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Abstract 

This dissertation presents a multimodal enhancement-fusion (MEF) technique for natural images. 

The MEF is expected to contribute value to machine vision applications and personal image 

collections for the human user. Image enhancement techniques and the metrics that are used to assess 

their performance are prolific, and each is usually optimised for a specific objective. The MEF 

proposes a framework that adaptively fuses multiple enhancement objectives into a seamless 

pipeline. Given a segmented input image and a set of enhancement methods, the MEF applies all the 

enhancers to the image in parallel.  The most appropriate enhancement in each image segment is 

identified, and finally, the differentially enhanced segments are seamlessly fused. To begin with, this 

dissertation studies targeted contrast enhancement methods and performance metrics that can be 

utilised in the proposed MEF. It addresses a selection of objective assessment metrics for contrast-

enhanced images and determines their relationship with the subjective assessment of human visual 

systems. This is to identify which objective metrics best approximate human assessment and may 

therefore be used as an effective replacement for tedious human assessment surveys. A subsequent 

human visual assessment survey is conducted on the same dataset to ascertain image quality as 

perceived by a human observer.  The interrelated concepts of naturalness and detail were found to be 

key motivators of human visual assessment. Findings show that when assessing the quality or 

accuracy of these methods,  no single quantitative metric correlates well with human perception of 

naturalness and detail, however, a combination of two or more metrics may be used to approximate 

the complex human visual response.  

Thereafter, this dissertation proposes the multimodal enhancer that adaptively selects the optimal 

enhancer for each image segment. MEF focusses on improving chromatic irregularities such as poor 

contrast distribution. It deploys a concurrent enhancement pathway that subjects an image to multiple 

image enhancers in parallel, followed by a fusion algorithm that creates a composite image that 

combines the strengths of each enhancement path. The study develops a framework for parallel image 

enhancement, followed by parallel image assessment and selection, leading to final merging of 

selected regions from the enhanced set. The output combines desirable attributes from each 

enhancement pathway to produce a result that is superior to each path taken alone. The study showed 

that the proposed MEF technique performs well for most image types. MEF is subjectively 

favourable to a human panel and achieves better performance for objective image quality assessment 

compared to other enhancement methods. 
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1.1 Introduction 

Image sensors are utilised in digital cameras and in many imaging devices. These sensors are used 

in industry, multimedia, medical imaging and consumer applications etc. Modern digital imaging 

sensors have become more widely accessible and less expensive in the past decades [1]. There 

are many advancements with imaging [1]. Despite advancements with imaging sensors, they 

seldomly produce ideal raw images. Sensory output is usually subjected to a variety of corrective 

algorithms before becoming useful. This is especially prevalent in machine vision applications 

[2]. Various sources of error exist, for example; lens distortion, sensor dynamic range limitations, 

thermal distortion, etc. These errors can be corrected by using digital image processing 

techniques.  

Digital image processing is the process that utilises computer algorithms to  modify a digital 

image for some purpose. These algorithms are used to enhance images or to extract some useful 

information. Common examples include filtering, enhancement and fusion techniques. Image 

enhancement is a significant application of image processing due to its ability to improve visibility 

and perceivability of poor or distorted images.  Distinctive procedures have been proposed to 

improve the quality of the digital image and to assess the quality of an image. The general image 

processing domain is very actively researched with multiple high-profile journal publications 

released in the last year alone. However, there is no “one-enhancement” that will fix all imaging 

problems. Each enhancement method is optimised for a particular class of problems, and each 

method is bound to have limitations in general application. Therefore, this dissertation proposes 

a technique that attempts to mitigate limitations imposed by traditional enhancement methods. 

This is achieved in two-parts:  

1 Existing enhancement methods and associated performance metrics are studied, and  

2 A new method that subdivides an image, adaptively enhances each region and seamlessly 

merges the result is proposed.  

It is difficult to improve human perception  of an image that correlates well with the direct human 

perception of a scene. The human visual system (HVS) processes scene illumination nonlinearly. 

There are some image processing algorithms that are designed to improve an image’s illumination 

and contrast. Some of these techniques operate well on images that have a uniform spatial 

spreading of grey values, while other images may not, and a loss of clarity of detail and colour 

may arise [3]. These difficulties are related to illumination. According to [3, 4, 5], enhancement 

methods are categorised into two groups viz. spatial domain and frequency domain methods. 

Images may be represented in both spatial or frequency domain. There are many fusion techniques 

that have been designed for both domains. Image fusion is an application of image processing 

where images are fused together. It can represent spatial and frequency information. 
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1.1.1 Image Fusion 

The main aim for any image fusion algorithm is to combine all important visual information from 

various image sources into a resultant image [6]. This resultant image should exhibit improved 

information and accuracy than any of the image sources without producing artefacts [3]. A good 

fusion method preserves useful information and does not create any artefacts that can mislead a 

human observer. It should also be reliable, robust and should not disregard any salient information 

from the input images. There are different levels of abstraction of information for image fusion: 

i.e. the pixel level, decision level, signal level and feature level [7]. For signal level fusion, the 

signals from different sensory sources are fused to produce a new signal. This signal has a better 

signal to noise ratio. Pixel/ Data fusion merges raw data from many sources into a single 

resolution data. The output contains more information. Feature level fusion extracts distinctive 

features from the different data sources. These features are merged into one or more feature maps. 

Decision level fusion merges the outcome from several algorithms to produce a resultant fused 

decision. 

In addition,  there are many fusion techniques that currently exist such as Wavelet form [8], 

Multiscale transform-based fusion [9], Laplacian pyramid based [10] etc. More examples can be 

found [8, 11, 12, 13, 14, 15]. Image fusion can be separated into five groups[11]: multisensor 

fusion, multiview fusion, multitemporal fusion, multifocus fusion and multimodal fusion. 

The multisensor fusion integrates captured images of the same scene. These images are captured 

with different sensors. Multiview fusion integrates captured images of the same scene with 

numerous pictures with dissimilar views to yield a single image that contains more information. 

Multifocus fusion integrates captured images from the same scene but with diverse focuses. The 

multitemporal fusion integrates valuable information from dissimilar images of the equivalent 

scene at dissimilar time value. Finally, the multimodal fusion, integrates diverse modalities of 

images captured from the same scene. Multimodal fusion will be a focus of this study. 

 

1.1.2 Multimodal Fusion 

Multimodal fusion is a very active area of research with many domains of application. Image 

fusion and registration consists of three sub-problems [16] namely, the identification and 

extraction of common features,  the determination of corresponding pixels in the image metric, 

and the determination of registration transformation parameters. 

Examples of multimodal fusion may be found in medical imaging where there are different 

modalities such as computerised tomography, magnetic resonance imaging,  ultrasound imaging, 

etc [17]. These images are merged together to achieve an improved image that contains more 
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information and better quality. This is achieved by utilising multimodal image fusion. The main 

goal is to fuse these images to achieve a superior quality image and an image with the most amount 

of information. 

Another example of this type of  fusion is a method by Saleem et al [10]. Saleem et al. proposed 

the “image fusion-based contrast enhancement” that enhances global and local contrast and 

reduces over-enhancement artefacts though maintaining the original appearance. This method is 

discussed in Chapter 2 and the model is presented in Appendix C6. The proposed MEF is 

developed by using the Saleem et al. approach and the methodology of high dynamic range 

imaging (HDRI). 

1.1.3 High Dynamic Range Imaging Synthetisation  

In recent years there has been an increasing interest to HDRI since it possesses a superior dynamic 

range (DR) of intensity values compared to low DR images [18]. To visualise the high dynamic 

range (HDR) images on standard device, the tone mapping operator is employed. Some examples 

of these are documented in [19, 20, 21, 22]. For standard imaging devices, only a small subset of 

the accessible DR of the scene can be taken. This results in over-exposed and under-exposed 

regions of the attained image. In order to overcome this constraint, different portions of a dynamic 

range are captured separately and with varied exposure times [23]. 

The tone mapping operator compresses the DR of HDR images causing loss of information and 

degradation. Annamária et al. [22] proposed a tone reproduction algorithm which can help the 

development of difficult to see features and colour content. The author applied the result from 

their previous work i.e. “gradient based synthesised multiple exposure time HDR image” into 

their tone reproduction algorithm [24]. The author synthesises resultant image from several 

registered images of a static scene, taken at different exposures, such that the regions containing 

the most detail are retained in the final image. 

Annamária et al.  [24] introduces the concept of the “gradient-based multiple exposure time 

synthetisation algorithm”. The algorithm combines images of different exposures into a single 

resultant image. The resultant image encodes greater information content than each input image 

individually. In addition, negligible noise is produced. Each input image is divided into regular 

small regions. The method separately processes the red, green and blue (RGB) colour planes for 

each region. The algorithm measures the level of detail across corresponding regions in the 

registered input image set. This is performed for each colour plane. The registered input region 

that contains the most information is selected and assigned to the output image. According to 

Annamária et al. [22], the amount of detail for each region is determined by the sum of the gradient 

magnitude of the luminance in that image region. The more detail in a region, the greater the 

totality of gradient values in that region. Once all the input regions are similarly processed and 
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output regions assigned, the output regions are merged. Thus, producing an image with the most 

amount of information in each region. The output regions are sourced from variably exposed input 

images. Therefore, the output image usually has large intensity variations at the region transitions. 

Smoothing is applied to the image to eliminate the sharp transitions. Monotonically decreasing 

blending functions are centred over regions and extend beyond the region into the surrounding 

image. The smoothing function allocates the most weight to the pixel which is positioned on the 

centre of the measured region. For the remaining pixels in the image, weights that are inversely 

related to the distances from the centre of the region are allocated. After the weighting is done, 

the blending of the corresponding colour components is done. The resulting image has high-

quality colour, that contains details and colour information while having no discontinuities along 

region boundaries. Aspects of this approach are adopted in the proposed MEF. 

 

1.1.4 Performance Evaluation 

Performance evaluation refers broadly to the measurement of a specific behaviour or outcome of 

an algorithm. This evaluation emphasises the intrinsic characteristics of an algorithm and assesses 

the benefits and limitations of an algorithm [25]; and is utilised to quantitatively assess the 

performance of an image algorithm [25]. To determine whether an algorithm succeeds or fails, 

the characteristics of success must be well-defined. The process of failure analysis assesses the 

reason an algorithm fails during testing. The information obtained is then sent to the design 

process to make further improvements in the algorithm. This process can be complex and difficult 

in image enhancement application since there is no “ideal” image that can be utilised as a 

reference image. The purpose of performance metrics is to determine the quality of an image in 

correlation with human quality assessment [18]. In addition, when evaluating image quality, the 

quality of image as perceived by the human visual system cannot be satisfactorily correlated with 

any single quantitative metric. This problem has been highlighted in journal papers such as [25, 

26]. In this dissertation it was shown that metrics may be used in combination to better achieve 

this goal. 

Performance metrics for IQA are divided into the categories; subjective IQA and objective IQA. 

Subjective evaluation refers to human visual inspection while objective evaluation does not 

involve human assumptions and assessments but involves mathematical models [27]. Objective 

IQA methods create a mathematical model that repeatably determines the quality of a given image 

as precisely as possible [28]. This precise or repeatable value is a simulation of the average human 

assessment [27] and it may lack accuracy.   

Subjective IQA is a dependable method for evaluating image quality. It requires human 

respondents. In most multimedia applications, the end users are average human observers, 
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therefore, their opinions are necessary [18]. To undertake a test of image quality that is subjective, 

many global standards are recommended [29, 30, 31]. These standards are designed to facilitate 

reliable outcomes.  

Objective IQA testing is more convenient than human assessment studies, and it is for this reason 

that it is so commonly used as an estimator of human perception. A common application for 

objective IQA is image-based quality control systems [32]. This may be achieved by image 

acquisition, with subsequent objective IQA that is usually integrated into a control loop. It can 

also be used to benchmark image processing algorithms and to optimise image processing and 

transmission systems. Objective IQA methods are categorised into three groups depending on the 

availability of an ideal distortion-free reference image [27]. 

The first is full-reference IQA, in which the reference image is completely obtainable, for example 

[32, 33]. In the second group, the reference image is not fully obtainable. This is called reduced 

reference IQA, examples are [34, 35].  In the third group the reference image is not obtainable. 

This is known as the “no-reference” or “blind quality assessment” IQA, examples are: [36, 37, 

38, 39]. This study uses multiple IQA methods.  

1.2 Motivation and Research Objectives  

The work presented in this dissertation is aimed at improving existing singular enhancement 

techniques by introducing a parallel fusion method. The proposed multimodal model is expected 

to contribute value to machine vision applications as well as personal image collections for the 

human user. The proposed method identifies and merges desired attributes from parallel 

enhancement pathways into the resultant image. For this purpose, two papers are presented. The 

objective of Paper 1 is to address a selection of objective assessment metrics for contrast-

enhanced images and determines their relationship with the subjective assessment of human 

visual systems. Paper 2 proposes the multimodal enhancement-fusion (MEF) technique for 

natural images. 

Paper 1 addresses the problem that has been highlighted in several sources in the literature such 

as [25, 26]. This problem involves the significant difficulty that arises when finding a suitable 

evaluation method for an algorithm that provides an objective measurement of performance. The 

paper addresses a selection of objective assessment metrics for contrast-enhanced images and 

determines their relationship with the subjective assessment of human visual systems. This is in 

order to establish which objective metrics best approximate human assessment and may therefore 

be used as an effective replacement for tedious human assessment surveys. A subsequent human 

visual assessment survey is conducted on the same dataset to ascertain image quality as perceived 

by a human observer. 
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Paper 2 proposes a multimodal enhancement-fusion (MEF) technique for natural images. The 

MEF contributes value to machine vision applications and personal image collections for the 

human user. There are various state-of-the-art enhancement techniques that exist for targeted and 

global enhancement, however, every state-of-the-art method possesses its own favourable and 

unfavourable characteristics. There is no method that is optimal for all image types. The objective 

for the MEF is to adaptively select the optimal enhancer (from an available set) for each region. 

This is performed with the intention to minimise unfavourable characteristics. This technique also 

focuses on improving chromatic irregularities such as poor contrast distribution and distortions. 

The MEF proposes a concurrent enhancement pathway that subjects an image to multiple image 

enhancers in parallel, followed by a fusion algorithm that creates a composite image that combines 

the contributed strengths of each enhancement path. This study develops a global framework for 

parallel contrast enhancement, followed by parallel image assessment and region selection, 

leading to final merging of selected regions from the enhanced set.  

1.3 Methodological Approach  

The study first critically selects, implements and validates recently published works that are 

appropriately related to image enhancement and image fusion. Thereafter, the study deploys a 

theoretical model through analysis, design and synthesis. This stage incorporates novel ideas and 

comprises of the contribution of this study. Finally, the study assesses and refines the developed 

model and evaluates against benchmark datasets and published works.  

Five state-of-the-art enhancement methods were critically selected. The methods have been 

assessed using benchmark image datasets. The methods have been replicated in MATLAB [40] 

and the results were validated. The strengths and weaknesses of the algorithmic output, and the 

identification of metrics for evaluating these strengths and weaknesses were identified. 

Thereafter, subjective human surveys and objective image quality assessments were performed. 

State-of-the-art image-fusion methods and HDR methods were identified. These methods have 

been assessed using benchmark image databases. The HDRI method (Annamária et al. [22]) was 

replicated in MATLAB and then validated by assessing the replication against the author’s 

benchmark dataset. The knowledge obtained is applied to create the proposed MEF framework. 

Given a segmented input image and a set of enhancement methods, the MEF applies all the 

enhancers to the image in parallel.  The most desired/optimal enhancer in each image segment is 

identified, and finally, the differentially enhanced set of segments are seamlessly fused, thus 

creating an output that expresses various strengths across the enhancement methods.  

The new MEF was tested along with its constituent singular enhancement methods on a 

benchmark database. A comparative assessment was performed between the MEF output and 
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other state-of-the-art methods using established metrics. A human assessment survey was finally 

used to obtain an authoritative assessment of the proposed MEF relative to the individual 

enhancement methods. 

1.4 Contributions of Included Papers 

All the research that is covered in this dissertation is incorporated into the following two papers 

that are presented in Chapter 2. The details of the included papers are described below: 

1.4.1 Paper 1 

R. Maharaj and B. Naidoo, “An Analysis of Objective and Human Assessments in Contrast 

Enhancement”. 

This paper addresses a selection of objective assessment metrics for contrast-enhanced images 

and determines their relationship with the subjective assessment of human visual systems. This is 

to establish which objective metrics best approximate human assessment and may therefore be 

used as an effective replacement for tedious human assessment surveys. A targeted study of 

popular contrast enhancement methods and performance metrics is first conducted.  Five popular 

contrast enhancement methods and eight objective performance metrics are chosen. A subsequent 

human visual assessment survey is conducted on the same dataset to ascertain image quality as 

perceived by a human observer. The interrelated concepts of naturalness and detail were found to 

be key motivators of human visual assessment. Findings show that no single quantitative metric 

correlates well with human perception of naturalness and detail, however, two or more metrics in 

combination can be used to approximate the complex human response. 

1.4.2 Paper 2 

R. Maharaj and B. Naidoo, “Multimodal Enhancement-Fusion technique for Natural 

Images”. 

Paper 2 proposes a multimodal enhancement-fusion (MEF) technique for natural image. The 

multimodal enhancer is expected to contribute value to machine vision applications and personal 

image collections for the human user. The proposed MEF focusses on improving chromatic 

irregularities such as poor contrast distribution. The multimodal enhancement result is tailored 

such that it identifies and merges desired attributes from each pathway into the resultant image. 

It also proposes a concurrent enhancement pathway that subjects an image to multiple image 

enhancers in parallel, followed by a fusion algorithm that creates a composite image that combines 

the strengths of each enhancement path. This study develops a global framework for parallel 

contrast enhancement, followed by parallel image assessment and region selection, leading to 

final merging of selected regions from the enhanced set. 
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1.5 Structure of the Dissertation 

This dissertation is structured such that the literature review is presented in Chapter 1, Chapter 2 

presents Papers 1 and 2. The dissertation is concluded in Chapter 3. The digital copy of the results 

presented in this dissertation can be found in Appendix A. Summary of MEF algorithm can be 

found in Appendix B. 

The dissertation studies five main types of image enhancement algorithms. These are: - 

1. Colour image enhancement based on histogram equalisation [41] 

2. Adaptive equalisation in LAB space [42] 

3. Contrast enhancement based on intrinsic decomposition [26] 

4. Naturalness preserved enhancement algorithm for non-uniform illumination images [43] 

5. Automatic image equalisation and contrast enhancement using Gaussian mixture 

modelling [44]. 

In addition to the above methods, other enhancement methods are studied. The algorithmic 

descriptions for the above methods are presented in Appendix C1-C5. 

Image fusion methods are also studied. Examples are exposure fusion by Mertens et al. [14], and 

image fusion-based contrast enhancement by Saleem et al. [10]. More information on Saleem et 

al. method can be found in Appendix C6. An HDRI method was studied and replicated. The 

method by Annamária et al. [22] was chosen.  

The image processing techniques were evaluated using the following performance metrics. These 

metrics are carefully studied and implemented:-  

1. Mean square error (MSE) [45], 

2. Entropy [46],  

3. Edge- based contrast measure (EBCM)  [44], 

4. Naturalness image quality evaluator (NIQE) [47], 

5. No-reference free energy based robust metric (NFERM) [48],  

6. No-reference image quality metric for contrast distortion (NIQMC) [38],  

7. the colourfulness-based PCQI (patch-based contrast quality index [49])(CPCQI) [39],  

8. the blind/reference-less image spatial quality evaluator (BRISQUE) [37].  

These metrics are explained and implemented in Paper 1. The metrics are also used in Paper 2. In 

Paper 1 some of the models are demonstrated. The remaining models are presented in Appendix 

D. In addition to the above performance methods, a human quality assessment survey was done 

for both papers. The survey for Paper 1 and 2 is presented in Appendix E and F, respectively. 
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1.6 Future Work 

Image enhancement is an active field of research, and iterative improvements are to be expected. 

The current proposal leaves room for improvement and extension. The following future work is 

proposed:  

• The MEF technique produces better results in comparison to studied enhancements and 

fusion methods but there may be limitations in real-time applications such as video 

processing. In future work,  the model may be simplified to enhance and improve the 

efficiency of the algorithm. It may also be further developed to minimise memory usage. 

The proposed reduction in space and time complexity may be further improved by 

algorithmic parallelisation for deployment on GPU and multicore CPU platforms. 

• Individual image enhancement methods are generally optimised for specific problem 

types. It is therefore unrealistic to preselect a small set of enhancers for the MEF and 

expect all problem types to be addressed.  If an input image classifier is inserted at the 

beginning of the processing pipeline, a problem class may be identified. Given a large 

pool of enhancers, we may then select a tailored subset that is applicable to that image or 

problem class. In this way, the MEF framework may be automatically targeted at the 

specific needs of the input image. The MEF will be broadly applicable and specialised at 

the same time. 

• The current MEF uses a detail metric to select the best enhancer for each image segment. 

This metric can be improved. The research outcome from Paper 1 showed that combined 

metrics better estimate human perception. In future work, a composite metric may be 

deployed in the MEF, such that it  selects both naturalness and detail as perceived by the 

human visual system. It is anticipated that this change will produce more pleasing results 

for the human observer. A specific example is the NFERM metric that uses 23 features 

to measure naturalness. The features from NFERM can be integrated with features of a 

detail metric to measure both naturalness and detail. 

 

Finally, more research can be performed  to compare the MEF with other enhancement and fusion  

methods. There is no perfect method for image enhancement therefore further work and research 

will always be required. 
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 Abstract  

This paper addresses a selection of objective assessment metrics for contrast-enhanced images 

and determines their relationship with the subjective assessment of human visual systems. This is 

in order to establish which objective metrics best approximate human assessment and may 

therefore be used as an effective replacement for tedious human assessment surveys. A targeted 

study of popular contrast enhancement methods and performance metrics is first conducted.  Five 

popular contrast enhancement methods and eight objective performance metrics are chosen. A 

subsequent human visual assessment survey is conducted on the same dataset to ascertain image 

quality as perceived by a human observer. The interrelated concepts of naturalness and detail were 

found to be key motivators of human visual assessment. Findings show that no single quantitative 

metric correlates well with human perception of naturalness and detail, however, two or more 

metrics in combination can be used to approximate the complex human response. Three metrics 

(NIQE, NFERM, BRISQUE) were found to be good estimators of human perception of 

naturalness; and two metrics (NIQMC and entropy) provided good estimation of human 

perception of detail. 

A.1  Introduction 

Performance evaluation refers broadly to a measurement of a specific behaviour of an algorithm. 

This evaluation emphasises the intrinsic features of an algorithm and evaluates the benefits and 

limitations of an algorithm [1]. There has been a significant difficulty that arises when finding a 

suitable evaluation method for an algorithm that provides an objective measurement of 

performance. Performance metric analysis is, therefore, a significant and useful measurement that 

is necessary for quantitatively analysing the performance and achievements of an image 

enhancement model [1]. To determine if an algorithm succeeds or fails, the features of success 

must be well-defined. It becomes necessary to use failure analysis as a method of determining the 

reason for an algorithm failure through testing. The information obtained is then sent back into 

the design stage to produce further improvements in the algorithm. This can be a challenging and 

complex procedure in image enhancement application since there is no “ideal” image that may be 

utilised as a reference image. In addition, when evaluating image quality, the image quality and 

accuracy as perceived by the human visual system cannot be correlated with any single 

quantitative metric. This problem has been highlighted in several journal papers such as [1, 2]. 

This paper proposes to address this problem by investigating different image contrast 

enhancements and the performance metrics.  

Before dealing with the problem, the fundamentals of image processing have to be understood. 

All digital images have an equivalent matrix which stores information concerning each pixel. This 
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information is in the form of the colour for the pixel and intensity of that colour. This information 

forms the basis of image processing. Image processing algorithms can remove noise and any type 

of irregularities or distortions found in an image by making use of the digital computer. 

Irregularities, noise or distortions can appear in the image either during its formation or during 

transformation [3]. The goal of image enhancement is to remove these irregularities or distortions 

without removing any features of the image. One such example is Gaussian noise reduction. 

Gaussian noise is caused by natural sources and it generally disturbs the gray values in the digital 

image [4]. This can be solved by using a Wiener filter or the approach proposed in Murugan et 

al. [5], that identifies noisy pixels and restores those pixels. An important application of image 

processing is image enhancement because it enhances the visibility and perceivability of poor or 

distorted images. Several methods of image enhancement have been developed during the last 

four to five decades. These techniques use mathematical manipulations on the image matrix. As 

a result of mathematical manipulations, there is an improvement in the image and contrast quality 

of the original image.  

 

This paper considers 5 different types of contrast enhancement techniques, which are: - 

1. Colour image enhancement based on histogram equalisation [6] 

2. Adaptive equalisation in LAB space [7] 

3. Contrast enhancement based on intrinsic decomposition [2] 

4. The Naturalness preserved enhancement algorithm [8] 

5. Automatic image equalisation and contrast enhancement using Gaussian mixture 

modelling [9]. 

To evaluate each image enhancement technique and measure the image quality, a performance 

metric is used. This is an important assessment that is necessary to prove the effectiveness and 

efficiency of the enhancement technique. The purpose of image quality assessment (IQA) metrics 

is to determine the quality of an image in correlation with human quality assessment [10]. When 

determining image quality or accuracy, no single metric corresponds well with human assessment 

[1]. Therefore, choosing the appropriate metric evaluation methodology is important and depends 

on the intention and objective of the required task. The reason for assessing an algorithm is two-

fold, namely, to comprehend its behaviour when exposed with several types of images, and/or to 

assist in determining the prime parameters for the various image processing applications [11]. 

The performance metrics are classified as subjective, and objective methods. Subjective 

evaluation is based on human visual inspection while objective evaluation does not involve 

human assumptions and assessments but involves mathematical models [12].  
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Thus, the aim of an objective IQA method is to create a mathematical model which best 

determines the quality of a given image as precisely as possible [13]. The mathematical model 

must simulate the quality assessment of an average human observer [12]. The objective IQA 

methods are categorised into three groups depending on the obtainability of a distortion-free 

reference image that has perfect quality [12]. The first group is a full-reference IQA in which the 

reference image is completely obtainable [14]. The second group, where the reference image is 

not fully obtainable, is called a reduced reference IQA [15].  In the third group, the reference 

image is not obtainable, which is known as the no-reference IQA [16, 17].  

Subjective IQA is a dependable method for evaluating image quality. In most of the multimedia 

applications, the average human observers are the end users, therefore, making their opinions 

necessary [10]. In this method, respondents are required to express their view about the quality of 

a given image. To undertake a test of image quality that is subjective, many global standards are 

recommended [18, 19, 20]. These standards will provide more efficient results. A visual 

assessment is conducted to gather information about how the human vision interprets a given 

image. In this paper, an experiment was done to investigate the quality of images. This included 

a visual assessment that allowed recipients to score enhanced images according to visual 

preference, naturalness and details of an image.  

The goal of this paper is to address the selection of objective assessment metrics for contrast 

enhanced images and determine their relationship with the subjective assessment of human visual 

systems. This is done in order to establish which objective metrics best approximate human 

assessment and may therefore be used as an effective replacement for tedious human assessment 

surveys. A visual assessment is done to determine a human’s visual response. The human 

assessment is done to correlate the results of the objective study. This study also identifies 

objective IQA metrics that can be used to approximate a human assessment and categorises 

performance metric in terms of the probable application domain by analysing different objective 

performance metrics. Therefore, the structure of the paper is as follows: The related works is 

outlined in Section A.2. Section A.2 is divided into two subsections, viz, Section A.2.1 which 

provides the information for the enhancement algorithms that are implemented and Section A.2.2 

which provides information on the metrics used for the performance analysis. Section A.3 

explains the experimental method. Section A.4 discusses the results attained from the experiment 

and Section A.5 concludes this paper. 
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A.2  Related works  

To implement performance metrics on contrast enhancement algorithms, an understanding of the 

different enhancement techniques and performance metrics are needed.  These sections consider 

key contrast enhancement methods and the metrics that have transitionally been applied to access 

image performance. Therefore, this section is separated into two sections. Section A.2.1 provides 

a brief summary of the five enhancements and Section A.2.2 discusses the human assessment and 

eight objective performance metrics.  

 

A.2.1 Enhancement methods 

The different contrast enhancements that are implemented in this study are outlined below. Each 

enhancement is considered in terms of the goal, previous work, methodology and results from 

each algorithm. 

 

A.2.1.1 Colour Image Enhancement Based on Histogram Equalisation (CIEBHE)  

Goal: Colour image enhancement based on histogram equalisation (CIEBHE) was proposed by 

Arora et al. [6]. It aims to extend the histogram equalisation approach of gray-level images for 

colour images [6].  

Previous work: The process of remapping pixels intensities of the image within a specific colour 

plane is called histogram equalisation (HE) [21]. The process distributes the pixel’s intensity 

across the dynamic range (DR) to improve the image contrast. The HE allocates the pixel intensity 

values of the input image in such a way that the resultant image contains a uniform distribution 

of intensity, thereby enhancing the contrast [6]. The aim is to increase the brightness of an image 

which is not the same as the mean brightness (MB) of the original input image. HE is one of many 

techniques that can be utilised to improve the  contrast for a given colour image. Some variants 

of this approach are: 

• Kim et al. [22] proposed the brightness preserving bi-histogram equalisation (BBHE). 

This enhancement model aims to maintain the MB of an image whilst enhancing image 

contrast [22]. BBHE separates the histogram of the image into under-exposed and over-

exposed sections, according to the mean value. The sub-image histogram of the original 

image is then equalised independently.  

• Wang et al. [23] proposed a dualistic sub image histogram equalisation (DSIHE). DSIHE 

is utilised for maintaining the illumination of the image based on median value.  This 

method involves separating the original histogram into two sub-image histograms 

according to their median value.  In this way, each sub-image histogram is equalised 

independently.  
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• Chen et al. [24] proposed the minimum mean brightness error bi-histogram equalisation 

(MMBEBHE). MMBEBHE intends to provide maximum brightness preservation and is 

an extension of BBHE.  

• Chen et al. [25] proposed the recursive mean separate histogram equalisation (RMSHE). 

RMSHE allows an increased level of brightness preservation to bypass unwanted 

artefacts and an unnatural image enhancement, that occurs because of too much of 

equalisation whilst improving the contrast of an image.  

Method: CIEBHE extends on the HE approach for gray-level images to colour, RGB (red, green 

and blue) images. The original input image is transformed from RGB to HSV (hue, saturation, 

value) colour space. It is divided into two sections based on the exposure threshold. Thereafter, 

histogram equalisation is applied to each section independently. In this method, over-

enhancement is controlled by using clipping threshold. 

The results: This is a good method for preserving brightness. This method is suitable for under-

exposed images. Over-enhancement is controlled by histogram clipping [6]. CIEBHE is effective 

and efficient for under-exposed images. The findings of the author [6], indicate that CIEBHE 

produces an enhanced image with maximum entropy and good contrast by decreasing over-

enhancement. 

 

A.2.1.2 Adaptive Equalisation in LAB spaces (AELAB)  

Goal: AELAB [7] enhancement demonstrates a luminosity preserving contrast enhancing 

adaptive histogram equalisation technique for colour images.  

Previous work: The HE is a common method used for enhancing image contrast where unwanted 

subject deterioration is frequently occurring. HE works well in RGB colour space and is not suited 

well for different colour spaces. Several colour models have been created for improving the visual 

representation of colour images. Colour space is a generalised term used for representing the 

combination of a colour model plus a mapping function associated with colour images [26]. 

Colour model and colour spaces are complementary to each other. Colour image contains more 

accurate information than the gray images. The reason for this is that many colours can be 

produced by mixing primary colour pigments. Most frequently used colour spaces are RGB [27] 

and Y-Cb-Cr colour spaces [28]. The selection of the colour model is dependent on the kind of 

image application and its requirements. The international commission on illumination (CIE) has 

developed a colour space named CIELAB colour space [29]. The major advantage of the LAB 

colour space is that it is created to estimate the human visual system (HVS) [30]. For the AELAB 

enhancement method, adaptive equalisation is applied in LAB spaces. This is similar to Bharal’s 

[7] approach for image enhancement for underwater images. This approach is also similar to, [31] 

and [32]. This approach is used and applied to all types of images.  
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Method:  The RGB image is transformed into LAB space. The LAB image is then decomposed 

into the individual components i.e. L, a*, b* components.  The image contrast in L component is 

increased by using the contrast limited adaptive histogram equalisation method [7]. Using 

CIELAB space before an image enhancement method will increase the aesthetic appurtenance of 

the images [27]. This enhances the colour feature of the structural components across the different 

spectral channels of the image [33]. The digital component coefficients are enhanced in lightness 

component L. The colour information in a* and b* channels are kept unchanged for preserving 

the colour information. At the end of the process, the LAB colour spaces are converted back to 

the original RGB colour space to obtain the enhanced image.  

The results of this enhancement are much better in relation to previous work composed by other 

authors/researchers for underwater images [7]. This comparison was performed by the author, 

Bharal [7]. A comparison between the other methods and the proposed method showed 

improvement based on criteria like: Mean square error, peak signal to noise ratio, average error 

and bit error rate. 

 

A.2.1.3  Contrast Enhancement based on Intrinsic Decomposition (CEID) 

Goal:  CEID was proposed by Yue et al. [2], it seeks to develop a novel intrinsic image 

decomposition model that is appropriate for contrast image enhancement. This is done by 

introducing constraints on the reflectance layer and the illumination layer in order to achieve an 

efficient enhancement. 

Previous work:  Studies have shown that by altering the decomposed illumination layer the image 

quality is improved. These layers were altered to enhance under-exposed or over-exposed images. 

Such models have been proposed in [2, 8, 34, 35, 36]. Different decomposition models have 

created different illumination layers with distinctive characteristics which can affect the resultant 

images.  

Barrow et al. [37] proposed intrinsic image decomposition. Their aim was to split the image into 

two layers which are the reflectance layer and the illumination layer.  This showed that the amount 

of reached light is represented by the illumination values. The reflectance values, which is not 

changed to illumination condition, relates to the intrinsic colour of the image [2]. Intrinsic 

decomposition was a highly ill-modelled problem. However, there are numerous different 

inference and subsequent work that have been made to make this a well-modelled problem [38, 

39, 40, 41].  

Method: To produce an extremely efficient enhancement, CEID propose constraints on the 

reflectance layer and illumination layer [2]. The reflectance layer is regularised to be piecewise 

constant. This is done by presenting a weighted 𝑙1 norm constraint on the neighbouring pixels. 
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The weighting is in accordance with the colour similarity of an input image. This is done since 

the illumination information will barely affect the reflectance. A piecewise smoothness constraint 

is used to regularise the illumination layer. The Split Bregman process is used to resolve the 

proposed decomposition model. The illumination layer is altered to achieve the enhanced image. 

Illumination adjustment was introduced to reduce computing complexity and to avoid potential 

colour artefacts. The decomposition model was implemented along the value channel in HSV 

space. 

An input colour image (RGB image) is transformed into HSV representation. The HSV image is 

then decomposed into the separate channels (H, S, and V channels). The decomposition model 

was applied to value (V) channel to decompose the image into two layers, i.e. the illumination 

layer and reflectance layer. To create an adjusted illumination layer, the Gamma mapping function 

was adopted. The new enhanced V channel is given by the product of the new illumination layer 

and the reflectance layer. The mapping function is done globally, whereby the author [2] uses the 

contrast limited adaptive histogram equalisation [42] to enhance the local contrast of the new V 

channel further. The final resultant V channel is recombined with the untouched H and S channels. 

The new HSV image is then changed back into RGB space, to yield a resultant enhanced image. 

Results: This enhancement method demonstrates that CEID performs well for a broad range of 

images. The author’s [2] research indicates that the method achieved an improved quality that is 

comparable to other enhancement methods. There are several limitations to this method. It must 

be noted that the decomposition model was created for contrast enhancement. Using this model, 

the result for other image processing applications such as object insertion and surface re-texturing, 

shall not produce desirable results. Since this enhancement model is created for images, it might 

cause flickering artefacts if it is applied directly to video enhancement [2]. 

 

A.2.1.4 Naturalness Preserved Enhancement Algorithm for non-uniform illumination 

images (NPEA)  

Goal: The NPEA [8] model seeks to preserve the naturalness of an input image while at the same 

time enhancing its details. This enhancement algorithm is introduced for images that have non-

uniform illumination.   

Previous work: To preserve the naturalness of an image and enhance its detail, Chen et al. [43] 

proposed the idea of naturalness preservation for enhancing images. According to Chen et al, the 

image colour impression must not be altered drastically after the enhancement. He further stated 

that no additional source of light must be added to the scene and no halo effect be introduced. 

Also, no blocking effect must be augmented as a result of over-enhancement [43]. Therefore, no 
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artefact is a simple necessity for visual information fidelity, the global ambiance of an image shall 

not be modified drastically, and the focal point of the light source shall not be adjusted noticeably 

[8]. Many examples of natural enhancement models based on the Retinex theory have been 

proposed in the literature [43, 44, 45]. These algorithms propose to enhance detail while 

preserving the naturalness in an image. However, these algorithms have a limitation in that they 

are not desirable for images with non-uniform illuminations. The Retinex-based algorithms 

effectively improve details and therefore have been universally used. It has been used since the 

algorithms accept the removal of illumination as a defaulting preference and it cannot restrict the 

range of reflectance. Therefore, the naturalness of an image that has non-uniform illumination is 

not effectively maintained [8]. It is important to maintain naturalness for any image enhancement 

process to produce pleasing perceptual and visual quality. Wang et al. [8]  proposes an algorithm 

to maintain the naturalness of an image while enhancing details for non-uniform illumination 

images. This method is discussed below. 

Method: There are three main contributions made by Wang et al. These contributions are: 

preservation of naturalness, intensity decomposition and the illumination effect [8]. The first 

contribution introduces a lightness-order error measurement to objectively evaluate the 

naturalness preservation. The second contribution is the bright-pass filter, which is used to 

decompose the image into two layers, namely, reflectance layer and illumination layer. This 

determines the amount of detail and the naturalness of the image. It also ensures that the 

reflectance is constraint to the range [0, 1].  In the third contribution, a bi-log transformation is 

proposed. This transformation maps the illumination to have an equilibrium among detail and 

naturalness.  

There are two constraints that are proposed in the NPEA algorithm. The first constraint relates to 

detail, which requires the reflectance to be set to a range of [0, 1], by taking into account the 

property of reflectance [46]. Naturalness is the next constraint, where there should not be drastic 

change to the relative order of illumination in various local areas.  

Results: From the author’s results of the experiment [8], it is observed that the NPEA enhance 

detail and maintain the naturalness for images with non-uniform illumination. It shows that the 

resultant image is more visually appealing, free of artefacts and maintains naturalness. However, 

a limitation of this method is that the enhancement model fails to consider the relationship of 

illumination across various scenes. Therefore, in video applications where the scenes change, 

flickering can be introduced [8]. 
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A.2.1.5 Automatic image equalisation and contrast Enhancement using Gaussian 

Mixture Modelling (AEGMM) 

Goal: The AEGMM [9] method proposed by Celik et al., automatically segments the contrast 

domain and adaptively equalises each segment. This aims to make the contrast enhancement more 

responsive to localised feature in contrast distribution. 

Previous work: Many enhancement techniques and methods have been developed in the past 

years. These techniques and methods can be split into three distinct groups [9]. Group 1 includes 

techniques which decompose an image into high frequencies and low frequencies signals for 

operation [47, 48]. Group 2 are transform-based techniques [49] and Group 3 are histogram 

modification techniques such as [50, 51]. 

In the histogram modification framework (HMF), the contrast enhancement is handled as an 

optimisation problem which minimises a cost function. In order to handle noise and black/white 

stretching, variables are introduced in the optimisation. The HMF can attain various stages of 

contrast enhancement by utilising diverse adaptive parameters. By manually changing the 

parameters in accordance with the image content, a better contrast enhancement can be attained. 

A parameter-free algorithm is favoured. To create a parameter free algorithm a genetic algorithm 

(GA) is utilised. The GA is used to obtain a target histogram which will maximise the contrast 

measurement based on edge information [52]. This approach is called contrast enhancement based 

on GA. This approach has limitations, such as its dependence on the initialisation and 

convergence to a local optimum [9]. 

Method: Celik et al. proposed an adaptive image equalisation algorithm that efficiently improves 

the human visual quality of various cases of given images. The AEGMM algorithm fits a Gaussian 

Mixture Model (GMM) to the gray-level distribution intervals at the Gaussian intersection points. 

The intersection points partition the DR of the image into input intervals of gray-level. To acquire 

an image where the contrast is equalised; each input interval is equalised in accordance with the 

dominant Gaussian component as well as the cumulative distribution function of the input 

interval. The Gaussian components that have low variances are assigned with lower values; 

likewise, larger values are assigned to Gaussian components that have larger variances  [9]. The 

AEGMM is free of parameter setting for a specific DR of a resultant image. The enhancement 

may be utilised for a broad variety of images.  

Results: It can be noted that, a low contrast image is automatically enhanced in relation to an 

increment in the DR. It is also observed that image with high contrast is improved, however, this 

improvement is little. With AEGMM, the colour quality of the wide range input image is 

enhanced. The quality is enhanced in terms of a few factors such as the colour consistency, 

developed contrast among foreground and background objects, a larger DR and detail in the image 
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[9]. The findings of the authors [9] indicate that AEGMM produce a resultant image that is 

subjectively more visually appealing compared to the original image. 

 

A.2.1 Performance Metric Analysis  

The aim of performance metrics is to assess the performance of an image. Both objective and 

subjective image quality assessments (IQA) are studied. In subjective evaluation, human 

involvement is a basic necessity, as the evaluation is determined based on the individual’s visual 

inspection of a given image [12]. Objective IQA methods use mathematical models to determine 

the quality of an image. Objective methods are studied to determine methods that will help 

determine performance for different types of image enhancements for all types of applications. 

 

A.2.2.1    Subjective Image Quality Assessment Measure: Human Visual assessment 

The structure of the survey study was based on the existing survey from [9] and [2].  The survey 

was carried out face-to-face where a group of respondents was required to fill out a survey form. 

The reason chosen to carry out a face-to-face session was that previous studies [53] have shown 

that this method yields higher co-operation, lower refusal rate and higher response quality. The 

only cost involved was to print the images. To reduce bias, only willing respondents were given 

the survey. To ensure that the survey was efficient and reliable, global standards were 

implemented in carrying out this survey as referenced in the report [10].  

The survey questionnaire consists of 2 sections. In section 1 of the survey questionnaire, the 

respondents were asked to refer to the portfolio of images and rate the images according to visual 

preference. Section 2 of the survey required respondents to choose an image according to detail, 

natural and unnatural appearance from the set of images in the portfolio.  

The survey was conducted among a random sample population. This population representation 

was unbiased. The standardisation of measurement was the same for every respondent i.e. the 

same set of questions was asked. 

 

A.2.2.2    Objective Image Quality Assessments Methods 

In order to evaluate each image enhancement technique and measure the image quality, a 

performance metric analysis is done. This analysis is a fundamentally important assessment that 

is necessary to determine the capability and accuracy of the enhancement technique. The aim of 

IQA methods is to determine the calibre of input images in relation to human visual system (HVS) 

[10]. The aim of objective IQA methods is to design mathematical models that can precisely 

forecast the quality of an image [13]. The performance measures applied in this paper provide 

some quantitative comparison between different enhancement techniques studied. Each 
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performance measure provides unique information that is different from another. These metrics 

will be discussed below. 

 

A.2.2.2.1 Mean Square Error  

Mean square error (MSE) is determined by calculating the average squared intensity of the input 

and output image pixels as indicated in the expression below (1) [7]. MSE is an error metric that 

assesses image quality [54]. 

Mathematical expression: 

𝑀𝑆𝐸 =
1

𝑀𝑁
∑ ∑ 𝑒(𝑚, 𝑛)2

𝑁−1

𝑛=0

𝑀−1

𝑚=0

 

(1) 

Where, 𝑒(𝑚, 𝑛) is the difference in error between the original (input) and the distorted image 

(output).  The application in this paper, does not use MSE as error metric but rather as a measure 

of change. This metric can be utilised to assess the change in the enhanced image to the original 

image or the change between the enhanced image. The smaller the value of MSE, the smaller the 

change. The higher the value of MSE the larger the change. 

 

A.2.2.2.2 Entropy evaluation 

Entropy is used as the Shannon entropy, which contains the maximum information [55].  The 

Shannon entropy is also referred to as information entropy. Entropy evaluation measures the 

quality of an image that is determined by estimating the amount of information contained in an 

image. The larger the entropy score after enhancing an image, the greater the information 

contained in an image. Therefore, if there is more information present in the enhancement image; 

it is assumed that image performance is improved and vice versa [12].  

Mathematical expression 

𝐻 = −∑𝑝𝑖𝑙𝑜𝑔2𝑝𝑖

𝐿−1

𝑙=0

 (2) 

Where, 𝑝𝑖 is the probability of the intensity value 𝑙 in an image, and H refers to the entropy of the 

input image. L is defined as the total number of gray levels. 

 

A.2.2.2.3 Edge-Based Contrast Measure  

Humankind is more perceptive to edges (contours) [56]. Edge-based contrast measure (EBCM) 

[9] is created on an observation that sensitivity to an edge (contours) is much more perceived to 

a human observer [9]. EBCM is anticipated that a resultant image has more edge pixels than the 

reference/original image. The EBCM measures the intensity of edge pixels in a small region 

(window) of an image [57].  
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Mathematical expression:  Image X as a contrast 𝑐(𝑖, 𝑗) for a pixel located at (𝑖, 𝑗) is therefore 

expressed as [9] 

𝑐(𝑖, 𝑗) =
|𝑥(𝑖, 𝑗) − 𝑒(𝑖, 𝑗)|

|𝑥(𝑖, 𝑗) + 𝑒(𝑖, 𝑗)|
 

(3) 

The mean edge gray level is given by: 

𝑒(𝑖, 𝑗) =
∑ 𝑔(𝑘, 𝑙)𝑥(𝑘, 𝑙)(𝑘,𝑙)∈𝒩(𝑖,𝑙)

∑ 𝑔(𝑘, 𝑙)(𝑘,𝑙)∈𝒩(𝑖,𝑙)
 

(4) 

The set of all neighbouring pixels of pixel (𝑖, 𝑙) is defined as 𝒩(𝑖, 𝑙). The magnitude of the image 

gradient is assessed by utilising the Sobel operator at pixel (𝑘, 𝑙) is given as 𝑔(𝑘, 𝑙) [58]. Image 

X has an EBCM which is calculated as the average contrast value, i.e., 

𝐸𝐵𝐶𝑀(𝑋) =∑∑𝑐(𝑖, 𝑗)/𝐻𝑊

𝑊

𝑗=1

𝐻

𝑖=1

 

(5) 

Where the height of the image is defined as H and the width of the image is defined as W. If a 

resultant image X of an input image Y, if the 𝐸𝐵𝐶𝑀(𝑌) ≥ 𝐸𝐵𝐶𝑀(𝑋)  then the contrast has 

improved [9]. 

A.2.2.2.4 Naturalness Image Quality Evaluator  

The naturalness image quality evaluator (NIQE) [59] determines the length between the natural 

scene statistics (NSS)-based features which is computed from the image to the features derived 

from a database of images that is utilised to train the model. These features are modelled as multi-

dimensional Gaussian distribution [60]. NIQE is built along a character-aware collection of 

statistical features. NIQE is a blind IQA analyser that is utilised to measure deviations. The 

deviations are from statistical regularities that are noticed in a natural image. This is achieved 

without training in human-rated distorted images or without introduction to distorted images [61]. 

Information about predicted distortions or deformities are required for most no-reference (NR) 

IQA methods. These predicted distortions are in the form of training and correlation in human 

assessment score [62]. 

 Mathematical expression: The input image is divided into 𝑃 × 𝑃 “patches”. A patch is a small 

area of pixels. The authors use a simple device to preferentially select from amongst a collection 

of natural patches those that are richest in information and less likely to have been subjected to a 

limiting distortion. This subset of patches is then used to construct a model of the statistics of the 

natural image patches. From the coefficients of each patch, certain NSS features are calculated. 

Only a subset of the patches is used. Let the size of patches be indexed as 𝑑 = 1,2,3,… . 𝐷. To 

calculate the average local deviation field of individual patch indexed d, the following approach 

is directly used [59]:  
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𝛿 (𝑑)  =  ∑ ∑ 𝜎(𝑖, 𝑗)

(𝑖,𝑗)𝜖𝑝𝑎𝑡𝑐ℎ𝑑 

  (6) 

Where, 𝛿 denoted as local activity/sharpness. 𝜎(𝑖, 𝑗) estimates the local contrast. Previous 

research of NSS based quality assessment of image have shown that the behaviour of the 

coefficients of natural and distorted form of the images are efficiently captured by the generalised 

Gaussian distribution (GGD) [63]. The GGD with zero mean is modelled by [17]:  

𝑓 (𝑥;  𝛼, 𝛽) =
𝛼

2𝛽𝛾
1
𝛼

𝑒𝑥𝑝 (−(
|𝑥|

𝛽
)

𝛼

 )  
(7) 

The parameters of the GGD at (𝛼, 𝛽), are reliably estimated by making use of moment-matching 

based approach [64].  The quality of the distorted image is depicted as the distance between the 

NSS feature model and the multivariate Gaussian model (MVG) [59]: 

𝐷(𝑣1, 𝑣2, 𝛴1, 𝛴2) = √(𝑣1−𝑣2)
𝑇(
𝛴1 + 𝛴2
2

)−1(𝑣1−𝑣2)  

(8) 

In the above equation, the term, 𝛴1, 𝛴2 and 𝑣1, 𝑣2 are denoted as the mean covariance matrices 

and the mean vectors matrices of the natural MVG model and of the distorted image’s MVG 

model. More information on this deviation can be found in [59]. These NSS features are formed 

from an assortment of natural (undistorted) images [65].  NIQE IQA, assess the quality or 

accuracy by determining the distance between the model statistics removed from natural images, 

and the distorted image [2]. The lower score of NIQE represents improved image qualities.  

 

A.2.2.2.5 No-reference Free Energy Based Robust Metric  

For a no-reference IQA, the only input the algorithm accepts is the image that requires the quality 

to be measured. No reference is required; therefore, it is called, no-reference or objective-blind. 

No-reference free energy based robust metric (NFERM) [66] is designed by adding human visual 

system (HVS) inspired features to enhance estimate performance and to reduce the over-all 

number of features to half [66]. NFERM divides the features used into three different categories. 

The first category consists of thirteen features. These features are of the free energy and the 

structural degradation information. This feature is derived from the reduced reference free energy-

based distortion metric [67]. It defines the psycho-visual quality/accuracy as the concurrence 

between the image input and the resultant product of the internal generative model. The reduced 

reference structural degradation model is used to calculate the structural degradation information 

[68]. It can be deduced from the free energy theory that the HVS attempts to reduce the concern 

formed from the internal generative model when observing the input visual stimulus [66]. The 

author [66] applies a linear autoregressive model to estimate the generative model. This is done 

to obtain an image that the HVS observes as distorted or deformed [66]. The second category of 

features consists of six important HVS inspired features, that are calculated from the distorted and 
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predicted images [67].  The third category consists of four features that ascend from the NSS 

model. [67].  

Mathematical expression for this metric can be found in the journal paper [66]. The NFERM 

model uses the free energy-based brain theory as well as features that are inspired from HVS [2]. 

This is used to determine the distortion of images. If the NFERM score is lower the output 

represents better image quality. 

 

A.2.2.2.6 No-reference Image Quality Metric for Contrast distortion  

No-reference image quality metric for contrast distortion (NIQMC) [69]  metric generates a total 

quality estimate of a contrast-distorted image. This is done by joining local and global 

considerations. Locally, the metric focuses on regions with much information and computes the 

entropy in these regions [69]. Globally, the histogram of the input image is related to the 

uniformly distributed histogram that has the most amount of information by the symmetric 

“Kullback Leibler divergence” [70]. The NR-IQA model is built on the principle that an image 

that has better quality is more beneficial and contains valued information.  The author [69] 

supposed that the HVS fuses the local and global consideration to observe a visual signal, 

determining its quality score and salient regions. From this assumption, the NIQMC model tries 

to envisage the visual quality of an enhanced image [69].  

Mathematical expression: The NIQMC is defined as: 

𝑁𝐼𝑄𝑀𝐶 =
𝑄𝐿  +  𝛾 𝑄𝐺
1 + 𝛾

  
(8) 

The constant weight that is utilised for regulating the relative importance among the local and 

global consideration is defined as γ. The Q𝐿 and Q𝐺  are the local and global quality measures, 

respectively. More information on this expression can be found in [69] . The NIQMC is used to 

assess the contrast quality of an image and it provides precise quality predictions for contrast 

distorted images. Better quality of the image contrast is represented by a higher NIQMC score.  

 

A.2.2.2.7 Colourfulness-based Patch-based Contrast Quality  

The colourfulness-based patch-based contrast quality index (CPCQI) [71] quality metric first 

extracts 17 features of a given image by analysing sharpness, contrast, brightness etc. The metric 

produces a score of visual quality utilising a regression model.  The patch-based contrast quality 

index (PCQI) metric highly correlates with subjective quality scores on enhancement-relevant 

databases [72]. However, the metric does not consider the influence of colourfulness. 

Colourfulness is an important index for image quality assessment. Thus, Gu et al. [71], proposes 

the colourfulness-based PCQI (CPCQI) metric based on the limitation of PCQI. 
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Mathematical expression: 

𝐶𝑃𝐶𝑄𝐼 =
1

𝑀
∑𝑄𝑚𝑖(𝑖). 𝑄𝑐𝑐(𝑖). 𝑄𝑠𝑑(𝑖). 𝑄𝑐𝑠(𝑖)

𝑀

𝑖=1

  
(9) 

Where 𝑄𝑚𝑖 represents the similarity in terms of the mean intensity which is among the 

original/reference image and distorted images, 𝑄𝑐𝑐 represents the contrast adjustment, and 𝑄𝑠𝑑 

represents the structural distortion. Information about these three terms are reported in journals 

such as [72]. The number of pixels is represented by M. The similarity of colour saturation is 

measured by 𝑄𝑐𝑠 and is defined as:  

𝑄𝑐𝑠(𝑖) = (
2𝑆𝑇1 ∙ 𝑆𝑇2 + 𝜉

𝑆𝑇1
2 + 𝑆𝑇2

2 + 𝜉
)𝜑 

(10) 

Where 𝑆𝑇1 represents the colour saturation of the original and 𝑆𝑇2 represents the colour saturation 

of the distorted images. 𝜉 is an exceedingly small constant number to refrain from division by 

zero. The fixed pooling index is defined as 𝜑 [72]. CPCQI is computed with the original/input 

image as a reference image. For this measure, higher score of CPCQI signifies better image 

contrast qualities. CPCQI is a measurement of perceptual distortions from the mean intensity, 

colour saturation for local patches, signal strength and signal structure [2]. If the CPCQI score is 

higher than 1, it infers that the output image is enhanced in comparison with the reference image. 

If the CPCQI score is lower than 1, it means that the detail in the image is not well enhanced, 

and/or artefacts may be introduced [2]. 

 

A.2.2.2.8 Blind/Reference less Image Spatial Quality Evaluator  

A blind/reference less image spatial quality evaluator (BRISQUE) is NSS based [73]. This model 

functions in spatial domain. Distortion such as blocking, blurring or ringing cannot be computed 

with BRISQUE. BRISQUE is based on features that are derived from an empirical spreading of 

luminance and product of luminance under an NSS model that is locally normalised. The scene 

statistics measure the possibility of losses of naturalness of the image. These losses of naturalness 

are the result of the presence of distortions. BRISQUE is well suited for real time applications 

since it has very low computational complexity. BRISQUE can be used to identify distortion [73].  

The Mathematical expression for this metric can be found in the journal paper [73]. BRISQUE 

function determines the BRISQUE score by utilising a support vector regression model. This 

model is reliant on a database of images with equivalent differential mean opinion score values 

[74]. The database has images that have familiar distortions. Some examples of distortions are: 

compression artefacts, noise and blurring. It also comprises of untouched forms of the distorted 

images. The input image requires at minimum one of the distortions that the model was trained 
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for [74].  Scores closer to 0 mean that the image has a good quality performance. From the above 

theoretical analysis, the experimental method for the experiment is presented. 

 

A.3 Experimental Method 

Aim: The aim is to address the selection of objective assessment metrics for contrast enhanced 

images and determined their relationship with the subjective assessment of human visual systems. 

This is done in order to establish which objective metrics best approximate human assessment 

and may therefore be used as an effective replacement for tedious human assessment surveys. 

When determining the quality of an image, there is no single quantitative metric that corresponds 

with human assessment. This problem has been highlighted in [1, 2]. The aim of this experiment 

is to assist with this problem by conducting a human visual and objective assessment. Human 

visual assessment (subjective evaluation) is used as a performance assessment method in literature 

[12]. The aim of the human visual assessment is to determine how respondents react to different 

enhancement methods; in terms of three variables, namely, image quality/preferences, naturalness 

and details. The goal is to find a relationship between these variables. The visual assessment was 

conducted using a panel that was asked to rate images according to human preference and choose 

an image that appeared most natural and another that contains the most detail. The goal of the 

objective metric experiment is two-fold. The first goal of this experiment is to identify objective 

IQA metrics that best approximate a human assessment; such that these metrics can be used in 

place of human assessment. The second goal is to categorise each metric in terms of the probable 

application domain.  

Procedure: This experiment was performed on a PC with 8GB RAM and 2.2GHz CPU. All codes 

were implemented in MATLAB [75]. Some of the enhancement methods and performance metric 

codes were provided by the authors in MATLAB [2, 8, 59, 66, 69, 71]. The test images used in 

the experiment are from the BSD 300 dataset [76], Lossless dataset [77] and the USC-SIPI Image 

Database [78]. These images are used in various journal papers. The output of enhancements is 

found in Figure A.1 in the Results and Analysis section. To evaluate these enhancement models, 

a human assessment and an objective IQA is performed. 

A human assessment contains visual assessment and analysis. A visual assessment study was 

conducted with 40 respondents (20 males and 20 females). The respondents were given a portfolio 

containing two sections with eight image sets each. Each image set contained six images. The 

survey questionnaire consisted of two sections. In Section 1 of the survey questionnaire, the 

respondents were asked to refer to the portfolio of images and score the images according to visual 

preference and image quality. Section 2 of the survey required respondents to choose an image 

according to details and natural appearance from the set of images in the portfolio.  
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The first eight image sets were used in Section 1 of the survey. A respondent is shown six images 

simultaneously; that is, the original test image is positioned on the top left of the page while the 

output images from the five enhancement algorithms are positioned randomly after the original 

test image. Respondents are requested to score the quality of each enhanced image by allocating 

one of the five numeric scores from 1 to 5 (1, 2, 3, 4, 5). Score “1” represents an annoying 

enhancement and the image is much worse than the original image i.e. the quality of the image is 

distorted. Score “3” is given when there is no clear enhancement, which suggests that the 

enhanced image is similar to the original image. Score “5” suggests that it is a substantial 

enhancement and the enhanced image has better quality than the original image. Other scores are 

selected in accordance with how respondents perceived image quality. 

Section 2 of the survey determines which images are the most natural and unnatural; as well as 

the most detailed image in the set. An unnatural image is defined as an image that contains 

distortions or is perceived as over-enhanced. Section 2 contained eight image sets. Each image 

set contained the original test image and the output images processed by the five enhancements. 

These images are different from Section 1. For each image set, the respondent is shown six images 

at the same time. All the images in this section were placed randomly. The original image is 

unknown to the respondent. Section 2 of the survey is done to corroborate the results of Section 

1 in the survey and to ensure that the respondent’s view is accurate. 

In addition to the survey, the author conducted a subjective analysis between the enhancement 

method used in the survey (CIEBHE, AELAB, NPEA, CEID, AEGMM). The information used 

in this experiment was gathered from the human panel and the authors of the enhancement 

methods. 

All objective performance metrics mentioned in Section 2.1.2 were implemented in MATLAB. 

The different enhancement algorithms were assessed using these metrics. The images for this test 

were the same as the images used in the survey. IBM SPSS [79] software was used to capture all 

data. The results of both experiments are explained in the next Section (Results and Discussion).  

A.4 Results and Discussion 

This section discusses the results for: enhancement methods, the human assessment and the 

objective assessment study.  

A.4.1 Enhancement results 

Figure A.1 shows the output of the five enhancement algorithms that are applied to the original 

image. 
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 lady:  a) Original         b) CIEBHE            c) AELAB   d) CEID                     e) NPEA        f) AEGMM                    

     
Bird    a) Original        b) CIEBHE            c) AELAB                   d) CEID                    e) NPEA      f) AEGMM                   

      
Plane:   a) Original          b) CIEBHE                c) AELAB                    d) CEID                     e) NPEA      f) AEGMM                    

                                                             
Bridge: a) Original       b) CIEBHE             c) AELAB                d) CEID                         e) NPEA        f) AEGMM                    

      
Hats:     a) Original        b) CIEBHE             c) AELAB   d) CEID                     e) NPEA                 f) AEGMM    

       
 Island: a) Original         b) CIEBHE            c) AELAB   d) CEID                     e) NPEA                     f) AEGMM                    

      
Window: a) Original      b) CIEBHE              c) AELAB                  d) CEID                      e) NPEA      f) AEGMM                    

      
Ruins:  a) Original           b) CIEBHE            c) AELAB                  d) CEID                    e) NPEA                     f) AEGMM        

Figure A.1:  Output images from five enhancement methods which is applied to the original image of the eight  set of 

test images. 

The average execution time consumed for each enhancement is presented in Figure A.2. The 

average time was calculated using the eight test images in Figure A.1. The implementation of the 

algorithm was done in MATLAB. From Figure A.2, it can be observed that CIEBHE enhancement 
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has the fastest execution time in comparison to the other four enhancement algorithms. The CEID 

algorithm has the slowest execution time. 

 
Figure A.2: Average execution time for each of the five enhancement methods in seconds 

 

A.4.2 Human Assessment  

The human assessment study is broken down into sub sections, i.e. human assessment scores and 

human perception of enhancements. 

a)  Human assessment scores 

In Section 1 of the survey questionnaire, the respondents were asked to refer to the portfolio of 

images and rate the images according to visual preference. The score distribution from the survey-

Section 1 is summarised in Figure A.3a. The maximum count for each enhancement is 320 (eight 

image set and 40 participants). The majority of the respondents scored the CIEBHE enhancement 

between scores 1 and 2. The majority of the scores for the AELAB enhancement images was 

score 2 and the AEGMM enhancement scored 3, thus the majority found AEGMM to produce an 

image that is similar to the original image. The most favoured results were given to NPEA and 

CEID enhanced images. Majority of scores given to the NPEA and CEID were between 4 and 5. 

All scores are uniformly distributed. 

  
a)         b) 

Figure A.3: a) The graph represents the score distribution for each enhancement for Section 1 of the survey. Score 

range is from 1 (much worse) -5 (much better). b) The graph represents the average visual score received by each 

enhancement for Section 1 of the survey 
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Figure A.3b shows the average score received by each enhancement image. The error bars 

represent the standard error of measurements for 40 respondents. It can be observed that NPEA 

achieved the best score. This shows that most respondents favoured NPEA enhanced images; it 

was the most visually appealing image as compared to the other enhanced images, while CIEBHE 

was least favoured by participants. CIEBHE was not visually appealing to respondents. Even 

though AELAB and CIEBHE enhanced images were not favoured by respondents, these 

enhancements still provide important information and are favoured for other applications [7, 32]. 

Examples of these applications are underwater images or applications that require a lot of detail. 

CEID was the second favoured image enhancement followed by AEGMM. 

Section 2 of the survey asked the respondents to select images that are most natural, most 

unnatural and the most detailed image from eight different image sets. The maximum count for 

natural, unnatural and detail is 320 (eight image sets and 40 respondents). The summarised count 

distribution are presented in Figures A.4 and A.5. Figure A.4a shows the most natural and most 

unnatural image response received by respondents. The word unnatural is used to describe images 

that are over-enhanced and have distortions. CEID enhanced images were identified as the most 

natural image. The second most natural image chosen by respondents were NPEA enhanced 

images. There was a slight difference between NPEA and CEID scores. The image that were least 

chosen to be a natural image were ALEAB enhanced images. AELAB and CIEBHE enhanced 

images were chosen to be the most unnatural images by respondents. Figure A.4b, shows the 

graph of natural vs unnatural count; from this it can be observed that the natural and unnatural 

count are inversely proportional to each other. Enhancements that have the greatest number of 

response count for  natural appearance also have the least response count for the enhancement to 

appear unnatural and vice versa. 

   
a)      b) 

Figure A.4: a) Respondent’s count for natural and unnatural image for each enhancement. This score is from Section 

2 of the survey. b) The graph represents the relationship between natural and unnatural response count for each 

enhancement. 
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Figure A.5a shows the summary count for image detail for each enhancement. This part of the 

survey determines the images that appear to contain the most amount of detail. AELAB enhanced 

images were chosen to have the most detail present in an image. This enhancement received the 

highest detail count. CEID received the next highest count. The enhancement is known to improve 

the image while maintaining its naturalness and enhancing its detail. NPEA and AEGMM received 

the least amount of counts. Detail in NPEA and AEGMM enhancement are not distinct and not as 

visible compared to other enhancements. It has been observed that there is a relationship between 

detailed images and natural images. The images chosen to have an unnatural appearance, also 

contain more detail. Therefore, there is an inverse relationship between an image being perceived 

as natural and as detailed. This relationship can be seen in Figure A5.b. A possible reason for this 

is that the detailed images could be over-enhanced and appear to look unnatural. 

  
a)      b) 

Figure A.5: a) The graph represents the respondent’s count for detail images for each enhancement method. b) The 

graph represents the relationship between natural count and detail count. 

 

b) Human perception of enhancements  

The following information in this section was collected from the panel of recipients and the 

author’s evaluation of their own enhancement algorithms. To evaluate all these enhancement 

methods, they are subjectively analysed. The output of these enhancements is found in Figure 

A.1. 

In Figure A.1- ‘Island’, AELAB enhanced image appears to be over-enhanced and has colour 

artefacts. This can be observed in the clouds; it also results in shadows in some regions. Even 

though the image is over-enhanced, the water region of the image shows more detail than other 

enhancements. It can also be observed that CIEBHE enhanced image also has colour artefacts and 

results in dark regions. The AEGMM enhanced image produces a dark image in comparison to 

the original image. CEID produces a natural image with some over-enhanced regions; this over-

enhancement can be seen in the clouds. NPEA image produces a natural image and all aspects of 

these images are clear. 
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In Figure A.1- ‘bird’ shows that CEID and NPEA enhanced images produce similar output. CEID 

has more colour components and is more visually preferred. This is because the author integrated 

colour information of the image with the decomposed reflectance’s layer to produce the colourful 

reflectance [2]. Both NPEA and CEID images look natural. CIEBHE image enhancement 

produces a distorted and noisy image. AEGMM enhanced image is similar to the original image. 

In some areas it is better and brighter than the original and in others it has colour artefacts and 

results in dark regions. AELAB enhanced image is over-enhanced and looks unnatural. 

Overall: Each algorithm is designed for certain applications. Some enhancements are designed to 

enhance details of an image while some are used to enhance an image for human pleasure. 

CIEBHE enhances an image by increasing its contrast i.e. by altering its intensity distribution. 

CIEBHE performs well for uniform bright or dark images [2]. CIEBHE produces unsatisfactory 

enhancements for non-uniform images. It also generates visible artefacts in certain regions of the 

image. One such example is the sky region (in Figure A.1 ‘ruin’) which is corrupted by noise.  

AELAB images show more detail than other enhancements but tend to produce over-enhanced 

images and generate over-sharpness image results for regions in the images. This method works 

well for underwater images [7] or applications that require a lot of detail. CEID images can avert 

the artefacts and efficiently enhance non-uniform illumination images.  It attains a favourable 

balance among detail boosting and noise suppression and naturalness [2]. CEID images perform 

well for a broad range of images. NPEA enhanced images produce the most natural images. NPEA 

is good at maintaining the naturalness for non-uniform illumination images and has the intent to 

enhance the detail of the image but there is loss in detail for certain regions. NPEA demonstrates 

that the enhancement produces visually pleasing, free of artefact, and natural looking image. 

AEGMM produces images with a decent amount of enhancements. Some areas tend to remain 

dark. An example of this can be observed in the image ‘lady’. AEGMM introduces an automatic 

image enhancement that utilises a GMM of a given input image which produces a visually 

pleasing resultant image of various types of images. 

 

A.4.3 Objective Image Quality Assessment 

The MSE can be utilised to evaluate the change between the original image and the enhanced 

image. MSE is not used as an error measure in our application but rather as an indicator for 

absolute change from the original image. This change can be either good or bad. The lower the 

value of MSE, the smaller the difference is compared to the original image. From the graph in 

Figure A.6a, NPEA has the lowest value of MSE and the smallest difference. Therefore, it is 

assumed to be most similar to the original image 
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a)      b) 

Figure A.6: a) Graph of the average MSE scores for each of the five enhancement methods. b) Graph of average 

score for entropy for the enhancement methods and the original image. 

Figure A.6b shows the average entropy score of eight image sets. Higher entropy values usually 

indicate more detail/information. The enhancement that has the highest average value of entropy 

is AELAB and CIEBHE, which means that this enhancement could have the most amount of 

information in terms of detail or noise. NPEA has the lowest score of entropy from all the images. 

This means that NPEA enhancement does not enhance the information as well as the other 

enhancements. All enhancements have an entropy score greater than the original image, i.e. the 

enhancements contain more information than the original image 

  

a)      b) 

Figure A.7: a) The graph represents the average score of NIQE and NFERM for enhancement methods and the original 

image. b) The graph represents the average score for BRISQUE for each enhancement method and the original image. 

The NIQE and NFERM are used to assess the quality of an image blindly. For NIQE and NFERM 

metric, lower values represent better qualities. Figure A.7a shows the average score for NIQE and 

NFERM metrics for the original images and the resultant images produced by five different 

contrast enhancement algorithms for all eight images. The image enhancement with the smallest 

score for both NIQE and NFERM, implies that the resultant image is the most similar to natural 

images and have the minimum distortion/deformities. The results of enhancements that have larger 

NIQE and NFERM scores, is due to the over-enhancement and suffer from many artefacts. 

AEGMM has the lowest score for NFERM, and a low NIQE. CEID and NPEA have the smallest 

scores for NIQE and a fairly small score for NFERM. The large NFERM scores for AELAB and 
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CIEBHE could be due to the over-enhancing or the introduction of artefacts and the appearance 

of dark regions that appear in these images.  

Figure A.7b shows the graph of average scores for BRISQUE. The lower the score is, the better 

the quality of the image. NPEA scores the lowest BRISQUE score from all the enhancements and 

the CIEBHE scores the highest BRISQUE score. Therefore, NPEA and CEID have best quality 

performance in this test. From these three metrics it can be assumed that NPEA and CEID have 

the best quality and the naturalness in resultant image is preserved. 

  

a)      b) 

Figure A.8:  a) The graph of the average score for NIQMC and CPCQI for each enhancement and the original image. 

b) The graph of the average score for ECBM for each enhancement and the original image. 

Figure A.8a shows the graph for average scores for NIQMC and CPCQI. NIQMC is used to 

determine contrast distortions and CPCQI are used to assess the contrast enhancement quality for 

an image. For both measurements, larger scores represent that the image contrast quality has 

improved, or it is better than the original [2].  

From Figure A8.a, it can be noted that CIEBHE and ALEAB have the larger NIQMC scores. The 

possible explanation is that the resultant images from these enhancements are over-enhanced, as 

explained in the Section A.4.2.3. When images are over-enhanced it can be perceived as 

unnatural. AELAB produces resultant images that are over-enhanced in certain regions, which is 

not preferable. The NIQMC score for NPEA are smaller since certain details are difficult to 

observe. 

If the score for CPCQI metric is higher than 1 it means that the resultant image is much more 

enhanced in comparison to the original input image and conversely, if the scores are lower than 1 

it means that the details are barely improved or enhanced, or artefacts are produced [2].  CEID 

and NPEA have the score closest to one, which shows that this method produces a favourable 

balance between increasing detail and suppressing artefacts.  
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For the most improved contrast, assume there is an image named X and another image named 

Y.  If the EBCM of X is greater than the EBCM of Y, then the contrast of the image is improved. 

From Figure A.8b, it is noted that NPEA has the best contrast from all the enhancements. AELAB 

has the worse contrast in comparison to the other four enhancements. 

Analysis of results: Existing objective measurements are reasonable at assessing the specific 

features of an enhanced image [2]. The selection of a suitable assessment method is reliant on the 

purpose and objective of the task. Humans are perceptive to artefacts and naturalness; this is not 

measured well in current objective measures. From the results of the visual assessment, it is 

observed that there is a relationship between detailed images and naturalness. After some point, 

the more detailed an image is, the less natural it appears. Objective IQA for image enhancement 

can be beneficial by mixing effective features to measure artefacts [2]. The metrics studied 

evaluates specific image characteristics and do not fully determine human preference. However, 

some do approximate aspects of human perception and serve as effective predictors of these 

aspects. 

From the human visual assessment, it was determined that the most natural enhancement was 

NPEA. The objective assessment further validated this result. The NIQE, NFERM and BRISQUE 

metric was used to determine this. The visual assessment determined which enhancement was 

most detailed. The objective assessment validated this finding. The entropy and NIQMC metric 

were used to determine the detail/information of an image. The human assessment study 

determined which image was the most visually pleasing to a human panel. This was not 

determined with the eight-objective metrics. From the entropy and NIQMC, it was determined 

that AELAB contains the most detail/information. This result was also found in the human 

assessment test. The objective metric can determine single characteristics of the HVS. Therefore, 

two or more metrics are required to replicate a human assessment. Individual metrics assess 

individual characteristics of an enhancement. 

The eight-performance metrics can be classified in terms of the domain application. Entropy and 

NIQMC metrics can be utilised to assess the amount of information an image contains. NIQE, 

NFERM and BRISQUE emphasise naturalness of an image and measure the quality of the image 

while CPCQI, NIQMC and EBCM metrics can be used to measure the contrast of an image.  

 

A.5 Conclusion 

Existing objective measurements are reasonable at assessing the specific features of an enhanced 

image. The selection of assessment metrics is reliant on the purpose and objective of the task. A 

subjective assessment testing was done to yield the most favoured, natural and detailed images. 

The results from the visual assessment showed that there is a relationship between detail and 
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naturalness. The more detailed an image is, the less naturalness is perceived. Images that look 

natural have moderate detail. The objective metrics cannot determine which image is perceived 

better, but the human observer can. The objective metrics are useful in evaluating the special 

characteristics of enhanced images but cannot determine human preference. Significant difficulty 

arises when finding the suitable evaluation of algorithms that provides an objective measurement 

of performance. There is no single quantitative metric that corresponds well with the quality of 

an image as perceived by the HVS when assessing image quality. More than one metric must be 

used to estimate human perception. This paper helps with choosing metrics that are used for the 

evaluation of contrast enhanced images. It also categorises the performance metrics in terms of 

domain application. 
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Abstract  

This paper proposes a multimodal enhancement-fusion (MEF) technique for natural images. The 

MEF is expected to contribute value to machine vision applications and personal image 

collections for the human user. This technique identifies and merges desired attributes from 

parallel enhancement pathways into the resultant image. The proposed MEF focuses on 

improving chromatic irregularities such as poor contrast distribution. It also proposes a concurrent 

enhancement pathway that subjects an image to multiple image enhancers in parallel, followed 

by a fusion algorithm that creates a composite image that combines the strengths of each 

enhancement path. This study develops a global framework for parallel image enhancement, 

followed by parallel image assessment and region selection, leading to final merging of selected 

regions from the enhanced set. The resultant output combines desirable attributes from each 

enhancement pathway to produce a result that is superior to each path taken alone. The results 

demonstrate that the proposed MEF technique performs well for most image types. It is 

subjectively favourable to a human panel and achieves better performance for objective image 

quality assessment compared to other enhancement methods. 

 

B.1 Introduction 

Imaging sensors seldomly produce ideal raw images. A sensory output is usually subjected to a 

variety of corrective algorithms before becoming useful. This is especially prevalent in machine 

vision applications [1]. There are various sources of error that exist; for example, lens distortion, 

sensor dynamic range limitations, thermal distortion, etc. These errors can be corrected by using 

image processing techniques such as extraction, filtering, image enhancement and fusion 

techniques. The general image enhancement domain is actively researched. Image contrast 

enhancement is a conventional and key field of image processing and has been broadly adopted 

in various applications. Some examples of these applications are; traffic control systems, medical 

imaging, remote-sensing imagery, daily photo enhancement [2], etc. There are various state-of-

the-art enhancement techniques that exist for targeted and global enhancement, however, every 

state-of-the-art method possesses its own favourable/ unfavourable characteristics. There is no 

method that is optimal for all image types. This paper designs a multimodal enhancement-fusion 

(MEF) technique for natural images which proposes to adaptively select the optimal enhancer for 

every image region. This is done with the intention to overcome unfavourable characteristics. 

This MEF technique also focuses on improving chromatic irregularities such as poor contrast 

distribution and distortions. The technique proposes a concurrent enhancement pathway that 

subjects an image to multiple image enhancers in parallel, followed by a fusion algorithm that 

creates a composite image that combines the strengths of each enhancement path. The MEF can 
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be tailored such that it selects and merges desired regions from each pathway into the resultant 

image. The algorithm is designed to create a resultant image that maintains naturalness and 

enhances detail. 

Human perception and observation work well when developing a visual representation of an 

image. This visual representation consists of vivid interpretation of colour and the ability to 

perceive detail across a broad-range of photometric levels as a result of lighting differences [3].  

It is difficult to develop an image that relates well with the direct perception of a scene in an 

environment. The human visual system (HVS) processes scene illumination non-linearly. Some 

image processing algorithms are designed to improve an image’s illumination and contrast.  

Image contrast enhancement adjusts the contrast of an image to produce an improved image. 

Some contrast enhancement techniques operate well on images that have a uniform spatial 

distribution of gray values while other images may not, and a loss of clarity of detail and colour 

may arise [4]. According to survey [4, 5, 6], enhancement methods are categorised into two 

groups, namely, spatial domain methods and frequency domain methods. In spatial domain 

methods, pixels of an image are manipulated directly to attain the desired result. In frequency 

domain methods, an image is converted to frequency domain by utilising a Fourier transform and 

then processing techniques are applied to the image. After applying the processes on the image, 

the inverse Fourier transform is utilised to convert the image back to the spatial domain and thus 

the final image is obtained. An image may be represented in both spatial or frequency domain.  

There are many fusion techniques that have been designed for both domains. Image fusion is an 

application of image processing where images are fused together to produce a single image. The 

main aim of any fusion algorithm is to combine all important visual information from various 

images into one image. The resultant image contains more information than the individual 

enhancements and more accuracy, without producing any artefacts. A good fusion method 

preserves useful information and does not create any artefacts that can mislead a human observer.  

It should also be reliable, robust and not disregard any salient information from the input images 

[7]. There are many fusion techniques that currently exist such as Wavelet transform [8], 

Multiscale transform-based fusion [9], Laplacian pyramid based [10] etc. According to a study 

conducted by Maharaj et al. [11], performance metrics were categorised in terms of domain 

application, that could be used to assess enhancement methods. Every enhancement method has 

some sort of limitation. Therefore, a multimodal enhancer is proposed to adaptively select the 

optimal enhancer for every image region. The proposed MEF takes parallel enhancement and 

fuses the desired regions from the different images. The enhancements were chosen from the 

study [11]. The enhancement algorithms were chosen because they produce a resultant image that 

maintains naturalness and is visually pleasing. 
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In this study, the parallel enhancer combines three enhancement pathways, however, any number 

can be used. These algorithms are discussed in Section B.2. The resultant output of the MEF, 

combines desirable attributes from each enhancement pathway to produce a result that is superior 

to each path taken alone. The MEF technique is based on the theoretical modelling of high 

dynamic range imaging (HDRI) [12] and the concept of Saleem et al. [10]. HDRI covers a 

collection of image processing methods that allow for a larger dynamic range of exposures than 

normal image processing techniques [13].  Saleem et al. proposes a fusion based enhancement 

using Laplacian pyramid decomposition. The proposed method makes use of both approaches by 

introducing the concept of parallel enhancements and region selection for fusion which will 

maintain naturalness and enhance detail. In addition, when assessing the quality or accuracy of 

enhancement methods, there is no single metric that corresponds with human assessment. 

Therefore, objective and subjective testing was done on the parallel enhancement methods and 

the proposed MEF technique.  

The structure of the paper is as follows. A summary of related works is presented in Section B.2, 

i.e.  parallel enhancement methods and the fusion algorithms. Section B.3 presents the proposed 

MEF framework. Section B.4 provides the experimental method followed by Section B.5 which 

shows the results of the experiment and the related analysis. Section B.6 concludes the paper. 

 

B.2 Related works 

Several fusion and enhancement models have been proposed in the past. The proposed MEF 

technique makes use of three powerful enhancement models which were identified because of 

their naturalness and visual preference in Maharaj et al, study [11]. This section provides a 

summary of works related to the MEF technique and is followed by a discussion of the three 

enhancement algorithms that are used to form our parallel pathway of image enhancers.  

 

B.2.1 Image Fusion techniques  

Image fusion is a technique that combines vital information from many image sources into a 

single resultant image [14]. The intent for image fusion is to decrease the quantity of information 

and to generate an image that is more acceptable and comprehensible for human observation and 

machine perception [7]. There are different levels of abstraction of information for image fusion: 

i.e. the pixel level, decision level, signal level and feature level. There are many fusion methods. 

This section provides a summary for two fusion methods, namely, Saleem et al.  method [10] and 

Mertens et al. method [15].  

Saleem et al. [10] proposed the image fusion-based contrast enhancement that balances global 

and local enhancement requirements.  The fusion is processed in a multiresolution manner. It 
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utilises the Laplacian pyramid decomposition in order to consider the multi-channel aspects in 

the HVS. This method decomposes the input image into a hierarchy of images in which individual 

level correlates to a diverse band of frequencies in an image. Thereafter the Gaussian pyramid 

weight map is computed. This is required for blending. This method demonstrates a fusion 

approach that achieves a good compromise between different attributes of contrast enhancement. 

This is done to obtain a pleasing result. The results show that it efficiently enhances the local and 

global contrast without upsetting the colour equilibrium and it is not appropriate for real-time 

image processing applications which require a resultant image that has high quality [10]. 

Exposure fusion was introduced by Mertens et al. [15]. It refers to the process where a registered 

set of multiple exposures are blended together into a single image. The author [15] introduces a 

method that instantly fuses many exposures into a single image of high quality and controlled 

dynamic range (DR), that is optimised for viewing medium.  This method produces an improved 

image but sometimes tends to create an unnatural appearance. This perception is created because 

the method favours intensity [15]. Another image processing method that requires images of 

different exposure levels is high dynamic range (HDR) imaging [15].  HDRI is an HDR technique 

that is utilised in image applications, to produce a superior DR of luminosity than is probable with 

standard image processing techniques. Other examples of fusion techniques are [8, 16, 17, 18]. 

HDR imaging techniques are a prime area of focus because of the theoretical importance as well 

as practical importance [19]. There are many advantages to HDR imaging. These include greater 

amount of detail, accuracy, and a greater DR. Some examples for the applications of HDRI 

sensors are in cars, medical imagery, photography, etc. HDR of illumination can create distortions 

and loss in information when viewing or applying further image processing techniques [12]. There 

are various HDR methods that exist in literature which address the simple problem of 

illumination. Each of the methods attempts to condense the HDR of luminance values into a 

viewable range, and to keep as much data as it can. HDR aims to keep and enhance colour 

information, since colour information can be valuable. Some examples can be found in [20, 21, 

22, 23].  HDRI covers a range of methods which provides a better DR of exposures compared to 

standard image processing techniques [13].  

Annamária et al. [12] addressed the problem of colour image reproduction after HDR of the 

illumination creates a distorted visual appearance and image contrast in distinct regions. The 

result of distortions causes a loss in detail as well as a loss in colour information. A new tone 

reproduction was introduced that helps in the development of difficult-to-see features and 

improves the visibility of the content in colour images. Pixels of the RGB (Red, Green and Blue) 

colour components are addressed individually. At the end of this process, the modified RGB 
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components are blended together, producing an image of high-quality colour HDR, that contains 

all the important information including detail and colour information.  

HDR techniques tend to produce images that have an unnatural appearance [15, 24]. The proposed 

MEF produces a resultant image that appears natural while enhancing detail. The MEF technique 

makes use of HDR methodology proposed by Annamária et al. [12] and the approach by Saleem 

et al. [10] to propose a method that tries to fulfil any limitation posed by the HDR and fusion 

method. The intention of MEF is to produce a result that has high quality while maintaining 

naturalness and enhancing detail. This makes it different from current HDR and fusion 

approaches.  Normal HDR algorithms require two or more input images of different exposure 

levels; the MEF requires one input image of any exposure. The proposed MEF requires less input 

data than HDR and other fusion methods. It creates a global framework for parallel contrast 

enhancement, followed by parallel image assessment and region selection, leading to final 

merging of selected regions from the enhanced set. The resultant output combines desirable 

attributes from each enhancement pathway to produce a result that is superior to each path taken 

alone. This technique provides a reliable solution to recover radiance maps from photographs 

taken with conventional imaging equipment.  The parallel enhancer employs three state-of-the-

art enhancement methods. These methods are explained in Section B.2.2, B.2.3 and B.2.4 and 

were chosen because they performed best in a previous study conducted by Maharaj et al. [11]. 

B.2.2 Contrast Enhancement based on Intrinsic Decomposition (CEID). 

Goal: Yue et al. [25] seeks to develop intrinsic image decomposition model that is appropriate 

for contrast image enhancement. This is done by introducing constraints on the reflectance layer 

and the illumination layer in order to achieve an efficient enhancement.  

Previous work:  Studies have shown that by altering the decomposed illumination layer the image 

quality is improved [25]. These layers were altered to enhance under-exposed or over-exposed 

images. Such models have been proposed and recorded in the literature [25, 26, 27, 28, 29]. 

Barrow et al. [30] proposed intrinsic image decomposition. The reflectance values, which are not 

changed by the illumination condition, relate to the intrinsic colour of the image [25]. Intrinsic 

decomposition was a highly ill-modelled problem. However, there are numerous different 

inferences and subsequent work that have been made to make this a well-modelled problem. Such 

examples are referenced in [31, 32, 33, 34].  

Method: To produce an extremely efficient enhancement, CEID [25] proposes constraints on the 

reflectance layer and the illumination layer [25]. The reflectance layer is regularised to be 

piecewise constant. This is done by presenting a weighted 𝑙1 norm constraint on the neighbouring 

pixels. The weighting is in accordance with the colour similarity of an input image. This is done 
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since the illumination information will barely affect the reflectance. A piecewise smoothness 

constraint is used to regularise the illumination layer. The Split Bregman algorithm is used to 

resolve the proposed decomposition model. The illumination layer is altered to achieve the 

enhanced image. Illumination adjustment was brought in to lessen computing complexity and to 

avoid potential colour artefacts. The decomposition model was implemented along the value 

channel in HSV (hue, saturation and value channel) colour space. 

Results: CEID performs well for a broad range of images. The method achieves a much improved 

and comparable quality in relation to other state-of-the-art enhancement methods. There are 

several limitations to this method. It must be noted that the decomposition model was created for 

contrast enhancement. Using this model, the result for other image processing applications such 

as object insertion and surface re-texturing, shall not produce desirable results. Since this 

enhancement model is created for images, it might cause flickering artefacts if it is applied directly 

to video enhancement [25]. 

 

B.2.3 Naturalness Preserved Enhancement Algorithm for non-uniform illumination 

images (NPEA). 

Goal: The NPEA [29] model seeks to preserve the naturalness of an input image while at the 

same time enhancing its details. This enhancement algorithm is introduced for images that have 

non-uniform illumination.   

Previous work: To preserve the naturalness of an image and enhance its detail, Chen et al. [35] 

proposed the idea of naturalness preservation for enhancing images; they considered that the 

image colour impression must not be altered drastically after the enhancement. The author further 

stated that no additional source of light must be added to the scene and no halo effect to be 

introduced. Also, no blocking effect must be augmented as a result of over-enhancement [35]. 

Many examples of natural enhancement models on the Retinex theory can be found in journals 

[35, 36, 37]. These algorithms propose detail enhancement while preserving the naturalness in an 

image. However, these algorithms have a limitation in that they are not desirable for images with 

non-uniform illumination. Wang et al. [29] proposed an algorithm to maintain the naturalness of 

an image while enhancing detail under non-uniform illumination. 

Method: There are three main contributions made by Wang et al. These contributions are: 

preservation of naturalness, intensity decomposition and the illumination effect [29]. The first 

contribution introduces a lightness-order error measurement to accurately access the naturalness 

preservation. The second contribution is a bright-pass filter used to decompose an image into two 

layers, namely, reflectance layer and illumination layer. This determines the amount of detail and 

the naturalness of the image. It also ensures that the reflectance is constraint to the range [0,1].  In 
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the third contribution, a bi-log transformation is proposed. This transformation maps the 

illumination to establish an equilibrium among detail and naturalness.  

There are two constraints that are proposed in the NPEA algorithm. The first constraint relates to 

detail, which requires the reflectance to be set to a range of [0, 1] by considering the property of 

reflectance [38]. Naturalness is the next constraint, where there should not be a drastic change in 

the relative order of illumination in various local areas.  

Results: It is observed that the NPEA enhances detail and maintains naturalness for images with 

non-uniform illumination. It shows that the resultant image is more visually appealing, artefact-

free and natural. However, a limitation of this method is that the enhancement model fails to 

consider the temporal relationship of illumination across various scenes. Therefore, in video 

applications where the scenes change, flickering can be introduced [29]. 

 

B.2.4 Automatic image equalisation and contrast Enhancement using Gaussian Mixture 

Modelling (AEGMM)  

Goal: The AEGMM method proposed by Celik et al. [39], automatically segments the contrast 

domain and adaptively equalises each segment. This aims to make the contrast enhancement more 

responsive to localised feature in contrast distribution.  

Previous work: In the histogram modification framework (HMF), the contrast enhancement is 

handled as an optimisation problem which minimises a cost function. To manage noise and 

black/white stretching, variables are introduced in the optimisation. The HMF can attain various 

stages of contrast enhancement by utilising diverse adaptive parameters. By manually changing 

the parameters in accordance with the image content, a better contrast enhancement can be 

attained. A parameter-free algorithm is favoured. To create a parameter free algorithm a genetic 

algorithm (GA) is utilised. The GA is used to obtain a target histogram which will maximise the 

contrast measurement based on edge information [40]. This approach is called contrast 

enhancement based on GA. This approach has a limitation, namely its dependence on initialisation 

and convergence to a local optimum [39]. 

Method: Celik et al. proposed an adaptive image equalisation algorithm that efficiently improves 

the human visual quality of various cases of given images. The AEGMM algorithm fits a Gaussian 

mixture model (GMM) to the gray-level distribution intervals at the Gaussian intersection points. 

To acquire an image where the contrast is equalised; each input interval is equalised in accordance 

with the dominant Gaussian component as well as the cumulative distribution function of the 

input interval. The Gaussian components that have low variances are assigned with lower values; 

likewise, larger values are assigned to Gaussian components that have larger variances  [39]. In 
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addition, GMM is employed to assign the components to map the input intervals to the output 

intervals. The AEGMM algorithm is designed to be free of parameter setting for a given DR of 

an image.  

Results: It is noted that a low contrast image is automatically enhanced in relation to an increment 

in the DR. It is also observed that image with high contrast is improved, however, this 

improvement is little. With AEGMM, the colour quality of the wide range input image is 

enhanced. The quality is enhanced in terms of a few factors such as the colour consistency, higher 

contrast among foreground and background objects, a bigger DR and detail in the image [39]. 

The finding of the author [39], indicates that the AEGMM produces results that are more visually 

pleasing compared to the original image. 

 

B.3 Multimodal Enhancement-Fusion technique for natural images 

In this section, an overview of the proposed MEF is presented followed by a detailed 

mathematical model of the proposed MEF technique. 

 

B.3.1 Overview 

The MEF technique creates a concurrent enhancement pathway that subjects an image to multiple 

image enhancers in parallel, followed by a fusion algorithm. The MEF enhancer adaptively selects 

the optimal (best) enhancer for each image region. Three different contrast enhancement 

algorithms are used in the development of the parallel enhancements. These algorithms were 

chosen from Maharaj et al. [11]. 

The enhancement algorithms use the RGB and HSV colour spaces. The RGB colours are 

generally perceived as brighter and much more intense because of the light projected directly into 

the eye of the human observer [41]. Sometimes it is advantageous to utilise other colour spaces 

such as HSV, CIELAB, YIQ etc [42]. Therefore, using two different colour spaces may achieve 

a natural and detailed enhancement. The parallel enhancement uses the following enhancement 

algorithms: 

1 Contrast enhancement based on intrinsic image decomposition (CEID) [25] in HSV plane.  

2 Naturalness preserved enhancement algorithm for non-uniform illumination images (NPEA) 

[29] in RGB plane 

3 Automatic image equalisation and contrast enhancement using Gaussian mixture modelling 

(AEGMM) [39] in RGB plane. 

The parallel enhancer can consist of several enhancers. For this experiment, the number of 

enhancers empirically chosen, has three. These enhancements all have different useful properties. 
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Therefore, they are fused together using a fusion technique that is based on HDR. The framework 

of the MEF is depicted in Figure B.1. The modelling for the MEF is adopted from Annamária et 

al. [12]. 

 

Figure B.1: Framework for the proposed algorithm – The method consists of 3 enhancements in parallel followed by 

selection and blending. 

Image 𝐼1, 𝐼2 and 𝐼3 are divided into a rectangular grid of regions. The region size was selected 

empirically. The smaller the region size the greater the computational time, but a better image is 

obtained. The size was chosen such that there is a balance of computational time and quality. A 

metric is used to assess detail in each region of each enhanced image; the most detailed region 

(from 𝐼1, 𝐼2 or 𝐼3) is mapped into the fused image. Finally, the fused image is blended to remove 

artefacts at region boundaries. 

 

B.3.2 Mathematically Modelling of the MEF technique  

The model requires a single RGB image. The input images are denoted as 𝐼𝑖𝑛. 𝐼𝑖𝑛 then goes 

through to each path of the enhancement pathway to produce enhanced image 𝐼1, 𝐼2 and 𝐼3:  

1. Path 1: CEID algorithm is applied to the 𝐼𝑖𝑛 to produce the enhanced image 𝐼1, 

2. Path 2: NPEA algorithm is applied to the 𝐼𝑖𝑛 to produce the enhanced image 𝐼2, 

3. Path 3: AEGMM algorithm is applied to the 𝐼𝑖𝑛 to produce the enhanced image 𝐼3. 

 

The resultant enhanced image from each of the pathways (𝐼1, 𝐼2 and 𝐼3) forms the input images 

that are required for the fusion. The number of input images chosen for the fusion algorithm is 

three (𝑁 = 3 ). The index k will be the input image such that 1 ≤ 𝑘 ≤ 𝑁. Considering a pixel 

from any enhancement (𝐼1, 𝐼2 and 𝐼3) at (x, y). The intensity of the RGB at pixel (𝑥, 𝑦) is depicted 

by 𝐼𝑅(𝑥, 𝑦), 𝐼𝐺(𝑥, 𝑦) and 𝐼𝐵(𝑥, 𝑦), where 𝐼𝑅 represents the intensity of the red component,  the 

intensity of the green component is represented by 𝐼𝐺 and 𝐼𝐵 represents the intensity of the blue 

component. Considering a 3x3 pixel neighbourhood, centred on (𝑥, 𝑦), the neighbourhood pixels 

are as follows:  

Input image 

CEID 

NPEA 

I1-Output 

of CEID 

Region 
Selection 

and fusion 

Final 

image 

AEGMM 

I2-Output 

of NPEA 

I3-Output 

of AEGMM 

Gaussian 

blending 
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Figure B.2: The 3x3 neighbourhood of (𝑥, 𝑦). 

The neighbouring pixels are used to compute the gradient of each intensity function in the 𝑥 

direction (horizontal) ∆𝐼𝑥 and in the y direction (vertical) ∆𝐼𝑦, located at (𝑥, 𝑦). Pixel intensity 

gradients are used to describe the variation in intensity from one pixel to its neighbour.   

 

Figure B.3: Representation of the pixel intensity. 

Pixel gradients are taken separately from each colour plane of the three enhancements. Consider 

Red, Green and Blue components from enhanced image 𝐼1. The gradient for pixel intensity for 

each component is as follows: 

∆𝐼𝑋
𝑅 = |𝐼𝑅(𝑥 + 1, 𝑦) − 𝐼𝑅(𝑥, 𝑦)| 

∆𝐼𝑦
𝑅 = |𝐼𝑅(𝑥, 𝑦 − 1) − 𝐼𝑅(𝑥, 𝑦)| 

 

 

 

(1) 

∆𝐼𝑋
𝐺 = |𝐼𝐺(𝑥 + 1, 𝑦) − 𝐼𝐺(𝑥, 𝑦)| 

∆𝐼𝑦
𝐺 = |𝐼𝐺(𝑥, 𝑦 − 1) − 𝐼𝐺(𝑥, 𝑦)| 

∆𝐼𝑋
𝐵 = |𝐼𝐵(𝑥 + 1, 𝑦) − 𝐼𝐵(𝑥, 𝑦)| 

∆𝐼𝑦
𝐵 = |𝐼𝐵(𝑥, 𝑦 − 1) − 𝐼𝐵(𝑥, 𝑦)| 

Where 𝑥 indicates a horizontal gradient and 𝑦 represents a vertical gradient. Consider a 

rectangular region 𝑹. The width of the region is defined as 𝑤 and a region height h. 

𝑦 

𝑥 

∆Ix 

∆𝐼𝑦 
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Figure B.4: Rectangular image region (R) with width w and region height h for detail computation. 

A regular grid of regions is applied to image set 𝐼𝑘. Then, a measure of contrast detail is computed 

for each region. Consider a single region from a single enhanced image. Each colour plane in that 

region is processed separately. Consider the Red component. The level of Red component detail 

in the selected region 𝑹 is given as:  

𝑆𝐷
𝑅(𝑹) =∑∑ 𝑃(𝑚𝑎𝑥(∆𝐼𝑥

𝑅 , ∆𝐼𝑦
𝑅))

ℎ

𝑗=1

𝑤

𝑖=1

 

 

(2) 

Where, P is defined as 𝑃(𝑣) =
𝑣 

𝐼𝑚𝑎𝑥
 and is a normalised linear mapping, the maximum intensity, 

Imax is equal to 255 for 8-bit RGB. The same is done for the Blue (B) and Green (G) components. 

𝑆𝐷
𝐵(𝑹) =∑∑ 𝑃(𝑚𝑎𝑥(∆𝐼𝑥

𝐵, 𝐼𝑦
𝐵))

ℎ

𝑗=1

𝑤

𝑖=1

 

 

(3) 

𝑆𝐷
𝐺(𝑹) =∑∑ 𝑃(𝑚𝑎𝑥(∆𝐼𝑥

𝐺 , ∆𝐼𝑦
𝐺))

ℎ

𝑗=1

𝑤

𝑖=1

 

 

(4) 

All three components are summed, i.e. the sum of equation (2), (3) and (4), to produce the total 

level of detail 𝑆𝐷 for the region 𝑹 as follows: 

𝑆𝐷(𝑹) =  𝑆𝐷
𝑅(𝑹) + 𝑆𝐷

𝐺(𝑹) + 𝑆𝐷
𝐵(𝑹) (5) 

In this way, the information density 𝑆𝐷(𝑹) is computed for every region 𝑹, in every enhancement 

input image.  For computational efficiency, the above formulation has been expanded and 

reformulated as follows.  

𝑆𝐷(𝑹) =∑∑𝑃{

ℎ

𝑗=1

𝑤

𝑖=1

𝑚𝑎𝑥(∆𝐼𝑥
𝑅 , ∆𝐼𝑦

𝑅) +𝑚𝑎𝑥(∆𝐼𝑥
𝐺 , ∆𝐼𝑦

𝐺) + 𝑚𝑎𝑥(∆𝐼𝑥
𝐵, ∆𝐼𝑦

𝐵)} 
 

(6) 

 

h 

w 
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The function P(…) is first evaluated for every pixel location in the image, and across all colour-

planes as indicated in equation (6). The summation is performed on the region processed. This is 

done by summing the pixels over 𝑖 and 𝑗 which span each identically sized region or grid block. 

The higher the computed value for 𝑆𝐷, the greater the detail in the analysed regions. 

The fusion Synthesis: Each enhanced image (I1, I2, and I3) from the enhancement pathway has 

certain regions that are more desirable than others. The proposed MEF adaptively selects the 

optimal enhancer for each region. It determines which of the three enhanced images contributes 

the most desirable information density 𝑆𝐷(𝑹) for each region. Each enhanced image is unique; 

therefore, each region will be different.  

Enhancement 1 (CEID) focuses on preserving the naturalness and colourfulness of an image and 

improving the detail. Enhancement 2 (NPEA) preserves and improves the naturalness of a given 

image while Enhancement 3 (AEGMM) improves contrast using the GMM to produce a visually 

pleasing image. The aim is to obtain an enhancement that has a balance of naturalness and detail, 

therefore, the three enhancements are fused together. Thus, improving feature detection, object 

recognition, pattern recognition, as well as scene reconstruction. This method may be utilised 

when lighting conditions are unfavourable. 

The 𝐼𝑘
𝑅(𝑥, 𝑦), 𝐼𝑘

𝐺(𝑥, 𝑦) and 𝐼𝑘
𝐵(𝑥, 𝑦) are used to signify the RGB intensity function, where (𝑥, 𝑦) 

are pixel coordinates of the enhanced image with index 𝑘. Each enhanced image has regions that 

have more detail than the equivalent region in the other enhanced images. The aim is to create a 

resultant image where all three enhancements are combined and contains all the detailed regions 

in each image without producing any type of noise, irregularities, or distortions, especially at 

region boundaries. 

 

Figure B.5: The image region for the three enhancements. 

Enhancement 1 

Enhancement 2 

Enhancement 3 

w 

h 

(𝒓𝒙𝒊𝒋, 𝒓𝒚𝒊𝒋) 
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The output image is to be constituted as the ordered collection of regions derived from the parallel 

enhancer such that for every region position, only the region with the highest detail is passed 

through to the output image. During this image reconstitution process, the regions boundaries are 

blended very carefully. Each enhanced image (I1, I2 and I3) is divided to 𝑛 rows and 𝑚 columns, 

that produce a 𝑛 ×  𝑚 rectangular image region. The regions are of identical size with height ℎ 

and width 𝑤. This is measured in pixels. This rectangular region of pixels in any image is denoted 

as 𝑹 . All input images are divided into matching grids of regions, with each element being a 

region 𝑹. 𝑹𝑖𝑗𝑘 is denotes as the region of  𝑖𝑡ℎ row and   𝑗𝑡ℎ column in the enhanced image that 

has index 𝑘. The point (𝑟𝑥𝑖𝑗, 𝑟𝑦𝑖𝑗) are denoted as the horizontal and vertical points in the region’s 

centre in the 𝑖𝑡ℎ row and the 𝑗𝑡ℎ column. Now consider an arbitrary region 𝑹 (refer to Figure B.5) 

and assume that 𝐼1 produces a higher 𝑆𝐷(𝑹) than 𝐼2 and 𝐼3. Then 𝑹 will be selected from image 

𝐼1 and inserted into the output image. 

Let 𝐷 denote an 𝑛 ×𝑚 matrix that has the most amount of detail. Each element 𝑑𝑖𝑗 corresponds 

to a grid region that stores the image index 𝑘 of the image that contains the most detailed region 

at that grid position from the sourced enhancement. Matrix 𝐷, therefore, serves as a key or legend 

for the final fused image, indicating the enhanced image from which every output image region 

was sourced.  

The regions (𝑹𝑖𝑗𝐿) contain the most amount of detail and the regions are merged together, in 

which 𝐿 = 𝑑𝑖𝑗, and index 𝑖 = 𝑖, . . . , 𝑛, 𝑗 = 1, . . . , 𝑚. The result of fusing the selected regions are 

three images i.e. the red, the green as well as blue images that form an RGB image. These images 

are the fused selected regions from the parallel enhancements. The region boundaries are often 

prominent and must be blended. A 2D Gaussian blending function is employed. Note that the 

function has a Gaussian numerator and denominator.  

𝐺𝑖𝑗(𝑥, 𝑦) =
𝑒
−(
(𝑥−𝑟𝑥𝑖𝑗)

2

2𝜎𝑥
2 +

(𝑦−𝑟𝑦𝑖𝑗)
2

2𝜎𝑦
2 )

∑ ∑ 𝑒
−(
(𝑥−𝑟𝑥𝑝𝑞)

2

2𝜎𝑥
2 +

(𝑦−𝑟𝑦𝑝𝑞)
2

2𝜎𝑦
2 )

𝑛
𝑞=1

𝑚
𝑝=1

 

 

(7) 

Where 𝜎𝑥  , 𝜎𝑦  represents the standard deviations of the 2-D function, and  𝑟𝑥𝑝𝑞 , 𝑟𝑦𝑝𝑞 represents 

the centre co-ordinates of the region at (𝑝, 𝑞) on the region grid. The Gaussian function is centred 

on the region 𝑹𝑖𝑗 located at (𝑖, 𝑗) on the region grid. The pixel (𝑥, 𝑦) can be anywhere in the 

image. From this, the influence of the Gaussian at that pixel location is computed. Furthermore, 

it is defined that (𝑥, 𝑦) is in region 𝑹𝑟𝑠 i.e. (𝑥, 𝑦) ∈ 𝑹𝑟𝑠, 1 ≤ 𝑟 ≤ 𝑛 and 1 ≤ 𝑠 ≤ 𝑚. The 

Gaussian’s influence will span the entire image regardless of the location of the centre. Given the 

drop-off in the function’s output with distance from the centre, a distance threshold may be used, 
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beyond which the functions influence is set to zero. The distance threshold 𝜀 is incorporated into 

a cutting function C(𝑥, 𝑦) that is utilised to limit the range of the Gaussian’s influence.  

C(𝑥, 𝑦) = {
1 ,   𝑤ℎ𝑒𝑟𝑒 (𝑥, 𝑦) ∈ 𝑹𝑟𝑠 | |𝑟𝑥𝑟𝑠 − 𝑟𝑥𝑖𝑗| ∧ ||𝑟𝑦𝑟𝑠 − 𝑟𝑦𝑖𝑗| ≤ 𝜀

0                              everywhere else
 

(8) 

The cutting function is critical. If not used, blending will not happen. 𝐶(𝑥, 𝑦) and 𝐺𝑖𝑗(𝑥, 𝑦) are 

combined such that the evaluation of weighted pixel intensities across the entire output image is 

as follows: 

𝐼𝑜𝑢𝑡(𝑥, 𝑦) = ⟨𝐼𝑜𝑢𝑡𝑅(𝑥, 𝑦), 𝐼𝑜𝑢𝑡𝐺(𝑥, 𝑦), 𝐼𝑜𝑢𝑡𝐵(𝑥, 𝑦)⟩ 
(9) 

𝐼𝑜𝑢𝑡𝑅(𝑥, 𝑦) =∑∑𝐺𝑖𝑗(𝑥, 𝑦)𝐶(𝑥, 𝑦)𝐼𝑑𝑖𝑗
𝑅 (𝑥, 𝑦)

𝑚

𝑗=1

𝑛

𝑖=1

 
(10) 

 

𝐼𝑜𝑢𝑡𝐺(𝑥, 𝑦) =∑∑𝐺𝑖𝑗(𝑥, 𝑦)𝐶(𝑥, 𝑦)𝐼𝑑𝑖𝑗
𝐺 (𝑥, 𝑦)

𝑚

𝑗=1

𝑛

𝑖=1

 
(11) 

 

𝐼𝑜𝑢𝑡𝐵(𝑥, 𝑦) =∑∑𝐺𝑖𝑗(𝑥, 𝑦)𝐶(𝑥, 𝑦)𝐼𝑑𝑖𝑗
𝐵 (𝑥, 𝑦)

𝑚

𝑗=1

𝑛

𝑖=1

 
(12) 

 

The output intensity is a summation of Gaussian blending functions across the grid. Suppose the 

cutting function is not used, the numerator of 𝐺𝑖𝑗(𝑥, 𝑦) will be identical to the denominator and 

the output will be identical to the input. Furthermore, using the cutting function, it will restrict the 

range of Gaussian summations in the numerator, but the denominator is unaffected. Hence, the 

output becomes a scaled version of the input.  

 

B.4 Experimental Method 

The aim of the experiment is to assess the performance of the proposed MEF. The experiment 

was conducted in three parts. Firstly, comparisons with an HDR and existing fusion method were 

done. Secondly, a human assessment survey was conducted which compared four state-of-the-art 

enhancement algorithms [25, 29, 39, 43] and the MEF result. Lastly, an objective assessment 

comparison was conducted by using the MEF results, three-enhancement methods and a fusion 

technique (Saleem et al. [10]). This section discusses the overview, experimental settings, the 

procedure for the comparison of HDR and fusion software, human assessment and the objective 

assessments.  
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B.4.1 Overview  

The first experiment subjectively compares a fusion enhancement method and HDR software with 

the MEF. The MEF adopts the concept of HDR and the fusion method [10]. Therefore, a 

comparison is done to determine if the MEF achieves a more pleasing result. 

The second experiment determines if the proposed method has better image quality and is more 

visually appealing to a human panel. Since there is no single metric that corresponds well with 

human preference, a human survey is the best way to determine how a panel responds to the MEF. 

The assessment consists of four algorithms, three of the algorithms were used in the parallel 

enhancer for the MEF. The fourth algorithm demonstrates a luminosity preserving contrast 

enhancing adaptive histogram equalisation technique for colour images. This enhancement is 

called Adaptive Equalisation applied in LAB space (AELAB). The enhancement algorithm is 

known for producing images with a lot of detail. Figure B.6 illustrates the output of the four 

enhancement algorithms and the original image as well as the output image from the proposed 

MEF. In addition, the author subjectively analyses the MEF and the enhancement techniques used 

in the survey.  This evaluation aims to provide more detail about the appearance of the MEF and 

enhancements algorithms used in the survey. It compares naturalness, detail and overall 

appearance for all the algorithms. 

The third experiment is an objective test. This is done to compare performance of the MEF 

technique using objective metrics. Mathematical models are used to determine the quality of 

enhancement methods and the proposed MEF. An objective study can approximate the image 

quality perceived by a human observer, therefore, it will be beneficial to determine how the MEF 

performs. 

 

B.4.2 Global experimental settings 

 

The parameters for the height and width for each region in the image are empirically set as ℎ =

𝑤= 5, 𝜎𝑥 and 𝜎𝑦 are set to 60. 𝜀 is chosen, such that the values of the blending function exceed 

zero over the whole image domain. For enhancement CEID, NPEA and AEGMM; the same 

settings were used as specified in the journal articles by the authors.  

The experiment is performed on a PC with 8G of RAM and 2.2 GHz CPU.  All codes were 

implemented in MATLAB [44].  The test images used in the experiment are from the BSD300 

dataset [45], Lossless dataset [46] and the USC-SIPI Image Database [47].  
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B.4.3 Experiment 1: Comparison with HDR and fusion software 

In most image processing applications, the end user is an average human observer. Therefore, it 

is necessary to conduct subjective testing [19]. The experiment compares HDR software 

(EasyHDR [48]) with the MEF results and then compares Saleem et al. method [10] with the MEF 

results.  

 

B.4.4 Experiment 2: Human assessment    

The human assessment is done in two parts, namely, the human assessment survey and the 

analysis. The structure of the survey study was based on the existing survey from [39] and [25].  

The survey was carried out face-to-face where a group of respondents was required to fill out a 

survey form. This method yields higher co-operation, lower refusal rate and higher response 

quality [49]. To reduce bias, only willing respondents were given the survey. To ensure that the 

survey was efficient and reliable, global standards were implemented in carrying out this survey 

as referenced in the report [19].  The survey was conducted among a random sample population. 

The standardisation of measurement was the same for every respondent i.e. the same set of 

questions was asked. 

The visual assessment study was conducted with 30 respondents (16 males and 14 females). The 

respondents were given a portfolio containing eight image sets. Each image set contained six 

images. These images can be found in Figure B.6. A respondent is shown six images 

simultaneously; that is, the original test image is positioned on the top left of the page while the 

output images from the five enhancement algorithms are positioned randomly after the original 

test image. The five enhancements consist of the AELAB, NPEA, CEID, AEGMM and the 

proposed MEF. The survey questionnaire asked respondents to refer to the portfolio of images 

and score the images according to the quality of each enhanced image by allocating one of the 

five numeric scores from 1 to 5 (1, 2, 3, 4, 5). Score “1” represents an annoying enhancement and 

the image is much worse than the original image i.e. the image quality is distorted. If the image 

is not clearly enhanced i.e. the enhanced image is similar to the original image, then score “3” is 

given. Score “5” suggested that it is a substantial enhancement and the enhanced image has better 

quality than the original image. Other scores are selected in accordance with how respondents 

perceived image quality. IBM SPSS [50] software was used to capture the data obtained from this 

survey.  

In addition to the scoring of the images, the author conducted a subjective analysis between the 

enhancement method used in the survey (AELAB, NPEA, CEID, AEGMM) and the proposed 

MEF. The information and observations used in this experiment was gathered from the human 

panel, the authors of the enhancement methods and the MEF. 
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B.4.5 Experiment 3: The Objective Image Quality Assessment 

The aim of an objective IQA method is to create a mathematical model which best determines the 

quality of a given image as precisely as possible. The mathematical model must simulate the 

quality assessment of an average human observer. There is no objective measure that works like 

HVS, therefore, several popular metrics are adopted to assess the characteristics of the enhanced 

images. The following metrics are used in the experiment: 

1. Naturalness image quality evaluator (NIQE) [51], 

2. No-reference free energy based robust metric (NFERM) [52],  

3. Entropy [53],  

4. No-reference image quality metric for contrast distortion (NIQMC) [54],  

5. The colourfulness-based PCQI (patch-based contrast quality index [55]) (CPCQI) [56], 

6. The blind/reference-less image spatial quality evaluator domain (BRISQUE) [57].  

 

For the objective assessment, the MEF technique is compared objectively with enhancements 

used in the parallel enhancer (CEID, NPEA and AEGMM). These images are shown in Figure 

B.6. Thereafter, the objective comparison is done with the MEF and Saleem’s method. The 

images are shown in Figure B.8. 

 

The NIQE and NFERM are utilised to assess the quality of an image blindly.  NIQE determines 

the image quality by calculating the distance between the model statistics that was removed from 

natural images, and the distorted image [58]. The NFERM metric makes use of the free energy-

based brain theory as well as the features that are inspired by HVS to calculate the distortion of 

images. For both NIQE and NFERM, smaller scores represent better quality. BRISQUE is NSS 

based [58]. This model functions in the spatial domain. BRISQUE is well suited for real time 

applications since it has very low computational complexity. BRISQUE can be used to identify 

distortion. The lower the BRISQUE score is, the better the quality of the image. The entropy 

evaluation measures the amount of information confined in an image. The larger the entropy score 

after enhancing an image, the greater the information confined in an image. The NIQMC is 

utilised to assess the contrast quality of an image and it provides precise quality predictions for 

contrast distorted images. Better quality is represented by a higher NIQMC score. CPCQI is 

computed with the original/input image as a reference image. CPCQI measures contrast 

distortions by considering the colourfulness aspect of the image. CPCQI is a measurement of 

perceptual distortions from the mean intensity, colour saturation in local patches, signal strength, 

and signal structure. The higher score of CPCQI signifies a better image contrast quality. The 

results of both subjective and objective experiments are explained in the Results and Analysis 

section.  
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B.5 Results and Analysis 

The results and analysis from the experiment are presented. This can be divided into three 

sections. The first section presents the comparison between the state-of-the-art HDR software, 

Saleem et al. technique and the MEF.  The second section presents the results of the human 

assessment survey and the analysis between the methods. Thirdly, the results and analysis of the 

objective assessment are presented. Figure B.6 presents the images used for the human assessment 

(B.5.2) and objective assessment (B.5.3). 

                                    
Lady: a) Original              b) CEID                     c) NPEA                  d) AEGMM             e) AELAB            f) proposed MEF 

      
Bird    a) Original             b) CEID                      c) NPEA               d) AEGMM                e) AELAB           f) proposed MEF 

      
Plane: a) Original            b) CEID                     c) NPEA             d) AEGMM              e) AELAB            f) proposed MEF 

                                                           
Bridge: a) Original           b) CEID                   c) NPEA                    d) AEGMM                e) AELAB          f) proposed MEF 

      
Hats: a) Original             b) CEID                      c) NPEA                 d) AEGMM                e) AELAB           f) proposed MEF 

      
Island: a) Original          b) CEID                      c) NPEA                 d) AEGMM               e) AELAB            f) proposed MEF 

      
Window: a) Original        b) CEID                   c) NPEA             d) AEGMM               e) AELAB            f) proposed MEF 

        
Ruins: a) Original            b) CEID                  c) NPEA             d) AEGMM                 e) AELAB        f) proposed MEF 

Figure B.6: Output from four enhancement methods and the MEF applied to the set of eight test images. 
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B.5.1 Experiment 1:  Comparison with HDR and Fusion software 

First the results from the comparison with the HDR software is presented and then a comparison 

is made with Saleem et al. method. 

a. Results for the HDR software and the MEF technique 

Figure B.7 shows the output results from EasyHDR software [48] and the MEF. HDR software 

requires three input images (EV0, EV-1/-2, EV+1/+2) whereas the MEF model only requires one 

input image. The EV0 image was used as the input for the MEF. 

                       
Playground a) ev0                       b) ev-1                          c) ev-1                            d) EasyHDR           e) proposed MEF 

     
lake a) Ev0                     b) Ev-2          c) Ev+2                            d) EasyHDR    e) proposed MEF 

Figure B.7: Output images from the easyHDR software and the MEF are presented. For the MEF algorithm, EV0 

was used as the input image. 

Analysis of the HDR software: The MEF is designed for image fusion and to improve the images 

appearance in terms of naturalness, detail and colourfulness. Aspects of HDR methodology were 

incorporated into the design process of the proposed fusion technique. Therefore, a comparison 

between the proposed method with the HDR software is done. From Figure B.7, the easyHDR 

software produces an image that contains a lot of detail in comparison to the other images. This 

detailed image is composed from images ev-, ev+ and ev0. This software also produces an output 

that looks unnatural. The clouds in Figure B.7 lake d) have shadows and it looks unnatural. The 

proposed method contains more detail than ev0, ev- or ev+. The algorithm enhances the detail 

and produces a more natural and colourful image than the HDR software.  

b. Results for Fusion technique and the MEF technique 

Figure B.8 shows the output results of Saleem et al. method [10] and the MEF. When designing 

the current MEF approach, the approach by Saleem et al. was studied. Therefore, a comparison 

between the MEF and Saleem’s method is done. 
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            Bottle a) original                                     b) Saleem Method                                   c) Proposed MEF 

                               
           House a) original                                    b) Saleem Method                                  c) Proposed MEF 

                                 

            Lakehouse a) original                             b) Saleem Method                                 c) Proposed MEF 

Figure B.8: Fusion resultant images from Saleem’s Method [10] and the MEF technique. 

Analysis with Fusion software: Saleem et al. enhancement produces a visually pleasing result. It 

also produces a natural image. MEF produces an image that is brighter and more colourful. It 

produces much more detail than Saleem’s method, for example Figure B.8 bottle c) the cracks on 

the wall are much more noticeable. Another example is Figure B.8 house, the art work on the 

walls are more defined in the MEF in comparison to Saleem’s method. The proposed MEF 

contains more detail and the colours are more vivid and produces a more visually pleasing result. 

An objective comparison is done at the end of Section B.5.3 for the images presented in Figure 

B.8. 

 

B.5.2 Experiment 2: Human Assessment  

The human assessment results are presented in two parts, namely, the scores from the human 

assessment survey and the analysis of human perception. 

a. Human assessment scores 

The survey asked respondents to score the image according to visual preference and image 

quality. The score distributions from the survey are summarised in Figure B.9a). The maximum 

count for each enhancement is 240 (eight image set and 30 participants). The majority of the 

respondents assigned a score of 4 to CEID. While the majority score for AELAB was 2 and 

AEGMM scored between 3 and 4. The most favoured methods were the MEF and NPEA, with 

most scores in the range 4 to 5. 
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a)         b)  

Figure B.9: a) The graph represents the score distribution for each enhancement. Score range is from 1 (much 

worse) - 5 (much better).  b) The graph represents the average visual score received by each enhancement for the 

survey, the error bars represent the standard error of measurements for 30 respondents. 

Figure B.9b shows the average score received by each enhancement method. MEF achieved the 

best score. This shows that most respondents favoured MEF enhanced images. It was the most 

visually appealing image compared to the other enhanced images, while AELAB was least 

favoured by participants. NPEA received the next best score. The average AEGMM enhancement 

score was 3. Respondents found these images to be similar to the original image. 

b. Human perception of enhancement methods 

In order to assess the efficiency and the capability of the proposed MEF, a subjective comparison 

with other enhancement methods (viz. NPEA, CEID, AEGMM and AELAB) was done. The 

enhancement results are shown in Figure B.6.  

In Figure B.6- ‘Hats’, CEID produces a natural image with some over-enhanced regions. This 

over-enhancement can be seen in the clouds. NPEA produces a natural image; all aspects of these 

images are clear but lack detail in some regions, for example in the wall lines where the hats are 

placed, there is a lack of information compared to the other enhancements. AEGMM produces an 

image that is more visually appealing than the original image. Dark regions are present in the 

enhanced image, for example the walls under the hats have shadows. The cloud region in the 

AEGMM image is more detailed than CEID and NPEA. AELAB contains the most information 

detail but tends to produce an over-enhanced image.  The proposed MEF produces an image with 

all the best qualities from CEID, NPEA and AEGMM enhanced images. Naturalness is preserved, 

and the image looks pleasing. 

Figure B.6- ‘Bird’, CEID has more colour components and is visually pleasing. This is because 

the author integrated colour information with the decomposed reflectance layer to create the 

colourful reflectance [25]. Both NPEA and CEID images look natural. AEGMM enhanced image 

is similar to the original image. In some regions of the AEGMM enhanced image, there are 

regions that are better and brighter than original regions while other regions are darker and less 
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visible than the original image. The cloud region behind the bird is more enhanced for the 

AEGMM image. The MEF has the most detail and naturalness. It extracts the colourfulness from 

CEID, the detail from AEGMM and the naturalness from NPEA to produce a superior image. 

Summary:  CEID images can prevent artefacts and can well manage non-uniform illumination. It 

also produces a colourful image. It sometimes tends to over-enhance certain regions of an image. 

NPEA maintains the naturalness of an image that has non-uniform illumination but has detail loss 

in some areas. AEGMM produces images with a decent amount of enhancements, while some 

areas tend to remain dark. An example of this can be observed in the background of the image 

“lady”. It also highlights certain detail that CEID and NPEA do not. AELAB produces over-

enhanced images and looks unnatural. MEF fuses all the important aspects from each of the three 

enhancements (CEID, NPEA and AEGMM) to produce the best image. It fuses NPEA 

naturalness, CEID colourfulness and AEGMM details to produce a superior image. NPEA keeps 

the relative order of lightness well maintained. The proposed enhanced result is more natural 

compared to NPEA and the detail loss is addressed. The details of the proposed image are distinct 

and the whole image looks natural, colourful and sharp. 

 

B.5.3 Experiment 3: Objective Image Quality Assessment  

An objective comparison with the MEF and other enhancement methods was done. The objective 

methods mentioned in Section B4.5 were simulated and the results are presented in this section. 

The test includes results for the three parallel enhancement algorithms (CEID, NPEA and 

AEGMM) which were used in addition to the result of MEF and the original image. The image 

sets used are presented in Figure B.6 and a comparison between MEF and Saleem’s method 

shown in Figure B.8. 

The NIQE and NFERM are utilised to evaluate image quality blindly. For the two metrics, smaller 

scores mean better quality. Figure B.10a shows the graph of the average score for NIQE and 

NFERM for each image, i.e. the original input image, the three outputs of the parallel 

enhancements and the proposed MEF. From the graph, it can be noted that the MEF achieves the 

best (smallest) score for NIQE and NFERM. AEGMM also produce a good score for NIQE and 

NFERM. 
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a)      b) 

Figure B.10: a) The graph represents the average score of NIQE and NFERM for each enhancement method and the 

original image. b) The graph represents the average score for BRISQUE for each enhancement method and the 

original image. 

Figure B.10b shows the graph of average scores for BRISQUE. The lower score indicates better 

quality. NPEA scores the lowest from all the enhancements and the AEGMM scores the highest. 

The proposed method has a fairly low score in comparison to the other algorithms. From NIQE, 

NFERM and BRISQUE metric it can be concluded that the MEF offers the best quality. 

Figure B.11a shows the average entropy score of eight image sets. The enhancement with the 

highest average value of entropy is AEGMM and MEF, which indicates that these enhancements 

have the most information. All enhancements have an entropy score greater than the original 

image, i.e. they contain more information than the original image. 

  

a)      b) 

Figure B.11: a) Graph of the average score for entropy for each enhancement method and the original image. b) The 

graph of the average score for NIQMC and CPCQI for each enhancement and the original image. 

The NIQMC metric is used to determine the contrast distortions and the CPCQI metric is used to 

assess the contrast quality for an image. NIQMC does not require a reference image, while CPCQI 

scores are computed using the original image as the reference image. For CPCQI metric, if the 

scores are higher than 1 it means that the result is much more enhanced in comparison to the 

original input image and conversely, if the scores are lower than 1 it suggests that the detail is 

barely enhanced, or artefacts are introduced [25]. For the NIQMC  metric, larger scores mean less 
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contrast distortions and that the image has better contrast quality. Figure B.11b shows the graph 

for average scores for NIQMC and CPCQI. It can be observed that the MEF has the highest score 

for both CPCQI and NIQMC.  It can be concluded that the MEF has the best contrast and detail. 

The NIQMC metric results for NPEA are smaller since some of the details are hard to notice. 

Table B.1 shows the summarised scores for the objective assessment for AELAB, NPEA, CEID, 

AEGMM and the proposed MEF. Figure B.6 images were used. 

Table B.1: Tabulated data for the objective assessment for the different enhancement methods. Rows 

represent the enhancement algorithms and the columns represent the scores for the metric evaluation 

 NIQE NFERM BRISQUE Entropy CPCQI NIQMC 

Original  3.97 10.62 5.68 6.90 1 2.90 

CEID 3.76 13.15 11.86 7.25 1.01 3.02 

NPEA 3.76 11.11 8.81 7.15 0.98 2.94 

AEGMM 3.82 8.64 14.35 7.44 1.04 3.18 

MEF 3.71 7.56 10.02 7.39 1.07 3.21 

In addition to the performance test for the different contrast enhancement methods, an objective 

test is done between Saleem’s method and the proposed method. The average score was calculated 

from the simulation of the three images shown in Figure B.8. The results are presented in Table 

B.2. From the Table it can be seen that the MEF received better objective scores in comparison 

to Saleem et al. 

Table B.2: Tabulated data for the objective assessment for the different fusion methods (Saleem et al. [10]). 

Rows represent the enhancement algorithms and the columns represent the score for the metric evaluation. 

 NIQE NFERM BRISQUE Entropy CPCQI NIQMC 

Original  3.94 4.29 3.28 3.36 1 3.30 

Saleem 4.19 20.64 6.01 3.33 1.03 3.45 

MEF 3.13 3.29 1.90 3.72 1.06 3.48 

Analysis of objective results: Humans are sensitive to artefacts and naturalness. This is not 

assessed well in the above objective measures. A visual assessment is required to validate results. 

Objective IQA for image enhancement can be beneficial by mixing metrics to measure artefacts. 

Entropy and NIQMC can determine the amount of detail in an image. From these two metrics, it 

was determined that the MEF contains the most detail. The NIQE, BRISQUE and NFERM were 

used to determine naturalness of an image. By using the three-objective metric, the results showed 

that the MEF is the most natural image. CPCQI are utilised to evaluate the contrast quality of the 

images. The metric showed the proposed method has the best contrast. In addition, the human 

assessment concluded that the MEF was the most visually appealing image. 

 



74 
 

 

B.6 Conclusion 

This paper proposes a new multimodal enhancement-fusion (MEF) technique for natural images. 

The study developed a global framework for parallel contrast enhancement, followed by parallel 

image assessment and region selection, leading to final merging of selected regions from the 

enhanced set. The method proposes a concurrent enhancement pathway that subjects an image to 

multiple image enhancers in parallel, followed by a fusion algorithm that creates a composite 

image that combines the strengths of each enhancement path. When merging the regions, the RGB 

colour components are modified separately using the Gaussian blending function. This improves 

the chromatic irregularities such as poor contrast distribution. The MEF allows for various 

number of parallel enhancers. This experiment uses three enhancement models for the parallel 

enhancer. The model fuses the colourfulness improvements from CEID, the naturalness from 

NPEA and the detail from CEID and AEGMM. The experimental results show that the proposed 

MEF performs well for most images and achieves better subjective and objective image quality 

in comparison to other enhancement methods and fusion techniques.  Thus, the multimodal 

enhancer can contribute value to machine vision applications as well as personal image collections 

for the human user.  
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Conclusion 

Existing objective metrics reviewed in this study are reasonable at assessing specific features of 

an enhanced image. When selecting any such metric, the purpose and objective of the task for 

which it is employed must be carefully considered. Paper 1 of this dissertation addressed a 

selection of objective assessment metrics. The relationship with the subjective human assessment 

of contrast enhanced images was interrogated. In this study, the human assessment was regarded 

as the assessment benchmark, or ideal assessment. The experiment then identified which of the 

objective metrics best approximated human assessment and could therefore be used as an effective 

replacement for typically tedious human assessment surveys. The results from the visual 

assessment showed that there is a relationship between detail and naturalness. Beyond a certain 

level, the more detailed an image is, the less naturalness is perceived. Images that look natural 

have moderate detail in general. It was shown that objective metrics are useful in evaluating the 

special characteristics of enhanced images, but they are individually unable to determine human 

preference. Despite the finding that no single quantitative metric under investigation correlates 

well with human perception; two or more metrics in combination were able to approximate the 

complex human response. Three metrics (NIQE, NFERM, BRISQUE) were found to be good 

estimators of human perception of naturalness; and two metrics (NIQMC and entropy) provided 

good estimation of human perception of detail. 

This information was used in the multimodal enhancement-fusion (MEF) of natural images. The 

MEF proposed a framework that adaptively fuses multiple enhancement objectives into a 

seamless pipeline. Given a segmented input image and a set of enhancement methods, the MEF 

applied all the enhancers to the image in parallel.  The most appropriate enhancement in each 

image segment was identified, and finally, the differentially enhanced segments were seamlessly 

fused. Paper 2 developed this global framework for parallel contrast enhancement, followed by 

parallel image assessment and region selection, leading to final merging of selected regions from 

the enhanced set. The MEF is tailored such that it selects and merges desired attributes from each 

pathway into the resultant image. The method proposes a concurrent enhancement pathway that 

subjects an image to multiple image enhancers in parallel, followed by a fusion algorithm that 

creates a composite image that combines the strengths of each enhancement path. The 

enhancement path is made up of the NPEA, CEID and AEGMM algorithms. The model fuses the 

colourfulness improvement from CEID, the naturalness from NPEA and the detail from CEID 

and AEGMM. The MEF also improves the chromatic irregularities such as poor contrast 

distribution. This is achieved during the merger of image regions. Once the optimal/best regions 

are selected from the enhancement set, the RGB colour components are modified separately using 

the Gaussian blending function. Thus, the MEF combines desirable attributes from each 

enhancement pathway to produce a result that is superior to each path taken alone. Experimental 
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results show that the proposed MEF performs well for most images and achieves better 

subjectively and objectively assessed image quality in comparison to other enhancement and 

fusion methods, namely, NPEA, AEGMM, CEID, AELAB and Saleem’s method.  

In conclusion, the work presented in this dissertation provides detailed insight into human 

perception, image enhancement and assessment techniques as well as a new approach for contrast 

image enhancement. This approach contributes value to machine vision applications as well as 

personal image collections for the human user. 
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Appendix A: Digital copy of the results 

All the results presented in this dissertation have been captured and saved in a digital format for 

viewing later on. The following items can be found in the digital copy (i.e. DVD): 

1. The digital copy of the Turn-it-in report. 

2. The digital copy of the final dissertation. 

3. The MEF results presented in this dissertation. This includes images used in the report 

as well as data from survey and the objective tests which were captured on SPSS 

software. 

4. The source code for the MEF algorithm. 

5. The source code for the individual enhancements and the metrics used. 

6. The images used in the surveys as well as the copy of Survey 1 and 2 are provided. 

 

The DVD is attached  
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Appendix B: Summary of MEF Algorithm  

Refer to the DVD for the code and implementation. 

Algorithm 1: The proposed MEF algorithm 

Input = RGB image 

Output= Enhanced RGB image 

Stage 1: Initialisation of enhancement pathways. 

An image is loaded into the framework.  

• The CEID algorithm is applied to the original input image to produce I1;  

• The NPEA algorithm is applied to the original input image to produce I2 and  

• AEGMM algorithm is applied to the original input image to produce I3. These enhancements 

form the parallel enhancer. 

Stage 2: Initialisation of the MEF. 

• The region width and height (rw and rh) was empirically selected to be 5.  

• The sigma value for the 2-D Gaussian and the maximum intensity value was defined.  

• Then the dimension of the image pixel from the first colour plane of image I1 was determined.  

• Next, the number of regions that will fit the image horizontally and vertically must be 

determined as well as the footprint size.  

• Stack the enhanced image (I1, I2 and I3) planes all into a single data collection metrics matrix 

such that, the first three planes come from image 1, the next three planes from image 2, the 

next three planes from image 3. This will form the parallel enhancement pathway. 

Stage 3: Compute enhanced image densities information. 

The image is split into its colour components. Thereafter, compute the intensity of each colour 

component to produce 𝐼𝑅(𝑥, 𝑦), 𝐼𝐺(𝑥, 𝑦) and  𝐼𝐵(𝑥, 𝑦). A function is created to compute the 

intensities. 

Stage 4: Compute region and pixel selection matrix. 

The first step is to create a region selection matrix that indicates in each grid location, which 

image region contributes the most information. This is achieved by a vectorised logical 

comparison of the region densities matrix produced in the previous stages. The second step is to 

generate a graphic representation of region selection matrix. Lastly, create a Pixel Selection 

matrix. Pixel Selection matrix is the region selection data expanded to full pixel resolution. 

Stage 5: Produce the raw (stitched) MEF image. 

Producing the raw fused image (without smoothing), is done by simply using the pixel selection 

matrix to inform the assignment of pixels from one of the enhanced input images to the resultant 

image. Furthermore, the assignment is conducted on each colour plane individually. These colour 
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planes are stored to different planes of the data collection matrix. The new three colour planes 

form the final raw (stitched) image. 

Stage 6: Produce the blended MEF image. 

The Gaussian blending function is implemented.  

𝐺𝑖𝑗(𝑥, 𝑦) =
𝑒
−(
(𝑥−𝑟𝑥𝑖𝑗)

2

2𝜎𝑥
2 +

(𝑦−𝑟𝑦𝑖𝑗)
2

2𝜎𝑦
2 )

∑ ∑ 𝑒
−(
(𝑥−𝑟𝑥𝑝𝑞)

2

2𝜎𝑥
2 +

(𝑦−𝑟𝑦𝑝𝑞)
2

2𝜎𝑦
2 )

𝑛
𝑞=1

𝑚
𝑝=1

 

The constant denominator matrix for the Gaussian Blending is created first. Every pixel location 

is scanned through and the pixel weighting factor is computed. This is done by creating a grid of 

region centre-pixel co-ordinates and then scanned across the full image region, a single pixel at a 

time. The evaluation 𝐺(𝑥. 𝑦).∗ 𝐶(𝑥, 𝑦) for every (𝑥, 𝑦) is done to obtain the weighting factor 

matrix ‘W’. 𝐶(𝑥, 𝑦) is the cutting function.  

𝐶(𝑥, 𝑦) = {
1 ,   𝑤ℎ𝑒𝑟𝑒 (𝑥, 𝑦) ∈ 𝑅𝑟𝑠 | |𝑟𝑥𝑟𝑠 − 𝑟𝑥𝑖𝑗| ∧ ||𝑟𝑦𝑟𝑠 − 𝑟𝑦𝑖𝑗| ≤ 𝜀

0                              everywhere else
 

Now the cutting function 𝐶(𝑥, 𝑦) will be computed. The cutting function is critical. If not used, 

blending will not happen. 𝐶(𝑥, 𝑦) and 𝐺𝑖𝑗(𝑥, 𝑦) are combined to evaluate the weighted pixel 

intensities across the entire image. The output intensity is a summation of Gaussian blending 

functions across the grid. Suppose the cutting function is not used, the numerator will be identical 

to the denominator and the output will be identical to the input. Furthermore, using the cutting 

function, it will restrict the range of Gaussian summations in the numerator, but the denominator 

is unaffected. Hence, the output becomes a scaled version of the input. After the blending the final 

image is achieved. 
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Appendix C: Algorithmic description of Contrast Enhancements  

Appendix C provides an algorithmic description for the five enhancements as well the fusion 

technique used in the experiment. These enhancements are: 

1. Colour image enhancement based on histogram equalisation [1]. 

2. Adaptive equalisation in LAB space [2]. 

3. Contrast-enhancement based on intrinsic decomposition [3]. 

4. Naturalness preserved enhancement algorithm for non-uniform illumination images [4]. 

5. Automatic image equalisation and contrast enhancement using Gaussian mixture 

modelling [5]. 

6. Image fusion-based contrast enhancement [6]. 
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Appendix C1: Algorithmic description of Colour Image Enhancement Based on 

Histogram Equalisation  

Algorithm 2: Colour image enhancement based on histogram equalisation 

Input = RGB image 

Output= Enhanced RGB image 

Stage 1: Conversion 

Convert the RGB image into HSV colour image. Decompose image into separate channels and 

compute the histogram of the V image. 

Stage 2: Exposure threshold applied to V channel 

Compute the exposure threshold by using the following formula: 

𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒 =
1

𝐿

∑ ℎ(𝑘)𝑘𝐿
𝑘=1

∑ ℎ(𝑘)𝐿
𝑘=1

 
(C1.1) 

𝐿 denotes the number of gray levels and ℎ(𝑘) is the histogram for the image obtained in stage 1. 

Stage 3: clipping of the V channel histogram 

The clipping threshold has to be computed. 

𝑇𝑐 =
1

𝐿
∑ℎ(𝑘)

𝐿

𝑘=1

,          ℎ𝑐(𝑘) = 𝑇𝑐   𝑓𝑜𝑟 ℎ(𝑘) ≥ 𝑇𝑐 
(C1.2) 

𝑇𝑐 is defined as the clipping threshold and ℎ𝑐(𝑘) is the clipped histogram. 

Stage 4: Dividing the Clipped Histogram 

Utilising the exposure threshold, the parameter 𝑋𝑚  has to be found: 

𝑋𝑚 = 𝐿(1 − 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒) (C1.3) 

Based on 𝑋𝑚 the histogram is divided into sub histograms. It is divided into under-exposed and 

over-exposed histograms. 

Stage 5: Apply Histogram to sub images of the V image 

The probability density function and the cumulative density function (CDF) are calculated for 

both sub-images. Then the histogram is applied independently to each sub-image. 

Stage 6: Recombining of sub- images 

 After independent equalisation, the transfer function for the under-exposed image is given by:  

𝐹𝑢 = 𝑋𝑚 ∗ 𝐶𝑢 (C1.4) 

𝐶𝑢 is the CDF for the under-exposed images. The transfer function for the over-exposed image is 

given by 

𝐹𝑜 = (𝑋𝑚 + 1) + (𝐿 − 𝑋𝑚 + 1)𝐶𝑜 (C1.5) 
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𝐶𝑜 , is the CDF of the over-exposed image. 𝐹𝑢 and 𝐹𝑜 are multiplied to achieve the combined 

histogram. 

Stage 6: Final image 

The V channel is recombined with the H and S channels to produce the HSV image. The image 

is then converted back into RGB to yield the final image.  
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Appendix C2: Algorithmic description of Adaptive Equalisation in LAB space  

Algorithm 3: Adaptive equalisation in LAB space 

Input = RGB image 

Output= Enhanced RGB image 

Stage 1: Conversion 

Transform the RGB image into LAB colour image. Decompose image into separate channels. 

Stage 2: Equalisation 

Normalise the luminosity (L) channel and then apply “contrast-limited adaptive histogram 

equalisation” to the normalised L channel. 

Stage 3: Enhanced image 

Bring the L to the non-normalised form. Recombine the L channel with the untouched a* and b* 

channels to produce the resultant image. 
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Appendix C3: Algorithmic description of Contrast Enhancement based on Intrinsic 

Decomposition  

The RGB image is converted into HSV image and decomposed into separate H, S and V images. 

The value (V) image can be decomposed into a reflection layer (R) and illumination layer (L). 

𝑉 = 𝐿 ∙ 𝑅 (C3.1) 

Where ‘∙’ represents pointwise multiplication. The CEID model has two constraints. The 

constraints are: 

• The neighbouring pixels with alike colours must have the equivalent reflectance  

• and the neighbouring pixels should hold the similar or comparable illumination.  

The author formulated the intrinsic decomposition model as a minimisation problem. The 

minimisation problem is of an energy function as depicted in equation C3.2. The following 

variables are utilised to the vector model of the 𝑉, 𝐿 and R viz. 𝑣, 𝑙 and 𝑟. Minimisation equations 

are defined as: 

𝑚𝑖𝑛𝑙,𝑟𝐸(𝑙, 𝑟) =  𝐸𝑟 (𝑟) + 𝜇𝐸𝑙(𝑙) + 𝜃𝐸𝑑(𝑣; 𝑙, 𝑟) + 𝛽𝐸0(𝑙,  𝑙0) 

such that 0 ≤ 𝑟 ≤ 1 

(C3.2) 

The μ, θ, and β are the weighting parameters. First and second expression of the equation are the 

regularised reflectance layer and illumination layer. The third expression of the equation ensures 

the reliability of decomposition. A ℓ2-norm penalty (‖𝑣 − 𝑙 ∙ 𝑟‖2
2) is used to tolerate noise. The 

final expression of the equation is utilised to restrict the value of the illumination. The 𝐿𝑜 is the 

chromatic normalisation value which is defined as: √𝐼𝑟
2 + 𝐼𝑔

2 + 𝐼𝑏
2. The components 𝐼𝑟, 𝐼𝑔 and 

𝐼𝑏 are the intensity of the red, green and blue colour components, respectively. The reflectance 

layer is constrained to 𝐸𝑟 (𝑟 ) term, which is piecewise constant. The value of reflectance at pixel 

𝑖 is given by 𝑟𝑖 and Ɲ (𝑖 ) is the neighbourhood of pixel 𝑖. 

𝐸𝑟(𝑟) =∑ ∑ 𝑤𝑖𝑗‖𝑟𝑖 − 𝑟𝑗‖1 
𝑗∈Ɲ(𝑖)𝑖

 (C3.3) 

𝑤𝑖𝑗 refers to the measurement of the similarity between chromatic value at pixel 𝑖 and pixel 𝑗. The 

𝑤𝑖𝑗  function is expressed in the following equation:  

𝑤𝑖𝑗 = 𝑒𝑥𝑝(−
‖𝑓𝑖 − 𝑓𝑗‖2

2

2𝜎2
) 

(C3.4) 

The 𝑓𝑖 and 𝑓𝑗 terms are the value of the pixel 𝑖 and 𝑗 in the LAB colour plane and is expressed as 

𝑓𝑖 =  [τ li , ai , bi ]
T, 𝑓𝑗  =  [𝜏 𝑙𝑗 , 𝑎𝑗 , 𝑏𝑗 ]

𝑇. The variable 𝜏 is constrained to 𝜏 <  1. This is done 
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to ensure the reduction of the impact on illumination variations on colour similarity quantity.  The 

author assumed that the input image contained 𝑢 pixels, and the pixels consist of 𝑛 neighbouring 

pixel pairs. The authors create a matrix of dimension  𝑛 × 𝑢, such that 𝑀 =  {𝑚𝑖𝑗}. 𝑚𝑘𝑖 = 𝑤𝑖𝑗 

and 𝑚𝑘𝑖 = −𝑤𝑖𝑗, if pixels 𝑖 and pixel 𝑗 are neighbours that creates the 𝑘𝑡ℎ neighbouring pair. The 

term  𝐸𝑟 (𝑟 ) can be written as: 

𝐸𝑟(𝑟) = ‖𝑀𝑟‖1 
 

(C3.5) 

The 𝐸𝑙 (𝑙)  expression implies that the illumination must be locally smooth utilising isotropic total 

variation. 

𝐸𝑙(𝑙) = ‖𝐷𝑥𝑙‖2
2 + ‖𝐷𝑦𝑙‖2

2
 (C3.6) 

The term 𝐷𝑥 and 𝐷𝑦 are matrix that represent the derivative operator in the horizontal (x) and 

vertical (y) direction. Thus, the new energy function is defined as: 

𝑚𝑖𝑛‖𝑀𝑟‖1 + 𝜇( ‖𝐷𝑥 𝑙‖2
2 + ‖𝐷𝑦𝑙‖2

2
) + 𝜃‖𝑣 − 𝑙. 𝑟‖2

2 + 𝛽‖𝑙 − 𝑙𝑜‖2
2 

Such that 0 ≤ 𝑟 ≤ 1 

(C3.7) 

Equation C3.7 can be solved using Split Bregman algorithm. The equation is transformed into an 

optimisation problem. 

(𝑙, 𝑟) =  𝑎𝑟𝑔𝑚𝑖𝑛𝑙,𝑟,ℎ ‖ℎ‖1 + 𝜇(‖𝐷𝑥 𝑙‖2
2 + ‖𝐷𝑦𝑙‖2

2
) + 𝜃‖𝑣 − 𝑙. 𝑟‖2

2 + 𝛽‖𝑙 − 𝑙𝑜‖2
2 

Such that 𝑀𝑟 = ℎ,    0 ≤ 𝑟 ≤ 1 

(C3.8) 

The equation is separated in 𝑟, 𝑙 and ℎ sub-problems, thus minimising one variable at a time and 

fixing the remaining variables. 

Algorithm 4: The CEID algorithm 

Input = RGB image 

Output= Enhanced RGB image 

Stage 1: Initialisation  

An image is opened from a folder. 

1.1.  Initialise the illumination layer to 𝐿0 = √𝐼𝑟
2 + 𝐼𝑔

2 + 𝐼𝑏
2, ℎ0, 𝑏0=0 and Set μ = 5, σ = 1, β 

= 50, τ = 0.5, θ = 80, γ = 2.2, λ = 120. 

1.2 Determine the weighted matrix 𝑤𝑖𝑗 = 𝑒𝑥𝑝 (−
‖𝑓𝑖−𝑓𝑗‖2

2

2𝜎2
) 

Stage 2: Converting to HSV 

Convert RGB image into HSV Image and then it is decomposed into the individual channels. 
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Stage 3:  While loop: 

The V channel is further decomposed into reflectance and illumination using the while loop. 

While ‖𝑟𝑘 − 𝑟𝑘−1‖
2

2
> 𝜖, do: 

3.1 Solve the r-problem to achieve 𝑟𝑘+1 by using the following equation: 

𝑟𝑘+1 = 𝐴−1𝑧 (C3.9) 

𝐴 = 𝜃𝐼 + 𝜆𝑀𝑇𝑀 (C3.10) 

 

𝑧 = 𝜃 (
𝑣

𝑙𝑘
) + 𝜆𝑀𝑇(ℎ𝑘 − 𝑏𝑘) (C3.11) 

Where, I is the identity matrix. A preconditional conjugate gradient (PCG) is used to solve 𝑟𝑘+1. 

Since matrix A is symmetric and positively defined. The variable r is constricted to 0 ≤ 𝑟 ≤ 1. 

The reflectance is projected as 𝑟𝑘+1 = 𝑚𝑖𝑛 (𝑚𝑎𝑥(𝑟𝑘+1, 0) , 1). 

3.2 Solve the l-problem to achieve 𝑙𝑘+1 by using the following equation: 

(𝐿𝑘+1) = 𝑎𝑟𝑔𝑚𝑖𝑛𝐿   𝜇( ‖𝑑𝑥 ∗ 𝐿‖2
2 + ‖𝑑𝑦 ∗ 𝐿‖2

2
) + 𝜃‖𝑉 − 𝐿. 𝑅‖2

2 + 𝛽‖𝐿 − 𝐿0‖2
2  (C3.12) 

 

𝐿𝑘+1 = 𝐹−1(
𝐹 (

𝜃𝑉
𝑅𝑘+1

+ 𝛽𝐿𝑜) 

𝐹(𝜃 + 𝛽) + 𝜇 (𝐹 ∗ (𝑑𝑥)𝐹(𝑑𝑥) + 𝐹 ∗ (𝑑𝑦)𝐹(𝑑𝑦))
) 

(C3.13) 

𝑑𝑥 = [−1 , 1] 

𝑑𝑦 = [−1 , 1]
𝑇 

 

The ‘*’ signifies complex conjugate and 𝐹 is the fast Fourier transform algorithm. The 

multiplication and division operations are performed element-wise. 

3.3 Solve the h-problem to achieve ℎ𝑘+1 by using the following equation: 

(ℎ𝑘+1) = 𝑎𝑟𝑔𝑚𝑖𝑛ℎ   ‖ℎ
𝑘‖

1
+𝜆‖ℎ𝑘 −𝑀𝑟 − 𝑏𝑘‖

2

2
   (C3.14) 

L1 norm minimisation problems can be obtained: 

ℎ𝑘+1 = 𝑠𝑜𝑓𝑡(𝑀𝑟𝑘+1 + 𝑏𝑘, 1 𝜆⁄ ) 
(C3.15) 

Where 𝑀𝑟=h and 

𝑏𝑘+1 = 𝑏𝑘 − (ℎ𝑘+1 −𝑀𝑟𝑘+1) (C3.16) 

The 𝑠𝑜𝑓𝑡() function is the shrinkage operator and 𝑏𝑘+1 is updated accordingly.  

Stage 4: Illumination Adjustment 

The output from the loop will result in the new illumination and reflectance. The illumination is 

further adjusted. The gamma function is adopted. 
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𝐿𝑛𝑒𝑤 = 255 × (
𝐿

255
)

1
𝛾
 

(C3.17) 

Stage 5: Combining the channels 

To get the new V channel, 𝑉 = 𝐿𝑛𝑒𝑤.∗ 𝑅. The V channel is further enhanced by contrast limited 

adaptive equalisation to get the enhanced V channel. The new V channel is recombined with the 

untouched S and H channels. The HSV image is converted to the RGB image to produce the 

enhanced image. 
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Appendix C4: Algorithmic description of Natural Preserved Enhancement 

Algorithm for non-uniform illumination images  

The author proposes the bright pass filter that constricts the reflectance to [0,1]. The bright pass 

filter (BPF) is the average of the adjacent pixels. These pixels are positively weighted and is 

associated to the frequency 𝑄(𝑘, 𝑙). 𝑄(𝑘, 𝑙) represents the local mean and 𝑤𝑖𝑛 refers to the 

window size. 

𝑄(𝑘, 𝑙) =
(∑ 𝑄′(𝑘, 𝑖))𝑖=𝑙+𝑤𝑖𝑛

𝑖=𝑙−𝑤𝑖𝑛

(2 ∙ 𝑤𝑖𝑛 + 1)
 

(C4.1) 

Where,  

𝑄′(𝑘, 𝑙) = ∑∑𝑁𝑁𝑘,𝑙(𝑥, 𝑦)

𝑛

𝑦=1

𝑚

𝑥=1

 
(C4.2) 

𝑁𝑁𝑘,𝑙(𝑥, 𝑦) specifies the amount of its neighbours of value 𝑙. The number of pixels in the height 

and width are denoted as 𝑚 and 𝑛, respectively. The frequency 𝑄′(𝑘, 𝑙) for the pixel value of 𝑘 

and 𝑙 are neighbours everywhere in the image is defined in equation C4.2. The 𝐵𝑃𝐹(∙) is defined 

as: 

𝐵𝑃𝐹(𝐺(𝑥, 𝑦)) =
1

𝑊(𝑥, 𝑦)
∑ (𝑄(𝐺(𝑥, 𝑦), 𝐺(𝑖, 𝑗)) ∙ 𝑈(𝐺(𝑖, 𝑗), 𝐺(𝑥, 𝑦)) ∙ 𝐺(𝑖, 𝑗))

(𝑖,𝑗)𝜖𝛺

 
(C4.3) 

The 𝐺(𝑥, 𝑦) is the set of neighbour pixels. The variable 𝛺 refers to the local patch centred at the 

co-ordinates (𝑥, 𝑦). Note that the patch is a small area of pixels. This is sometimes referred to as 

a window. The patch size is set to 15x15. The unit step function is denoted as 𝑈(𝑥, 𝑦). The 

𝑊(𝑥, 𝑦), is the normalising factor such that the summation of the pixel weight is one. 

𝑈(𝑥, 𝑦) = {
1 𝑓𝑜𝑟 𝑥 ≥ 𝑦
0 , 𝑒𝑙𝑠𝑒

  
(C4.4) 

𝑊(𝑥, 𝑦) = ∑ (𝑄(𝐺(𝑥, 𝑦), 𝐺(𝑖, 𝑗)) ∙ 𝑈(𝐺(𝑖, 𝑗), 𝐺(𝑥, 𝑦)))

(𝑖,𝑗)𝜖𝛺

 
(C4.5) 

The BPF is utilised in the image decomposition. The intensity 𝐿(𝑥, 𝑦) is obtained using: 

𝐿(𝑥, 𝑦) = 𝑚𝑎𝑥𝑐𝜖[𝑟,𝑔,𝑏]𝐼
𝑐(𝑥, 𝑦) (C4.6) 

Where 𝐼𝑐(𝑥, 𝑦) represents the lightness of the colour channel C. The BPF is refined to yield the 

illumination layer. 

𝐿𝑟(𝑥, 𝑦) =
1

𝑊(𝑥, 𝑦)
∑ (𝑄(𝐿(𝑥, 𝑦). 𝐿(𝑖, 𝑗)) ∙ 𝑈(𝐿(𝑖, 𝑗), 𝐿(𝑥, 𝑦)) ∙ 𝐿(𝑖, 𝑗))

(𝑖,𝑗)𝜖𝛺

 
(C4.7) 

The reflectance 𝑅(𝑥, 𝑦) is attained by extracting the illumination layer. 
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𝑅𝑐(𝑥, 𝑦) = 𝐼𝑐(𝑥, 𝑦)/𝐿𝑟(𝑥, 𝑦) (C4.8) 

The illumination mapping is done by utilising the bi-log transformation (BLT). The mapped 

illumination is obtained using the BLT. 

𝐿𝑚(𝑥, 𝑦) = 𝑐𝑓
−1[𝑐𝐿(𝐿𝑟(𝑥, 𝑦))]    for 𝑣 = 0,1,2,… . , 𝐿 − 1. (C4.9) 

𝑐𝐿(𝑣) = ∑𝑚𝑝(𝑘) =

𝑣

𝑘=0

∑ ∑ 𝐿𝑙𝑔(𝑖, 𝑗) ∙ 𝑈(𝑣, 𝐿𝑟(𝑖, 𝑗))
𝑛
𝑗=0

𝑚
𝑖=0

∑ ∑ 𝐿𝑙𝑔(𝑖, 𝑗)
𝑛
𝑗=0

𝑚
𝑖=0

 

 

(C4.10) 

 

𝐿𝑙𝑔(𝑥, 𝑦) = 𝑙𝑜𝑔(𝐿𝑟(𝑥, 𝑦) + 𝜖) (C4.11) 

The log shape is given by C4.11. The parameter 𝜖 is a small constant and is assigned to 1. The 

weight histogram is defined as 𝑚𝑝(𝑛). The 𝑐𝐿(𝑣) represents the cumulative density function of 

the weighted histogram. Refer to Journal [4] for more information. The combination of the 

reflectance and mapped illumination for the resultant enhanced image is:  

𝐸𝐼𝑐(𝑥, 𝑦) =  𝑅𝑐(𝑥, 𝑦) × 𝐿𝑚(𝑥, 𝑦) (C4.12) 

  

Algorithm 5: The NPEA 

Input = RGB image 

Output= Enhanced RGB image 

Stage 1: Image Decomposition 

First the image is broken down into reflectance and illumination using the BPF. This is done by 

utilising equation C4.3, C4.7 and C4.8. 

Stage 2: Illumination Transformation 

The illumination is treated by utilising the bi-log transformation. This is done using equation 

C4.9. 

Stage 3: Combination of reflectance and mapped illumination  

The mapping should not supress any details. The resultant image is attained by producing the 

reflectance and the mapping illumination (Equation C4.12). 
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Appendix C5: Algorithmic description of Automatic image Equalisation and 

contrast enhancement using Gaussian Mixture Modelling  

Assume an input image, X has an image height of H and an image width of W such that 𝑋 =

{𝑥(𝑖, 𝑗)|1 ≤ 𝑖 ≤ 𝐻, 1 ≤ 𝑗 ≤ 𝑊}. The dynamic range (DR) of the image 𝑋 is given as [𝑥𝑑 , 𝑥𝑢]. 

𝑥𝑑 < 𝑥𝑢 and 𝑥𝑑 , 𝑥𝑢 ∈ ℝ such that 𝑥(𝑖, 𝑗) ∈ [𝑥𝑑 , 𝑥𝑢]. Assume the algorithm yield an enhanced 

image 𝑌, the height and width are defined 𝐻 and 𝑊 respectively. The size of image 𝑋 and 𝑌 is 

HxW. The DR of the image 𝑌 is given as [𝑦𝑑 , 𝑦𝑢]. 𝑦𝑑 < 𝑦𝑢 and 𝑦𝑑 , 𝑦𝑢 ∈ ℝ such that 𝑦(𝑖, 𝑗) ∈

[𝑦𝑑 , 𝑦𝑢]. 

The GMM data distribution is in relation to the linear mixture of different Gaussian distribution 

that has diverse parameters. Every component of the Gaussian distribution consists of non-

similar; mean, weight and standard deviation in the mixture module. The gray level distribution 

or spread of the input image is denoted as 𝑝(𝑥). The distribution is a linear combination of N 

Gaussian function utilising a GMM. 

𝑝(𝑥) = ∑𝑃(𝑤𝑛)𝑝(𝑥|𝑤𝑛)

𝑁

𝑛=1

 

(C5.1) 

𝑤𝑛 is specific Gaussian n. The 𝑝(𝑥|𝑤𝑛) represents the nth component density and the 𝑃(𝑤𝑛) 

signifies the previous probability of the data point produced by 𝑤𝑛. 

𝑝(𝑥|𝑤𝑛) =
1

√2𝜋𝜎𝑤𝑛
2

 𝑒𝑥𝑝
(−
(𝑥−𝜇𝑤𝑛)

2

2𝜎𝑤𝑛
2 )

 

(C5.2) 

 

Where 𝜇𝑤𝑛 is the mean or position of the Gaussian’s peak,  𝜎𝑤𝑛
2  is the variance (breadth and 

height relationship) therefore 𝜎𝑤𝑛 is the standard deviation (breadth and height relationship). The 

GGM is parameterised by: 

𝜃 = {𝑃(𝑤𝑛), 𝜇𝑤𝑛 , 𝜎𝑤𝑛
2 }𝑛=1

𝑁  (C5.3) 

 

Maximum-Likelihood techniques like Expectation-Maximisation can be used to estimate 𝜃 for a 

best fit to any given distribution. Maximum-Likelihood estimation techniques can adjust the 

statistical model such that the model best fits the data. For the likelihood, assuming that all data 

points 𝑿 = {𝑥1, 𝑥2, . . . , 𝑥𝐻𝑥𝑊} are independent. The likelihood of 𝑿 given by 𝜃 is: 

ℒ(𝑿; 𝜃) =  ∏𝑝(𝑥𝑘; 𝜃)

∀𝑘

 
(C5.4) 

The distribution parameter is 𝜃. The goal is to find 𝜃  that maximises the likelihood.  

𝜃 = 𝑎𝑟𝑔𝜃𝑚𝑎𝑥 ℒ(𝑿; 𝜃) (C5.5) 
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The next step is the partitioning which is based on intersection points. The Figueriedo- Jain 

algorithm is used to simultaneously optimise the number of Gaussian components, as well as the 

means and variances. Having done this, the optimised mixture model is parameterised as: 

𝜃 =  𝜃′ = {𝑃(𝑤𝑛), 𝜇𝑤𝑛 , 𝜎𝑤𝑛
2 }𝑛=1

𝑁  (C5.6) 

The intersection points of the above Gaussians lie within the dynamic range [𝑥𝑑 , 𝑥𝑢] are now 

computed. The intersection of 𝑤𝑚 and 𝑤𝑛 may be found by solving:  

𝑃(𝑤𝑚)𝑝(𝑥|𝑤𝑚) = 𝑃(𝑤𝑛)𝑝(𝑥|𝑤𝑛) (C5.7) 

Now the equation has to be expanded and simplified to achieve the intersection points. These 

intersection points effectively partition the domain into intervals. Only the significant 

intersections 𝑥𝑠 (those between dominant Gaussians) are considered. Furthermore, only 

significant intersections that are within the dynamic range of 𝑥 are considered. A set of intervals 

is achieved.  

[𝑥𝑑 , 𝑥𝑢] = [𝑥𝑠
(1), 𝑥𝑠

(2)]  ∪ [𝑥𝑠
(2) , 𝑥𝑠

(3)] ]  ∪ ⋯∪ [𝑥𝑠
(𝑘−2)] , 𝑥𝑠

(𝑘−1)] ]

∪ [𝑥𝑠
(𝑘−1), 𝑥𝑠

(𝑘)] 

(C5.8) 

Subinterval [𝑥𝑠
(𝑘), 𝑥𝑠

(𝑘+1)] is denoted by a Gaussian component 𝑤𝑘  which is dominant with 

respect to all remaining components in that interval.  Mapping of intervals from input intervals to 

output intervals has to be computed. The intervals [𝑥𝑠
(𝑘), 𝑥𝑠

(𝑘+1)] where 𝑘 = 1,2, … . 𝐾 − 1 is 

mapped onto the DR of the resultant image.  K is the total number of intervals and N is the total 

number of Gaussian mixture models. An intensity transformation is used to transform the 

partitioned input dynamic range [𝑥𝑑 , 𝑥𝑢] into the desired output dynamic range [𝑦𝑑 , 𝑦𝑢]. The 

weight αk is defined as: 

𝛼𝑘 =
𝛼𝑤𝑘
𝛾

∑ 𝛼𝑤𝑘
𝛾𝑁

𝑖=1

 
𝐹(𝑥𝑠

(𝑘+1)
− 𝐹(𝑥𝑠

(𝑘)
)

∑ 𝐹(𝑥𝑠
(𝑖+1)

) − 𝐹(𝑥𝑠
(𝑖)
)𝐾−1

𝑖𝑠=1

 
(C5.9) 

 

The first term alters the illumination of the equalised image. The variable 𝛾 ∈ [0,1] is the 

illumination (brightness) constant. The 𝛾 is set to 0.5. Using, 𝛼𝑘  the input interval 

[𝑥𝑠
(𝑘), 𝑥𝑠

(𝑘+1)] is mapped onto the output interval [𝑦𝑠
(𝑘), 𝑦𝑠

(𝑘+1)]: 

𝑦(𝑘) = 𝑦𝑑 + (𝑦𝑢 − 𝑦𝑑)∑𝛼𝑖

𝑘−1

𝑖=1

 

𝑦(𝑘+1) = 𝑦(𝑘) + 𝛼𝑘(𝑦𝑢 − 𝑦𝑑) 

 

  

(C5.10) 

The mapping of Gaussians from input to output: The Gaussian distribution 𝑤𝑘 with parameters 

𝜇𝑘 and 𝜎𝑘 is defined in the input range [𝑥𝑑 , 𝑥𝑢]. The distribution is then transformed to the output 

range [𝑦𝑑 , 𝑦𝑢],where it is represented as transformed distribution 𝑤𝑘′ with parameters 𝜇𝑘′ and 𝜎𝑘′. 
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𝑦 =∑((
𝑥 − 𝜇𝑤𝑖
𝜎𝑤𝑖

𝑁

𝑖=1

) 𝜎𝑤𝑖′ + 𝜇𝑤𝑖′)𝑃𝑤𝑖   
(C5.11) 

 

𝜇𝑤𝑘′ =
𝑦𝑘+1(𝑥𝑠

(𝑘)
− 𝜇𝑤𝑘) − 𝑦

𝑘(𝑥𝑠
(𝑘+1)

− 𝜇𝑤𝑘)

𝑥𝑠
(𝑘) − 𝑥𝑠

(𝑘+1)
 

(C5.12) 

 

𝜎𝑤𝑘′ =
(𝑦(𝑘) − 𝜇𝑤𝑘′)

(𝑥𝑠
(𝑘)
− 𝜇𝑤𝑘)

𝜎𝑤𝑘 

 

(C5.13) 

Given that 𝑦(𝑘), 𝑦(𝑘+1), 𝑥𝑠
(𝑘)

, 𝑥𝑠
(𝑘+1)

 and 𝜇𝑘 are known, 𝜇𝑤𝑘′ may be computed. Furthermore, 

given that 𝜎𝑤𝑘 and  𝜇𝑤𝑘′  are known, 𝜎𝑤𝑘′ ′ may be computed. 

Algorithm 6: The AEGMM algorithm 

The algorithm for this enhancement was provided by Mr B. Naidoo 

Input = RGB image 

Output= Enhanced RGB image 

Stage 1: Initialisation of enhancement  

1.1 Load the input image. 

1.2 Set all necessary parameters. 

1.3 Convert image to greyscale if necessary. 

1.4 Convert to CIELAB colour space, apply the colour transform and extract each component 

from Lab space. 

Stage 2: Compute the FJ algorithm 

Stage 3:  Compute the Gaussian mixture intersection points 

Compute the intersection points of all Gaussian components. Filtering is then required. The filter 

is applied to remove those points outside the dynamic range and those points that are intersection 

of non-dominant Gaussian in the given interval. 

Stage 4: Weight the input intervals 

Define a matrix to describe the dynamic range and its ordered subintervals moving from xd to xu. 

Stage 5: Compute the output intervals 

Compute the output intervals [y(i), y(k)]. The output dynamic range is set to [0, 255]. 

Stage 6: Linear pixel transform 

Utilise a dedicated linear pixel transform in each interval. The entire transform is piece-wise 

linear. 

Stage 7: Output image 

Produce the mapped image. Save in grayscale form. Convert image back to RGB. 
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Appendix C6: Algorithmic description of Image fusion-based contrast enhancement  

This method was proposed by Saleem et al. [6]. The method is to fuse the input images. The 

fusion model requires three input images. It fuses the images as a weighted blending of the input 

images. The images are merged by calculating the weighted average for all the pixel.  

𝐹𝑖,𝑗 =∑𝑊̂𝑖,𝑗,𝑘𝐼𝑖,𝑗,𝑘

𝑁

𝑘=1

 

(C6.1) 

𝐼𝑘, are the kth input images and 𝑊̂𝑘 are the 𝑘𝑡ℎ weight map. 𝐹𝑖,𝑗 represents the resultant image. 

The weighted blending function is depicted in equation C6.2. 

𝑊̂𝑖,𝑗,𝑘 = [∑ 𝑊𝑖,𝑗,𝑘′] 

𝑁

𝑘′=1

−1

𝑊𝑖,𝑗,𝑘 

(C6.2) 

The images are decomposed into a hierarchy of images. This is done using the Laplacian pyramid 

decomposition of the original image. It decomposes the images into levels that correlate to the 

diverse bands of image frequencies.  Next, the Gaussian pyramid of the weighted maps are 

calculated. This is required for blending. Blending is done for each level individually. N is the 

number of input images. 

𝐿{𝐹}𝑖,𝑗
𝑙 =∑𝐺{𝑊̂}𝑖,𝑗,𝑘

𝑙 𝐿{𝐼}𝑖,𝑗,𝑘
𝑙

𝑁

𝑘=1

 

(C6.3) 

L{F}, is the Laplacian pyramid while G{F} is the Gaussian pyramid. The 𝐿{𝐹}𝑙 is collapsed to 

acquire the merged image F. The framework is depicted in Figure 1. 

 
Figure 1: The framework for the image fusion-based contrast enhancement. The image was sourced from the journal 

article [6].  
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Appendix D: Algorithmic description for Performance Metrics 

The following metrics are carefully studied and implemented:  

1. Mean square error (MSE) [7],  

2. Entropy [8],  

3. Edge- based contrast measure (EBCM) [5], 

4. Naturalness image quality evaluator (NIQE) [9], 

5. The no-reference free energy based robust metric (NFERM) [10],  

6. The no-reference image quality metric for contrast distortions (NIQMC) [11],  

7. The colourfulness-based PCQI (patch-based contrast quality index [12]) (CPCQI) 

[13]  

8. The blind/reference-less image spatial quality evaluator (BRISQUE) [14].  

 

The metric NIQE, NFERM, NIQMC, CPCQI and BRISQUE were trained on the BSD300 

database [15], Lossless database [16], USC-SIPI Image Database [17], LIVE IQA database [18] 

etc. All images used for the evaluation can be found in these databases. The mathematical 

expressions for MSE, entropy, NIQE, NIQMC and CPCQI were explained in Paper 1. The MSE 

function was provided by MathWorks [7]. The code for NIQE, NIQMC, CPCQI and BRISQUE 

were provided by the author as mentioned in Paper 1. Therefore, Appendix D provides the 

remaining mathematical models i.e. for NFERM and BRISQUE and the algorithms for entropy, 

EBCM.  
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Appendix D1: Algorithmic description of Entropy Metric 

The entropy is expressed in D1.1. Where, 𝑝𝑖 is the probability of intensity value 𝑙 in an image, 

and H is denoted as the entropy of the input image. L is defined as the total number of gray level.  

𝐻 = −∑𝑝𝑖𝑙𝑜𝑔2𝑝𝑖

𝐿−1

𝑙

 (D1.1) 

Algorithm 7: The Entropy Metric 

Input = RGB image that will be evaluated 

Output= Score of information 

Stage 1: Initialisation  

Load image and then normalise image to a range of [0,1]. 

Stage 2: function “entropy” 

2.1 Assume I in the range [0,1]. 

2.2 Create histogram of image. 

2.3 Remove zero entries that would cause log2 to be undefined. 

2.4 Normalise histogram to unity. 

2.5 Apply entropy’s definition H = -sum(p.*log2(p)). 

Stage 3: 

Pass image through entropy function and receive the score. 
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Appendix D2: Algorithmic description of Edge-Based Contrast Measure  

For the EBCM we apply the following equations on MATLAB. The input image is denoted as 

X: 

𝑐(𝑖, 𝑗) =
|𝑥(𝑖, 𝑗) − 𝑒(𝑖, 𝑗)|

|𝑥(𝑖, 𝑗) + 𝑒(𝑖, 𝑗)|
 (D2.1) 

The mean edge gray level is given as: 

𝑒(𝑖, 𝑗) =
∑ 𝑔(𝑘, 𝑙)𝑥(𝑘, 𝑙)(𝑘,𝑙)∈𝒩(𝑖,𝑙)

∑ 𝑔(𝑘, 𝑙)(𝑘,𝑙)∈𝒩(𝑖,𝑙)
 

(D2.2) 

𝒩(𝑖, 𝑙) signifies the set of neighbouring pixels of pixel (𝑖, 𝑙). The magnitude of the image gradient 

projected utilising the Sobel operators at pixel (𝑘, 𝑙) is defined as 𝑔(𝑘, 𝑙) [19]. The EBCM for 

image X is calculated as the average contrast value, that is: 

𝐸𝐵𝐶𝑀(𝑋) =∑∑𝑐(𝑖, 𝑗)/𝐻𝑊

𝑊

𝑗=1

𝐻

𝑖=1

 

(D2.3) 

Algorithm 8: The Edge- based contrast measure metric 

Input = RGB image to be evaluated 

Output= Score of EBCM 

Stage 1: Initialisation  

Load image 

The input image matrix (not normalised 0-255) 

Stage 2: Function “entropy” 

2.1 Input is presumed to be not normalised. 

2.2 Get size of input image (Height * Width). 

2.3 Obtain the Sobel kernel and normalise the image before processing. 

2.4 Execute Sobel filter on normalised image. 

2.5 Get 𝑔(𝑘, 𝑙) by multiplying the normalised image and the executed Sobel filter. This is then    

numerator of mean gray level equation. 

2.6 Obtain average kernel, default size is 3x3 and execute image average filter on the Sobel 

filtered image. 

2.7 Now calculate equation D2.2 to achieve the final mean gray level. 

2.8 Then, calculate equation D2.1 to achieve the sum across all pixels of contrast image. 

2.9 The equation D2.3 is used to obtain the EBCM result. This result is passed out. 
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Appendix D3: Algorithmic description of No-reference Free Energy based Robust 

Metric  

The NFERM divides the features into three groups of features;  

Group one of features:  

Group one features are made up of 13 features (𝑓01 − 𝑓13). These features are of free energy and 

structural degradation information.  

𝑆𝑎(𝐼) = 𝐸 (
𝜎(𝜇𝐼𝜇̅𝐼) + 𝐶1

𝜎(𝜇𝐼)𝜎(𝜇̅𝐼) + 𝐶1
) 

(D3.1) 

𝑆𝑏(𝐼) = 𝐸 (
𝜎(𝜎𝐼𝜎̅𝐼) + 𝐶1

𝜎(𝜎𝐼)𝜎(𝜎̅𝐼) + 𝐶1
) 

(D3.2) 

The 𝑆𝑎(𝐼) and 𝑆𝑏(𝐼) are the structural degradation for the input image (𝐼). The teams 𝜇𝐼 and 𝜎𝐼 

are the local mean and variance of the input image by a 2D circularly symmetric Gaussian 

weighted function. The term 𝜇̅𝐼 and 𝜎̅𝐼 has the similar definitions except the utilisation of the 

impulse function in its place of the Gaussian weighting function. The function 𝐸(·) is a direct 

average pooling. 𝜎(𝜇𝐼𝜇̅𝐼) and 𝜎(𝜎𝐼𝜎̅𝐼) is represented by the local covariance. 𝐶1 refers to a minor 

constant that prevent the denominator from being zero or undefined. 𝑆𝑎(𝐼)  is modified to retain 

diverse kinds of distortions: 

𝑆̂𝑎(𝐼) = {
−𝑆𝑎(𝐼) 𝑖𝑓 𝐹(𝐼) > 𝑇

𝑆𝑎(𝐼) otherwise
 

(D3.3) 

where T is given as 5 conferring to the observation and 𝐹(𝐼) is the free energy approximation of 

the image 𝐼. 𝑆̂𝑏(𝐼) is adapted similarly as 𝑆𝑏(𝐼). The linear dependence amongst the free energy 

feature and the structural degradation information offers a chance to characterise distorted images 

without original image information. 𝑆̂𝑠 is the structural degradation information. The linear 

regression model is defined as: 

𝐹(𝐼𝑟) = 𝛼𝑠 ∙ 𝑆̂𝑠(𝐼𝑟) + 𝛽𝑠 

𝐹(𝐼𝑟) = 𝜃𝑠 ∙ 𝑆𝑠̌(𝐼𝑟) + 𝜑𝑠 

(D3.4) 

where 𝛼𝑠, 𝛽𝑠,  𝜃𝑠 and 𝜑s are attained from the least square method. The 12 features are defined as 

{
𝑓01 − 𝑓06: 𝑆̂𝑠𝑆𝑠 , 𝑠 =  { 𝑎1, 𝑎3, 𝑎5, 𝑏1, 𝑏2, 𝑏5}

𝑓07 − 𝑓12: 𝑆𝑠̌ 𝑆𝑠 , 𝑠 =  { 𝑎1, 𝑎3, 𝑎5, 𝑏1, 𝑏2, 𝑏5}
 

(D3.5) 

Where,                          𝑆̂𝑠𝑆𝑠 = 𝐹(𝐼𝑑) − (𝛼𝑠 ∙ 𝑆̂𝑠(𝐼𝑟) + 𝛽𝑠) 

                                     𝑆𝑠̌ 𝑆𝑠 = 𝐹(𝐼𝑑) − (𝜃𝑠 ∙ 𝑆𝑠̌(𝐼𝑟) + 𝜑𝑠)  

(D3.6) 
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Furthermore, the NFERM corresponds efficiently with human ratings with regards to noisy and 

blurred images. This is used as the feature 𝑓13. 

Group two of features: 

The second group consists of 6 features,  𝑓14 − 𝑓19 is influenced by the free energy theory. This 

demonstrates that the HVS tries to recognise as well as comprehend a visual response. This is 

done by the reduction of the vagueness created on the internal generative model. Feature 14 is 

computed as the Peak Signal to Noise Ratio (PSNR) amongst the distorted image Id and the 

predicted version 𝐼𝑝 

𝑓14 = 10𝑙𝑜𝑔10(
2552

1
𝑀
∑ [𝐼𝑑(𝑖) − 𝐼𝑝(𝑖)]

2𝑀
𝑖=1

) 

(D3.7) 

M is defined as the number of pixels in the image. The luminance similarity is correlated to PSNR, 

the author chose contrast and structural similarities amongst 𝐼𝑑 and 𝐼𝑝 to be features 𝑓15 − 𝑓16:  

𝑓15 = 𝐸 (
2𝜎 (𝐼𝑑)𝜎(𝐼𝑝) + 2𝐶1

𝜎 (𝐼𝑑)
2 + 𝜎 (𝐼𝑝)

2 + 2𝐶1
) 

(D3.8) 

𝑓16 = 𝐸 (
𝜎 (𝐼𝑑𝐼𝑝) + 𝐶1

𝜎 (𝐼𝑑)𝜎(𝐼𝑝) + 𝐶1
) 

(D3.9) 

𝐸(·) is to calculate the mean or anticipation value. Physiological and psychophysical studies 

suggest the phase congruency (PC) model offers unpretentious yet biologically plausible model 

of how the HVS senses and recognises features of an image [20, 21]. Therefore, feature 𝑓17 is set 

as: 

𝑓17 = 𝐸(𝑃𝐶𝑚) = 𝐸{𝑚𝑎𝑥[𝑃𝐶(𝐼𝑑), 𝑃𝐶(𝐼𝑝)]} (D3.10) 

PC is defined and broadly implemented in [21]. The gradient magnitude (GM) is defined as 𝐺𝑀 =

√𝐺𝑀𝑥
2 + 𝐺𝑀𝑦

2 , where, 𝐺𝑀𝑥 and 𝐺𝑀𝑦 are partial derivatives of the image in the horizontal (x) 

direction and vertical (y) directions utilising the Scharr operator (a gradient operator). The GM is 

the eighteenth feature 𝑓18: 

𝑓18 = 𝐸(𝐺𝑀𝑚𝑎𝑝) = 𝐸 (
2𝐺𝑀(𝐼𝑑) ∙ 𝐺𝑀(𝐼𝑝) + 𝐶2

𝐺𝑀(𝐼𝑑)
2 + 𝐺𝑀(𝐼𝑝)

2
 + 𝐶2

) 
(D3.11) 

The salient regions (e.g. 𝑃𝐶𝑚)  have a greater effect on HVS when assessing the quality of an 

image. The PC component and GM components which are weighted by 𝑃𝐶𝑚  are combined to 

obtain the feature 𝑓19: 
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𝑓19 =
𝐸(𝐺𝑀𝑚𝑎𝑝 ∙  𝑃𝐶𝑚𝑎𝑝 ∙  𝑃𝐶𝑚)

𝐸(𝑃𝐶𝑚)
 

(D3.12) 

𝑃𝐶𝑚𝑎𝑝 =
2𝑃𝐶(𝐼𝑑) ∙  𝑃𝐶(𝐼𝑝) + 𝐶3

𝑃𝐶(𝐼𝑑)
2 + 𝑃𝐶(𝐼𝑝)

2
 + 𝐶3

 
(D3.13) 

The variables 𝐶2 and 𝐶3 are similar to 𝐶1. They are fixed constants. 

Group three of features: 

The third group consists of four features 𝑓20 − 𝑓23 which ascend from the natural scene statistics 

(NSS) model.  The author expresses the GGD as: 

𝑓 (𝑥;  𝛼, 𝛼2) =
𝛼

2𝛽𝛤(
1
𝛼
) 
𝑒𝑥𝑝 (−(

|𝑥|

𝛽
)

𝛼

 ) 
(D3.14) 

𝛽 = 𝜎√
𝛤 (
1
𝛼
)

𝛤 (
3
𝛼)

 

(D3.15) 

𝛤(𝑎) = ∫ 𝑡𝑎−1𝑒−𝑡 𝑑𝑡
∞

0

 

(D3.16) 

The gamma function is denoted as 𝛤(. ). The parameter α influences the shape and structure of 

the GGD, whilst the 𝜎2 depicts the variance of the distribution. For the NFERM, the zero mean 

distribution is chosen owing to the generally symmetric distribution of the mean subtracted 

contrast normalisation (MSCN) coefficients. The model is deployed to fit the MSCN empirical 

distributions from distorted images and undistorted ones. In each image, the author estimates two 

pairs of parameters (𝛼,  𝜎2 ). This parameter is from a GGD fit of the MSCN coefficients at two 

scales. This creates the last group of features. The algorithm is now demonstrated. 

Algorithm 9: The NFERM metric 

Input: An image that needs to be evaluated. 

Output: A quality score of the image. Higher value represents a lower quality. 

Stage 1: Initialisation  

Load an image, then create a function called NFERM. Pass input image to function. 

Stage 2: Computing features 

3.1 Convert image into gray image and convert to double 

3.2 Compute the Free energy equation 

3.3 Compute features from group one 

3.4 Compute features from group two 
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3.5 Compute features from group three 

3.6 Integrate the features 

Stage 3: The Score 

Once features are integrated the score is produced. 
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Appendix D4: Algorithmic description of Blind/Reference-less Image Spatial 

Quality Evaluator.  

BRISQUE is a no-reference image quality assessor that operates in the spatial domain. The 

BRISQUE model utilises the NSS model of locally normalised luminance coefficients. The 

BRISQUE model enumerates naturalness. The model presents a statistic model of pairwise 

products of neighbouring luminance values. The claim made by the authors [14] is that the 

characterising locally normalised luminance coefficients is sufficient to quantify naturalness and 

quantify the amount of distortions. The NSS in spatial domain has to be determined. The GGD 

with zero mean is expressed as equation D4.1: 

𝑓 (𝑥;  𝛼, 𝛼2) =
𝛼

2𝛽𝛤(
1
𝛼) 

𝑒𝑥𝑝 (−(
|𝑥|

𝛽
)

𝛼

 ) 
(D4.1) 

𝛽 = 𝜎√
𝛤 (
1
𝛼)

𝛤 (
3
𝛼)

 

(D4.2) 

𝛤(𝑎) = ∫ 𝑡𝑎−1𝑒−𝑡 𝑑𝑡
∞

0

 𝑎 > 0 
(D4.3) 

The shape of the distribution is controlled by the parameter  𝛼. The variance is controlled by 

parameter 𝛼2. The theory is that the MSCN coefficients are symmetric and they have distinctive 

statistical properties which are altered by distortion. Measuring these alternations makes it 

probable to envisage the nature of distortion disturbing an image and its perceptual quality. The 

zero mean distribution is chosen because the MSCN coefficients are symmetric. For the Gaussian 

coefficient model, and the assumption that the MSCN coefficients are zero mean and unit 

variance, these products follow the distribution in the non-appearance of distortion [22]. 

𝑓(𝑥, 𝜌) =
𝑒𝑥𝑝 (

|𝑥|𝜌
1 − 𝜌2

) 𝐾0 (
|𝑥|

1 − 𝜌2
) 

𝜋√1 − 𝜌2
 

(D4.4) 

The asymmetric probability density function is defined as 𝑓. The variable, 𝜌 signifies the 

correlation coefficient of adjacent coefficients. The 𝐾0 is the adapted Bessel function of the 

second kind. The author implements the general asymmetric generalised Gaussian distribution 

(AGGD) model [23]. The AGGD with zero mode is expressed by: 
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𝑓(𝑥; 𝑣; 𝜎𝑙
2; 𝜎𝑟

2) =

{
 
 

 
 

𝑣

(𝛽𝑙 + 𝛽𝑟)𝛤 (
1
𝑣
)
𝑒𝑥𝑝(−(

−𝑥

𝛽𝑙
)𝑣)     𝑥 < 0

𝑣

(𝛽𝑙 + 𝛽𝑟)𝛤 (
1
𝑣
)
𝑒𝑥𝑝(− (

𝑥

𝛽𝑟
)𝑣)      𝑥 ≥ 0

 

 

(D4.5) 

Where 𝛽𝑙 = 𝜎𝑙√
𝛤(

1

𝑣
)

𝛤(
3

𝑣
)
  and 𝛽𝑟 = 𝜎𝑟√

𝛤(
1

𝑣
)

𝛤(
3

𝑣
)
 

The shape of the distribution is controlled by the parameter 𝜈 controls. The spread is controlled 

by the parameters 𝜎𝑙
2 and 𝜎𝑟

2 on the separate sides of the model. The author adopts an asymmetric 

generalised Gaussian distribution (AGGD). The parameters (𝜂, 𝑣, 𝜎𝑙
2, 𝜎𝑟

2) of the best AGGD fit 

are removed where 𝜂 is expressed as: 

𝜂 = (𝛽𝑙 − 𝛽𝑟) 
𝛤 (
2
𝑣)

𝛤 (
1
𝑣
)
 

 

(D4.6) 

Each paired product, consisting of sixteen parameters are calculated, producing the next set of 

features. Images are naturally multiscale and distortions affect image structure. Studies showed 

that incorporating multiscale information when evaluating the quality assessment methods 

perform better and correlate with the HSV [24, 25].  
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Appendix E: Survey for Paper 1 

 An analysis of objective and human assessments in contrast enhancement- Questionnaire  

As part of my master’s research at the University of KwaZulu Natal, I am conducting a survey 

that investigates the quality of images. This visual assessment will allow the recipient to score 

enhanced images according to how they perceive it. This survey is to be taken willingly and 

respondents are not obliged to participate. Your attitudes and opinions are critical to the success 

of the study.  The value of your time is recognised and your efforts are sincerely appreciated. This 

survey should take 10-15 minutes to complete. Thank you for your time and responses. 

Demographic Data                

Age:                                     Gender: 

Any visual disability:    

If so, provide details:           

On a scale from 1 to 10, where 1 is poor vision and 10 is excellent vision, how would you rate 

your vision?     

Image processing involves manipulation of a digitalised image, normally to improve the quality 

of the image. Digital image processing technique can be applied in many different fields such as 

object detection and matching, background subtraction in video, traffic control systems, locating 

objects in face recognition, iris recognition, medical imaging, etc. Digital image processing 

addresses challenges and issues such as loss of image quality and to enhance degraded images. 

This experiment aims to assess image enhancements methods. The survey will be conducted in 

two parts/sections: 

Instructions: 

Section 1: Enhancement Rating 

You are given 8 sets of 6 images. Each set contains the original image and five enhanced images 

placed next to it. You must compare and evaluate each image on a scale from score 1 to 5. The 

scores indicate how you perceive the enhancement quality and visual preference, where: 

1-very poor (the enhancement is much worse) 

2- poor (worse) 

3- the image is the same 

4- good (Image has improved) 

5- excellent (the image is much better than original) 

Section 2: Best image 

You are given 8 sets of 6 images and you will be required to choose the most 

natural/unnatural/detail image. The original image is included in the set. The set is mixed 

randomly.  

Male Female 
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Section 1: Enhancement Rating 

1. Image set 1 

Please tick the score you choose to give 

           Rating 

Image 

 

1 

 

2 

 

3 

 

4 

 

5 

2 
     

3 

     

4 
     

5 

     

6 
     

2. Image set 2 

Please tick the score you choose to give 

           Rating 

Image 

 

1 

 

2 

 

3 

 

4 

 

5 

2 

     

3 
     

4 

     

5 
     

6 

     

3. Image set 3 

Please tick the score you choose to give 

           Rating 

Image 

 

1 

 

2 

 

3 

 

4 

 

5 

2 

     

3 
     

4 

     

5 
     

6 
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4. Image set 4 

Please tick the score you choose to give 

           Rating 

Image 

 

1 

 

2 

 

3 

 

4 

 

5 

2 
     

3 
     

4 

     

5 
     

6 

     

5. Image set 5 

Please tick the score you choose to give 

           Rating 

Image 

 

1 

 

2 

 

3 

 

4 

 

5 

2 

     

3 
     

4 

     

5 
     

6 

     

6. Image set 6 

Please tick the score you choose to give 

           Rating 

Image 

 

1 

 

2 

 

3 

 

4 

 

5 

2 

     

3 
     

4 

     

5 
     

6 
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7. Image set 7 

Please tick the score you choose to give 

           Rating 

 

Image 

 

1 

 

2 

 

3 

 

4 

 

5 

2 
     

3 
     

4 

     

5 
     

6 

     

8. Image set 8 

Please tick the score you choose to give 

           Rating 

 

Image 

 

1 

 

2 

 

3 

 

4 

 

5 

2 
     

3 
     

4 

     

5 
     

6 
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Section 2: The best image 

1. Which image looks the most natural and which one looks least natural? 

              Please tick the most natural image and add a cross to the least natural image. 

Image set a b c d e f   

9 
      

  

10 

      
  

11 
      

  

12 

      
  

13 
      

  

14 

      
  

15 
      

  

16 

      
  

 

2. Which image has the most detail? 

               Please tick the rating you choose to give. 

Image a b c d e f   

9 

      
  

10 
      

  

11 

      
  

12 
      

  

13 

      
  

14 
      

  

15 

      
  

16 
      

  

Thank you for your time.   
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Appendix F: Survey for Paper 2 

Multimodal Enhancement-Fusion Technique for Natural Images – Questionnaire 

As part of my master’s research at the University of KwaZulu Natal, I am conducting a survey 

that investigates the quality of images. This visual assessment will allow the recipient to score 

enhanced images according to how they perceive it. This survey is to be taken willingly and 

respondents are not obliged to participate. Your attitudes and opinions are critical to the success 

of the study.  The value of your time is recognised and your efforts are sincerely appreciated. This 

survey should take 10-15 minutes to complete. Thank you for your time and responses. 

Demographic Data                

Age:                    Gender: 

Any visual disability:    

If so, provide details:           

On a scale from 1 to 10, where 1 is poor vision and 10 is excellent vision, how would you rate 

your vision?    

Image processing involves manipulation of a digitalised image, normally to improve the quality 

of the image. Digital Image Processing technique can be applied in many different fields such as 

object detection and matching, background subtraction in video, traffic control systems, locating 

objects in face recognition, iris recognition, medical imaging, etc. Digital Image Processing 

addresses challenges and issues such as loss of image quality and to enhance degraded images. 

This experiment aims to assess image enhancements methods.  

Instructions: 

Enhancement Rating 

You are given 8 sets of 6 images. Each set contains the original image and five enhanced images 

placed next to it. You must compare and evaluate each image on a scale from score 1 to 5. The 

scores indicate how you perceive the enhancement quality and visual preference, where: 

1-very poor (the enhancement is much worse) 

2- poor (worse) 

3- the image is the same 

4- good (Image has improved) 

5- excellent (the image is much better than original) 

 

 

 

 

 

Male Female 
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1. Image set 1 

Please tick the score you choose to give 

           Rating 

Image 

 

1 

 

2 

 

3 

 

4 

 

5 

2 

     

3 
     

4 

     

5 
     

6 

     

2. Image set 2 

Please tick the score you choose to give 

           Rating 

Image 

 

1 

 

2 

 

3 

 

4 

 

5 

2 

     

3 
     

4 

     

5 
     

6 

     

3. Image set 3 

Please tick the score you choose to give 

           Rating 

Image 

 

1 

 

2 

 

3 

 

4 

 

5 

2 

     

3 
     

4 

     

5 
     

6 
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4. Image set 4 

Please tick the score you choose to give 

           Rating 

Image 

 

1 

 

2 

 

3 

 

4 

 

5 

2 
     

3 
     

4 

     

5 
     

6 

     

5. Image set 5 

Please tick the score you choose to give 

           Rating 

Image 

 

1 

 

2 

 

3 

 

4 

 

5 

2 

     

3 
     

4 

     

5 
     

6 

     

6. Image set 6 

Please tick the score you choose to give 

           Rating 

Image 

 

1 

 

2 

 

3 

 

4 

 

5 

2 

     

3 
     

4 

     

5 
     

6 
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7. Image set 7 

Please tick the score you choose to give 

           Rating 

 

Image 

 

1 

 

2 

 

3 

 

4 

 

5 

2 

     

3 
     

4 

     

5 
     

6 

     

8. Image set 8 

Please tick the score you choose to give 

           Rating 

 

Image 

 

1 

 

2 

 

3 

 

4 

 

5 

2 

     

3 
     

4 

     

5 
     

6 
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