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Abstract

A molecular-tensor theory of the second electric-field-gradient-induced birefringence

(EFGIB) virial coefficient BQ, which describes the effects of molecular pair interac-

tions on the molar Buckingham constant mQ, is developed for non-dipolar molecules

with axial and higher symmetry.

The resulting expressions for contributions to BQ are evaluated numerically for the

molecules CO2, C2H4 and C2H6. These molecules were chosen since previously de-

veloped molecular-tensor theories of the second light-scattering virial coefficient Bρ

and the second Kerr-effect virial coefficient BK have yielded calculated values for

these species which are in close agreement with the available measured data.

The BQ values calculated for CO2, C2H4 and C2H6 reveal that, for the fluids behav-

ing as gases, the pair-interaction contributions to mQ are generally at or below the

threshold of resolution of the EFGIB apparatus, so that the measured mQ values

reported in the literature have not been contaminated by pair-interaction effects. In

addition, it is seen that if the precision of measured mQ data can be increased by

around an order of magnitude, it should in principle become possible to resolve BQ

contributions, particularly for higher gas densities.
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Chapter 1

Review and Introduction

1.1 Review

The permanent multipole moments of a molecule, such as its electric dipole, quad-

rupole and octopole moments, are fundamental properties which describe the molec-

ular charge distribution [1–3]. For molecules which are far apart compared to the

molecular dimensions, it is these permanent electric moments which determine the

intermolecular energy of interaction, called the electrostatic energy. The polarizabil-

ities describe the distortion of the molecular charge distribution either by external

applied fields or the fields arising from the permanent moments of the neighbouring

molecules. Accurate and precise knowledge of the permanent multipole moments

and polarizabilities is necessary for a detailed understanding of molecular structure

and intermolecular forces.

1.1.1 The multipole expansion

A full description of two interacting molecules is a many-body problem, requiring

consideration of the dynamic interaction of all charges on each other. Such a de-

scription is not readily tractable, and simplifications become necessary. Ignoring the

1
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internal motion of the molecule’s electrons as well as the motion of the molecule as

a whole allows for the application of electrostatic theory. If the separation of the

molecules is sufficiently large, it becomes possible to expand the electrostatic poten-

tial of a molecule about an arbitrarily chosen origin which is close to the charges.

This gives rise to a series of moments of charge, knowledge of which allows for useful

characterization of the molecule.

Consider a distribution of charges qi in a vacuum. Let the charges have displacement

vectors ri from an arbitrary origin O which is close to, or within, the distribution.

The electrostatic potential φ produced by this distribution at some arbitrary point

P with displacement vector R from the origin, where R > ri, is given by

φ(R) =
1

4πε0

∑
i

qi
|R− ri|

. (1.1)

Invoking the binomial theorem to expand the denominator of this summation yields

φ(R) =
1

4πε0

[
1

R

∑
i

qi +
Rα

R3

∑
i

qi riα +
3RαRβ −R2δαβ

2R5

∑
i

qi riαriβ + · · ·

]
.

(1.2)

The Greek subscripts α, β, · · · , denote tensor components (a vector being a first-

rank tensor), and can be equal to the Cartesian components x, y or z. Using the

Einstein summation convention, a repeated Greek subscript denotes a summation

over all three Cartesian components. δαβ is the Kronecker delta tensor, δαβ = 1

if α = β, δαβ = 0 if α 6= β. The various moments of electric charge of the

distribution are as follows:
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the total charge

q =
∑
i

qi , (1.3)

the electric dipole moment

µα =
∑
i

qi riα , (1.4)

and the (primitive) electric quadrupole moment

Qαβ =
∑
i

qi riαriβ . (1.5)

The higher-order moments are the octopole, hexadecapole, · · · , however, since their

contributions to the electrostatic potential of molecules which have a permanent

electric quadrupole moment are successively smaller, they will not be considered in

this work. The definition of the electric quadrupole moment in equation (1.5) is

known as the primitive, or traced, quadrupole moment. An alternative, and often

more useful, definition is the traceless quadrupole moment, which describes the

departure from spherical symmetry of the charge distribution, and is given by [4]

Θαβ =
1

2
(3Qαβ −Qγγδαβ) =

1

2

∑
i

qi
(
3riαriβ − r2

i δαβ
)
. (1.6)

The name “traceless” arises because Θαα = 0.

The electrostatic potential of the charge distribution can be recast in terms of the

moments of charge, namely

φ(R) =
1

4πε0

[
1

R
q +

Rα

R3
µα +

3RαRβ −R2δαβ
3R5

Θαβ + · · ·
]
. (1.7)

Here, the contributions arising from terms for successively higher multipole mo-
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ments are successively diminished by a factor of the order 1
R

. Hence, the leading

non-vanishing moment provides a reasonably accurate description of the electro-

static potential φ at point P provided the distance R is sufficiently large. Since the

contribution to the expanded property arising from each of the multipole moments

depends only on the displacement R of point P from O, the multipole moments are

considered to be located at the origin O.

If an electrostatic field E is applied to the charge distribution, the distribution will

experience a net force F given by

Fα =
∑
i

qiEiα = q(Eα)0 + µβ(∇βEα)0 +
1

3
Θβγ(∇γ∇βEα)0 + · · · . (1.8)

Here, the field and its derivatives are determined at the origin O about which the

Taylor expansion of the field has been taken. From equation (1.8), it can be shown

that a quadrupolar charge distribution will experience a torque in a region of uniform

field gradient. Equation (1.8) can be used to determine the potential energy U of

the charge distribution in the presence of the applied field [3, 5]:

U = −
∫ r2(E=E)

r1(E=0)

Fα drα = qφ−
∫ E

0

µα dEα −
1

3

∫ E

0

Θαβ d(∇βEα)− · · · . (1.9)

For a rigid charge distribution, it is only the permanent multipole moments which

will contribute to equation (1.9), giving

U = qφ− µ(0)
α Eα −

1

3
Θ

(0)
αβ∇βEα − · · · , (1.10)

where the permanent multipole moments have the superscript (0).

For an axially symmetric charge distribution, each multipole moment is determined

by a single scalar quantity, namely q, µ, Θ, · · · ; for example, the quadrupole moment



1.1. REVIEW 5

Θαβ has principal components Θzz = Θ, Θxx = Θyy = −1
2
Θ.

The effect of a change of origin on a quadrupole moment can be established by

moving O by r′ to O′. The quadrupole moment Θ′ relative to the new origin O′ is

Θ′αβ =
1

2

∑
i

qi
(
3r′iαr

′
iβ − (r′i)

2δαβ
)

(1.11)

which becomes

Θ′αβ = Θαβ −
3

2
µαr

′
β −

3

2
µβr

′
α + µγr

′
γδαβ +

1

2
q
{

3r′αr
′
β − (r′)2δαβ

}
. (1.12)

The quadrupole moment is seen to be independent of the choice of origin if and only

if both q and µα are zero. Indeed, it can be shown that in general, only the leading

non-zero electric multipole moment is independent of the choice of origin. For a

dipolar molecule, the quadrupole moment will depend on the location of the origin.

In this work, only non-dipolar molecules will be considered.

1.1.2 Direct experimental determination of molecular elec-

tric quadrupole moments

As described in the preceding section, a non-uniform electric field will exert a torque

on a quadrupolar molecule. In a gas of such molecules, the electric field will result

in partial alignment of the molecules, causing the gas to become anisotropic and

hence birefringent. This electric-field-gradient-induced birefringence (EFGIB), now

known as the Buckingham effect, when described by a suitable molecular-tensor the-

ory, yields a direct means for the determination of the electric quadrupole moment

of a molecule. This method was first proposed by Buckingham in 1959 [6], and

the experiment was first successfully demonstrated by Buckingham and Disch on
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the CO2 molecule in 1963 [7]. Since then, a number of researchers have performed

EFGIB experiments on a range of non-dipolar as well as dipolar molecules, as de-

scribed in two recent review articles [8, 9].

Buckingham’s initial theory [6] is applicable only to non-dipolar molecules. The

quadrupole moment of a dipolar molecule will depend on the origin to which these

moments are referred. Hence, in 1968, Buckingham and Longuet-Higgins developed

a new theory of EFGIB for dipolar molecules based upon the forward scattering

of light-wave radiation by the molecules when in the presence of an applied non-

uniform electric field [10].

In 1991, Imrie and Raab published a new theory of EFGIB using eigenvalue the-

ory of wave propagation, based on Maxwell’s equations [11]. Their theory used the

primitive electric quadrupole moment, and their derived expression for the induced

birefringence was shown to be origin independent, as required. However, when using

the traceless quadrupole moment in their theory, they obtained an origin-dependent

result for the birefringence of dipolar molecules which differed from the Bucking-

ham Longuet-Higgins theory. In an attempt to resolve this discrepancy, accurate ab

initio calculations of the dipolar molecules CO, N2O and OCS were undertaken by

Rizzo, Coriani, Halkier and co-workers [12, 13], whose results favoured the Longuet-

Higgins theory. Raab and de Lange eventually brought a definitive resolution to the

controversy through a revision of the Imrie-Raab theory, re-obtaining exactly the

original Buckingham and Longuet-Higgins result [3, 14, 15].

Experimental measurement of EFGIB has been used to determine the electric quad-

rupole moments of a range of small molecules including H2, O2, N2, Cl2, CO2, CS2,

C2H4, C2H6, C3H4, C3H6, C4H6, C6H6, C6F6, CO, OCS, N2O and CH3F [7, 16–30].

In all of these experiments it has been assumed that the contribution to the EFGIB
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arising from molecular pair interactions is negligible.

There exists a range of alternative methods for measuring the electric quadrupole

moments of molecules, these methods often relying on the study of molecular in-

teractions, such as through collision-induced absorption in far-infrared spectra [4].

Most of these methods are indirect, and are dependent on the model used to de-

scribe the intermolecular interaction potential. Consequently, these data are not

considered to be particularly reliable [4].

Ab initio quantum mechanical calculations of molecular properties such as the molec-

ular electric quadrupole moment are becoming increasingly sophisticated and accu-

rate. A good review of present state-of-the-art techniques is available [31]. To attain

highly accurate ab initio calculations of the electric quadrupole moment is a non-

trivial task, and requires the use of large basis sets and the inclusion of electron cor-

relation effects and vibrational averaging, making the calculations computationally

intensive. Accurate experimental determinations of quadrupole moments provide

the quantum computationalists with useful benchmarks against which to assess the

effects arising from refinements in their high-level ab initio methods.

1.2 The EFGIB of interacting molecules

A number of electromagnetic properties of gases are proportional to the number den-

sity of the constituent molecules, and for ideal gases, this proportionality is exact

since each molecule is treated as an independent system, there being no interactions

between the molecules. For real gases, in which molecules do interact with their

neighbours, the electromagnetic properties will display a non-linear dependence on

the number density of the molecules.
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In 1956, Buckingham and Pople demonstrated how these intermolecular interaction

effects can be accounted for through the use of a virial-type expansion [32]. In

general, they represented any measurable molecular-optic property of a real gas by

the parameter Q, and provided as examples of particular properties the refractive

index, the dielectric constant, the Kerr effect and the Cotton-Mouton effect. The

molecular-optic property which is the subject of this investigation is the Buckingham

effect, for which the property Q is the molar Buckingham constant mQ. Q can be

expressed as a virial expansion in inverse powers of the molar volume Vm as follows:

Q = AQ +
BQ

Vm

+
CQ
V 2

m

+ · · · , (1.13)

where the first virial coefficient AQ provides the ideal gas contribution to Q, while

BQ is the second virial coefficient describing the contribution to Q arising from the

interaction of molecular pairs, and CQ is the third virial coefficient, accounting for

the contribution arising from interacting triplets. These virial coefficients are func-

tions of the temperature alone, or for optical phenomena, of temperature and optical

frequency alone [32].

If Q is a macroscopic property of a mole of ideal-gas molecules, and q is the micro-

scopic contribution to this property arising from a single molecule, then Q will be

the sum of the NA mean contributions q of the individual isolated molecules, namely

Q = AQ = NA q . (1.14)

For higher gas densities, there are times when a representative molecule 1 is interact-

ing with a neighbouring molecule 2, their relative configuration being described by

the collective symbol τ , and their contribution to Q at any given instant being q12(τ).

(The interaction configuration τ is described in detail following equation (2.48)).

Molecule 1 must be treated as half of an interacting pair, so that its contribution to
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Q at a given instant is 1
2
q12(τ). Neglecting any triplet or higher-order interactions,

Q becomes [32]

Q = NA

{
q +

∫
τ

[1

2
q12(τ)− q

]
P (τ) dτ

}
, (1.15)

where P (τ) dτ is the probability that molecule 1 has a neighbour in the range (τ, τ+

dτ). The relationship between the intermolecular potential energy U12(τ) and the

probability function is provided by

P (τ) =
NA

ΩVm

e−U12(τ)/kT , (1.16)

where Ω = V −1
m

∫
τ
dτ . From equation (1.13),

BQ = lim
Vm→∞

(Q− AQ)Vm , (1.17)

which combined with equations (1.14) to (1.16) yields

BQ =
N2

A

Vm

∫
τ

[1

2
q12(τ)− q

]
e−U12(τ)/kTdτ . (1.18)

This general expression for BQ can be applied to the particular molecular-optic prop-

erty Q under consideration. In this work, it will be applied to EFGIB for interacting

pairs of non-dipolar molecules.

In 2003, Marchesan, Coriani and Rizzo published a paper presenting a computa-

tional ab initio investigation of the density dependence of EFGIB for gases of the

noble atoms helium, neon and argon [33]. The second EFGIB virial coefficient was

computed for each of these gases over a range of temperature. These atoms do not

possess permanent quadrupole moments, being spherically symmetric. For interact-

ing pairs, the dimers do however exhibit a small quadrupole moment. By computing
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the internuclear dependence of the molecular quadrupole moment and the dipole-

dipole-quadrupole and dipole-magnetic dipole-dipole hyperpolarizabilities of the van

der Waals dimers, they were able to successfully determine the second EFGIB virial

coefficients for these species. The pair-interaction contributions to the EFGIB were

found to be of the order of a few tens of parts per million for helium and neon, and

of the order of a few parts per thousands for argon at standard experimental condi-

tions, and hence would not be detectable with the presently available experimental

apparatus.

We are not aware of any other theoretical studies of the density dependence of

EFGIB in the literature.

1.3 The aim of this project

1.3.1 The relevance of molecular electric quadrupole mo-

ments

Multipole theory in electrostatics, magnetostatics and electrodynamics has often

been very successful in relating various macroscopic electromagnetic phenomena in

matter to the microscopic structure of individual molecules (for gases) or of unit

cells (for crystals) [1–3]. For molecules which have no permanent electric dipole

moment, and for which the electric quadrupole moment is the leading moment of

charge, accurate and precise knowledge of the quadrupole becomes essential to the

description of a range of thermodynamic, structural and spectral properties.

Take CO2 for example. CO2 is a greenhouse gas, and its release into the atmo-

sphere via the burning of fossil fuels is contributing to global climate change. Post-

combustion capture of this molecule is presently an extremely active field of research.

The quadrupole moment of CO2 is relatively large, and this can be exploited since
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the molecule can bind preferentially to adsorbents compared to the nitrogen and

oxygen in the atmosphere, these molecules both having comparatively rather small

quadrupole moments [34–38]. The quadrupole moment of CO2 is also relevant to

atmospheric and space physics, such as in the measurement and modelling of ra-

diative transfer in planetary atmospheres, which includes significant effects from

collision-induced absorption involving CO2 and other molecules. [39]

For those dipolar molecules which have relatively small dipole moments, such as

CO, N2O and OCS, their quadrupole moments can play a significant role in various

phenomena. N2O is also a major greenhouse gas as well as an ozone-depleting gas,

and the quadrupole moment is essential to understanding, for example, its adsorp-

tion and desorption as a means to suppressing its emission from soil [40]. CO is

an important biological gas, and knowledge of its molecular quadrupole moment

has proven useful in, for example, the modelling of the migration of the CO mol-

ecule in myoglobin via molecular dynamics simulations [41]. CO is also the second

most abundant gas-phase molecule in the interstellar medium. It is present in the

solid phase in dense molecular clouds, and recent quantum-mechanical simulations

of solid CO show how the quadrupolar character of the molecule accounts for the

energetics of the CO-H2O ice interaction [42].

1.3.2 Accounting for pair-interaction contributions to EFGIB

Measurement of EFGIB in gases is clearly a very useful route to determining molec-

ular electric quadrupole moments. What is assumed in these experiments is that

contributions arising from molecular pair interactions are sufficiently small at typical

experimental pressures and temperatures that they can be ignored. The essential

aim of this project is to develop a molecular-tensor theory of second Buckingham-
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effect virial coefficients BQ, and to use it to calculate BQ for some typical small

molecules. This will allow for a quantitative assessment of the relative contributions

of pair-interaction effects to the measured EFGIB for a range of gases. Such knowl-

edge can guide experimentalists in future attempts to measure BQ, since the gas

densities at which pair interactions should become discernible using present EFGIB

apparatus will be known. Knowledge of BQ will also reveal the extent to which the

measured EFGIB data in the literature have been contaminated by pair-interaction

contributions.

Section 2.1 of Chapter 2 reviews the theory of the Buckingham effect in ideal gases,

while Section 2.2 presents the new molecular-tensor theory for the Buckingham effect

accounting for pair-interaction contributions in dense gases comprised of non-dipolar

molecules. Chapter 3 presents the calculated second EFGIB virial coefficients for

gases of pure CO2, C2H4 and C2H6, and includes comprehensive discussion of the

implications of the results, both for existing measured EFGIB data and for any

future experimental determinations of EFGIB data.



Chapter 2

The Theory of the Buckingham

Effect

2.1 Non-interacting molecules

The approach initially adopted by Buckingham to derive a theory of the EFGIB ef-

fect, or Buckingham effect, for the special case of non-dipolar molecules [6] is similar

to that used by Buckingham and Pople to obtain theories of the Kerr electro-optic

effect [43] and the Cotton-Mouton magneto-optic effect [44].

Consider a neutral molecule in the presence of an external electrostatic field E and

field gradient ∇E. The orientation and position of the molecule is given by the

variable τ . For all but the lightest of molecules at typical experimental tempera-

tures (ca. 300 K to 500 K) the rotational energy levels are sufficiently close together

that the orientation may be considered to vary continuously, and hence be treated

classically rather than quantum mechanically.

The electric field E can be written in tensor notation as Eα, while the field gradient

∇E can be written as ∇βEα, or as Eαβ. Buckingham’s EFGIB apparatus comprises

13
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a gas cell which is a conducting metal cylinder down the length of which run two thin

parallel wires, which are separated by a small distance and which are equidistant

from the cylinder’s axis [7]. The cylinder is earthed, while the wires are held at the

same potential relative to the cylinder, such that the axis experiences zero electric

field but a high field gradient. If the space-fixed laboratory frame O(x, y, z) is fixed in

the quadrupole cell such that z is along the axis of the cylinder and in the direction

of propagation of the light beam (which is parallel to, and centred on, the cell’s

axis), while the wires lie in the yz−plane, then the electric field-gradient tensor in

the region between the wires is given by [6, 7]

∇βEα = Eαβ =


Exx 0 0

0 Eyy = −Exx 0

0 0 0

 . (2.1)

Here, the Greek subscripts pertain to the laboratory frame.

For a fixed position and orientation τ , the energy of a molecule in the field is

U(τ,E,∇E). This energy can be written as a power-series expansion [1]

U(τ,E,∇E) = U (0) − µ(0)
i Ei −

1

2
α

(0)
ij EiEj −

1

6
β

(0)
ijkEiEjEk

− 1

24
γ

(0)
ijklEiEjEkEl −

1

3
Θ

(0)
ij Eij −

1

3
A

(0)
ijkEiEjk

− 1

6
B

(0)
ijklEiEjEkl −

1

6
C

(0)
ijklEijEkl + · · · ,

(2.2)

where the terms µ
(0)
i and Θ

(0)
ij are the permanent electric dipole and quadrupole mo-

ments respectively, while the second-rank tensor α
(0)
ij is the static polarizability and
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the third- and fourth-rank tensors β
(0)
ijk and γ

(0)
ijkl are the first- and second-order static

hyperpolarizabilities of the molecule. These (hyper)polarizability tensors, together

with the static polarizability tensors A
(0)
ijk, B

(0)
ijkl and C

(0)
ijkl, arise from the distortion

of the charge distribution of the molecule by the applied field Eα and field gradient

Eαβ. Each of these polarizability tensors is unique, resulting from a particular com-

bination of applied electric field and/or field gradient. Note that all tensors with

Roman subscripts refer to the molecule-fixed axes O(1, 2, 3).

For a gas of non-dipolar molecules, which is the focus of this project, the energy

reduces to

U(τ,E,∇E) = U (0) − 1

2
α

(0)
ij EiEj −

1

24
γ

(0)
ijklEiEjEkEl

− 1

3
Θ

(0)
ij Eij −

1

6
B

(0)
ijklEiEjEkl −

1

6
C

(0)
ijklEijEkl + · · · .

(2.3)

For a dilute gas, the oscillating dipole moment µi of a molecule arises solely due to

the polarizing action of the oscillating electric field Ei of the light wave, and it is

this oscillating dipole which primarily determines the refractive index. The optical-

frequency polarizability tensor αij is modified by the applied non-uniform field so

that the induced dipole moment for a non-dipolar diamagnetic molecule becomes [1]

µi = αijEj +
1

3
BijklEjEkl + · · · . (2.4)

The differential polarizability πij is defined as [1]

πij =
∂µi
∂Ej

= αij +
1

3
BijklEkl + · · · . (2.5)

Buckingham’s method to measure the molecular electric quadrupole moment of a

gas molecule [6, 7] uses a technique whereby the gas sample is placed in the presence
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of an applied non-uniform electric field, which partially orients the molecules. The

resulting anisotropy in the refractive index, induced by the applied field and field

gradient, is then measured ellipsometrically. This difference between the refractive

indices of the gas for light travelling along the z−axis with electric vectors in the x

and y directions, nx − ny, is given as [1]

nx − ny =
2πNA

(4πε0)Vm

π . (2.6)

Here NA is Avogadro’s number, ε0 is the permittivity of free space, Vm is the molar

volume of the gas sample, and π is the orientational average of π, where π is the dif-

ference between the differential polarizabilities for a specific molecular configuration

τ , namely

π = π(τ,E,∇E) = πxx − πyy = πij
(
axi a

x
j − a

y
i a

y
j

)
. (2.7)

Here, axi is the direction cosine between the x space-fixed and i molecule-fixed axes,

while ayi is the direction cosine between the y space-fixed and i molecule-fixed axes.

Since the molecule is tumbling in space, the overbar in π denotes the orientational

average of π over all configurations in the presence of the biasing influence of the

applied non-uniform electric field. To proceed, it is assumed that the rapidly os-

cillating field of the incident light wave is sufficiently weak that it does not affect

the orientation of the molecule, that the orientational variable τ is continuous, and

that a Boltzmann-type weighting factor can be used to determine the orientational

average required [3]. π can then be written as

π =

∫
π(τ,E,∇E)e−U(τ,E,∇E)/kTdτ∫

e−U(τ,E,∇E)/kTdτ
. (2.8)
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The biased average in equation (2.8) can be converted into isotropic averages, i.e. the

much more straightforward orientational averages for zero field and field gradient.

This is achieved through a Taylor-series expansion of π in powers of both the field

and field gradient, which yields

π = AExx +BE2
x + CE3

xx + · · · (2.9)

where

A =

(
∂π

∂Exx

)
Ex=Exx=0

, B =
1

2

(
∂2π

∂E2
x

)
Ex=Exx=0

, C =
1

3!

(
∂3π

∂E3
xx

)
Ex=Exx=0

.

(2.10)

π is seen to be an even function of the electric field and an odd one in the electric

field gradient. It can be shown that for molecules in the presence of a typical

experimental electric field gradient of Exx < 109 V m−2, π can be reduced to the

first term in equation (2.9) as the subsequent terms are negligible when working in

the dipole approximation [45]. Therefore

π = AExx =

(
∂π

∂Exx

)
Ex=Exx=0

Exx (2.11)

where
(

∂π
∂Exx

)
is evaluated with both the field and the field gradient being zero.

Differentiating equation (2.8) yields

(
∂π

∂Exx

)
Ex=Exx=0

=

〈
∂π

∂Exx

〉
− 1

kT

〈
π

(
∂U

∂Exx

)〉
. (2.12)

The angular brackets in (2.12) denote an isotropic average over all possible orienta-

tions τ of the molecule. For molecular property X,

〈X〉 =

∫
X(τ, 0)e−U(τ,0)/kTdτ∫

e−U(τ,0)/kTdτ
. (2.13)
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Substituting equation (2.12) back into equation (2.11) gives an expression for π as

π =

{〈
∂π

∂Exx

〉
− 1

kT

〈
π

(
∂U

∂Exx

)〉}
Exx . (2.14)

To solve for π in equation (2.14), two expressions need to be evaluated, namely(
∂π
∂Exx

)
and

(
π ∂U
∂Exx

)
.

It is useful to first obtain the transformation of the electric field gradient from the

laboratory frame of space-fixed axes into molecule-fixed axes. This is achieved by

means of the direction cosines, so that

Eij = aiαa
j
βEαβ . (2.15)

Since the electric field gradient Eαβ has only two non-zero components, namely Exx

and Eyy = − Exx (see equation (2.1)), Eij becomes

Eij = aixa
j
xExx + aiya

j
yEyy =

(
aixa

j
x − aiyajy

)
Exx , (2.16)

which is equivalent to

Eij =
(
axi a

x
j − a

y
i a

y
j

)
Exx . (2.17)

In order to obtain π(τ,E,∇E), the term
(

∂π
∂Exx

)
needs to be evaluated. From

equation (2.7),

(
∂π

∂Exx

)
Ex=Exx=0

=
∂

∂Exx

[
πij
(
axi a

x
j − a

y
i a

y
j

) ]
Ex=Exx=0

. (2.18)

Therefore, by differentiating equation (2.5) with respect to the field gradient com-
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ponent Exx, the following is obtained

(
∂π

∂Exx

)
Ex=Exx=0

=

[
∂

∂Exx

(
αij +

1

3
BijklEkl + · · ·

)(
axi a

x
j − a

y
i a

y
j

) ]
. (2.19)

Making use of the result in equation (2.17) yields

(
∂π

∂Exx

)
Ex=Exx=0

=

[
∂

∂Exx

(
αij +

1

3
Bijkl (a

x
ka

x
l − a

y
ka

y
l )Exx + · · ·

)(
axi a

x
j − a

y
i a

y
j

) ]
.

(2.20)

Hence,

〈
∂π

∂Exx

〉
=

1

3
Bijkl

〈 (
axi a

x
j − a

y
i a

y
j

)
(axka

x
l − a

y
ka

y
l )
〉
. (2.21)

This expands to

〈
∂π

∂Exx

〉
=

1

3
Bijkl

〈
axi a

x
ja

x
ka

x
l − axi axja

y
ka

y
l − a

y
i a

y
ja

x
ka

x
l + ayi a

y
ja

y
ka

y
l

〉
. (2.22)

The isotropic averages of direction cosines are discussed in detail in [2], which pro-

vides the relationships

〈
axi a

x
ja

x
ka

x
l

〉
=
〈
ayi a

y
ja

y
ka

y
l

〉
, (2.23)

〈
axi a

x
ja

y
ka

y
l

〉
=
〈
ayi a

y
ja

x
ka

x
l

〉
. (2.24)

Substituting these results into equation (2.22) yields

〈
∂π

∂Exx

〉
=

2

3
Bijkl

〈
axi a

x
ja

x
ka

x
l − axi axja

y
ka

y
l

〉
. (2.25)

The terms in equation (2.25) are evaluated by invoking the following standard results
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of isotropic averages [2, 43]:

〈
axi a

x
ja

x
ka

x
l

〉
=

1

15
(δijδkl + δikδjl + δilδjk) , (2.26)

〈
axi a

x
ja

y
ka

y
l

〉
=

1

30
(4δijδkl − δikδjl − δilδjk) . (2.27)

Substituting the results in equations (2.26) and (2.27) into equation (2.25) yields

〈
∂π

∂Exx

〉
=

1

45
Bijkl

[
− 2δijδkl + 3δikδjl + 3δilδjk

]
, (2.28)

while contracting over the subscripts yields

〈
∂π

∂Exx

〉
=

1

45

[
− 2Biijj + 3Bijij + 3Bijji

]
. (2.29)

Equation (2.29) can be further reduced since the B-tensor is traceless [1], so that

Biijj = 0. Together with the result Bijij = Bijji [1], equation (2.29) can be written

as

〈
∂π

∂Exx

〉
=

1

45

[
6Bijij

]
=

6

45
Bijij . (2.30)

The second term in equation (2.14) still needs to be evaluated. This expression,(
π ∂U
∂Exx

)
, is evaluated with the field and the field gradient being zero. By using

equations (2.5) and (2.7) this term becomes

(
π
∂U

∂Exx

)
Ex=Exx=0

= αij
(
axi a

x
j − a

y
i a

y
j

)( ∂U

∂Exx

)
Ex=Exx=0

. (2.31)

The term
(

∂U
∂Exx

)
Ex=Exx=0

is obtained through differentiation of equation (2.2) with



2.1. NON-INTERACTING MOLECULES 21

respect to the Exx component of the electric field gradient, which yields

(
∂U

∂Exx

)
Ex=Exx=0

= −1

3
Θ

(0)
ij

(
axi a

x
j − a

y
i a

y
j

)
. (2.32)

Hence,

〈
π
∂U

∂Exx

〉
= −1

3
αijΘ

(0)
kl

〈 (
axi a

x
j − a

y
i a

y
j

)
(axka

x
l − a

y
ka

y
l )
〉

= −1

3
αijΘ

(0)
kl

〈
axi a

x
ja

x
ka

x
l − axi axja

y
ka

y
l − a

y
i a

y
ja

x
ka

x
l + ayi a

y
ja

y
ka

y
l

〉
.

(2.33)

As before, use is made of the results for isotropic averages contained in equa-

tions (2.23) and (2.24), which leads to

〈
π
∂U

∂Exx

〉
= −2

3
αijΘ

(0)
kl

〈
axi a

x
ja

x
ka

x
l − axi axja

y
ka

y
l

〉
. (2.34)

This can be further simplified by substitution of the results from equations (2.26)

and (2.27), yielding

〈
π
∂U

∂Exx

〉
= − 1

45
αijΘ

(0)
kl

〈
− 2δijδkl + 3δikδjl + 3δilδjk

〉
. (2.35)

Contracting over the subscripts yields

〈
π
∂U

∂Exx

〉
= − 1

45

[
− 2αiiΘ

(0)
kk + 3αijΘ

(0)
ij + 3αijΘ

(0)
ji

]

= − 1

45

[
− 2αiiΘ

(0)
kk + 6αijΘ

(0)
ij

]
.

(2.36)

The quadrupole tensor Θ
(0)
ij is traceless, that is the components along the diagonal
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sum to zero, therefore Θ
(0)
kk = 0. Consequently, equation (2.36) reduces to

〈
π
∂U

∂Exx

〉
= − 6

45
αijΘ

(0)
ij . (2.37)

The two terms required in equation (2.14) have been evaluated, and the expression

for π becomes

π =
6

45

[
Bijij +

αijΘ
(0)
ij

kT

]
Exx . (2.38)

Equation (2.38) can then be substituted into equation (2.6) to give

nx − ny =
2πNA

(4πε0)Vm

π

=
2πNA

(4πε0)Vm

· 6

45

[
Bijij +

αijΘ
(0)
ij

kT

]
Exx

=
NAExx
15ε0Vm

[
Bijij +

αijΘ
(0)
ij

kT

]
.

(2.39)

Equation (2.39) is an expression for the birefringence induced in the gas by the

applied inhomogeneous electric field expressed in terms of the microscopic molecular

properties of an individual molecule. The molar Buckingham constant mQ is defined

to be [6, 46]

mQ =
6n(3εr + 2)

5εr(n2 + 2)2
lim

Exx→0

(
nx − ny
Exx

)
Vm . (2.40)

Substituting equation (2.39) into equation (2.40) gives an expression for the molar

Buckingham constant in the limit of infinite dilution as

mQ =
2NA

45ε0

[
Bijij +

αijΘ
(0)
ij

kT

]
. (2.41)
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In the EFGIB experiment, a monochromatic beam of linearly-polarized laser light

travels along the z−axis, which is chosen to coincide with the axis of the gas cell.

The long, fine, parallel wires used to establish the inhomogenous electric field define

the yz plane, and the laser beam is polarized at 45◦ to this plane so that as it enters

the cell, it may be resolved into two components with orthogonal electric vectors

Ex and Ey which will experience different refractive indices nx and ny as they travel

through the birefringent medium. The beam will emerge from the cell elliptically

polarized, since the two components will now have a relative phase difference δ of

δ =
2πl

λ
(nx − ny) , (2.42)

where l is the pathlength of the medium, and λ is the wavelength of the light. The

azimuth of this elliptically-polarized beam will still be 45◦ to the yz plane, and pass-

ing it through a quarter-wave plate with fast axis set at an azimuth of 45◦, the light

will emerge linearly polarized but rotated from the initial 45◦ plane of polarization

by an angle δ/2 radians. The optical retardation δ is the observable property in

the experiment, and from equation (2.42) it yields (nx − ny), which together with

knowledge of the refractive index and relative permittivity of the gas, its tempera-

ture and density, and the strength of the applied electric field gradient, allows for

the calculation of mQ via equation (2.40).

Although this project focuses on non-dipolar molecules, there is an important conse-

quence of the Buckingham-Longuet Higgins (BLH) theory of dipolar molecules [10]

for non-dipolar species, which is now examined. The BLH theory of EFGIB for

dipolar molecules is based on the forward scattering of radiation by the molecules in

the birefringent medium. Unlike equation (2.4), which is to electric dipole order, the

BLH theory is applied to electric quadrupole-magnetic dipole order, so that the mo-

ments induced in a non-dipolar molecule in the presence of the incident light-wave
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fields Ei and Bi are [3, 10, 14]

µi = αijEj +
1

3
BijklEj∇lEk +

1

3
Biljk (∇kEj)El +

1

ω
J ′ijkḂjEk , (2.43)

Θij = BklijEkEl , (2.44)

and

mi = − 1

ω
J ′jikĖjEk , (2.45)

where ω is the frequency of the radiation. The BLH forward-scattering theory of

EFGIB has been presented in thorough detail by Raab and de Lange [3, 14], and will

not be reproduced here, it being sufficient for present purposes to simply provide

the end result, namely

mQ =
2NA

45ε0

[
15

2
b+

αijΘ
(0)
ij

kT

]
. (2.46)

In equation (2.41), 15
2
b = Bijij, but in equation (2.46),

15

2
b = Bijij −Bijij − 5ω−1εijkJ

′
ijk , (2.47)

where εijk is the Levi-Civita tensor. Equation (2.46) has two terms, indicating that

in EFGIB, the anisotropy in the refractive index of the fluid arises from two distinct

contributions. The source of the temperature-independent term is the distortion of

the molecular charge distribution by the applied field gradient, while that of the

temperature-dependent term is the orientational effect of the electric field gradient

on the molecular quadrupole moments. Nearly all of the earlier EFGIB experiments

were performed at a single (ambient) temperature, hence avoiding the challenges

in recording measurements at higher temperatures. The temperature-independent
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term was then assumed to make a negligible contribution to mQ, so that setting

15
2
b = 0 in equation (2.46) allowed for the quadrupole moment to be extracted pro-

vided the polarizability tensor αij was known. Since 1997, there have been several

temperature-dependent investigations of EFGIB for smaller molecules, and these

have revealed the extent to which the electronic-distortion term contributes to the

induced birefringence: 3% for CO2 [22, 27], -5% for CS2 [22], -9% for C6H6 [25],

7% for C6F6 [25], 10% for N2 [26], 5% for N2O [28] and 7% for CO [29]. These

contributions, though often small, are clearly not negligible, especially since the aim

of the EFGIB experiment is to extract precise and accurate values of the molecular

quadrupole moments, with combined experimental uncertainties typically around 2

to 3%.

For the purposes of the present investigation, the contribution of the electronic-

distortion tensors in equation (2.47) to the second EFGIB virial coefficient BQ will

be ignored. The reasons for this are twofold. Firstly, the individual tensor com-

ponents for these polarizabilities are not known (either experimentally or computa-

tionally) even for small molecules, and so at present it is not feasible to calculate

their contribution to BQ, and secondly it seems reasonable to expect that their con-

tribution to BQ will be of the same order as for AQ, namely around 10% or lower.

The new molecular-tensor theory for BQ of non-dipolar molecules is now presented.

It follows the formalism of Buckingham’s original theory of EFGIB for non-interacting

molecules [6] as has been presented in this section.

2.2 Non-dipolar interacting molecules

For higher gas densities, the methodology of Buckingham and Pople [32] for the

treatment of intermolecular interaction effects via a virial expansion, as outlined in
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general in Section 1.2 of Chapter 1, is followed.

Recall from equation (2.6) that in the limit of infinite dilution, the refractive index

difference nx− ny of a gas in the presence of an applied non-uniform electric field is

nx − ny =
2πNA

(4πε0)Vm

π (2.48)

where π is the average over all configurations τ of the quantity πij
(
axi a

x
j − a

y
i a

y
j

)
of a representative isolated molecule in the presence of the biasing influence of the

applied non-uniform electric field.

For higher gas densities, the contribution of a representative molecule 1 to nx − ny

is not always given by equation (2.48), since there are times when molecule 1 has

to be treated as half of an interacting pair. When molecule 1 is in the presence of a

neighbouring molecule 2, the relative configuration of which is specified by τ , then

the instantaneous contribution of molecule 1 to the induced birefringence becomes

1

2

{
2πNA

(4πε0)Vm

π(12)(τ,E,∇E)

}
(2.49)

where

π(12)(τ,E,∇E) = π(12) = π
(12)
ij (axi a

x
j − a

y
i a

y
j ) . (2.50)

Here, π
(12)
ij is the differential polarizability of the interacting pair, an expression for

which will need to be derived explicitly. To obtain the biased orientational average

π(12)(τ,E,∇E), the molecular pair is allowed to rotate as a rigid whole (in the fixed

configuration τ) in the presence of the biasing influence of the field and field gradient,

Eα and ∇βEα respectively. This biased average can then be converted into isotropic

averages through a Taylor expansion in powers of E and ∇E. Just as in the analysis
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of an isolated molecule provided in equations (2.9) to (2.11), the leading term is

π(12)(τ,E,∇E) =

(
∂π(12)(τ,E,∇E)

∂Exx

)
Ex=Exx=0

Exx (2.51)

where

(
∂π(12)(τ,E,∇E)

∂Exx

)
Ex=Exx=0

=

〈
∂π(12)

∂Exx

〉
− 1

kT

〈
π(12)∂U

(12)

∂Exx

〉
, (2.52)

yielding

π(12)(τ,E,∇E) =

{〈
∂π(12)

∂Exx

〉
− 1

kT

〈
π(12)∂U

(12)

∂Exx

〉}
Exx . (2.53)

Here, U (12) = U (12)(τ, 0, 0), the potential energy of the interacting pair of molecules

in the absence of the applied field and field gradient. The quantities inside the an-

gular brackets are initially referred to the molecule-fixed axes O(1, 2, 3). The tensor

product in O(1, 2, 3) is fixed for a given interaction configuration τ . As the pair

rotates as a rigid whole in the laboratory frame O(x, y, z), the average projection of

the pair properties, referred to O(1, 2, 3), is averaged into O(x, y, z) over all orien-

tations. Averaging over the pair-interaction parameters τ can then be performed.

The density dependence of the molar Buckingham constant mQ can be expressed as

the virial expansion

mQ = AQ +
BQ

Vm

+
CQ
V 2

m

+ · · · , (2.54)

where AQ, BQ and CQ are the first, second and third Buckingham-effect virial coef-

ficients. From equation (2.40), the molar Buckingham constant mQ in the limit of
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infinite dilution is

AQ = lim
Vm→∞

(mQ) = lim
Vm→∞

{
6n(3εr + 2) (nx − ny)Vm

5εr(n2 + 2)2Exx

}
Exx→0

=
2

3
· 2πNA

(4πε0)

(
∂π

∂Exx

)
Ex=Exx=0

.

(2.55)

Extrapolating this expression to higher densities yields

mQ = AQ +

∫
τ

4πNA

3(4πε0)

{
1

2

(
∂π(12)

∂Exx

)
Ex=Exx=0

−
(

∂π

∂Exx

)
Ex=Exx=0

}
P (τ)dτ ,

(2.56)

where P (τ)dτ is the probability of molecule 1 having a neighbour in the range

(τ, τ + dτ), with P (τ) given in equation (1.16). Comparing equation (2.56) with

equation (2.54), BQ is seen to be

BQ =
4πN2

A

3Ω(4πε0)

∫
τ

{
1

2

(
∂π(12)

∂Exx

)
Ex=Exx=0

−
(

∂π

∂Exx

)
Ex=Exx=0

}
e−

U12(τ)
kT dτ .

(2.57)

The relative configuration τ of two molecules of general symmetry may be expressed

by seven variables, namely the separation R of the two molecular centres, the Euler

angles α1, β1 and γ1 used to define the direction cosines aαi between the laboratory

frame O(x, y, z) (referred to by α, β, γ · · · ) and the molecule-fixed axes O(1, 2, 3) of

molecule 1 (referred to by i, j, k · · · ), and the Euler angles α2, β2 and γ2 defining

the direction cosines aαi′ between the laboratory frame and the molecule-fixed axes

O(1′, 2′, 3′) of molecule 2 (referred to by i′, j′, k′ · · · ). These variables are described

in full by Couling and Graham [47, 48], together with the evaluation of the nor-

malization constant, which is Ω = (8π2)2. The explicit expressions for the direction

cosine tensors are
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aαi =


cosγ1 sinγ1 0

−sinγ1 cosγ1 0

0 0 1




cosβ1 0 −sinβ1

0 1 0

sinβ1 0 cosβ1




cosα1 sinα1 0

−sinα1 cosα1 0

0 0 1



=


cosα1cosβ1cosγ1 − sinα1sinγ1 sinα1cosβ1cosγ1 + cosα1sinγ1 −sinβ1cosγ1

−cosα1cosβ1sinγ1 − sinα1cosγ1 −sinα1cosβ1sinγ1 + cosα1cosγ1 sinβ1sinγ1

cosα1sinβ1 sinα1sinβ1 cosβ1

 ,
(2.58)

and

aαi′ =


cosα2cosβ2cosγ2 − sinα2sinγ2 sinα2cosβ2cosγ2 + cosα2sinγ2 −sinβ2cosγ2

−cosα2cosβ2sinγ2 − sinα2cosγ2 −sinα2cosβ2sinγ2 + cosα2cosγ2 sinβ2sinγ2

cosα2sinβ2 sinα2sinβ2 cosβ2

 .
(2.59)

Equation (2.57) becomes

BQ =
2N2

A

24π2(4πε0)

∫ ∞
R=0

∫ 2π

α1=0

∫ π

β1=0

∫ 2π

γ1=0

∫ 2π

α2=0

∫ π

β2=0

∫ 2π

γ2=0

×
{

1

2

(
∂π(12)

∂Exx

)
Ex=Exx=0

−
(

∂π̄

∂Exx

)
Ex=Exx=0

}
exp(−U12(τ)/kT )

×R2 sinβ1 sinβ2 dR dα1 dβ1 dγ1 dα2 dβ2 dγ2 .

(2.60)

Evaluation of BQ by integrating over the pair interaction coordinates in equa-

tion (2.60) requires the intermolecular potential U12(τ). In addition, the expression

1
2

(
∂π(12)

∂Exx

)
Ex=Exx=0

needs to be evaluated, which requires the differential polarizabil-
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ity π
(12)
iw for interacting molecular pairs:

π
(12)
iw =

∂µ
(12)
i

∂Ew
(2.61)

where µ
(12)
i (Ew) is the total oscillating dipole moment induced on the interacting

pair by the incident light-wave field Ew. In order to proceed it becomes neccessary

to make an assumption about the molecules, namely that they always retain their

separate identities. While this will hold true in the long-range limit, at very short

ranges, the charge distributions of the molecules will begin to overlap, a situation

which will require high-level ab initio calculations for definitive description. Such

calculations are extremely demanding and computationally intensive even for inter-

acting atoms, but especially so for interacting molecules. Treating the molecules

as if they retain their separate identities even in the region of overlap has proven

profitable in the explication of molecular interactions for Rayleigh light-scattering

[47, 49–51] and the Kerr effect [48, 52–54], where agreement between measured

and calculated second virial coefficients can be achieved to within 10% or better,

providing a measure of justification for the simplifying assumption, which allows

equation (2.61) to be written as

π
(12)
iw =

∂(µ
(1)
i + µ

(2)
i )

∂Ew
. (2.62)

Substituting this into equation (2.50), the difference between the differential polar-

izabilities of an interacting pair in a specific configuration τ in the presence of the
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applied field and field gradient is found to be

π(12)(τ,E,∇E) = π
(12)
iw (axi a

x
w − a

y
i a

y
w)

=

(
∂µ

(1)
i

∂Ew
+
∂µ

(2)
i

∂Ew

)
(axi a

x
w − a

y
i a

y
w)

=
(
π

(1)
iw + π

(2)
iw

)
(axi a

x
w − a

y
i a

y
w)

= π(1)(τ,E,∇E) + π(2)(τ,E,∇E) .

(2.63)

Now the dipole moment of molecule 1, µ
(1)
i , is induced not exclusively by the oscil-

lating light-wave field Ej, but also partly by the field F (1)
j which arises at molecule

1 due to the oscillating moments on molecule 2, so that

µ
(1)
i (Ej) =

(
α

(1)
ij +

1

3
B

(1)
ijklEkl + · · ·

)(
Ej + F (1)

j

)
. (2.64)

With the aid of the second-rank T−tensor [1], F (1)
j has the form

F (1)
j = T

(1)
jmµ

(2)
m (2.65)

where

µ(2)
m (En) =

(
α(2)
mn +

1

3
B

(2)
mnabEab + · · ·

)(
En + F (2)

n

)
, (2.66)

where, in turn,

F (2)
n = T (2)

np µ
(1)
p . (2.67)
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Note that

T (1) = (−1)n T (2) , (2.68)

where n is the rank of the T−tensor [1]. If equations (2.66) and (2.67) are substi-

tuted into equation (2.65), followed by successive substitutions of F (1)
j and F (2)

n ,

a series of terms contributing to the net field F (1)
j in equation (2.65) is obtained,

which, when substituted into equation (2.64), yields the required expression for the

total oscillating dipole moment induced on molecule 1 by the light-wave field in the

presence of the neighbouring molecule 2:

µ
(1)
i (Ew) = α

(1)
iw Ew + α

(1)
ij Tjkα

(2)
kwEw + α

(1)
ij Tjkα

(2)
kl Tlmα

(1)
mwEw

+ α
(1)
ij Tjkα

(2)
kl Tlmα

(1)
mnTnpα

(2)
pwEw + α

(1)
ij Tjkα

(2)
kl Tlmα

(1)
mnTnpα

(2)
pq Tqrα

(1)
rwEw

+ α
(1)
ij Tjkα

(2)
kl Tlmα

(1)
mnTnpα

(2)
pq Tqrα

(1)
rs Tstα

(2)
tw Ew + · · ·

+
1

3
B

(1)
iwklEklEw +

1

3
α

(1)
ij TjkB

(2)
kwmnEmnEw +

1

3
B

(1)
ijklEklTjmα

(2)
mwEw

+
1

3
α

(1)
ij Tjkα

(2)
kl TlmB

(1)
mwpqEpqEw +

1

3
α

(1)
ij TjkB

(2)
klmnEmnTlpα

(1)
pwEw

+
1

3
B

(1)
ijklEklTjmα

(2)
mnTnpα

(1)
pwEw + · · · .

(2.69)

Performing the operation ∂
∂Ew

on equation (2.69) yields the expression for the polar-

izability of molecule 1 in the presence of both the applied inhomogeneous field and

a neighbouring molecule 2 in a specific relative configuration τ :
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π
(1)
iw =

∂µ
(1)
i

∂Ew
= α

(1)
iw + α

(1)
ij Tjkα

(2)
kw + α

(1)
ij Tjkα

(2)
kl Tlmα

(1)
mw

+ α
(1)
ij Tjkα

(2)
kl Tlmα

(1)
mnTnpα

(2)
pw + α

(1)
ij Tjkα

(2)
kl Tlmα

(1)
mnTnpα

(2)
pq Tqrα

(1)
rw

+ α
(1)
ij Tjkα

(2)
kl Tlmα

(1)
mnTnpα

(2)
pq Tqrα

(1)
rs Tstα

(2)
tw + · · ·

+
1

3
B

(1)
iwklEkl +

1

3
α

(1)
ij TjkB

(2)
kwmnEmn +

1

3
B

(1)
ijklEklTjmα

(2)
mw

+
1

3
α

(1)
ij Tjkα

(2)
kl TlmB

(1)
mwpqEpq +

1

3
α

(1)
ij TjkB

(2)
klmnEmnTlpα

(1)
pw

+
1

3
B

(1)
ijklEklTjmα

(2)
mnTnpα

(1)
pw + · · · .

(2.70)

This equation can be generalized to a differential polarizability π
(p)
iw of a molec-

ule p in the presence of the non-uniform field and a neighbouring molecule q. In

addition, use of equation (2.19) allows the field gradient Eij to be expressed as

Eij = Exx(a
x
i a

x
j − a

y
i a

y
j ). The result is
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π
(p)
iw = α

(p)
iw + α

(p)
ij Tjkα

(q)
kw + α

(p)
ij Tjkα

(q)
kl Tlmα

(p)
mw

+ α
(p)
ij Tjkα

(q)
kl Tlmα

(p)
mnTnpα

(q)
pw + α

(p)
ij Tjkα

(q)
kl Tlmα

(p)
mnTnpα

(q)
pq Tqrα

(p)
rw

+ α
(p)
ij Tjkα

(q)
kl Tlmα

(p)
mnTnpα

(q)
pq Tqrα

(p)
rs Tstα

(q)
tw + · · ·

+
1

3
B

(p)
iwklExx(a

x
ka

x
l − a

y
ka

y
l ) +

1

3
α

(p)
ij TjkB

(q)
kwmnExx(a

x
ma

x
n − aymayn)

+
1

3
B

(p)
ijklTjmα

(q)
mwExx(a

x
ka

x
l − a

y
ka

y
l )

+
1

3
α

(p)
ij Tjkα

(q)
kl TlmB

(p)
mwpqExx(a

x
pa

x
q − aypayq)

+
1

3
α

(p)
ij TjkB

(q)
klmnTlpα

(p)
pwExx(a

x
ma

x
n − aymayn)

+
1

3
B

(p)
ijklTjmα

(q)
mnTnpα

(p)
pwExx(a

x
ka

x
l − a

y
ka

y
l ) + · · · .

(2.71)

The potential of the interacting pair of molecules in the presence of the static applied

inhomogeneous field is defined to be [3, 6]

U (12)(τ,E,∇E) = U (12)(τ, 0, 0)−
∫ Ei

0

µ
(12)
i (τ,E,∇E) dEi

− 1

3

∫ ∇jEi
0

Θ
(12)
ij (τ ,E,∇E) d(∇jEi) .

(2.72)

The Kerr-effect terms from
∫ Ex

0
µ

(12)
i (τ,E,∇E) axi dEx disappear when the potential
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is differentiated with respect to the field gradient in equation (2.53). Since this is

the only term in equation (2.53) which contains the potential, for our purposes it

suffices to write the potential U (12) as

U (12)(τ,E,∇E) = U (12)(τ, 0, 0)− 1

3

∫ Exx

0

Θ
(12)
ij (τ ,E,∇E)(axi a

x
j − a

y
i a

y
j ) dExx ,

(2.73)

where, from equation (2.17), ∇jEi = Eij has been written as
(
axi a

x
j − a

y
i a

y
j

)
Exx, and

where Θ
(12)
ij is the total quadrupole moment of the pair in the presence of Exx. As

was argued for the dipole moment of the interacting pair, the quadrupole moment

of each molecule is assumed to always retain its separate identity such that

Θ
(12)
ij = Θ

(1)
ij + Θ

(2)
ij . (2.74)

The potential becomes

U (12)(τ,E,∇E) = U (12)(τ, 0) + U (1)(τ, Exx) + U (2)(τ, Exx) . (2.75)

Θ
(p)
ij is the total quadrupole moment (permanent and induced) of molecule p in the

presence of the field and field gradient of a neighbouring molecule q, which can be

written as [1]

Θ
(p)
ij = Θ

(p)
0ij + A

(p)
0ijk(Ek + F

(p)
k ) + C

(p)
0ijkl(Ekl + F

(p)
kl ) + · · · . (2.76)

Here, Θ
(p)
0ij is the permanent quadrupole moment of the molecule (now identified by

the subscript zero), A
(p)
0ijk and C

(p)
0ijkl are static polarizability tensors (also denoted

by the subscript zero), while F
(p)
k and F

(p)
kl are the static field and field gradient,

respectively, arising at molecule p due to the permanent and induced multipole
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moments of the neighbouring molecule q, which can be written as [1]

F
(p)
k = −1

3
T

(p)
klmΘ

(q)
lm (2.77)

and

F
(p)
kl = −1

3
T

(p)
klmnΘ(q)

mn . (2.78)

For the non-dipolar molecules of this investigation, the static tensor A
(p)
0ijk in equa-

tion (2.76) is equal to zero, so that the quadrupole moment for molecule p simplifies

to

Θ
(p)
ij = Θ

(p)
0ij + C

(p)
0ijkl(Ekl + F

(p)
kl ) . (2.79)

Now,

F
(p)
kl = −1

3
T

(p)
klmnΘ(q)

mn (2.80)

requires

Θ(q)
mn = Θ

(q)
0mn + C

(q)
0mnpq(Epq + F (q)

pq ) , (2.81)

where

F (q)
pq = −1

3
T (q)
pqrsΘ

(p)
rs . (2.82)

Successive substitutions of F
(p)
kl and F

(q)
pq into equation (2.79) provide the series of
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terms contributing to the total static quadrupole moment of molecule p:

Θ
(p)
ij = Θ

(p)
0ij + C

(p)
0ijklEkl −

1

3
C

(p)
0ijklTklmnΘ

(q)
0mn +

1

9
C

(p)
0ijklTklmnC

(q)
0mnpqTpqrsΘ

(p)
0rs + · · · .

(2.83)

Substituting equation (2.83) into equation (2.73), and bearing in mind equation (2.75),

the expression for the potential energy of molecule p becomes

U (p)(τ, Exx) =

[
− 1

3
Θ

(p)
0ij +

1

9
C

(p)
0ijklTklmnΘ

(q)
0mn + · · ·

]
(axi a

x
j − a

y
i a

y
j )Exx . (2.84)

Armed with the explicit expressions for π
(p)
iw in equation (2.71) and U (p) in equa-

tion (2.84), it is now possible to evaluate the term 1
2

(
∂π(12)

∂Exx

)
Ex=Exx=0

in the expres-

sion for BQ in equation (2.60). Recall equation (2.52):

(
∂π(12)(τ,E,∇E)

Exx

)
Ex=Exx=0

=

〈
∂π(12)

∂Exx

〉
− 1

kT

〈
π(12)∂U

(12)

∂Exx

〉
. (2.85)

Equation (2.63) yields

〈
∂π(12)

∂Exx

〉
=

〈
∂π(1)

∂Exx

〉
+

〈
∂π(2)

∂Exx

〉
, (2.86)

and since molecules 1 and 2 are identical, the isotropic averages of their molecular

properties must be the same, so that

〈
∂π(12)

∂Exx

〉
= 2

〈
∂π(1)

∂Exx

〉
. (2.87)

Similarly, and with the additional use of equation (2.75),

〈
π(12)∂U

(12)

∂Exx

〉
=

〈(
π(1) + π(2)

)(∂U (1)

∂Exx
+
∂U (2)

∂Exx

)〉
, (2.88)
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which expands to

〈
π(12)∂U

(12)

∂Exx

〉
=

〈
π(1)∂U

(1)

∂Exx

〉
+

〈
π(1)∂U

(2)

∂Exx

〉
+

〈
π(2)∂U

(1)

∂Exx

〉
+

〈
π(2)∂U

(2)

∂Exx

〉
(2.89)

and, in turn, simplifies to

〈
π(12)∂U

(12)

∂Exx

〉
= 2

〈
π(1)∂U

(1)

∂Exx

〉
+ 2

〈
π(1)∂U

(2)

∂Exx

〉
. (2.90)

Hence,

1

2

(
∂π(12)(τ,E,∇E)

∂Exx

)
Ex=Exx=0

=

〈
∂π(1)

∂Exx

〉
− 1

kT

[〈
π(1)∂U

(1)

∂Exx

〉
+

〈
π(1)∂U

(2)

∂Exx

〉]
.

(2.91)

The isotropic averages in equation (2.91) are now evaluated, beginning with
〈
∂π(1)

∂Exx

〉
.

Differentiating equation (2.71) with respect to the field gradient Exx and setting the

field gradient to zero yields

(
∂π

(1)
iw

∂Exx

)
Ex=Exx=0

=

[
1

3
B

(1)
iwnp +

1

3
α

(1)
ij TjkB

(2)
kwnp

+
1

3
B

(1)
ijnpTjmα

(2)
mw

+
1

3
α

(1)
ij Tjkα

(2)
kl TlmB

(1)
mwnp

+
1

3
α

(1)
ij TjkB

(2)
klnpTlmα

(1)
mw

+
1

3
B

(1)
ijnpTjkα

(2)
kl Tlmα

(2)
mw + · · ·

]
(axna

x
p − aynayp) .

(2.92)
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From equation (2.63),

π(1) = π
(1)
iw (axi a

x
w − a

y
i a

y
w) (2.93)

so that

(
∂π(1)

∂Exx

)
Ex=Exx=0

=

[
1

3
B

(1)
iwnp +

1

3
α

(1)
ij TjkB

(2)
kwnp

+
1

3
B

(1)
ijnpTjmα

(2)
mw

+
1

3
α

(1)
ij Tjkα

(2)
kl TlmB

(1)
mwnp

+
1

3
α

(1)
ij TjkB

(2)
klnpTlmα

(1)
mw

+
1

3
B

(1)
ijnpTjkα

(2)
kl Tlmα

(2)
mw + · · ·

]
(axna

x
p − aynayp)(axi axw − a

y
i a

y
w) .

(2.94)

The isotropic average of equation (2.94) requires the isotropic average of the product

of direction cosines, which has already been handled in equations (2.21) to (2.28).

As already mentioned, there is a paucity of molecular Bijkl tensor components in

the literature, and so these terms will not be considered further. In any event,

their expected contribution to BQ is only a few percent. The BLH theory leads to

additional interaction-induced contributions from Bijkl and J ′ijk, which would need

to be derived within the BLH theory [3, 10, 14], and which is beyond the scope of

this project, though these tensor components are also not available in the litera-

ture. Fortunately, the combined contribution of these terms to BQ should only be

a few percent, so that their omission is not of serious concern. PhD student Mr
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Siyabonga Ntombela, who is undertaking a project on EFGIB in the BLH formal-

ism, is currently evaluating these terms as part of his project, as a means to verify

these assumptions. This will require ab initio computation of the Bijkl, Bijkl and

J ′ijk optical-frequency tensor components.

The remaining two isotropic averages in equation (2.91) are now evaluated. Initially,

equation (2.84) is differentiated with respect to the field gradient, giving

(
∂U (p)

∂Exx

)
Ex=Exx=0

=

[
− 1

3
Θ

(p)
0ij +

1

9
C

(p)
ijklTklmnΘ

(q)
0mn + ...

]
(axi a

x
j − a

y
i a

y
j ) . (2.95)

Then,
(
π(1)
)
Ex=Exx=0

can be multiplied by the sum of the terms
(
∂U(1)

∂Exx

)
Ex=Exx=0

and(
∂U(2)

∂Exx

)
Ex=Exx=0

, hence providing the dominant contributions to BQ. From equa-

tion (2.71)

(
π(1)
)
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=
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π
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y
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y
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]
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y
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y
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(2.96)

while from equation (2.84)

(
∂U (1)

∂Exx

)
Ex=Exx=0

= −1

3
Θ

(1)
0ab(a

x
aa

x
b − ayaa

y
b) (2.97)

wherein the C−tensor terms, the contributions of which are expected to be negligi-



2.2. NON-DIPOLAR INTERACTING MOLECULES 41

ble, have been omitted. Thus
〈
π(1) ∂U(1)

∂Exx

〉
becomes
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(2.98)

The relevant results for isotropic averages contained in equations (2.21) to (2.28)

are summarized here for convenience:

〈
(axi a

x
w − a

y
i a

y
w)(axaa

x
b − ayaa

y
b)
〉

= 2
〈
axi a

x
wa

x
aa

x
b − axi axwayaa

y
b

〉

=
1

15

(
− 2δiwδab + 3δiaδwb + 3δibδwa

)
.

(2.99)
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Application of these results to equation (2.98) yields
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(2.100)
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Contracting over the subscripts gives
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(2.101)
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Since the quadrupole moment is traceless, any quadrupole terms with a repeated

subscript Θ
(p)
0aa are equal to zero and are eliminated from the equation. Also, the

quadrupole moment tensor is symmetric in its subscripts, so that Θ
(p)
0iw = Θ

(p)
0wi.

Hence,
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A similar analysis yields
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(2.103)

The terms contributing to the integral for BQ in equation (2.60) can be expressed
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in condensed notation as

{
1

2

(
∂π(12)

∂Exx

)
Ex=Exx=0

−
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∂π̄
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}

= Θ1α1 + Θ1α2 + Θ1α3 + Θ1α4 + Θ1α5 + Θ1α6 + · · ·

+B1α1 +B1α2 +B1α3 + · · · .

(2.104)

The explicit expressions for Θ1α1, Θ1α2, · · · are
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The lowest-symmetry molecule treated in this project is C2H4, which is of D2h

symmetry. For this point group, the dynamic polarizability tensor α
(1)
ij has three

independent components [1], namely

α
(1)
ij = α

(2)
i′j′ =


α11 0 0

0 α22 0

0 0 α33

 . (2.111)

α
(2)
ij is the dynamic polarizability tensor of molecule 2 expressed in the molecule-fixed

axes of molecule 1, which is provided by

α
(2)
ij = aiαa

j
βa

α
i′a

β
j′α

(2)
i′j′ . (2.112)

For molecules of D2h symmetry, the traceless quadrupole moment has two indepen-

dent components [1], and is given by

Θ
(1)
0ij = Θ

(2)
0i′j′ =


Θ1 0 0

0 Θ2 0

0 0 −Θ1 −Θ2

 . (2.113)
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Similarly,

Θ
(2)
0ij = aiαa

j
βa

α
i′a

β
j′Θ

(2)
0i′j′ . (2.114)

For axially-symmetric molecules, the polarizability tensor has two independent com-

ponents (α11 = α22 in equation (2.111)), while the quadrupole moment tensor has

only one independent component (Θ1 = Θ2 in equation (2.113)). The second-rank

T−tensor in space-fixed axes is [1]

Tαβ =
1

4πε0

∇α∇βR
−1 =

1

4πε0

(
3RαRβ −R2δαβ

)
R−5 . (2.115)

In the molecule-fixed axes of molecule 1, Tij = aiαa
j
βTαβ.

The tensor manipulation facilities of the Macsyma algebraic manipulation package

are indispensible in evaluating the expressions for the terms in equations (2.105)

to (2.110), particularly as the expressions increase in complexity. Since these ex-

pressions become extremely large, often taking several pages to express, they are

not explicitly reproduced here. These expressions are integrated (i.e. averaged)

over the pair-interaction coordinates using equation (2.60), thereby establishing the

contribution of each of the Θ1α1, Θ1α2, · · · terms to BQ.

The integral in equation (2.60) requires an intermolecular potential U12(τ). As

previously [47, 48], use is made of the classical potential

U12(τ) = ULJ + UΘ,Θ + UΘ, ind µ + Ushape (2.116)

where ULJ is the Lennard-Jones 6:12 potential, UΘ,Θ is the electrostatic quadrupole-

quadrupole interaction energy of the two molecules, and UΘ, ind µ is the quadrupole-

induced dipole interaction energy. Ushape accounts for the angular dependence of



48 CHAPTER 2. THE THEORY OF THE BUCKINGHAM EFFECT

short range repulsive forces for non-spherical molecules. Explicit expressions for

each of these contributions to U12(τ) for molecules of D2h symmetry and higher

have already been provided [47, 48]. It should be noted that evaluation of the in-

duction energy UΘ, ind µ requires knowledge of the static molecular polarizability

tensor α
(0)
ij .

The integrals were evaluated by numerical integration using Gaussian quadrature,

with the ranges of the orientation angles being divided into 16 intervals each, while

the intermolecular separation R was given the range of 0.1 to 3.0 nm divided into

64 intervals. The technique of Gaussian quadrature has been used previously in

evaluation of second light-scattering virial coefficients and second Kerr-effect virial

coefficients, where the convergence of the integrals has been carefully tested to es-

tablish the necessary intervals for the angles and the range [47, 48]. Appendix A.1

provides an example Fortran program (for evaluation of the Θ1α3 contribution to

BQ). The programs were run in double precision on a personal computer with a

dual-core processor using the Salford F90 compiler. Program run-times were typi-

cally of the order of 20 minutes each.

Chapter 3 presents the results for the computation of BQ for the molecules CO2,

C2H4 and C2H6. These molecules were chosen since their static and dynamic molec-

ular polarizabilities and molecular quadrupole moments have been well character-

ized in the literature, and the quadrupoles of CO2 and C2H4 are relatively large,

so that the contribution to mQ arising from BQ for these species could also be

expected to be relatively large. For example, the quadrupole moment of CO2 is

Θ = −14.27×10−40 C m2 [27], while the N2 molecule has Θ = −4.97×10−40 C m2 [26],

and the O2 molecule Θ = −1.03× 10−40 C m2 [30]. The temperature-dependence of

the second Kerr-effect virial coefficients BK of these molecules have recently been cal-

culated and found to be in good agreement with the available measured data [55], as



2.2. NON-DIPOLAR INTERACTING MOLECULES 49

have the second light-scattering virial coefficients at room temperature [47, 49, 56].



Chapter 3

Results

3.1 Carbon Dioxide

The molecular data required to calculate BQ for the axially-symmetric CO2 molecule

are presented in Table 3.1. As for the other molecules considered in this chapter,

optimized values for the Lennard-Jones force constants R0 and ε/k and the shape

parameter D are obtained by fitting values of the second pressure virial coefficient

B(T ) calculated according to

B(T ) =
NA

2Ω

∫
τ

[
1− e−U12(τ)/kT

]
dτ (3.1)

to the experimental data [57] over a range of temperature.

For axially-symmetric molecules, the two independent polarizability tensor com-

ponents can be extracted from knowledge of the mean polarizability α = 1
3
αii =(

2α⊥ + α‖
)

and the polarizability anisotropy ∆α =
(
α‖ − α⊥

)
, where in equa-

tion (2.111), α33 = α‖ and α11 = α22 = α⊥. All optical-frequency polarizabilities

in this chapter are quoted for the Helium-Neon laser wavelength of λ = 632.8 nm.

Tables 3.2 to 3.5 provide the relative magnitudes of the various contributions to BQ

calculated over the temperature span 250 K to 500 K.

50
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Table 3.1: The molecular properties of CO2 used in the calculation of BQ.

Property Value Reference

R0 (nm) 0.400 [58]

ε/k (K) 190.0 [58]

D1 0.250a [56]

D2 0.000

1040Θ11(C m2) 7.135 ± 0.17 [27, 56]

1040Θ22(C m2) 7.135 ± 0.17

1040Θ33(C m2) −14.27 ± 0.33

1040α(C2 m2 J−1) 2.93141 ± 0.00021 [59]

1040∆α(C2 m2 J−1) 2.356 ± 0.003 [56]

1040α11(C2 m2 J−1) 2.1461 ± 0.0012

1040α22(C2 m2 J−1) 2.1461 ± 0.0012

1040α33(C2 m2 J−1) 4.5021 ± 0.0012

1040α(0)(C2 m2 J−1) 3.2402 ± 0.0004 [60, 61]

1040∆α(0)(C2 m2 J−1) 2.530 ± 0.009 [56, 62]

1040α
(0)
11 (C2 m2 J−1) 2.3969 ± 0.0034

1040α
(0)
22 (C2 m2 J−1) 2.3969 ± 0.0034

1040α
(0)
33 (C2 m2 J−1) 4.9269 ± 0.0064

aObtained by fitting to pressure virial coefficients reported in Ref. 57
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Table 3.2: The relative magnitudes of the contributions to BQ for CO2 at T = 250K

1030 × value
Contibuting Term (C m8J−1mol−2) % contribution to BQ

Θ1α1 −1.55008 3311.43

Θ1α2 2.12903 −4548.23

Θ1α3 −0.62074 1326.08

Θ1α4 −0.00326 6.96

Θ1α5 −0.00172 3.67

Θ1α6 −0.00004 0.09

BQ −0.04681

Table 3.3: The relative magnitudes of the contributions to BQ for CO2 at T = 300K

1030 × value
Contibuting Term (C m8J−1mol−2) % contribution to BQ

Θ1α1 −0.93291 −726.11

Θ1α2 1.54221 1200.34

Θ1α3 −0.47679 −371.10

Θ1α4 −0.00265 −2.06

Θ1α5 −0.00135 −1.05

Θ1α6 −0.00003 −0.02

BQ 0.12848
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Table 3.4: The relative magnitudes of the contributions to BQ for CO2 at T = 400K

1030 × value
Contibuting Term (C m8J−1mol−2) % contribution to BQ

Θ1α1 −0.45183 −258.54

Θ1α2 0.95879 548.63

Θ1α3 −0.32911 −188.32

Θ1α4 −0.00209 −1.20

Θ1α5 −0.00098 −0.56

Θ1α6 −0.00002 −0.01

BQ 0.17476

Table 3.5: The relative magnitudes of the contributions to BQ for CO2 at T = 500K

1030 × value
Contibuting Term (C m8J−1mol−2) % contribution to BQ

Θ1α1 −0.26916 −178.32

Θ1α2 0.67652 448,20

Θ1α3 −0.25379 −168.14

Θ1α4 −0.00182 −1.21

Θ1α5 −0.00079 −0.52

Θ1α6 −0.00002 −0.01

BQ 0.15094
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Table 3.6: A summary of the calculated BQ values for CO2

T 1030 ×BQ

(K) (C m8J−1mol−2)

250 −0.04681

300 0.12848

400 0.17476

500 0.15094

Table 3.6 summarizes the calculated BQ temperature dependence. The usual range

of experimental temperature for EFGIB measurements in the literature is 300 K to

500 K. CO2 displays an unusual trend in that BQ reaches a maximum value around

400 K, and diminishes both for higher temperatures and lower temperatures. The

reason for this unusual behaviour arises from the Θ1α1 term, which makes a negative

contribution to BQ, and which rapidly becomes large in magnitude as the temper-

ature diminishes. At 250 K, BQ has become negative. Whether this behaviour

accurately describes the dependence of BQ on temperature, or whether it is an arti-

fact of the limitations of the long-range model, particularly at lower temperatures,

could be investigated by experimental measurement of BQ over an appropriate range

of temperature. Such experimental investigation would only be feasible provided BQ

is large enough to be discernible by an EFGIB apparatus, which would have its par-

ticular limiting resolution for the measured optical retardance δ in equation (2.42).

While the Θ1α2 term is large and positive, the combined contribution to BQ arising

from the negative Θ1α1 and Θ1α3 terms is comparatively nearly as large in magni-

tude (indeed, for 250 K it is a little larger), so that no contribution substantially

dominates the overall BQ, these large contributions of opposite sign tending to can-

cel, yielding a relatively small net BQ. The Θ1α4 and higher-order terms rapidly



3.1. CARBON DIOXIDE 55

diminish as the series converges, contributing around 3% or less to BQ for CO2.

At 300 K, CO2 has a measured mQ = (−25.33 ± 0.37) × 10−26 C m5J−1mol−1 [27],

which was obtained for an experimental pressure of P = 2.635 MPa at a temperature

of T = 299.4 K. Recalling equation (2.54), namely

mQ = AQ +
BQ

Vm

+
CQ
V 2

m

+ · · · , (3.2)

it is now possible to calculate the BQ/Vm pair-interaction contribution to mQ. The

molar volume is obtained by solving the equation

Vm =
RT

P

(
1 +

B(T )

Vm

+
C(T )

V 2
m

)
, (3.3)

using the appropriate second and third pressure virial coefficients from the tabula-

tions of Dymond et al. [57]. For the experimental P = 2.635 MPa and T = 299.4 K,

this yields Vm = 8.087 × 10−4 m3 mol−1, which coupled with the calculated BQ =

0.12848 × 10−30 C m8J−1mol−2 yields BQ/Vm = 0.016 × 10−26 C m5J−1mol−1. This

is a contribution of only 0.063% to mQ, and since mQ has a reported experimental

uncertainty of 1.5%, this BQ/Vm value is around two orders of magnitude too small

to be measurable. While it is possible to measure mQ with greater precision by

averaging a large number of measurements, this route is somewhat impractical since

each measurement takes several hours to perform.

CO2 has a critical temperature and pressure of Tc = 304.1 K and Pc = 7.4 MPa,

respectively. For temperatures and pressures exceeding Tc and Pc, the CO2 be-

comes a supercritical fluid, the phase behaviour of which becomes ambiguous, being

neither a well-defined gas nor liquid. Under these conditions, the virial equation of

state can become unreliable in calculating the the molar volume, and experimentally

measured isotherms of the compressibility factor Z = PVm/RT are used to obtain
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reliable values for Vm, such as the CO2 data of Holste et al. [63], Duschek et al. [64],

Mantilla et al. [65] and Gomez-Osorio et al. [66]. Depending on the temperature

and pressure, the supercritical fluid can tend to behave more like a gas or more like

a liquid.

The relative contribution made to mQ by interacting pairs of molecules in CO2 is

now assessed over the temperature range 250 to 500 K and the pressure range 1.7

to 10 MPa. Typical EFGIB measurements in the literature have been performed

for pressures up to 4 MPa in the temperature range 300 to 500 K, though pres-

sures up to 10 MPa should be accessible to our existing EFGIB apparatus, while

temperatures down to 250 K could be achieved with suitable experimental modifi-

cations. Table 3.7 contains the CO2 inverse molar volumes (or densities) V −1
m for

the temperatures 250 K, 300 K, 400 K and 500 K at the pressures 1.7 MPa, 4 MPa

and 10 MPa. These V −1
m data, combined with the BQ data in Table 3.6, yield the

calculated BQ/Vm estimates listed in Table 3.8. For comparative purposes, Table 3.8

also contains the mQ values interpolated from the EFGIB measurements of Chetty

and Couling [27], together with their expected uncertainties. The largest value for

BQ/Vm of 0.062× 10−26 C m5J−1mol−1 (obtained at P = 10 MPa and T = 400 K) is

0.32% of mQ, which is almost an order of magnitude smaller than the experimental

uncertainty limits and so is well below the presently available experimental limits of

detection. Accumulating a large number of mQ measurements at this temperature

and pressure could reduce the experimental uncertainty by up to an order of mag-

nitude, bringing BQ contributions to the threshold of detectability. Unfortunately,

at this temperature and pressure the supercritical CO2 is probably behaving more

like a liquid than a gas, so that triplet and higher-order interactions are probably

making considerable contributions to mQ, thereby severely complicating the picture.

At T = 400 K and P = 100 MPa, V −1
m = 21 196 mol m−3, so that BQ/Vm =
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Table 3.7: Densities (inverse molar volumes) for gaseous CO2 at relevant tempera-
tures and pressures

at P = 1.7 MPa, at P = 4 MPa, at P = 10 MPa,
T V −1

m V −1
m V −1

m

(K) (mol m−3) (mol m−3) (mol m−3)

250 995.6a −b −

300 747.6 2095.8 −

400 527.2 1293.2 3563.2

500 413.8 987.4 2526.2

aAt T = 250 K, P = 1.7 MPa is just under the saturation vapour pressure of
1.784 MPa
bThe dash − indicates temperatures and pressures for which the CO2 is in the
liquid phase

Table 3.8: Calculated BQ/Vm contributions to mQ for CO2 at the temperatures and
pressures in Table 3.7

at P = 1.7 MPa, at P = 4 MPa, at P = 10 MPa,
T 1026

mQ
a 1026BQ/Vm 1026BQ/Vm 1026BQ/Vm

(K) (C m5J−1mol−1) (C m5J−1mol−1) (C m5J−1mol−1) (C m5J−1mol−1)

250 −30.22± 0.40 −0.005 − −

300 −25.31± 0.40 0.010 0.027 −

400 −19.18± 0.40 0.009 0.023 0.062

500 −15.50± 0.40 0.006 0.015 0.038

aThese mQ values have been interpolated from the measured data in Ref. 27. The

uncertainties are indicative of the experimental uncertainties in Ref. 27.

0.37 × 10−26 C m5J−1mol−1. While at first glance this indicates a BQ which should

in principle be measurable (provided a large number of measurements are averaged
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so as to reduce the uncertainty), at such a high pressure the supercritical CO2 is

clearly behaving more like a liquid, which explains the relatively high fluid density,

so that each CO2 molecule will have several closely-neighbouring molecules.

Some general conclusions can be drawn from the foregoing analysis. Our molecular-

tensor theory of BQ indicates that the measured EFGIB data for CO2 reported in

the literature have been obtained at pressures and temperatures for which molecular

pair-interaction contributions are negligible, being an order of magnitude or more

below the present limits of detectability. This is reassuring, since experimentalists

have up to now been uncertain as to whether their EFGIB measurements have been

contaminated by BQ contributions, especially for higher pressures. The theory of

BQ also suggests that it will be very difficult to achieve measurements of BQ for CO2

since the contribution to mQ is below the threshold of detectibility for the existing

EFGIB apparatus for those temperatures and pressures where the CO2 fluid behaves

as a gas.
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3.2 Ethene

The molecular data required in the calculations of BQ for C2H4 are presented in

Table 3.9. Ethene is of D2h symmetry, and as has been previously demonstrated,

approximating the molecule to be of axial symmetry has led to poor agreement of

calculated and measured second light-scattering virial coefficients Bρ [67, 68] and

second Kerr-effect virial coefficients BK [69] of up to 40%. Taking the full symmetry

of the molecule into account in the description of the molecular properties, which

required extensive development of the molecular-tensor theories, brought the cal-

culated Bρ to within 3% of the measured value [47], and yielded good agreement

between the measured and calculated BK values over the full experimental temper-

ature range of 202.4 K to 363.7 K [55].

Tables 3.10 to 3.13 provide the relative magnitudes of the contributing terms to

BQ calculated at intervals of temperature spanning 250 to 500 K, while Table 3.14

summarizes the calculated BQ temperature dependence. C2H4 has a critical temper-

ature of Tc = 282.4 K and a critical pressure of Pc = 5.06 MPa. The molar volume

of C2H4 has been accurately determined as a function of temperature and pressure

through experimentally measured isotherms of the compressibility factor Z [70, 71].

Table 3.15 contains the C2H4 inverse molar volumes V −1
m for the temperatures 250 K,

300 K, 400 K and 500 K at the pressures 2 MPa, 4 MPa and 10 MPa. These V −1
m

data, combined with the BQ data in Table 3.14, yield the calculated BQ/Vm esti-

mates listed in Table 3.16. For comparative purposes, Table 3.16 also contains the

mQ values calculated via equation (2.46) using the measured room-temperature da-

tum of αijΘ
(0)
ij = (15.59±0.08)×10−80 C3m4J−1 obtained by Imrie [5], the electronic

distortion term b in equation (2.46) having been assumed to be zero.
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Table 3.9: The molecular properties of C2H4 used in the calculation of BQ.

Property Value Reference

R0(nm) 0.4232 [47, 72]

ε/k(K) 190.0 [47, 72]

D1 0.229650a [47]

D2 0.213830a

1040Θ11(C m2) 5.57± 0.63 [73]

1040Θ22(C m2) −10.54± 0.63

1040Θ33(C m2) 4.94± 0.33

1040α(C2 m2 J−1) 4.71± 0.03 [69]

1040∆α(C2 m2 J−1) 1.92± 0.04 [69]

1040α11(C2 m2 J−1) 4.41± 0.04 [69]

1040α22(C2 m2 J−1) 3.79± 0.03

1040α33(C2 m2 J−1) 5.94± 0.02

1040α(0)(C2 m2 J−1) 4.73± 0.03 [69]

1040∆α(0)(C2 m2 J−1) 1.63± 0.05 [69]

1040α
(0)
11 (C2 m2 J−1) 4.30± 0.04 [69]

1040α
(0)
11 (C2 m2 J−1) 4.09± 0.03

1040α
(0)
11 (C2 m2 J−1) 5.81± 0.02

aObtained by fitting to pressure virial coefficients reported in Ref. 57
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Table 3.10: The relative magnitudes of the contributions to BQ for C2H4 at T =
250K

1030 × value
Contibuting Term (C m8J−1mol−2) % contribution to BQ

Θ1α1 3.55966 −1381.16

Θ1α2 −4.38384 1700.94

Θ1α3 0.60739 −235.67

Θ1α4 −0.04288 16.64

Θ1α5 0.00289 −1.12

Θ1α6 −0.00095 0.37

BQ −0.25773

Table 3.11: The relative magnitudes of the contributions to BQ for C2H4 at T =
300K

1030 × value
Contibuting Term (C m8J−1mol−2) % contribution to BQ

Θ1α1 1.56875 −674.24

Θ1α2 −2.22151 954.79

Θ1α3 0.43171 −185.54

Θ1α4 −0.01347 5.79

Θ1α5 0.00214 −0.92

Θ1α6 −0.00029 0.12

BQ −0.23267
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Table 3.12: The relative magnitudes of the contributions to BQ for C2H4 at T =
400K

1030 × value
Contibuting Term (C m8J−1mol−2) % contribution to BQ

Θ1α1 0.54615 −404.50

Θ1α2 −0.96629 715.66

Θ1α3 0.28485 −210.96

Θ1α4 −0.00119 0.88

Θ1α5 0.00149 −1.10

Θ1α6 −0.00003 0.02

BQ −0.13502

Table 3.13: The relative magnitudes of the contributions to BQ for C2H4 at T =
500K

1030 × value
Contibuting Term (C m8J−1mol−2) % contribution to BQ

Θ1α1 0.27513 −361.44

Θ1α2 −0.57028 749.19

Θ1α3 0.21662 −284.58

Θ1α4 0.00120 −1.58

Θ1α5 0.00119 −1.56

Θ1α6 0.00002 −0.03

BQ −0.07612
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Table 3.14: A summary of the calculated BQ values for C2H4

T 1030 ×BQ

(K) (C m8J−1mol−2)

200 −0.25773

300 −0.23267

400 −0.13502

500 −0.07612

Table 3.15: Densities (inverse molar volumes) for gaseous C2H4 at relevant temper-
atures and pressures

at P = 2 MPa, at P = 4 MPa, at P = 10 MPa,
T V −1

m V −1
m V −1

m

(K) (mol m−3) (mol m−3) (mol m−3)

250 1268.8 −a −

300 911.1 2187.2 11511.2b

400 628.4 1315.3 3755.1

500 489.2 993.2 2565.7

aThe dash − indicates temperatures and pressures for which the C2H4 is in the
liquid phase
bFor this temperature and pressure, the supercritical phase closely resembles the
liquid phase, having a high density

In Table 3.16, the second-largest value for BQ/Vm of −0.051× 10−26 C m5J−1mol−1

(obtained at P = 10 MPa and T = 400 K, as well as at P = 4 MPa and T = 300 K)

is of the same order as the experimental uncertainty limits, and if a large number

of mQ measurements were accumulated and averaged so as to reduce the statisti-
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Table 3.16: Calculated BQ/Vm contributions to mQ for C2H4 at the temperatures
and pressures in Table 3.15

at P = 2 MPa, at P = 4 MPa, at P = 10 MPa,
T 1026

mQ
a 1026BQ/Vm 1026BQ/Vm 1026BQ/Vm

(K) (C m5J−1mol−1) (C m5J−1mol−1) (C m5J−1mol−1) (C m5J−1mol−1)

250 13.65± 0.07 −0.032 − −

300 11.38± 0.06 −0.021 −0.051 −0.27

400 8.53± 0.05 −0.009 −0.018 −0.051

500 6.83± 0.04 −0.007 −0.013 −0.035

aThese mQ values have been calculated from equation (2.46) using the measured

room-temperature datum of αijΘ
(0)
ij = (15.59 ± 0.08) × 10−80 C3m4J−1 in Ref. 5,

and assuming b = 0

cal uncertainty, it would become possible in principle to resolve a measured value

for BQ. The largest value of BQ/Vm = −0.27 × 10−26 C m5J−1mol−1 is obtained

at P = 10 MPa and T = 300 K, where the supercritical phase is behaving much

more like a liquid, higher-order molecular interactions having become significant,

explaining the relatively high fluid density.

As was found in the case of the CO2 molecule, our molecular-tensor theory of BQ in-

dicates that the EFGIB data for C2H4 measured by Imrie [5] at ambient temperature

in the range T = 294.8 to 298.4 K, and for pressures in the range P = 2.284 MPa to

4.095 MPa, have been obtained at a temperature and pressures for which molecular

pair-interaction contributions are negligible, being at or below the threshold of the

present limits of detectability. This result clarifies that Imrie’s EFGIB measure-

ments have not been contaminated by BQ contributions, especially for the higher

experimental pressures around 4 MPa. The theory of BQ also suggests that it will in
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principle be possible to measure BQ for C2H4 provided a large number of measure-

ments are accumulated and averaged to reduce the statistical uncertainty in mQ.

3.3 Ethane

Table 3.17 contains the molecular data required in the calculation of BQ for the

axially-symmetric C2H6 molecule. Both the quadrupole moment and the polariz-

ability anisotropy of C2H6 are several times smaller than those of either CO2 or

C2H4, which might intuitively suggest that BQ for C2H6 should be relatively small.

Tables 3.18 to 3.21 provide the relative magnitudes of the contributing terms to

BQ calculated at intervals of temperature spanning 250 to 500 K, while Table 3.22

summarizes the calculated BQ temperature dependence. What emerges is a BQ that

is in fact larger in magnitude than those for CO2 and C2H4. The reason for this is

the small and negative Θ1α1 and Θ1α3 term contributions, which do little to atten-

uate the relatively large and positive Θ1α2 term, this collision-induced contribution

making by far the dominant contribution to BQ.

The C2H6 fluid has a critical temperature of Tc = 305.3 K, and a critical pressure

of Pc = 4.87 MPa. The molar volume of C2H6 has been accurately determined as

a function of temperature and pressure through experimentally measured isotherms

of the compressibility factor Z [70, 74]. Table 3.23 contains the C2H6 inverse molar

volumes V −1
m for the temperatures 250 K, 300 K, 400 K and 500 K at the pressures

1 MPa, 4 MPa and 10 MPa. These V −1
m data, combined with the BQ data in Ta-

ble 3.22, yield the calculated BQ/Vm estimates listed in Table 3.24. For comparative

purposes, Table 3.24 also contains the mQ values interpolated from the measured

data of Watson [45].
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Table 3.17: The molecular properties of C2H6 used in the calculation of BQ.

Property Value Reference

R0(nm) 0.4418 [58]

ε/k(K) 230.0 [58]

D1 0.200a

D2 0.000

1040Θ11(C m2) 1.25± 0.13 [45, 75]

1040Θ22(C m2) 1.25± 0.13

1040Θ33(C m2) −2.50± 0.26

1040α(C2 m2 J−1) 4.96798± 0.00035 [59, 76]

1040∆α(C2 m2 J−1) 0.698± 0.056 [75]

1040α11(C2 m2 J−1) 4.735± 0.019

1040α22(C2 m2 J−1) 4.735± 0.019

1040α33(C2 m2 J−1) 5.433± 0.038

1040α(0)(C2 m2 J−1) 4.9216± 0.0033 [60, 61]

1040∆α(0)(C2 m2 J−1) 0.605 ± 0.10 [75]

1040α
(0)
11 (C2 m2 J−1) 4.72± 0.04

1040α
(0)
11 (C2 m2 J−1) 4.72± 0.04

1040α
(0)
11 (C2 m2 J−1) 5.32± 0.07

aObtained by fitting to pressure virial coefficients reported in Ref. 57
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Table 3.18: The relative magnitudes of the contributions to BQ for C2H6 at T =
250K

1030 × value
Contibuting Term (C m8J−1mol−2) % contribution to BQ

Θ1α1 −0.10203 −7.68

Θ1α2 1.43597 108.22

Θ1α3 −0.01421 −1.07

Θ1α4 0.00674 0.51

Θ1α5 0.00033 0.02

Θ1α6 0.00006 0.00

BQ 1.32686

Table 3.19: The relative magnitudes of the contributions to BQ for C2H6 at T =
300K

1030 × value
Contibuting Term (C m8J−1mol−2) % contribution to BQ

Θ1α1 −0.06119 −7.07

Θ1α2 0.93717 108.36

Θ1α3 −0.01595 −1.84

Θ1α4 0.00448 0.52

Θ1α5 0.00022 0.03

Θ1α6 0.00004 0.00

BQ 0.86477
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Table 3.20: The relative magnitudes of the contributions to BQ for C2H6 at T =
400K

1030 × value
Contibuting Term (C m8J−1mol−2) % contribution to BQ

Θ1α1 −0.02936 −6.27

Θ1α2 0.50984 108.92

Θ1α3 −0.01499 −3.20

Θ1α4 0.00250 0.53

Θ1α5 0.00011 0.02

Θ1α6 0.00002 0.00

BQ 0.46812

Table 3.21: The relative magnitudes of the contributions to BQ for C2H6 at T =
500K

1030 × value
Contibuting Term (C m8J−1mol−2) % contribution to BQ

Θ1α1 −0.01727 −5.71

Θ1α2 0.3314 109.53

Θ1α3 −0.01330 −4.40

Θ1α4 0.00165 0.55

Θ1α5 0.00007 0.02

Θ1α6 0.00002 0.01

BQ 0.30257
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Table 3.22: A summary of the calculated BQ values for C2H6

T 1030 ×BQ

(K) (C m8J−1mol−2)

250 1.32686

300 0.86477

400 0.46812

500 0.30257

Table 3.23: Densities (inverse molar volumes) for gaseous C2H6 at relevant temper-
atures and pressures

at P = 1 MPa, at P = 4 MPa, at P = 10 MPa,
T V −1

m V −1
m V −1

m

(K) (mol m−3) (mol m−3) (mol m−3)

250 563.6 −a −

300 434.6 2819.2b −

400 309.7 1364.2 4197.5b

500 243.5 1009.9 2679.3

aThe dash − indicates temperatures and pressures for which the C2H6 is in the
liquid phase
bFor these temperatures and pressures, the supercritical phase closely resembles the
liquid phase, having a high density

As seen in Table 3.24, the largest and second-largest values for BQ/Vm of 0.24 ×

10−26 C m5J−1mol−1 (obtained at P = 4 MPa and T = 300 K) and of 0.20 ×

10−26 C m5J−1mol−1 (obtained at P = 10 MPa and T = 400 K), are under condi-

tions of pressure and temperature where the supercritical phase is behaving much
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Table 3.24: Calculated BQ/Vm contributions to mQ for C2H6 at the temperatures
and pressures in Table 3.23

at P = 1 MPa, at P = 4 MPa, at P = 10 MPa,
T 1026

mQ
a 1026BQ/Vm 1026BQ/Vm 1026BQ/Vm

(K) (C m5J−1mol−1) (C m5J−1mol−1) (C m5J−1mol−1) (C m5J−1mol−1)

250 −2.26± 0.09 0.075 − −

300 −2.01± 0.09 0.038 0.24 −

400 −1.69± 0.08 0.015 0.064 0.20

500 −1.50± 0.08 0.007 0.031 0.081

aThese mQ values have been interpolated from the measured data in Ref. 45. The

uncertainties are indicative of the experimental uncertainties in Ref. 45.

more like a liquid, with higher-order molecular interactions having become signifi-

cant, hence accounting for the relatively high fluid densities.

The next largest values are BQ/Vm = 0.081 × 10−26 C m5J−1mol−1 (obtained at

P = 10 MPa and T = 500 K) and BQ/Vm = 0.075× 10−26 C m5J−1mol−1 (obtained

at P = 1 MPa and T = 250 K), and are at pressures and temperatures where the

supercritical phase is behaving much more like a gas. Here, the BQ contributions

are, respectively, the same as and just smaller than the experimental uncertainties,

suggesting that if a large number of mQ measurements were to be undertaken, it

would be possible to resolve measured values for BQ.

What emerges from the analysis is that, as found for both CO2 and C2H4, the

molecular-tensor theory of BQ indicates that the measured EFGIB data for C2H6

have been obtained at temperatures and pressures for which molecular pair inter-

action contributions are negligible, being at or below the threshold of the present

limits of detectability. The theory of BQ also suggests that it will in principle be
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possible to measure BQ for C2H6 provided a large-enough number of measurements

are accumulated.

3.4 Concluding Remarks

A molecular-tensor theory has been developed to account for collision-induced con-

tributions to EFGIB arising from molecular pair-interactions in the gas phase. The

second EFGIB virial coefficient BQ has been calculated for a range of temperature

and pressure for the molecules CO2, C2H4 and C2H6. These molecules have been

chosen since there exist precise experimental measurements of mQ, and the molecu-

lar properties required in the computation of BQ are precisely known. In addition,

previously developed molecular-tensor theories of the second light-scattering virial

coefficient Bρ and the second Kerr-effect virial coefficient BK have yielded calculated

values for CO2, C2H4 and C2H6 which are in close agreement with the measured data.

The main conclusions to emerge from this project are firstly that the calculated BQ

values for CO2, C2H4 and C2H6 indicate that collision-induced contributions to mQ

are at or below the level of the experimental uncertainties, so that the measured

mQ values reported in the literature have not been compromised by the presence

of pair-interaction effects. Hence, the extracted molecular quadrupole moments are

sound. Secondly, if the precision of measured mQ data can be increased by around an

order of magnitude, it should begin to become possible to resolve BQ contributions,

particularly for higher gas densities, especially for C2H4 and C2H6. The calculated

BQ data can serve to guide experimentalists in their quest to measure BQ, since the

necessary experimental conditions and required limits of resolution are now made

clear.
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A future refinement to the theory will be the inclusion of the interaction-induced

contributions to BQ arising from the electronic distortion tensors Bijkl, Bijkl and

J ′ijk. While we have assumed that these contributions will be of the order of 10% or

smaller, this needs to be definitively established. Mr Ntombela, in his PhD project,

is presently investigating these contributions in the BLH formalism of the EFGIB

theory.



Appendix A

A.1 Fortran Program to calculate the Θ1α3 con-

tribution to BQ.

PROGRAM EFGIB_Q1A3

C PROGRAM TO CALCULATE TERM Q1A3 FOR CO2 USING GAUSSIAN INTEGRATION WITH

C 64 INTERVALS FOR THE RANGE, AND 10 INTERVALS FOR ALL ANGULAR VARIABLES

C (I.E. ALPHA1, BETA1, GAMMA1, ALPHA2, BETA2 AND GAMMA2).

C DOUBLE PRECISION IS USED THROUGHOUT.

C

C ----------------------

C SYSTEM INITIALIZATION:

C ----------------------

IMPLICIT DOUBLE PRECISION (A-H,O-Z)

COMMON COEF1,DCTC

DIMENSION COEF2(64,2),COEF1(16,2),SEP(64),AL1(16),BE1(16),GA1(16)

+ ,AL2(16),BE2(16),GA2(16),DCTC(9,16,16,16),FI(16,16,16,16,16),D1(6

+ 4),E1(16,16,16,16,16),F1(16,16,16,16,16),SE3(64),SE4(64),SE5(64),

+ SE6(64),SE8(64),SE12(64),G1(16,16,16),DDP(16,16,16,16,16),DQP(16,

+ 16,16,16,16),DIDP(16,16,16,16,16)

INTEGER X1,X2,X3,X4,X5,X6,X7

C

C MOLECULAR DATA FOR CO2 (632.8 nm):

C

SS1=0.000000

SS2=0.000000

SS3=0.000000

SS4=0.000000

SS5=0.000000

SS6=0.000000

SS7=0.000000
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DIP=0.000

A11=2.1461

A22=2.1461

A33=4.5021

ALDYN=(A11+A22+A33)/3

V11=2.3969

V22=2.3969

V33=4.9269

ALSTAT=(V11+V22+V33)/3

Q1=7.135

Q2=7.135

AMIN1=0.1000

AMAX1=3.0000

C

C READ THE GAUSSIAN COEFFICIENTS FROM THE DATAFILE GAUSS64.DAT:

C

OPEN(UNIT=10,FILE=’GAUSS64.DAT’)

DO 10 ICTR1=1,64

DO 20 ICTR2=1,2

READ(10,1010,END=11)COEF2(ICTR1,ICTR2)

1010 FORMAT(F18.15)

20 CONTINUE

10 CONTINUE

11 CLOSE(UNIT=10)

C

C CALCULATE THE INTEGRATION POINTS FOR THE RANGE:

C

SEP1=(AMAX1-AMIN1)/2

SEP2=(AMAX1+AMIN1)/2

DO 30 INDX=1,64

SEP(INDX)=SEP1*COEF2(INDX,1)+SEP2

30 CONTINUE

C

C READ THE GAUSSIAN COEFFICIENTS FROM THE DATAFILE GAUSS16.DAT:

C

OPEN(UNIT=11,FILE=’GAUSS16.DAT’)

DO 100 ICTR1=1,16

DO 110 ICTR2=1,2

READ(11,6000,END=12)COEF1(ICTR1,ICTR2)

6000 FORMAT(F18.15)

110 CONTINUE

100 CONTINUE

12 CLOSE(UNIT=11)

C
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C CALCULATE THE INTEGRATION POINTS FOR ALPHA1:

C

AMIN=0.0

AMAX=2.*3.14159265358979323846

AL11=(AMAX-AMIN)/2.

AL12=(AMAX+AMIN)/2.

DO 120 INDX=1,16

AL1(INDX)=AL11*COEF1(INDX,1)+AL12

120 CONTINUE

C

C CALCULATE THE INTEGRATION POINTS FOR BETA1:

C

AMIN=0.0

AMAX=3.14159265358979323846

BE11=(AMAX-AMIN)/2.

BE12=(AMAX+AMIN)/2.

DO 121 INDX=1,16

BE1(INDX)=BE11*COEF1(INDX,1)+BE12

121 CONTINUE

C

C CALCULATE THE INTEGRATION POINTS FOR GAMMA1:

C

AMIN=0.0

AMAX=2.*3.14159265358979323846

GA11=(AMAX-AMIN)/2.

GA12=(AMAX+AMIN)/2.

DO 122 INDX=1,16

GA1(INDX)=GA11*COEF1(INDX,1)+GA12

122 CONTINUE

C

C CALCULATE THE INTEGRATION POINTS FOR ALPHA2:

C

AMIN=0.0

AMAX=2.*3.14159265358979323846

AL21=(AMAX-AMIN)/2.

AL22=(AMAX+AMIN)/2.

DO 123 INDX=1,16

AL2(INDX)=AL21*COEF1(INDX,1)+AL22

123 CONTINUE

C

C CALCULATE THE INTEGRATION POINTS FOR BETA2:
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C

AMIN=0.0

AMAX=3.14159265358979323846

BE21=(AMAX-AMIN)/2.

BE22=(AMAX+AMIN)/2.

DO 124 INDX=1,16

BE2(INDX)=BE21*COEF1(INDX,1)+BE22

124 CONTINUE

C

C CALCULATE THE INTEGRATION POINTS FOR GAMMA2:

C

AMIN=0.0

AMAX=2.*3.14159265358979323846

GA21=(AMAX-AMIN)/2.

GA22=(AMAX+AMIN)/2.

DO 125 INDX=1,16

GA2(INDX)=GA21*COEF1(INDX,1)+GA22

125 CONTINUE

C -------------

C MAIN PROGRAM:

C -------------

OPEN(UNIT=4,FILE=’BQ_q1a3_250K’)

C

C INPUT MOLECULAR PARAMETERS FROM THE KEYBOARD:

C

C WRITE(6,470)

C470 FORMAT(1X,’INPUT THE TEMPERATURE (IN KELVIN)’)

C READ(5,471)TEMP

C471 FORMAT(F10.5)

TEMP=250.0

TEMPK=TEMP*1.380622E-23

C WRITE(6,472)

C472 FORMAT(1X,’INPUT R(0) (IN nm)’)

C READ(5,473)R

C473 FORMAT(F10.5)

R=0.40

C WRITE(6,474)

C474 FORMAT(1X,’E/K (IN K)’)

C READ(5,475)PARAM2

C475 FORMAT(F10.5)
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PARAM2=190.0

C WRITE(6,476)

C476 FORMAT(1X,’SHAPE1 ’)

C READ(5,477)SHAPE1

C477 FORMAT(F10.5)

SHAPE1=0.250

C WRITE(6,478)

C478 FORMAT(1X,’SHAPE2 ’)

C READ(5,479)SHAPE2

C479 FORMAT(F10.5)

SHAPE2=0.0

C

C CALCULATION OF THE LENNARD-JONES 6:12 POTENTIAL & STORAGE OF THE

C VALUES IN AN ARRAY:

C

DO 61 X1=1,64

D1(X1)=4.*PARAM2*1.380622E-23*((R/SEP(X1))**12-(R/SEP(X1))**6)

SE12(X1)=SEP(X1)**12

SE5(X1)=SEP(X1)**5

SE8(X1)=SEP(X1)**8

SE3(X1)=SEP(X1)**3

SE4(X1)=SEP(X1)**4

SE6(X1)=SEP(X1)**6

61 CONTINUE

C

C THE DIRECTION COSINE TENSOR COMPONENTS ARE STORED IN AN ARRAY:

C

DO 66 X4=1,16

DO 77 X3=1,16

DO 88 X2=1,16

C

C DIRECTION COSINE TENSOR COMPONENTS:

C

A1=COS(AL1(X2))*COS(BE1(X3))*COS(GA1(X4))-1.*SIN(AL1(X2))*SIN(GA1

+ (X4))

A2=SIN(AL1(X2))*COS(BE1(X3))*COS(GA1(X4))+COS(AL1(X2))*SIN(GA1(X4
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+ ))

A3=-1.*SIN(BE1(X3))*COS(GA1(X4))

A4=-1.*COS(AL1(X2))*COS(BE1(X3))*SIN(GA1(X4))-1.*SIN(AL1(X2))*COS

+ (GA1(X4))

A5=-1.*SIN(AL1(X2))*COS(BE1(X3))*SIN(GA1(X4))+COS(AL1(X2))*COS(GA

+ 1(X4))

A6=SIN(BE1(X3))*SIN(GA1(X4))

A7=COS(AL1(X2))*SIN(BE1(X3))

A8=SIN(AL1(X2))*SIN(BE1(X3))

A9=COS(BE1(X3))

DCTC(1,X2,X3,X4)=A1

DCTC(2,X2,X3,X4)=A2

DCTC(3,X2,X3,X4)=A3

DCTC(4,X2,X3,X4)=A4

DCTC(5,X2,X3,X4)=A5

DCTC(6,X2,X3,X4)=A6

DCTC(7,X2,X3,X4)=A7

DCTC(8,X2,X3,X4)=A8

DCTC(9,X2,X3,X4)=A9

88 CONTINUE

77 CONTINUE

66 CONTINUE

C

C THE MULTIPOLE INTERACTION ENERGIES ARE CALCULATED AND STORED

C IN ARRAYS:

C

DO 939 X7=1,16

WRITE(4,1000)X7

1000 FORMAT (1X, ’INDEX (IN RANGE 1 TO 16) IS CURRENTLY ’,I2 )

WRITE(6,1111)X7

1111 FORMAT (1X, ’Index (in range 1 to 16) is currently ’,I2 )

DO 40 X6=1,16

DO 50 X5=1,16

C

C MOLECULE 2’S DIRECTION COSINE TENSOR COMPONENTS:

C

B1=DCTC(1,X5,X6,X7)

B2=DCTC(2,X5,X6,X7)

B3=DCTC(3,X5,X6,X7)

B4=DCTC(4,X5,X6,X7)

B5=DCTC(5,X5,X6,X7)
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B6=DCTC(6,X5,X6,X7)

B7=DCTC(7,X5,X6,X7)

B8=DCTC(8,X5,X6,X7)

B9=DCTC(9,X5,X6,X7)

DO 60 X4=1,16

DO 70 X3=1,16

DO 80 X2=1,16

C

C MOLECULE 1’S DIRECTION COSINE TENSOR COMPONENTS:

C

A1=DCTC(1,X2,X3,X4)

A2=DCTC(2,X2,X3,X4)

A3=DCTC(3,X2,X3,X4)

A4=DCTC(4,X2,X3,X4)

A5=DCTC(5,X2,X3,X4)

A6=DCTC(6,X2,X3,X4)

A7=DCTC(7,X2,X3,X4)

A8=DCTC(8,X2,X3,X4)

A9=DCTC(9,X2,X3,X4)

C

C CALCULATION OF THE DIPOLE-DIPOLE POTENTIAL:

C

DDP(X2,X3,X4,X5,X6)=8.98758E-24*DIP**2*(-2*A9*B9+A6*B6+A3*B3)

C

C CALCULATION OF THE DIPOLE-QUADRUPOLE POTENTIAL:

C

DQP(X2,X3,X4,X5,X6)=8.98758E-25*DIP*(Q2*(-2*A9*B9**2+(2*A6*B6+2*A

+ 3*B3+2*A9**2-2*A8**2-A6**2+A5**2-A3**2+A2**2)*B9+2*A9*B8**2+(-2*A

+ 6*B5-2*A3*B2)*B8+A9*B6**2+(2*A5*A8-2*A6*A9)*B6-A9*B5**2+A9*B3**2+

+ (2*A2*A8-2*A3*A9)*B3-A9*B2**2)+Q1*(-2*A9*B9**2+(2*A6*B6+2*A3*B3+2

+ *A9**2-2*A7**2-A6**2+A4**2-A3**2+A1**2)*B9+2*A9*B7**2+(-2*A6*B4-2

+ *A3*B1)*B7+A9*B6**2+(2*A4*A7-2*A6*A9)*B6-A9*B4**2+A9*B3**2+(2*A1*

+ A7-2*A3*A9)*B3-A9*B1**2))

C

C CALCULATION OF THE DIPOLE-INDUCED DIPOLE POTENTIAL:

C

DIDP(X2,X3,X4,X5,X6)=-0.50*ALSTAT*8.07765E-27*DIP**2*(3*B9**2

+ +3*A9**2-2)

C

C CALCULATION OF THE QUADRUPOLE-QUADRUPOLE POTENTIAL:
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C

quad1=-16.*(a6*a9-a5*a8)*(b6*b9-b5*b8)-16.*(a3*a9-a2*a8)*(b3*b9-b

+ 2*b8)+4.*(2.*a9**2-2.*a8**2-a6**2+a5**2-a3**2+a2**2)*(b9-b8)*(b9+

+ b8)+(-4.*a9**2+4.*a8**2+3.*a6**2-3.*a5**2+a3**2-a2**2)*(b6**2-b5*

+ *2)+4.*(a3*a6-a2*a5)*(b3*b6-b2*b5)+(-4.*a9**2+4.*a8**2+a6**2-a5**

+ 2+3.*a3**2-3.*a2**2)*(b3**2-b2**2)

quad2=-16.*(a6*a9-a4*a7)*(b6*b9-b4*b7)-16.*(a3*a9-a1*a7)*(b3*b9-b

+ 1*b7)+4.*(2.*a9**2-2.*a7**2-a6**2+a4**2-a3**2+a1**2)*(b9-b7)*(b9+

+ b7)+(-4.*a9**2+4.*a7**2+3.*a6**2-3.*a4**2+a3**2-a1**2)*(b6**2-b4*

+ *2)+4.*(a3*a6-a1*a4)*(b3*b6-b1*b4)+(-4.*a9**2+4.*a7**2+a6**2-a4**

+ 2+3.*a3**2-3.*a1**2)*(b3**2-b1**2)

quad3=4.*(4.*A9**2-2.*(A8**2+A7**2+A6**2+A3**2)+A5**2+A4**2+A2**2

+ +A1**2)*B9**2-16.*(2.*A6*A9-A5*A8-A4*A7)*B6*B9-16*(2.*A3*A9-A2*A8

+ -A1*A7)*B3*B9-4.*(2.*A9**2-2.*A7**2-A6**2+A4**2-A3**2+A1**2)*B8**

+ 2+16.*(A6*A9-A4*A7)*B5*B8+16.*(A3*A9-A1*A7)*B2*B8-4.*(2.*A9**2-2.

+ *A8**2-A6**2+A5**2-A3**2+A2**2)*B7**2+16.*(A6*A9-A5*A8)*B4*B7+16.

+ *(A3*A9-A2*A8)*B1*B7+(-8.*A9**2+4.*(A8**2+A7**2)+6.*A6**2-3.*(A5*

+ *2+A4**2)+2*A3**2-A2**2-A1**2)*B6**2+4.*(2.*A3*A6-A2*A5-A1*A4)*B3

+ *B6+(4.*A9**2-4.*A7**2-3.*A6**2+3.*A4**2-A3**2+A1**2)*B5**2-4.*(A

+ 3*A6-A1*A4)*B2*B5+(4.*A9**2-4.*A8**2-3.*A6**2+3.*A5**2-A3**2+A2**

+ 2)*B4**2-4.*(A3*A6-A2*A5)*B1*B4+(-8.*A9**2+4.*(A8**2+A7**2)+2.*A6

+ **2-A5**2-A4**2+6.*A3**2-3.*(A2**2+A1**2))*B3**2+(4.*A9**2-4.*A7*

+ *2-A6**2+A4**2-3.*A3**2+3.*A1**2)*B2**2+(4.*A9**2-4.*A8**2-A6**2+

+ A5**2-3.*A3**2+3.*A2**2)*B1**2

E1(X2,X3,X4,X5,X6)=8.98758E-26*(1./3.)*(Q2**2*QUAD1+Q1**2*QUAD

+ 2+Q1*Q2*QUAD3)

C

C CALCULATION OF THE QUADRUPOLE-INDUCED DIPOLE POTENTIAL:

C

QID1=Q2**2*(4.*A9**4+(-8.*A8**2+4.*A5**2+4.*A2**2)*A9**2+(-8.*A5*

+ A6-8.*A2*A3)*A8*A9+4.*A8**4+(4.*A6**2+4.*A3**2)*A8**2+A6**4+(-2.*

+ A5**2+2.*A3**2-2.*A2**2)*A6**2+A5**4+(2.*A2**2-2.*A3**2)*A5**2+A3

+ **4-2.*A2**2*A3**2+A2**4)+Q1**2*(4.*A9**4+(-8.*A7**2+4.*A4**2+4.*

+ A1**2)*A9**2+(-8.*A4*A6-8.*A1*A3)*A7*A9+4.*A7**4+(4.*A6**2+4.*A3*

+ *2)*A7**2+A6**4+(-2.*A4**2+2.*A3**2-2.*A1**2)*A6**2+A4**4+(2.*A1*

+ *2-2.*A3**2)*A4**2+A3**4-2.*A1**2*A3**2+A1**4)+Q1*Q2*(8.*A9**4+(-

+ 8.*A8**2-8.*A7**2+4.*A5**2+4.*A4**2+4.*A2**2+4.*A1**2)*A9**2+((-8

+ .*A5*A6-8.*A2*A3)*A8+(-8.*A4*A6-8.*A1*A3)*A7)*A9+(8.*A7**2+4.*A6*

+ *2-4.*A4**2+4.*A3**2-4.*A1**2)*A8**2+(8.*A4*A5+8.*A1*A2)*A7*A8+(4

+ .*A6**2-4.*A5**2+4.*A3**2-4.*A2**2)*A7**2+2.*A6**4+(-2.*A5**2-2.*

+ A4**2+4.*A3**2-2.*A2**2-2.*A1**2)*A6**2+(2.*A4**2-2.*A3**2+2.*A1*

+ *2)*A5**2+(2.*A2**2-2.*A3**2)*A4**2+2.*A3**4+(-2.*A2**2-2.*A1**2)

+ *A3**2+2.*A1**2*A2**2)
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QID2=Q2**2*(4.*B9**4+(-8.*B8**2+4.*B5**2+4.*B2**2)*B9**2+(-8.*B5*

+ B6-8.*B2*B3)*B8*B9+4.*B8**4+(4.*B6**2+4.*B3**2)*B8**2+B6**4+(-2.*

+ B5**2+2.*B3**2-2.*B2**2)*B6**2+B5**4+(2.*B2**2-2.*B3**2)*B5**2+B3

+ **4-2.*B2**2*B3**2+B2**4)+Q1**2*(4.*B9**4+(-8.*B7**2+4.*B4**2+4.*

+ B1**2)*B9**2+(-8.*B4*B6-8.*B1*B3)*B7*B9+4.*B7**4+(4.*B6**2+4.*B3*

+ *2)*B7**2+B6**4+(-2.*B4**2+2.*B3**2-2.*B1**2)*B6**2+B4**4+(2.*B1*

+ *2-2.*B3**2)*B4**2+B3**4-2.*B1**2*B3**2+B1**4)+Q1*Q2*(8.*B9**4+(-

+ 8.*B8**2-8.*B7**2+4.*B5**2+4.*B4**2+4.*B2**2+4.*B1**2)*B9**2+((-8

+ .*B5*B6-8.*B2*B3)*B8+(-8.*B4*B6-8.*B1*B3)*B7)*B9+(8.*B7**2+4.*B6*

+ *2-4.*B4**2+4.*B3**2-4.*B1**2)*B8**2+(8.*B4*B5+8.*B1*B2)*B7*B8+(4

+ .*B6**2-4.*B5**2+4.*B3**2-4.*B2**2)*B7**2+2.*B6**4+(-2.*B5**2-2.*

+ B4**2+4.*B3**2-2.*B2**2-2.*B1**2)*B6**2+(2.*B4**2-2.*B3**2+2.*B1*

+ *2)*B5**2+(2.*B2**2-2.*B3**2)*B4**2+2.*B3**4+(-2.*B2**2-2.*B1**2)

+ *B3**2+2.*B1**2*B2**2)

F1(X2,X3,X4,X5,X6)=-0.5*8.07765E-29*ALSTAT*(QID1+QID2)

C

C CALCULATION OF THE INTEGRATION ARGUMENT:

C

T11=2.*A7**2-A4**2-A1**2

T22=2.*A8**2-A5**2-A2**2

T33=2.*A9**2-A6**2-A3**2

T12=2.*A7*A8-A4*A5-A1*A2

T13=2.*A7*A9-A4*A6-A1*A3

T23=2.*A8*A9-A5*A6-A2*A3

T111=2*A7**3-3*A4**2*A7-3*A1**2*A7

T222=2*A8**3-3*A5**2*A8-3*A2**2*A8

T333=2*A9**3-3*A6**2*A9-3*A3**2*A9

T112=2*A7**2*A8-A4**2*A8-A1**2*A8-2*A4*A5*A7-2*A1*A2*A7

T122=2*A7*A8**2-2*A4*A5*A8-2*A1*A2*A8-A5**2*A7-A2**2*A7

T133=2*A7*A9**2-2*A4*A6*A9-2*A1*A3*A9-A6**2*A7-A3**2*A7

T233=2*A8*A9**2-2*A5*A6*A9-2*A2*A3*A9-A6**2*A8-A3**2*A8

T113=2*A7**2*A9-A4**2*A9-A1**2*A9-2*A4*A6*A7-2*A1*A3*A7

T223=2*A8**2*A9-A5**2*A9-A2**2*A9-2*A5*A6*A8-2*A2*A3*A8

T123=2*A7*A8*A9-A4*A5*A9-A1*A2*A9-A4*A6*A8-A1*A3*A8-A5*A6*A7-A2*A

+ 3*A7

Z11 = A33*(A7**2*B9**2+(2*A4*A7*B6+2*A1*A7*B3)*B9+A4**2*B6**2+2*A

+ 1*A4*B3*B6+A1**2*B3**2)+A22*(A7**2*B8**2+(2*A4*A7*B5+2*A1*A7*B2

+ )*B8+A4**2*B5**2+2*A1*A4*B2*B5+A1**2*B2**2)+A11*(A7**2*B7**2+(2

+ *A4*A7*B4+2*A1*A7*B1)*B7+A4**2*B4**2+2*A1*A4*B1*B4+A1**2*B1**2)

Z22 = A33*(A8**2*B9**2+(2*A5*A8*B6+2*A2*A8*B3)*B9+A5**2*B6**2+2*A
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+ 2*A5*B3*B6+A2**2*B3**2)+A22*(A8**2*B8**2+(2*A5*A8*B5+2*A2*A8*B2

+ )*B8+A5**2*B5**2+2*A2*A5*B2*B5+A2**2*B2**2)+A11*(A8**2*B7**2+(2

+ *A5*A8*B4+2*A2*A8*B1)*B7+A5**2*B4**2+2*A2*A5*B1*B4+A2**2*B1**2)

Z33 = A33*(A9**2*B9**2+(2*A6*A9*B6+2*A3*A9*B3)*B9+A6**2*B6**2+2*A

+ 3*A6*B3*B6+A3**2*B3**2)+A22*(A9**2*B8**2+(2*A6*A9*B5+2*A3*A9*B2

+ )*B8+A6**2*B5**2+2*A3*A6*B2*B5+A3**2*B2**2)+A11*(A9**2*B7**2+(2

+ *A6*A9*B4+2*A3*A9*B1)*B7+A6**2*B4**2+2*A3*A6*B1*B4+A3**2*B1**2)

Z12 = A33*(A7*A8*B9**2+((A4*A8+A5*A7)*B6+(A1*A8+A2*A7)*B3)*B9+A4*

+ A5*B6**2+(A1*A5+A2*A4)*B3*B6+A1*A2*B3**2)+A22*(A7*A8*B8**2+((A4

+ *A8+A5*A7)*B5+(A1*A8+A2*A7)*B2)*B8+A4*A5*B5**2+(A1*A5+A2*A4)*B2

+ *B5+A1*A2*B2**2)+A11*(A7*A8*B7**2+((A4*A8+A5*A7)*B4+(A1*A8+A2*A

+ 7)*B1)*B7+A4*A5*B4**2+(A1*A5+A2*A4)*B1*B4+A1*A2*B1**2)

Z13 = A33*(A7*A9*B9**2+((A4*A9+A6*A7)*B6+(A1*A9+A3*A7)*B3)*B9+A4*

+ A6*B6**2+(A1*A6+A3*A4)*B3*B6+A1*A3*B3**2)+A22*(A7*A9*B8**2+((A4

+ *A9+A6*A7)*B5+(A1*A9+A3*A7)*B2)*B8+A4*A6*B5**2+(A1*A6+A3*A4)*B2

+ *B5+A1*A3*B2**2)+A11*(A7*A9*B7**2+((A4*A9+A6*A7)*B4+(A1*A9+A3*A

+ 7)*B1)*B7+A4*A6*B4**2+(A1*A6+A3*A4)*B1*B4+A1*A3*B1**2)

Z23 = A33*(A8*A9*B9**2+((A5*A9+A6*A8)*B6+(A2*A9+A3*A8)*B3)*B9+A5*

+ A6*B6**2+(A2*A6+A3*A5)*B3*B6+A2*A3*B3**2)+A22*(A8*A9*B8**2+((A5

+ *A9+A6*A8)*B5+(A2*A9+A3*A8)*B2)*B8+A5*A6*B5**2+(A2*A6+A3*A5)*B2

+ *B5+A2*A3*B2**2)+A11*(A8*A9*B7**2+((A5*A9+A6*A8)*B4+(A2*A9+A3*A

+ 8)*B1)*B7+A5*A6*B4**2+(A2*A6+A3*A5)*B1*B4+A2*A3*B1**2)

W11 = V33*(A7**2*B9**2+(2*A4*A7*B6+2*A1*A7*B3)*B9+A4**2*B6**2+2*A

+ 1*A4*B3*B6+A1**2*B3**2)+V22*(A7**2*B8**2+(2*A4*A7*B5+2*A1*A7*B2

+ )*B8+A4**2*B5**2+2*A1*A4*B2*B5+A1**2*B2**2)+V11*(A7**2*B7**2+(2

+ *A4*A7*B4+2*A1*A7*B1)*B7+A4**2*B4**2+2*A1*A4*B1*B4+A1**2*B1**2)

W22 = V33*(A8**2*B9**2+(2*A5*A8*B6+2*A2*A8*B3)*B9+A5**2*B6**2+2*A

+ 2*A5*B3*B6+A2**2*B3**2)+V22*(A8**2*B8**2+(2*A5*A8*B5+2*A2*A8*B2

+ )*B8+A5**2*B5**2+2*A2*A5*B2*B5+A2**2*B2**2)+V11*(A8**2*B7**2+(2

+ *A5*A8*B4+2*A2*A8*B1)*B7+A5**2*B4**2+2*A2*A5*B1*B4+A2**2*B1**2)

W33 = V33*(A9**2*B9**2+(2*A6*A9*B6+2*A3*A9*B3)*B9+A6**2*B6**2+2*A

+ 3*A6*B3*B6+A3**2*B3**2)+V22*(A9**2*B8**2+(2*A6*A9*B5+2*A3*A9*B2

+ )*B8+A6**2*B5**2+2*A3*A6*B2*B5+A3**2*B2**2)+V11*(A9**2*B7**2+(2

+ *A6*A9*B4+2*A3*A9*B1)*B7+A6**2*B4**2+2*A3*A6*B1*B4+A3**2*B1**2)

W12 = V33*(A7*A8*B9**2+((A4*A8+A5*A7)*B6+(A1*A8+A2*A7)*B3)*B9+A4*

+ A5*B6**2+(A1*A5+A2*A4)*B3*B6+A1*A2*B3**2)+V22*(A7*A8*B8**2+((A4

+ *A8+A5*A7)*B5+(A1*A8+A2*A7)*B2)*B8+A4*A5*B5**2+(A1*A5+A2*A4)*B2

+ *B5+A1*A2*B2**2)+V11*(A7*A8*B7**2+((A4*A8+A5*A7)*B4+(A1*A8+A2*A

+ 7)*B1)*B7+A4*A5*B4**2+(A1*A5+A2*A4)*B1*B4+A1*A2*B1**2)

W13 = V33*(A7*A9*B9**2+((A4*A9+A6*A7)*B6+(A1*A9+A3*A7)*B3)*B9+A4*
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+ A6*B6**2+(A1*A6+A3*A4)*B3*B6+A1*A3*B3**2)+V22*(A7*A9*B8**2+((A4

+ *A9+A6*A7)*B5+(A1*A9+A3*A7)*B2)*B8+A4*A6*B5**2+(A1*A6+A3*A4)*B2

+ *B5+A1*A3*B2**2)+V11*(A7*A9*B7**2+((A4*A9+A6*A7)*B4+(A1*A9+A3*A

+ 7)*B1)*B7+A4*A6*B4**2+(A1*A6+A3*A4)*B1*B4+A1*A3*B1**2)

W23 = V33*(A8*A9*B9**2+((A5*A9+A6*A8)*B6+(A2*A9+A3*A8)*B3)*B9+A5*

+ A6*B6**2+(A2*A6+A3*A5)*B3*B6+A2*A3*B3**2)+V22*(A8*A9*B8**2+((A5

+ *A9+A6*A8)*B5+(A2*A9+A3*A8)*B2)*B8+A5*A6*B5**2+(A2*A6+A3*A5)*B2

+ *B5+A2*A3*B2**2)+V11*(A8*A9*B7**2+((A5*A9+A6*A8)*B4+(A2*A9+A3*A

+ 8)*B1)*B7+A5*A6*B4**2+(A2*A6+A3*A5)*B1*B4+A2*A3*B1**2)

Q11 = A7**2*B8**2*Q2+2*A4*A7*B5*B8*Q2+2*A1*A7*B2*B8*Q2+A4**2*B5

1 **2*Q2+2*A1*A4*B2*B5*Q2+A1**2*B2**2*Q2+A7**2*B9**2*(-Q2-Q1)+2

2 *A4*A7*B6*B9*(-Q2-Q1)+2*A1*A7*B3*B9*(-Q2-Q1)+A4**2*B6**2*(-Q2

3 -Q1)+2*A1*A4*B3*B6*(-Q2-Q1)+A1**2*B3**2*(-Q2-Q1)+A7**2*B7**2*

4 Q1+2*A4*A7*B4*B7*Q1+2*A1*A7*B1*B7*Q1+A4**2*B4**2*Q1+2*A1*A4*B

5 1*B4*Q1+A1**2*B1**2*Q1

Q22 = A8**2*B8**2*Q2+2*A5*A8*B5*B8*Q2+2*A2*A8*B2*B8*Q2+A5**2*B5

1 **2*Q2+2*A2*A5*B2*B5*Q2+A2**2*B2**2*Q2+A8**2*B9**2*(-Q2-Q1)+2

2 *A5*A8*B6*B9*(-Q2-Q1)+2*A2*A8*B3*B9*(-Q2-Q1)+A5**2*B6**2*(-Q2

3 -Q1)+2*A2*A5*B3*B6*(-Q2-Q1)+A2**2*B3**2*(-Q2-Q1)+A8**2*B7**2*

4 Q1+2*A5*A8*B4*B7*Q1+2*A2*A8*B1*B7*Q1+A5**2*B4**2*Q1+2*A2*A5*B

5 1*B4*Q1+A2**2*B1**2*Q1

Q33 = A9**2*B8**2*Q2+2*A6*A9*B5*B8*Q2+2*A3*A9*B2*B8*Q2+A6**2*B5

1 **2*Q2+2*A3*A6*B2*B5*Q2+A3**2*B2**2*Q2+A9**2*B9**2*(-Q2-Q1)+2

2 *A6*A9*B6*B9*(-Q2-Q1)+2*A3*A9*B3*B9*(-Q2-Q1)+A6**2*B6**2*(-Q2

3 -Q1)+2*A3*A6*B3*B6*(-Q2-Q1)+A3**2*B3**2*(-Q2-Q1)+A9**2*B7**2*

4 Q1+2*A6*A9*B4*B7*Q1+2*A3*A9*B1*B7*Q1+A6**2*B4**2*Q1+2*A3*A6*B

5 1*B4*Q1+A3**2*B1**2*Q1

Q12 = A7*A8*B8**2*Q2+A4*A8*B5*B8*Q2+A5*A7*B5*B8*Q2+A1*A8*B2*B8*

1 Q2+A2*A7*B2*B8*Q2+A4*A5*B5**2*Q2+A1*A5*B2*B5*Q2+A2*A4*B2*B5*Q

2 2+A1*A2*B2**2*Q2+A7*A8*B9**2*(-Q2-Q1)+A4*A8*B6*B9*(-Q2-Q1)+A5

3 *A7*B6*B9*(-Q2-Q1)+A1*A8*B3*B9*(-Q2-Q1)+A2*A7*B3*B9*(-Q2-Q1)+

4 A4*A5*B6**2*(-Q2-Q1)+A1*A5*B3*B6*(-Q2-Q1)+A2*A4*B3*B6*(-Q2-Q1

5 )+A1*A2*B3**2*(-Q2-Q1)+A7*A8*B7**2*Q1+A4*A8*B4*B7*Q1+A5*A7*B4

6 *B7*Q1+A1*A8*B1*B7*Q1+A2*A7*B1*B7*Q1+A4*A5*B4**2*Q1+A1*A5*B1*

7 B4*Q1+A2*A4*B1*B4*Q1+A1*A2*B1**2*Q1

Q13 = A7*A9*B8**2*Q2+A4*A9*B5*B8*Q2+A6*A7*B5*B8*Q2+A1*A9*B2*B8*

1 Q2+A3*A7*B2*B8*Q2+A4*A6*B5**2*Q2+A1*A6*B2*B5*Q2+A3*A4*B2*B5*Q

2 2+A1*A3*B2**2*Q2+A7*A9*B9**2*(-Q2-Q1)+A4*A9*B6*B9*(-Q2-Q1)+A6

3 *A7*B6*B9*(-Q2-Q1)+A1*A9*B3*B9*(-Q2-Q1)+A3*A7*B3*B9*(-Q2-Q1)+

4 A4*A6*B6**2*(-Q2-Q1)+A1*A6*B3*B6*(-Q2-Q1)+A3*A4*B3*B6*(-Q2-Q1

5 )+A1*A3*B3**2*(-Q2-Q1)+A7*A9*B7**2*Q1+A4*A9*B4*B7*Q1+A6*A7*B4

6 *B7*Q1+A1*A9*B1*B7*Q1+A3*A7*B1*B7*Q1+A4*A6*B4**2*Q1+A1*A6*B1*
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7 B4*Q1+A3*A4*B1*B4*Q1+A1*A3*B1**2*Q1

Q23 = A8*A9*B8**2*Q2+A5*A9*B5*B8*Q2+A6*A8*B5*B8*Q2+A2*A9*B2*B8*

1 Q2+A3*A8*B2*B8*Q2+A5*A6*B5**2*Q2+A2*A6*B2*B5*Q2+A3*A5*B2*B5*Q

2 2+A2*A3*B2**2*Q2+A8*A9*B9**2*(-Q2-Q1)+A5*A9*B6*B9*(-Q2-Q1)+A6

3 *A8*B6*B9*(-Q2-Q1)+A2*A9*B3*B9*(-Q2-Q1)+A3*A8*B3*B9*(-Q2-Q1)+

4 A5*A6*B6**2*(-Q2-Q1)+A2*A6*B3*B6*(-Q2-Q1)+A3*A5*B3*B6*(-Q2-Q1

5 )+A2*A3*B3**2*(-Q2-Q1)+A8*A9*B7**2*Q1+A5*A9*B4*B7*Q1+A6*A8*B4

6 *B7*Q1+A2*A9*B1*B7*Q1+A3*A8*B1*B7*Q1+A5*A6*B4**2*Q1+A2*A6*B1*

7 B4*Q1+A3*A5*B1*B4*Q1+A2*A3*B1**2*Q1

term1=A33**2*(-Q2-Q1)*T33**2*Z33+A22**2*Q2*T23**2*Z33+A11**2*Q1

1 *T13**2*Z33+2*A33**2*(-Q2-Q1)*T23*T33*Z23+2*A22**2*Q2*T22*T23

2 *Z23+2*A11**2*Q1*T12*T13*Z23+A33**2*(-Q2-Q1)*T23**2*Z22+A22**

3 2*Q2*T22**2*Z22+A11**2*Q1*T12**2*Z22+2*A33**2*(-Q2-Q1)*T13*T3

4 3*Z13+2*A22**2*Q2*T12*T23*Z13+2*A11**2*Q1*T11*T13*Z13+2*A33**

5 2*(-Q2-Q1)*T13*T23*Z12+2*A22**2*Q2*T12*T22*Z12+2*A11**2*Q1*T1

6 1*T12*Z12+A33**2*(-Q2-Q1)*T13**2*Z11+A22**2*Q2*T12**2*Z11+A11

7 **2*Q1*T11**2*Z11

term2=A33**2*Q33*T33**2*Z33+2*A22*A33*Q23*T23*T33*Z33+2*A11*A33

1 *Q13*T13*T33*Z33+A22**2*Q22*T23**2*Z33+2*A11*A22*Q12*T13*T23*

2 Z33+A11**2*Q11*T13**2*Z33+2*A33**2*Q33*T23*T33*Z23+2*A22*A33*

3 Q23*T22*T33*Z23+2*A11*A33*Q13*T12*T33*Z23+2*A22*A33*Q23*T23**

4 2*Z23+2*A22**2*Q22*T22*T23*Z23+2*A11*A33*Q13*T13*T23*Z23+2*A1

5 1*A22*Q12*T12*T23*Z23+2*A11*A22*Q12*T13*T22*Z23+2*A11**2*Q11*

6 T12*T13*Z23+A33**2*Q33*T23**2*Z22+2*A22*A33*Q23*T22*T23*Z22+2

7 *A11*A33*Q13*T12*T23*Z22+A22**2*Q22*T22**2*Z22+2*A11*A22*Q12*

8 T12*T22*Z22+A11**2*Q11*T12**2*Z22+2*A33**2*Q33*T13*T33*Z13+2*

9 A22*A33*Q23*T12*T33*Z13+2*A11*A33*Q13*T11*T33*Z13+2*A22*A33*Q

: 23*T13*T23*Z13+2*A22**2*Q22*T12*T23*Z13+2*A11*A22*Q12*T11*T23

; *Z13+2*A11*A33*Q13*T13**2*Z13+2*A11*A22*Q12*T12*T13*Z13+2*A11

< **2*Q11*T11*T13*Z13+2*A33**2*Q33*T13*T23*Z12+2*A22*A33*Q23*T1

= 2*T23*Z12+2*A11*A33*Q13*T11*T23*Z12+2*A22*A33*Q23*T13*T22*Z12

> +2*A22**2*Q22*T12*T22*Z12+2*A11*A22*Q12*T11*T22*Z12+2*A11*A33

? *Q13*T12*T13*Z12+2*A11*A22*Q12*T12**2*Z12+2*A11**2*Q11*T11*T1

@ 2*Z12+A33**2*Q33*T13**2*Z11+2*A22*A33*Q23*T12*T13*Z11+2*A11*A

1 33*Q13*T11*T13*Z11+A22**2*Q22*T12**2*Z11+2*A11*A22*Q12*T11*T1

2 2*Z11+A11**2*Q11*T11**2*Z11

TERM=term1+term2

FI(X2,X3,X4,X5,X6)=(SIN(BE1(X3))*SIN(BE2(X6)))*TERM
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C

C CALCULATION OF THE SHAPE POTENTIAL:

C

G1(X3,X4,X6)=4.*PARAM2*1.380622E-23*R**12*(SHAPE1*(3.*COS(BE1(X3)

+ )**2+3.*COS(BE2(X6))**2-2.)+SHAPE2*(3.*COS(GA1(X4))**2*SIN(BE1(X3

+ ))**2+3.*COS(GA2(X7))**2*SIN(BE2(X6))**2-2.))

80 CONTINUE

70 CONTINUE

60 CONTINUE

50 CONTINUE

c WRITE(4,1444)term

c1444 FORMAT(1X,’term IS’,E15.7)

40 CONTINUE

C

C THE INTEGRAL IS CALCULATED:

C

SS6=0.00

DO 940 X6=1,16

c WRITE(6,1911)X6

c1911 FORMAT (1X, ’sub-index (in range 1 to 16) is currently ’,I2 )

SS5=0.00

DO 950 X5=1,16

SS4=0.00

DO 960 X4=1,16

SS3=0.00

DO 970 X3=1,16

SS2=0.00

DO 980 X2=1,16

SS1=0.00

DO 990 X1=1,64

C

C SUMMATION OF THE ENERGY TERMS WITH SUBSEQUENT DIVISION BY (-kT):

C

G3=-1.*(D1(X1)+E1(X2,X3,X4,X5,X6)/SE5(X1)+F1(X2,X3,X4,X5,X6)/SE8(

+ X1)+G1(X3,X4,X6)/SE12(X1)+DDP(X2,X3,X4,X5,X6)/SE3(X1)+DIDP(X2,X3,

+ X4,X5,X6)/SE6(X1)+DQP(X2,X3,X4,X5,X6)/SE4(X1))/TEMPK

IF(G3.LT.-85) GO TO 5000

G4=2.71828**G3
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GO TO 5010

5000 G4=0

C5010 SS1=SS1+(FI(X2,X3,X4,X5,X6)/(SEP(X1)**6))*G4*COEF2(X1,2)

5010 SS1=SS1+(FI(X2,X3,X4,X5,X6)/(SEP(X1)**4))*G4*COEF2(X1,2)

990 CONTINUE

SS2=SS2+SS1*COEF1(X2,2)

C

C

980 CONTINUE

SS3=SS3+SS2*COEF1(X3,2)

C

C

970 CONTINUE

SS4=SS4+SS3*COEF1(X4,2)

C

C

960 CONTINUE

SS5=SS5+SS4*COEF1(X5,2)

C

C

950 CONTINUE

SS6=SS6+SS5*COEF1(X6,2)

C

C

940 CONTINUE

SS7=SS7+SS6*COEF1(X7,2)

C

C

939 CONTINUE

ANS=SS7*SEP1*AL11*BE11*GA11*AL21*BE21*GA21*6.022169**2*

+ 8.987552**3*1E-37/(TEMP*1.380622*90*3.14159265358979323846**2)

C

C THE INTEGRAL IS PRINTED TOGETHER WITH MOLECULAR DATA USED

C

WRITE(4,2266)

2266 FORMAT(1X,’THE Q1A3 TERM CONTRIBUTION TO B_Q FOR CO2:’)

WRITE(4,2267)

2267 FORMAT(1X,’ ’)

WRITE(4,2269)

2269 FORMAT(1X,’ ’)

WRITE(4,1140)ANS

1140 FORMAT(1X,’THE INTEGRAL IS’,E15.7)

WRITE(4,2150)

2150 FORMAT(1X,’INPUT DATA:’)

WRITE(4,2155)TEMP
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2155 FORMAT(1X,’TEMPERATURE: ’,F10.5)

WRITE(4,9260)ALDYN

9260 FORMAT(1X,’MEAN DYNAMIC ALPHA:’,F10.5)

WRITE(4,9261)A11

9261 FORMAT(1X,’DYNAMIC ALPHA11: ’,F10.5)

WRITE(4,9262)A22

9262 FORMAT(1X,’DYNAMIC ALPHA22: ’,F10.5)

WRITE(4,9263)A33

9263 FORMAT(1X,’DYNAMIC ALPHA33: ’,F10.5)

WRITE(4,9264)ALSTAT

9264 FORMAT(1X,’MEAN STATIC ALPHA: ’,F10.5)

WRITE(4,9961)V11

9961 FORMAT(1X,’STATIC ALPHA11: ’,F10.5)

WRITE(4,9962)V22

9962 FORMAT(1X,’STATIC ALPHA22: ’,F10.5)

WRITE(4,9963)V33

9963 FORMAT(1X,’STATIC ALPHA33: ’,F10.5)

WRITE(4,2190)Q1

2190 FORMAT(1X,’THETA11: ’,F10.5)

WRITE(4,2241)Q2

2241 FORMAT(1X,’THETA22: ’,F10.5)

WRITE(4,2210)R

2210 FORMAT(1X,’R(0): ’,F6.5)

WRITE(4,2220)SHAPE1

2220 FORMAT(1X,’SHAPE FACTOR 1: ’,F10.5)

WRITE(4,2221)SHAPE2

2221 FORMAT(1X,’SHAPE FACTOR 2: ’,F10.5)

WRITE(4,2230)PARAM2

2230 FORMAT(1X,’E/K: ’,F9.5)

WRITE(4,2235)AMIN1,AMAX1

2235 FORMAT(1X,’MIN AND MAX POINTS OF RANGE (64 INTERVALS):’,2(F10.5,3

+ X))

WRITE(4,2240)

2240 FORMAT(1X,’END BT’)

WRITE(4,2261)

2261 FORMAT(1X,’ ’)

WRITE(4,2262)

2262 FORMAT(1X,’ ’)

WRITE(4,2263)

2263 FORMAT(1X,’ ’)

WRITE(4,2264)

2264 FORMAT(1X,’ ’)

WRITE(4,2265)

2265 FORMAT(1X,’ ’)

CLOSE(UNIT=4)

END
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