THE ROLE OF ADIPONECTIN, LEPTIN, TNF-α AND RESISTIN IN HIV ASSOCIATED PRE-ECLAMPSIA

by

VINESHREE GOVENDER

submitted in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in
Obstetrics and Gynaecology
College of Health Sciences
University of KwaZulu-Natal
Durban
2015
PREFACE

This study represents original work by the author and has not been submitted in any other form to another University. Where use was made of the work of others, it has been duly acknowledged in the text.

The research described in this dissertation was carried out in the Optics & Imaging Centre, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa under the supervision of Professor T. Naicker.

Vineshree Govender
(993210275)

Professor Thajasvarie Naicker
(Supervisor)

Professor J Moodley
(Co-Supervisor)
DECLARATION

I, Vineshree Govender declare that:

(i) The research reported in this dissertation, except where otherwise indicated is my original work.

(ii) This dissertation has not been submitted for any degree or examination at any other university.

(iii) This dissertation does not contain other person’s data, pictures, graphs or other information, unless specifically acknowledged as being sourced from other persons.

(iv) This dissertation does not contain other persons’ writing, unless specifically acknowledged as being sourced from other researchers. Where other sources have been quoted, then:

 a) Their words have been rewritten but the general information attributed by them has been referenced.

 b) Where their exact words have been used their writing had been placed inside quotation marks and referenced.

(v) Where I have reproduced a publication of which I am an author, co-author, I have indicated in detail which part of the publication was actually written by myself alone and have fully referenced such publications.

(vi) This dissertation does not contain text, graphics, or tables copied and pasted from the internet, unless specifically acknowledged and the source being detailed in the dissertation and the reference sections.

Signed: [Signature]

Date: 30/03/2015
DEDICATION

To my parents, for instilling in me the desire to progress and to my brother whose faith and moral support made this achievable

To God, without whose love, grace, wisdom, knowledge and mercy none of my achievements would have been possible

Medicine is not only a science; it is also an art. It does not consist of compounding pills and plasters; it deals with the very processes of life, which must be understood before they may be guided. - Paracelsus
ACKNOWLEDGEMENTS

I wish to express my sincere thanks and gratitude to:

• Professors J Moodley and T Naicker, for allowing me the opportunity to work on this thesis and be a part of the Placental Research team. The generosity of time and attention during the course of my study assisted my professional growth as an academic and researcher;

• Professor T Naicker for her support, encouragement and her invaluable supervision with regards to this thesis;

• Optics and Imaging Centre, DDMRI, College of Health Sciences, where this study was conducted;

• Professor M Christianson and Dr P Hadley (Serum Staten Institut, Copenhagen) for their invaluable support, guidance and use of their laboratory to conduct the molecular analyses of my study in a timely and efficient manner;

• Mr V Dorsamy for his invaluable time and assistance in statistical analysis;

• Miss A Ajith for her great assistance with formatting;

• RK Khan Hospital and the patients for their consent and participation in the study;

• Mrs T Esterhuizen, for her help with the statistical analysis.
TABLE OF CONTENTS

PREFACE ... ii
DECLARATION ... iii
DEDICATION .. iv
ACKNOWLEDGEMENTS ... v
ABBREVIATIONS .. xiii
LIST OF FIGURES ... xvi
LIST OF TABLES .. xviii
ABSTRACT .. xix
CHAPTER ONE .. - 1 -
 BACKGROUND AND LITERATURE REVIEW .. - 1 -
 1.1 NORMAL PREGNANCY ... - 1 -
 1.2 PLACENTATION AND EARLY DEVELOPMENT - 2 -
 1.2.1 Other functions of EVT .. - 4 -
 1.3 HYPERTENSIVE DISORDERS OF PREGNANCY - 6 -
 1.3.1 Classification and characteristics of hypertensive disorders - 8 -
 1.3.2 Pre-eclampsia ... - 6 -
 1.3.3 Clinical parameters for pre-eclampsia diagnosis - 8 -
 1.3.4 Classification .. - 8 -
 1.3.5 Risk factors for pre-eclampsia .. - 12 -
 1.3.6 Placental formation in pre-eclampsia ... - 12 -
CHAPTER 2 .. - 36 -

MATERIALS AND METHODS... - 36 -

2.1. STUDY SITE, ETHICS APPROVAL AND INFORMED CONSENT ... - 36 -

2.2. STUDY POPULATION ... - 36 -

2.2.1. Inclusion Criteria ... - 38 -

2.2.2. Exclusion Criteria .. - 39 -

2.3. SAMPLE COLLECTION ... - 40 -

2.3.1. Participant Demographics .. - 40 -

2.3.2. Blood collection ... - 41 -

2.4. ENZYME-LINKED IMMUNOSORBENT ASSAY DETECTION OF SERUM ADIPONECTIN
AND TNF-α .. - 42 -

2.4.1. Principle of serum adiponectin and TNF-α detection .. - 42 -

2.4.2. Procedure for adiponectin and TNF-α detection by ELISA (RnD Systems) - 44 -

2.4.3. Detection limits and co-efficient of variation (CV) ... - 45 -

2.5. DETERMINATION OF SERUM LEPTIN AND RESISTIN BY BIOPLEX IMMUNOASSAY 45-

2.5.1. Principle of serum leptin and resistin detection by Bioplex assays - 45 -

2.5.2 Preparation and procedure ... - 47 -

2.5.3 Linear regression .. - 50 -

2.5.4 Logistic regression ... - 50 -

2.7 STATISTICAL ANALYSIS .. - 51 -

CHAPTER 3 .. - 52 -

RESULTS ... - 52 -

3.1 STUDY POPULATION .. - 52 -
3.2 DEMOGRAPHIC AND CLINICAL DATA OF STUDY POPULATION ... - 54 -

3.2.1 Maternal Age .. - 54 -

3.2.2 Blood Pressure .. - 58 -

3.2.2.1 Systolic blood pressure ... - 58 -

3.2.2.2 Diastolic blood pressure .. - 61 -

3.2.3 Gestational Age ... - 64 -

3.2.4 Indications for delivery ... - 65 -

3.2.5 Clinical complications in the pre-eclampsia groups .. - 66 -

3.2.6 Birth weights across study groups .. - 66 -

3.2.7 Placental weights across pregnant groups ... - 68 -

3.2.8 HIV status ... - 70 -

3.2.8.1 Cluster of Differentiation 4 (CD4) count (cells/mm³) .. - 70 -

3.2.8.2 Anti – retroviral (ARV) Usage .. - 72 -

3.3 ANTHROPOMETRIC DATA ACROSS STUDY GROUPS .. - 74 -

3.3.1 Maternal Weight ... - 74 -

3.3.2 Maternal Height ... - 75 -

3.3.3 Maternal Body mass index ... - 76 -

3.3.4 Mid upper arm circumference (MUAC) .. - 78 -

3.3.5 Triceps skin fold thickness ... - 80 -

3.4 ASSESSMENT OF SERUM LEVELS OF ADIPONECTIN USING ELISA - 84 -

3.5 ASSESSMENT OF SERUM LEVELS OF LEPTIN USING THE LUMINEX TECHNIQUE - 85 -

3.6 ASSESSMENT OF SERUM LEVELS OF TNF-α USING LUMINEX TECHNIQUE - 86 -
ABBREVIATIONS

≥ greater than, equal to
aa amino acid
ACR albumin : creatinine ratio
ACRP adipocyte complement related protein
AdipoR adiponectin receptor
AIDS autoimmune deficiency syndrome
APGARs Activity, Pulse, Grimace, Appearance, Respiration
ANOVA analysis of variance
apM1 adipose most abundant gene transcript
ARV anti retro viral
BMI BODY MASS INDEX
BP blood pressure
CD4 cluster of differentiation 4
cm centimetre
CRH corticotrophin releasing hormone
CT cytotrophoblasts
CV coefficient of variation
Cys cysteine
DBP diastolic blood pressure
EDTA Ethylenediaminetetraacetic acid
ELISA enzyme linked immunosorbent assay
EOPE early onset pre-eclampsia
ET endothelin
EVT extravillous cytotrophoblast
fAd full length adiponectin
FIZZ found in inflammatory zone
g gram
gAd globular adiponectin
GA gestational age
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>GH</td>
<td>growth hormone</td>
</tr>
<tr>
<td>h</td>
<td>hours</td>
</tr>
<tr>
<td>HAART</td>
<td>highly active anti-retroviral therapy</td>
</tr>
<tr>
<td>HALS</td>
<td>HIV associated lipodystrophy</td>
</tr>
<tr>
<td>hCG</td>
<td>human chorionic growth factor</td>
</tr>
<tr>
<td>HELLP</td>
<td>haemolysis, elevated liver enzymes, low platelets</td>
</tr>
<tr>
<td>HGF</td>
<td>hepatocyte growth factor</td>
</tr>
<tr>
<td>HIV</td>
<td>human immunodeficiency virus</td>
</tr>
<tr>
<td>hPL</td>
<td>human placental lactogen</td>
</tr>
<tr>
<td>HRP</td>
<td>horseradish peroxide</td>
</tr>
<tr>
<td>IGF</td>
<td>insulin like growth factor</td>
</tr>
<tr>
<td>IGF2</td>
<td>insulin like growth factor 2</td>
</tr>
<tr>
<td>IL</td>
<td>interleukin</td>
</tr>
<tr>
<td>IUGR</td>
<td>intrauterine growth gestation</td>
</tr>
<tr>
<td>JNK</td>
<td>Jun N-terminal kinase</td>
</tr>
<tr>
<td>kDa</td>
<td>kilodalton</td>
</tr>
<tr>
<td>kg/m²</td>
<td>kilogram per meter squared</td>
</tr>
<tr>
<td>LEPR/OBR</td>
<td>leptin receptor</td>
</tr>
<tr>
<td>LGA</td>
<td>large for gestational age</td>
</tr>
<tr>
<td>LOPE</td>
<td>late onset pre-eclampsia</td>
</tr>
<tr>
<td>LSD</td>
<td>least significant difference</td>
</tr>
<tr>
<td>MAPK</td>
<td>mitogen activated protein kinase</td>
</tr>
<tr>
<td>mg</td>
<td>milligram</td>
</tr>
<tr>
<td>ml</td>
<td>millilitres</td>
</tr>
<tr>
<td>mm³</td>
<td>millimetre cubed</td>
</tr>
<tr>
<td>mmHg</td>
<td>millimetres mercury</td>
</tr>
<tr>
<td>MMP</td>
<td>matrix metallo-proteinases</td>
</tr>
<tr>
<td>mRNA</td>
<td>messenger ribonucleic acid</td>
</tr>
<tr>
<td>MUAC</td>
<td>mid upper arm circumference</td>
</tr>
<tr>
<td>OB</td>
<td>obese</td>
</tr>
<tr>
<td>OR</td>
<td>odds ratio</td>
</tr>
<tr>
<td>PE</td>
<td>pre-eclampsia</td>
</tr>
</tbody>
</table>
PIGF placental growth factor
PMTCT preventing mother to child transmission
RELM resistin like molecule
RETN A gene on chromosome 19p13.2 that encodes resistin
SA-PE streptavidin phycoerythrin
SBP systolic blood pressure
sEng soluble endoglin
sFlt soluble fms like tyrosine kinase receptor
SODD Silencer of Death Domain
SPHERE Statewide Partnership for HIV Education in Recovery Environments
SPSS Statistical Package for the Social Sciences
ST syncytiotrophoblasts
TACE TNF alpha converting enzyme
TGF-β transforming growth factor beta
TIMP tissue inhibitor proteins
TMB tetramethylbenzidine
TNF-α tumour necrosis factor alpha
TNFR tumour necrosis factor receptor
TRADD Tumor necrosis factor receptor type 1-associated DEATH domain protein
TST triceps skinfold thickness
Val valine
VEGF vascular endothelial growth factor
SANDO South African National Department of
MRC Medical Research Council
LIST OF FIGURES

Figure 1.1: Materno-fetal interaction via the placenta as adapted from Jansson and Powell, 2000 - 1 -

Figure 1.2: Schematic diagram illustrating stages of cleavage of the zygote, to form the blastocyst. Adapted from Marieb, 2003 ... - 2 -

Figure 1.3: Diagram illustrating the concept of two waves of trophoblastic invasion into the spiral artery. On the left hand side one can see the endovascular trophoblast migration into the decidual segments of the spiral arteries which occurs during the first trimester. On the right hand side which is illustrating a second semester spiral artery, this endovascular migration is seen extending into the myometrial segments the of spiral arteries. In addition, the intramural trophoblast invasion which transforms the vessel walls and alters vasoreactivity is illustrated. Red arrow: direction of blood flow; black arrow: direction of endovascular trophoblast migration. Adapted from Pijnenborg et al., 2006 ... - 5 -

Figure 1.4: Development of pre-eclampsia: Causal model .. - 14 -

Figure 1.5: Structure of adiponectin as depicted in the article “Protective vascular and myocardial effects of adiponectin” (Goldstein et al., 2009) .. - 18 -

Figure 1.6: Leptin attaching to adipose tissue as depicted by Ramon Andrade - 23 -

Figure 1.7: Structure of resistin: An illustration of resistin assembled as a trimer, the less stable but more biologically active state of the hormone modified from Amity Tung, Molecules of the Quarter UCLA Department of Chemistry and Biochemistry .. - 27 -

Figure 1.8: This is a model of the Tumor Necrosis Factor Receptor1 (TNFR1) for Tumor Necrosis Factor Alpha (TNF-α). TNF-α is shown bound to the extracellular ligand-binding domain of the transmembrane TNFR1 – modified from: php.med.unsw.edu.au .. - 29 -

Figure 2.1: Schematic diagram of pregnant and non-pregnant cohorts. Each cohort was stratified according to HIV status .. - 38 -

Figure 2.2: Schematic diagram illustrating ELISA procedure – adapted from Ramawi, 2012 - 44 -

Figure 2.3: Diagram of Bioplex test procedure as adapted with permission from Biorad - 48 -

Figure 2.4: Schematic Bioplex workflow (BIORAD, 2014) .. - 49 -

Figure 2.5: Logistic regression curve .. - 50 -

Figure 3.1: Schematic outline of subcategories within the pregnant cohort based on HIV infection - 53 -
LIST OF TABLES

Table 1.1 Correlation of Korotoff sound with auscultation and blood pressure .. - 9 -
Table 1.2: Plasma adiponectin concentrations (µg/mL) in normal weight (BMI<25) pregnant women........ - 20 -
Table 1.3: Plasma adiponectin concentrations (µg/ml) in overweight BMI>25 pregnant women................. - 20 -
Table 2.1 Table outlining the ELISA procedure for the determination of serum adiponectin and TNF-α - 44 -
Table 3.1 Demographic data of study groups .. - 73 -
Table 3.2: Anthropometric and CD4 data across study groups ... - 83 -
Table 3.3: Detailed outline of adipokine levels across study groups .. - 89 -
Table 3.4 Adipokine levels in relation to BMI groups .. - 90 -
Table 3.5: Detailed outline of adipokine levels between pregnant vs non-pregnant study groups - 92 -
Table 3.6: Detailed comparison of adipokine levels between EOPE and LOPE study groups - 93 -
Table 3.7: Detailed comparison of adipokine levels between HIV negative and positive study groups - 94 -
Table 3.8: Detailed comparison of adipokine levels based on CD4 levels. .. - 95 -
Table 3.9: Adipokine levels stratified according to BMI ... - 97 -
Table 3.10: Adipokine levels according to Pregnancy and Non pregnancy state in relation to HIV status - 98 -
Table 4.1: The International Classification of adult underweight, overweight and obesity according to BMI. - 109 -
ABSTRACT

Introduction and aims

Hypertensive disorders of pregnancy, in particular, pre-eclampsia, remains an enigmatic problem with global disease burden shared amongst industrialised and non-industrialised countries. It has been estimated that hypertensive disorders complicate 5 – 10% of pregnancies. The leading cause of maternal deaths in sub-saharan Africa is AIDS (43.7%). The Saving Mothers Guidelines for the tri-ennium 2005 – 2007 in South Africa found that hypertensive disorders were directly linked to maternal deaths in 15.7% of cases, of which 83% represents pre-eclampsia. Additionally South Africa now faces the challenge of obesity. These three conditions (HIV, pre-eclampsia and obesity) impact on each other causing adipokine dysregulation. The aim of the study was to examine the levels of adiponectin/leptin/TNF-α and resistin amongst non-pregnant, normotensive and pre-eclamptic pregnant cohorts in respect of their BMI and HIV status.

Methods

Following institutional ethical approval and informed consent, serum was obtained from a total of 328 women attending the RK Khan Hospital, a regional and district hospital in eThekwini, KwaZulu-Natal. Women were recruited into two groups ie., non-pregnant (n = 120; 36.58%) and pregnant group (n = 208; 63.41%). Pregnant women were further, categorised into the normotensive pregnant (n = 118; 35.97%) and the pre-eclamptic (n = 90; 27.43%) groups. The pregnant cohort was also sub-stratified in accordance with their HIV status. Clinical demographics, height, weight, body mass index (BMI), mid upper arm circumference (MUAC), triceps skin fold thickness were recorded. Indications and mode of delivery as well as associated complications, fetal ultrasound abnormalities, neonatal outcomes (APGARS),
weight, placental shape weight and appearance were noted. Serum was assessed by a double antibody sandwich ELISA technique using the DuoSet ELISA Development System for human adiponectin and TNF-α. Additionally, serum leptin and resistin was detected by the Bioplex immunoassay (Biorad). Absorbance was read spectrophotometrically at 450 nm (Systems). SPSS version 21 was used to analyse the demographic and experimental data. A p value < 0.05 was considered as statistically significant.

Results
Irrespective of the HIV status, body mass index and maternal weight ($p = 0.325 \text{ vs } 0.138$) were not statistically significantly different between the normotensive and pre-eclamptic groups respectively. Likewise, the distribution of BMI was the same across the study groups with respect to HIV status ($p = 0.124$).

Mean adiponectin levels varied between 897.93 ± 126.18, 17.19 ± 11.56, 23.16 ± 21.39 and 24.61 ± 12.869 in the non-pregnant, normotensive pregnant, EOPE and LOPE groups respectively. Leptin levels varied from 4887.25 ± 705.29, 2732.27 ± 580.18, 955.75 ± 527.64 and 310.23 ± 177.43 in the non-pregnant, normotensive pregnant, EOPE and LOPE groups respectively. TNF-α was undetected in the non-pregnant group as compared to 608.52 ± 84.89, 661.03 ± 202.60 and 616.43 ± 117.53 in the normotensive pregnant, EOPE and LOPE groups respectively. Resistin varied from 7497.13 ± 1921.95 in the non-pregnant group compared to 3536.50 ± 730.04, 1017.63 ± 69.58 and 286.92 ± 160.30 in normotensive pregnant, EOPE and LOPE groups accordingly.
The levels of TNF-α, leptin and resistin were significantly different within the normotensive pregnant versus pre-eclamptic groups. Except for adiponectin (p < 0.292); TNF-α (p < 0.044), leptin (p < 0.004) and resistin (p < 0.006) were statistically significantly different within the pregnant cohorts. The study demonstrated statistically significant differences in adiponectin/leptin/TNF-α and resistin between non-pregnant, normotensive and pre-eclamptic cohorts with respect to HIV status and BMI. There were significant differences in the levels of adiponectin/leptin/resistin and TNF-α with respect to HIV status (p=0.00). Additionally, a statistically significant difference in the level of adiponectin in the non-pregnant as compared to the normotensive cohorts (p<0.00) was noted. Furthermore, there were statistically significant differences in the levels of TNF-α, leptin and resistin in the normotensive as compared to pre-eclamptic cohorts (p<0.000). This study was able to depict baseline adiponectin / leptin / resistin and TNF-α levels according to BMI in the local population.

Conclusion

This study was expedient in the fact that patients were all standardized according to ethnicity, sub-analysed according to BMI and all samples taken from the third trimester of pregnancy – one of the first such studies to be performed within South Africa as well as globally. This study reports significant differences in the BMI of the non-pregnant and pregnant groups, but no significant differences within the pregnant cohorts. In conclusion this study establishes an adipokine baseline for future reference with regards to South African Black pregnant and non-pregnant women. Albeit at term, the study shows a statistically significant difference in the levels of adiponectin/leptin/resistin and TNF-α in HIV positive patients within the non-pregnant versus pregnant population. Within the pre-eclamptic cohort there was no statistically significant difference in EOPE versus LOPE.
CHAPTER ONE

BACKGROUND AND LITERATURE REVIEW

1.1 NORMAL PREGNANCY

Pregnancy is a unique condition in that a growing fetus with its own foreign genetic make-up requires nutritional support from the mother, however direct maternal leucocyte interaction with fetal cells creates a hostile milieu. This hurdle is overcome via the placenta, which plays a critical role at the materno-fetal interface.

Placental development is a highly specialized series of events critical for normal fetal growth and development. Some of the essential roles of the placenta include formation of the materno-fetal interface preventing rejection of the fetal allograft, allowing gaseous exchange, transport of nutrients/excretion of fetal waste and acting as an endocrine organ releasing peptides and hormones (Fig. 1.1)(Jansson and Powell, 2000, Cunningham et al., 2009).

Figure 1.1: Materno-fetal interaction via the placenta as adapted from Jansson and Powell, 2000
1.2 PLACENTATION AND EARLY DEVELOPMENT

The development of the fetus and placenta is a continuum of events commencing at fertilisation. Post fertilisation, the zygote (Fig 1.2a) undergoes rapid mitosis (Fig 1.2b) to form the morula (Fig 1.2c), which on day 5, enters the uterus and forms the blastocyst. The blastocyst becomes a fluid filled cavity and allows polarisation of cells (Fig 1.2d). The formation of the human placenta begins with the trophectoderm, which is the first tissue to differentiate at the morula stage of development, giving rise to a layer of trophoblastic cells encircling the blastocyst (Cunningham et al., 2009; Marieb, 2003). The outer trophoblastic layer of the blastocyst goes on to form the placenta and fetal membranes. On day 6, implantation entails movement of the blastocyst to an optimal position (usually the mid to upper anterior or posterior uterine wall), adhesion and invasion into the uterine wall (Fig 1.2e) where it has access to the glycogen nourishment (Cunningham et al., 2009, Marieb, 2003).

Figure 1.2: Schematic diagram illustrating stages of cleavage of the zygote, to form the blastocyst. Adapted from (Marieb, 2003).
As the trophoblast erodes deeper into the decidua, vacuoles form and become confluent to form lacunae by day 13. The lacunar space in due course becomes the intervillous space. The stem cell line of the placenta is the progenitor cytotrophoblasts (CT). Differentiation of CTs occur along one of two pathways, ie formation of the villous cytotrophoblast ultimately forming the syncytiotrophoblast (ST) or the extravillous cytotrophoblast (EVT) layer (Cunningham et al., 2009).

The specialised syncytiotrophoblast has several functions, including transport of gases, nutrients, and waste products and synthesis of peptide and steroid hormones that regulate placental, fetal, and maternal systems. Extravillous trophoblasts have both a proliferative and invasive cohort. There is also a migratory EVT, which is neither invasive nor proliferative. These cells populate the cell islands, septum, chorionic plate and chorion leave (Cunningham et al., 2009).

During the 4th – 5th week of pregnancy the EVT erupts into 2 columns with a proliferative aspect at the base and invasive aspect at the distal portion of the column. Invasive EVTs that invades the decidua are called interstitial EVTs, whereas those that invade and remodel the spiral arteries are called endovascular EVTs. Endovascular invasion (intramural or intra-arterial) involves replacement or displacement of vascular smooth muscle and endothelial cells with a flaccid fibrinoid type material. This leads to transformation of the narrow spiral arteries into wide bore utero-placental arteries/sinusoids. This physiological conversion of a small calibre spiral artery into a large bore flaccid conduit with a low resistance high flow supply of blood, ensures oxygen and nutrient demands of the fetus are met (Kaufmann et al., 2003).
1.2.1 Other functions of EVTs

Extravillous trophoblast cells express specific proteins defining the stage and role of the differentiation and invasion process. These include integrin cell-extracellular matrix antigens, matrix metallo-proteinases (MMPs), signal transduction proteins such as transforming growth factor-β (TGF-β), vascular endothelial growth factor (VEGF) and VEGF receptors, and insulin-like growth factor 2 (IGF2) (Kaufmann et al., 2003).

Invasion of the decidua and myometrium by the EVT is achieved with degradation of the extracellular matrix by means of several members of the MMP protease family. The activity of these MMPs is regulated by their tissue inhibitors (TIMPs) (Huppertz et al., 1998, Kaufmann et al., 2003, Huppertz et al., 2006, Xu et al., 2000, Lunghi et al., 2007). TIMP-1, an inhibitor of all MMPs, and TIMP-2 have been found in decidual cells (Charnock-Jones and Burton, 2000, Caniggia et al., 1999) and EVTs (Wolf et al., 1991, Liu et al., 2012, Kaufmann et al., 2003). Hepatocyte growth factor (HGF) stimulates trophoblast invasion via the met receptor and induction of MMP-9. The decidua prevents uninhibited EVT invasion by secreting locally acting factors (cytokines, protease inhibitors), which modulate trophoblast invasion (Huppertz et al., 1998, Plaisier, 2011).

Metabolic and endocrine function is a tightly controlled orderly process in healthy pregnancies. The placenta is not innervated, and hence any communication between it, the mother, and the fetus must involve humoral agents. The signalling molecules from the placenta act locally through paracrine and autocrine regulation. The hormones produced by the placenta can be split into two categories: peptide hormones (human chorionic gonadotropin [hCG], human placental lactogen [hPL], cytokines, growth hormone [GH], insulin-like growth factors [IGF’s],
corticotropin releasing hormone [CRH], vascular endothelial growth factor [VEGF], placental growth factor [PIGF]) and steroid hormones (estrogens, progesterone and glucocorticoids) (Cunningham et al., 2009).

Figure 1.3: Diagram illustrating the concept of two waves of trophoblastic invasion into the spiral artery. On the left hand side one can see the endovascular trophoblast migration into the decidual segments of the spiral arteries which occurs during the first trimester. On the right hand side which is illustrating a second semester spiral artery, this endovascular migration is seen extending into the myometrial segments the of the spiral arteries. In addition, the intramural trophoblast invasion which transforms the vessel walls and alters vasoreactivity is illustrated. Red arrow: direction of blood flow; black arrow: direction of endovascular trophoblast migration. Adapted from (Pijnenborg et al., 2006).
1.3 HYPERTENSIVE DISORDERS OF PREGNANCY

Hypertensive disorders of pregnancy, in particular, pre-eclampsia, remain an enigmatic problem with global disease burden shared amongst high and low income countries. It has been estimated that worldwide, hypertensive disorders complicate 5 – 10% of all pregnancies (Cunningham et al., 2009). The recent South African Saving Mothers Guidelines for the triennium 2008 –2010 demonstrates that hemorrhage and hypertensive disorders of pregnancy are the commonest direct cause of maternal deaths (2012 Saving Mothers). Additionally, their previous report for the triennium 2005 – 2007, 83% of maternal deaths were attributed to pre-eclampsia (NCCEMD, 2007).

1.3.1 Classification and characteristics of hypertensive disorders

Pre-eclampsia is part of a spectrum of hypertensive disorders that may complicate pregnancy. As specified by the National High Blood Pressure Education Program (NHBPEP) Working Group (National High Blood Pressure Education Program Working Group on High Blood Pressure in, 2000), the classification is as follows:

a) Gestational hypertension

Gestational hypertension is characterised by:

- BP of 140/90 mm Hg or greater on 2 separate occasions at least 6 hours apart after 20 weeks gestation
- Proteinuria < 0.3 g/24 h
- BP returns to normal less than 6 weeks' postpartum
- The final diagnosis is only confirmed once the postpartum period is complete
b) **Chronic hypertension**

Chronic hypertension may be diagnosed when:

(a) BP 140/90 mm Hg or greater occurs before pregnancy or diagnosed before 20 weeks' gestation; not attributable to gestational trophoblastic disease or

(b) there is hypertension first diagnosed after 20 weeks' gestation and persistent after 12 weeks’ postpartum.

Preexisting chronic hypertension may present with superimposed pre-eclampsia presenting as new-onset proteinuria after 20 weeks’ gestation.

c) **Pre-eclampsia/eclampsia**

Pre-eclampsia/eclampsia is diagnosed with a BP of 140/90 mmHg or greater measured on 2 separate occasions at least 6 hours apart after 20 weeks’ gestation in women with previously normal BP. The presence of proteinuria (≥ 0.3 g protein in 24 h urine specimen) is also a prerequisite.

Eclampsia is defined as seizures that cannot be attributable to other causes, in a woman with pre-eclampsia.

d) **Superimposed pre-eclampsia**

Superimposed pre-eclampsia (on chronic hypertension) is characterized by:

(a) the new onset of proteinuria (≥300 mg/24 h) in a woman with hypertension but no proteinuria before 20 weeks' gestation or;
(a) a sudden increase in proteinuria or BP, or a platelet count of less than 100 000/mm3, in a woman with hypertension and proteinuria before 20 weeks' gestation.

1.3.2 Pre-eclampsia

Pre-eclampsia is a systemic pregnancy syndrome that is typically characterised by new onset hypertension ie., blood pressure (BP) $\geq 140/90$ mmHg on two separate occasions at least six hours (h) apart) after 20 weeks gestation in the presence of proteinuria (with proteinuria defined as the urinary excretion of ≥ 300 mg protein in a 24 h urine collection) (National High Blood Pressure Education Program Working Group on High Blood Pressure in, 2000). Blood pressure returns to normo-tension within 6 weeks’ following delivery. It is a multi-organ disease, characterised by a generalised endothelial dysfunction and an exaggerated systemic inflammatory response (Redman and Sargent, 2005). Pre-eclampsia is associated with a shallow trophoblast invasion of spiral arteries (Kaufmann et al., 2003). A consequence of this lack of physiological conversion of the maternal spiral arteries, is that they remain small bore conduits hence there is restricted oxygen and nutrient supply to the fetus (Kaufmann et al., 2003). The resulting hypoxia triggers the clinical symptoms of pre-eclampsia. The only effective intervention to reverse the syndrome is delivery of the placenta.

1.3.3 Clinical parameters for pre-eclampsia diagnosis

a) Blood pressure

Blood pressure must be measured with the parturient in a seated position and the right upper arm lying at the level of the heart. The parturient should not be in a decubitus position, so that the arm is above the right atrium. The blood pressure is taken according to the Korotkoff sounds (Shennan et al., 1996).
The correct cuff size is dependent on the mid upper arm circumference:

- for arm circumference of up to 33 cm – standard size (13x23 cm)
- for arm circumference between 33 - 41 cm – large size (33x15 cm)
- for an arm circumference of 41 cm or more – a thigh cuff (18x36 cm)
- use a larger cuff rather than too small a cuff size, minimize errors (Milne et al., 2005)

Table 1.1 Correlation of Korotoff sound with auscultation of blood pressure

<table>
<thead>
<tr>
<th>Korotkoff sound</th>
<th>Auscultation</th>
<th>Implication</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Clear cut snapping tone</td>
<td>Systolic blood pressure</td>
</tr>
<tr>
<td>II</td>
<td>Succession of murmurs</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>Disappearance of murmurs</td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>Muffling of sounds</td>
<td>Diastolic BP in pregnancy</td>
</tr>
</tbody>
</table>

b) Urine tests

Proteinuria is defined as the presence of at least 300 mg of protein in a 24 h urine sample (Schroeder, 2002). Additionally, significant proteinuria should be diagnosed on a 24 h urine total protein collection preferably. Studies show that up to 30% of supposed gestational hypertensive patients diagnosed on the basis of trace proteinuria on random clean catch midstream urine have 300 mg of protein on a 24 h urine total protein (Andrus and Wolfson, 2010). However a finding of 1+ proteinuria on a clean-catch mid-stream urine is sufficient to make a diagnosis of significant proteinuria.
There may also be a role for the use of protein-creatinine ratio in the diagnosis of proteinuria using random urine samples. Values of 0.14 – 0.3 mg have been used to diagnose proteinuria. There is no consensus as to the best threshold for diagnosis of significant proteinuria.

However, up to 10% of pre-eclamptics and 20% of eclamptics are aproteinuric (Waugh et al., 2005); (Durnwald and Mercer, 2003). The HELLP syndrome may also occur in the absence of proteinuria. Hyperuricaemia may be one of the earliest manifestations of pre-eclampsia, however the sensitivity is low (0 – 55%) whilst the specificity is relatively high (77 – 95%) (Buhimschi et al., 2009). Baweja et al (2011) suggested measuring spot urinary albumin: creatinine ratio (ACR) values (Baweja et al., 2011). If measured early in the second trimester, an ACR of 35.5 mg/mmol or higher may predict pre-eclampsia before clinical symptoms develop (Baweja et al., 2011).

1.3.4 Classification

Pre-eclampsia may be sub classified according to the stage of placentation:

a) **Early onset pre-eclampsia** (< 34 weeks; EOPE): these individuals are characterised by abnormal placentation (as interstitial and endovascular trophoblastic invasion is completed within 15 weeks of gestation).

b) **Late onset pre-eclampsia** (> 34 weeks; LOPE): is more often associated with adequate placentation but excessive foetal demands.

Early onset pre-eclampsia is associated with a four-fold increased risk of stillbirth in subsequent pregnancy as compared to no elevated risk of stillbirth in women with late onset
disease (Scherer et al., 1995). Comparison of 456 668 singleton deliveries between early and late onset pre-eclamptics has revealed that the rate of all adverse birth outcomes, except for large for gestational age (LGA), were significantly higher amongst women with EOPE compared with women without early-onset disease (Lisonkova and Joseph, 2013). Amongst the women with EOPE, approximately 12% delivered at 34 weeks' gestation or later, and almost one half of babies (49.5%) were very low i.e., birth weight < 1500 g. With the exception of neonatal death rates, all other adverse birth outcomes were significantly higher among mothers with LOPE compared with those without pre-eclampsia.

Notably the rate of fetal death is approximately 6 times higher, whilst the rate of perinatal death or serious neonatal morbidity is 16 times higher amongst women with EOPE (Lisonkova and Joseph, 2013).

Alternatively, pre-eclampsia may be sub-classified on the severity of blood pressure (National High Blood Pressure Education Program Working Group on High Blood Pressure in, 2000):

a) **Mild pre-eclampsia** is generally considered to be a BP ≥ 140/90 mmHg on 2 occasions, at least 6 hours apart, but without evidence of end-organ damage, in a woman who was normotensive before 20 weeks' gestation. In a patient with pre-existing essential hypertension, superimposed pre-eclampsia is diagnosed if systolic blood pressure (SBP) has increased by 30 mmHg or if diastolic blood pressure (DBP) has increased by 15 mmHg.

b) **Severe pre-eclampsia** is defined as SBP of 160 mmHg or higher or DBP of 110 mmHg or higher on 2 occasions at least 6 hours apart, with or without proteinuria of more than 5 g
in a 24-h collection or more than 3+ on 2 random urine samples collected at least 4 hours apart; pulmonary edema or cyanosis; oliguria (< 400 mL in 24 hours); epi-gastric pain and/or impaired liver function; thrombocytopenia and oligohydramnios.

c) Decreased fetal growth or placental abruption Decreased fetal growth is the failure of the fetus to achieve expected growth norms as established by ethnic specific growth charts. Placental abruption is the premature separation of a normally situated placenta from the uterine wall prior to the delivery of the baby.

1.3.5 Risk factors for pre-eclampsia

1. Primiparity – a meta-analysis of 26 eligible studies found a summary odds ratio (OR) for PE in primiparous women compared to their multiparous counterparts of 2.42 (95% CI: 2.16- 2.71) with a range of 1.4 to 5.5 (Luo et al., 2007).

2. Previous pre-eclampsia – a previous normal pregnancy is associated with a reduced incidence of PE in a subsequent pregnancy (Trogstad et al., 2001), however previous PE is a strong risk factor for PE in multiparous women. The recurrence risk is about 14%.

3. Maternal pre-pregnancy body mass index (BMI) – High BMI is consistently found to increase PE risk. The odds ratio in obese women (BMI > 30 units) is reported to vary from 3 - 5 compared to their normal weight counterparts (Duckitt and Harrington, 2005). This finding however is mainly associated with LOPE rather than EOPE.

4. Underlying medical conditions – conditions associated with endothelial damage e.g. diabetes mellitus, antiphospholipid antibodies, autoimmune or renal disease, are associated with increased risk of PE development (Chappell et al., 2008). Chronic
hypertension is an important risk factor for the development of superimposed PE (Conde-Agudelo et al., 1999).

5. Smoking in pregnancy – this is associated with a reduced risk of PE development (OR: 0.5 - 0.8) compared with non-smokers (England and Zhang, 2007, Sibai et al., 2000).

6. Pregnancy specific factors – multiple gestations carry a two to three time’s greater risk for PE development compared with singleton gestations (Prasannan-Nair et al., 2006). Twin and molar pregnancies are associated with greater placental mass, the subsequent increased placental debris is believed to result in a maternal systemic inflammatory response, lowering the threshold for PE development (Wong et al., 2007, Mbah et al., 2010). Alternatively the increased paternal genetic contribution may be an explanation. Glutathione S-transferase P1-1 is a major biotransformation enzyme in placenta and decidua. The 105I Le→Val polymorphism in the glutathione S-transferase P1 gene is associated with lower enzyme detoxification capacity. This polymorphism is contributed by paternal genes and may lead to pre-eclampsia (Zusterzeel et al., 2002, Zusterzeel et al., 2001).

7. Ethnicity – Black nulliparous women carry twice the risk of developing PE compared to Whites (ACOG, 2002).

Heterogeneity of the disease has been suggested by numerous studies, however the exaggerated inflammatory response noted in pre-eclampsia, is now speculated to be due to either an excessive placental stimulus or due to an overactive maternal response to a normal placental stimulus (Figure 1.1). Focus has recently shifted to adipokines and their possible relationship to the development of pre-eclampsia.
Figure 1.4: Development of pre-eclampsia: Causal model
1.3.6 Placentation in pre-eclampsia

Abnormal trophoblastic invasion of the uterine vessels is considered the main protagonist of the pre-eclampsia syndrome (Ishihara et al., 2002). Studies have shown an inverse correlation between the degree of spiral arteriole invasion and the severity of the pre-eclampsia (Ishihara et al.; 2002). Because of the placental hypo-perfusion following incomplete trophoblastic invasion as a result of the release of systemic vasoactive compounds there is an exaggerated inflammatory response, vasoconstriction, endothelial damage, capillary leak, hypercoagulability, and platelet dysfunction, all contributing to organ damage and the clinical manifestations of the disease.

The shallow placentation results from the fact that the invasion of the decidual arterioles by cytotrophoblasts is incomplete which may in itself arise from failure in alteration of the molecular expression necessary for the differentiation of the cytotrophoblasts, as required for pseudovascularization.

The invasive cytotrophoblasts fail to replace the tunica media, which means that the mostly intact arterioles capable of vasoconstriction are still present. Previous studies evaluating the histology of the placental bed demonstrates few cytotrophoblasts beyond the decidual layer.

Dramatic changes in trophoblast differentiation occur in various pathophysiological situations and may underlie pregnancy disorders, such as pre-eclampsia and fetal growth restriction (IUGR). Interstitial EVT density, however, does not differ between normal pregnancy and pre-eclampsia. Compared to the minimal EVT apoptosis seen in normal pregnancy, in pre-
eclamptics it has been found that 15 - 50% of cells are apoptotic, a finding associated with macrophages around spiral arteries (Myatt, 2002, Lyall and Myatt 2002).

In normal pregnancy, shedding of syncytiotrophoblast fragments into the maternal circulation (approximately 100 000 fragments/day) as a result of apoptosis or necrosis, does not elicit a maternal immune response. However, the rate of syncytiotrophoblast apoptosis is increased from 2 - 3% in normal pregnancy to 5 - 6% in pregnancies complicated by IUGR (Ishihara et al., 2002) or pre-eclampsia (Leung et al., 2001).

Additionally, in a recent study, the protein expression of the anti-angiogenic soluble fms-like tyrosine kinase receptor (sFlt1) and soluble endoglin (sEng) was found to be increased in contrast to the proangiogenic placental growth factor and transforming growth factor beta 1 in pre-eclamptic compared with normotensive pregnancies, irrespective of the HIV status (Govender et al., 2014).

1.4 ADIPOKINES

Human pregnancy is typified by endocrine and metabolic maternal adaptations including increase in weight, body fat mass, and insulin resistance (Cunningham et al., 2009). These changes reflect a physiological adaptation necessary to meet the energy demands of the fetus and prepare the mother for delivery and lactation. Adipose tissue is recognised as both a metabolic and endocrine organ, secreting several proteins such as adiponectin, leptin, resistin, and tumor necrosis factor alpha (TNF-α). During pregnancy, the placenta is an additional source of these proteins.
1.4.1 Adiponectin

Adiponectin is also known as adipocyte complement-related protein of 30 kDa (ACRP30), adipoQ, adipose most abundant gene transcript 1 (apM1), and gelatin-binding protein of 28 kDa (GBP28). It is an adipocyte-specific, secreted protein with roles in glucose and lipid homeostasis. Circulating adiponectin occurs in relatively high concentrations of 5-30 µg/ml, and occupies 0.01% of plasma proteins (Ukkola and Santaniemi, 2002). The hormone reflects sexual dimorphism and is inversely correlated with percentage of body fat in adults (Gable et al., 2006). This hormone has been found to be an insulin sensitising factor, modulating the endothelial inflammatory response with a direct anti-arthrogenic effect (Nakatsukasa et al., 2008).

Adiponectin itself is encoded on chromosome 3q27, a region that has been highlighted as affecting genetic susceptibility to non-insulin dependent diabetes mellitus and obesity (Mori et al., 2002). Adiponectin exerts its insulin-sensitizing action via its reducing hepatic glucose production and enhancing insulin activity in the liver. Its circulating levels are downgraded in insulin-resistant states such as obesity and type 2 diabetes.(Yamauchi et al., 2002, Kadowaki et al., 2007).

1.4.1.1 Adiponectin structure

Structurally, adiponectin is a 244 amino acid (aa) long polypeptide with four distinct regions,

a) a short signal sequence that targets the hormone for secretion outside the cell,

b) a short species specific aa sequence,

c) a 65 aa with similarity to other collagenous proteins and,

d) a globular domain.
Adiponectin self-associates into large structures, the protein trimers continue to self-associate to form hexamers/dodecamers (Figure 1.5). The full length (fAd) can be proteolytically processed to generate a globular (gAd) truncated 16.5 kDa protein, which represents the active form.

![Figure 1.5: Structure of adiponectin (Goldstein et al., 2009)](image)

1.4.1.2 Receptors for Adiponectin

The receptors for adiponectin, AdipoR1, and AdipoR2, have distinct expression patterns and bind to the different adiponectin isomers with different affinities. AdipoR1, expressed with the highest levels in skeletal muscle, primarily binds globular forms of adiponectin. AdipoR2, mainly expressed in the liver, binds fAd with higher affinity than gAd.
1.4.1.3 Adiponectin in pregnancy

Data on the circulating levels of adiponectin in pre-eclamptic women are contradictory. Some studies have shown that serum levels of adiponectin are higher in women with pre-eclampsia compared to normal healthy pregnant women (Ouyang et al., 2009); (Haugen et al., 2006); (Hendler et al., 2005a); (Kajantie et al., 2005); (Lu et al., 2006); (Naruse et al., 2005); (Ramsay et al., 2003). Conversely, low serum levels of adiponectin have also been reported in pre-eclampsia (Hendler et al., 2005b); (Cortelazzi et al., 2007); (D'Anna et al., 2005); (Suwaki et al., 2006). Others have shown no difference in circulating concentrations of adiponectin between normotensive pregnant women and pre-eclampsia (Degawa-Yamauchi et al., 2003). In pregnancy adiponectin levels range between 2.7– 25 µg/ml (Nien et al., 2007) whilst in the non-pregnant group adiponectin levels range between 3.5 – 22.4 µg/ml. They also demonstrated that no difference in adiponectin concentrations was found between non-pregnant and overweight pregnant females at all gestational ages (Nien et al., 2007).

Moreover, they demonstrated a significantly lower adiponectin concentration in overweight pregnant women compared to their normal weight counterparts. Notably, adiponectin levels significantly decreased with advancing gestational age (Nien et al., 2007). Table 1.2 - 1.3 outlines the generalised reference range of adiponectin in pregnancy (Nien et al., 2007).
Table 1.2: Plasma adiponectin concentrations (μg/mL) in normal weight (BMI<25) pregnant women.

<table>
<thead>
<tr>
<th>GA</th>
<th>10th percentile</th>
<th>25th percentile</th>
<th>50th percentile</th>
<th>75th percentile</th>
<th>90th percentile</th>
</tr>
</thead>
<tbody>
<tr>
<td>11–14 weeks</td>
<td>5.6</td>
<td>7.7</td>
<td>10.2</td>
<td>12.9</td>
<td>17.4</td>
</tr>
<tr>
<td>15–18 weeks</td>
<td>4.8</td>
<td>7.6</td>
<td>9.5</td>
<td>11.9</td>
<td>14.8</td>
</tr>
<tr>
<td>19–22 weeks</td>
<td>5.7</td>
<td>7.2</td>
<td>9.0</td>
<td>11.5</td>
<td>14.6</td>
</tr>
<tr>
<td>23–26 weeks</td>
<td>5.6</td>
<td>7.2</td>
<td>8.6</td>
<td>10.8</td>
<td>14.1</td>
</tr>
<tr>
<td>27–29 weeks</td>
<td>4.2</td>
<td>6.4</td>
<td>8.3</td>
<td>10.9</td>
<td>12.2</td>
</tr>
<tr>
<td>31–34 weeks</td>
<td>4.6</td>
<td>5.5</td>
<td>8.2</td>
<td>10.4</td>
<td>12.2</td>
</tr>
<tr>
<td>>37 weeks</td>
<td>5.0</td>
<td>6.7</td>
<td>8.6</td>
<td>11.3</td>
<td>13.4</td>
</tr>
</tbody>
</table>

Table 1.3: Plasma adiponectin concentrations (μg/mL) in overweight BMI>25 pregnant women

<table>
<thead>
<tr>
<th>GA</th>
<th>10th percentile</th>
<th>25th percentile</th>
<th>50th percentile</th>
<th>75th percentile</th>
<th>90th percentile</th>
</tr>
</thead>
<tbody>
<tr>
<td>11–14 weeks</td>
<td>4.2</td>
<td>6.2</td>
<td>7.9</td>
<td>9.7</td>
<td>11.9</td>
</tr>
<tr>
<td>15–18 weeks</td>
<td>5.3</td>
<td>7.1</td>
<td>8.2</td>
<td>11.2</td>
<td>16.1</td>
</tr>
<tr>
<td>19–22 weeks</td>
<td>4.3</td>
<td>5.4</td>
<td>6.5</td>
<td>8.4</td>
<td>12.2</td>
</tr>
<tr>
<td>23–26 weeks</td>
<td>4.8</td>
<td>5.7</td>
<td>6.7</td>
<td>9.5</td>
<td>12.4</td>
</tr>
<tr>
<td>27–29 weeks</td>
<td>4.3</td>
<td>4.6</td>
<td>7.5</td>
<td>9.7</td>
<td>13.9</td>
</tr>
<tr>
<td>31–34 weeks</td>
<td>4.9</td>
<td>5.6</td>
<td>6.5</td>
<td>8.3</td>
<td>9.6</td>
</tr>
<tr>
<td>>37 weeks</td>
<td>5.1</td>
<td>6.0</td>
<td>7.2</td>
<td>9.1</td>
<td>11.3</td>
</tr>
</tbody>
</table>
The limitation of the latter study however, was that the samples were randomly drawn from the NIH sample bank. Results were confounded by race, diet and sub-categorisation for complicated pregnancies and their effect on adiponectin levels.

Adiponectin has been found at the feto-maternal interface during the process of spiral artery remodelling. Although preceding reports suggest it is produced and secreted by the human placenta, more contemporary studies cast doubt on these initial observations (Caminos et al., 2005, Chen et al., 2006, Corbetta et al., 2005, Pinar et al., 2008). These reports demonstrate that human first trimester trophoblasts express AdipoR1 and AdipoR2 receptors through which adiponectin exerts its function and influences placental functions (Tie Weiwei et al., 2009).

1.4.2 Leptin

Body weight is synchronized by a complex system, including both peripheral and central factors. One of the two hormones that plays an important role in the adaptation of food intake and body weight is leptin. Leptin is an important hormone in satiety and fatty acid oxidation and is directly correlated with the percentage of body fat (Henson and Castracane, 2006). It is secreted by adipose tissue in a pulsatile mode usually 2–3 h after meals at a frequency dependent on the adipose tissue mass. Circulating leptin levels (normal range: 1–15 ng/mL) diametrically reflects the amount of energy stored in the adipose tissue and is proportionate to the body adipose mass.

In 1994, the human obese (OB) gene and its product leptin was identified and characterized (Zhang et al., 1994b). The OB gene is located on chromosome 7 (7q31.3) and is composed of three exons and two introns spanning 18 kb (Masuzaki et al., 1995, Isse et al., 1995); (Gong et
al., 1996). It encodes a protein consisting of 166 amino acids with a putative signal sequence (Masuzaki et al., 1995). Only one OB mRNA species has been found in abundance in human adipose tissues (Masuzaki et al., 1995).

1.4.2.1 Leptin structure

Human leptin is a 167 aa protein, manufactured primarily in white adipose tissue and is directly proportional to total body fat content (Fig. 1.6). Leptin acts on the central nervous system, in particular the hypothalamus, suppressing food intake and stimulating energy expenditure (La Cava et al., 2004). Additionally, it is produced in the placenta, ovaries, mammary tissue and liver. It is a pro-inflammatory cytokine that belongs to the type I cytokine superfamily and has structural similarity with interleukin-6 (La Cava et al., 2004).

1.4.2.2 Leptin receptors

Leptin acts through the leptin receptor (LEPR or OBR). The OBR gene is located on chromosome 1 (1p31), is constituted of 18 exons and 17 introns, and encodes a protein consisting of 1162 amino acids (Chung et al., 1996); (Meier and Gressner, 2004). One of the splice variants of the OBR gene, the one with the longest intracellular domain (OB-Rb) and full signalling capabilities, is widely expressed in the human brain (Campfield et al., 1996); (Burguera et al., 2000); (Hegyi et al., 2004)). OB-Rb is highly expressed in the hypothalamus and cerebellum (Burguera et al., 2000); (Considine et al., 1996). In addition, the leptin receptor is expressed in other tissues, such as the human vasculature, stomach and placenta (Sobhani et al., 2000); (Henson et al., 1998); (Sierra-Honigmann et al., 1998). Both long and short leptin receptor (OBR) isoforms are present in placenta, and are co-localized with leptin to the syncytiotrophoblast at the maternal interface (Bodner et al., 1999).
1.4.2.3 Leptin and pregnancy

Recent studies suggest that leptin is essential to trophoblastic proliferation and survival, as well as to regulating cell proliferation, inhibiting apoptosis, stimulating protein synthesis and regulating fetal growth and development (Postovit et al., 2001, Otero, 2005). In a recent study, a direct relationship between leptin and BMI, but not between leptin and pre-eclampsia was noted (Hendler et al., 2005a). The correlation of leptin levels with pre-eclampsia were investigated by others as well (Kafulafula et al., 2002); (Arita et al., 1999).

In contradiction to the aforementioned studies, an increase in leptin levels in pre-eclamptic patients was noted (McCarthy et al., 1999); (Ning et al., 2004); whilst Khosrowbeygi and Ahmadvand (2013) showed a significant increase in the leptin/adiponectin ratio in pre-eclamptic Bangladeshi women (Khosrowbeygi and Ahmadvand, 2013). However, all the above studies were small in number and could not be generalised to the local population. They also failed to take into account possible effects of HIV and antiretroviral drugs.

Figure 1.6: Leptin attaching to adipose tissue as depicted by (Andrade, 2014)
1.4.3 Resistin

Resistin is a cytokine that was discovered in 2001 by Steppan et al., (Steppan, 2001). Resistin circulates at high concentrations in diet-induced and genetic varieties of obesity and has been found to modulate insulin action on hepatic glucose (Chen et al., 2005). Circulating levels of resistin are proportional to adiposity. High levels of resistin have been observed in normal pregnant women at term, while this increase is less evident in women with PE (Milan et al., 2002).

Resistin itself is a cysteine-rich protein that is encoded by the RETN gene in humans. It is a signalling molecule expressed in monocytes, macrophages and adipocytes. In adipocytes, resistin gene expression is induced during fat cell differentiation. Resistin has been shown to increase transcriptional events, leading to an increased expression of several pro-inflammatory cytokines including (but not limited to) interleukin-1 (IL-1), interleukin-6 (IL-6), interleukin-12 (IL-12), and tumour necrosis factor-α (TNF-α) (Silswal et al., 2005, Maffei et al., 1995).

1.4.3.1 Structure and synthesis

Human resistin, a 12.5-kDa protein, contains 108 amino acids as a propeptide. Its hydrophobic signal peptide is cleaved before its secretion. Resistin circulates in human blood as a dimeric protein consisting of two 92-amino acid polypeptides that are linked by a disulfide bridge (Aruna et al., 2003) at Cys-26. Holcomb et al. first described the gene family and its tissue-specific distribution (Holcomb et al., 2000). By comparison of bronchoalveolar lavages from control mice with lavages from mice subjected to experimentally induced asthma, they identified, by microsequencing, a protein that was up-regulated in the asthmatic lung. This novel protein, FIZZ1 (found in inflammatory zone 1) is also known as resistin-like molecule α
(RELMA). One of two additional homologs, FIZZ2, also known as RELMB, was found to be localized in proliferating epithelia at the base of the crypts in the intestinal tract. FIZZ2/RELMB is also present in rapidly dividing epithelia by demonstrating a marked increase in intestinal tumors compared with control epithelia (Steppan et al., 2001b). RELM is also produced in adipose tissue (Steppan et al.; 2001b).

The third homolog, FIZZ3, is known as resistin or adipocyte-specific secretory factor and is identical to the fat specific homolog (Rajala et al., 2002). Steppan et al., demonstrated that resistin is increased in type II diabetes and is a potential link between obesity and insulin resistance (Steppan et al., 2001a). Notably, injection of recombinant resistin into mice reduces glucose tolerance and insulin action, whereas neutralization with anti-resistin antibodies improves insulin action.

1.4.3.2 Functions

The potential function of resistin or its homologs requires further, study (Flier, 2001b). As fat cells (adipocytes) store more fat molecules and enlarge, they release several products that can modify the body’s sensitivity to insulin. Free fatty acids and TNF-α cause insulin resistance, and leptin, which regulate energy balance is implicated in development of insulin sensitivity.

Initial studies have demonstrated that obesity induced by a high-fat diet, mutation of the leptin gene (ob/ob mice), or mutation in the leptin receptor gene (db/db mice) is associated with increased circulating resistin concentration. Resistin increases blood glucose and insulin concentration in mice. It also impairs hypoglycemic response to insulin infusion. In addition, anti-resistin antibodies decrease blood glucose and improve insulin sensitivity in obese mice (Ukkola, 2002). Resistin suppresses insulin-stimulated glucose uptake in cultured 3T3-L1
adipocytes, and this effect is prevented by anti-resistin antibodies. These data suggest that resistin provokes insulin resistance and that hyper-resistinemia contributes to impaired insulin sensitivity in obese rodents (Shuldiner et al., 2001; (Way et al., 2001b); (Moore et al., 2001b) and (Lay et al., 2001). The latter group also observed lower resistin mRNA in adipose tissue in a model of mouse obesity viz., diet-induced obesity. Likewise, they observed hyper-insulinemia, hyperglycemia, hypertriglyceridemia, and hypertension in a rat model of obesity.

The physiologic role of resistin in humans remains unclear. Given the incomplete homology between human and mouse resistin and the absence of one of the three resistin isoforms, resistin in humans may have a different physiologic role to that in mice.

There is no correlation between body weight, adiposity, insulin resistance and resistin mRNA concentration. Thus, the role of resistin and other members of the FIZZ/RELM family in humans remains to be established. These proteins may be involved in the regulation of cell proliferation and differentiation. Given the production of FIZZ1/RELMα and of resistin in inflammatory cells it is a possibility that their involvement in chronic inflammatory reactions may be associated with obesity (Gomez-Ambrosi and Fruhbeck, 2001).

1.4.3.3 Resistin in pregnancy

Resistin is significantly higher in normal pregnant compared to non-pregnant women. Pre-eclamptic women have significantly lower resistin levels than their normotensive counterparts at similar gestational ages (Cortelazzi et al., 2007). Elevated levels of serum resistin was noted in the third trimester of normotensive pregnancy compared to non-pregnant healthy females. In comparison, resistin levels were lower in pre-eclamptics matched for gestational age and BMI.
(Chen et al., 2005). It is plausible to hypothesise that a possible link exists between resistin and placental mass. This study will interrogate this correlation.

Figure 1.7: Structure of resistin: An illustration of resistin assembled as a trimer, the less stable but more biologically active state of the hormone modified from Amity Tung, Molecules of the Quarter UCLA Department of Chemistry and Biochemistry

1.4.4 Tumour necrosis factor (TNF)

TNF is involved in systemic inflammation and is a member of a group of cytokines/adipokines that stimulate the acute phase reaction. Although it is primarily produced by macrophages, it is also produced by endothelial cells and adipocytes (Locksley et al., 2001).

The TNF gene is located on chromosome 6p21.3, spans 3 kilobases and contains 4 exons. The last exon codes for more than 80% of the secreted protein (Nedwin et al., 1985). TNF is primarily produced as a 212-amino acid-long type II transmembrane protein arranged in stable
homotrimers (Kriegler et al., 1988, Tang et al., 1996). Emanating from this membrane-integrated form the soluble homotrimeric cytokine (sTNF) is released via a proteolytic cleavage via TNF alpha converting enzyme (TACE), also called ADAM17; (Black et al., 1997). The soluble 51 kDa trimeric sTNF tends to dissociate at concentrations below the nanomolar range, thereby losing its bioactivity (Black et al., 1997).

1.4.4.1 Tumour necrosis factor receptors

TNF can bind to two receptors, TNF receptor type 1 (TNF-R1) and TNF receptor type 2 (TNF-R2). TNF-R1 is expressed in most tissues, and can be fully activated by both the membrane-bound and soluble trimeric forms of TNF, whereas TNF-R2 is found only in cells of the immune system, and responds to the membrane-bound form of the TNF homotrimer (Guoqing and Goeddel, 2002).

Upon contact with their ligand, TNF receptors also form trimers, their tips fitting into the grooves formed between TNF monomers. This binding causes a conformational change to occur in the receptor, leading to the dissociation of the inhibitory protein SODD from the intracellular death domain. This dissociation enables the adaptor protein TRADD to bind to the death domain, serving as a platform for subsequent protein binding. Following TRADD binding, three pathways can be initiated (Guoqing and Goeddel, 2002, Wajant et al., 2003).

- Activation of NF-κB: NF-κB is a transcription factor that translocates to the nucleus and mediates the transcription of a vast array of proteins involved in cell survival and proliferation, inflammatory response and anti-apoptotic factors.
- Activation of the mitogen activated protein kinase (MAPK) pathways: Of the three major MAPK cascades, TNF induces a strong activation of the stress-related Jun N-
terminal kinase (JNK) group. The JNK pathway is involved in cell differentiation, proliferation, and is generally pro-apoptotic.

- Induction of death signaling: Like all death-domain-containing members of the TNFR superfamily, TNF-R1 is involved in death signaling (Gaur and Aggarwal, 2003). However, TNF-induced cell death plays only a minor role compared to its overwhelming functions in the inflammatory process.

Figure 1.8: This is a model of the Tumor Necrosis Factor Receptor1 (TNFR1) for Tumor Necrosis Factor Alpha (TNF-α). TNF-α is shown bound to the extracellular ligand-binding domain of the transmembrane TNFR1 – modified from: php.med.unsw.edu.au
1.4.4.2 TNF in pregnancy

In normal pregnancy, at physiologic concentrations, TNF-α acts as a regulatory apoptotic agent that limits the invasive abilities of extravillous trophoblastic cells necessary for appropriate placental anchorage and blood flow toward the intervillous space (Fukushima et al., 2003). TNF-α has been shown to directly increase transcription of the vasoconstrictor peptide endothelin (ET), ET-1 (Marsden and Brenner, 1992, Roberts et al., 2006). Because endothelial damage is a known stimulus for ET-1 synthesis, increases in the production of ET-1 and activation of ETA receptors have been proposed to participate in the pathophysiology of hypertension during pre-eclampsia (Roberts et al., 1991, Taylor and Roberts, 1999). Furthermore, plasma concentrations of ET (ET-1) are increased two- to threefold in patients with pre-eclampsia compared to normal pregnant women. This increase occurs late in the disease process, suggesting that it may play a role in the progression rather than the initiation of pre-eclampsia (Roberts et al., 1991, TAYLOR et al., 1990, Taylor and Roberts, 1999, Nova et al., 1991, Wang et al., 1994).

The role of certain adipose derived proteins has been implicated in enhancing pro-inflammatory responses. In contrast to HIV infection, pre-eclampsia is associated with immune hyper-reactivity. HIV infection is also associated with muscle wasting, hence the levels of these hormones may be dysregulated and requires investigation (Matarese et al., 2005, Lago et al., 2007, Garg, 2004). Additionally, this dysregulation may serve as a predictor test for the predisposition to the development of pre-eclampsia.
1.5 HIV IN SA

Sub-Saharan Africa carries the majority of the AIDS disease burden when considering the HIV pandemic (UNAIDS, 2008, Ramjee et al., 2012). South Africa has more than six million people infected with HIV/AIDS (UNAIDS, 2013) Geographic variations of the epidemic in South Africa reflect a provincial difference with KwaZulu-Natal having the highest incidence. It is also considered the epicentre of this global pandemic (Ramjee et al., 2012).

In South Africa, the national HIV prevalence amongst women has dropped from 30.2% to 29.1% (Udjo, 2006). Notably, the epidemic has devastating consequences on women of reproductive age 15 - 24 y (Moodley and Moodley, 2005). Approximately 30% of South African parturients are co-infected with HIV (Kalumba et al., 2013). The latest report of the National Committee on Confidential Enquiries into Maternal Deaths in South Africa indicates that HIV/AIDS contributes to approximately 41% of all maternal deaths (Dpt of Health South Africa, 2012). As expected, KZN has a 40% infection rate in pregnant women (Kalumba et al., 2013).

1.5.1 Role of HIV in pre-eclampsia

The change in body fat distribution is a common finding in individuals with HIV infection, being treated with antiretrovirals. This condition has many similarities with rare, congenital and acquired lipodystrophies. This is associated with depletion of subcutaneous fat, increased triglycerides and profound insulin resistance (Addy et al., 2003). Recent studies have shown that these patients have marked changes in circulating levels of adipocyte secreted hormones, including leptin and adiponectin. This may contribute to the noted metabolic abnormalities (Nagy et al., 2003, Chaparro et al., 2005).
In HIV lipodystrophies, adiponectin levels are significantly lower in patients with fat redistribution and correlate inversely with serum triglycerides and insulin resistance, with levels being lowest in individuals with peripheral lipoatrophy and central lipohypertrophy (Chaparro et al., 2005, Verkauskiene et al., 2006, Khan et al., 2006).

A significant increase in pre-eclampsia and fetal death in HIV-infected pregnant women on highly active antiretroviral therapy (HAART) have been reported (Suy et al., 2006). Pregnant women attending the Hospital Clinic in Barcelona, Spain were catechised to determine an association between pre-eclampsia and/or fetal death and HAART. During January 2001 - August 2003, 8 295 women delivered babies of whom 82 (0.9%) were HIV infected. Overall, 237 (2.9%) of the HIV-uninfected women developed pre-eclampsia and 40 (0.5%) was associated with fetal death. Alarmingly, the HIV-infected women had a much higher rate of pre-eclampsia (11%) development with a significantly higher incidence of fetal death (6.1%) (Suy et al., 2006).

Of interest is the mirrored effect of the inflammatory adipokines on HIV susceptibility. HIV-1 seropositive women with clinical conditions of pro-inflammatory mediator production in the placenta were found to be at increased risk of HIV-1 transmission to their fetuses (Parry et al., 2006). Moreover, inflammatory mediators such as TNF-α produced locally by the placenta augment HIV-1 infection and replication (Vigano et al., 1998, Hamamoto et al., 1990).
1.5.2 Role of HIV in adipokine formation

The advent of highly active anti-retroviral therapy (HAART) was a turning point in the history of the acquired immune deficiency syndrome. Side effects of HAART therapy include insulin resistance, metabolic abnormalities, and changes in body shape (Carr et al., 1998a).

HIV associated lipodystrophy syndrome (HALS) is one the first and commonest secondary effects noted. HALS characteristically occurs as peripheral lipoatrophy of subcutaneous adipose tissue (in the face, limbs and buttocks), visceral fat accumulation, and lipomatosis, especially in the dorsocervical area (“buffalo hump”) (Giralt et al., 2011). In obesity, secretion of peptide hormones such as leptin and adiponectin by adipose tissue is disturbed, a disruption that has been associated with insulin resistance, metabolic syndrome, and cardiovascular diseases (Kadowaki et al., 2007; Guzik et al., 2006).

Evidence suggests that adipokines play a role in metabolism, energy homeostasis, weight regulation, and many other biological processes (Carr et al., 2004). Studies on mice show that adiponectin decreases liver and muscle triglycerides by up-regulating the expression of molecules involved in fatty acid oxidation and muscle energy expenditure (Fruebis et al., 2001). Levels of adiponectin have been found to be lowered in obesity, diabetes, non-alcoholic liver disease and some subsets of lipodystrophy including HALS patients – Addy et al., 2003; Kadowaki, 2005).

As obesity and HIV have become critical disorders of the South African population and pre-eclampsia remains one of the instrumental causes of maternal mortality it has been decided to design a study to address the impact of all three on one another.
1.6 AIMS /OBJECTIVES OF STUDY

1.6.1 Primary objectives

1. Compare serum levels of adiponectin, leptin, resistin and TNF-α (adiponectin / leptin / resistin / TNF-α) in the pregnant compared to the non-pregnant Black population in the maternal serum.

2. Compare serum levels of adiponectin / leptin / resistin / TNF-α in HIV+ve parturients as compared to HIV-ve parturients in the maternal serum.

3. Compare serum levels of adiponectin / leptin / resistin / TNF-α in patients with early onset as compared to late onset pre-eclampsia in the maternal serum.

4. Compare serum levels of adiponectin / leptin / resistin / TNF-α in patients with normotensive pregnancy compared to late onset pre-eclampsia in the maternal serum.

5. Compare serum levels of adiponectin / leptin / resistin / TNF-α in patients with pre-eclampsia and HIV as compared to patients with pre-eclampsia but without HIV in the maternal serum.

1.6.2 Secondary objectives

1. Compare the serum levels of adiponectin / leptin / resistin / TNF-α in HIV+ve pregnant women with a CD₄ count above 350 in the maternal serum.

2. Compare the levels of adiponectin / leptin / resistin / TNF-α in HIV+ve pregnant women with a CD₄ count below 350 in the maternal serum.

3. Compare the levels of adiponectin / leptin / resistin / TNF-α in pregnant HIV+ve women on ARVS and those not on ARVs in the maternal serum.
1.6.3 Hypotheses

1. The levels of adiponectin / leptin / resistin / TNF-α differ in the pregnant and non-pregnant populations.

2. The levels of adiponectin / leptin / resistin / TNF-α differ in women who develop early onset pre-eclampsia as compared to women who develop late onset pre-eclampsia.

3. The levels of adiponectin/ leptin /resistin / TNF-α in pre-eclamptics also differ according to HIV status.

4. The difference in levels of adiponectin/ leptin / resistin / TNF-α in women who develop early onset pre-eclampsia as compared to women who develop late onset pre-eclampsia are also altered by the HIV status of the patients.
CHAPTER 2
MATERIALS AND METHODS

2.1. STUDY SITE, ETHICS APPROVAL AND INFORMED CONSENT

This prospective study was approved by the Institutional Postgraduate Committee (Addendum 1) and was conducted at RK Khan Hospital in KwaZulu-Natal, South Africa. Ethical approval was obtained from the Biomedical Research Ethics Committee (BREC 256/12 – Addendum 2). Permission to perform the study at RK Khan Hospital was obtained from the Hospital Manager (Addendum 3). The study was conducted during the period of 1st August 2012 – 30th April 2014. Written informed consent was obtained from each participant in both English and Zulu (Addendum 4).

2.2. STUDY POPULATION

Participants were recruited at the Obstetric Unit (antenatal ward) of RK Khan Hospital by the primary investigator, a qualified obstetrician/gynaecologist, during the antepartum period. International standard definitions of pre-eclampsia were employed during the selection process (National High Blood Pressure Education Program Working Group on High Blood Pressure in, 2000). All participants were managed by standard of care policies in accordance with the National Department of Health, South Africa. Non pregnant patients were recruited from the Gynaecology Unit (contraceptive clinic) at RK Khan Hospital. All non-pregnant participants (more than 6 weeks post-partum) in good clinical health and are between the ages of 18 – 45 y were eligible for participation.
Participants were recruited into one of three groups:

- non pregnant normotensive population (n = 119),
- pregnant normotensive population (n = 118) and
- pre-eclamptics (n = 91).

A schematic outline of the three study groups are shown in Figure 2.1. Each study group was further, sub-divided according to HIV status. HIV positive participants were further, stratified by their CD4 count and ARV usage.

In addition, all pre-eclamptic patients were further, classified as either early or late onset disease. Early onset pre-eclampsia (EOPE) was defined as onset of pre-eclampsia after 20 weeks of gestation, but prior to 34 weeks completed gestation. Late onset pre-eclampsia (LOPE) was defined as the onset of pre-eclampsia after 34 weeks gestation.
Figure 2.1: Schematic diagram of pregnant and non-pregnant cohorts. Each cohort was stratified according to HIV status

2.2.1. Inclusion Criteria

All Black South African patients over 18 years of age were eligible for participation in the study. HIV status and CD₄ count were examined prior to entry into the study. Patients were categorised into non-pregnant normotensive, pregnant normotensive and pre-eclamptic cohorts.
The pre-eclamptic group was further, sub-categorised according to gestational age, i.e., ≥ 34 weeks gestation. The pregnant population was further, compared to a non-pregnant, healthy reproductive age female population according to HIV status and CD4 count. Non pregnant participants were eligible for entry provided they were between 18 – 45 y. Their HIV status had to be known.

2.2.2. Exclusion Criteria

Exhaustive exclusion criteria were used in an effort to maintain a homogenous study population. The following patients were excluded from the study:

a) Patient’s with chronic hypertension
b) Non-Black African patients
c) Gestational diabetics
d) Chronic diabetics
e) Patients with unknown HIV status
f) Unbooked patients
g) Patients with chorioamnionitis
h) Polycystic ovarian syndrome patients
i) Patients with thyroid disorders
j) Patients with chronic renal disease
k) Patients with cardiac failure
l) Patients with connective tissue disease / antiphospholipid syndrome
m) Patients with abruption placentae
2.3. SAMPLE COLLECTION

2.3.1. Patient Demographics

Participant demographics were collated by the researcher into a pre-designed data sheet (Appendix 2.4) during the antepartum period. These included maternal age, residential area, smoking and drug habits, HIV status and CD\textsubscript{4} counts, antiretroviral usage (3-drug \textit{versus} PMTCT regimens), parity, gravidity, previous reasons for miscarriage, blood pressures at confirmation of pre-eclampsia, height, weight, body mass index (BMI), mid upper arm circumference (MUAC), triceps skin fold thickness, presence and degree of oedema, urine dipstick findings at time of diagnosis of pre-eclampsia. Indications and mode of delivery as well as associated complications were noted. Fetal ultrasound abnormalities, neonatal outcomes in terms of APGARS, baby weight, placental shape and weight and appearance and umbilical cord length were recorded.

The Body Mass Index (BMI) was calculated by dividing the body weight (kg) by the height squared (m) i.e.,

\[
\text{BMI} = \frac{\text{weight}}{(\text{height})^2}
\]

Obesity was defined as a BMI of at least 30 kg/m2 (Kafulafula and Moodley, 2001). Additionally, the mid upper arm circumference was taken with a measuring tape at the midpoint between the olecranon and the acromion process of the right arm. The triceps skin fold thickness was measured with the participant standing upright with arms loosely hanging at
her sides. The subcutaneous tissue and skin of the midpoint of the posterior part of the right arm was measured with a skin fold caliper. The mid-arm muscle circumference was calculated by using the following formula:

Mid-arm muscle circumference = mid-arm circumference – [3.14 X triceps skin fold thickness] (Huang et al., 2001).

2.3.2. Blood collection

Peripheral venous blood was collected during the antepartum period as pre-eclampsia rapidly resolves post-partum. Four vials each containing 10 ml of blood were collected per patient in EDTA anti-coagulant tubes and plain vials, after application of a tourniquet above the antecubital fossa. HIV tests and CD4 counts are offered as part of the standard of care in the antenatal clinic. Only those patients agreeing to HIV-testing were offered placement in the study.

Each patient data analysis form had a hospital identification number. In an effort to maintain participant anonymity, each patient was allocated a study identification number. The study identification number was written onto specimen collection vials. Blood samples were then transported in a cooler box within two hours of collection to the Optics and Imaging Centre, Doris Duke Medical Research Institute at the Nelson R. Mandela School of Medicine to be centrifuged at 4000 rpms for 20 minutes. The specimens were then stored at -80°C until required.

In September 2014, these specimens were subsequently transferred by an international courier at -80°C to the Staten Serum Institute, Copenhagen, Denmark. Conformance to international
standards of specimen export and transportation were strictly adhered to (Addendum -2.5). The experimental procedures were performed under combined supervision of the primary investigator and collaborators at the Statens Serum Institut.

2.4. ENZYME-LINKED IMMUNOSORBENT ASSAY DETERMINATION OF SERUM ADIPONECTIN AND TNF-\(\alpha\)

2.4.1. Principle of serum adiponectin and TNF-\(\alpha\) detection

This technique was first described by Engvall and Perlmann in 1972 and once more in 1982 by Gaastra (Engvall and Perlmann, 1972, Gaastra, 1984). It has been described as the double antibody sandwich technique. Antibodies against the antigen to be measured are adsorbed to a solid phase support and antigen is then added to the adsorbed antibodies. Thereafter a second enzyme labelled antibody is added. The addition of an enzyme substrate allows measurement as the degree of colour is proportional to the original bound antigen-antibody (Gaastra, 1984).

The ELISA testing was performed using the DuoSet ELISA Development System and instructions followed from the human Adiponectin (Acrp30 catalogue: DY 1065)

- Capture antibody – 360 \(\mu\)g/ml of mouse anti-human adiponectin was reconstituted with 1.0 ml of PBS and 720 \(\mu\)g/ml of mouse anti-human TNF-\(\alpha\) is reconstituted in 1.0 ml of PBS.

- Detection antibody – 360 \(\mu\)g/ml of biotinylated mouse anti-human adiponectin was reconstituted with 1.0 ml of reagent diluent and 90 \(\mu\)g/ml of biotinylated goat anti-human TNF-\(\alpha\) is reconstituted with 1.0 ml of reagent diluent)
- Standard – 70 ng/ml of recombinant human adiponectin was reconstituted with 0.5 ml of reagent diluent. The standard was allowed to incubate for a minimum of 15 minutes with gentle agitation prior to further, dilutions and 370 ng/ml of recombinant human TNF-α is reconstituted with 0.5 ml of reagent diluent and gently agitated for a minimum of 15 minutes.

- Streptavidin-HRP – 1.0 ml of streptavidin was conjugated to horseradish –peroxidase.

The adiponectin, and TNF-α assay utilizes either a mouse anti-human adiponectin or TNFα, antibody as appropriate for immobilization on the microtiter wells. Biotinylated mouse anti-human adiponectin antibody along with streptavidin conjugated to horseradish peroxidase (HRP) is added to enable detection of the antigen through colour change. This is followed with the addition of a reagent diluent (200µl) and incubated as directed by the kit being used. Post washing a HRP substrate, tetra-methylbenzidine (TMB), was then added with the resultant development of a blue colour (Figure 2.2). Progress of colour development was stopped by the addition of Stop Solution – this changed the colour to yellow. The concentration of adiponectin and TNF-α was directly proportional to the colour intensity of the test sample. Absorbance was read spectrophotometrically at 450 nm (Systems).
2.4.2. Procedure for adiponectin and TNF-α detection by ELISA (RnD Systems)

Table 2.1 Table outlining the ELISA procedure for the determination of serum adiponectin and TNF-α

<table>
<thead>
<tr>
<th>Step</th>
<th>Process</th>
<th>Method</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>diluted samples</td>
<td>100 µl of sample in reagent diluent</td>
<td>2 h (1 h preparation + 1 h incubation)</td>
</tr>
<tr>
<td>2</td>
<td>wash wells</td>
<td>Wash buffer</td>
<td>40 min</td>
</tr>
<tr>
<td>3</td>
<td>detection antibody</td>
<td>100 µl detection Ab diluted with reagent diluent</td>
<td>40 min</td>
</tr>
<tr>
<td>4</td>
<td>wash wells</td>
<td>Wash buffer</td>
<td>x3</td>
</tr>
<tr>
<td>5</td>
<td>Streptavidin-HRP</td>
<td>100 µl of Streptavidin-HRP</td>
<td>40 min</td>
</tr>
<tr>
<td>6</td>
<td>stop solution</td>
<td>50 µl stop solution</td>
<td>20 min</td>
</tr>
</tbody>
</table>
2.4.3. Detection limits and co-efficient of variation (CV)

The coefficient of variation (CV) was defined as the ratio of the standard deviation σ to the mean μ:

$$C_V = \frac{\sigma}{\mu}$$

C_V shows the extent of variability in relation to mean of the population.

The detection limit for the adiponectin assay was 1.43 μg/l; coefficient of variation (C_V) within and between assays was < 4.58%. For the TNF assay the detection limit was 1.39 μg/l; C_V within and between assay was < 3.02%.

2.5. DETERMINATION OF SERUM LEPTIN AND RESISTIN BY BIOPLEX IMMUNOASSAY

2.5.1. Principle of serum leptin and resistin detection by Bioplex assays

Bioplex cytokine assays are multiplex bead assays designed to quantify multiple cytokines in diverse matrices, including serum, plasma and tissue samples. This multiplexing allows quantification of multiple cytokines in a single well. The advantage of this method is that it allows for the creation of a complete cytokine profile from limited samples and is more time efficient.
The principles behind the procedure are:

1. Fluorescently dyed beads are present to which biomolecules are bound.
2. A flow cytometer with 2 lasers and associated optics are needed to measure the biochemical reactions that occur on the surface of the beads.
3. A high speed digital signal processor is used to manage the fluorescent output.

Each colour-coded bead is conjugated to a specific reactant, which is specific for a target molecule. The assay is designed in a capture sandwich immunoassay format.

In this study a specific antibody is directed against the cytokine of interest and is covalently coupled to colour coded beads which reacts with the sample containing an unknown amount of the cytokine.

As in other multiplex assays reaction mixture is subsequently detected by the addition of Streptavidin-phycoerythrin (SA-PE). This binds to the biotinylated detection antibodies. The constituents of each well are drawn up into a flow based suspension array system which identifies and quantifies each specific reaction based on bead colour and fluorescence.

The magnitude of the reaction is then measured using fluorescently labelled reporter molecules associated with each target protein. Unknown cytokine concentrations of the sample are calculated from a standard curve that has been derived from a recombinant cytokine standard. These standard curves are provided by the multiplex assay used – in this case the Bioplex Pro assay kit was used (BIORAD, 2014).
2.5.2 Preparation and procedure:
The plate layout was planned ahead of the experiment. Approximately 30 minutes were required to bring the assay buffer, wash buffer and sample diluent to room temperature. The vacuum manifold was set to -1 to -3 mmHg for the filter plate. A single vial of standard was reconstituted in 500 µl of diluent similar to the final sample type (matrix). This was vortexed for 5 seconds and thereafter incubated on ice for 30 minutes.

A fourfold standard dilution series and blank were prepared. The standard dilutions were vortexed for 5 seconds in between liquid transfers. The serum samples were prepared in 1:4 dilution with the sample diluent. The coupled beads were vortexed for 30 seconds and were diluted to 1X assay buffer – this is light sensitive hence it was performed away from light.

The plates were subsequently washed three times with 100 µl wash buffer. The diluted 1X SA-PE was vortexed and 50 µl was added to each well and then vortexed for 5 seconds and incubated on ice for 30 minutes. The plate was then washed three times with 100 µl wash buffer. The beads were then resuspended in 125 µl assay buffer. The plate was covered and centrifuged at 850 rpm for 30 seconds. The sealing tape was then removed and the plate was read using Bioplex Manager Software (BIORAD, 2014).

A series of known concentrations of an analyte was used to construct a plot of signal intensity vs concentration. The plot was mathematically modelled to derive an equation that may be used to predict the concentration of the unknown samples. Both, the type of mathematical model as well as the fit of the model were considered as they have a direct effect on the accuracy of the results. Curve fitting was a critical component of immunoassay performance.
Figure 2.3: Diagram of Bioplex test procedure as adapted with permission from Biorad
Figure 2.4: Schematic Bioplex workflow (BIORAD, 2014)
2.5.3 Linear regression

This is the simplest method for determining concentration from a standard curve. The plot was constructed on concentration vs response. This method has been used traditionally to quantitate results of ELISA and other immunoassays (Wild, 2005).

2.5.4 Logistic regression:

Immunoassay data may also be used in a non-linear regression routine. The log of the concentration was plotted on the X-axis vs the response (fluorescence intensity) plotted on the Y-axis (Wild, 2005).

![Logistic regression curve](image)

Figure 2.5: Logistic regression curve
2.6 STATISTICAL ANALYSIS

SPSS version 21 was used to analyse the data. A p value < 0.05 was considered as statistically significant. Demographic variables were summarised using mean, standard deviation and range for continuous variables, and frequency tables for categorical variables. Outcome variables were extremely non-normally distributed, therefore non-parametric tests were used to compare median levels between groups. Two independent groups were compared using Mann-Whitney U tests. Kruskal-Wallis tests were used to compare more than two independent groups.
CHAPTER 3

RESULTS

3.1 STUDY POPULATION

A total of 328 women attending RK Khan Hospital, a regional and district hospital in Chatsworth, a suburb in the eThekwini health district, KwaZulu-Natal were studied. Based on inclusion and exclusion criteria (2.2.1 and 2.2.2), women were recruited into two groups i.e., non-pregnant (n = 120; 36.58%) and pregnant group (n = 208; 63.41%). Pregnant women were further, categorised into the normotensive pregnant (n = 118; 35.97%) and the pre-eclamptic (n = 90; 27.43%) groups (Figure 3.1).

The pregnant cohort was also sub-stratified in accordance with their HIV status. Of the 118 normotensive pregnant women, 49 (41.52%) were HIV positive whilst 69 (58.47%) were HIV negative. Likewise the pre-eclamptic women were also stratified according to their HIV status into HIV positive (n = 32; 35.55%) and HIV negative (n = 58; 64.44%; Fig 3.2).
Figure 3.1: Schematic outline of study population

Figure 3.1: Schematic outline of subcategories within the pregnant cohort based on HIV infection
3.2 DEMOGRAPHIC AND CLINICAL DATA OF STUDY POPULATION

3.2.1 Maternal Age

Age was not normally distributed amongst the study groups. Additionally, both log and square root transformations of the age data failed to achieve normality. A Kruskal-Wallis H test was then used to analyse mean ranks of age (raw data) across the study groups.

Patient age ranged between 18 - 45 y across all the study population (Table 3.1; Figure 3.3). The mean age of study participants in the non-pregnant group was 27.75 ± 7.8 y (range: 21 – 37 y) compared to 27.30 ± 5.7 y (range: 18 - 41 y) in the normotensive group. The mean age of participants in the EOPE group was 26.38 ± 6.1 y (range: 18 - 31 y) compared to 26.62 ± 7.5 y (range: 19 – 38 y) in the LOPE group. Upon initial inspection there appeared to be no significant difference in and between study groups. However, there was a statistically significant difference in the distribution of age across the categories according to HIV status ($p < 0.00$). Patients were older in the HIV+ve group as compared to the HIV-ve group.
Figure 3.2: Boxplot of maternal age (y) across the study population
A Kruskal-Wallis H test showed that there was a statistically significant difference in age between the different groups, \(\chi^2(3) = 69.723; p < 0.000 \), with a mean rank age score of 217.28 for non-pregnant, 125.27 for normotensive pregnant, 161.32 for EOPE and 121.49 for the LOPE groups. The effect size \(\eta^2 \) of the group was 21.7% [calculated as \(\chi^2/(n-1) \)].

Pairwise Mann Whitney U comparisons were made between pairs of groups to identify which groups were different. A Bonferroni post hoc analyses (adjusted \(p < 0.008 \)) revealed that there were statistically significant differences between median ages of the non-pregnant group versus normotensive pregnant, EOPE and LOPE groups respectively (U: 3035.5; \(p < 0.000 \); U:1175;
There were no significant differences between normotensive pregnant versus EOPE and LOPE group combinations.

When comparing the HIV positive versus the HIV negative participants, the Levene’s test of equal variances using a 2 tailed T-test showed a statistically significant difference in age between the 2 groups ($p < 0.000$).

Furthermore, when considering the effect of HIV, post Kruskal-Wallis H test and Bonferroni post hoc analysis, a statistically significant difference between the different groups, [$\chi^2(7) = 85.486$; $p < 0.000$], was found across the categories (Table 3.1; Figure 3.5).

Figure 3.4: Boxplot illustrating maternal age (y) based on HIV status
3.2.2 Blood Pressure

3.2.2.1 Systolic blood pressure

The mean systolic blood pressure for non-pregnant participants was 133 ± 26.47 mmHg versus 117.7 ± 9.31 mmHg of the normotensive pregnant participants. The mean systolic blood pressure for EOPE was 168.07 ± 8.07 mmHg compared to 161.08 ± 22.55 mmHg in the LOPE group. A detailed statistical assessment of systolic blood pressure across the study groups is outlined in Table 3.3 and Figure 3.6 respectively.

There was a statistically significant difference between groups as determined by one-way ANOVA (F(3,322) = 308.790, p = 0.000). A Fisher’s least significant difference (LSD) post-hoc test revealed that the systolic blood pressure was statistically significantly lower in the non-pregnant group (118.903 ± 10.907 mmHg, p = 0.000) compared to the early onset (168.654 ± 15.552 mmHg, p = 0.000) and late onset pre-eclamptic groups (163.38 ± 16.787 mmHg; Figure 3.6). There were no statistically significant differences between the non-pregnant and normotensive groups (p > 0.05). There were no statistically significant difference of the systolic blood pressure between the EOPE and LOPE groups (p > 0.050).

However, of interest is the fact that when Levene’s test where equal variances was not assumed and a 2 tailed T-test was then performed, a statistically significant difference of p = 0.000 was found between all groups.

After considering the effect of HIV, the Kruskal-Wallis H test and Bonferroni post hoc analysis, demonstrated a statistically significant difference between the systolic blood pressure across different groups, [(χ²(7) = 192.040); p = 0.000], was demonstrated (Figure 3.7).
Figure 3.5: Boxplot showing the systolic blood pressure (mmHg) across groups
Figure 3.6: Boxplot illustrating systolic blood pressure (mmHg) based on HIV status
3.2.2.2 Diastolic blood pressure

The mean diastolic blood pressure for non-pregnant participants was 77.25 ± 15.17 mmHg ($p < 0.003$) compared to 73.34 mmHg normotensive pregnant group. The mean diastolic blood pressure was 109.13 ± 14.567 mmHg compared to 96.54 ± 7.6 mmHg in the EOPE and LOPE groups respectively.

There was a statistically significant difference in the mean ± standard deviation of the diastolic blood pressure between groups as determined by one-way ANOVA [$F(3,322) = 146.320$, $p = 0.000$]. A Fisher's least significant difference post-hoc test revealed that the mean diastolic blood pressure was statistically significantly lower in the non-pregnant group (72.34 ± 11.247 mmHg) compared to the EOPE (104.91 ± 14.567 mmHg,) and the LOPE groups (100.97 ± 7.655 mmHg) ($p = 0.000$; Figure 3.8). There were no statistically significant differences between the non-pregnant and normotensive groups ($p = 0.607$). Likewise, there were no statistically significant differences between the EOPE and LOPE groups ($p = 0.107$).

Only when, the Levene’s test compared the pre-eclamptic group as a whole to the normotensive group (irrespective of equal variance or not), the 2 tailed T-test showed a statistical significance of $p = 0.000$ (Table 3.1).

When considering the effect of HIV, the Kruskal-Wallis H test and Bonferroni post hoc analysis demostrated a statistically significant difference between the different groups, [$\chi^2(7) = 170.898$; $p = 0.000$] (Figure 3.9).
Figure 3.7: Boxplot of diastolic blood pressure (mmHg) across study groups
Figure 3.8: Boxplot illustrating diastolic blood pressure (mmHg) based on HIV status
3.2.3 Gestational Age

The mean gestational age of normotensive pregnant participants was 38.98 ± 1.5 weeks. The mean gestational age of participants with EOPE was 32 ± 3.8 weeks versus 36.92 ± 1.847 weeks in the LOPE groups.

Gestational age was not normally distributed but there was homogeneity of variance amongst groups. Therefore a Kruskal Wallis omnibus test was performed to check for a difference amongst the groups. The Kruskal-Wallis H test showed a statistically significant difference in gestational age between the different groups, \((\chi^2(2) = 83.196); p = 0.000\), with a mean rank gestational age score of 131.50 for normotensive, 28.98 for EOPE and 87.33 for the LOPE groups. The effect size \(\eta^2\) of the difference in mean ranks was 40.6% [calculated as \(\chi^2/(n-1) = 83.196 \text{ divided by } 206-1\)] demonstrating the effect of the mean rank on gestational age.

Mann Whitney U tests performed indicated that the normotensive groups was significantly higher than both the EOPE (U=190.50; \(p < 0.000\)) and LOPE groups (U = 1654.00; \(p = 0.000\)). The pregnancies EOPE groups terminated at an earlier gestation than the LOPE groups (U = 205.0; \(p = 0.000\)).

Furthermore, the Levene's test followed by a 2 tailed T-test compared the pre-eclamptic group as a whole (EOPE + LOPE) to the normotensive group (irrespective of equal variance or not), a statistical significance of \(p = 0.000\) was demonstrated. In addition, when the Levene's test compared the EOPE and LOPE groups (irrespective of equal variances or not) and a 2 tailed T-test then performed, a statistically significant difference of \(p = 0.000\) was noted (Table 3.1).
The study demonstrated there was no statistically significant difference in the distribution of gestational age across the pregnant categories according to HIV status (Figure 3.10).

![Boxplot of gestational age (weeks) across pregnant groups](image)

Figure 3.9: Boxplot of gestational age (weeks) across pregnant groups

3.2.4 Indications for delivery

Within the pregnant cohort (normotensive pregnant + pre-eclamptic); 65.9% of deliveries were in fetal interest as compared to maternal indications. The Pearson Chi-square test showed a statistically significant difference between the groups of \(p = 0.000 \). Pregnant patients (45.4%) had elective caesarean section compared to the 27.4% requiring emergency caesarean section.
Over four percent (4.6%) required induction of labour whilst 22.6% had a spontaneous normal vaginal delivery.

3.2.5 Clinical complications in the pre-eclampsia groups

Clinical complications included one case of abruption placentae, 9 cases of eclampsia, 5 cases of imminent eclampsia and 12 cases of severe pre-eclampsia. Moreover, there were 6 cases of stillbirths. In the EOPE group, there were 5 patients that developed eclampsia and one case of abruption placentae.

3.2.6 Birth weights across study groups

Babies of normotensive participants had a mean birth weight of 3.237 ± 0.40 kg. The weight of babies in the EOPE group was 1.623 ± 0.78 kg compared to 2.718 ± 0.51 kg in the LOPE group (Figure 3.11).

Baby weights were not normally distributed amongst the study groups. A Kruskal-Wallis H test showed that there was a statistically significant difference in baby weight between the different groups, $[\chi^2(2) = 76.430; p < 0.000]$. The effect of size ($\eta^2$) on the difference in mean ranks was 37.7%.

Pairwise Mann Whitney U tests with Bonferroni post hoc analyses (adjusted $p < 0.016$) showed that the normotensive pregnant baby weight differed significantly compared to EOPE (U: 165.0, $p = 0.000$) and LOPE groups (U: 1804.5 $p = 0.000$). There was a significant difference between early onset and late onset groups (U: 268.5; $p = 0.000$).
Furthermore, when the Levene's test was performed comparing the pre-eclamptic group as a whole (EOPE + LOPE) to the normotensive group (with/out equal variance), the 2 tailed T-test showed a statistical significance of $p = 0.000$ between babies of the pre-eclamptic mothers compared to the normotensive mothers.

Further, when considering the effect of HIV on baby weight, the Kruskal-Wallis H test and Bonferroni post hoc analysis, demonstrated a statistically significant difference between the all cohorts, $[\chi^2(5) = 78.678); p < 0.000; \text{Figure 3.12}].$

![Figure 3.10: Boxplot showing birth weight (kg) across study groups](image-url)
3.2.7 Placental weights across pregnant groups

In normotensive pregnant patients the mean weight ± standard deviation of the placenta was 612.45 ± 81.57 g. The mean placental weight in the EOPE group was 430.00 ± 142.23g compared to 558.46 ± 35.76 g in the LOPE group (Figure 3.13).

Placental weight was not normally distributed amongst the groups. A Kruskal-Wallis H test showed that there was a statistically significant difference in placental weight between the different groups, $\chi^2(2) = 15.674, p = 0.000$.

Figure 3.11: Boxplot illustrating baby weight (kg) across all groups based on HIV status
Statistically significant differences after Bonferroni post hoc analyses (adjusted $p < 0.008$) revealed that there were differences between placenta weight of normotensive pregnant and EOPE groups ($U: 647.0; p = 0.000$). There was no difference between normotensive and the LOPE group ($p = 0.484$). There was a significant difference between early onset and late onset as well ($U: 223.0; p < 0.001$).

When considering the effect of HIV on placental weight, the Kruskal-Wallis H test and Bonferroni post hoc analysis, showed a statistically significant difference between the different study groups, $[(\chi^2(5) = 23.446); p < 0.000]$, (Figure 3.14).

Figure 3.12: Boxplot showing placental weight (g) across pregnant groups
3.2.8 HIV status

More than half of the sample cohort was HIV negative (n = 179; 54.9%). Forty five percent was HIV positive (n = 147; 45.1%).

3.2.8.1 Cluster of Differentiation 4 (CD4) count (cells/mm³)

HIV positive non-pregnant participants had a mean CD4 count of 473 ± 188.630 cells/mm³ ($p < 0.216$) compared to 417.91 ± 198.389 cells/mm³ ($p < 0.629$) in the HIV positive normotensive pregnant group. HIV participants with EOPE had a mean CD4 count of $325.38 \pm$
166.036 cells/mm3 (SE: 58.703; p < 0.664) compared to 388.08 ± 100.853 cells/mm3 (p < 0.803) in the LOPE group (Figure 3.15).

![Boxplot showing CD4 count (cells/mm3) across study groups](image)

Figure 3.14: Boxplot showing CD4 count (cells/mm3) across study groups

There were no statistically significant differences between group means as determined by one-way ANOVA [$F (3,138) = 0.930; p < 0.428$].

After considering the effect of HIV, the Kruskal-Wallis H test and Bonferroni post hoc analysis, demonstrated no statistically significant difference between the different groups,[$(\chi^2(3) = 2.627); p < 0.453$], was found (Figure 3.16).
3.2.8.2 Anti – retroviral (ARV) Usage

Antiretroviral therapy was received by 36.6% of the non-pregnant participants compared to the 63.4% majority within the study population that received ARVs. Some of the pregnant participants (18.6%) did not take ARVs compared to 81.4% of pregnant participants that did take ARVs therapy. With regards to ARV usage, a Pearson Chi–square test demonstrated a statistically significant difference $p < 0.009$, between the pregnant and non-pregnant groups.

Figure 3.15: Boxplot illustrating CD4 count (cells/mm3) in HIV positive groups
Table 3.1 Demographic data of study groups

<table>
<thead>
<tr>
<th></th>
<th>Non Pregnant</th>
<th>Normotensive</th>
<th>EOPE</th>
<th>LOPE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N = 120</td>
<td>N = 118</td>
<td>N = 32</td>
<td>N = 52</td>
</tr>
<tr>
<td>Age (y)</td>
<td>33.01 ± 7.8</td>
<td>25.61 ± 5.7</td>
<td>27.78 ± 6.1</td>
<td>28.55 ± 7.5</td>
</tr>
<tr>
<td>Maternal Weight (kg)</td>
<td>75 ± 13</td>
<td>73 ± 13.8</td>
<td>81.75 ± 15</td>
<td>82 ± 19.7</td>
</tr>
<tr>
<td>Systolic (mmHg)</td>
<td>133 ± 26</td>
<td>117 ± 9.3</td>
<td>168 ± 8</td>
<td>161 ± 22</td>
</tr>
<tr>
<td>Diastolic (mmHg)</td>
<td>77 ± 15</td>
<td>73 ± 85</td>
<td>109 ± 16.9</td>
<td>96.5 ± 7.6</td>
</tr>
<tr>
<td>Height (m)</td>
<td>1.563 ± 0.113</td>
<td>1.574 ± 0.0676</td>
<td>1.563 ± 0.0158</td>
<td>1.593 ± 0.0751</td>
</tr>
<tr>
<td>CD4 cell count (cells/mm³)</td>
<td>473 ± 188</td>
<td>417 ± 198</td>
<td>325 ± 166</td>
<td>388 ± 100</td>
</tr>
<tr>
<td>Gestational Age (wks)</td>
<td>0</td>
<td>38.98 ± 1.5</td>
<td>32 ± 3.8</td>
<td>36.92 ± 1.847</td>
</tr>
<tr>
<td>Baby weight (kg)</td>
<td>-</td>
<td>3.23 ± 0.058</td>
<td>1.623 ± 0.274</td>
<td>2.716 ± 0.1422</td>
</tr>
<tr>
<td>Placental weight (g)</td>
<td>-</td>
<td>612.45 ± 11.89</td>
<td>430 ± 50.28</td>
<td>558.46 ± 37.65</td>
</tr>
</tbody>
</table>
3.3 ANTHROPOMETRIC DATA ACROSS STUDY GROUPS

3.3.1 Maternal Weight

The mean weight ± standard deviation of the non-pregnant women was 75.0 ± 13.14 kg compared to 73.17 ± 13.89 kg of the normotensive pregnant women. The mean weight of EOPE women was 81.75 ± 15.06 kg compared to 82.523 ± 19.71 kg of LOPE women (Table 3.1).

When considering the effect of HIV on maternal weight, the Kruskal-Wallis H test and Bonferroni post hoc analysis, showed no statistically significant difference between the different groups, $\chi^2(7) = 11.004; p < 0.138$; (Figure 3.17).
3.3.2 Maternal Height

The mean height of non-pregnant women was 1.563 ± 0.113 m whilst that of normotensive participants was 1.574 ± 0.676 m. The mean height was 1.531 ± 0.090 m and 1.593 ± 0.075 m in EOPE and LOPE women, respectively (Table 3.2).

After considering the effect of HIV across the categories, the Kruskal-Wallis H test and Bonferroni post hoc analysis, demonstrated no statistically significant difference between the different groups, \([\chi^2(7) = 6.119]; p < 0.526\).
3.3.3 Maternal Body mass index

The BMI of the non-pregnant and normotensive pregnant women was 28.55 ± 4.24 kg/m2 and 28.89 ± 6.80 kg/m2, respectively. The mean BMI of EOPE and LOPE women was 32.73 ± 7.65 kg/m2 and 32.97 ± 8.54 kg/m2 respectively (Figure 3.18). The mean BMI of the study population fell into either the overweight (BMI - 27.5 – 30 kg/m2) or mildly obese categories (BMI- 30.5 – 35 kg/m2).

Body mass index per group was not normally distributed. After log$_{10}$ transformation of the data, a one way ANOVA revealed no statistically significant difference between the groups [F (3,322) =1.161; p = 0.325]. Whilst there was a significant difference between the non-pregnant and pregnant cohorts, there was no statistically significant differences between the normotensive, EOPE and LOPE groups (p = 0.325). Likewise, the distribution of BMI was the same across the categories with respect to HIV status (p = 0.124).

After considering the effect of HIV across the categories the study found that after the Kruskal-Wallis H test and Bonferroni post hoc analysis, no statistically significant difference between the different groups,[(χ2(7) = 9.330); p < 0.230], was found (Figure 3.19).
Figure 3.17: Boxplot showing BMI (kg/m²) across study groups
3.3.4 Mid upper arm circumference (MUAC)

The mid upper arm circumference was 31.53 ± 2.63 cm in non-pregnant women compared to 28.38 ± 4.59 cm in the normotensive pregnant women. EOPE participants had a MUAC of 33.38 ± 4.69 cm compared to 28.23 ± 1.43 cm in the LOPE group (Figure 3.20; Table 3.2).

One way ANOVA tests of both mid-upper arm circumference \([F(3.322) = 5.740; p = 0.01]\) and triceps skinfold thickness \([F(3.322) = 5.411; p = 0.001]\) showed that there was significant difference between at least one of the groups analysed.
Post hoc tests showed that the mean MUAC for non-pregnant women (31.53 ± 5.845 cm) was significantly higher than normotensive pregnant women (28.73 ± 4.717 cm; p < 0.000) but not significantly different from EOPE and LOPE groups.

![Boxplot showing mid arm circumference (cm) across study groups](image)

Figure 3.19: Boxplot showing mid arm circumference (cm) across study groups

When considering the effect of HIV, it was shown that after the Kruskal-Wallis H test and Bonferroni post hoc analysis, a statistically significant difference between the different groups, \[\chi^2(7) = 23.253; p < 0.002 \], was found (Figure 3.21).
3.3.5 Triceps skin fold thickness

Fisher’s Least significant difference post hoc test revealed that triceps skin fold thickness in the normotensive pregnant group (18.14 ± 7.025 mm) was significantly lower than both non-pregnant (21.58 ± 8.812 mm; p < 0.002) and LOPE (22.89 ± 10.638 mm) groups but not significantly different from the EOPE group (18.94 ± 9.148 mm) (Table 3.2; Figure 3.22). The triceps skin fold thickness in the EOPE group was lower than LOPE group (p < 0.036).

Non-pregnant women had a mean triceps skin fold thickness of 13 ± 4.69 mm compared to 18.34 ± 7.08 mm in normotensive women. The mean triceps skin fold thickness in EOPE and
LOPE women was 23.38 ± 12.18 mm and 16.90 ± 8.47 mm respectively. There was a statistically significant difference in triceps skin fold thickness between the normotensive group and other groups ($p < 0.000$). There were no other statistically significance between non pregnant, EOPE and LOPE groups.

![Boxplot of mean triceps circumference (mm) across study groups](image)

Figure 3.21: Boxplot of mean triceps circumference (mm) across study groups

After analysing the effect of HIV on triceps skinfold thickness across the groups, it was found that after the Kruskal-Wallis H test and Bonferroni post hoc analysis, a statistically significant difference between the different groups, $[\chi^2(7) = 20.457]; p < 0.005$, was shown across the categories (Figure 3.23).
Figure 3.22: Boxplot illustrating mean triceps circumference (mm) based on HIV status
Table 3.2: Anthropometric and CD$_4$ data across study groups

<table>
<thead>
<tr>
<th>Measure</th>
<th>Non Pregnant</th>
<th>Normotensive</th>
<th>EOPE</th>
<th>LOPE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N = 120</td>
<td>N = 118</td>
<td>N = 32</td>
<td>N = 52</td>
</tr>
<tr>
<td>Height (m)</td>
<td>1.563 ± 0.113</td>
<td>1.574 ± 0.0676</td>
<td>1.563 ± 0.0158</td>
<td>1.593 ± 0.0751</td>
</tr>
<tr>
<td>BMI (kg/m2)</td>
<td>28 ± 4.2</td>
<td>28.8 ± 6.8</td>
<td>32.7 ± 7.6</td>
<td>32.97 ± 8.5</td>
</tr>
<tr>
<td>MUAC (cm)</td>
<td>26 ± 2.6</td>
<td>28 ± 4.5</td>
<td>33 ± 4.6</td>
<td>28.23 ± 5.1</td>
</tr>
<tr>
<td>Triceps skin fold (cm)</td>
<td>21.58 ± 4.6</td>
<td>18.14 ± 7.07</td>
<td>18.94 ± 12</td>
<td>22.89 ± 8</td>
</tr>
<tr>
<td>CD4 cell count (cells/mm3)</td>
<td>473 ± 188</td>
<td>417 ± 198</td>
<td>325 ± 166</td>
<td>388 ± 100</td>
</tr>
</tbody>
</table>
3.4 ASSESSMENT OF SERUM LEVELS OF ADIPONECTIN USING ELISA

The median adiponectin level was 446.55700 µg/ml and ranged between 305.27050 - 725.32175 µg/ml. The mean adiponectin level was 897.93 ($p < 0.080$); 17.19 ($p < 0.000$); 23.16 ($p < 0.017$); 24.61 ($p < 0.324$), in the non-pregnant, normotensive pregnant, EOPE and LOPE participants, respectively (Table 3.3).

The effect of HIV on adiponectin across the categories, using the Kruskal-Wallis H test and Bonferroni post hoc analysis, showed a statistically significant difference between the different groups, $[(\chi^2(7) = 24.540); p < 0.001]$ (Figure 3.24).

![Figure 3.23: Boxplot illustrating adiponectin (µg/ml) based on HIV status](image-url)
3.5 ASSESSMENT OF SERUM LEVELS OF LEPTIN USING THE LUMINEX TECHNIQUE

The median leptin concentration was 153.00 pg/ml with an inter quartile range of 64.25 – 3028.06 pg/ml. Non-pregnant participants had mean leptin concentrations of 4887.25 pg/ml ($p < 0.125$) compared to 2732.27 ($p < 0.000$) in the normotensive pregnant groups. Participants with EOPE had a mean leptin concentration of 955.75 ($p < 0.000$) compared to 310.23 ($p < 0.000$) in the LOPE groups. When considering the effect of HIV on mean leptin level using the Kruskal-Wallis H test and Bonferroni post hoc analysis, a statistically significant difference between the different groups, ($\chi^2(7) = 16.926); p < 0.018$], across the categories was noted (Figure 3.25).

![Boxplot illustrating leptin (pg/ml) based on HIV status](image)

Figure 3.24: Boxplot illustrating leptin (pg/ml) based on HIV status
3.6 ASSESSMENT OF SERUM LEVELS OF TNFα USING LUMINEX TECHNIQUE

Non-pregnant participants did not have measurable levels of TNF-α. Normotensive participants had a mean TNF-α concentration of 608.521 pg/ml \((p = 0.000) \). Participants with EOPE had a mean TNF-α concentration of 661.03 \((p = 0.000) \) compared to 616.439 \((p = 0.000) \) in the LOPE group (Table 3.3).

After considering the effect of HIV on TNF-α concentration, the Kruskal Wallis test and post hoc Bonferroni analyses revealed a statistically significant difference, \([\chi^2(7) = 14.160]; p < 0.048 \), across study groups (Figure 3.26).
Figure 3.25: Boxplot illustrating mean TNF-α (pg/ml) based on HIV status

3.7 ASSESSMENT OF SERUM LEVELS OF RESISTIN USING THE LUMINEX TECHNIQUE

Non-pregnant participants had a mean resistin concentration of 7497.13 pg/ml compared to 3536.50 pg/ml in the normotensive pregnant groups. The mean resistin concentration was 1017.63 pg/ml in the EOPE group compared to 286.92 pg/ml ($p < 0.000$) in the LOPE group.
When considering the effect of HIV on resistin concentration, the Kruskal-Wallis H test and Bonferroni post hoc analysis, a statistically significant difference between the different groups, $(\chi^2(7) = 18.625); p < 0.009]$, was noted (Figure 3.27).

Figure 3.26: Boxplot illustrating mean resistin (pg/ml) based on HIV status
Table 3.3: Detailed outline of adipokine levels across study groups

<table>
<thead>
<tr>
<th></th>
<th>Non Pregnant</th>
<th>Normotensive</th>
<th>EOPE</th>
<th>LOPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>N = 120</td>
<td>N = 118</td>
<td>N = 32</td>
<td>N = 52</td>
</tr>
<tr>
<td>ADIPONECTIN</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>µg/l</td>
<td>897.93 ± 126.18</td>
<td>17.19 ± 11.568</td>
<td>23.16 ± 21.392</td>
<td>24.61 ± 12.869</td>
</tr>
<tr>
<td>LEPTIN</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pg/ml</td>
<td>4887.25 ± 705.294</td>
<td>2732.27 ± 580.183</td>
<td>955.75 ± 527.642</td>
<td>310.23 ± 177.438</td>
</tr>
<tr>
<td>TNF-α</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pg/ml</td>
<td>0</td>
<td>608.52 ± 84.899</td>
<td>661.036 ± 202.604</td>
<td>616.439 ± 117.53</td>
</tr>
<tr>
<td>RESISTIN</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pg/ml</td>
<td>7497.13 ± 1921.956</td>
<td>3536.50 ± 730.044</td>
<td>1017.63 ± 691.585</td>
<td>286.92 ± 160.308</td>
</tr>
<tr>
<td>BMI</td>
<td>ADIPONECTIN (µg/ml)</td>
<td>LEPTIN (pg/ml)</td>
<td>RESISTIN (pg/ml)</td>
<td>TNF (pg/ml)</td>
</tr>
<tr>
<td>-----</td>
<td>---------------------</td>
<td>----------------</td>
<td>------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>5</td>
<td>22.75</td>
<td>50.00</td>
<td>50.00</td>
<td>.00</td>
</tr>
<tr>
<td>10</td>
<td>23.94</td>
<td>51.00</td>
<td>56.50</td>
<td>.00</td>
</tr>
<tr>
<td>25</td>
<td>26.19</td>
<td>64.25</td>
<td>71.00</td>
<td>.00</td>
</tr>
<tr>
<td>50</td>
<td>30.14</td>
<td>153.00</td>
<td>168.00</td>
<td>.00</td>
</tr>
<tr>
<td>75</td>
<td>34.95</td>
<td>3028.06</td>
<td>3085.13</td>
<td>.00</td>
</tr>
<tr>
<td>90</td>
<td>40.42</td>
<td>7827.25</td>
<td>9849.75</td>
<td>51.50</td>
</tr>
<tr>
<td>95</td>
<td>44.22</td>
<td>11235.38</td>
<td>12921.25</td>
<td>152.56</td>
</tr>
</tbody>
</table>
3.8 ANALYSIS OF RESULTS WITH RESPECT TO THE PRIMARY NULL HYPOTHESES OF THE STUDY

3.8.1 Null hypothesis: The levels of adiponectin/leptin/resistin/TNF-α does not differ amongst the pregnant and non-pregnant cohorts.

The levels of TNFα/adiponectin/leptin and resistin were all statistically significantly different between the pregnant and non-pregnant cohorts (Table 3.5). The mean concentration of TNF-α was 22.181 ± 90.24 pg/ml (p = 0.000) in the pregnant cohort. In this pregnant cohort, the mean concentration of adiponectin, leptin and resistin was 614.980 µg/l ± 780.84 (p = 0.000); 2266.537 pg/l ± 3747.85 (p = 0.000) and 2790.471 pg/l ± 5363.09 (p = 0.000), respectively.

The levels of TNF-α, leptin and resistin were significantly different within the normotensive pregnant versus pre-eclamptic groups. Using the Mann-Whitney test it was demonstrated that TNF-α was statistically significant within the pregnancy groups (p < 0.044). Likewise, leptin (p < 0.004) and resistin (p < 0.006) were statistically significant between the pregnancy groups. Only Adiponectin, as mentioned, failed to reach statistical significance within the pregnancy subgroups (p < 0.292).

The null hypothesis was therefore rejected.
Table 3.5: Detailed outline of adipokine levels between pregnant vs non-pregnant study groups

<table>
<thead>
<tr>
<th></th>
<th>PREGNANT</th>
<th></th>
<th></th>
<th>NON PREGNANT</th>
<th></th>
<th></th>
<th>p-values</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Median</td>
<td>Minimum</td>
<td>Maximum</td>
<td>Median</td>
<td>Minimum</td>
<td>Maximum</td>
<td></td>
</tr>
<tr>
<td>TNF-α, pg/ml</td>
<td>0</td>
<td>0</td>
<td>524</td>
<td>0</td>
<td>0</td>
<td>942</td>
<td>0.00</td>
</tr>
<tr>
<td>Adiponectin, µg/l</td>
<td>476.7</td>
<td>27</td>
<td>11099</td>
<td>414.6</td>
<td>66</td>
<td>5030</td>
<td>0.00</td>
</tr>
<tr>
<td>Leptin, pg/ml</td>
<td>189.0</td>
<td>50</td>
<td>19239</td>
<td>88.0</td>
<td>50</td>
<td>14507</td>
<td>0.00</td>
</tr>
<tr>
<td>Resistin, pg/ml</td>
<td>230.0</td>
<td>50</td>
<td>58241</td>
<td>101.0</td>
<td>50</td>
<td>17338</td>
<td>0.00</td>
</tr>
</tbody>
</table>

3.8.2 Null hypothesis: The levels of adiponectin/leptin/resistin/TNF-α does not differ in women who develop early onset pre-eclampsia as compared to women who develop late onset pre-eclampsia

The differences in TNF-α, adiponectin, leptin and resistin concentration failed to reach statistically significant p-values between EOPE versus LOPE using the Mann-Whitney Test. Therefore the null hypothesis was accepted (Table 3.6).
Table 3.6: Detailed comparison of adipokine levels between EOPE and LOPE study groups

<table>
<thead>
<tr>
<th></th>
<th>LOPE</th>
<th></th>
<th></th>
<th>EOPE</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Median</td>
<td>Minimum</td>
<td>Maximum</td>
<td>Median</td>
<td>Minimum</td>
<td>Maximum</td>
<td>p-values</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TNF-α</td>
<td>0</td>
<td>0</td>
<td>297</td>
<td>0</td>
<td>0</td>
<td>392</td>
<td><0.098</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adiponectin</td>
<td>554.3</td>
<td>27</td>
<td>1957</td>
<td>446.2</td>
<td>168</td>
<td>1931</td>
<td><0.913</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leptin</td>
<td>196</td>
<td>50</td>
<td>58241</td>
<td>182</td>
<td>50</td>
<td>13467</td>
<td><0.538</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resistin</td>
<td>230</td>
<td>50</td>
<td>58241</td>
<td>230.5</td>
<td>50</td>
<td>16763</td>
<td><0.669</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.8.3 Null hypothesis: The levels of adiponectin/leptin/resistin/TNF-α in pre-eclamptics does not differ according to HIV status

There were no statistically significant differences in the levels of TNF-α, adiponectin, leptin and resistin in the pre-eclamptic HIV+ve versus the HIV-ve groupings. In this instance the null hypothesis was retained (Table 3.7).
Table 3.7: Detailed comparison of adipokine levels between HIV negative and positive study groups

<table>
<thead>
<tr>
<th></th>
<th>HIV-ve</th>
<th>HIV+ve</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Median</td>
<td>Minimum</td>
</tr>
<tr>
<td>TNF-α pg/ml</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Adiponectin µg/l</td>
<td>453.6</td>
<td>167</td>
</tr>
<tr>
<td>Leptin pg/ml</td>
<td>185</td>
<td>50</td>
</tr>
<tr>
<td>Resistin pg/ml</td>
<td>230.5</td>
<td>50</td>
</tr>
</tbody>
</table>

3.8.4 Null hypothesis: The difference in levels of adiponectin/leptin/resistin/TNFα in women who develop early onset pre-eclampsia as compared to women who develop late onset pre-eclampsia are not altered by the HIV status of the patients.

The study results from use of the Mann-Whitney Test demonstrated that there were no statistically significant differences in the levels of adiponectin, leptin, TNF-α and resistin within the pregnancy groups with respect to HIV status. The levels for TNF-α was $p < 0.665$; adiponectin was $p < 0.197$; leptin was $p < 0.493$ and resistin was $p < 0.653$.

- 94 -
3.9 FURTHER, COMPARISONS

3.9.1 CD4 Count

There was no statistically significant findings in the levels of TNF-α, adiponectin, leptin and resistin within the HIV+ve pregnant population based on CD4 >350 compared to CD4 <350 (Table 3.8).

Table 3.8: Detailed comparison of adipokine levels based on CD4 levels.

<table>
<thead>
<tr>
<th></th>
<th>CD4 < 350</th>
<th>CD4 ≥ 350</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Median</td>
<td>Minimum</td>
</tr>
<tr>
<td>TNF pg/ml</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Adiponectin ug/l</td>
<td>601.51</td>
<td>117</td>
</tr>
<tr>
<td>Leptin pg/ml</td>
<td>277</td>
<td>53</td>
</tr>
<tr>
<td>Resistin pg/ml</td>
<td>267</td>
<td>50</td>
</tr>
</tbody>
</table>

3.9.2 ARVs

There were no statistically significant differences in the levels of adiponectin /leptin /resistin /TNF-α in pregnant HIV+ve women based on receipt of HIV therapy. TNF-α achieved a p value of 1 whilst adiponectin (p < 0.735), leptin (p < 0.215) and resistin (p < 0.326) across groups.
3.9.3 BMI

There were no statistically significant differences in levels of TNF-α, Leptin, and Resistin when compared across subdivisions of BMI in the non-pregnant population (Table 3.4). TNF-α achieved a $p < 0.933$ vs leptin that achieved a $p < 0.234$ vs resistin that achieved a $p < 0.108$. However adiponectin levels did reach statistical significance amongst the BMI subdivisions in the non-pregnant population; $p < 0.002$.

There were no statistically significant differences in the levels of TNF-α, adiponectin, leptin and resistin in the pregnant population across the subdivisions of BMI. TNF-α achieved a $p < 0.466$. Adiponectin achieved a $p < 0.091$ whilst leptin achieved a $p < 0.275$ and resistin achieved a $p < 0.214$. The study was able to establish adipokine levels according to BMI (Table 3.9).
Using the data collected it was possible to depict the relationship between TNFα / Adiponectin / leptin and resistin and their medians with respect to change in Body mass index (Table 3.9).

It was possible to further, stratify the median TNFα / Adiponectin / Leptin and Resistin levels with respect to pregnancy status and HIV status. This has not been attempted in the local population previously (Table 3.10).

<table>
<thead>
<tr>
<th></th>
<th>BMI</th>
<th><27</th>
<th>27 – 30</th>
<th>30-35</th>
<th>>35</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMI</td>
<td></td>
<td><27</td>
<td>27 – 30</td>
<td>30-35</td>
<td>>35</td>
</tr>
<tr>
<td>TNF α pg/ml</td>
<td>0.00±105.066</td>
<td>0.00±134.489</td>
<td>0.00±31.083</td>
<td>0.00±60.639</td>
<td></td>
</tr>
<tr>
<td>Adiponectin ug/ml</td>
<td>593.469±617.586</td>
<td>431.988±572.660</td>
<td>396.307±1254.792</td>
<td>403.714±347.278</td>
<td></td>
</tr>
<tr>
<td>Leptin pg/ml</td>
<td>321.00±3479.098</td>
<td>114.00±3057.903</td>
<td>131.00±3836.619</td>
<td>104.00±4427.365</td>
<td></td>
</tr>
<tr>
<td>Resistin pg/ml</td>
<td>320.00±4868.865</td>
<td>130.50±3795.870</td>
<td>128.00±7392.624</td>
<td>109.00±4356.158</td>
<td></td>
</tr>
</tbody>
</table>

Table 3.9: Adipokine levels stratified according to BMI
Table 3.10: Adipokine levels according to Pregnancy and Non pregnancy state in relation to HIV status

<table>
<thead>
<tr>
<th></th>
<th>Non pregnant</th>
<th>Pregnant</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HIV -ve</td>
<td>HIV+ve</td>
</tr>
<tr>
<td>TNFα pg/ml</td>
<td>0.00±189.028</td>
<td>0.00±39.403</td>
</tr>
<tr>
<td>Adiponectin ug/ml</td>
<td>349.272±300.190</td>
<td>517.943±758.705</td>
</tr>
<tr>
<td>Leptin pg/ml</td>
<td>90.00±3029.725</td>
<td>74.50±1791.436</td>
</tr>
<tr>
<td>Resistin pg/ml</td>
<td>101.00±3375.880</td>
<td>90.00±1527.309</td>
</tr>
</tbody>
</table>
CHAPTER 4
DISCUSSION

4.1 INTRODUCTION - OBESITY, HIV AND PRE-ECLAMPSIA

Maternal morbidity and mortality in South Africa is weighed down in a quagmire of old and new challenges. Currently, pre-eclampsia and HIV infection remain two of the top five causes of maternal mortality in South Africa (NCCEMD, 2007). Following on the heels of the HIV infection, South Africa now faces a new pandemic, that of obesity.

In 2011, the overall HIV prevalence amongst antenatal women was 29.5% (95%CI: 28.7-30.2) (Health, 2011a SANDO). Geographical variations of the epidemic in South Africa reflects a provincial distribution, with KwaZulu-Natal having the highest HIV prevalence followed by Mpumalanga, Free State and North-West, all with prevalence rates greater than 30.0% (Health, 2011b SANDO).

Concurrently, it has been estimated that 1.3 billion people are overweight or obese (Obesity Task Force, 2005). Not only is obesity affecting high income countries but, it is becoming more evident and an increasing problem in low-middle income countries (Puoane et al., 2002, Filozof et al., 2001, Rivera et al., 2002).

South Africa has the highest overweight and obesity rate in sub-Saharan Africa: seven out of 10 women have significantly more body fat than what is considered healthy. Of the 70% of overweight South African women, 42% are obese (Ng et al., 2014). In neighboring sub-Saharan African countries such as Namibia (19.8%), Lesotho (24.1%) and Zimbabwe (33.5%)
women are less obese than South Africa. Eritrea only has 4.7% obese women and Ethiopia 1.8% – respectively, a 10-20 fold lower prevalence of obese women than South Africa (Ng et al., 2014).

A progressive increase in the prevalence of obesity in South Africa, particularly among women and young girls has been reported in many studies (Labadarios et al., 2005, Senekal et al., 2003, Walker, 1995) A report published by the South African Medical Research Council (MRC) in 2007, cited that “56% of adult women and 29% of adult men were overweight/obese, while 17% of children under the age of 9 years were overweight” (Walker, 1995, Stein, 2007). They also report that “approximately 60 people die from obesity-related disease every day in South Africa”. The primary reason for this high mortality amongst Black women, perhaps emanates from a strong belief that increased body weight is considered an indicator of wealth, good health and success, whilst being thin is associated with being HIV-infected (Mvo et al., 1999, Ndlovo and Roos, 1999).

Globally, obesity remains a key risk factor for hypertension and cardiovascular disease (WHO, 2003). Pregnancy, obesity and overweight all lead to increased insulin resistance. Insulin resistance is a physiological process in pregnancy, but obesity and overweight leads to pathological changes ie., inflammatory processes and sub-clinical inflammation (Challis et al., 2009, Wang and Nakayama, 2010, Stupin and Arabin, 2014).

TNF-α, leptin, resistin and adiponectin and many other adipokines are released into the maternal circulation with increasing obesity. They altogether contribute to the development of obesity specific morbidities such as hypertension, diabetes and cardiovascular disorders (Ronti
et al., 2006, Fischer-Posovszky et al., 2007). Adipose tissue produces TNF-α, which increases with an increasing degree of obesity (Hotamisligil, 1993). This elevation of TNF-α contributes to insulin resistance. In 1994, leptin was identified as a secretory product of adipose tissue (Zhang et al., 1994a). Leptin up-regulation contributes to inflammation and changes in metabolic activity. In obesity, adipokines and receptors are up-regulated in visceral adipose tissue (VAT) (Ronti et al., 2006, Hu et al., 1996, Milan et al., 2002).

Since two-thirds of HIV infected women of reproductive age reside in sub-Saharan Africa, this region is experiencing a major obstetric dilemma, (Coovadia and Couttsoudis, 2000). Also, in view of the fact that KZN province is considered the epicenter of the global HIV pandemic, women of reproductive age are vulnerable. This is further, exacerbated by the high frequency of pre-eclampsia, the commonest direct cause of maternal deaths in South Africa. Hence, it is imperative that one adequately clarifies the interaction of the two diseases.

Pregnancy in itself reflects a modest maternal inflammatory response, whilst pre-eclampsia is identified as an excessive inflammatory response (Redman and Sargent, 2005, Redman et al., 1999). Thus, when combined with the immune insufficiency stimulated by HIV infection, it is possible that the immune hyper-reactivity is perhaps prevented, thereby inhibiting pre-eclampsia development.

A lower incidence of pre-eclampsia in HIV positive women has been reported (Boyajian et al., 2012); (Wimalasundera et al., 2002, Haeri et al., 2009, Mattar et al., 2004). Similarly, consistent evidence has been described in South Africa where HIV positive women were found to be at a lower risk of developing pre-eclampsia (Kalumba et al., 2013). In the pre-HAART
era, pre-eclampsia was an uncommon complication of pregnancy in HIV-infected women, the occurrence being even less frequent than in the general population (Stratton et al., 1999). Another study has demonstrated that with the routine use of HAART, the incidence of pre-eclampsia in HIV-infected pregnant women increases to a level similar to that of HIV-uninfected women (Wimalasundera et al., 2002). Additionally, the incidence of pre-eclampsia and fetal deaths increases in the HIV infected pregnant women (Suy et al., 2006). The latter study attributes this risk with the exposure to HAART prior to pregnancy and that insulin resistance and endothelial inflammation may have been the potential underlying conditions.

In light of the pervasive HIV infection, high pre-eclampsia prevalence and the very high levels of obesity in South Africa, this novel study attempts to reconnoiter the relationship amongst this deadly troika. Given the role of this trio in immune responses, this study explores the role of adipose related proteins (adipokines) in HIV associated pre-eclampsia in KwaZulu-Natal.

4.2 PATIENT DEMOGRAPHICS

4.2.1 Maternal age

In this study, the mean age of pregnant participants was 27.3 vs 26.3 vs 26.6 years in the normotensive pregnant, EOPE and LOPE cohorts, respectively. These maternal ages appear to be largely in keeping with global trends of women delaying their first pregnancy. However, one should take into consideration that due to ethical considerations, maternal age of under 18 years was an exclusion criteria in the sampling strategy of this study.

The younger participants in the EOPE cohort is supported by classical risk factors such as nulliparity (Luo et al., 2007), Black ethnicity and primipaternity (Zhang et al., 1997, ACOG,
2002), all of which are risk factors for pre-eclampsia development. The age of the normotensive pregnant cohort in this study is similar to that of previous studies (Aksornphusitaphong and Phupong, 2013).

The distribution of HIV according to age demonstrates that the HIV positive participants tended to be older than the HIV negative participants. This attests to the fact that local incidence of the HIV disease seems to be stabilizing, as supported by local statistics (Lehola, 2014).

4.2.2 Blood pressure
Currently both the International Society for the Study of Hypertension in Pregnancy and the Working Group of the National High Blood Pressure Education Program in the United States both define pre-eclampsia as either systolic blood pressure ≥140 mm Hg or diastolic blood pressure ≥90 mm Hg, with associated proteinuria after 20 weeks’ gestation (Brown et al., 2001, 2000 and 183(1):S1-S22). As expected there were statistically significant higher systolic and diastolic blood pressure readings in this study’s pre-eclamptic cohort as compared to the normotensive non-pregnant and normotensive pregnant population. Furthermore, it was found that there were statistically significant differences with respect to HIV status and blood pressure across the non-pregnant, pre-eclamptic and normotensive cohorts (p=0.000).

A posturing inspection of BP in this study revealed a trend towards a lower systolic and diastolic blood pressure in HIV naive individuals. This trend is in keeping with the development of insulin resistance, obesity and hypertension in HIV infection (Gazzaruso et al., 2003). Furthermore, it is well documented that the use of HAART induced complications of
metabolic syndromes such as impaired glucose tolerance, diabetes, hypertriglyceridemia, and reduced levels of high-density lipoprotein (HDL) are risk factors for cardiovascular disease development, including blood pressure elevation (Hadigan et al., 2001) (Samaras et al., 2007, Wolz et al., 2000); (Carr et al., 1998a, Samaras et al., 2007, Carr et al., 1998c, Carr et al., 1998b).

4.2.3 Gestational age, birth weights and placental weights

This study demonstrates significant differences in the gestational age at delivery when comparing the normotensive pregnant, EOPE, and LOPE cohorts i.e., 38.98 vs 32 vs 36.92 weeks gestation. Similarly, and as expected there were significant differences in the birth weight of the pregnant cohort (p=0.000). Babies in the EOPE cohort were significantly smaller than both, the normotensive pregnant or LOPE groups (p=0.000) whilst there was no difference in birth weight between the normotensive pregnant and LOPE cohorts. This finding is in keeping with other studies, where babies from the EOPE cohort fell into the very low birth weight category (Kucukgoz Gulec et al., 2013, Lisonkova and Joseph, 2013). Both type of pregnancy (EOPE) and HIV status were risk factors for low birth weight in this study.

A large scale Tanzanian study in 2001 found that socio economic status, vitamin deficiency, parasitic infection, HIV positivity and stage of disease as risk factors for lower birth weight. When examining the effect of HIV status on baby weight in this study, lower birth weight babies in the EOPE HIV positive participants compared to the LOPE HIV negative/normotensive pregnant HIV positive and negative cohorts are found, respectively. In this study birth weight was lower in the EOPE HIV negative participants when compared to the LOPE HIV negative and normotensive pregnant HIV negative/positive participants.
respectively. The LOPE HIV negative group also had lower birth weight babies than the
normotensive HIV negative group. LOPE HIV positive participants had lower birth weight
when compared to the normotensive pregnant HIV positive/negative participants.

Although earlier studies by Minkoff et al., (1990) found no association between HIV infection
and risk for low birth weight, these were small studies. Notably they did not consider the stage
of HIV disease (Minkoff et al., 1990). Likewise, later studies also did not show a correlation
(Castetbon et al., 1999). In contrast, studies by Stratton et al., (1999) support the correlation of
low birth weight with HIV infection (Stratton et al., 1999).

Infant birth weight does not differ among women in the earlier stages of HIV disease, but has
been shown to decrease significantly in stage III than in stage I infection (Dreyfuss et al.,
2001). This may be attributed to the fact that with increased HIV infection, the immune system
is further, down regulated eventuating in a deterioration of nutritional reserves.

Similarly, this study reports statistically significant smaller placentas in the EOPE cohort
compared to the other pregnancy cohorts. There was however, no difference between the
normotensive and LOPE pregnant cohorts. This outcome is indicative of the difference in
pathophysiology between the EOPE and LOPE cohorts. Early onset pre-eclampsia is
characterized by abnormal placentation and resultant hypoxia. It is also is consistent with the
<34 weeks gestational age in the EOPE group. Moreover, poor fetal/neonatal outcomes
particularly, lower birth weight has been previously reported in the EOPE group (Lisonkova
and Joseph, 2013). The shallow placentation with resultant decreased blood flow and ensuing
lower placental weight in the EOPE group expounds placental inefficiency.
Indications for delivery and complications

In this study, the indications for delivery were in fetal interest, with the commonest complication being one case of abruption placentae (3%), nine cases of eclampsia (27%), five cases of imminent eclampsia (15%) and twelve cases of severe pre-eclampsia (36%). Moreover, there were six cases (18%) of stillbirths.

In the study by Minire et al., (2013), maternal complications in pre-eclampsia were examined precisely and showed that liver damage occurred in 4.9% and 12.3% had renal impairment. Detachment of the placenta (abruption) was encountered in 7% of cases and 0.7% of patients had an epileptic attack in the study by Minire et al., (Minire et al., 2013). HELLP syndrome was present only in 4.2%, pulmonary edema occurred in 5.6% of subjects, DIC was found in 2.8% of cases and only one patient (0.2%) was registered with encephalopathy (Minire et al., 2013).

As the researcher was unable to obtain liver and renal function test results in all participants it is not possible at this time to speculate on the true incidence of liver and renal dysfunction in the local setting. This would have been an interesting area of investigation, as there may be contributory disease to these organs with use of various antiretroviral drugs.

4.2.4 HIV status / CD4 / ARV usage

The estimated overall HIV prevalence rate is approximately 10.2% of the total South African population (Lehola, 2014). The total number of people living with HIV is estimated to be approximately 5.51 million in 2014. For adults, aged 15–49 years, an estimated 16.8% of the
population is HIV positive (Lehola, 2014). As per study design and inclusion criteria, forty five percent (45.1%) of the overall study population was HIV infected. It must be noted that the study was conducted at a large referral hospital, there is a higher number of HIV positive individuals in such a setting. Further, in the Obstetric ward, a younger population tends to be the norm and this is a high risk group for the development of sexually transmitted infections. This study specifically included participants in the 18-45yr age group, an age group that carries the highest incidence of HIV nationwide (Lehola, 2014). As participants were of a similar age throughout the study groups their time of exposure to HIV infection may be similar.

As the national government had instituted policy at the time of the study, that all pregnant women with a CD4 count less than 350 cells/mm3 be commenced on an ARV triple regimen and those with a CD4 >350 receive PMTC this may explain the significant difference in ARV usage between the non-pregnant and pregnant populations.

4.3 ANTHROPOMETRIC MEASUREMENTS

4.3.1 BMI

In this study, significant differences in the BMI between the non-pregnant and pregnant groups, but no significant differences between the pregnant cohorts were noted. BMI was calculated on individuals in their third trimester of pregnancy. To date there is no standardised way to calculate BMI in pregnancy. BMI is based on population and ethnicity specific charts, however these charts are unavailable as yet for the SA region (to our knowledge). There have however been comparisons made within the North American adolescent population (Lynch et al., 2007) and as well as a WHO expert consultation on obesity in Asian populations (WHO Expert consultation, 2004).
The WHO Expert Consultation concluded that the proportion of Asian people with a high risk of type 2 diabetes and cardiovascular disease was still substantial at BMI's lower than the existing WHO cut-off point for overweight (= 25 kg/m²) (WHO Expert consultation 2004). However, the cut-off point for observed risk had varied from 22 kg/m² to 25 kg/m² amongst the different Asian populations and for the high risk cohorts, it varied from 26 kg/m² to 31 kg/m² (WHO Expert consultation, 2004). The Consultation, therefore, recommended that the current WHO BMI cut-off points should be retained as the international classification.

The cut-off points for BMI of 23, 27.5, 32.5 and 37.5 kg/m² were recommended for use as points for public health action. This same consultation recommended that countries should use all categories (i.e. 18.5, 23, 25, 27.5, 30, 32.5 kg/m², and in many populations, 35, 37.5, and 40 kg/m²) for reporting purposes, with a view to facilitating international comparisons (WHO Expert consultation, 2004). Study analysis showed that the BMI of the non-pregnant and normotensive pregnant women was 28.55 ± 4.24 kg/m² and 28.89 ± 6.80 kg/m², respectively, although there was no statistically significant difference.

The relationship between BMI and hypertension in subpopulations of Ethiopian, Vietnamese and Indonesian population has been investigated (Tesfaye et al., 2006).
Table 4.1: The International Classification of adult as underweight, overweight and obesity according to BMI

<table>
<thead>
<tr>
<th>Classification</th>
<th>BMI (kg/m²)</th>
<th>Principal cut-off points</th>
<th>Additional cut-off points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Underweight</td>
<td><18.50</td>
<td><18.50</td>
<td></td>
</tr>
<tr>
<td>Severe thinness</td>
<td><16.00</td>
<td><16.00</td>
<td></td>
</tr>
<tr>
<td>Moderate thinness</td>
<td>16.00 - 16.99</td>
<td>16.00 - 16.99</td>
<td></td>
</tr>
<tr>
<td>Mild thinness</td>
<td>17.00 - 18.49</td>
<td>17.00 - 18.49</td>
<td></td>
</tr>
<tr>
<td>Overweight</td>
<td>≥25.00</td>
<td>≥25.00</td>
<td></td>
</tr>
<tr>
<td>Pre-obese</td>
<td>25.00 - 29.99</td>
<td>25.00 - 27.49</td>
<td>27.50 - 29.99</td>
</tr>
<tr>
<td>Obese</td>
<td>≥30.00</td>
<td>≥30.00</td>
<td></td>
</tr>
<tr>
<td>Obese class I</td>
<td>30.00 - 34.99</td>
<td>30.00 - 32.49</td>
<td>32.50 - 34.99</td>
</tr>
<tr>
<td>Obese class II</td>
<td>35.00 - 39.99</td>
<td>35.00 - 37.49</td>
<td>37.50 - 39.99</td>
</tr>
<tr>
<td>Obese class III</td>
<td>≥40.00</td>
<td>≥40.00</td>
<td></td>
</tr>
</tbody>
</table>

The comparison between the pregnant cohorts allows for a more uniform comparison, however the majority of the participants fell into the overweight, pre-obese and grade 1 obesity category. Duckitt and Harrington found that raised BMI is a risk factor for pre-eclampsia development. It is only plausible to link the finding of similar BMI amongst the normotensive and pre-eclamptic cohorts in this study to a high pre-pregnancy weight. Pre-pregnancy weight was not
available for the participants. A consideration of high pre-pregnancy weight is conceivable since 70% of South African women are considered overweight.

4.3.2 Mid upper arm circumference (MUAC)

In this study, the non-pregnant cohort (31.53 ± 2.63 cm) had a significantly higher mid upper arm circumference in comparison to the normotensive pregnant cohort (28.38 ± 4.59 cm). However, there was no difference between the pre-eclamptic cohorts. The EOPE group had a mid upper arm circumference of 33.38 ± 4.69 cm compared to 28.23 ± 1.43 cm for the LOPE group. According to the SPHERE (Statewide Partnership for HIV Education in Recovery Environments, 2011) Guidelines, mid upper arm circumference may be used as a screening tool for pregnancy weight, e.g., as a criterion for entry into a feeding programme. The guidelines recommends a cut-off point for risk with a range from 21 - 23 cm.

Furthermore, mid upper arm circumference is considered a good indicator of the protein reserve of a body, and a thinner arm reflects wasted lean mass, i.e., malnutrition (Cogill, 2003). The WHO Collaborative Study of 1995 implicates mid upper arm circumference values of <21-23 cm (OR 1.9; 95%; CI: 1.7-2.1) as having significant risk for low birth weight babies (WHO 1997, Kelly et al., 1996, WHO 1995).

The findings are in keeping with a South African survey of 2002 which depicts an increasing mid upper arm circumference amongst Black South African women (Puoane et al., 2002). Obesity is a risk factor for hypertension and cardiovascular development. It is also in keeping with the recent report showing high levels of overweight and obesity in adult women (Ng et al., 2014).
When comparing the effect of HIV status on the mid upper arm circumference, it was demonstrated that normotensive HIV positive participants had a lower MUAC when compared to the non-pregnant HIV negative or the LOPE HIV negative participants. This finding is congruent with the Womens’ Inter-Agency study that found the incidence of peripheral and central lipo-atrophy amongst HIV-infected women to be double that amongst HIV-uninfected women, after adjustment for age and race (Tien et al., 2003). A drawback of the latter study was that it did not include pregnant women. Obviously due to pregnancy it was not possible to assess central lipo-atrophy in this study.

Supportive evidence for this local study findings has been put forward by Villamor et al., (2002). They examined lipodystrophy amongst pregnant participants of a low socio-economic class, HIV-positive mothers had an adjusted 34% excess prevalence of wasting, compared with HIV- negative women (Villamor et al., 2002).

4.3.3 Triceps skin fold thickness (TST)

This study demonstrated that the triceps skin fold thickness was significantly lower in the normotensive pregnant women (18.14 ± 7.025 mm) compared to both non-pregnant (21.58 ± 8.812 mm; p < 0.002) and LOPE (22.89 ± 10.638 mm) but was not significantly different from the EOPE group (18.94 ± 9.148 mm).

It had long been established that “at nearly all sites, skinfold thicknesses increases up to about 30 weeks of pregnancy” (Taggart et al., 1967). Increases were shown to be greater at central and least at peripheral sites, and were not proportional to the initial skinfold thickness. From 30
to 38 weeks of pregnancy, the distribution pattern of skin fold thickness had been found to be variable: the mid-thigh skinfold increased whilst at other sites there was little change or a decrease was noted. All sites decreased between 38 weeks of pregnancy and the end of the first post-partum week. Evidence at that time suggested that this change, was not related to the presence or absence of oedema, and occurred about the time of parturition (Taggart et al., 1967).

A later study by Sidebottom et al. revealed that the subcutaneous body fat stores of healthy pregnant women remained stable ($p>0.13$) during the first 6 weeks after conception, and increased from 6 to 35 weeks by 1.5 mm at the triceps, 4.2 mm at the subscapular, and 7.3 mm ($p<0.01$) at the thigh areas (Sidebottom et al., 2001).

In this study, the normotensive pregnant participants delivered at ±38.9 weeks whilst the EOPE participants delivered at ± 32 weeks of gestation. Superficially it would seem reasonable to assume that since EOPE participants delivered at an earlier gestation this would account for the seemingly higher TST levels in this cohort. True significance would only be established if the participants TST had been established pre-pregnancy, through the different trimesters of pregnancy and into the postpartum period.

When considering the effect of HIV status on the triceps skinfold thickness, the normotensive HIV positive participants had a significantly lower TST when compared to the LOPE HIV negative cohort. The study results are congruent with peripheral muscle wasting observed in HIV positive patients (Dannhauser et al., 1999). This is an area requiring supplementary research.
4.4 ADIPOKINE LEVELS

4.4.1 Adiponectin

In this study, a mean adiponectin level during the third trimester (all bloods were obtained just prior to delivery) of pregnancy was found to be 897.93 µg/ml vs 17.19 µg/ml vs 23.16 µg/ml vs 24.61 µg/ml in the non-pregnant, normotensive pregnant, EOPE and LOPE cohorts, was found respectively.

Ukkola et al., (2002) demonstrated an inverse relationship between adiponectin levels and the degree of adiposity present. It would seem logical to assume that adiponectin levels would be lower in a pregnant state due to increased levels of adipose tissue – as is the trend in this local study. However, Nien et al., (2007b) found that there was no significant difference in adiponectin levels in the non-pregnant and pregnant state.

An Egyptian study in 2011 found that “serum adiponectin levels in pre-eclamptic women were significantly higher than in normal pregnant women and the increase was more marked in cases of severe pre-eclampsia”(Abd-Alaleem et al., 2011). Nien et al., (2007a) in a study on severe pre-eclampsia had similar findings. This study showed a trend of higher adiponectin levels in the preeclamptic cohort as a whole as compared to the normotensive cohort but this failed to reach statistical significance (p= 0.292).

It could of course be that this is actually a true reflection that there is no significant increase in adiponectin levels in preeclampsia (O'Sullivan et al., 2006, Odden et al., 2006, Dalamaga et al., 2011). This is possible as the study reflects a high risk population of the same ethnicity at a single time frame in pregnancy. Although insulin resistance is thought to play a pivotal role in
the development of pre-eclampsia, the rise may be mitigated by the trimester at which testing was performed.

4.4.2 Leptin

The reference range of leptin is 3600 – 72400 pg/mL in adult females (Biorad diabetic assay). In this study it was found that non-pregnant participants had a mean leptin concentrations of 4887.25 compared to 2732.27 pg/ml in the normotensive pregnant groups. Participants with EOPE had a mean leptin concentration of 955.75 compared to 310.23 pg/ml in the LOPE groups (p=0.000). These were statistically significant findings.

The findings in the current study of higher leptin levels in the EOPE cohort as compared to the LOPE cohort seems in keeping with many other studies, however the overall finding of lower levels of leptin in the pre-eclamptics as a group compared to the normotensive cohort requires further, investigation ((Anato et al., 2000, Martinez-Abundis et al., 2000, El Shahat et al., 2013). It may be possible that the rise in leptin was ameliorated by the use of anti-hypertensives. The relative difference in leptin levels within the pre-eclamptic cohort may point to leptin being a marker for the degree of severity of the pre-eclampsia. Thus far debate remains ongoing regarding the role of leptin in pre-eclampsia.

4.4.3 TNF-α

TNF-α has a reference range of 42 – 203 pg/ml (Biorad Diabetes Assay kit). The current study showed non-pregnant participants had no measurable TNF-α levels. This may be attributed to the rapid breakdown of TNF-α once drawn from the participants. Normotensive participants
had a mean TNF-α concentration of 608.521 pg/ml. Participants with EOPE had a mean TNF-α concentration of 661.03 compared to 616.439 pg/ml in the LOPE group (p=0.000).

Walsh et al., (2013) have shown that insulin resistance, even at levels below those diagnostic of gestational diabetes, is associated with maternal and fetal inflammatory response. Hence an elevated TNFα level is expected as compared to a healthy non pregnant population. Further, Vitoratos et al., (2010) found that the levels of TNF-α were significantly elevated in preeclamptic as compared to normotensive pregnant participants. Similar findings in were shown in this study and this was found to be statistically significant (p=0.000).

4.4.4 Resistin

The reference range of resistin is 6390 – 26400 pg/ml (Biorad Diabetic assay). This local study found that non-pregnant participants had a mean resistin concentration of 7497.13 pg/ml compared to 3536.50 in the normotensive pregnant groups. The mean resistin concentration was 1017.63 pg/ml in the EOPE group compared to 286.92 pg/ml in the LOPE group respectively.

4.5 ADIPONECTIN, LEPTIN, RESISTIN AND TNF-α DIFFERENCES IN NON PREGNANT VERSUS PREGNANT POPULATIONS

The information garnered from this local study enables us to establish a novel range of adipokine levels according to BMI for non-pregnant and pregnant Black South African women. This information is further, stratified according to type of pregnancy into normotensive pregnant, EOPE and LOPE pregnancies. Moreover full stratification according to HIV status is for the first time recorded for Black South Africans.
In this local study, significantly lower levels of adiponectin, leptin and resistin in the pregnant cohort as compared to the non-pregnant cohort were found. TNF-α was only detected in the pregnant cohort. It is well recognised that pregnancy is a unique physiological state characterised by a temporary reversible insulin resistance and a modest level of immune elevation (Catalano et al., 1991, Buchanan et al., 1990, Ryan et al., 1985). Despite this, there is a dearth of literature regarding the adiponectin, leptin, resistin and TNF-α levels in healthy pregnant women. Correlation of these levels with HIV infection and regarding variation according to the trimester of pregnancy is lacking.

4.5.1 Adiponectin

To our knowledge there has been thus far, only one prior study that attempts to establish the change in adiponectin level according to the trimester of pregnancy (Mazaki-Tovi et al., 2007). Limitations of this study was its small sample size (n = 80). Although BMI was standardised in their study, they did not have a homogenous sample according to ethnicity. In this local study standardisation for BMI was considered. Moreover, this study was expedient in the fact that patients were all standardized according to ethnicity, sub-analysed according to BMI and all samples taken from the third trimester of pregnancy – one of the first such studies to be performed within South Africa as well as globally. This enables an establishment of a reference range for adipokines according to pregnancy type as well as HIV status in Black South African women in the third trimester pregnancy.

In pregnancy the adiponectin levels range between 2.7 – 25 µg/ml compared to 3.5 – 22.4 µg/ml in the non-pregnant (Nien et al., 2007). There was no difference demonstrated in the
adiponectin concentrations of non-pregnant and overweight pregnant females at any gestational age (Nien et al., 2007). However there was significantly lower adiponectin concentrations in overweight pregnant women compared to their normal weight counterparts. There was a trend of adiponectin decrease with advancing gestational age (Nien et al., 2007).

The problem with the latter study however, was that the samples were randomly drawn from the NIH sample bank hence there was a heterogenous sample population. Influence of race as well as sub-categorization for complicated pregnancies on adiponectin levels are serious drawbacks to the study.

In contrast to the above study, the current study demonstrates a decrease in adiponectin levels between all pregnant cohorts. This may indicate that the relative insulin resistance of pregnancy has not been overcome. Raised serum adiponectin concentrations are associated with increased insulin sensitivity and glucose tolerance (Goldfine and Kahn, 2003). Supporting this concept is the fact that hypo-adiponectinaemia in pregnancy is a negative predictor of insulin resistance, beta cell dysfunction and increased risk of diabetes mellitus (Retnakaran et al., 2010). As explained above, other studies have demonstrated the negative correlation between adiponectin levels and insulin resistance.

Another possible explanation for the difference in this study findings from other studies may be due to ethnic variation – the majority of the above mentioned studies were conducted on Caucasian participants. A study by Retnakaran et al., (2010) on South Asian women in pregnancy showed women of South Asian descent exhibited significantly reduced plasma
concentrations of adiponectin in pregnancy compared with their Caucasian and Asian counterparts, thus suggesting a greater risk for diabetes.

4.5.2 Leptin

Leptin is a satiety hormone hence it inhibits hunger and is secreted in proportion to adipose mass. In fact, the most important variable that determines circulating leptin concentrations in the body is fat mass (Speakman et al., 2002). Many studies have indicated that maternal peripheral leptin levels are enhanced during pregnancy (Helland et al., 1998, Jaquet et al., 1998, Hardie et al., 1997, Highman et al., 1998, Butte et al., 1997, Schubring et al., 1997, Schubring et al., 1998, Sivan et al., 1998).

A decline of leptin level after the second trimester and closer to parturition has been demonstrated (Henson and Castracane, 2006). These findings are consistent with a point out of time sampling in third trimester of pregnancy.

Castellano et al., (2013) found an increase in leptin in the non-overweight (BMI ≤ 25kg/m²) as compared to the overweight pregnant participants (Castellano Filho et al., 2013). Whilst most of this studys’ pregnant participants fell into the overweight/obese category the implication of low serum leptin in pregnant participants, could be attributed to maternal hunger in an attempt to meet the increased nutritional demands of pregnancy in the presence of a low adipose mass. The relatively high leptin levels in the non-regnant cohorts would be indicative of insulin sensitivity. The lack of difference in leptin concentration within the pregnant cohorts may be due to the obesity of this cohort.
4.5.3 TNF-α

A 45% increase in TNF-α levels in late pregnancy has been reported (Kirwan et al., 2002). Further, other studies have shown that TNF-α is a predictor of insulin resistance in pregnancy (Clapp and Kiess, 2000, Beckmann et al., 1997). This is similar to and consistent with the low adiponectin levels demonstrated in this study, effectively showing that insulin resistance of pregnancy had not been overcome.

4.5.4 Resistin

Enlarged adipocytes release several products that can modify the body’s sensitivity to insulin. Free fatty acids and TNF-α cause insulin resistance, and leptin, which regulates energy balance, probably causes insulin sensitivity. Yet there is a paucity of information on the potential function of resistin or its homologs in pregnancy (Flier, 2001a).

Further, in animal models, lower resistin mRNA in adipose tissue in different models of mouse obesity, such as diet-induced obesity, and in rat models characterized by hyperinsulinemia, hyperglycemia, hypertriglyceridemia, and hypertension have been demonstrated (Moore et al., 2001a, Lay et al., 2001). This further, substantiates current study findings of a failure to overcome insulin resistance in the pregnant cohort.

The levels of TNF-α, Leptin and Resistin were statistically significant different within the normotensive versus pre-eclamptic groups. Only Adiponectin failed to show statistically significant differences within the pregnancy subgroups.
Both leptin and resistin were statistically lower and TNF-α higher in the preeclamptic cohort when compared to the normotensive cohort. During pregnancy, leptin is produced by both maternal and fetal adipose tissues, as well as by the placental trophoblast. Leptin induces human chorionic gonadotrophin production in trophoblast cells, regulates placental growth, enhances mitogenesis and stimulates amino acid uptake (Hauguel-de Mouzon et al., 2006). Most studies have found higher levels of leptin in pre-eclampsia (Hendler et al., 2005a).

Placental leptin mRNA production is upregulated by tumour necrosis factor (TNF) -α and interleukin (IL)-6 (Nuamah et al., 2004). It is thought that TNF-α is raised in pre-eclampsia in order to stimulate leptin production and increase nutrient supply to an underperfused placenta (Moore et al., 2003).

It would be expected that leptin levels in this preeclamptic cohort ought to be increased as well. The above studies however did not consider the confounding factor of HIV – a study by Azzoni et al (2010) showed a negative correlation between leptin and viral load in HIV positive individuals (Azzoni et al., 2010). As this study did not account for viral loads, this may account for the seemingly unique findings of lowered leptin levels amongst the pre-eclamptic cohort in this study.

The combination of a high viral load, together with the chronic inflammatory state induced by TNF may together account for patients with pre-eclampsia with low leptin levels. Studies on resistin levels in pre-eclampsia are few and conflicting – Hendler et al (2005) found no correlation between resistin and pre-eclampsia (Hendler et al., 2005a), whilst Cortelazzi et al (2007) hypothesized that lower levels of resistin in PE might be related to a reduction in
placental production of the adipokines because of the smaller size of the placenta (Cortelazzi et al., 2007).

However, statistically significant difference in placental weight between this study’s EOPE and other pregnant cohorts were found. Deductive reasoning would suggest that there should also have a difference in resistin levels in the EOPE versus other pregnancy cohorts. Other reasons for low resistin levels in pregnancy would be the onset of gestational diabetes. Studies evaluating the links between insulin resistance, obesity and diabetes have reported low levels of resistin (Heilbronn et al., 2004, Savage et al., 2001, Way et al., 2001a).

However the presence of diabetes was an exclusion criterion in this study. The answer may lie in the raised TNF-α levels – Fasshauer et al., (2001) found that TNF-α was a negative regulator of resistin and a 70-90% decrease in resistin mRNA and protein secretion was noted after TNF-α administration (Fasshauer et al., 2001).

The levels of adiponectin / leptin / resistin / TNF-α does not differ in women who develop early onset pre-eclampsia as compared to women who develop late onset pre-eclampsia. There was no statistically significant difference depicted in the levels of adiponectin/leptin/tnf or resistin between the EOPE vs LOPE cohorts. This may indicate that there is a similar disease process occurring, but more likely the impact of HIV has a confounding effect. Further, since only one time point in pregnancy was assessed firm conclusions cannot be drawn.
4.6 ADIPONECTIN, LEPTIN, RESISTIN AND TNF-α LEVELS IN NON PREGNANT HIV PATIENTS VS PREGNANT HIV PATIENTS ACCORDING TO CD4 COUNTS

This study generated the following findings:

- non pregnant HIV negative participants had lower adiponectin levels than the normotensive HIV positive / and non-pregnant HIV positive participants respectively
- The non-pregnant HIV positive participants had lower leptin levels than the normotensive HIV positive participants
- The non-pregnant HIV positive participants had lower resistin levels than the normotensive HIV positive participants.
- The mean maternal age is lower in normotensive HIV negative participants than that of non-pregnant HIV negative and non-pregnant HIV positive participants.

The levels of adiponectin in HIV-positive ARV naive patients were lower compared to the healthy subjects (Li et al., 2011). In ARV treated patients, the levels of adiponectin is lower than in HIV- negative patients. Both protease inhibitors (PIs) and nucleoside reverse transcriptase inhibitors (NRTIs) alter adipokine secretion from human subcutaneous adipocytes (Lagathu et al., 2007). Further,, an interesting study by Sankale et al., (2006) showed that human subcutaneous adipocytes exposed to HIV-1 dramatically increased the secretion of adiponectin (Sankale et al., 2006).

In this study, a statistically significant difference in the levels of adiponectin/leptin/resistin and TNF-α in HIV positive patients within the non-pregnant versus pregnant population matched for CD4 count, was found. Within the pre-eclamptic cohort there was no statistically significant difference in EOPE versus LOPE when matched to CD4 count. In a similar vein the study by
Arama et al., (2012) also showed no difference in adipokine, leptin or resistin levels when comparing healthy treatment naive HIV positive patients compared to treated HIV positive patients (Arama et al., 2012). However, the latter study reported significantly higher levels of TNF-α in participants with persistent viral load. It is not possible to comment on this aspect as viral load assessment was not assessed in this local study as it is not a standard of care practice. Research with a larger number of patients and prospective study designs may be required to draw statistically significant and relevant conclusions regarding the association between adipokines and HIV replication.

The difference in levels of adiponectin/ leptin / resistin / TNFα in women who develop early onset pre-eclampsia as compared to women who develop late onset pre-eclampsia are not altered by the HIV status of the patients

This study did not show any statistical significance in the levels of adiponectin/leptin/TNF-α/or resistin among the pregnant cohorts irrespective of CD4 counts and ARV usage. The lipodystrophy syndrome of HIV patients has been well documented in the literature. It is characterised by fat redistribution (lipodystrophy or lipoatrophy), fat loss from the face, buttocks and extremities (lipoatrophy), and mixed fat disturbances (lipodystrophy and lipoatrophy (Carr et al., 1998a, Carr et al., 1998c, Saint-Marc et al., 1999, Behrens et al., 2000, Hakeem et al., 2008). As mentioned earlier, there was no statistically significant differences in mid upper arm circumference or triceps skinfold thickness between the EOPE and LOPE cohorts. This may account for the similar levels of adiponectin/leptin/resistin and TNF-α in both cohorts.
4.7 ADIPONECTIN, LEPTIN, RESISTIN AND TNF-α LEVELS ACCORDING TO BMI

There were no statistically significant differences in levels of TNF-α, Leptin, and Resistin when compared across subdivisions of BMI in the non-pregnant population. Adiponectin did show statistically significant differences across BMI subdivisions in the non-pregnant population. Further, there were statistically significant differences in BMI between the non-pregnant and pregnant cohorts.

There was no statistically significant differences in the levels of TNF-α, Adiponectin, Leptin and Resistin in the pregnant population across the subdivisions of BMI. Adiponectin levels have been shown to be paradoxically lower in obese patients when compared to non-obese patients (Arita et al., 1999; Hu et al., 1996). Further, it has been shown that weight reduction in obese individuals is accompanied by an increase in plasma adiponectin concentrations (Esposito et al., 2003). This a difficult area of interpretation as there are no standardised BMI charts for pregnancy globally.

4.8 LIMITATIONS OF THE STUDY

Blood samples were only drawn for adipokine assessment at one time point in the study ie., in the third trimester. Preferably patients should be recruited in the pre-pregnancy state and followed up through all three trimesters. However, in the current setting, patients only present to a referral hospital late in pregnancy. An assessment of viral load in the pre-pregnancy and through each trimester would have strengthened the study. This however, this was not possible as it is not standard of care practice in South Africa. These are limitations imposed by the Department of Health. It must be acknowledged that the findings of this study are correlative
as there are mechanistic experiments included in this thesis to outline the role of the tested factors in pre-eclampsia with or without HIV.

4.9 STRENGTHS OF THE STUDY

The strengths of this study include its strict inclusion and exclusion criteria thus ensuring as homogenous a population as possible. The study is innovative because adipokine levels are compared across non-pregnant, normotensive-pregnant and pre-eclamptic women associated with HIV infection. It is also novel in that it correlates adipokine levels with HIV status. This pioneering study establishes a baseline for adipokines across the non-pregnant, normotensive-pregnant and pre-eclamptic women associated with and without HIV infection in Black South African women.

4.10 CLINICAL IMPLICATIONS OF THE STUDY

To our knowledge it is the first such study to address the three aspects of obesity, HIV and pre-eclampsia and their inter-relationship. It is a relatively large study and establishes the marked difference in adiponectin/leptin/resistin and TNF-α levels between normotensive pregnancy and pre-eclampsia. It is plausible to implicate the deficient placentation with adipokine dysregulation as the pathological process of EOPE development compared to that of LOPE.

4.11 FUTURE RESEARCH

Future research should assess adipokines from pre-pregnancy across all 3 trimesters of pregnancy. In addition to the maternal serum levels, cord blood should also be assessed for these adipokines. Viral load, and ARV usage should be specifically included irrespective if it is
not a standard of care practice. Moreover, placental tissue and umbilical cord should be assessed by immunohistochemistry for the paracrine secretion of these adipokines.

4.12 CONCLUSION

This study was expedient in the fact that patients were all standardized according to ethnicity, sub-analysed according to BMI and all samples taken from the third trimester of pregnancy – one of the first such studies to be performed within South Africa as well as globally. The study reports significant differences in the BMI of the non-pregnant and pregnant groups, but no significant differences within the pregnant cohorts. In conclusion this study establishes an adipokine baseline for future reference with regards to South African Black pregnant and non-pregnant women. Albeit at term, this study shows a statistically significant difference in the levels of adiponectin/leptin/resistin and TNF-α in HIV positive patients within the non-pregnant versus pregnant population. Within the pre-eclamptic cohort there was no statistically significant difference in EOPE versus LOPE. The ubiquitous HIV infection, high pre-eclampsia and obesity prevalence in South Africa, warrants this novel study that reconnoiters the relationship amongst this deadly troika.
CHAPTER 5

References

ANDRADE, R. 2014. Leptin. Molecular model of the hormone leptin and adipose (fat) cells.

NATIONAL HIGH BLOOD PRESSURE EDUCATION PROGRAM WORKING GROUP ON HIGH BLOOD PRESSURE IN, P. 2000. Report of the National High Blood Pressure Education Program Working

SYSTEMS, R. DuoSet ELISA Development System human Adiponectin/Acrp30.

CHAPTER 6
ADDENDUM
ADDENDUM 1 POSTGRADUATE APPROVAL

24 August 2012

Prof T Naicker
School of Laboratory Medicine & Medical Sciences
Dept of Optics & Imaging

Dear Prof Naicker

PHD PROTOCOL: “The role of Adiponectin, Leptin, TNFα and Resistin in HIV associated Pre-eclampsia”
Student: Dr V. Govender, student number: 993210275 (Obs & Gynaec)

I am pleased to inform you that the abovementioned study has been approved.

Please note:
- The Academic Leader: Research must review any changes made to this study.
- The study may not begin without the approval of the Biomedical Research Ethics Committee.

May I take this opportunity to wish the student every success with the study.

Yours sincerely

for Professor JK Burns
Academic Leader School Research
School of Clinical Medicine

C Dr. V Govender
Biomedical Research Ethics Committee
Westville Campus
13 February 2013

Dr. V Govender
Department of Obstetrics and Gynaecology
Nelson R Mandela School of Medicine
University of KwaZulu-Natal

Dear Dr Govender

PROTOCOL: The role of Alponectin, Leptin, TNF and Resistin in HIV associated Pre-eclampsia.
REF: BE256/12.

EXPEDITED APPLICATION

A sub-committee of the Biomedical Research Ethics Committee has considered and noted your application received on 05 September 2012.

The study was provisionally approved pending appropriate responses to queries raised. Your responses received on 05 February 2013 to queries raised on 21 January 2013 have been noted by a sub-committee of the Biomedical Research Ethics Committee. The conditions have now been met and the study is given full ethics approval and may begin as from 13 February 2013.

This approval is valid for one year from 13 February 2013. To ensure uninterrupted approval of this study beyond the approval expiry date, an application for recertification must be submitted to BREC on the appropriate BREC form 2-3 months before the expiry date.

Any amendments to this study, unless urgently required to ensure safety of participants, must be approved by BREC prior to implementation.

BREC is registered with the South African National Health Research Ethics Council (REC-290408-009). BREC has US Office for Human Research Protections (OHRP) Federal-wide Assurance (FWA 678).

The sub-committee’s decision will be RATIFIED by a full Committee at its next meeting taking place on 12 March 2013.

We wish you well with this study. We would appreciate receiving copies of all publications arising out of this study.

Yours sincerely

[Signature]

Professor D.R Wassenaar
Chair: Biomedical Research Ethics Committee

Humanities & Social Sc Research Ethics Committee
Westville Campus, Govan Mbeki Building
Postal Address: Private Bag X14001, Durban, 4000, South Africa
Telephone: +27 (0)31 260 3587/8330 Facsimile: +27 (0)31 260 4609 Email: smbcep@ukzn.ac.za / snymam@ukzn.ac.za

© 2013. All rights reserved. UNIVERSITY OF KwaZULU-NATAL

- 144 -
ADDENDUM 3 PERMISSION TO CONDUCT RESEARCH

PERMISSION TO CONDUCT A RESEARCH STUDY/TRIAL

This must be completed and submitted to the Medical Superintendent/s / Hospital Manager/s for signature.

For King Edward VIII Hospital (KEH) and Inkosi Albert Luthuli Central Hospital (IALCH) studies please submit the document together with the following:

1. Research proposal and protocol.
2. Letter giving provisional ethical approval.
3. Details of other research presently being performed by yourself if in the employ of KEH, (individually or as a collaborator).
4. Declaration of all funding applications / grants, please supply substantiating documentation.
5. Complete the attached KEH Form - “Research Details”

Once the document has been signed it should be returned to Mrs Patricia Ngwenya; Biomedical Research Ethics Administrator, Room N40, Goven Abeki Building, Westville Campus, University of KwaZulu-Natal.

To: Chief Medical Superintendent / Hospital Manager

Permission is requested to conduct the above research study at the hospital/s indicated below:

Site 1 address: RK Khan Hospital

Investigator/s: Dr V Gwender
Principal: Prof T Naidoo
Co-Investigator: Prof J Moodley

Signature of Chief Medical Superintendent / Hospital Manager:

Date: 28/01/2013

Site 2 address:

Investigator/s:
Principal:
Co-Investigator:
Co-Investigator:

Signature of Chief Medical Superintendent / Hospital Manager:

Date:

NB: Medical Superintendent/s / Hospital Manager/s to send a copy of this document to Natala
Title of Study: The Role of adiponectin, TNF, leptin and resistin in HIV associated pre-eclamptics

Good day. Miss/ Mrs ________________. My name is _________________.

Thank you for giving me the time to speak to you.

My colleagues and I are currently doing research on high blood pressure and pregnancy. Research is just the process to learn the answer to a question. In this study, we want to learn what causes this high blood pressure in pregnant women and what factors may be involved in causing this to happen.

When you are pregnant, the baby growing inside of you actually receives nutrition from a piece of tissue that is attached to your womb called the placenta or after birth. We think that certain substances/hormones made in the fat affect the way that this placenta develops and leads to high blood pressure.

We are inviting you to participate and require your permission to be included in this research study. This is what your role will be in this study. We need you to donate a blood sample to perform some laboratory tests on it. This will not harm you or your baby in any way. Please be aware that an experienced doctor will be available to draw out the blood. The taking of the blood will be done at the same time as the normal or routine blood tests are done to avoid many venipunctures. The taking of blood may cause minor discomfort.

All these samples are being collected here in this hospital from South African woman and will be studied at the Nelson Mandela Medical School. You will not directly benefit from this research in this pregnancy but other women or you in the future may benefit. The taking of the bloods will not interfere with the treatment you will be getting.

Please note that this research is being done for a higher degree or university qualification. The results of this will benefit medical science.
Please remember that you can refuse to enter the study and if you do you will not be disadvantaged in any way and all our discussions are private and confidential.

Thank you for your time and assistance in this study.

Iswoko sokufundwayo:

Ngiyabingelela Nkosazane / Nkosikazi. Igama lami ngingu __________________________

Ngiyabonga ukuthola ithuba lokukhuluma nawe

Lolucwanningo lwenzelwe ezemfundo ephakeme. Imiphumda izosiza kwezobudokotelwa.

Khumbula ukuthi ungakwazi ukunqaba ukungenela lolucwanningo futhi ngalokho akukho okokulahlekela.

Siyabonga isikhethi sakho nokusiza ngalesesisifundo.
Information for non pregnant women:

Title of Study: The Role of adiponectin, TNF, leptin and resistin in HIV associated pre-eclamptics

Good day. Miss/ Mrs ________________. My name is __________________

Thank you for giving me the time to speak to you.

My colleagues and I are currently doing research on high blood pressure and pregnancy and HIV. Research is just the process to learn the answer to a question. In this study, we want to learn what causes this high blood pressure in pregnant women and what factors may be involved in causing this to happen. We also want to know how HIV may also lead to problems with high blood pressure.

When you are pregnant, the baby growing inside of you actually receives nutrition from a piece of tissue that is attached to your womb called the placenta or after birth. We think that certain substances/hormones made in the fat affect the way that this placenta develops and leads to high blood pressure. We also think that HIV on its own can increase these substances that leads to high blood pressure when you are not pregnant.

We are inviting you to participate and require your permission to be included in this research study. This is what your role will be in this study. We need you to donate a blood sample to perform some laboratory tests on it. This will not harm you. Please be aware that an experienced doctor will be available to draw out the blood. The taking of the blood will be done at the same time as the normal or routine blood tests are done to avoid many venipunctures. The taking of blood may cause minor discomfort.

All these samples are being collected here in this hospital from South African woman and will be studied at the Nelson Mandela Medical School. You will not directly benefit from this research but other women or you in the future may benefit. The taking of the bloods will not interfere with the treatment you will be getting.

Please note that this research is being done for a higher degree or university qualification . The results of this will benefit medical science.

Please remember that you can refuse to enter the study and if you do you will not be disadvantaged in any way and all our discussions are private and confidential.

Thank you for your time and assistance in this study
Ulwazi kwabesifazane abangakhulelw

Ngiyabingelela Nkosazane / nkosikazi___

Igama lami ngingu___. Ngibonga ithuba ongipha lona lokuxoxa nawe.

Mina nozakwethu senza ucwaningo ngonifutho ophezulu wegazi, ukukhulelwana nesandulele ngculazi. Ubwaningo indlela yokufunda ukuphendula imibuzo. Kulokufunda sifuna ukuthola izimbangela zomfutho ophezulu wegazi kwabesifazane abakhulelw.

Uma ukhulelwwe, ingane ekhula ngaphakathi ithola ukudla ngesicubu senyama esinamathele kwisibletho esbizwa ngomzanyana. Sicabagela ukuthi ukwakheka kwamafutha ikhona nokuthi isandilela ngculazi ngokwaso singabangela ukwenyaka komfutho wegazi noma ungakhulelw.

Lolucwaningo lwenzelwe ezenfundo ephakeme. Imiphumela iyosiza kwezobudoktela.

Khumbula ungakwazi ukunqaba ukungenela lolcwaningo futhi ngalo kho akukho okokulahlekelu lolucwaningo futhi ngalo kho akukho okokulahlekelu. Okoxxiwe kuzogcinwa kuyimfihlo kuqilelekile.

Sibonga ukubambisana kulesisifundo.
THE ROLE OF ADIPONECTIN / RESISTIN / LEPTIN / TNFα IN HIV-ASSOCIATED PRE-ECLAMPSIA

Study no: __________________________
IP number: __________________________

Category (tick): (more than 1 category may require a tick)

1. Pre-eclamptic HIV +ve CD4 < 350: □
2. Pre-eclamptic HIV +ve CD4 > 350: □
3. Pre-eclamptic HIV -ve CD4: □
4. Pregnant Normotensive HIV +ve CD4 < 350: □
5. Pregnant Normotensive HIV +ve CD4 > 350: □
6. Pregnant Normotensive HIV -ve: □
7. Onset pre-eclampsia before 34 wks □
8. Onset of pre-eclampsia at or after 34wks □
9. Normotensive, Non Pregnant □

😊No exclusion criteria present (check against list) □

Please place hospital sticker here
THE FOLLOWING BLOODS MUST BE TAKEN FOR THE PURPOSES OF THIS STUDY. PLEASE TICK IF THE BLOODS TAKEN

1. ADIPONECTIN □
2. LEPTIN □
3. RESISTIN □
4. TNFα □

General hospital information

<table>
<thead>
<tr>
<th>Admission date</th>
<th>RKK no.</th>
</tr>
</thead>
</table>

Demographics

| Age | Rural | Urban |
|---|
| Area of Residence (tick) | Smoke (y/n) | No. of cigarettes/day |
| Rural | Urban |

<table>
<thead>
<tr>
<th>HIV Status</th>
<th>+ve</th>
<th>-ve</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD4 counts</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Anti Retroviral therapy</th>
<th>Yes</th>
<th>no</th>
</tr>
</thead>
<tbody>
<tr>
<td>HAART</td>
<td>PMCTC</td>
<td></td>
</tr>
</tbody>
</table>

Reason for attending clinic if Non pregnant, Normotensive patient

MATERNAL TREATMENT

<table>
<thead>
<tr>
<th>Type of Treatment</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magnesium sulphate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aldomet</td>
<td>Monoohydralazine</td>
<td></td>
</tr>
<tr>
<td>Nifedipine</td>
<td>Dihydralazine (nepresol)</td>
<td></td>
</tr>
<tr>
<td>Labetalol</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Clinical Data

<table>
<thead>
<tr>
<th>Parity</th>
<th>Weeks gestation on admission</th>
</tr>
</thead>
<tbody>
<tr>
<td>P:</td>
<td></td>
</tr>
<tr>
<td>G:</td>
<td></td>
</tr>
</tbody>
</table>

Reason for previous pregnancy loss (If any)

<table>
<thead>
<tr>
<th>Highest BP</th>
<th>Systolic:</th>
<th>Diastolic:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maternal weight</th>
<th>Maternal height</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Midarm circumference</th>
<th>Triceps skin fold thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Oedema (tick)</th>
<th>ankle</th>
<th>Up to knee</th>
<th>Up to groin</th>
<th>Generalised (facial)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lab results (or attach copy of results)</th>
<th>proteinuria</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dipstick</td>
</tr>
<tr>
<td></td>
<td>Lab 24hr protein</td>
</tr>
<tr>
<td></td>
<td>Creatinine clearance</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Full blood count</th>
<th>Red cell count</th>
<th>White cell count</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Haemoglobin</td>
<td>Neutrophils</td>
</tr>
<tr>
<td></td>
<td>Haematocrit</td>
<td>Lymphocytes</td>
</tr>
<tr>
<td></td>
<td>Mean cell volume</td>
<td>Monocytes</td>
</tr>
<tr>
<td></td>
<td>Mean cell Hb</td>
<td>Eosinophils</td>
</tr>
<tr>
<td></td>
<td>Platelets</td>
<td>Basophils</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Urea and electrolyte</th>
<th>Sodium</th>
<th>Urea</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Potassium</td>
<td>Creatinine</td>
</tr>
<tr>
<td></td>
<td>Chloride</td>
<td>Anion gap</td>
</tr>
<tr>
<td></td>
<td>CO₂</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Liver function tests</th>
<th>Total protein</th>
<th>Alkaline phos</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Albumin</td>
<td>AST</td>
</tr>
<tr>
<td></td>
<td>Globulin</td>
<td>ALT</td>
</tr>
<tr>
<td></td>
<td>Alb : Glob</td>
<td>LDH</td>
</tr>
<tr>
<td></td>
<td>Total bilirubin</td>
<td></td>
</tr>
</tbody>
</table>

Antenatal Fetal Investigations

<table>
<thead>
<tr>
<th>Type (tick)</th>
<th>Note any abnormalities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sonar</td>
<td></td>
</tr>
<tr>
<td>Doppler</td>
<td></td>
</tr>
<tr>
<td>Electronic fetal HR</td>
<td></td>
</tr>
</tbody>
</table>

Birth details

<table>
<thead>
<tr>
<th>Weeks of gestation at time of birth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indication for delivery (tick one)</td>
</tr>
<tr>
<td>-----------------------------------</td>
</tr>
<tr>
<td>Maternal interest</td>
</tr>
<tr>
<td>Fetal Distress</td>
</tr>
<tr>
<td>CTG abnormal</td>
</tr>
<tr>
<td>MSL</td>
</tr>
<tr>
<td>IUGR</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Indication for delivery (tick one)</th>
<th>Date of birth</th>
<th>Time of birth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Explain above if relevant</td>
<td>Explain above if relevant</td>
<td>Explain above if relevant</td>
</tr>
<tr>
<td>Diagnosis: Eclampsia, severe abruptio infection</td>
<td>Diagnosis: Eclampsia, severe abruptio infection</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Method of Delivery (tick one)</th>
<th>Date of birth</th>
<th>Time of birth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal vaginal</td>
<td>Normal vaginal</td>
<td>Caesarean</td>
</tr>
<tr>
<td>Spontaneous</td>
<td>Elective</td>
<td></td>
</tr>
<tr>
<td>Elective</td>
<td>Elective</td>
<td></td>
</tr>
<tr>
<td>Induced</td>
<td>Emergency</td>
<td></td>
</tr>
<tr>
<td>Emergency</td>
<td>Emergency</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Complications in labour.</th>
<th>Date of birth</th>
<th>Time of birth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eclampsia – related (tick)</td>
<td>Eclampsia – related (tick)</td>
<td>Severe pre-eclampsia</td>
</tr>
<tr>
<td>Severe pre-eclampsia</td>
<td>Severe pre-eclampsia</td>
<td>Imminent eclampsia</td>
</tr>
<tr>
<td>Abruptio-placentae</td>
<td>Abruptio-placentae</td>
<td></td>
</tr>
<tr>
<td>Other (explain)</td>
<td>Other (explain)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Baby details at birth</th>
<th>Date of birth</th>
<th>Time of birth</th>
</tr>
</thead>
<tbody>
<tr>
<td>APGAR</td>
<td>1 min</td>
<td>5 min</td>
</tr>
<tr>
<td>Baby (tick)</td>
<td>Live</td>
<td>Stillborn</td>
</tr>
<tr>
<td>Baby (tick)</td>
<td>Baby (tick)</td>
<td>Baby (tick)</td>
</tr>
<tr>
<td>Perinatal death (1st 7 days)</td>
<td>Perinatal death (1st 7 days)</td>
<td>Neonatal death (up to 28 days)</td>
</tr>
<tr>
<td>Baby weight (kgs)</td>
<td>Baby weight (kgs)</td>
<td>Baby weight (kgs)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Placental details</th>
<th>Date of birth</th>
<th>Time of birth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shape</td>
<td>Normal</td>
<td>abnormal</td>
</tr>
<tr>
<td>Weight (grams)</td>
<td>Weight (grams)</td>
<td></td>
</tr>
<tr>
<td>Diameter (cm)</td>
<td>Diameter (cm)</td>
<td></td>
</tr>
<tr>
<td>Thickness (cm)</td>
<td>Thickness (cm)</td>
<td></td>
</tr>
<tr>
<td>Less than 2 cm</td>
<td>Less than 2 cm</td>
<td>2-3 cm</td>
</tr>
<tr>
<td>2-3 cm</td>
<td>2-3 cm</td>
<td>More than 4</td>
</tr>
<tr>
<td>Colour</td>
<td>Colour</td>
<td>Colour</td>
</tr>
<tr>
<td>Maternal surface</td>
<td>Maternal surface</td>
<td>Dark Maroon</td>
</tr>
<tr>
<td>Dark Maroon</td>
<td>Dark Maroon</td>
<td>Pale</td>
</tr>
<tr>
<td>Fetal surface</td>
<td>Fetal surface</td>
<td>Dark</td>
</tr>
<tr>
<td>Dark</td>
<td>Dark</td>
<td>Pale</td>
</tr>
<tr>
<td>Infarcts (maternal surface)</td>
<td>Amount of infarcted tissue</td>
<td>clear</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>-------</td>
</tr>
<tr>
<td>Colour of infarcts (if present)</td>
<td>Pale grey</td>
<td>Very dark</td>
</tr>
<tr>
<td>Clots (maternal surface) tick</td>
<td>None</td>
<td>few</td>
</tr>
<tr>
<td>Umbilical cord</td>
<td>Point of attachment</td>
<td>central</td>
</tr>
<tr>
<td>Length</td>
<td>Less than 30 cm</td>
<td>30-90 cm</td>
</tr>
<tr>
<td>No of vessels</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Oedema</td>
<td>present</td>
<td>absent</td>
</tr>
</tbody>
</table>

FOLLOW UP DATA PRIOR TO DISCHARGE FROM HOSPITAL

Date:__________ Inpatient / Outpatient visit: _____________

<table>
<thead>
<tr>
<th>Oedema (tick)</th>
<th>ankle</th>
<th>Up to knee</th>
<th>Up to groin</th>
<th>Generalised (facial)</th>
</tr>
</thead>
</table>

Any other observations/clinical data/information of relevance for mother: (Maternal complications / morbidity)

Baby weight: _____________ Maternal BP: ____________________

<table>
<thead>
<tr>
<th>Feeding choice</th>
<th>formula</th>
<th>Breast</th>
<th>flash heating</th>
<th>not fed</th>
<th>TPN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cranial scan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Morbidities in early NN period

<table>
<thead>
<tr>
<th>Resp Distress</th>
<th>HMD, TTN, Pneum ?Mas, other</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNS</td>
<td>Asphyxia, meningitis</td>
</tr>
<tr>
<td>Metabolic</td>
<td>hypoglycaemia, electrolyte imbalance</td>
</tr>
<tr>
<td>hypothermia,</td>
<td>Other</td>
</tr>
<tr>
<td>Infections</td>
<td>Minor</td>
</tr>
<tr>
<td></td>
<td>Skin,</td>
</tr>
<tr>
<td></td>
<td>eye,</td>
</tr>
<tr>
<td></td>
<td>umbilicus,</td>
</tr>
</tbody>
</table>
Suspected sepsis
normal WCC + CRP

Major
Pneumonia,

Septicaemia (positive BC),

meningitis (positive culture)

NEC,

susp sepsis + low wcc and raised CRP (negative culture)

All positive cultures = severe infections. CPAP and ventilation = severe illness

Any other observations/clinical data/information of relevance for child:
(Neonatal complications / morbidity)

FOLLOW UP DATA AFTER DISCHARGE FROM HOSPITAL

Date: ___________ Inpatient / Outpatient visit: ____________

<table>
<thead>
<tr>
<th>Oedema (tick)</th>
<th>Ankle</th>
<th>Up to knee</th>
<th>Up to groin</th>
<th>Generalised (facial)</th>
</tr>
</thead>
</table>

Baby weight: _______________ Maternal BP: ____________________

Any other observations/clinical data/information of relevance for mother or child:

<table>
<thead>
<tr>
<th>HIV status of baby 6 weeks post delivery</th>
<th>HIV +ve (PCR)</th>
<th>HIV –ve</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD4 count</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baby NVP and AZT</td>
<td></td>
<td>(7 days or 28 days)</td>
</tr>
<tr>
<td>Bactrim yes/no</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Late Morbidities

<table>
<thead>
<tr>
<th>Neurological impairment</th>
</tr>
</thead>
<tbody>
<tr>
<td>BPD</td>
</tr>
<tr>
<td>ROP</td>
</tr>
<tr>
<td>Nutritional</td>
</tr>
</tbody>
</table>

Outcomes

<table>
<thead>
<tr>
<th>Alive well</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alive ill above - record morbidities as above</td>
</tr>
<tr>
<td>ENND</td>
</tr>
<tr>
<td>LNN</td>
</tr>
</tbody>
</table>
ADDENDUM 6 COLLABORATION WITH STATENS SERUM INSTITUT

Prof Anita Naicker
Optics & Imaging Centre
School of Laboratory Medicine and Medical Sciences
College of Health Sciences
University of KwaZulu-Natal
Private Bag X7
Durban
4013

Clinical Biochemistry, Immunology and Genetics
Our ref: SSI/UKZN_2013_01
15 April 2013

Re: Confirm interest in Collaboration

Dear Professor Naicker,

This letter is to confirm my interest in collaborating on the research proposed in Dr Vineshree Govender’s PhD proposal entitled “The role of Adiponectin, Leptin, TNFα and Resistin in HIV associated Pre-eclampsia”.

The Statens Serum Institut is a Danish health institute which participates in research collaborations and provides diagnostic services worldwide. At the Section of Molecular Medicine we have long history with feto-maternal medicine and a keen interest in understanding pregnancy conditions; as part of our work in this area have developed many of the techniques and technical skills Dr Govender has proposed to apply in her study.

The research proposed here would help us better understand the role adipocytokines play in pre-eclampsia with a particular emphasis on HIV positive women. Thus, I would be glad to provide academic support for this project in addition to training and technical support in the EUSA and real-time PCR portion of Dr Govender’s study. Participants from Statens Serum Institut will be Dr Michael Christiansen and me. Administrative support for all visits to Copenhagen will be provided by Mevis Walter (email: mewa@ssi.dk; tel: +45 3268 8636).

Yours sincerely,

Paula Hedley, Ms
Section of Molecular Medicine

Tel: +45 3268 8192
Fax: +45 3268 3860
phy@ssi.dk
ADDENDUM 7 EXPORT PERMIT- SA TO COPENHAGEN, DENMARK

Health
Department:
Health
REPUBLIC OF SOUTH AFRICA

Private Bag X828, PRETORIA, 0001. 2nd Floor, Room 2713, Ctns, Ctn Thabo Sekhume & Struben Street, PRETORIA, 0001
Tel: +27 (0) 12 386 0000, Fax: +27 (0) 12 386 0482

Reference: J1/2/4/2 No. 1/14
Enquiry: Ms L Motopi
Tel: (012) 398 9366/1187
Fax: (086) 632 8815/1806

EXPORT PERMIT

In terms of Section 58 of the National Health Act 2003 (Act No. 81 of 2003) –
Prof T Naicker
Doris Duke Medical Research Institute
Nelson R Mandela School of Medicine
University of KwaZulu Natal
Congella
4013 South Africa
Tel. No.: (031) 260 4435

is hereby authorised to export from the Republic of South Africa –
2 ml x 350 samples Blood – serum

to –

Dr Paula Hedley
Statens Serum Institut
Department of Clinical Biochemistry
Immunology and Genetics
Statens Serum Institut
Orestads Boulevard 5
23000, Copenhagen
DENMARK
Tel: +0045 3268 8192
Fax: 0045 3268 3878

For Analysis.

This export permit is subject to the following conditions:
1. The substance shall be imported into the country specified above, within the legal requirements of that country.
2. The substance shall be exported from South Africa and handled in accordance with the provisions of the National Health Act 2003 (Act No. 81 of 2003), and the regulations made in terms of the Act.
3. The export permit shall not be used for any trade or advertising purposes.
4. This export permit shall expire on 30 June 2015.

DIRECTOR-GENERAL: HEALTH
Date: 12.10.2024
Ms P Netshidiavhali