD̄

2
j,q + δ21,sD̄j,q

] q

Ūk +
[
σ2
4,sD

2 + σ2
2,sD + σ2

0,sI
] j

V̄k

+

σ∑

q=0

[
σ2
3,sD̄

2
j,q + σ2

1,sD̄j,q

] q

V̄k −
Nt−1∑

r=0

Ny∑

q=0

¯̄Dk,r

q

V̄r =
j

R̄2,k.

(50)

Eqs.(38)-(39) can be expressed as a 2Nt(σ+ 1)(δ+ 1)× 2Nt(σ+ 1)(δ+ 1) matrix system given by




A1,1 A1,2

A2,1 A2,2







(τ)

U
(τ)

V




=




(τ)

R1

(τ)

R2



, (51)

where

(τ)

R1 = R1,s +

Ny∑

q=0

¯̄Dk,Nt

q

UNt ,
(τ)

R2 = R2,s +

Ny∑

q=0

¯̄Dk,Nt

q

VNt , k = 0, 1, 2, . . . , Nt − 1. (52)

The vector
(τ)

V̄ is defined in similar manner to vector
(τ)

Ū given in Eq.(35). The right hand side vectors
(τ)

R1, and
(τ)

R2 correspond to vectors
(τ)

Ū and
(τ)

V̄, respectively. The boundary conditions Eq.(39) and

Eq.(40) are evaluated at the collocation points in a manner similar to that illustrated at Eq.(36)

and Eq.(37). We remark that if the initial conditions u(x, y, 0) and v(x, y, 0) are not available,
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the system of differential equations is first solved for t = 0 to approximate the initial conditions.

In summary, we assert that the algorithms described so far can be adjusted easily and applied to

PDEs of higher orders (> 2) and on problems modeled by larger systems of nonlinear PDEs. An

extension to numerical schemes of solutions of two-dimensional time-dependent PDEs exhibiting

slightly different forms of nonlinearity can be achieved in a straightforward manner.

3. Error bound theorems in a trivariate polynomial interpolation

In this section, we present new error bound theorems that govern polynomial interpolation er-

rors in a trivariate Lagrange interpolating polynomial constructed using Chebyshev-Gauss-Lobatto

nodes. Fundamental elements related to the construction of proofs of the theorems include; first,

understanding that the CGL nodes are the relative extremes of the Nx-th degree Chebyshev poly-

nomial of the first kind TNx(x̂) = cos [Nx arccos(x̂)] , x̂ ∈ [−1, 1], secondly, understanding the

general properties of Chebyshev polynomials, and thirdly, understanding the mean value theorem

in calculus. Although to the best of our knowledge, there does not exist a well-known family of

polynomials whose roots are the CGL nodes, it is easy to discern that the interior CGL nodes are

roots of T ′Nx(x̂) = 0. This fact leads to the discovery of a complete set of CGL nodes as the roots

of the Nx + 1-th degree polynomial given by

LNx+1(x̂) = (1− x̂2)T ′Nx(x̂). (53)

The theorem given below benchmarks the formulation of the error bound theorems on trivariate

polynomial interpolation.

Theorem 1. [27] Let u(x, y, t) ∈ CNx+Ny+Nt+3([a, b] × [c, d] × [0, T ]) be sufficiently smooth such

that at least the (Nx+1)th partial derivative with respect to x, the (Ny +1)th partial derivative with

respect to y, the (Nt + 1)th partial derivative with respect to t, and the (Nx +Ny +Nt + 3)th mixed

partial derivative with respect to x, y, and t exist and are all continuous, then there exist values

ξx, ξ
′
x ∈ (a, b), ξy, ξ

′
y,∈ (c, d), and ξt, ξ

′
t,∈ (0, T ), such that

u(x, y, t)− U(x, y, t) =
∂Nx+1u(ξx, y, t)

∂xNx+1(Nx + 1)!

Nx∏

i=0

(x− xi) +
∂Ny+1u(x, ξy, t)

∂yNy+1(Ny + 1)!

Ny∏

j=0

(y − yj) +
∂Nt+1u(x, y, ξt)

∂tNt+1(Nt + 1)!

Nt∏

k=0

(t− tk)

−
∂Nx+Ny+Nt+3u(ξ′x, ξ

′
y, ξ
′
t)

∂xNx+1∂yNy+1∂tNt+1(Nx + 1)!(Ny + 1)!(Nt + 1)!

Nx∏

i=0

(x− xi)
Ny∏

j=0

(y − yj)
Nt∏

k=0

(t− tk),

(54)
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where U(x, y, t) is a trivariate interpolating polynomial of u(x, y, t) at {xi}Nxi=0 grid points in x-

variable, {yj}Nyj=0 grid points in y-variable, and {tk}Ntk=0 grid points in t-variable.

The remainder formula Eq.(54) is based on the mean value theorem and is derived recursively from

the corresponding univariate error formula given in [28] for a sufficiently smooth function u(x, y, t).

Taking the absolute value of Eq.(54) we obtain

|u(x, y, t)− U(x, y, t)| ≤ max
(x,y,t)∈Ω

∣∣∣∣
∂Nx+1u(ξx, y, t)

∂xNx+1

∣∣∣∣

∣∣∣∣∣
Nx∏

i=0

(x− xi)
∣∣∣∣∣

(Nx + 1)!

+ max
(x,y,t)∈Ω

∣∣∣∣
∂Ny+1u(x, ξy, t)

∂yNy+1

∣∣∣∣

∣∣∣∣∣∣

Ny∏

j=0

(y − yj)

∣∣∣∣∣∣
(Ny + 1)!

+ max
(x,y,t)∈Ω

∣∣∣∣
∂Nt+1u(x, y, ξt)

∂tNt+1

∣∣∣∣

∣∣∣∣∣
Nt∏

k=0

(t− tk)

∣∣∣∣∣
(Nt + 1)!

+ max
(x,y,t)∈Ω

∣∣∣∣∣
∂Nx+Ny+Nt+3u(ξ′x, ξ

′
y, ξ
′
t)

∂xNx+1∂yNy+1∂tNt+1

∣∣∣∣∣

∣∣∣∣∣
Nx∏

i=0

(x− xi)
∣∣∣∣∣

∣∣∣∣∣∣

Ny∏

j=0

(y − yj)

∣∣∣∣∣∣

∣∣∣∣∣
Nt∏

k=0

(t− tk)

∣∣∣∣∣

(Nx + 1)!(Ny + 1)!(Nt + 1)!
,

(55)

where Ω = [a, b]× [c, d]× [0, T ]. Since the function u(x, y, t) is assumed to be smooth on the interval

of approximation, it follows that its derivatives are bounded and thus ∃ constants C1, C2, C3 and

C4, such that

max
(x,y,t)∈Ω

∣∣∣∣
∂Nx+1u(x, y, t)

∂xNx+1

∣∣∣∣ ≤ C1, max
(x,y,t)∈Ω

∣∣∣∣
∂Ny+1u(x, y, t)

∂yNy+1

∣∣∣∣ ≤ C2,

max
(x,y,t)∈Ω

∣∣∣∣
∂Nt+1u(x, y, t)

∂tNt+1

∣∣∣∣ ≤ C3, max
(x,y,t)∈Ω

∣∣∣∣
∂Nx+Ny+Nt+3u(x, y, t)

∂xNx+1∂yNy+1∂tNt+1

∣∣∣∣ ≤ C4.

(56)

The error bound for trivariate polynomial interpolation using Chebyshev-Gauss-Lobatto nodes on

a single domain is governed by the theorem below

Theorem 2 (The error bound in a single domain). The resulting error bound when CGL

grid points {xi}Nxi=0 ∈ [a, b], in x-variable, {yj}Nyj=0 ∈ [c, d] in y-variable, and {tk}Ntk=0 ∈ [0, T ], in

t-variable are used in trivariate polynomial interpolation is given by

E(x, y, t) ≤ C1

8
(
b−a

4

)Nx+1

(Nx + 1)!
+ C2

8
(
d−c

4

)Ny+1

(Ny + 1)!
+ C3

8
(
T
4

)Nt+1

(Nt + 1)!
+ C4

83
(
b−a

4

)Nx+1 (d−c
4

)Ny+1 (T
4

)Nt+1

(Nx + 1)!(Ny + 1)!(Nt + 1)!
.

(57)
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Proof. First, using the relation stated in [29] we express Eq.(53) as

LNx+1(x̂) = (1− x̂2)T ′Nx(x̂) = −Nxx̂TNx(x̂) +NxTNx−1(x̂). (58)

Using the triangle inequality and noting that |TNx(x̂)| ≤ 1, ∀ x̂ ∈ [−1, 1], we have

|LNx+1(x̂)| = | −Nxx̂TNx(x̂) +NxTNx−1(x̂)| ≤ | −Nxx̂TNx(x̂)|+ |NxTNx−1(x̂)| ≤ 2Nx. (59)

The leading coefficient of LNx+1(x̂) is 2Nx−1Nx, where the components 2Nx−1 and Nx come from

the leading coefficient of TNx(x̂) and the application of Nx-th rule of differentiation on TNx(x̂),

respectively. The product factor in the first term of the error bound expression given at Eq.(55)

can therefore be taken as the factorized form of the monic polynomial
LNx+1(x̂)

2Nx−1Nx
. We write

Nx∏

i=0

(x̂− x̂i) =
LNx+1(x̂)

2Nx−1Nx
, x̂ ∈ [−1, 1]. (60)

Using Eq.(59), it is easy to establish that the monic polynomial Eq.(60) is bounded by

∣∣∣∣∣∣

Nx∏

j=0

(x− x̂i)

∣∣∣∣∣∣
=

∣∣∣∣
LNx+1(x̂)

2Nx−1Nx

∣∣∣∣ ≤
2Nx

2Nx−1Nx
=

4

2Nx
. (61)

Considering a general interval x ∈ [a, b], we can show that the first product factor in Eq.(55) is

bounded by

max
a≤x≤b

∣∣∣∣∣
Nx∏

i=0

(x− xi)
∣∣∣∣∣ = max

−1≤x̂≤1

∣∣∣∣∣
Nx∏

i=0

(b− a)

2
(x̂− x̂i)

∣∣∣∣∣ =

(
b− a

2

)Nx+1

max
−1≤x̂≤1

∣∣∣∣∣
Nx∏

i=0

(x̂− x̂i)
∣∣∣∣∣

=

(
b− a

2

)Nx+1

max
−1≤x̂≤1

∣∣∣∣
LNx+1(x̂)

2Nx−1Nx

∣∣∣∣ ≤
4
(
b−a

2

)Nx+1

2Nx
= 8

(
b− a

4

)Nx+1

.

(62)

Similarly, we conclude that the second and the third product factors are bounded, respectively, by

max
c≤y≤d

∣∣∣∣∣∣

Ny∏

j=0

(y − yj)

∣∣∣∣∣∣
=

(
d− c

2

)Ny+1

max
−1≤ŷ≤1

∣∣∣∣
LNy+1(ŷ)

2Ny−1Ny

∣∣∣∣ ≤
4
(
d−c

2

)Ny+1

2Ny
= 8

(
d− c

4

)Ny+1

, (63)

and

max
0≤t≤T

∣∣∣∣∣
Nt∏

k=0

(t− tk)
∣∣∣∣∣ =

(
T

2

)Nt+1

max
−1≤t̂≤1

∣∣∣∣
LNt+1(t̂)

2Nt−1Nt

∣∣∣∣ ≤
4
(
T
2

)Nt+1

2Nt
= 8

(
T

4

)Nt+1

. (64)

Using Eqs.(62)− (64) and Eq.(56) in Eq.(55) the proof is completed.

Theorem 3 (The error bound in a decomposed domain). The resulting error bound when

CGL grid points {xi}Nxi=0 ∈ [xl−1, x̄l], l = 1, 2, . . . , q, for the decomposed domain in x-variable and
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{yj}Nyj=0 ∈ [yζ−1, ȳζ ], ζ = 1, 2, . . . ,m, for the decomposed domain in y-variable, and {tk}Ntk=0 ∈
[tτ−1, tτ ], τ = 1, 2, . . . , p, for the decomposed domain in t-variable are used in trivariate polynomial

interpolation is given by

E(x, y, t) ≤C1
8
(
L
4

)Nx+1

(Nx + 1)!
+ C2

8
(
Z
4

)Ny+1

(Ny + 1)!
+ C3

8
(
T
4

)Nt+1

(Nt + 1)!

(
1

p

)Nt+1

+ C4
83
(
L
4

)Nx+1 (Z
4

)Ny+1 (T
4

)Nt+1

(Nx + 1)!(Ny + 1)!(Nt + 1)!

(
1

p

)Nt+1

.

(65)

Proof. First, we consider the t variable. In the entire domain [0, T ], we have that
∣∣∣∣∣
Nt∏

k=0

(t− tk)
∣∣∣∣∣ ≤ 8

(
T

4

)Nt+1

, t ∈ [0, T ]. (66)

The implication is that in the decomposed domain and at each subinterval, we must have
∣∣∣∣∣
Nt∏

k=0

(t− tk)
∣∣∣∣∣ ≤ 8

(
T

4p

)Nt+1

= 8

(
T

4

)Nt+1(1

p

)Nt+1

, t ∈ [tτ−1, tτ ], τ = 1, 2, . . . , p, . (67)

For smooth u, there exists ξµ ∈ (tµ−1, tµ), µ = 1, 2, . . . , p, for which the values of the (Nt + 1)th

partial derivatives of u with respect to t in each subinterval is the absolute extrema. This enables

us to break the third term C3
8(T4 )

Nt+1

(Nt+1)! that appears in the error bound expression at Eq.(57) into

different components, which are necessarily not equal in the decomposed domain, as
{

(τ)

C 3
8
(
T
4

)Nt+1

(Nt + 1)!

(
1

p

)Nt+1
}p

τ=1

, (68)

where

max
(x,t)∈Ω

∣∣∣∣
∂Nt+1u(x, t)

∂tNt+1

∣∣∣∣ =

∣∣∣∣
∂Nt+1u(x, ξτ )

∂tNt+1

∣∣∣∣ ≤
(τ)

C 3, t ∈ [tτ−1, tτ ].

We define

‖ Ĉ3 ‖∞≡ max{
(1)

C 3,
(2)

C 3, . . . ,
(p)

C 3}, (69)

to denote the maximum absolute value of the (Nt + 1)th partial derivatives of u with respect to t

in [0, T ]. Clearly, ‖ Ĉ3 ‖∞= C3, where C3 is identical to the one given at Eq.(57). To expand the

error bound over the entire t domain, we shall take the largest possible error across all subintervals

in t, which is

C3
8
(
T
4

)Nt+1

(Nt + 1)!

(
1

p

)Nt+1

. (70)

Similar reasoning can be applied to show that the first and the second component in error bound

Eq.(57) in the decomposed x and y domains translate to

C2
8
(
L
4

)Ny+1

(Ny + 1)!
, and C2

8
(
Z
4

)Ny+1

(Ny + 1)!
, respectively. (71)
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Consequently, the forth component in Eq.(57) becomes

C4
83
(
L
4

)Nx+1 (Z
4

)Ny+1 (T
4

)Nt+1

(Nx + 1)!(Ny + 1)!(Nt + 1)!

(
1

p

)Nt+1

, (72)

in the decomposed domain. Using Eqs.(70)− (72) in Eq.(57) completes the proof.

Comparing Eq.(57) and Eq.(64) we note that the error in trivariate polynomial interpolation is

smaller when interpolation is conducted on multiple domains than it would be on a single domain.

Further, we remark that CGL nodes are preferable candidates of interpolation when using spectral

collocation methods to solve boundary value problems because they are convenient in constructing

differentiation matrices. For the reason that they contain the boundary nodes they are advantageous

when treating the boundary conditions of the problem.

4. Numerical experiment

In this section, we apply the method described in the previous section to a selected class of

two-dimensional nonlinear initial-boundary value problems. The accuracy and efficiency of the

proposed method are demonstrated by comparing the numerical results with the exact solution.

Example 1. Consider the problem of two-dimensional heat and mass transfer in quiescent media

with chemical reaction given in its general form by

∂u

∂t
= a

(
∂2u

∂x2
+
∂2u

∂y2

)
+ f(u), (73)

where a is a real constant. As a special case, we analyze this problem when a = 1 and f(u) =

−4u3 − 2u2 and solve the problem subject to the boundary conditions

u(2, y, t) = (2 + y + 2t)−1, u(5, y, t) = (5 + y + 2t)−1, 2 ≤ y ≤ 5, t > 0,

u(x, 2, t) = (2 + x+ 2t)−1, u(x, 5, t) = (5 + x+ 2t)−1, 2 ≤ x ≤ 5, t > 0.
(74)

The initial condition for this problem is given by

u(x, y, 0) = (x+ y)−1, 2 ≤ x ≤ 5, 2 ≤ y ≤ 5. (75)

The exact solution is given in [9] as

u(x, y, t) = (x+ y + 2t)−1. (76)
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Example 2. We consider the two-dimensional heat and mass transfer equation with power-law

temperature-dependent thermal conductivity [10]

∂u

∂t
= a

[
∂

∂x

(
un
∂u

∂x

)]
+ b

[
∂

∂y

(
um

∂u

∂y

)]
+ βu, (77)

where n, m can be integers or fractions and a, b, and β are some parameters. For simplicity, we

consider the special case of Eq.(77) when a = 1, b = 1, m = n = 1, and β = 0 in which Eq.(77)

reduces to the Boussinesq equation

∂u

∂t
=

[
∂

∂x

(
u
∂u

∂x

)]
+

[
∂

∂y

(
u
∂u

∂y

)]
. (78)

The Boussinesq equation arises in nonlinear heat conduction and the theory of unsteady flow

through porous media with a free surface. Eq.(78) is solved subject to boundary conditions

u(0, y, t) = y + 2t, u(5, y, t) = 5 + y + 2t, 0 ≤ y ≤ 4, t > 0,

u(x, 0, t) = x+ 2t, u(x, 4, t) = 4 + x+ 2t, 0 ≤ x ≤ 5, t > 0.
(79)

The initial condition for this problem is given by

u(x, y, 0) = x+ y. (80)

The exact solution is given by authors in [9] as

u(x, y, t) = x+ y + 2t. (81)

Example 3. We consider the system of two-dimensional Burgers equations given by

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
=

1

Re

(
∂2u

∂x2
+
∂2u

∂y2

)
,

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
=

1

Re

(
∂2v

∂x2
+
∂2v

∂y2

)
,

(82)

where u(x, y, t) and v(x, y, t) are velocity components to be determined and Re is the Reynolds

number. Eq.(82) is subject to boundary conditions

u(0, y, t) =
3

4
− 1

4
[
1 + e(Re(4y−t)/32)

] , u(5, y, t) =
3

4
− 1

4
[
1 + e(Re(4y−20−t)/32)

] ,

u(x, 0, t) =
3

4
− 1

4
[
1 + e(Re(−4x−t)/32)

] , u(x, 5, t) =
3

4
− 1

4
[
1 + e(Re(20−4x−t)/32)

] ,
(83)

v(0, y, t) =
3

4
+

1

4
[
1 + e(Re(4y−t)/32)

] , v(5, y, t) =
3

4
+

1

4
[
1 + e(Re(4y−20−t)/32)

] ,

v(x, 0, t) =
3

4
+

1

4
[
1 + e(Re(−4x−t)/32)

] , v(x, 5, t) =
3

4
+

1

4
[
1 + e(Re(20−4x−t)/32)

] .
(84)
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The initial condition are

u(x, y, 0) =
3

4
− 1

4
[
1 + e(Re(y−x)/8)

] , v(x, y, 0) =
3

4
+

1

4
[
1 + e(Re(y−x)/8)

] . (85)

The exact solutions for this problem are given in [30] as

u(x, y, t) =
3

4
− 1

4
[
1 + e(Re(4y−4x−t)/32)

] , v(x, y, t) =
3

4
+

1

4
[
1 + e(Re(4y−4x−t)/32)

] . (86)

Example 4. We consider the two-dimensional Brusselator system given by

∂u

∂t
= B + u2v − (A+ 1)u+ µ

(
∂2u

∂x2
+
∂2u

∂y2

)
,

∂v

∂t
= Au− u2v + µ

(
∂2v

∂x2
+
∂2v

∂y2

)
,

(87)

where u(x, y, t) and v(x, y, t), representing dimensionless concentration of two reactants A and B

are constant concentrations of the two reactants, and µ is the diffusion coefficient. The exact

solutions for this problem are given in [31] for A = 1, B = 0, µ = 1
4 as

u(x, y, t) = e−x−y−t/2, v(x, y, t) = ex+y+t/2. (88)

Eq.(87) is solved subject to boundary conditions

u(0, y, t) = e−y−t/2, u(2, y, t) = e−2−y−t/2, u(x, 0, t) = e−x−t/2, u(x, 2, t) = e−2−x−t/2, (89)

v(0, y, t) = ey+t/2, v(2, y, t) = e2+y+t/2, v(x, 0, t) = ex+t/2, v(x, 2, t) = e2+x+t/2. (90)

The initial condition for this problem are

u(x, y, 0) = e−x−y, v(x, y, 0) = ex+y. (91)

5. Results and discussion

In this section, results obtained after solving selected initial-boundary value problems using

the overlapping grids based multidomain spectral collocation method are presented in tabular and

graphical forms and then discussed. The results demonstrate various aspects of the proposed

numerical method of solution. For comparison purposes, results from the new modified solution

approach are compared with those from the standard spectral collocation method on a single
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domain to reveal the benefits of incorporating techniques of both overlapping and non-overlapping

grids in the solution algorithm. The selected test examples possess exact solutions and, therefore,

we evaluate the accuracy of the method by displaying the absolute error norms obtained after 5

iterations, upon which the iterative numerical scheme is discerned to have converged. The error

norms are computed as

E5 = |u− U |∞ (92)

where u and U are vectors representing, respectively, the exact and approximate solutions evaluated

at selected collocation points. We examine the dependence of accuracy on the length of time

interval, length of the spatial domain and the size of the parameters present in the given differential

equation.

Results obtained when Eq.(73) is solved are displayed in Table 1. The single domain approach

is invoked using Nx = 20 and Ny = 20 grid points in the spatial domains and Nt = 10 grid points

per unit interval in the time domain, in such a manner that when T = 1, Nt = 10, when T = 2,

Nt = 20 and so on until Nt = 50 is used for T = 5. In the multidomain domain approach, each

spatial domain is broken into two overlapping subintervals, with 10 grid points in each subinterval;

thus Nx = 10, Ny = 10, q = 2, m = 2 in all five cases of time interval considered. The domain

decomposition on the time interval is achieved as follows: Nt = 10 is used per unit time, which

implies that when T = 1 only one interval in time is considered with Nt = 10, but when T = 2, two

non-overlapping subintervals are used, each with Nt = 10 grid points and so on such when T = 5,

five non-overlapping subintervals are used, each with Nt = 10 grid points. The CPU time displayed

in this table is the cumulative computation time required to run the algorithm over the different

time levels, T = 1 to T = 5. Comparison of results in the second and the third columns suggests

that incorporating the domain decomposition technique for large time intervals yields more accurate

results than those given by increasing the number of grid points on a single interval. The entries

in the first row show that this is so, even for smaller time intervals. Decomposing the large spatial

domain into overlapping subintervals improves the accuracy of the numerical approximation. It can

be seen in Table 1 that shorter computation time is taken to yield results with the multidomain

approach than with the single domain approach. The condition number displayed is that of the

coefficient matrix of the system of linear algebraic equations when T = 5. With the single domain

approach, deterioration of accuracy with large time intervals can be explained by the large condition

number of the coefficient matrix resulting from many grid points. In the multidomain approach,
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the shorter computational time is attributed to the resulting small-sized matrices, which are easier

to invert.

Results obtained when Eq.(78) is solved are displayed in Table 2. The grid points distribution

used to generate these results is similar to that for the previous table. From Table 2, we observe that,

although the error norm is slightly larger in the single domain approach than in the multidomain

case, it remains relatively steady as the length of the computational domain in time increase. Close

scrutiny of the exact solution of Eq.(78) reveals that its higher ordered derivatives are bounded

within the interval of approximation. For problems whose higher ordered derivatives are bounded,

the accuracy ought not to deteriorate with an increase in the number of grid points. This observation

agrees with the error bound theorems given in the previous section. However, since, in many

practical applications, there is no prior knowledge of the exact solution of the differential equation

and in view of the computational time constraint, the multidomain approach is superior to the

single domain approach where the domain of approximation is large. The trend in CPU time and

condition numbers is similar to that of the previous table.

Results obtained when Eq.(82) (the 2-D coupled Burgers system) is solved are displayed in Table

3, and Figures 1 and 2. In Table 3, the single domain approach is invoked using Nx = 40, Ny = 40

grid points in the spatial domains and Nt = 50 grid points over the entire time domain of length T =

10. In the multidomain approach, q = m = 4 overlapping subintervals are used in space directions

with Nx = Ny = 10 grid points, and in time direction p = 5 non-overlapping subintervals with

Nt = 10 are used. In Table 3, we observe that as the values of the Reynolds (Re) number increase,

the single domain approach shows a greater drop in accuracy than the multidomain approach.

It is worth mentioning that the factor 1
Re is the coefficient of higher ordered space derivatives

in Eq.(82) and so for large values of Re, this coefficient is small. Multiplying the differentiation

matrices by this small value leads to reduced in the precision of the entries of the coefficient matrix

derived from the resulting system of linear algebraic equations. Numerical computations with small

valued matrix entries have pronounced round-off errors, which reduces the accuracy of numerical

approximations. Incorporating the overlapping grids technique in the spatial domain introduces

scaling in the coefficient matrix, which in turn counters the effect of large values of Re. Figure 1

shows the graph of error norms plotted against the length of the time interval. We examine the

variation of error norms by considering results from both a single domain approach (p = 1) and a

multidomain approach, in which the large time domain has been broken into 5 and 10 subintervals
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(p = 5 and p = 10). The total number of grid points over the entire domain is kept constant with

Nt = 10 per unit time. The algorithm is run using T = 4, T = 8, T = 12, T = 16, T = 20,

time intervals. Here the spatial domain is not decomposed and values of Reynolds number are

kept small at Re = 5. The results in Figure 1 make clear the need for the non-overlapping grids

technique when solving problems over large time intervals. It can be observed that for small time

intervals, single domain approach gives the best accuracy for a fixed number of grid points across

all the three cases considered. Breaking a small time interval into further intervals comes at the

expense of increasing the number of grid points, which is equivalent to reducing the degree of the

interpolating polynomial approximating the solution of the differential equation, thereby, leading to

poor approximations. Having examined the usefulness of the non-overlapping grids technique in the

case of large time intervals, in Figure 2 we maintain a large time interval at T = 20 and subdivide

it into 5 subintervals, then compare this to the single domain approach while investigating the

effect of varying the Reynolds number values on the accuracy of numerical approximations. We

observe that for the large Reynolds (Re) numbers and large time intervals, using both overlapping

subintervals in space and non-overlapping subintervals in time give the best accuracy.

Results obtained when Eq.(87) (the Brusselator system) is solved are displayed in Table 4, and

Figures 3 and 4. Table 4 shows results obtained using the single and multiple domains approach for

both small and large time intervals. Results given in Table 4 are closely explained by theoretical

results of the error bound theorems. We notice that unlike in the previous three examples, in which

higher ordered derivatives of the solution are bounded, the solution of Eq.(87) is unbounded within

the domain of approximation. Consequently, increasing the number of grid points leads to large

interpolation errors, which are propagated into the numerical solution of the differential equation.

For a large time domain, the single approach gives less accurate results; there is a noticeable

improvement in accuracy when the multiple domain approach is adopted for large time intervals.

In Figure 3, error norms resulting from the use of Nt = 20 and Nt = 10 grid points over a single time

interval of length T = 5 units are compared. We notice that when the interval is large, using many

grid points has little effect on accuracy. This phenomenon is caused by the unbounded nature of

higher ordered derivatives of the solution of Eq.(87). In Figure 4, we re-examine the decomposition

of a large time domain and compare the solution by a single domain approach with that for the

multiple domain approach, while maintaining a constant number of grid points over the entire

time interval. Consequently, as supported by error bound theorems, the use of a large number of
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grid points on a single domain records less accurate results for problems with unbounded higher

ordered derivatives. In fact, beyond a certain threshold length of the time interval, the numerical

scheme becomes unstable. A domain decomposition approach improves the accuracy of numerical

approximations and constitutes a stable numerical algorithm.

Table 1: Absolute error norms values for spectral approximation of Example 1 using different lengths of time intervals

[0, T ]: Nx = 10, Ny = 10, q = 2, m = 2, Nt = 10/ per unit length in time.

T Single Domain Multiple Domains

1.0 2.26291e-12 2.97384e-13

2.0 2.95380e-12 4.15001e-13

3.0 7.35126e-11 2.37643e-13

4.0 6.01130e-10 1.85810e-13

5.0 2.75105e-09 1.52454e-13

CPU time (sec) 15.259924 1.717759

Cond Number 4.7356e+05 7.9950e+03

Table 2: Absolute error norms values for spectral approximation of Example 2 using different lengths of time intervals

[0, T ]: Nx = 10, Ny = 10, q = 2, m = 2, Nt = 10 per unit length in time.

T Single Domain Multiple Domains

1.0 2.29941e-11 1.71063e-12

2.0 2.19984e-11 2.13518e-12

3.0 2.30047e-11 3.24896e-12

4.0 5.26619e-11 6.46949e-12

5.0 3.48477e-11 5.11946e-12

CPU time (sec) 6.507918 0.636237

Cond Number 7.3179e+04 1.8094e+03

157



Table 3: Error norm values obtained when Example 3 is solved for different values of Reynolds number, Re : Nx = 10,

Ny = 10, q = 4, m = 4, [0, T ] = [0, 10], Nt = 10, p = 5.

Single Domain Multiple Domains

Re Error Norm in u Error Norm in v Error Norm in u Error Norm in v

1.0 4.09006e-13 5.62328e-13 2.37022e-12 4.03122e-12

5.0 4.26503e-12 4.26625e-12 2.46692e-12 3.52773e-12

10.0 9.17247e-09 9.17326e-09 3.56237e-12 6.11633e-12

15.0 4.22525e-08 4.22845e-08 3.00593e-11 4.43479e-11

20.0 4.23489e-07 4.32432e-07 2.69562e-10 3.20433e-10
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Figure 1: Error norms in u for different time intervals [0, T ] for 2D coupled Burgers system
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Figure 2: Error norms in v for different values of Reynolds number for 2D coupled Burgers system

Table 4: Error norm values for different time intervals obtained when Example 4 is solved: Nx = 10, Ny = 10, q =

2, m = 2, Nt = 10/ per unit length in time.

Single Domain Multiple Domain

T Absolute Error u Absolute Error v Absolute Error u Absolute Error v

1.0 1.89722e-13 2.13396e-13 9.53246e-14 1.10242e-13

2.0 1.10363e-12 1.19616e-12 7.75372e-13 8.65135e-13

3.0 2.23119e-09 2.33731e-09 2.80567e-12 3.01118e-12

4.0 4.35874e-01 3.38041e-01 2.22283e-11 2.31627e-11

5.0 4.71456e+02 5.69322e+02 4.13003e-09 7.22800e-09

CPU time (sec) 17.345153 1.826348

Cond Number 3.6427e+07 2.9215e+03
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Figure 3: Error norms in u for different time intervals [0, T ] for 2D coupled Brusselator system (Varying grid points)
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Figure 4: Error norms in v for different time intervals [0, T ] for 2D coupled Brusselator system (fixed grid points)
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6. Conclusion

In this work, a modified numerical method, namely the overlapping grids based multidomain

trivariate spectral collocation method, for solving nonlinear two-dimensional initial-boundary value

problems is proposed. The method has been described and successively applied on typical examples

of two-dimensional initial-boundary value problems reported in the literature as a single nonlin-

ear equation or systems of nonlinear equations. From the numerical simulations, we arrive at the

following conclusions. The standard single domain based trivariate spectral collocation method,

when applied to solve nonlinear two-dimensional initial-boundary value problems, is accurate only

for those defined on a small time interval. When the time interval is large, many grid points are

required to achieved results with sufficient accuracy and this is only applicable if the solutions’

higher ordered derivatives are bounded within the computational domain. For solutions with un-

bounded higher ordered derivatives, the application of the standard single domain based trivariate

spectral collocation method is limited to problems defined on a small time interval because a large

number of grid points would be computationally expensive and would not guarantee the accuracy

of the numerical approximations. For fluid flow problems, demonstrated in this case by the two-

dimensional Burgers system, the single domain approach gives accurate results only for small values

of the parameters governing the flow. The main challenge in deciding whether to use the standard

trivariate spectral collocation method is that in many practical problems the exact solutions are not

known at the outset. Therefore, the standard single domain trivariate spectral collocation method

has many shortcomings. By contrast, the modified overlapping grids based multidomain spectral

collocation method is reliable, as it gives highly accurate results in short CPU time. In terms of

accuracy, the superiority of the current method of solution can be attributed to the purely spectral

collocation discretization performed in all variables coupled with the small condition numbers of

the coefficient matrices in the multidomain approach. The short CPU time required to generate

results is linked to the small-sized coefficient matrix in the multidomain approach, which is easy

to invert. Owing to its remarkable benefits, the current method of solution is a suitable alterna-

tive method for solving two-dimensional nonlinear initial-boundary value problems defined on large

regular spatial domains over a large time interval. In addition, the overlapping grids technique is a

useful tool when solving differential equations with large parameter values and those defined over

large spatial domains. Future work will entail an extension of the current numerical method to

problems defined on circular domains.

161



7. Acknowledgement

The authors are thankful to the University of KwaZulu-Natal for providing essential research

resources.

Declaration of interest:

There is no conflict of interest regarding publication of this paper.

References

[1] B. Costa, Spectral Methods for Partial Differential Equations, CUBO: A Mathematical Journal,

6(2004), pp. 1-32.

[2] M.G. Macaraeg, and C.L. Streett, Improvements in Spectral Collocation Discretization Through

a Multiple Domain Technique, Applied Numerical Mathematics, 2(1986), pp. 95-108.

[3] L. Yi, and Z. Wang, Legendre Spectral Collocation Method for Second-order Nonlinear Ordi-

nary/Partial Differential Equations, Discrete and Continuous Dynamical Systems-B, 19(2014),

pp. 299-322.

[4] T. Zhao, C. Li, Z. Zang, and Y. Wua, Chebyshev Legendre Pseudospectral Method for the

Generalised Burgers-Fisher Equation, Applied Mathematical Modelling, 36(2012), pp. 1046-

1056.

[5] A. Tadmor, A Review of Numerical Methods for Nonlinear Partial Differential Equations,

Bulletin of the American Mathematical Society, 49(2012), pp. 507-554.

[6] M.R. Malik, T.A. Zang, and M.Y. Hussaini, A Spectral Collocation Method for the Navier-

Stokes Equations, Journal of Computational Physics, 61(1985), pp. 64-88.

[7] R. Baltensperger, and J.P. Berrut, The Errors in Calculating the Pseudospectral Differentiation

Matrices for Chebyshev Gauss-Lobatto points, Computers & Mathematics with Applications,

37(1999), pp. 41-48.

[8] S.S. Motsa, F.M. Samuel, and S. Shateyi (2016), Solving Nonlinear Parabolic Partial Differen-

tial Equations Using Multidomain Bivariate Spectral Collocation Method, Nonlinear Systems -

Design, Analysis, Estimation and Control, In D. Lee (Ed.), InTech, DOI: 10.5772/64600.

162



[9] A.D. Polyanin, and V.F. Zaitsev, Handbook of Nonlinear Partial Differential Equations, Chap-

man and Hall/CRC Press, Boca Raton, 2004.

[10] S. Pamuk, and N. Pamuk, Solution of Two-Dimensional Heat and Mass Transfer Equation

With Power-Law Temperature-Dependent Thermal Conductivity, TWMS Journal of Applied

and Engineering Mathematics, 4(2014), pp. 199-208.

[11] J.M. Burgers, Application of a Model System to Illustrate Some Points to the Statistical Theory

of Free Turbulance, The Royal Netherlands Academy of Art and Sciences, 43(1940), pp. 2-12.

[12] I. Prigogine, and R. Lefever, Symmetry Breaking Instabilities in Dissipative Systems II, Journal

of Chemical Physics, 48(1968), pp. 1695-1700.

[13] A.R. Bahadir, A Fully Implicit Finite-Difference Scheme for Two-Dimensional Burgers’ Equa-

tions, Applied Mathematics and Computation, 137(2003), pp. 131-137.

[14] W.T. Ang, The Two Dimensional Reaction-diffusion Brusselator System: a Dual-Reciprocity

Boundary Element Solution, Engineering Analysis with Boundary Elements, 27(2003), pp.

897-903.

[15] A.J. Chamkha, and A.M. Aly, Heat and Mass Transfer in Stagnation-Point Flow of a Polar

Fluid Towards a Stretching Surface in Porous Media in the Presence of Soret, Dufour and

Chemical Reaction Effects, Chemical Engineering Communications, 198(2010), pp. 214-234.

[16] C.A.J. Fletcher, Generating exact Solution of the Two-Dimensional Burgers’ Equation, Nu-

merical Methods in Fluids, 3(1983), pp. 213-216.

[17] R. Abazari, and A. Borhanifar, Numerical Study of the Solution of the Burgers and Coupled

Burgers Equations by a Differential Transformation Method, Computers & Mathematics with

Applications, 59(2010), pp. 27112722.

[18] G. Zhao, X. Yu, and R. Zhang, The New Numerical Method for Solving the System of Two-

Dimensional Burgers Equations, Computers & Mathematics with Applications, 62(2011),

pp.32793291 .

[19] S.U. Islam, B. Sarler, R. Vertnik, and G. Kosec, Radial Basis Function Collocation Method for

the Numerical Solution of the Two-Dimensional Transient Nonlinear Coupled Burgers Equa-

tions, Applied Mathematical Modelling, 36(2012), pp. 11481160.

163



[20] E.H. Twizell, A.B. Gumel, and Q. Cao, A Second-Order Scheme for the Brusselator Reaction-

Diffusion System, Journal of Mathematical Chemistry, 26(1999), pp. 297316.

[21] F. Khani, F. Samadi, and S.H. Nezhad, New Exact Solutions of the Brusselator Reaction-

Diffusion Model Using the Exp-Function Method, Mathematical Problems in Engineering, vol.

2009, Article ID 346461, 9 pages, 2009. https://doi.org/10.1155/2009/346461.

[22] J. Biazar, and Z. Ayati An Approximation to the Solution of the Brusselator System by Ado-

mian decomposition Method and Comparing the Results with Runge-Kutta Method, Interna-

tional Journal of Contemporary Mathematical Sciences, 2(2007), pp. 983-989.

[23] G.B. Folland, Introduction to Partial Differential Equations, Princeton University Press, Wash-

ington, 1995.

[24] R.E. Bellman, and R.E. Kalaba, Quasilinearization and Nonlinear Boundary-Value Problems,

Elsevier Publishing Company, New York, 1965.

[25] L.N. Trefethen, Spectral Methods in MATLAB, SIAM, Philadelphia, 2000.

[26] [26] H.H. Yang, B.R. Seymour, and B.D. Shizgal, A Chebyshev Pseudospectral multi-Domain

Method for Flow Past a Cylinder, up to Re=150, Computers Fluids, 23(1994), pp. 829-851.

[27] [27] M. Gasca and T. Sauer, On the History of Multivariate Polynomial Interpolation, Com-

putational and Applied Mathematics, 122(2000), pp. 23-35.

[28] [28] A.H Bhrawy, A Highly Accurate Collocation Algorithm for 1 + 1 and 2 + 1 Fractional

Percolation Equations, Journal of Vibration and Control, 5(2015), pp. 1-23.

[29] H.E. Salzer, Converting Interpolation Series into Chebyshev Series by Recurrence Formulas,

Mathematics of Computation, 30(1976), pp. 295-302.

[30] G. Zhao, X. Yu, and R. Zhang, The new Numerical Method for Solving the system of Two-

Dimensional Burgers Equation, Computers and Mathematics with Applications, 62(2011), pp.

3279-3291.

[31] K. Yildirim, A Solution Method for Solving Systems of Nonlinear PDEs, World Applied Sci-

ences Journal, 18(2012), pp. 1527-1532.

164



[32] S.U. Islam, and A. Ali, S. Haq, A Computational Modeling of the Behavior of the

Two-Dimensional ReactionDiffusion Brusselator System, Applied Mathematical Modelling,

34(2010), pp. 3896-3909.

165



Chapter 7

Conclusion

In this thesis, we have successfully developed and applied new modified spectral collocation-based

methods to find solutions of nonlinear ordinary differential equations, one-dimensional partial dif-

ferential equations of hyperbolic and parabolic type, and two-dimensional nonlinear elliptic PDEs.

The final chapter showed the development and application of the new numerical method, namely

the trivariate spectral collocation method, for the solution of two-dimensional initial-boundary

value problems. The numerical methods used relied on the quasi-linearization method to simplify

the nonlinear differential equations and Lagrange interpolating polynomial as the approximating

functions for the solution of the differential equations. A purely spectral collocation discretization

at Chebyshev-Gauss-Lobatto points was applied in both space and time variables. The improve-

ment in the current solution techniques from the traditional, which were based on a single domain,

was achieved through the introduction of an overlapping grids approach on large spatial domains

and using the non-overlapping subdomains approach on large time intervals. New error bound the-

orems, and proofs, on polynomial interpolation for univariate, bivariate, and trivariate cases were

presented. Most importantly, new versions of the error bound theorems, and proofs, that are as

a consequence of incorporating the overlapping grid and non-overlapping subdomains were added

to demonstrate the theory behind the remarkable benefits of both approaches. From the general

numerical results and the new findings of this study, we arrive at the following conclusions.

i. Incorporation of an overlapping grid approach on large spatial domains and the use of non-

overlapping subintervals when solving differential equation over large time intervals using spec-

tral collocation methods give accurate numerical results over relatively short computation time.

ii. the overlapping grid approach introduces sparsity in the spatial differentiation matrices, thereby

rendering a stable numerical scheme.

iii. Improved accuracy is attributed to the small condition numbers of the coefficient matrices
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obtained when using the multidomain approach.

iv. The small-sized matrices in the multidomain approach are easy into invert, and this translates

to short computation time for generating numerical results.

v. The performance of the numerical methods described in this thesis is reliable. These numerical

methods give general schemes, that are easily adaptable to solve a wide range of differential

equations encountered in real life.

vi. Methods of solution used to solve ordinary differential equations of boundary layer flow types

represent a modified solution approach to the existing method. In addition, the methods

developed and applied on one-dimensional hyperbolic, one-dimensional parabolic, and two-

dimensional elliptic partial differential equations represent an extension of the spectral collo-

cation methods that already exist. Furthermore, incorporating overlapping grid concepts on a

purely spectral collocation numerical method is new.

vii. Error bound theorems, and proofs, on Lagrange polynomial interpolation using Chebyshev-

Gauss-Lobatto nodes, are new. The error bounds are useful as they give an idea of the sizes of

errors that are propagated in the solution of the differential equations when using interpolating

polynomials as the approximating functions. Indeed, the different version of error bounds in

the cases of a single domain and multiple domains gives an interesting theoretical illustration

of the benefits of adopting domain decomposition technique when solving differential equations

over large domains.

viii. The trivariate spectral collocation method developed and applied to solve two-dimensional

initial-boundary value problems is new. We have demonstrated that incorporation of the

domain decomposition technique improves its accuracy and computational efficiency over that

of the single domain approach. It is worth noting that this method can be adapted to solve

three-dimensional problems.

ix. As demonstrated in the numerical results for two-dimensional Burgers equations, benefits of

the overlapping grid approach are also evident in solving reaction-diffusion problems for very

small or large values of the diffusion coefficient.

x. The benefits of incorporating the domain decomposition technique in a spectral collocation

method over the single domain approach are not manifested when differential equations are
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solved over small domains.

Future research would include extensions of similar solution techniques to solve differential equa-

tions defined over irregular domains. This can be achieved through development of new numerical

methods of solution of differential equations, that, combines the benefits of the spectral collocation-

based methods and the finite element-based methods.
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1. Introduction 

Spectral collocation-based methods, since their existence, have gained popularity in the numerical approximation of the 

solution of partial differential equations owing to their superior accuracy when applied to solve problems with smooth so- 

lutions [1] . They are particularly desirable for approximating solutions of nonlinear PDEs defined on regular geometries and 

they require a few number of grid points to achieve results with stringent accuracy [2] . Despite the benefits of the spec- 

tral collocation methods, review of the literature indicates that previous application of purely spectral collocation methods 

has focused on the solutions of ordinary differential equations and partial differential equations involving two independent 

variables [3] . There exists extensive literature in the studies by Zhao et al. [4] and Tadmor [5] where the spectral collocation 

methods have been applied successfully on these type of problems and highly accurate results achieved in a computationally 

efficient manner have been reported. In a few noticeable exceptions, for instance, in [6] where spectral collocation methods 

have been applied to obtain numerical solutions of two-dimensional time-dependent PDEs, such has been achieved through 

the application of spectral collocation discretization on the space variables and finite difference discretization on the time 

variable. It is well known that finite difference methods require many grid points to yield accurate results which can hardly 

match those obtained when spectral collocation methods are applied on PDEs defined on simple geometries particularly 

if the underlying solutions are smooth. Motivated by this fact, we propose a purely spectral collocation-based method for 

solving nonlinear two-dimensional time-dependent PDEs defined on small rectangular domains. 

Typical examples of two-dimensional nonlinear time-dependent PDEs considered in this study include the nonlinear 

PDEs given as a single equation that describes the problem of unsteady two-dimensional heat and mass transfer, firstly, in 

quiescent media with chemical reaction [7] , and secondly, with power-law temperature-dependent thermal conductivity [8] . 

The problems of heat and mass transfer phenomena are found throughout virtually all of the physical world and the indus- 

trial domain. Further, we consider nonlinear PDEs described as systems of equations a case of the coupled two-dimensional 

Burger’s system [9] and the two-dimensional reaction-diffusion Brusselator system [10] . The Burger’s equation is a funda- 

mental PDEs from fluid mechanics. Burger’s equation occurs in various areas of applied mathematics, such as modeling of 

hydrodynamics turbulence, shock waves theory, and traffic flow problems. It also describes the sedimentation of particles 

in fluid suspensions under the effect of gravity, transport, and dispersion of pollutants in rivers [11] . On the other hand, the 

Brusselator system arises in the mathematical modeling of chemical systems such as enzymatic reactions, and in plasma 

and laser physics in multiple coupling between certain modes [12] . Brusselator model is also evident in the formation of 

the ozone layer through a triple collision of oxygen atoms. The problems considered here have exact solutions and have been 

reported in the literature to be very useful in testing newly developed numerical methods of solution for nonlinear partial 

differential equations arising in modeling of various aspects of the real world. We, therefore, consider them appropriate to 

demonstrate the effectiveness of the current method of solution. 

The exact solution to the problem of two-dimensional heat and mass transfer in quiescent media with chemical reac- 

tion was discussed by Polyanin and Zaitsev [7] . The problem has been solved numerically using an implicit finite-difference 

method in [13] . The problem of two-dimensional heat and mass transfer with power-law temperature-dependent thermal 

conductivity was examined by authors in [8] where they obtained a particular exact solution using the Adomian decompo- 

sition method and numerical methods of solution for this problem can be found in references given therein. Mathematical 

properties of Burger’s equation were first investigated by Burger [9] . Analytical solution of unsteady two dimensional cou- 

pled Burger’s equation was first given by Fletcher [14] using the Hopf-Cole transformation. In [15] , the differential transfor- 

mation method was applied to obtain the analytical solution of a coupled unsteady Burger’s equation. Numerical solution 

of Burger’s equation is a natural and first step towards developing methods for the computation of complex flows. Burger’s 

equation has been used intensively to test new approaches in computational fluid dynamics by first implementing novel 

and new approaches to it. A numerical method based on local discontinuous Galerkin finite element was analyzed in [16] to 

solve two-dimensional Burger’s equation. The local radial basis functions collocation method to approximate the numeri- 

cal solution of the transient coupled Burgers equation was examined in [17] . In recent the decades, Brusellor model has 

been extensively studied both numerically and analytically. Twizell et al. [18] developed a second-order finite difference 

method for the numerical solution of the initial-boundary value problems of the Brusselator model. Khan et al. [19] found 

exact solutions of the Brusselator reaction-diffusion model using the Exp-function method. Biazar and Ayati [20] obtained 

an approximate solution to the Brusselator system by applying the Adomian decomposition method. 

Another set of studies that has considered the use of spectral-based collocation methods to solve differential equations 

in the same family as those expounded in this paper include; the work by Abbasbandy and Shivanian [21] where they 

applied pseudo-spectral collocation method in erudite way to analytically calculate dual solutions considering a model of 

mixed convection in a porous media with boundary conditions on semi-infinite interval. Ellahi et al. [22] used a hybrid 

technique based on pseudo-spectral collocation to obtain the solution of a nonlinear system resulting from a problem of 

generalized Couette flow Eyring-Powell fluid. Later, authors in [23] conducted a nonlinear analysis of generalized Couette 

flow problem using spectral homotopy analysis method (SHAM). On the other hand, Shivanian et al. [24] developed a spec- 

tral meshless radial point interpolation (SMRP) technique for solving the fractional reaction-subdiffusion equation in one 
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and two-dimensional cases. The spectral meshless radial point interpolation (SMRP) technique was later applied in [25] to 

solve inverse source problems of the time-fractional diffusion equation in two dimensions and in [26] to solve fractional 

evolution equations of arbitrary fractional order in two-dimensions. 

In this paper, a purely spectral collocation-based method, namely, the trivariate spectral collocation method is introduced 

and applied to solve two-dimensional initial-boundary value problems. The solution process involves, first, the simplifica- 

tion of the PDE using the quasi-linearization method. The solution to the linearized problem is assumed to be a trivariate 

Lagrange interpolating polynomials constructed on Chebyshev-Gauss-Lobatto points. The PDE is discretized in all space vari- 

ables and time variable using spectral collocation method to yield a system of linear algebraic equations that are solved 

iteratively. The current numerical method is tested using typical examples of initial-boundary value problems reported in 

the literature. Comparison of numerical results with the exact solutions is presented and discussed in tabular and graphical 

form. Findings from numerical simulations show that the current method yields highly accurate results in a computationally 

efficient manner when applied to problems defined on a small time interval. 

The rest of this paper is organized as follows. In Section 2 , we describe the trivariate spectral collocation method of 

approximating the solution of two-dimensional nonlinear initial-boundary value problems described as single equations or 

systems of equations. In Section 3 , the error bound theorems and proofs emanating from trivariate Lagrange interpolating 

polynomials constructed on Chebyshev-Gauss-Lobatto grid points emerge. In Section 4 , we give four test examples where 

the numerical method is applied to demonstrate its applicability. Section 5 is devoted to results and discussion. In Section 6 , 

we summarize the findings and point out the direction of future work. 

2. The method of solution 

In this section, we describe the algorithm for solving two-dimensional partial differential equations of initial-boundary 

value problems type. The present investigation focuses on the partial differential equations of the second order. For pur- 

poses of simplicity, this section is divided into 2 sections. In the first section, we construct numerical algorithms for solving 

nonlinear PDEs that are expressible as a single equation. In the second section, the idea is extended to systems of nonlinear 

PDEs. 

2.1. Method of solution for a single nonlinear PDE 

In this section, we describe the algorithm for solving nonlinear PDEs given as a single nonlinear equation. To illustrate 

the solution process we consider a nonlinear PDE that takes the form; 

∂u 

∂t 
= F 

(
∂ 2 u 

∂x 2 
, 
∂ 2 u 

∂y 2 
, 
∂u 

∂x 
, 
∂u 

∂y 
, u 

)
, (x, y ) ∈ (a, b) × (c, d) , t ∈ (0 , T ) , (1) 

where F is a nonlinear operator operating on the unknown function u and its first and second order spatial derivatives. 

Eq. (1) is solved subject to the boundary conditions 

αa 
1 

∂u 

∂x 
(a, y, t) + αa 

0 u (a, y, t) = f a (y, t) , αb 
1 

∂u 

∂x 
(b, y, t) + αb 

0 u (b, y, t) = f b (y, t) , 

βc 
1 

∂u 

∂y 
(x, c, t) + βc 

0 u (x, c, t) = g c (x, t) , βd 
1 

∂u 

∂y 
(x, d, t) + βd 

0 u (x, d, t) = g d (x, t) , (2) 

where αa 
1 
, αa 

0 
, αb 

1 
, αb 

0 
, βc 

1 
, βc 

0 
, βd 

1 
, βd 

0 
are known constants and f a ( y , t ), f b ( y , t ), g c ( x , t ), g d ( x , t ), are known functions. The 

initial condition for this problem is given as 

u (x, y, 0) = h (x, y ) . (3) 

The PDE (1) is first simplified using the quasi-linearization method (QLM) of Bellman and Kalaba [27] . The QLM is based 

on the Newton-Raphson method and is constructed from the linear terms of Taylor series expansion about an initial ap- 

proximation to solution. The QLM assumes that the difference between solutions at two successive iterations, denoted by 

u s +1 − u s is very small. In particular, the QLM is comparable to the linear approximation of a function of several variables 

where the derivatives of different order and the previous approximation to solution assumes the role of independent vari- 

ables and the functional value at the reference point, respectively. Finer details about linear approximation of functions can 

be found in any elementary book on differential calculus. Applying the QLM on Eq. (1) we obtain 

δ4 ,s 
∂ 2 u s +1 

∂x 2 
+ δ3 ,s 

∂ 2 u s +1 

∂y 2 
+ δ2 ,s 

∂u s +1 

∂x 
+ δ1 ,s 

∂u s +1 

∂y 
+ δ0 ,s u s +1 − ˙ u s +1 = R s , (4) 

where 

δ4 ,s = 

∂F 

∂ ( u xx ) s 
, δ3 ,s = 

∂F 

∂ ( u yy ) s 
, δ2 ,s = 

∂F 

∂ ( u x ) s 
, δ1 ,s = 

∂F 

∂ ( u y ) s 
, δ0 ,s = 

∂F 

∂ ( u ) s 
, 

R s = δ4 ,s (u xx ) s + δ3 ,s (u yy ) s + δ2 ,s (u x ) s + δ1 ,s (u y ) s + δ0 ,s u s − F s . (5) 

187



224 F.M. Samuel and S.S. Motsa / Applied Mathematics and Computation 360 (2019) 221–235 

The subscripts in u xx and u x denotes second and the first partial derivatives of u with respect to x . Similarly, the first and 

the second derivatives with respect to y are denoted u y and u yy , respectively. The dot in 

˙ u denotes derivative with respect 

to t and s signifies the previous iteration. Using an initial approximation to solution u 0 , the QLM scheme Eq. (4) is solved 

iteratively until the solution converges. As a rule of thumb, a simple choice of u 0 is a polynomial that satisfies the given 

boundary conditions. The domain of approximation is discretized into Chebyshev Gauss-Lobatto nodes defined in [28] as 

{
ˆ x i 
}N x 

i =0 
= cos 

(
iπ

N x 

)
, ˆ x (x ) = 

2 

b − a 

[ 
x − 1 

2 

( b + a ) 

] 
, x ∈ [ a, b] 

{
ˆ y j 
}N y 

j=0 
= cos 

(
jπ

N y 

)
, ˆ y (y ) = 

2 

d − c 

[ 
y − 1 

2 

( d + c ) 

] 
, y ∈ [ c, d] , 

{
ˆ t k 
}N t 

k =0 
= cos 

(
kπ

N t 

)
, ˆ t (t) = 

2 

T 

[ 
t − T 

2 

] 
, t ∈ [0 , T ] . (6) 

Here, N x , N y , and N t denotes the number of grid points in x , y , and t , respectively. In the solution process, the approximate 

solution of the PDE Eq. (1) is assumed to be the trivariate Lagrange interpolating polynomial that takes the form; 

u (x, y, t) ≈ U(x, y, t) = 

N x ∑ 

p=0 

N y ∑ 

q =0 

N t ∑ 

r=0 

U(x p , y q , t r ) L p (x ) L q (y ) L r (t) , (7) 

where the functions L p ( x ) are the Lagrange cardinal polynomial 

L p (x ) = 

N x ∏ 

p=0 
p� = i 

x − x p 

x i − x p 
, with l p (x i ) = δpi = 

{
1 if p = i, 
0 if p � = i. 

The functions L q ( y ), L r(t) are defined in a similar manner [29] . The spatial differentiation matrix in x is approximated at the 

collocation nodes ( ̂  x i , ̂  y j , t k ) , for j = 0 , 1 , 2 , . . . , N y , and k = 0 , 1 , 2 , . . . , N t , as follows; 

∂u 

∂x 
( ̂  x i , ̂  y j , ̂  t k ) ≈

N x ∑ 

p=0 

N y ∑ 

q =0 

N t ∑ 

r=0 

U(x p , y q , t r ) L 
′ 
p ( ̂  x i ) L q ( ̂  y j ) L r ( ̂ t k ) = 

N x ∑ 

p=0 

U(x p , y j , t k ) L 
′ 
p ( ̂  x i ) = D 

j 

U k = 

(
2 

b − a 

)
ˆ D 

j 

U k , (8) 

where ˆ D = 

(
b−a 

2 

)
D is the standard first order Chebyshev differentiation matrix of size (N x + 1) × (N x + 1) as defined in [28] . 

We remark that the labels, i , j , and k in Eq. (8) are used to index the grid points in x , y , and t variables, respectively. The 

labels p , q , and r are used as indices for Lagrange cardinal functions in x , y , and t variables, respectively. We note that 

the factor 2 
b−a 

comes from the application of the chain rule of differentiation due to the transformation used in Eq. (6) . 

Simplification of Eq. (8) is based on the properties of Lagrange cardinal functions. The higher order differentiation matrices 

are obtained using matrix multiplication. The vector U 

j 

k 
is defined as 

j 

U k = 

[
u (x 0 , y j , t k ) , u (x 1 , y j , t k ) , . . . , u (x N x , y j , t k ) 

]T 
, j = 0 , 1 , . . . , N y , k = 0 , 1 , . . . , N t , (9) 

where T denotes matrix transpose. Similarly, the spatial differentiation matrix in y is approximated at the collocation points 

( ̂  x i , ̂  y j , ̂  t k ) , for i = 0 , 1 , 2 , . . . , N x , and k = 0 , 1 , 2 , . . . , N t , as 

∂u 

∂y 
( ̂  x i , ̂  y j , ̂  t k ) ≈

N y ∑ 

q =0 

U(x i , y q , t k ) L 
′ 
q ( ̂  y j ) = 

N y ∑ 

q =0 

D̄ j,q 

q 

U k = 

N y ∑ 

q =0 

(
2 

d − c 

)
ˆ ˆ D j,q 

q 

U k , (10) 

where ˆ ˆ D j,q = 

(
d−c 

2 

)
D̄ j,q , j, q = 0 , 1 , 2 , . . . , N y , are entries of a standard first order Chebyshev differentiation matrix of size 

(N y + 1) × (N y + 1) . Higher order differentiation matrix with respect to y can be obtained using matrix multiplication. 

Finally, we approximate the differentiation matrix in t at the collocation points ( ̂  x i , ̂  y j , ̂  t k ) , for i = 0 , 1 , 2 , . . . , N x , and 

j = 0 , 1 , 2 , . . . , N y , as; 

∂u 

∂t 
( ̂  x i , ̂  y j , ̂  t k ) ≈

N t ∑ 

r=0 

N y ∑ 

q =0 

U(x i , y j , t r ) L 
′ 
r ( ̂ t k ) = 

N t ∑ 

r=0 

N y ∑ 

q =0 

¯̄D k,r 

q 

U r = 

N t ∑ 

r=0 

N y ∑ 

q =0 

(
2 

T 

)
ˆ ˆ ˆ D k,r 

q 

U r , (11) 

where 
ˆ ˆ ˆ D k,r = 

(
T 
2 

)
¯̄D k,r , k, r = 0 , 1 , 2 , . . . , N t , are entries of a standard first order Chebyshev differentiation matrix of size (N t + 

1) × (N t + 1) . It must be noted that the factors 2 
d−c 

and 

2 
T in Eq. (10) and Eq. (11) , respectively, are as a result of applying 

chain rule of differentiation due to the transformation used in Eq. (6) to map the respective computational domain to [ −1 , 1] . 

We remark that the bar in D̄ at Eq. (10) and double bar in 

¯̄D at Eq. (11) distinguishes the differentiation matrix in y and t , 

respectively, from that in x . We note that in generating the sequence of vectors U 

j 

k 
, j = 0 , 1 , 2 , . . . , N y , k = 0 , 1 , 2 , . . . , N t , the 

superscript j is varied of each subscript k . In general, the vector of unknowns U is built in such a manner that, for every 
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grid point in t , the grid points in y are varied, and for every grid point in y , the grid points in y , the grid points in x are 

varied. Indeed, this arrangement of grid points, explains the presence of single and double sum in the last expression at 

Eq. (10) and Eq. (11) , respectively. Such a pattern will be useful when assembling the system of linear algebraic equations 

to obtain coefficient matrices. 

Using Eqs. (8) , (10) and (11) in the QLM scheme Eq. (4) , we obtain a (N t + 1)(N y + 1)(N x + 1) system of linear algebraic 

equations given by; 

[
δ4 ,s D 

2 + δ2 ,s D + δ0 ,s I 
] j 

U k + 

N y ∑ 

q =0 

[
δ3 ,s ̄D 

2 
j,q + δ1 ,s ̄D j,q 

] q 

U k −
N t ∑ 

r=0 

N y ∑ 

q =0 

¯̄D k,r 

q 

U r = 

j 

R k , (12) 

for j = 0 , 1 , 2 , . . . , N y , k = 0 , 1 , 2 , . . . , N t and an identity matrix I of size (N x + 1) × (N x + 1) . The initial condition evaluated 

at the collocation points yields 

u (x i , y j , 0) = u (x i , y j , t N t ) = h (x i , y j ) = 

j 

U N t . (13) 

Using the initial condition Eq. (13) , we can reduce Eq. (12) to 

[
δ4 ,s D 

2 + δ2 ,s D + δ0 ,s I 
] j 

U k + 

N y ∑ 

q =0 

[
δ3 ,s ̄D 

2 
j,q + δ1 ,s ̄D j,q 

] q 

U k −
N t −1 ∑ 

r=0 

N y ∑ 

q =0 

¯̄D k,r 

q 

U r = 

j 

R̄ k , (14) 

where j = 0 , 1 , 2 , . . . , N y , k = 0 , 1 , 2 , . . . , N t − 1 and 

j 

R̄ k = 

j 

R k + 

N y ∑ 

q =0 

¯̄D k,N t 

q 

U N t , k = 0 , 1 , 2 , . . . , N t − 1 . (15) 

The linear system of equations in Eq. (14) can be expanded into N t (N y + 1)(N x + 1) × N t (N y + 1)(N x + 1) matrix system given 

by; 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

A 0 , 0 A 0 , 1 A 0 , 2 . . . A 0 ,N t −1 

A 1 , 0 A 1 , 1 A 1 , 2 . . . A 1 ,N t −1 

. . . 
. . . 

. . . . . . 
. . . 

A N t −1 , 0 A N t −1 , 1 A N t −1 , 2 . . . A N t −1 ,N t −1 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

j 

U 0 
j 

U 1 

. . . 
j 

U N t −1 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

= 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

j 

R 0 
j 

R 1 

. . . 
j 

R N t −1 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

. (16) 

The matrix system Eq. (16) can be written compactly as [
A 

][
U 

]
= 

[
R 

]
, (17) 

where 

A k,k = B − ¯̄D k,k I xy , A k,r = − ¯̄D k,r I xy , k � = r, k, r = 0 , 1 , 2 , . . . , N t − 1 , 

B i,i = δ4 ,s D 

2 + δ2 ,s D + δ0 ,s I x + δ3 ,s ̄D 

2 
i,i I x + δ1 ,s ̄D i,i I x , 

B i, j = δ3 ,s ̄D 

2 
i, j I x + δ1 ,s ̄D i, j I x , i � = j, i, j = 0 , 1 , 2 , . . . , N y , 

U = 

[
u (x 0 , y 0 , t 0 ) , . . . , u (x N x , y 0 , t 0 ) , u (x 0 , y 1 , t 0 ) , . . . , u (x N x , y N y , t 0 ) , . . . , u (x N x , y N y , t N t ) 

]T 
, (18) 

and R is the right hand side corresponding to the unknown vector U . The quantities I xy and I x , are identity matrices of size 

(N y + 1)(N x + 1) × (N y + 1)(N x + 1) , and (N x + 1) × (N x + 1) , respectively. We remark that subscripts in Eq. (18) have been 

used in dummy sense to denote the rows and columns of sub-matrices ib Eq. (16) and do not preserve their usual meaning 

of indexing the grid points. The boundary conditions Eq. (2) are evaluated at the collocation nodes as; 

αa 
1 

N x ∑ 

p=0 

D N x ,p u (x p , y j , t k ) + αa 
1 u (x N x , y j , t k ) = f a (y j , t k ) , 

αb 
1 

N x ∑ 

p=0 

D 0 ,p u (x p , y j , t k ) + αb 
0 u (x 0 , y j , t k ) = f b (y j , t k ) , j = 0 , 1 , 2 , . . . , N y , k = 0 , 1 , 2 , . . . , N t , (19) 

and 
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βc 
1 

N y ∑ 

q =0 

D̄ N y ,q u (x i , y q , t k ) + βc 
0 u (x i , y N y , t k ) = g c (x i , t k ) , 

βd 
1 

N y ∑ 

q =0 

D̄ 0 ,q u (x i , y q , t k ) + βd 
0 u (x i , y 0 , t k ) = g d (x i , t k ) , i = 0 , 1 , 2 , . . . , N x , k = 0 , 1 , 2 , . . . , N t . (20) 

The boundary conditions are imposed on the main diagonal sub-blocks of matrices in Eq. (16) to yield a new consistent 

system of linear algebraic equations with a unique solution. 

2.2. Method of solution for systems of nonlinear PDEs 

In this section, we extend the algorithm described in the previous section to the solution of systems of nonlinear PDEs. 

To demonstrate the construction of the algorithm, we consider a system of two nonlinear PDEs that is expressible in the 

form; 

∂u 

∂t 
= F 1 

(
∂ 2 u 

∂x 2 
, 
∂ 2 v 
∂x 2 

, 
∂ 2 u 

∂y 2 
, 
∂ 2 v 
∂y 2 

, 
∂u 

∂x 
, 
∂v 
∂x 

, 
∂u 

∂y 
, 
∂v 
∂y 

, u, v 
)

, 

∂v 
∂t 

= F 2 

(
∂ 2 u 

∂x 2 
, 
∂ 2 v 
∂x 2 

, 
∂ 2 u 

∂y 2 
, 
∂ 2 v 
∂y 2 

, 
∂u 

∂x 
, 
∂v 
∂x 

, 
∂u 

∂y 
, 
∂v 
∂y 

, u, v 
)

, (21) 

where F 1 and F 2 are nonlinear operators acting on the unknown functions u and v and their derivatives with respect to x 

and y as illustrated. The system Eq. (21) is solved subject to boundary conditions 

αa 
1 

∂u 

∂x 
(a, y, t) + αa 

0 u (a, y, t) = f a (y, t) , αb 
1 

∂u 

∂x 
(b, y, t) + αb 

0 u (b, y, t) = f b (y, t) , 

βc 
1 

∂u 

∂y 
(x, c, t) + βc 

0 u (x, c, t) = g c (x, t) , βd 
1 

∂u 

∂y 
(x, d, t) + βd 

0 u (x, d, t) = g d (x, t) , (22) 

and 

αa ∗
1 

∂v 
∂x 

(a, y, t) + αa ∗
0 v (a, y, t) = f a ∗(y, t) , αb∗

1 

∂v 
∂x 

(b, y, t) + αb∗
0 v (b, y, t) = f b∗(y, t) , 

βc∗
1 

∂v 
∂y 

(x, c, t) + βc∗
0 v (x, c, t) = g c∗(x, t) , βd∗

1 

∂v 
∂y 

(x, d, t) + βd∗
0 v (x, d, t) = g d∗(x, t) . (23) 

The star ∗ in Eq. (23) distinguishes the boundary conditions in v from those of u . Applying the QLM, Eq. (21) can be 

expressed as the linearized coupled system 

δ1 
4 ,s 

∂ 2 u s +1 

∂x 2 
+ δ1 

3 ,s 

∂ 2 u s +1 

∂y 2 
+ δ1 

2 ,s 

∂u s +1 

∂x 
+ δ1 

1 ,s 

∂u s +1 

∂y 
+ δ1 

0 ,s u s +1 

− ˙ u s +1 + σ 1 
4 ,s 

∂ 2 v s +1 

∂x 2 
+ σ 1 

3 ,s 

∂ 2 v s +1 

∂y 2 
+ σ 1 

2 ,s 

∂v s +1 

∂x 
+ σ 1 

1 ,s 

∂v s +1 

∂y 
+ σ 1 

0 ,s v s +1 = R 1 ,s , (24) 

δ2 
4 ,s 

∂ 2 u s +1 

∂x 2 
+ δ2 

3 ,s 

∂ 2 u s +1 

∂y 2 
+ δ2 

2 ,s 

∂u s +1 

∂x 
+ δ2 

1 ,s 

∂u s +1 

∂y 
+ δ2 

0 ,s u s +1 

+ σ 2 
4 ,s 

∂ 2 v s +1 

∂x 2 
+ σ 2 

3 ,s 

∂ 2 v s +1 

∂y 2 
+ σ 2 

2 ,s 

∂v s +1 

∂x 
+ σ 2 

1 ,s 

∂v s +1 

∂y 
+ σ 2 

0 ,s v s +1 − ˙ v s +1 = R 2 ,s , (25) 

where 

δν
4 ,s = 

∂F ν

∂ ( u xx ) s 
, δν

3 ,s = 

∂F ν

∂ ( u yy ) s 
, δν

2 ,s = 

∂F ν

∂ ( u x ) s 
, δν

1 ,s = 

∂F ν

∂ ( u y ) s 
, δν

0 ,s = 

∂F ν

∂ ( u ) s 
, 

σ ν
4 ,s = 

∂F ν

∂ ( u xx ) s 
, σ ν

3 ,s = 

∂F ν

∂ ( u yy ) s 
, σ ν

2 ,s = 

∂F ν

∂ ( u x ) s 
, σ ν

1 ,s = 

∂F ν

∂ ( u y ) s 
, σ ν

0 ,s = 

∂F ν

∂ ( u ) s 
, ν = 1 , 2 , (26) 

R ν,s = δν
4 ,s (u xx ) s + δν

3 ,s (u yy ) s + δν
2 ,s (u x ) s + δν

1 ,s (u y ) s + δν
0 ,s u s 

+ σ ν
4 ,s (v xx ) s + σ ν

3 ,s (v yy ) s + σ ν
2 ,s (v x ) s + σ ν

1 ,s (v y ) s + σ ν
0 ,s v s − F ν s , ν = 1 , 2 . (27) 

Application of spectral collocation method to the linearized QLM scheme Eqs. (24) and (25) and in account of the effect 

of initial condition yields a 2 N t (N y + 1)(N x + 1) system of linear algebraic equations given by; 
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[
δ1 

4 ,s D 

2 + δ1 
2 ,s D + δ1 

0 ,s I 
] j 

U k + 

N y ∑ 

q =0 

[
δ1 

3 ,s ̄D 

2 
j,q + δ1 

1 ,s ̄D j,q 

] q 

U k −
N t −1 ∑ 

r=0 

N y ∑ 

q =0 

¯̄D k,r 

q 

U r 

+ 

[
σ1 

4 ,s D 

2 + σ1 
2 ,s D + σ1 

0 ,s I 
] j 

V k + 

N y ∑ 

q =0 

[
σ1 

3 ,s ̄D 

2 
j,q + σ1 

1 ,s ̄D j,q 

] q 

V k = 

j 

R̄ 1 ,k , (28) 

[
δ2 

4 ,s D 

2 + δ2 
2 ,s D + δ2 

0 ,s I 
] j 

U k + 

N y ∑ 

q =0 

[
δ2 

3 ,s ̄D 

2 
j,q + δ2 

1 ,s ̄D j,q 

] q 

U k + 

[
σ2 

4 ,s D 

2 + σ2 
2 ,s D + σ2 

0 ,s I 
] j 

V k 

+ 

N y ∑ 

q =0 

[
σ2 

3 ,s ̄D 

2 
j,q + σ2 

1 ,s ̄D j,q 

] q 

V k −
N t −1 ∑ 

r=0 

N y ∑ 

q =0 

¯̄D k,r 

q 

V r = 

j 

R̄ 2 ,k , (29) 

Eqs. (28) and (29) can be expressed into 2 N t (N y + 1)(N x + 1) × 2 N t (N y + 1)(N x + 1) matrix system given by [
A 1 , 1 A 1 , 2 

A 2 , 1 A 2 , 2 

][
U 

V 

]
= 

[
R 1 

R 2 

]
(30) 

where 

R 1 = R 1 ,s + 

N y ∑ 

q =0 

¯̄D k,N t 

q 

U N t , R 2 = R 2 ,s + 

N y ∑ 

q =0 

¯̄D k,N t 

q 

V N t , k = 0 , 1 , 2 , . . . , N t − 1 . (31) 

The vector V is defined in similar manner to vector U given in Eq. (18) . The right hand side vectors R 1 , and R 2 correspond 

to vectors U and V , respectively. The boundary conditions, Eqs. (22) and (23) are evaluated at the collocation points in a 

manner similar to that illustrated at Eqs. (19) and (20) . We remark that if the initial conditions u ( x , y , 0) and v (x, y, 0) 

are not available, the system is first solved for t = 0 to approximate the initial conditions. In summary, we assert that the 

algorithms described so far can be easily adjusted and applied to PDEs of higher orders ( > 2) and to problems modeled by 

larger systems of nonlinear PDEs. An extension to numerical schemes of solutions of two-dimensional time-dependent PDEs 

exhibiting slightly different forms of nonlinearity can be achieved in a straightforward manner. 

3. Error bounds theorems in a trivariate polynomial interpolation 

In this section, we present new error bound theorems that govern polynomial interpolation error in a trivariate Lagrange 

interpolating polynomial constructed using Chebyshev Gauss-Lobatto nodes. Fundamental ingredients of this subject related 

to the construction of proofs of the theorems include; first, the understanding that CGL nodes are the relative extremes of 

the N x -th degree Chebyshev polynomial of the first kind T N x ( ̂  x ) = cos [ N x arccos ( ̂  x )] , ˆ x ∈ [ −1 , 1] , secondly, the general proper- 

ties of Chebyshev polynomials, and thirdly, the understanding of the mean value theorem in calculus. Although to the best 

of our knowledge, there does not exist a well-known family of polynomials whose roots are the CGL nodes, it is easy to 

discern that the interior CGL nodes are roots of T ′ N x 
( ̂  x ) = 0 . This fact leads to the discovery of a complete set of the CGL 

nodes as the roots of the N x + 1 th degree polynomial given by; 

L N x +1 ( ̂  x ) = (1 − ˆ x 2 ) T ′ N x 
( ̂  x ) . (32) 

Below, is the theorem that benchmarks formulation of the error bound theorems on trivariate polynomial interpolation; 

Theorem 1. [32] Let u (x, y, t) ∈ C N x + N y + N t +3 ([ a, b] × [ c, d] × [0 , T ]) be sufficiently smooth such that at least the (N x + 1) th par- 

tial derivative with respect to x , (N y + 1) th partial derivative with respect to y , (N t + 1) th partial derivative with respect to t , and 

the (N x + N y + N t + 3) th mixed partial derivative with respect to x , y , and t exists and are all continuous, then there exists values 

ξx , ξ ′ 
x ∈ (a, b) , ξy , ξ ′ 

y ∈ (c, d) , and ξt , ξ ′ 
t ∈ (0 , T ) , such that 

u (x, y, t) − U(x, y, t) = 

∂ N x +1 u (ξx , y, t) 

∂x N x +1 (N x + 1)! 

N x ∏ 

i =0 

(x − x i ) + 

∂ N y +1 u (x, ξy , t) 

∂y N y +1 (N y + 1)! 

N y ∏ 

j=0 

(y − y j ) + 

∂ N t +1 u (x, y, ξt ) 

∂t N t +1 (N t + 1)! 

N t ∏ 

k =0 

(t − t k ) 

− ∂ N x + N y + N t +3 u (ξ ′ 
x , ξ

′ 
y , ξ

′ 
t ) 

∂ x N x +1 ∂ y N y +1 ∂ t N t +1 (N x + 1)!(N y + 1)!(N t + 1)! 

N x ∏ 

i =0 

(x − x i ) 

N y ∏ 

j=0 

(y − y j ) 
N t ∏ 

k =0 

(t − t k ) , (33) 

where U ( x , y , t ) is a trivariate interpolating polynomial of u ( x , y , t ) at { x i } N x i =0 
grid points in x-variable, { y j } N y j=0 

grid points in 

y-variable, and { t k } N t k =0 
grid points in t-variable. 

The remainder formula Eq. (33) is based on the mean value theorem and is derived recursively from tshe corresponding 

univariate error formula given in [31] for a sufficiently smooth function u ( x , y , t ). Taking the absolute value of Eq. (33) we 
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obtain 

| u (x, y, t) − U(x, y, t) | ≤ max 
(x,y,t) ∈ 


∣∣∣∣∂ 
N x +1 u (ξx , y, t) 

∂x N x +1 

∣∣∣∣
∣∣∏ N x 

i =0 
(x − x i ) 

∣∣
(N x + 1)! 

+ max 
(x,y,t) ∈ 


∣∣∣∣∂ 
N y +1 u (x, ξy , t) 

∂y N y +1 

∣∣∣∣
∣∣∣∏ N y 

j=0 
(y − y j ) 

∣∣∣
(N y + 1)! 

+ max 
(x,y,t) ∈ 


∣∣∣∣∂ 
N t +1 u (x, y, ξt ) 

∂t N t +1 

∣∣∣∣
∣∣∏ N t 

k =0 
(t − t k ) 

∣∣
(N t + 1)! 

+ max 
(x,y,t) ∈ 


∣∣∣∣∂ 
N x + N y + N t +3 u (ξ ′ 

x , ξ
′ 
y , ξ

′ 
t ) 

∂ x N x +1 ∂ y N y +1 ∂ t N t +1 

∣∣∣∣
∣∣∏ N x 

i =0 
(x − x i ) 

∣∣∣∣∣∏ N y 
j=0 

(y − y j ) 

∣∣∣∣∣∏ N t 
k =0 

(t − t k ) 
∣∣

(N x + 1)!(N y + 1)!(N t + 1)! 
, (34) 

where 
 = [ a, b] × [ c, d] × [0 , T ] . Since the function u ( x , y , t ) is assumed to be smooth on the interval of approximation, it 

follows that its derivatives are bounded and thus ∃ constants C 1 , C 2 , C 3 and C 4 , such that 

max 
(x,y,t) ∈ 


∣∣∣∣∂ 
N x +1 u (x, y, t) 

∂x N x +1 

∣∣∣∣ ≤ C 1 , max 
(x,y,t) ∈ 


∣∣∣∣∂ 
N y +1 u (x, y, t) 

∂y N y +1 

∣∣∣∣ ≤ C 2 , 

max 
(x,y,t) ∈ 


∣∣∣∣∂ 
N t +1 u (x, y, t) 

∂t N t +1 

∣∣∣∣ ≤ C 3 , max 
(x,y,t) ∈ 


∣∣∣∣∂ 
N x + N y + N t +3 u (x, y, t) 

∂ x N x +1 ∂ y N y +1 ∂ t N t +1 

∣∣∣∣ ≤ C 4 . (35) 

The error bound for trivariate polynomial interpolation using Chebyshev Gauss-Lobatto nodes on a single domain is 

governed by the theorem below; 

Theorem 2 (The error bound in a single domain) . The resulting error bound when CGL grid points { x i } N x i =0 
∈ [ a, b] , in x-variable, 

{ y j } N y j=0 
∈ [ c, d] in y-variable, and { t k } N t k =0 

∈ [0 , T ] , in t-variable are used in trivariate polynomial interpolation is given by 

E(x, y, t) ≤ C 1 
8 

(
b−a 

4 

)N x +1 

(N x + 1)! 
+ C 2 

8 

(
d−c 

4 

)N y +1 

(N y + 1)! 
+ C 3 

8 

(
T 
4 

)N t +1 

(N t + 1)! 
+ C 4 

8 

3 
(

b−a 
4 

)N x +1 ( d−c 
4 

)N y +1 ( T 
4 

)N t +1 

(N x + 1)!(N y + 1)!(N t + 1)! 
. (36) 

Proof. First, using the relation stated in [32] we express Eq. (32) as 

L N x +1 ( ̂  x ) = (1 − ˆ x 2 ) T ′ N x 
( ̂  x ) = −N x ̂  x T N x ( ̂  x ) + N x T N x −1 ( ̂  x ) . (37) 

Using the triangle inequality and noting that | T N x ( ̂  x ) | ≤ 1 , ∀ ̂

 x ∈ [ −1 , 1] , we have 

| L N x +1 ( ̂  x ) | = | − N x ̂  x T N x ( ̂  x ) + N x T N x −1 ( ̂  x ) | ≤ | − N x ̂  x T N x ( ̂  x ) | + | N x T N x −1 ( ̂  x ) | ≤ 2 N x . (38) 

The leading coefficient of L N x +1 ( ̂  x ) is 2 N x −1 N x , where the components 2 N x −1 and N x comes from the leading coefficient 

of T N x ( ̂  x ) and the application of N x th rule of differentiation on T N x ( ̂  x ) , respectively. The product factor in the first term of 

the error bound expression given at Eq. (34) can therefore be taken as the factorized form of monic polynomial 
L N x +1 ( ̂ x ) 

2 N x −1 N x 
. We 

write, 

N x ∏ 

i =0 

( ̂  x − ˆ x i ) = 

L N x +1 ( ̂  x ) 

2 

N x −1 N x 
, ˆ x ∈ [ −1 , 1] . (39) 

Using Eq. (38) , it is easy to establish that the monic polynomial Eq. (39) is bounded by ∣∣∣∣∣
N x ∏ 

j=0 

(x − ˆ x i ) 

∣∣∣∣∣ = 

∣∣∣∣L N x +1 ( ̂  x ) 

2 

N x −1 N x 

∣∣∣∣ ≤ 2 N x 

2 

N x −1 N x 
= 

4 

2 

N x 
. (40) 

Considering a general interval x ∈ [ a , b ], we can show that the first product factor in Eq. (34) is bounded by 

max 
a ≤x ≤b 

∣∣∣∣∣
N x ∏ 

i =0 

(x − x i ) 

∣∣∣∣∣ = max 
−1 ≤ ˆ x ≤1 

∣∣∣∣∣
N x ∏ 

i =0 

(b − a ) 

2 

( ̂  x − ˆ x i ) 

∣∣∣∣∣ = 

(
b − a 

2 

)N x +1 

max 
−1 ≤ ˆ x ≤1 

∣∣∣∣∣
N x ∏ 

i =0 

( ̂  x − ˆ x i ) 

∣∣∣∣∣
= 

(
b − a 

2 

)N x +1 

max 
−1 ≤ ˆ x ≤1 

∣∣∣∣L N x +1 ( ̂  x ) 

2 

N x −1 N x 

∣∣∣∣ ≤
4 

(
b−a 

2 

)N x +1 

2 

N x 
= 8 

(
b − a 

4 

)N x +1 

. (41) 

Similarly, we conclude that the second and the third product factor are bounded, respectively, by; 

max c≤y ≤d 

∣∣∣∏ N y 
j=0 

(y − y j ) 

∣∣∣ = 

(
d−c 

2 

)N y +1 
max −1 ≤ ˆ y ≤1 

∣∣∣ L N y +1 ( ̂ y ) 

2 N y −1 N y 

∣∣∣ ≤ 4 ( d−c 
2 ) 

N y +1 

2 N y 
= 8 

(
d−c 

4 

)N y +1 
, (42) 
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and 

max 
0 ≤t≤T 

∣∣∣∣∣
N t ∏ 

k =0 

(t − t k ) 

∣∣∣∣∣ = 

(
T 

2 

)N t +1 

max 
−1 ≤ˆ t ≤1 

∣∣∣∣L N t +1 ( ̂ t ) 

2 

N t −1 N t 

∣∣∣∣ ≤
4 

(
T 
2 

)N t +1 

2 

N t 
= 8 

(
T 

4 

)N t +1 

. (43) 

Using Eqs. (41)–(43) , and Eq. (35) in Eq. (34) the proof is completed. �

We remark that the error bound for Chebyshev Gauss-Lobatto nodes is slightly larger than that of the optimal Chebyshev 

nodes [35] . Precisely, if we compare the results of the current theorems on error bounds with those extensions of error 

bound theorem presented in [31] , we notice that error in interpolation errors due to Chebyshev Gauss-Lobatto notes is 

almost twice that of optimal Chebyshev nodes. However, Chebyshev Gauss-Lobatto nodes have been preferred as a choice 

of discretization nodes to Chebyshev nodes since Chebyshev Gauss-Lobatto points include the boundary point which is 

convenient in the treatment of the boundary conditions of the problem been solved. 

4. Numerical experiment 

In this section, the method described in the previous section is applied to a selected class of two-dimensional nonlinear 

initial-boundary value problems. The accuracy and efficiency of the proposed method are demonstrated by comparing the 

numerical results against the exact solution. 

Example 1. Consider the problem of two-dimensional heat and mass transfer in a quiescent media with chemical reaction 

given in its general form by 

∂u 

∂t 
= a 

(
∂ 2 u 

∂x 2 
+ 

∂ 2 u 

∂y 2 

)
+ f (u ) , (44) 

where a is a real constant. We analyze special case of this problem where a = 1 and f (u ) = −4 u 3 − 2 u 2 and solve the 

problem subject to the boundary conditions 

u (2 , y, t) = (2 + y + 2 t) −1 , u (4 , y, t) = (4 + y + 2 t) −1 , 2 ≤ y ≤ 3 , t > 0 , 

u (x, 2 , t) = (2 + x + 2 t) −1 , u (x, 3 , t) = (3 + x + 2 t) −1 , 2 ≤ x ≤ 4 , t > 0 . (45) 

The initial condition for this problem is given by 

u (x, y, 0) = (x + y ) −1 , 2 ≤ x ≤ 4 , 2 ≤ y ≤ 3 . (46) 

The exact solution is given in [7] as 

u (x, y, t) = (x + y + 2 t) −1 . (47) 

Example 2. We consider the two-dimensional heat and mass transfer equation with power-law temperature-dependent 

thermal conductivity [8] 

∂u 

∂t 
= a 

[
∂ 

∂x 

(
u 

n ∂u 

∂x 

)]
+ b 

[
∂ 

∂y 

(
u 

m 

∂u 

∂y 

)]
+ βu, (48) 

where n , m can be an integer or fraction and a , b , and β are some parameters. For simplicity, we consider a special case of 

Eq. (48) when a = 1 , b = 1 , m = n = 1 , and β = 0 in which Eq. (48) reduces to Boussinesq equation 

∂u 

∂t 
= 

[
∂ 

∂x 

(
u 

∂u 

∂x 

)]
+ 

[
∂ 

∂y 

(
u 

∂u 

∂y 

)]
. (49) 

The Boussinesq equation arises in nonlinear heat conduction and the theory of unsteady flow through porous media with a 

free surface. Eq. (49) is solved subject to boundary conditions 

u (0 , y, t) = y + 2 t, u (5 , y, t) = 5 + y + 2 t, 0 ≤ y ≤ 2 , t > 0 , 

u (x, 0 , t) = x + 2 t, u (x, 2 , t) = 2 + x + 2 t, 0 ≤ x ≤ 5 , t > 0 . (50) 

The initial condition for this problem is given by 

u (x, y, 0) = x + y. (51) 

The exact solution is given by authors in [7] as 

u (x, y, t) = x + y + 2 t. (52) 

Example 3. We consider the system two-dimensional Burgers’ equations given by 

∂u 

∂t 
+ u 

∂u 

∂x 
+ v 

∂u 

∂y 
= 

1 

R 

(
∂ 2 u 

∂x 2 
+ 

∂ 2 u 

∂y 2 

)
, 
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∂v 
∂t 

+ u 

∂v 
∂x 

+ v 
∂v 
∂y 

= 

1 

R 

(
∂ 2 v 
∂x 2 

+ 

∂ 2 v 
∂y 2 

)
, (53) 

where u ( x , y , t ) and v (x, y, t) are velocity components to be determined and R is the Reynolds number. Eq. (53) is subject to 

boundary conditions 

u (0 , y, t) = 

3 

4 

− 1 

4 

[
1 + e ( R (4 y −t) / 32 ) 

] , u (2 , y, t) = 

3 

4 

− 1 

4 

[
1 + e ( R (4 y −8 −t) / 32 ) 

] , 

u (x, 0 , t) = 

3 

4 

− 1 

4 

[
1 + e ( R (−4 x −t) / 32 ) 

] , u (x, 2 , t) = 

3 

4 

− 1 

4 

[
1 + e ( R (8 −4 x −t) / 32 ) 

] , (54) 

v (0 , y, t) = 

3 

4 

+ 

1 

4 

[
1 + e ( R (4 y −t) / 32 ) 

] , v (2 , y, t) = 

3 

4 

+ 

1 

4 

[
1 + e ( R (4 y −8 −t) / 32 ) 

] , 

v (x, 0 , t) = 

3 

4 

+ 

1 

4 

[
1 + e ( R (−4 x −t) / 32 ) 

] , v (x, 2 , t) = 

3 

4 

+ 

1 

4 

[
1 + e ( R (8 −4 x −t) / 32 ) 

] . (55) 

The initial condition are 

u (x, y, 0) = 

3 

4 

− 1 

4 

[
1 + e ( R (y −x ) / 8 ) 

] , v (x, y, 0) = 

3 

4 

+ 

1 

4 

[
1 + e ( R (y −x ) / 8 ) 

] . (56) 

The exact solutions for this problem are given in [33] as 

u (x, y, t) = 

3 

4 

− 1 

4 

[
1 + e ( R (4 y −4 x −t) / 32 ) 

] , v (x, y, t) = 

3 

4 

+ 

1 

4 

[
1 + e ( R (4 y −4 x −t) / 32 ) 

] . (57) 

Example 4. We consider the two-dimensional Brusselator system given by 

∂u 

∂t 
= B + u 

2 v − (A + 1) u + μ

(
∂ 2 u 

∂x 2 
+ 

∂ 2 u 

∂y 2 

)
, 

∂v 
∂t 

= Au − u 

2 v + μ

(
∂ 2 v 
∂x 2 

+ 

∂ 2 v 
∂y 2 

)
, (58) 

where u ( x , y , t ) and v (x, y, t) represent dimensionless concentration of two reactants, A and B are constant concentrations 

of the two reactants, and μ is the diffusion coefficient. The exact solutions for this problem are given in [34] for A = 1 , B = 

0 , μ = 

1 
4 as 

u (x, y, t) = e −x −y −t/ 2 , v (x, y, t) = e x + y + t/ 2 . (59) 

Eq. (58) is solved subject to boundary conditions 

u (0 , y, t) = e −y −t/ 2 , u (2 , y, t) = e −2 −y −t/ 2 , u (x, 0 , t) = e −x −t/ 2 , u (x, 2 , t) = e −2 −x −t/ 2 , (60) 

v (0 , y, t) = e y + t/ 2 , v (2 , y, t) = e 2+ y + t/ 2 , v (x, 0 , t) = e x + t/ 2 , v (x, 2 , t) = e 2+ x + t/ 2 . (61) 

The initial condition for this problem are 

u (x, y, 0) = e −x −y , v (x, y, 0) = e x + y . (62) 

5. Results and discussion 

In this section, numerical results obtained after solving the test Examples 1–4 using trivariate spectral collocation method 

are presented and discussed in tables and graphs. The current analysis particularly emphasizes the accuracy of the method 

and the ease to obtain the numerical results. Implementation of the numerical schemes was performed on Matlab 2017b 

platform. We investigate how the length of the computational domain and the number of collocation points influence the 

accuracy of the method. For the case of coupled two-dimensional Burger’s system, we study the dependence of the accuracy 

on both the Reynolds number ( Re ) values and the size of the time interval. The accuracy of the method is demonstrated by 

presenting infinity error norms computed as; 

|| E|| ∞ 

= max 
0 ≤i ≤N x , 
0 ≤ j≤N y , 
0 ≤k ≤N t 

| U 

N (x i , y j , t k ) − u 

E (, x i , y j , t k ) | , (63) 
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Table 1 

Absolute error norms values for spectral approximation of Example 1 using different 

time intervals [0, T ]: N x = 20 , N y = 10 , N t = 10 . 

T Error norm CPU time(sec) Condition Number 

0.5 2.26291e-12 0.898684 2.4567e + 04 

1.0 2.95380e-12 0.905972 2.5045e + 04 

1.5 7.35126e-11 0.910378 2.5290e + 04 

2.0 6.01130e-10 0.912381 2.5468e + 04 

2.5 2.75105e-09 0.916514 2.5607e + 04 

Table 2 

Absolute error norms values for spectral approximation of Example 2 using different 

time intervals [0, T ]: N x = 10 , N y = 10 , N t = 10 . 

T Error norm CPU time(sec) Condition Number 

0.5 2.29941e-11 0.230755 1.1804e + 04 

1.0 2.19984e-11 0.232808 1.3548e + 04 

1.5 2.30047e-11 0.234972 1.5161e + 04 

2.0 5.26619e-11 0.235249 1.6779e + 04 

2.5 3.48477e-11 0.236863 1.8372e + 04 

where U 

N and u E denotes the numerical and the exact solutions, respectively. In order to access the convergence of the 

iterative scheme, we keep track of the infinity error norm at different iterations. We shall call these values the solution 

error. The solution error at each iteration is calculated using the formula; 

|| S s +1 || ∞ 

= max 
0 ≤i ≤N x , 
0 ≤ j≤N y , 
0 ≤k ≤N t 

| U 

N 
s +1 (x i , y j , t k ) − u 

E (, x i , y j , t k ) | . (64) 

In Table 1 and 2 , we capture the dynamics of error norms as the length of the subinterval in t variable [0, T ] is varied. 

The number of grids in the spatial domains and time were kept constant. Unless otherwise stated, the results presented 

are those obtained after the fifth iteration. Table 1 shows that very accurate results are obtained as error norms with small 

orders of magnitude are recorded. However, we notice from this table that the accuracy deteriorates as the length of the 

time interval increase. This can be explained by the error bound Theorem 2 given at Eq. (36) since its expected that the 

error grows with an increase in the size of the interval in t . There is a negligible effect on the condition number of the 

coefficient matrices and computation time that result from a change in the size of the time interval for a fixed number 

of grid points. On the contrary, as shown in Table 2 , a corresponding increase in the length of the interval in t does not 

significantly influence the accuracy of the method in the numerical solution of Example 2 . This is common expectation as 

the solution of the problem examined in this Example (given Eq. (52)) is smooth as compared to that of Example 1 (given 

Eq. (47) ) which is not smooth and exhibit a discontinuity at the origin. In general, we can expect that as long as the interval 

in t is kept small, accurate numerical results will be guaranteed for problems with smooth solutions. Reducing the number 

of grid points in x space variable saves on the computational time and this evident when the third column of Table 2 is 

compared with that of Table 1 . 

The computational order of the iterative scheme is evaluated as 

ρ = ln 

∣∣∣∣U 

N 
s +2 − U 

N 
s +1 

U 

N 
s +1 

− U 

N 
s 

∣∣∣∣. (65) 

Table 3 shows the values of the computational order ρ at different iterations. From 3 , we can infer that the rate of 

convergence of the iterative scheme is 2. These results are expected as the quasi-linearization method is based on Newton- 

Raphson scheme for approximating root of an equation which has been proven to exhibit quadratic convergence in many 

elementary books in numerical analysis. 

For comparison purposes, Example 1 was also solved using 4th order Runge-Kutta method and the numerical results in 

terms of absolute error values obtained were given in Table 4 . Comparing Tables 1 and 4 we can conclude that the trivariate 

spectral collocation method is more accurate and computationally efficient than 4th order Runge-Kutta method. 

In Table 5 we investigate the effect of increasing the Re on the accuracy of the numerical scheme for different sizes of 

intervals in the time variable t . We notice that an increase in the value of Reynolds number beyond Re = 4 . 0 decreases the 

accuracy of the method. However, we can attest that with large values of Reynolds numbers, better accuracy can still be 

achieved as long as the length of the interval in t is small as seen in last column of Table 5 . Infinity error norms obtained 

using N x = 10 , N y = 10 , Re = 4 . 0 for various lengths of the time interval are shown graphically in Figs. 1 and 2 . Fig. 1 shows 

the graph of error norms in approximating the unknown velocity function u whereas Fig. 2 show the error norm obtained 

when approximating v . From both Figures we can see that for a sufficiently small interval in t , use of N t = 10 grid points 

yields accurate results, however, for a large computational domain in t , there is need to increase the number of grid points 

in order to maintain highly accurate numerical approximations. In this particular case, an increase in number of grid points 
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Table 3 

Values of computational order 

ρ at different iteration levels 

when approximating results of 

Example 1 using [0 , T ] = [0 , 1] : 

N x = 20 , N y = 10 , N t = 10 . 

Iteraton s ρ

1 - 

2 1.804 

3 1.956 

4 1.983 

5 1.989 

6 2.010 

7 1.997 

8 1.998 

9 2.002 

10 2.001 

Table 4 

Absolute error norms values obtained after approximation of Example 1 using 4th order 

Runge-Kutta method for different time intervals [0, T ]: N x = 20 , N y = 10 , N t = 10 . 

T Error norm CPU time(sec) Condition Number 

0.5 3.45346e-08 2.342466 4.34237e + 06 

1.0 7.32458e-08 2.436882 4.43821e + 06 

1.5 8.43256e-08 2.497213 4.56922e + 06 

2.0 5.04287e-07 2.600215 4.74521e + 06 

2.5 2.79546e-06 2.716534 4.79507e + 06 

Table 5 

Error norm values obtained when Example 3 is solved for different values of Re : N x = 10 , 

N y = 10 , N t = 10 , It = 5 . 

T = 1.0 T = 2 . 0 

Re Absolute Error u Absolute Error v Absolute Error u Absolute Error v 

1.0 5.65326e-13 5.86309e-13 4.71401e-13 7.32414e-13 

2.0 2.22267e-13 2.58793e-13 2.38143e-13 2.94431e-13 

3.0 1.23457e-13 1.08802e-13 1.32672e-13 3.01648e-13 

4.0 3.29181e-13 3.26739e-13 3.28182e-13 3.28182e-13 

5.0 4.21252e-12 4.21174e-12 4.22551e-12 4.22706e-12 

10.0 8.08547e-10 8.08547e-10 9.39105e-09 9.39104e-09 

Fig. 1. Error norms in u for different time intervals [0, T ] for 2D coupled Burger’s system. 
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Fig. 2. Error norms in v for different time intervals [0, T ] for 2D coupled Burger’s system. 

Fig. 3. Error norms in u for different time intervals [0, T ] for 2D coupled Brusselator system. 

from N t = 10 to N t = 20 was considered. We remark that this improvement in accuracy with an increase in the number of 

grid points is apparent only if the solution and its higher ordered derivatives are bounded within the interval of approxi- 

mation which is indeed the case for the solutions of the system of 2D Burger’s equation given in Eq. (57) . This fact does 

not hold for functions whose higher ordered derivatives are unbounded within the interval of the computational domain. It 

must also be noted that an increase in the number of grid points is at the expense of the computational time. 

Finally, in order to access the convergence of the method, the values of error norms obtained from the solution of 

Example 4 at different iteration levels are given in Table 6 . We observe that after only 4 iterations, the numerical scheme 

converges and the best approximate results are obtained. In order to affirm the fact that an increase in the number of grid 

points for large interval in the time t variable does not always guarantee improved accuracy, error norms obtained after 

the fifth iteration are plotted against the length of the time interval for N t = 10 and N t = 20 grid points in t . We observe 

that for a large interval in t , increasing the number of grid points worsens the approximation errors. The loss in accuracy 

when a large number of grid points is used is an additional disadvantage to the increased computational time and intensive 
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Fig. 4. Error norms in v for different time intervals [0, T ] for 2D coupled Brusselator system. 

Table 6 

Error norm values at different iterations obtained when Example 4 is solved: N x = 10 , N y = 10 , N t = 10 . 

T = 1.0 T = 2 . 0 

Iterations Absolute Error u Absolute Error v Absolute Error u Absolute Error v 

1.0 1.89722e-02 2.13396e-02 9.53246e-02 1.10242e-01 

2.0 1.10363e-04 1.19616e-04 7.75372e-03 8.65135e-03 

3.0 2.23119e-09 2.33731e-09 2.80567e-05 3.01118e-05 

4.0 4.35874e-13 3.38041e-12 2.22283e-10 2.31627e-10 

5.0 4.71456e-13 5.69322e-12 4.13003e-13 7.22800e-12 

6.0 4.59466e-13 2.74 4 47e-12 2.73559e-13 7.85416e-12 

CPU time (sec) 1.305253 1.323658 

Cond Number 2.4249e + 03 2.4493e + 03 

memory requirements involved while handling large-sized matrices and thus must be avoided at all cost. We attribute the 

loss of accuracy with a large number of grid points to the unbounded nature of the solutions to 2D Brussellor system and 

their derivatives. In practice, since the solution to the differential equation is not known prior to the development of the 

numerical scheme, the proposed method will be well suited for problems defined over small intervals of the computational 

domain. It is worth noting that domain decomposition approaches can be employed to remedy this limitation. 

6. Conclusion 

In this work, a new numerical method namely, the trivariate spectral collocation method for solving nonlinear two- 

dimensional initial-boundary value problems has been proposed. The method employs the quasilinearization method to 

simplify the nonlinear differential equations and the spectral collocation to accomplish discretization in both space and 

time variables. The method has been described and successively applied on typical examples of two-dimensional initial- 

boundary value problems reported in the literature as a single nonlinear equation or systems of nonlinear equations. From 

the numerical simulations, we arrive at the following conclusions, the trivariate spectral collocation method yields highly 

accurate results when applied to solve nonlinear two-dimensional initial-boundary value problems defined on a small time 

interval. For fluid flow problems demonstrated in this case by the two-dimensional Burger’s system, values of the governing 

flow parameters ought to be small to obtain accurate results. A significantly large time interval requires a large number of 

grid points to achieved results with stringent accuracy if the solution and its higher ordered derivatives are bounded within 

the computational domain. The new error bound theorems and proofs on trivariate interpolating polynomials that have been 

presented supports this claim. However, for problems with unbounded solutions, the application of the present method is 

limited to problems defined on a small time interval which requires a few grid points. The use of a large number of grid 

points is computationally expense and does not guarantee accuracy for problems with unbounded solutions which is not 

known at the onset of the application of the method. Under the suitable conditions, the current method is reliable as it gives 
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highly accurate results over short CPU time and the iterative scheme converges after a few iterations. Accuracy wise, the 

superiority of the method can be attributed to the purely spectral collocation discretization performed in all variables. Owing 

to the remarkable benefits the current method is a suitable alternative method for solving nonlinear two-dimensional initial- 

boundary value problems defined on small regular domains. Potential direction of future work would consider the extension 

of the current numerical method to solve problems defined on a large time interval by employing a domain decomposition 

technique. 
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